Sliding-window dynamic frameproof codes

Maura Paterson

(2007)

Maura Paterson (2007) Sliding-window dynamic frameproof codes. Designs, Codes and Cryptography, 42 (2). pp. 195-212. ISSN 0925-1022

Our Full Text Deposits

Full text access: Open


Links to Copies of this Item Held Elsewhere


Abstract

A sliding-window dynamic frameproof code is a scheme for discouraging the piracy of digital broadcasts through the use of digital finger printing. In this paper we formally define sliding-window dynamic frame proof codes and provide optimal constructions for a certain class of these schemes. We also discuss bounds on the number of users such schemes can support.

Information about this Version

This is a Draft version
This version's date is: 2007
This item is peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/f9bf318e-516b-3689-15f2-3b35423841c6/1/

Item TypeJournal Article
TitleSliding-window dynamic frameproof codes
AuthorsPaterson, Maura
DepartmentsFaculty of Science\Mathematics

Identifiers

doi10.1007/s10623-006-9030-9

Deposited by () on 22-Feb-2010 in Royal Holloway Research Online.Last modified on 09-Jul-2010

Notes

(C) 2007 Springer Verlag Ltd, whose permission to mount this version for private study and research is acknowledged.  The repository version is the author's final draft.

Keywords: dynamic frameproof codes, cryptography

References

[1] O. Berkman, M. Parnas and J. Sgall. Efficient Dynamic Traitor Tracing.
SIAM Journal on Computing, 30:1802-1828, 2001.

[2] S.R. Blackburn. Combinatorial schemes for protecting digital content. In
C. D. Wensley, editor, Surveys in Combinatorics 2003, volume 307 of LMS
lecture notes series, pages 43-78. Cambridge University Press, 2003.

[3] S.R. Blackburn. Frameproof codes. SIAM Journal on Discrete Mathematics,
16(3):499-510, 2003.

[4] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897-1905, 1998.

[5] G.D. Cohen and S.B. Encheva. Efficient constructions of frameproof codes.
Electronics Letters, 36:1849-1842, 2000.

[6] A. Fiat and T. Tassa. Dynamic traitor tracing. In Advances in Cryptology
-Crypto '99, volume 1666 of LNCS, pages 354-371. Springer-Verlag, 1999.

[7] M.B. Paterson. Dynamic frameproof codes. Ph.D. thesis, University of
London, 2005.

[8] M.B. Paterson. Sequential and dynamic frameproof codes. Preprint, 2005.

[9] R. Safavi-Naini and Y. Wang. New results on frameproof codes and trace-
ability schemes IEEE Transactions on Information Theory, 47:3029-3033,
2001.

[10] R. Safavi-Naini and Y. Wang. Sequential traitor tracing. IEEE Transac-
tions on Information Theory, 49:1319-1326, 2003.

[11] J.N. Staddon, D.R. Stinson and R.Wei. Combinatorial properties of frame-
proof and traceability codes. IEEE Transactions on Information Theory,
47:1024-1049, 2001.

[12] D.R. Stinson and R. Wei. Combinatorial properties and constructions of
traceability schemes and frameproof codes. SIAM Journal on Discrete Math-
ematics, 11:41-53, 1998.

[13] M.D. Swanson, M. Kobayashi, and A.H. Tew k. Multimedia data-
embedding and watermarking technologies. Proceedings of the IEEE,
86:1064-1087, 1998.

[14] T. Tassa. Low bandwidth dynamic traitor tracing schemes. J. Cryptology,
18(2):167-183, 2005.

[15] C. Xing. Asymptotic bounds on frameproof codes. IEEE Transactions on
Information Theory, 48(11):2991-2995, 2002.


Details