Authentication using cryptography

ChrisMitchdl

I nformation Security Group
Royal Holloway, University of L ondon
Egham, Surrey TW20 OEX

Email: cj m@lcs. r hbnc. ac. uk

8th September 1997

ABSTRACT

The purpose of this paper is to describe the nature of user
authenticaion and entity authentication lased on the use of
cryptographic methods. The relationship between key distribution
and entity authentication is described, and examples of pradicd
authenticaion potocols are given, together with some of the
pitfals awaiting designers of such protocols. References to the
growing body of standardised authenticaion tedniques are dso
provided.

1. What is authentication?

Authentication is a much over-used word in the context of Information Seaurity. Even 1SO
74982, [1], the ‘OSl Seaurity Architedure’ reagnises two dstinct meanings for the word.
ISO 74982 dstinguishes between data arigin auhentication, i.e. verifying the origin o
recaved data, and (pee) entity authentication, i.e. verifying the identity of one entity by
ancther.

We ae primarily concerned here with the send d these two services, namely entity
authenticaion. Entity authenticaion is typicaly achieved using an authentication exdhange
mechanism. Such a medhanism consists of an exchange of messages between a pair of
entities, and is usually cdled an authentication protocol. In OSl-spe&k, the word ‘ protocol’
is reserved for the spedficaion d the data structures and rules governing communicaion
between a pair of pea entities, and thisis why 1SO 74982 speaks of authentication exchange
mechanisms. Here we abuse the OSI natation, following generally accepted pradice and call
them authentication protocols.

ISO 74982 defines entity authentication as ‘the @rrobaration that an entity is the one
claimed’. We dso neal to dstinguish between protocols providing unil ateral authentication
and those providing mutual authentication. Unilateral authentication is defined as ‘entity
authenticaion which provides one entity with asaurance of the other’s identity but not vice
versa and Mutual authentication is defined as ‘entity authentication which provides bath
entiti es with assurance of ead ather’ sidentity’.

Entity authentication can only be adieved for a single instant in time. Typicdly, a mutual
authenticaion protocol is used at the start of a wnredion between a pair of communicaing
entities. If seaurity (e.g. confidentiality, integrity) is required for information subsequently
exchanged duing the life of the cmnredion, then ather cryptographic mecdhanisms will neal
to be used, e.g. encipherment or the use of Message Authentication Codes (MACs), to proted
that data. The keys nealed for these ayptographic operations can be areed andor
exchanged as part of the authenticaion grotocol.

Thus one gplicaion d entity authenticaion is ‘authenticated sesson key establishment’.
Other applications exist which are nat diredly related to sesgon key exchange. Examples of
such applications include:

e seaure dock synchronisation,
e seaure RPC (remote procedure cdl), and
e searetransadions.

We have so far used the term entity, withou adually saying what an entity is. For our
purposes, an entity will either be a @mputer or a human user (perhaps equipped with some
kind d authenticaion token). Thus, we mean to cover the two most commonly occurring
applications of entity authentication protocols, namely:

» where both entiti es are cmmputers or other devices (e.g. a mobil e telephore), and
* whereone atity isahuman and the other isa mmputer.

The latter case is often referred to as ‘user authenticaion'. However, athough the
applications are suhtly different, and are often discussed separately, the underlying problem

[1] 1SO 74982: 1988, Information processng systems — Open system interconredion —
Basic referencemodel — Part 2: Seaurity architedure.

isesentialy the same, and hencewe do nd make this distinction kere. In fad, given that the
human user has me kind d authentication token cgpable of performing cdculations on the
user’s behalf, predsely the same protocols can be employed for the two applicaions.

Before procealing, we give asimple example of a unilateral authenticaion protocol. In this
protocol, entity A authenticaesitself to entity B, bu not viceversa. We suppase that, prior to
use of this protocol, A and B have established a shared seaet key K. This key is used with a
cryptographic chedk function f; an example of such a function is provided by a block cipher
based MAC. As downin Figure 1, this protocol has two messages. In the first message, My,
B sends A arandam ‘challenge’ Rs. In the seaond message, M,, A responds with a thedk
value, computed as a function d the randam challenge and an identifier for B (denoted 1Dg).
Note that in this example, as throughou, X||Y denctes the mncatenation d data items X and

M, = fi (R||IDg)

Figure 1 - A simple challenge-response protocol

It is smple to seethat the use of a seaet key means that no-one gart from A is able to
compute the crred resporse to B's challenge. Other aspeds of the design o this protocol
will be explained in the text below.

Thistype of protocol is often cdled a chall enge-resporse (CR) protocol. The exad origins of
these protocolsis far from clea, although the seminal paper of Needham and Schroeder, [2],
provides the first pulished examples of such protocols. CR protocols are widely used in
many communicaions g/stems. For example, a CR protocol isthe basis of the authenticaion
scheme in the Global System for Mobile Communicaions (GSM), the standard for European
digital mobile telephory, and CR protocols are widely used in token-based user
authenticaion systems auch as the Racd Watchword system.

[2] R.M. Nealham and M.D. Schroeder, ‘Using encryption for authentication in large
networks of computers'. Comrunications of the ACM 21 (1978 993-999.

2. Objectives of an authentication protocol

An authentication protocol consists of an exchange of messages between two parties. If it is
a mutual authentication protocol then, after successul completion d the protocol, bath
parties srodd be sure of the origin, integrity and freshness of all the messages they have
recaved. Therefore, they will have cnfidence in the presence of the daimed entity at the
other end d thelink. Information conveyed in the messages can then be used for a variety of
purposes, naably key establi shment, as we discussbelow.

There ae some much more sophisticaed models of authenticaion protocols, including some
set up formally. It has been necessary to devise these models becaise of the difficulty of
formalising the gparently simple goals of an authenticaion protocol. The shortcomings of
previous informal and formal models have been shown by the many varied attads that have
been dscovered onauthenticaion protocols. It is beyondthe scope of this paper to describe
these formal models or all the possble dtadcks; a good guide to some of the possble
weeknesses in authentication protocols can be foundin [3]. In the next sedion, we outline
some of the simpler issues.

3. What can go wrong?

Whil st the objedives for an authenticaion protocol are relatively straightforward to express
and the protocols themselves corntain oy a few messages, analysing these protocols can be
unexpededly difficult. As we have dready mentioned, the literature is full of examples of
apparently seaure protocols that have been shown to pessess sibtle flaws, which might
compromise the protocol users in certain circumstances. To give aflavour of some of the
problems that can arise we nsider some of the most basic design iswues for an
authenticaion protocol.

The simplest (unil ateral) authentication methodinvolved use of a passvord. The entity being
authenticaed, when chall enged, sends a awpy of aseaet passvord. The system then chedks a
one-way function d the passwvord against the stored value for that entity. Thisisthe basis of
the Unix authentication system. The shortcomings of such an approach are dl too clea —
anyone caable of intercepting the cmmmunications between the two entities can oltain the
seaet passvord, compromising the system. Nevertheless where such interception is deemed
infeasible, or the impad of compromiseis gnall, such systems remain very widely used.

Probably the most ‘ obvious' way of deding with the problem of interception d passwordsis
to use an encryption medhanism to hide the passwvord whilst in transit. However, it is aso
not hard to seethat simple encryption d a passvord daes little to help the interception
problem. This is becaise the possesor of an intercepted encrypted password can simply
replay the encrypted password, which will cortinue to be acceted! Something must be done
to make the passvord message ‘onetime’ (i.e. so that yesterday’ s message caina be replayed

today).

There ae two simple ways of achieving this one-time dfed. The first employs a random
chall enge that is used in computing the passvord-based resporse — this is predsely the basis
of the protocol described in Figure 1. An alternative goproach, and ore that can result in a
unil ateral authenticaion grotocol with just one message, isto use atime-stamp. An example
of such aprotocol isgivenin Figure 2, where T, denotes atime-stamp chosen by A.

[3] A.J Menezes, P.C. van Oorschot and SA. Vanstone, Handbodk of apgied
cryptography. CRCPress BocaRaton, 1997.

M, = Tallf (TallIDg)

A4

Figure 2 - Time-stamp based unilateral authentication

The time-stamp ensures that the authenticaion message is diff erent every time. Entity B first
verifies that the suppied time-stamp T, is afficiently current (and within a fixed error
margin o its current time). B then recomputes the chedk-value using the supdied time-
stamp, and compares it with the value sent in the message.

A further aternative, which is redly a variant on the time-stamp approad, is to replacethe
time-stamp T, with a bilateral sequence number. In aher words, A and B bath maintain a
courter value, puely for use in authenticaing A to B; the use of such a murter is discussed
further below. Note that such a curter may be regarded asa‘logicd’ time-stamp.

Before procealing note that a problem could arise in either of the protocols < far described
of the identifier of the message redpient (IDg) were removed from the inpus to f. Suppase
that the same protocol (as in Figure 1, bu withou use of the identifier IDg) is used in
identifying A to B and B to A; suppce moreover that the same key K is used for
authenticaion in bah dredions. We dso suppce that A and B are computers capable of
maintaining more than ore communicaions channel simultaneously. Then, if C is
impersonating A, when C recaves the dlenge Rz from B, C simply starts ancther
authenticaion protocol with B, and sends B the challenge Rs. B responds with a chedk-value
computed using K and Rg, which C simply ‘refleds’ badk to B. B now falsely believes itself
to betalkingto A. Theinclusion d the identifier avoids this problem by making the message
sent from A to B in resporse to a dhall enge different from the message sent from B to A in
resporse to the same challenge. The protocol in Figure 2 includes an identifier for similar
reasons; for further detail s ®e[4].

[4] C.J. Mitchell, ‘Limitations of challenge-resporse atity authenticaion’. Eledronics
Letters 25 (1989 11951196.

Note dso that oncewe mnsider mutual authentication aher problems can arise. One of these
concerns the linking of messages from a particular instance of a protocol. In circumstances
where more than ore instance of a protocol may be in progressat a particular point in time, it
is metimes important that the redpient of a message knows which protocol instance the
message belongs to, and that the links between protocol messages canna be undetedably
tampered with by a malicious interceptor. This and dher fadors make designing mutual
authenticaion gprotocols a nontrivial business

4. Components of an authentication protocol

Having seen what an authenticaion protocol is for, we now consider in a little more detail
what we need to use to buld such a protocol. It shoud be dea that, if we ignore simple
passvord schemes, authenticaion protocols require the use of a combination d either shared
seaets (keys or passvords) or signature/verification key pairs, and acwmmpanying
cryptographic medhanisms. These ae used to ensure that the redpient of a protocol message
knows:

» whereit has come from (origin cheding),
» that it has not been interfered with (integrity chedking).

Note that cryptographic mecdhanisms (by themselves) cannat provide freshnesschecking, i.e.
the verification that a protocol message is nat simply a replay of a previously transmitted
(valid) protocol message, proteded using a arrently valid key. We aonsider the provision o
freshnessverificaion later.

4.1 Cryptographic mechanisms

A variety of different types of cryptographic mechanism can be used to provide integrity and
origin cheding for individual protocol messages. We @nsider threemain possbiliti es:

* encipherment,

* integrity mechanism (MAC or Cryptographic Chedk Function),
o (digital signature.

We oonsider ead in turn in some detail .

4.1.1 Useof encipherment

To proted a message in a protocol, the sender enciphers it with a seaet key shared with the
redpient. The redpient can then verify the origin of the message using the following
process The redpient first dedphers the message and chedks that it ‘makes snse’; if thisis
the cae then the redpient reasons that it must therefore have been enciphered using the
corred seaet key, and since only the genuine sender knows this key, it must therefore have
been sent by the daimed ariginator.

This reasoning makes a number of assumptions abou the nature of the excipherment
algorithm and the caabiliti es of the redpient. First and foremost, if this processis to be
performed automaticdly by a momputer (as we would exped), then we need to define what
‘makes ense’ means for a computer, espedally as the mntents of the message might include
randam sesson keys and randam ‘challenges. We ae dso assuming that an interceptor
canna manipulate an enciphered message (without knowledge of the key used to encipher it)
in such a way that it still ‘makes ®nse’ after dedpherment. This constrains the type of
encipherment algorithm that is aiitable for use in this application; for example, stream
ciphers are usualy unsuitable for use & part of an authentication protocol.

The usual solution to this problem is the aldition d deliberate ‘redundancy’ (acwrding to
some greal formula) to the message prior to encipherment. The redpient of the message
can then automaticdly ched the presence of this redundancy (after dedpherment). One
common method d adding redundancy to a message is to cdculate aManipulation Detedion
Code (MDC), a sort of chedksum dependent on the entire message, and append it to the
message prior to encipherment. The MDC cdculation function will typicaly be apubic
function.

4.1.2 Useof integrity mechanisms

There is avariety of pasghble types of data integrity mecdhanism. Two well-known examples
are s follows.

* A Message Authentication Code (MAC) function. A MAC (or a Cryptographic Ched
Function) is a function which takes as inpus a seaet key and a message, and gives as
output a fixed length MAC which is appended to the message & a ‘ cryptographic chedk
value'. The ‘standard’ way of computingaMAC is by using ablock cipher (e.g. DES) in
Cipher Block Chaining (CBC) mode. The result of enciphering the last block is typicdly
subjeded to some alditional processng, and the output formsthe MAC.

A one-way function. A one-way function is a function that is Smple to compute yet
computationally infeasible to invert, i.e. given an inpu it is easy to compute the
correspondng output, bu given an arbitrary output it is computationally infeasible to
find an input which gives this output. To use such a function as a data integrity
mechanism involves concaenating the message to be proteded with a seaet key and
using this as the inpu to the one-way function. The resulting output can then be
appended to the message & a ' cryptographic chedk value'. Note that, for this approac to
be seaure, a dlightly more powerful property than ‘one-wayness is required; however we
omit the detail s here.

The redpient of a protocol message dhedks it by recomputing the ayptographic ched value,
using a shared seaet key, and comparing it with the value gpended to the message. The
appended ched value provides bath:

» origin checkng, becaise the originator and verifier are aumed to be the only possesors
of the seaet key, and hence ae the only ones cgpable of computing a valid ched value
for amessage, and

e integrity checking, because, withou the seaet key, the new ched value wrrespondng to
a dhanged message canna be cdculated.

4.1.3 Useof digital signatures

A digital signature function is an example of a puldic key scheme (i.e. an asymmetric
cryptographic technique). The fundamental idea of asymmetric ayptography is that keys
come in matching pairs made up d a pubic keyand a private key and that knowledge of the
public key of apair does nat reved knowledge of the private key.

The key pair for adigital signature dgorithm consists of:
e aprivate‘signing key' (which defines the signature transformation), and
» apulic‘verificaionkey’ (which defines the verificaion transformation).

A signature will typicaly function somewhat like aMAC, in that the possessor of the private
key can use it to derive the digital signaure of a message, which is then appended to the
message. The redpient then uses the pulic verification key to ched the signature, thereby
enabling the redpient to chedk the origin and integrity of a message.

4.1.4 Classifying protocols

One way of classfying authenticaion protocols is by the type of cryptographic medanism
they use. Thisisthe gproacd followed by ISO/IEC 9798,which is divided into a number of
parts, where eat part contains authentication protocols based on a different type of
cryptographic mecdhanism. We discussthese standards further in Sedion 6 kelow.

4.2 Freshness mechanisms

As we have drealy briefly noted, providing origin and integrity cheding for protocol
messages is not al that is required. We dso need a means of chedking the ‘fr eshness of
protocol messages to proted against replays of messages from previous valid exchanges.

Aswe have drealy seen, there ae two main methods of providing freshnesscheding:
» theuse of time-stamps (either clock-based o ‘logicd’ time-stamps),

» theuseof nornces or challenges (asin the dall enge-resporse protocol in Figure 1).
We nsider these two approadhesin turn.

4.2.1 Useof time-stamps

Clealy, theinclusion d a date/time stamp in a message enables the redpient of a message to
ched it for freshness as long as the time-stamp is proteded by cryptographic means.
However, in arder for thisto operate succes<ully all entities must be eguipped with securely
synchronised clocks. It is nortrivial to provide such clocks (n.b.the dock drift of atypicd
workstation can be 1-2 seconds/day). Moreover, every entity receving protocol messages
will need to define atime accetance ‘window’ on either side of their current clock value. A
recaved message will then be acceted as ‘fresh’ if and orly if it falls within this window.
This acceptancewindow is needed for two main reasons:

» clocksvary continuowsly, and hence notwo clocks will be predsely synchronised, except
perhaps at some instant in time, and

e messages take time to propagate from one machine to anather, and this time will vary
unpredictably.

The use of an accetance window is itself a possble seaurity weakness since it allows for
undetedable replays of messages for a period d time up to the length of the window. To
avert this threa requires ead entity to store a‘log’ of al receitly recaved messages,
spedficdly al messages receved within the last t seconds, where t is the length of the
accetancewindow. Any newly receved message is then compared with all the entriesin the
log, andif it isthe same & any of them then it isrejeded as areplay.

Ancther problem associated with the use of time-stamps is the question d how synchronised
clocks $houd be provided. One solution is to use an authentication protocol not based on
time-stamps (e.g. norce-based) at regular intervals to dstribute amaster clock value that is
then used to upchte eab entity’sindividual clock. Ancther solutionisfor all entitiesto have
reliable accesto an acarate time source (e.g. a national radio kbroadcast time such as the
Rugby time signal).

One dternative to the use of clocksis for every pair of communicating entities to store apair
of sequence numbers, which are used orly in communicaions between that pair. For
example, for communications between A and B, A must maintain two courters: Nag and Nga
(B will also nead to maintain two courtersfor A). Every time A sends B a message, the value
of Nag is included in the message, and at the same time A's dored value of Npg is
incremented.

Every time A recaves a message from B, then the sequence number put into the message by B
(N say) is compared with Nga (as gored by A), and:

e if N> Ngathen
* the message is accepted as fresh, and
* Ngaisreset toequal N,
* if N< Ngathen
* themessageisregjeded asan ‘old’ message.

These sequence numbers take the role of what are known as logical time-stamps, a well-
known concept in the theory of Distributed Systems (following Lamport, [5]).

4.2.2 Useof nonces

Nonce-based (or challenge-resporse) protocols use aquite different mechanism to provide
freshnesschedking. One party, A say, sends the other party, B say, a nonce (Number used
ONCE) as a challenge. B then includes this noncein the response to A. Becaise the norce
has never been used before, at least within the lifetime of the arrent key, A can verify the
‘freshness of B's resporse (given that message integrity is provided by some ayptographic
mechanism). Note that it is always up to A, the nonce provider, to ensure that the coice of
norceis appropriate, i.e. that it has not been used before.

The main property required of a norceis the ‘one-time’ property. Thus, if that isall that is
ever required, A could ensure it by keging a single wurter and whenever a norce is
required, for use with any other party, the arrent courter value is used (and the counter is
incremented). However, in order to prevent a spedal type of attad, many protocols also
need norces to be unpredictable to any third party. Hence norces are typicdly chaosen at
randam from a set sufficiently large to mean that the probability of the same nonce being
used twiceis effedively zero.

5. Evaluating authentication protocols

As mentioned above, there have been many effortsin recent yeasto devise formal and semi-
formal methods for evaluating authenticaion protocols. Probably the most influential work
in this areahas been that of Burrows, Abadi and Neadham, [6], who devised a spedal logic to
reason abou authenticaion protocols. This has gawned an enormous literature on similar
topics, and remains an adive aeafor current reseach. It seems that the answer to the
guestion ‘What is an authentication protocol? remainsto be fully answered.

[5] L. Lamport, ‘Time, clocks, and the ordering of events in a distributed system’.
Comnunications of the ACM 21 (1978 558565.

[6] M. Burrows, M. Abadi and R. Neadham, ‘A logic of authenticaion'. Procealings of the
Royal Scciety of London, $ries A 426 (1989 233271.

6. Standards for authentication protocols

In recant yeas ISO/IEC JTC1/SC27 has been working on a multi-part standard, ISO/IEC
9798, [7], spedfying a general-purpose set of authentication protocols. The four parts
pubished so far have the foll owing coverage.

e Part 1- General (this part has recently been revised with much more explanatory text),
e Part 2 —Medhanisms using symrretric encipherment algorithms,

e Part 3 —Entity authentication wsing a pultic keyalgorithm (this part, covering the use of
digital signatures, is currently being revised under the new title Medhanisms using
asymnetric signature technigues),

* Part 4 —Mechanismsusing acryptographic checkfunction.

Note that the example protocols given in Figure 1 and Figure 2 are taken from ISO/IEC 9798
4. A fifth part of ISO/IEC 9798is currently at Draft International Standard (DI1S) stage:

e Part 5 —Medhanisms using zero knowledge techniques.

The protocols gedfied in these standards have been designed for use in a variety of
applicaion damains. As auch, they have been designed to be @ ‘robust’ as posdble, i.e. they
have been designed to resist all known attadks (as long as they are used in the way spedfied).
The reader is recommended to consult these standards before aopting an authenticaion
protocol for use in anew applicaion damain.

[7] 1SO/EC 9798, Information techndogy — Seaurity tedhniques — Entity authentication
mechansms.

10

