
Authentication using cryptography

Chris Mitchell

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX

Email: cjm@dcs.rhbnc.ac.uk

8th September 1997

ABSTRACT

The purpose of this paper is to describe the nature of user
authentication and entity authentication based on the use of
cryptographic methods. The relationship between key distribution
and entity authentication is described, and examples of practical
authentication protocols are given, together with some of the
pitfall s awaiting designers of such protocols. References to the
growing body of standardised authentication techniques are also
provided.

2

1. What is authentication?
Authentication is a much over-used word in the context of Information Security. Even ISO
7498-2, [1], the ‘OSI Security Architecture’ recognises two distinct meanings for the word.
ISO 7498-2 distinguishes between data origin authentication, i.e. verifying the origin of
received data, and (peer) entity authentication, i.e. verifying the identity of one entity by
another.

We are primarily concerned here with the second of these two services, namely entity
authentication. Entity authentication is typically achieved using an authentication exchange
mechanism. Such a mechanism consists of an exchange of messages between a pair of
entities, and is usually called an authentication protocol. In OSI-speak, the word ‘protocol’
is reserved for the specification of the data structures and rules governing communication
between a pair of peer entities, and this is why ISO 7498-2 speaks of authentication exchange
mechanisms. Here we abuse the OSI notation, following generally accepted practice, and call
them authentication protocols.

ISO 7498-2 defines entity authentication as ‘ the corroboration that an entity is the one
claimed’ . We also need to distinguish between protocols providing unilateral authentication
and those providing mutual authentication. Unilateral authentication is defined as ‘entity
authentication which provides one entity with assurance of the other’s identity but not vice
versa’ and Mutual authentication is defined as ‘entity authentication which provides both
entities with assurance of each other’s identity’ .

Entity authentication can only be achieved for a single instant in time. Typically, a mutual
authentication protocol is used at the start of a connection between a pair of communicating
entities. If security (e.g. confidentiality, integrity) is required for information subsequently
exchanged during the li fe of the connection, then other cryptographic mechanisms will need
to be used, e.g. encipherment or the use of Message Authentication Codes (MACs), to protect
that data. The keys needed for these cryptographic operations can be agreed and/or
exchanged as part of the authentication protocol.

Thus one application of entity authentication is ‘authenticated session key establishment’ .
Other applications exist which are not directly related to session key exchange. Examples of
such applications include:

• secure clock synchronisation,

• secure RPC (remote procedure call), and

• secure transactions.

We have so far used the term entity, without actually saying what an entity is. For our
purposes, an entity will either be a computer or a human user (perhaps equipped with some
kind of authentication token). Thus, we mean to cover the two most commonly occurring
applications of entity authentication protocols, namely:

• where both entities are computers or other devices (e.g. a mobile telephone), and

• where one entity is a human and the other is a computer.

The latter case is often referred to as ‘user authentication’ . However, although the
applications are subtly different, and are often discussed separately, the underlying problem

[1] ISO 7498-2: 1988, Information processing systems – Open system interconnection –
Basic reference model – Part 2: Security architecture.

3

is essentially the same, and hence we do not make this distinction here. In fact, given that the
human user has some kind of authentication token capable of performing calculations on the
user’s behalf, precisely the same protocols can be employed for the two applications.

Before proceeding, we give a simple example of a unilateral authentication protocol. In this
protocol, entity A authenticates itself to entity B, but not vice versa. We suppose that, prior to
use of this protocol, A and B have established a shared secret key K. This key is used with a
cryptographic check function f; an example of such a function is provided by a block cipher
based MAC. As shown in Figure 1, this protocol has two messages. In the first message, M1,
B sends A a random ‘challenge’ RB. In the second message, M2, A responds with a check
value, computed as a function of the random challenge and an identifier for B (denoted IDB).
Note that in this example, as throughout, X||Y denotes the concatenation of data items X and

Y.

Figure 1 - A simple challenge-response protocol

It is simple to see that the use of a secret key means that no-one apart from A is able to
compute the correct response to B’s challenge. Other aspects of the design of this protocol
will be explained in the text below.

This type of protocol is often called a challenge-response (CR) protocol. The exact origins of
these protocols is far from clear, although the seminal paper of Needham and Schroeder, [2],
provides the first published examples of such protocols. CR protocols are widely used in
many communications systems. For example, a CR protocol is the basis of the authentication
scheme in the Global System for Mobile Communications (GSM), the standard for European
digital mobile telephony, and CR protocols are widely used in token-based user
authentication systems such as the Racal Watchword system.

[2] R.M. Needham and M.D. Schroeder, ‘Using encryption for authentication in large
networks of computers’ . Communications of the ACM 21 (1978) 993-999.

BA

M1 = RB

M2 = fK(RB||IDB)

4

2. Objectives of an authentication protocol
An authentication protocol consists of an exchange of messages between two parties. If it is
a mutual authentication protocol then, after successful completion of the protocol, both
parties should be sure of the origin, integrity and freshness of all the messages they have
received. Therefore, they will have confidence in the presence of the claimed entity at the
other end of the link. Information conveyed in the messages can then be used for a variety of
purposes, notably key establishment, as we discuss below.

There are some much more sophisticated models of authentication protocols, including some
set up formally. It has been necessary to devise these models because of the diff iculty of
formalising the apparently simple goals of an authentication protocol. The shortcomings of
previous informal and formal models have been shown by the many varied attacks that have
been discovered on authentication protocols. It is beyond the scope of this paper to describe
these formal models or all the possible attacks; a good guide to some of the possible
weaknesses in authentication protocols can be found in [3]. In the next section, we outline
some of the simpler issues.

3. What can go wrong?
Whilst the objectives for an authentication protocol are relatively straightforward to express,
and the protocols themselves contain only a few messages, analysing these protocols can be
unexpectedly diff icult. As we have already mentioned, the literature is full of examples of
apparently secure protocols that have been shown to possess subtle flaws, which might
compromise the protocol users in certain circumstances. To give a flavour of some of the
problems that can arise we consider some of the most basic design issues for an
authentication protocol.

The simplest (unilateral) authentication method involved use of a password. The entity being
authenticated, when challenged, sends a copy of a secret password. The system then checks a
one-way function of the password against the stored value for that entity. This is the basis of
the Unix authentication system. The shortcomings of such an approach are all too clear –
anyone capable of intercepting the communications between the two entities can obtain the
secret password, compromising the system. Nevertheless, where such interception is deemed
infeasible, or the impact of compromise is small , such systems remain very widely used.

Probably the most ‘obvious’ way of dealing with the problem of interception of passwords is
to use an encryption mechanism to hide the password whilst in transit. However, it is also
not hard to see that simple encryption of a password does littl e to help the interception
problem. This is because the possessor of an intercepted encrypted password can simply
replay the encrypted password, which will continue to be accepted! Something must be done
to make the password message ‘one time’ (i.e. so that yesterday’s message cannot be replayed
today).

There are two simple ways of achieving this one-time effect. The first employs a random
challenge that is used in computing the password-based response – this is precisely the basis
of the protocol described in Figure 1. An alternative approach, and one that can result in a
unilateral authentication protocol with just one message, is to use a time-stamp. An example
of such a protocol is given in Figure 2, where TA denotes a time-stamp chosen by A.

[3] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of applied
cryptography. CRC Press, Boca Raton, 1997.

5

Figure 2 - Time-stamp based unilateral authentication

The time-stamp ensures that the authentication message is different every time. Entity B first
verifies that the supplied time-stamp TA is suff iciently current (and within a fixed error
margin of its current time). B then recomputes the check-value using the supplied time-
stamp, and compares it with the value sent in the message.

A further alternative, which is really a variant on the time-stamp approach, is to replace the
time-stamp TA with a bilateral sequence number. In other words, A and B both maintain a
counter value, purely for use in authenticating A to B; the use of such a counter is discussed
further below. Note that such a counter may be regarded as a ‘ logical’ time-stamp.

Before proceeding note that a problem could arise in either of the protocols so far described
of the identifier of the message recipient (IDB) were removed from the inputs to f. Suppose
that the same protocol (as in Figure 1, but without use of the identifier IDB) is used in
identifying A to B and B to A; suppose moreover that the same key K is used for
authentication in both directions. We also suppose that A and B are computers capable of
maintaining more than one communications channel simultaneously. Then, if C is
impersonating A, when C receives the challenge RB from B, C simply starts another
authentication protocol with B, and sends B the challenge RB. B responds with a check-value
computed using K and RB, which C simply ‘reflects’ back to B. B now falsely believes itself
to be talking to A. The inclusion of the identifier avoids this problem by making the message
sent from A to B in response to a challenge different from the message sent from B to A in
response to the same challenge. The protocol in Figure 2 includes an identifier for similar
reasons; for further details see [4].

[4] C.J. Mitchell , ‘Limitations of challenge-response entity authentication’ . Electronics
Letters 25 (1989) 1195-1196.

BA
M1 = TA||fK (TA||IDB)

6

Note also that once we consider mutual authentication other problems can arise. One of these
concerns the linking of messages from a particular instance of a protocol. In circumstances
where more than one instance of a protocol may be in progress at a particular point in time, it
is sometimes important that the recipient of a message knows which protocol instance the
message belongs to, and that the links between protocol messages cannot be undetectably
tampered with by a malicious interceptor. This and other factors make designing mutual
authentication protocols a non-trivial business.

4. Components of an authentication protocol
Having seen what an authentication protocol is for, we now consider in a littl e more detail
what we need to use to build such a protocol. It should be clear that, if we ignore simple
password schemes, authentication protocols require the use of a combination of either shared
secrets (keys or passwords) or signature/verification key pairs, and accompanying
cryptographic mechanisms. These are used to ensure that the recipient of a protocol message
knows:

• where it has come from (origin checking),

• that it has not been interfered with (integrity checking).

Note that cryptographic mechanisms (by themselves) cannot provide freshness-checking, i.e.
the verification that a protocol message is not simply a replay of a previously transmitted
(valid) protocol message, protected using a currently valid key. We consider the provision of
freshness verification later.

4.1 Cryptographic mechanisms

A variety of different types of cryptographic mechanism can be used to provide integrity and
origin checking for individual protocol messages. We consider three main possibiliti es:

• encipherment,

• integrity mechanism (MAC or Cryptographic Check Function),

• digital signature.

We consider each in turn in some detail .

4.1.1 Use of encipherment

To protect a message in a protocol, the sender enciphers it with a secret key shared with the
recipient. The recipient can then verify the origin of the message using the following
process. The recipient first deciphers the message and checks that it ‘makes sense’ ; if this is
the case then the recipient reasons that it must therefore have been enciphered using the
correct secret key, and since only the genuine sender knows this key, it must therefore have
been sent by the claimed originator.

This reasoning makes a number of assumptions about the nature of the encipherment
algorithm and the capabiliti es of the recipient. First and foremost, if this process is to be
performed automatically by a computer (as we would expect), then we need to define what
‘makes sense’ means for a computer, especially as the contents of the message might include
random session keys and random ‘challenges’ . We are also assuming that an interceptor
cannot manipulate an enciphered message (without knowledge of the key used to encipher it)
in such a way that it still ‘makes sense’ after decipherment. This constrains the type of
encipherment algorithm that is suitable for use in this application; for example, stream
ciphers are usually unsuitable for use as part of an authentication protocol.

7

The usual solution to this problem is the addition of deliberate ‘redundancy’ (according to
some agreed formula) to the message prior to encipherment. The recipient of the message
can then automatically check the presence of this redundancy (after decipherment). One
common method of adding redundancy to a message is to calculate a Manipulation Detection
Code (MDC), a sort of checksum dependent on the entire message, and append it to the
message prior to encipherment. The MDC calculation function will t ypically be a public
function.

4.1.2 Use of integrity mechanisms

There is a variety of possible types of data integrity mechanism. Two well -known examples
are as follows.

• A Message Authentication Code (MAC) function. A MAC (or a Cryptographic Check
Function) is a function which takes as inputs a secret key and a message, and gives as
output a fixed length MAC which is appended to the message as a ‘cryptographic check
value’ . The ‘standard’ way of computing a MAC is by using a block cipher (e.g. DES) in
Cipher Block Chaining (CBC) mode. The result of enciphering the last block is typically
subjected to some additional processing, and the output forms the MAC.

• A one-way function. A one-way function is a function that is simple to compute yet
computationally infeasible to invert, i.e. given an input it is easy to compute the
corresponding output, but given an arbitrary output it is computationally infeasible to
find an input which gives this output. To use such a function as a data integrity
mechanism involves concatenating the message to be protected with a secret key and
using this as the input to the one-way function. The resulting output can then be
appended to the message as a ‘cryptographic check value’ . Note that, for this approach to
be secure, a slightly more powerful property than ‘one-wayness’ is required; however we
omit the details here.

The recipient of a protocol message checks it by recomputing the cryptographic check value,
using a shared secret key, and comparing it with the value appended to the message. The
appended check value provides both:

• origin checking, because the originator and verifier are assumed to be the only possessors
of the secret key, and hence are the only ones capable of computing a valid check value
for a message, and

• integrity checking, because, without the secret key, the new check value corresponding to
a changed message cannot be calculated.

4.1.3 Use of digital signatures

A digital signature function is an example of a public key scheme (i.e. an asymmetric
cryptographic technique). The fundamental idea of asymmetric cryptography is that keys
come in matching pairs made up of a public key and a private key, and that knowledge of the
public key of a pair does not reveal knowledge of the private key.

The key pair for a digital signature algorithm consists of:

• a private ‘signing key’ (which defines the signature transformation), and

• a public ‘verification key’ (which defines the verification transformation).

A signature will t ypically function somewhat like a MAC, in that the possessor of the private
key can use it to derive the digital signature of a message, which is then appended to the
message. The recipient then uses the public verification key to check the signature, thereby
enabling the recipient to check the origin and integrity of a message.

8

4.1.4 Classifying protocols

One way of classifying authentication protocols is by the type of cryptographic mechanism
they use. This is the approach followed by ISO/IEC 9798, which is divided into a number of
parts, where each part contains authentication protocols based on a different type of
cryptographic mechanism. We discuss these standards further in Section 6 below.

4.2 Freshness mechanisms

As we have already briefly noted, providing origin and integrity checking for protocol
messages is not all that is required. We also need a means of checking the ‘fr eshness’ of
protocol messages to protect against replays of messages from previous valid exchanges.

As we have already seen, there are two main methods of providing freshness checking:

• the use of time-stamps (either clock-based or ‘ logical’ time-stamps),

• the use of nonces or challenges (as in the challenge-response protocol in Figure 1).

We consider these two approaches in turn.

4.2.1 Use of time-stamps

Clearly, the inclusion of a date/time stamp in a message enables the recipient of a message to
check it for freshness, as long as the time-stamp is protected by cryptographic means.
However, in order for this to operate successfully all entities must be equipped with securely
synchronised clocks. It is non-trivial to provide such clocks (n.b. the clock drift of a typical
workstation can be 1-2 seconds/day). Moreover, every entity receiving protocol messages
will need to define a time acceptance ‘window’ on either side of their current clock value. A
received message will t hen be accepted as ‘fr esh’ if and only if it fall s within this window.
This acceptance window is needed for two main reasons:

• clocks vary continuously, and hence no two clocks will be precisely synchronised, except
perhaps at some instant in time, and

• messages take time to propagate from one machine to another, and this time will vary
unpredictably.

The use of an acceptance window is itself a possible security weakness, since it allows for
undetectable replays of messages for a period of time up to the length of the window. To
avert this threat requires each entity to store a ‘ log’ of all recently received messages,
specifically all messages received within the last t seconds, where t is the length of the
acceptance window. Any newly received message is then compared with all the entries in the
log, and if it is the same as any of them then it is rejected as a replay.

Another problem associated with the use of time-stamps is the question of how synchronised
clocks should be provided. One solution is to use an authentication protocol not based on
time-stamps (e.g. nonce-based) at regular intervals to distribute a master clock value that is
then used to update each entity’s individual clock. Another solution is for all entities to have
reliable access to an accurate time source (e.g. a national radio broadcast time such as the
Rugby time signal).

One alternative to the use of clocks is for every pair of communicating entities to store a pair
of sequence numbers, which are used only in communications between that pair. For
example, for communications between A and B, A must maintain two counters: NAB and NBA

(B will also need to maintain two counters for A). Every time A sends B a message, the value
of NAB is included in the message, and at the same time A’ s stored value of NAB is
incremented.

9

Every time A receives a message from B, then the sequence number put into the message by B
(N say) is compared with NBA (as stored by A), and:

• if N > NBA then

• the message is accepted as fresh, and

• NBA is reset to equal N,

• if N ≤ NBA then

• the message is rejected as an ‘old’ message.

These sequence numbers take the role of what are known as logical time-stamps, a well -
known concept in the theory of Distributed Systems (following Lamport, [5]).

4.2.2 Use of nonces

Nonce-based (or challenge-response) protocols use a quite different mechanism to provide
freshness checking. One party, A say, sends the other party, B say, a nonce (Number used
ONCE) as a challenge. B then includes this nonce in the response to A. Because the nonce
has never been used before, at least within the li fetime of the current key, A can verify the
‘fr eshness’ of B’ s response (given that message integrity is provided by some cryptographic
mechanism). Note that it is always up to A, the nonce provider, to ensure that the choice of
nonce is appropriate, i.e. that it has not been used before.

The main property required of a nonce is the ‘one-time’ property. Thus, if that is all that is
ever required, A could ensure it by keeping a single counter and whenever a nonce is
required, for use with any other party, the current counter value is used (and the counter is
incremented). However, in order to prevent a special type of attack, many protocols also
need nonces to be unpredictable to any third party. Hence, nonces are typically chosen at
random from a set suff iciently large to mean that the probabilit y of the same nonce being
used twice is effectively zero.

5. Evaluating authentication protocols
As mentioned above, there have been many efforts in recent years to devise formal and semi-
formal methods for evaluating authentication protocols. Probably the most influential work
in this area has been that of Burrows, Abadi and Needham, [6], who devised a special logic to
reason about authentication protocols. This has spawned an enormous literature on similar
topics, and remains an active area for current research. It seems that the answer to the
question ‘What is an authentication protocol?’ remains to be fully answered.

[5] L. Lamport, ‘Time, clocks, and the ordering of events in a distributed system’ .
Communications of the ACM 21 (1978) 558-565.

[6] M. Burrows, M. Abadi and R. Needham, ‘A logic of authentication’ . Proceedings of the
Royal Society of London, Series A 426 (1989) 233-271.

10

6. Standards for authentication protocols
In recent years ISO/IEC JTC1/SC27 has been working on a multi -part standard, ISO/IEC
9798, [7], specifying a general-purpose set of authentication protocols. The four parts
published so far have the following coverage.

• Part 1 - General (this part has recently been revised with much more explanatory text),

• Part 2 – Mechanisms using symmetric encipherment algorithms,

• Part 3 – Entity authentication using a public key algorithm (this part, covering the use of
digital signatures, is currently being revised under the new title Mechanisms using
asymmetric signature techniques),

• Part 4 – Mechanisms using a cryptographic check function.

Note that the example protocols given in Figure 1 and Figure 2 are taken from ISO/IEC 9798-
4. A fifth part of ISO/IEC 9798 is currently at Draft International Standard (DIS) stage:

• Part 5 – Mechanisms using zero knowledge techniques.

The protocols specified in these standards have been designed for use in a variety of
application domains. As such, they have been designed to be as ‘robust’ as possible, i.e. they
have been designed to resist all known attacks (as long as they are used in the way specified).
The reader is recommended to consult these standards before adopting an authentication
protocol for use in a new application domain.

[7] ISO/IEC 9798, Information technology – Security techniques – Entity authentication
mechanisms.

