Technical Results from the Surface Run of the LUX Dark Matter Experiment

Collaboration, LUX, S. Akerib, D., Bai, X., Bernard, E., Bernstein, A., Bradley, A., Byram, D., B. Cahn, S., C. Carmona-Benitez, M., J. Chapman, J., Coffey, T., Dobi, A., Dragowsky, E., Druszkiewicz, E., Edwards, B., H. Faham, C., Fiorucci, S., J. Gaitskell, R., R. Gibson, K., Gilchriese, M., Hall, C., Hanhardt, M., Ihm, M., G. Jacobsen, R., Kastens, L., Kazkaz, K., Knoche, R., Larsen, N., Lee, C., T. Lesko, K., Lindote, A., I. Lopes, M., Lyashenko, A., C. Malling, D., Mannino, R., N. McKinsey, D., Mei, D., Mock, J., Moongweluwan, M., Morii, M., Nelson, H., Neves, F., A. Nikkel, J., Pangilinan, M., Pech, K., Phelps, P., Rodionov, A., Shutt, T., Silva, C., Skulski, W., N. Solovov, V., Sorensen, P., Stiegler, T., Sweany, M., Szydagis, M., Taylor, D., Tripathi, M., Uvarov, S., R. Verbus, J., de Viveiros, L., Walsh, N., Webb, R., T. White, J., Wlasenko, M., L. H. Wolfs, F., Woods, M. and Zhang, C.

(2012)

Collaboration, LUX, S. Akerib, D., Bai, X., Bernard, E., Bernstein, A., Bradley, A., Byram, D., B. Cahn, S., C. Carmona-Benitez, M., J. Chapman, J., Coffey, T., Dobi, A., Dragowsky, E., Druszkiewicz, E., Edwards, B., H. Faham, C., Fiorucci, S., J. Gaitskell, R., R. Gibson, K., Gilchriese, M., Hall, C., Hanhardt, M., Ihm, M., G. Jacobsen, R., Kastens, L., Kazkaz, K., Knoche, R., Larsen, N., Lee, C., T. Lesko, K., Lindote, A., I. Lopes, M., Lyashenko, A., C. Malling, D., Mannino, R., N. McKinsey, D., Mei, D., Mock, J., Moongweluwan, M., Morii, M., Nelson, H., Neves, F., A. Nikkel, J., Pangilinan, M., Pech, K., Phelps, P., Rodionov, A., Shutt, T., Silva, C., Skulski, W., N. Solovov, V., Sorensen, P., Stiegler, T., Sweany, M., Szydagis, M., Taylor, D., Tripathi, M., Uvarov, S., R. Verbus, J., de Viveiros, L., Walsh, N., Webb, R., T. White, J., Wlasenko, M., L. H. Wolfs, F., Woods, M. and Zhang, C. (2012) Technical Results from the Surface Run of the LUX Dark Matter Experiment. ArXiv.org

Our Full Text Deposits

Full text access: Open

Full text file - 12.09 MB

Abstract

We present the results of the three-month above-ground commissioning run of the Large Underground Xenon (LUX) experiment at the Sanford Underground Research Facility located in Lead, South Dakota, USA. LUX is a 370 kg liquid xenon detector that will search for cold dark matter in the form of Weakly Interacting Massive Particles (WIMPs). The commissioning run, conducted with the detector immersed in a water tank, validated the integration of the various sub-systems in preparation of the underground deployment. Using the data collected, we report excellent light collection properties, achieving 8 photoelectrons per keV for 662 keV electron recoils without an applied electric field, measured in the center of the WIMP target. We also find good energy and position resolution in relatively high-energy interactions from a variety of internal and external sources. Finally, we have used the commissioning data to tune the optical properties of our simulation and report updated sensitivity projections for spin-independent WIMP-nucleon scattering.

Information about this Version

This is a Submitted version
This version's date is: 16/10/2012
This item is not peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/5e673ad0-ddf8-4331-d642-11880483d3da/3/

Deposited by Research Information System (atira) on 27-Jan-2013 in Royal Holloway Research Online.Last modified on 27-Jan-2013


Details