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Abstract

Given a network of users, with certain secure communication requirements,

we examine the mathematics that underpins the distribution of the necessary

secret information, to enable the secure communications within that network.

More precisely, we let P be a network of users and G , F be some prede-

termined families of subsets of those users. The secret information (keys or

subkeys) must be distributed in such a way that for any G ∈ G , the members

of G can communicate securely among themselves without fear of the members

of some F ∈ F (that have no users in common with G), colluding together

to either eavesdrop on what is being said (and understand the content of the

message) or tamper with the message, undetected.

In the case when G and F comprise of all the subsets of P that have some

fixed cardinality t and w respectively, we have a well-known and much studied

problem. However, in this thesis we remove these rigid cardinality constraints

and make G and F as unrestricted as possible. This allows for situations

where the members of G and F are completely irregular, giving a much less

well-known and less studied problem.

Without any regularity emanating from cardinality constraints, the best

approach to the study of these general structures is unclear. It is unreason-

able to expect that highly regular objects (such as designs or finite geometries)

play any significant role in the analysis of such potentially irregular structures.

Thus, we require some new techniques and a more general approach. In this

thesis we use methods from set theory and ideas from convex analysis in order

to construct these general structures and provide some mathematical insight

into their behaviour. Furthermore, we analyse these general structures by ex-

ploiting the proof techniques of other authors in new ways, tightening existing

inequalities and generalising results from the literature.
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Chapter 1

Introduction

In this chapter we present the background material required for our investi-

gations and give a brief overview of some relevant concepts. (More detailed

background material can be found in [56, 70] or [83].)

We begin with Section 1.1 where we discuss the notion of cryptography

and highlight the importance of cryptographic keys. Then, in Section 1.2

we consider the management of cryptographic keys and the establishment of

common keys for groups of users wishing to communicate securely.

Following on from these discussions of cryptography we explore key pre-

distribution schemes, which are a specific type of key establishment scheme.

Section 1.3 covers settings for key predistribution schemes, a model of their

structure and some measures of their efficiency. In Section 1.4 we examine

different approaches to the construction of key predistribution schemes.

Section 1.5 then focusses upon key distribution patterns, which can be used

in the construction of key predistribution schemes, and form the basis of this

thesis. We discuss previous work completed by other authors in this area and

finally, we conclude Chapter 1, with Section 1.6, which summarises the aims

of this thesis and presents an overview of the thesis structure.
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1.1 Cryptography

The basic aim of cryptography is to enable two people to communicate over

an insecure channel (be it a telephone line, a radio, or a computer network)

in a secure way. That is, in such a way that any attacker (i.e. any other

person attempting to listen in, or interfere with the conversation) is unable to

understand what is being said or tamper with the message undetected. The

term cryptography describes a range of cryptographic services, including tech-

niques for providing both confidentiality, ensuring the secrecy of the content

of a message, and authentication, ensuring that a message arrives unchanged

and from an identified originator. We shall phrase our discussions in terms of

confidentiality, but note that they also apply to cryptography in its broadest

sense.

Over recent years cryptography has developed into a toolkit of mathemat-

ical techniques necessary for the confidentiality of electronic communication.

In the modern world cryptography is all around us and plays an essential role

in our everyday lives. Cryptographic mechanisms are used in mobile phones,

banking services, secure internet connections and many other places.

The majority of cryptographic mechanisms are publicly available and as

such are open to scrutiny and analysis. The security of an entire mechanism

relies upon the use of keys. Keys are usually numbers, selected at random,

from a large set of numbers and are a feature of almost all cryptographic

mechanisms. Each group of users within a network who wish to communicate

confidentially will require their own key in order to do so (all other users may

be considered as potential attackers).

In symmetric-key cryptography the key to be used by the sender to encrypt

a message, and the key to be used by the receiver to decrypt that message

are identical and must be kept private. Assuming the secrecy of the key, any

attacker who gains access to an encrypted message must have only a very small
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probability of recovering either the original sent message, or the key itself. The

confidentiality of the encrypted message is entirely dependent on the secrecy

of the key used, even if complete knowledge of the cryptographic mechanism

is made publicly available.

In public-key cryptography each user has a pair of keys, one needs to be

kept private and the other key can be made publicly available. Messages are

encrypted using the recipient’s public key and can only be decrypted using the

corresponding private key. In order for public-key cryptography to be consid-

ered secure, it must be computationally unfeasible to determine a private key

from the corresponding public key, even if an attacker has gained access to

encrypted messages and has complete knowledge of the cryptographic mech-

anism used. As with symmetric-key cryptography, the confidentiality of the

encrypted message is entirely dependent on the secrecy of the private keys.

Both symmetric-key and public-key cryptographic mechanisms are used ex-

tensively and often in tandem. However, for a range of applications symmetric-

key mechanisms are favoured, due to their speed and simplicity. Within this

thesis we restrict ourselves solely to the study of symmetric-key cryptography.

1.2 Key Management and Establishment

As stated previously, the security of a cryptographic mechanism is based upon

the use of keys. Due to this, the management of crytographic keys is an im-

portant area of research, see [4, 7, 12] and [52]. The study of key management

can be broken down into phases concerning the life-cycle of a cryptographic

key. Four of these phases are:

1. Key generation, which covers the creation of keys.

2. Key establishment, which is the methods by which the keys are dis-

tributed to the relevant users in the network.
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3. Key update, which is the techniques used to renew or refresh the keys in

the system.

4. Key destruction, which covers the deletion and disposal of keys when

they are no longer of use.

In symmetric-key cryptography, the fundamental key management chal-

lenge is key establishment. The focus of key establishment is that of giving

each group of users within a network who wish to communicate securely the

ability to establish a common key. A key establishment scheme is a set of pro-

tocols that allows us to do just that. We must ensure that within a network

of users, the right keys are established in the right places.

We shall normally assume the existence of a trusted authority (or TA),

which is an entity that is considered to be trusted and secure by all users

in a network. In many systems, a TA generates and distributes both secret

and public information. All secret information must be distributed using se-

cure communication channels between the TA and the users in the network.

Secure channels provide both confidentiality and authentication for the in-

formation transmitted on them. Any public information can be distributed

using inexpensive broadcast channels which ensure only the authentication of

the transmitted data.

Key establishment schemes generally consist of the following three opera-

tional phases:

1. Initialisation - During the initialisation phase the TA generates and dis-

tributes all private and public information necessary for the initialisation

of the scheme.

2. Key establishment - During the key establishment phase each group of

users within the network who wish to communicate securely are able to

establish a common key.
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3. Update - During the optional update phase, information (both public

and private) within the network is modified or replaced by the TA. The

TA will refresh old keys before they expire and/or issue new keys to

reflect any changes within the groups of users wishing to communicate

securely.

The precise role of the TA is a major distinguisher between different key

establishment schemes. In general, we cannot assume that the secure channels

that exist between the TA and the users in the network will remain available

throughout the lifetime of the scheme. If this were the case then the TA could

simply generate and distribute common keys as and when required. In most

schemes it is assumed that the secure channels between the TA and the users in

the network are available during any update phase, however, it is the existence

of these channels during the key establishment phase that is of significance to

us.

A key establishment scheme in which the TA has the ability to communi-

cate securely with the users in the network during the key establishment phase

is known as a key distribution scheme, whereas a scheme in which the TA has

no ability to communicate with the users during the key establishment phase

is known as a key predistribution scheme.

1.3 Key Predistribution Schemes

A key predistribution scheme (or KPS) is a key establishment scheme with the

following two properties:

• The TA is offline during the key establishment phase. That is, the secure

channels between the TA and the users in the network are not available.

• The users within the network have no ability to communicate securely

between themselves during the key establishment phase.

12



The reason for these restrictions is motivated by the complexity and the

high computational costs of establishing secure communication channels. (The

computational costs associated with broadcast channels are much smaller.) As

such, schemes where the use of these channels is minimised are often preferred

for both cost saving and practical purposes.

1.3.1 Settings for Key Predistribution Schemes

Key Predistribution Schemes are commonly used for key establishment in ap-

plications where secure communication is only required between each user and

a central node (or hub). For example, in mobile telephony, the SIM card

(within the mobile phone) is preloaded with keys. Secure communication be-

tween every mobile phone and a centralised authentication centre is enabled

using a key predistribution scheme. In such a scheme the TA could predis-

tribute just one unique key to each user (or SIM) and preload the hub (or

authentication centre) with the set of all keys.

Over recent years network technology has evolved, resulting in the devel-

opment of more dynamic, ad hoc networks. Without the ability to support

an online TA, key predistribution schemes would seem the natural choice for

key establishment in these ad hoc networks. Examples of such networks in-

clude tactical networks, ambient networks, mobile ad hoc networks, vehicular

networks and wireless sensor networks.

A wireless sensor network (or WSN ) is an ad hoc network consisting of

spatially distributed sensor nodes that autonomously gather data and use

wireless communications in order to relay that data. The nodes themselves

are usually small, inexpensive, low powered devices and the number of nodes

used varies extensively, depending on the application [75]. Most applications

of WSNs involve the monitoring of some sort of hostile environment, (such

as a war zone or the aftermath of a natural disaster), where the risk posed

to more expensive devices would be deemed too high. It is the challenges
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posed by these applications that make key establishment schemes, that are

specifically designed for use within wireless sensor networks, an interesting

family of schemes to study. Due to this, many authors have considered such

schemes, see [14] and the references within.

The main challenges for key establishment in a WSN are as follows:

1. There is no predetermined structure to the network.

2. The nodes relay data to other nodes, as well as acting as end points for

communications.

3. Due to the hostile environments in which they are often deployed, the

unavailability rate of the nodes in the network is potentially very high

and there is an increased risk of node compromise.

4. The power, energy and memory constraints on the nodes result in the

need for efficient network protocols and restrict the nodes ability to store

large numbers of keys.

Given these challenges, it is clear that the use of secure communication

channels, during key establishment, is impractical. As such, from the perspec-

tive of providing security services, wireless sensor networks lend themselves

nicely to the use of symmetric key cryptography and key predistribution for

key establishment, see [48, 53] and [82].

1.3.2 Modelling a KPS

A great variety of key predistribution schemes exist in the literature, see for

example [8, 32, 43, 55] and [65]. In all cases, a TA distributes secret information

among a network of users. Within the network of users we have two specified

families of users, privileged subsets and forbidden subsets. The information

from the TA is distributed in such a way that every user in a privileged subset

is able to compute the common key associated with that subset. At the same
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time, any forbidden subset of users, outside of a privileged subset, is not able

to obtain, or calculate between them, the key associated with that privileged

subset.

More precisely, we have the following model of a KPS for a given family of

privileged subsets G and a given family of forbidden subsets F .

Definition 1.3.1. A (G ,F )-KPS is a key establishment scheme such that:

1. For every privileged subset G in G , any user belonging to G can compute

the group key associated with the privileged subset G, (say KG) from his

own secret information (usually received from the TA upon initialisation

of the scheme) and any publicly available material.

2. For any forbidden subset F in F and any disjoint G in G , if all users

belonging to F combine their secret information and take full advantage

of any public information, then they remain unable to calculate the group

key, KG, or gain any information about the key.

In many situations it is appropriate to define the privileged and forbidden

subsets of a (G ,F )-KPS according to their cardinality. More specifically, we

define:

• the set of privileged subsets to be all sets of users of some maximum

specified cardinality, say t; and

• the set of forbidden subsets to be all sets of users of some maximum

specified cardinality, say w.

Such a scheme would enable each subset of t or fewer users to communicate

securely against any colluding subset of w or fewer other users. That is, if we

let P be the set of all users in the network, then for some t, w ≥ 1,

G = {G ∈ 2P : 1 ≤ |G| ≤ t} and F = {F ∈ 2P : 1 ≤ |F | ≤ w}.
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We shall refer to key predistribution schemes defined in this way as cardinality

schemes (since the privileged and forbidden subsets are defined according to

their cardinality), or more precisely as (t, w)-KPSs.

In this thesis we only wish to consider KPSs in which all the privileged sub-

sets are certain to be able to compute a common key. Therefore, we will con-

centrate on deterministic schemes, as opposed to probabilistic schemes (such as

[19, 26, 31] and [50]) where the key associated with a privileged subset can be

calculated with a certain probability. Also, we wish to concentrate on schemes

whose security is independent of any computational assumptions. That is, we

are interested in schemes with unconditional security, as opposed to schemes

with computational security, where the security of the scheme is dependent on

the computational resources available to an attacker.

1.3.3 Efficiency Measures

A basic KPS can be defined where the TA generates one secret key per priv-

ileged subset and distributes that key to every user in that privileged subset.

Consider a KPS of this type for a network of v users, within which every pair

of users forms a privileged subset and every individual user forms a forbidden

subset. That is, we have a cardinality scheme, or more precisely, a (2, 1)-KPS.

Since, if we let P be the set of all users in the network, then we have a (G ,F )-

KPS, where G = {G ∈ 2P : 1 ≤ |G| ≤ 2} and F = {F ∈ 2P : |F | = 1}.
Every pair of users (every G ∈ G ) holds a unique key in common and is

able to communicate securely using that key. At the same time, no individual

user outside of that pair (no F ∈ F such that F ∩ G = ∅) is able to obtain

any information on the secret key held by that pair of users.

In such a scheme each user would be required to store v − 1 keys, with

the total number of keys in the system being v(v−1)
2

. For large networks these

storage requirements are considerable and, in many cases, impractical.

The network storage and user storage requirements in a KPS are important
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measures of the efficiency of a scheme; the smaller the storage, the more

efficient the scheme is considered to be. As such, key predistribution schemes

in which the key storage is lower than that of this most basic of KPSs (whilst

maintaining the desired level of security) are usually preferred and are often

referred to as “good” KPSs.

Reducing the key storage requirements in a KPS was a problem first tackled

by Blom [5] in 1982 and continues to be an important area of research, see, for

example [2, 6, 26, 39, 55, 59, 60, 63]. In the context of this thesis, this measure

of storage requirements is the only efficiency measure that we are interested in.

However, it should be noted that other efficiency measures (such as measures

of computational requirements) are also considered in the literature [67].

1.4 KPS Constructions

The design and construction of “good” Key Predistribution Schemes can be

approached in different ways. In all cases, every user in a privileged subset

must be able to compute a common key associated with that subset, and any

forbidden subset of users that is disjoint from the aforementioned privileged

subset must not be able to obtain, or calculate between them, the key associ-

ated with that privileged subset.

Rather than expecting every user to store a key associated with each priv-

ileged subset that they belong to, we can instead give each user the means to

calculate that key for themselves. In order to do this, each user will need a

function and the necessary input values required for that function to calculate

the secret keys. The storage requirements for this could easily be large, un-

less some of the predistributed information could be made publicly available.

There are two ways in which to approach this:

1. The function is kept private and the input data for that function is made

publicly available.
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2. The function is made publicly available and the input data for that

function is kept private.

We shall now consider an important family of key predistribution schemes

for each of these two approaches. Following this, we also consider an applica-

tion driven approach which has recently erupted in the literature.

1.4.1 Symmetric Polynomial Constructions

In 1982 Blom introduced a construction for (2, w)-KPSs based upon the use

of symmetric polynomials [5, 6]. To describe Blom’s scheme we must first

suppose that P1, P2, . . . , Pn are users in a network N and that q is a prime

number larger than n. To establish a (2, w)-KPS on N , (with w ≤ n − 2),

Blom suggested the following protocol:

1. The TA randomly chooses a secret 2-variable, degree w symmetric poly-

nomial P (x, y) with coefficients over the finite field GF (q).
(
By symmetric we mean that P (x, y) = P (y, x).

)

2. Using secure communication channels, the TA distributes to each user

Pi, the polynomial fi(x) = P (x, i),
(
that is, the polynomial obtained by

evaluating P (x, y) at y = i
)
.

3. In order for the users Pj1 and Pj2 to establish a group key, user Pj1

evaluates fj1(x) at x = j2 and user Pj2 evaluates fj2(x) at x = j1.

4. Users Pj1 and Pj2 can then enable secure communications by using the

group key given by fj1(j2) = P (j2, j1) = P (j1, j2) = fj2(j1).

This protocol gives rise to an unconditionally secure (2, w)-KPS in the

following restricted sense. The probability that any group of w colluders,

Pj1, Pj2, . . . Pjw
can correctly guess the group key P (i1, i2) of two users Pi1 and

Pi2

(
where {Pj1, Pj2, . . . Pjw

} ∩ {Pi1 , Pi2} = ∅
)

is exactly
(
1/q
)
. That is, the
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colluders Pj1, Pj2, . . . Pjw
gain no extra advantage by pooling their knowledge

of the polynomials fj1, fj2, . . . , fjw
.
(
Recall that every user has a chance of

1/q of correctly guessing the value of any randomly chosen element of GF (q)

and hence of guessing any group key.
)

Also note that under this scheme every

user must hold (and keep private) w + 1 elements of GF (q) and the TA must

privately store
(

w+2
2

)
elements of GF (q).

In 1992 Blundo et al. [8] generalised Blom’s scheme to that of a (t, w)-

KPS. As with Blom’s scheme, we suppose that P1, P2, . . . , Pn are users in a

network N and that q is a prime number larger than n. Then, to establish

a (t, w)-KPS on N , (with t + w ≤ n), Blundo et al. suggested the following

modification of Blom’s protocol:

1. The TA randomly chooses a secret t-variable, degree w symmetric poly-

nomial P (x1, x2, . . . , xt) with coefficients over the finite field GF (q).
(
By symmetric we mean that for any permutation π on {1, 2, . . . n},
P (x1, x2, . . . , xt) = P (xπ(1), xπ(2), . . . , xπ(t)).

)

2. Using secure communication channels, the TA distributes to each user

Pi, the polynomial fi(x2, x3, . . . , xt) = P (i, x2, x3, . . . , xt),
(
that is, the

polynomial obtained by evaluating P (x1, x2, . . . , xt) at x1 = i
)
.

3. In order for the users Pj1, Pj2, . . . , Pjt
to establish a group key, user Pji

evaluates fji
(x2, x3, . . . xt) at (x2, x3, . . . xt) = (j1, . . . ji−1, ji+1, . . . jt).

4. Users Pj1, Pj2, . . . , Pjt
can then enable secure communications by using

the group key given by P (j1, j2, . . . , jt).

Blundo et al. [8] prove that this protocol gives rise to a (t, w)-KPS. Each

group of w colluding users has only a one in q chance of correctly guessing a

group key for any group of t users disjoint from those w colluding users. It

is shown explicitly in [8], that every user in this scheme must hold (and keep
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private)
(

t+w−1
t−1

)
elements of GF (q) and the TA must privately store

(
t+w

t

)

elements of GF (q).

In the literature [65] it is shown that (under certain conditions) these sym-

metric polynomial schemes can be considered as examples of a wider family of

linear key predistribution schemes which can be described in linear algebraic

terms. Most importantly, it is shown in [8] that the user storage in these

schemes is optimally small for any deterministic cardinality scheme with un-

conditional security. However, this optimally secure user storage comes at the

cost of placing the burden of computation (the evaluation of a polynomial over

very large finite fields) on each user.

1.4.2 The Key Ring Approach

In 1986 Jansen [39] introduced a key predistribution scheme with a storage

reduction system based on the the use of combinatorial keys. As defined by

Martin in [52], a secret key (used to enable secure communication between a

subset of privileged users) is a combinatorial key, if it can be represented as a

subset of the collective secret data held by the users in that privileged subset.

In Jansen’s scheme users are issued with sets of secret data, called subkeys

and these subkeys are allocated based on the “divide and conquer” principle.

The network of users is divided into a number of subsets (all of the same

size), those subsets are divided into smaller subsets etc, until n− 1 partitions

have been made, producing an n-level scheme. One set of subkeys is introduced

for each level of the scheme, so in an n-level scheme, n sets of subkeys are

required. In order to communicate securely, a pair of users must calculate

a common key by applying a publicly known function to subkeys that they

share.

In [39], Jansen demonstrates the advantage in storage capacity of his

scheme. However, the common keys used by some pairs of users are also

known to other individuals in that network. As such, Jansen’s scheme can not
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be considered as a (2,1)-KPS. In [59], Mitchell and Piper noted that, “This

can be seen as the cost of adopting an otherwise attractive scheme for reducing

key storage requirements”.

Mitchell and Piper [59, 60] refined and generalised Jansen’s scheme to

produce a family of (t, w) key predistribution schemes based on the use of finite

incidence structures with special properties, called key distribution patterns.

Within this family of schemes (presented in detail in Section 1.5) the key to

be used by a privileged subset of users is made up from a combination of some

of the subkeys held in common by those users. In [52] schemes of this sort are

called key ring predistribution schemes.

A key ring is defined to be a set of public identifiers, (each of which is

allocated at random to a unique subkey from a set of subkeys) and a collection

of subsets of those identifiers. In order to use a key ring to establish a key ring

predistribution scheme the TA must:

1. broadcast the set of subsets of identifiers (the key ring);

2. publicly allocate one subset of identifiers per user in the network;

3. distribute the subkeys to the users with the corresponding identifiers,

using secure communication channels.

A privileged subset of users can communicate securely in such a scheme by

first checking their public identifiers to see which secret subkeys they share in

common. Then, each user in that privileged subset can calculate a common key

by applying a publicly known function to the secret subkeys that they share.

An immediate attribute of this system is that the subkeys could actually be

physical keys (or smartcards) where several of these physical keys are required

to open one set of locks in order to gain access to a restricted area.

Whether a key ring predistribution scheme offers unconditional security, or

computational security, is determined by the public function used to combine
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the secret subkeys and calculate the common keys. Achieving unconditional

security in such a scheme is relatively straightforward. It is simply required

that the public function has the property that if a set of users can (between

them) determine the secret key associated with a privileged subset, then they

must also be able to deduce all of the common subkeys for that privileged

subset. A simple example of such a function is the function that takes the

common subkeys x1, x2, . . . , xn (which we may assume are numbers) and re-

turns the ordered string (x1; x2; . . . ; xn). This example is similar to an example

given by Martin in [52].

Key ring predistribution schemes have been studied extensively and under

different guises, consider for example [26, 32, 45, 84] and [85]. The user stor-

age in these schemes is reduced, and key rings have been shown to produce

some “good” KPSs, [60, 82, 85] and [73]. However, since the user storage in the

symmetric polynomial schemes (given in Section 1.4.1) has already been shown

to be optimally small, for any unconditionally secure cardinality scheme, we

cannot better this. On the other hand, key ring predistribution schemes po-

tentially offer more flexibility than symmetric polynomial schemes, since they

are not restricted by algebraic structures.

1.4.3 KPSs for Wireless Sensor Networks

As we saw in Section 1.3.1, key predistribution schemes are the natural choice

for key establishment within wireless sensor networks. Interest in the study

of wireless sensor networks has grown dramatically over recent years. This

growth has given rise to a new family of key predistribution schemes, designed

specifically for use within wireless sensor networks. In all such schemes secret

key information is installed in the nodes before they are distributed and secure

communication is enabled where:

1. it is not necessary for every pair of nodes (or users) to have the ability

to communicate securely;
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2. it is sufficient for nodes to be able to communicate securely with some

or all of their neighbouring nodes.

This secure communication is designed to achieve connectivity throughout the

network. That is, to enable active nodes to relay data through other active

nodes (where necessary), to the end points.

Research on the study of key predistribution schemes for wireless sensor

networks began in earnest in 2002, with the seminal paper [31] by Eschenauer

and Gligor. In this paper Eschenauer and Gligor proposed a randomised key

ring predistribution scheme with computational security and “good” average

connectivity of nodes. The existence of efficient schemes of this sort had

previously been proven in [26], but the application of such schemes to wireless

sensor networks was new.

The basic ideas proposed in [31] established a new avenue for key ring

predistribution schemes. A standard model for the application of key ring

predistribution schemes to wireless sensor networks has since been adopted

[68]. In this model two nodes can communicate securely if and only if:

• the two nodes are within communication range of one another; and

• the two nodes share some subkeys uniquely in common.

Subsequent research on key ring predistribution schemes for wireless sensor

networks has developed in three areas:

1. Eschenauer and Gligor’s probabilistic scheme has been generalised, [19].

2. The use of deterministic schemes has been investigated, [13, 45, 88].

3. A combined approach using a key ring predistribution scheme along with

another scheme (often a symmetric polynomial scheme) has been con-

sidered [22, 48, 50, 53, 88].
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Of most interest to us are the deterministic schemes and the combination of

these with symmetric polynomial schemes to produce a combined or multi-

ple space key predistribution scheme. Within wireless sensor networks such

schemes are normally applied in situations where the nodes are randomly dis-

tributed. That is, situations in which the geometry of the distribution of nodes

cannot be predicted and/or taken into account.

Numerous deterministic schemes have been advocated, based upon various

types of combinatorial structures. In order to get a feel for the variety of

combinatorial structures used in the design of key predistribution schemes for

wireless sensor networks, we mention a few of them here:

• projective geometry [13, 15, 18, 45];

• generalised quadrangles [13, 15];

• common intersection designs [44, 46, 48, 49];

• transversal designs [16, 17, 18, 44, 46, 48];

• spherical geometries [21];

• orthogonal arrays [20, 89];

• orthogonal latin squares [89];

• rational normal curves in projective space [69].

Other authors have analysed key predistribution schemes applied to wireless

sensor networks where the nodes are not distributed randomly. Nodes may be

distributed in groups, or in a grid (usually a square or hexagonal grid), giving

extra deployment information that can be exploited in the KPS. Combinatorial

structures, such as transversal designs and Costas arrays have been suggested

for these specialised WSNs, [2, 3, 54, 76, 77].
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The concept of combined key predistribution schemes has the benefit of

producing a KPS with a mix of the inherent properties of the component

schemes. As such, a symmetric polynomial scheme, with its optimal key stor-

age, makes for an ideal component. (Symmetric polynomial schemes have

also been considered individually for wireless sensor networks, see [53], but

the computational cost involved in the polynomial evaluation required for key

establishment is an issue.)

Combined schemes have been successfully constructed using a symmetric

polynomial scheme (or a modified version thereof) as one component and a

combinatorial structure of some sort as the other component [45, 48, 67] and

[88]. Within wireless sensor networks, fast and efficient key computation is

of benefit and the use of key ring predistribution schemes (with their combi-

natorial keys) potentially enables this. Therefore these combined schemes are

able to exploit both the optimal key storage of the polynomial schemes and

the efficient key computation of the key ring predistribution schemes.

The majority of research in this area is based upon KPSs with “good”

overall connectivity. However, the flexibility of the key ring predistribution

schemes (since they are not restricted to cardinality schemes) makes them ap-

plicable in situations where nodes are not distributed randomly. Therefore, we

can consider (G ,F )-KPSs for more specified sets of privileged and forbidden

subsets. This is just what we do, and we focus on the seminal family of key

ring predistribution schemes defined by Mitchell and Piper [59] and [60], called

key distribution patterns.

1.5 Key Distribution Patterns

A key distribution pattern or KDP, introduced by Mitchell and Piper [59] and

[60] is a certain kind of finite incidence structure that can be used, as a key

ring, to form a key ring predistribution scheme.
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Definition 1.5.1. An incidence structure K is a triple (P,B,I ) where

P and B are sets and I ⊆ P × B is a binary relation between them.

An incidence structure is finite if both P and B are finite. The set P is

called the point set and the elements of the point set are called points. In a

similar way, the set B is called the block set and the elements of the block set

are called blocks.

A point P is incident with a block x if, and only if, (P, x) ∈ I . In the same

way a block x is incident with a point P if, and only if, (P, x) ∈ I . We shall

often consider the set of all points incident with a block x, which we denote

by (x), or the set of all blocks incident with a point P , which we denote by

(P ). Similarly, for any set of points X and any set of blocks Y , (X) and (Y )

will denote the set of all blocks incident with any point in X and the set of all

points incident with any block in Y , respectively.

Definition 1.5.2. Let K = (P,B,I ) be a finite incidence structure and let

G and F be families of non-empty subsets of P. Then K is called a (G , F )-

Key Distribution Pattern (or (G ,F )-KDP), if for all G ∈ G and F ∈ F

such that G ∩ F = ∅,
⋂

P∈G

(P ) 6⊆
⋃

Q∈F

(Q).

As with our general model of a KPS, (Section 1.3.2) we call the members

of G privileged subsets and the members of F forbidden subsets. Note that in

[60], Mitchell and Piper defined KDPs in the setting of (2, 1)-KPSs. Later, in

the same paper, they extended this definition to the more general setting of

(t, w)-KPSs, introducing the notion of (t, w)-KDPs. Several further generali-

sations, similar to the definition given here (Definition 1.5.2) have also been

considered in the literature [65, 82, 84]. With no constraints on the privileged

or forbidden subsets we will often refer to (G ,F )-KDPs (as we have defined

them in Definition 1.5.2) as generalised KDPs.
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In order to get a feel for this definition, we give an example. However,

before we can set up our example, we require an observation concerning the

representation of incidence structures.

Observation 1.5.3. A non-empty finite incidence structure K = (P,B,I ),

where P = {P1, . . . , Pv} and B = {x1, . . . , xb}, can be represented by a v × b

binary matrix A = (ai,j), defined as follows:

ai,j =

{
1 if (Pi, xj) ∈ I

0 otherwise.

Conversely, any binary matrix A = (ai,j) can be used to represent a finite

incidence structure K = (P,B,I ), simply by labelling the rows as points,

P1, . . . , Pv and the columns as blocks, x1, . . . , xb. Then, (Pi, xj) ∈ I if, and

only if, ai,j = 1. Now, let us consider the following example.

Example 1.5.1. Let K = (P,B,I ) be a finite incidence structure repre-

sented by the following binary matrix.

x1 x2 x3 x4 x5

P1 1 0 1 1 1
P2 1 1 0 1 0
P3 0 1 1 1 0
P4 1 0 1 0 1
P5 1 1 0 0 1

Then, we can verify that K is a (G ,F )-KDP for

G =
{
{P1, P2, P4, P5}, {P2, P3, P5}, {P1, P3, P4}, {P1, P2, P3}, {P1, P4, P5},

{P1, P2}, {P1, P3}, {P1, P4}, {P2, P3}, {P2, P5}, {P1}, {P2}, {P3}, {P5}
}
.

F =
{
{P1}, {P2}, {P3}, {P4}, {P5}, {P1, P4}, {P2, P3}, {P2, P5}, {P4, P5}

}
.

In order to confirm that K is indeed a (G ,F )-KDP we must check each subset

in G against every disjoint subset in F . If we start with {P1, P2, P4, P5} ∈ G

then we only need to consider {P3} ∈ F , since that is the only subset in

F that is disjoint from {P1, P2, P4, P5}. Now, we must check that the blocks
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incident with all points P1, P2, P4 and P5 are not all incident with the point

P3 as well. It is clear from the matrix above that the points P1, P2, P4 and P5

are all incident with the block x1 and that the point P3 is not. Therefore, the

subset {P1, P2, P4, P5} ∈ G is indeed privileged against our family of forbidden

subsets F . Next we can check that {P2, P3, P5} ∈ G is privileged against the

subsets {P1}, {P4} and {P1, P4} ∈ F , which are the only members of F that

are disjoint from {P2, P3, P5}. Continuing in this way we can easily verify that

K is a (G ,F )-KDP for G and F as given in this example.

To use a KDP, K = (P,B,I ), as a key ring (in a key ring predistribution

scheme) we must first associate each point of P with a user from a network

of users and each block of B with a subkey. The subkeys are distributed by

the TA according to the KDP, (the user associated with the point P receives

the subkey associated with the block x if, and only if, P is incident with x

in the incident structure K ). The distribution of the subkeys amongst the

users is broadcast publicly, (using inexpensive broadcast channels) with all the

subkeys being represented using identifiers. However, the subkeys themselves

are distributed using secure communication channels and remain private.

The key to be used by a privileged subset of users, G say, to enable secure

communication within the subset, is calculated by combining all the subkeys

held in common by all the members of G. In most cases this calculation is

performed by using a publicly known one-way function. The public function

will then yield a secret key for use by the subset G. None of the forbidden

subsets of users that do not contain any members ofG will be able to determine

the secret key as, by Definition 1.5.2, the collusion of all users in any forbidden

subset disjoint from G will not possess all the subkeys held in common by the

users within G. This condition of security for privileged subsets against the

collusion of any disjoint forbidden subset will be referred to throughout this

thesis as the security condition.
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1.5.1 Previous Work

Mitchell and Piper’s 1988 paper [60] was the first to investigate key distribution

patterns in any depth. They gave some simple examples of (G ,F )-KDPs and

made use of previous research in the area of design theory in order to construct

families of examples. Mitchell and Piper continued by giving some theoretical

results on the lower bound of the number of blocks in a (G ,F )-KDP. They

also analysed the security levels of (G ,F )-KDPs, particularly when using

combinatorial structures. Finally, in [60], Mitchell and Piper proved that

their results apply, not only to (2, 1)-KDPs, but also to (t, w)-KDPs.

Since then, key distribution patterns have, in one form or another, been

investigated and analysed by many authors. As discussed in Section 3.4, some

of these investigations have been completed under different names. Much of

the recent research on key predistribution schemes for wireless sensor networks

(Section 1.4.3) can be viewed as research on key distribution patterns. The

numerous schemes listed in Section 1.4.3 are in fact examples of specific key

distribution patterns with particular properties. In the literature as a whole,

research on (G ,F )-KDPs has developed in two main areas, the construction of

(G ,F )-KDPs, and the analysis of bounds on their efficiency measures (usually

the number of blocks).

There are three known approaches when it comes to constructing (G ,F )-

KDPs. The first approach was that used in 1988 by Mitchell and Piper and

involves taking existing key distribution patterns and constructing new key

distribution patterns from them. Mitchell and Piper were able to use this

construction technique extensively in [60], where they presented several con-

structions for (t, w)-KDPs.

The second approach to (G ,F )-KDP constructions is to construct (G ,F )-

KDPs directly from other mathematical objects. Several authors have used

this approach and constructed (G ,F )-KDPs from combinatorial objects.
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In 1993 and 1995 O’Keefe [62, 63, 64] used special finite geometric struc-

tures, (more specifically circle geometries and Minkowski planes) in order to

construct (t, w)-KDPs. In 1994, Quinn [72] constructed (t, w)-KDPs from

conics arising from finite projective planes and affine planes, and later, in

2004, Rinaldi [74] used tangent circle structures in the construction of (t, w)-

KDPs. Also, Lee, Stinson and VanTrung, [47, 48, 82, 84] used design theory,

graph theory, orthogonal and perpendicular arrays in order to construct specific

(G ,F )-KDPs with particular properties.

The third approach to (G ,F )-KDP constructions uses probabilistic tech-

niques. In 1995, Dyer et al. [26], used probabilistic methods [1, 10, 80], to give

non-constructive existence results for (t, w)-KDPs. They gave constructions

to show the existence of (t, w)-KDPs with a specified number of subkeys and

devised a method of de-randomization. Also, in the same paper, Dyer et al.

[26] used their probabilistic approach to find bounds on the number of subkeys

in a system.

In 1994 [78], Ruszinkó used a combinatorial approach to give an upper

bound for (t, w)-KDPs. In 1991 and 1999 [71, 73], Quinn presented sev-

eral lower bounds for (t, w)-KDPs using combinatorics and design theory. In

these papers, Quinn also introduced a technique for improving the efficiency

of KDPs. She reduced the information content of the keys, by using an infor-

mation map.

In a similar vein, in 1997 and 1998, Stinson et al. [82, 84] introduced

a technique for improving the efficiency of (G ,F )-KDPs. This method was

based on the use of resilient functions and allowed for a trade off between

the level of security in a (G ,F )-KDP and the amount of key storage. Later,

in 2000 and 2004, Stinson et al. [85, 86], used combinatorics and inductive

arguments, to provide various new bounds for (t, w)-KDPs.
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1.6 Overview

The aim of this thesis is to investigate generalised Key Distribution Patterns

and study the mathematics behind them. There are two motivations for this.

The first motivation is simply the desire to lay bare the basic structure and

intrinsic properties of key distribution patterns. It is hoped that by studying

the mathematics of (G ,F )-KDPs, we will gain insight into the mathematical

behaviour of (t, w)-KDPs.

The second motivation comes from potential applications. Suppose that we

have a network of users, where a family of specified subsets of users G , wishes

to communicate securely without fear of other subsets of users F , colluding

together to eavesdrop on what is being said. In this general framework there

are several situations that require a more general approach than that afforded

by (t, w)-KDPs. For example, one or more of the following may occur:

1. G (and/or F ) may have many fewer members than the number of pairs

of users in the network;

2. the sizes of the members of G (and/or F ) may vary considerably;

3. the cardinality of the largest member of G added to the cardinality of

the largest member of F may be greater than the total number of users

in the network;

4. G may have many members while F has very few members, or else, F

may have many members while G has very few members.

All of these situations appear possible and can easily be modelled using gen-

eralised KDPs. However, the irregular nature of the members of G and F (in

the above situations) rules out the use of cardinality schemes.
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1.6.1 Thesis Structure

Chapter 1 and Chapter 2 contain the background material and prerequisite

mathematics necessary for this thesis. No new research is presented in these

chapters.

Chapter 3 explores some of the basic properties and special classes of

(G ,F )-KDPs. Some of the immediate observations associated with (G ,F )-

KDPs are presented in this chapter. Trivial schemes are investigated, by

first exploring the concepts of complete security and complete communication.

These concepts enable us to gain a benchmark for our later results on the

efficiency of (G ,F )-KDPs (Chapter 6). The special properties of cardinal-

ity schemes are explored in Section 3.3. In Section 3.4 some related notions,

introduced by other authors, are analysed and compared to the notion of a

(G ,F )-KDP.

In Chapter 4 we consider a predefined incidence structure, K , and inves-

tigate all possible sets of privileged and forbidden subsets for which K is a

(G ,F )-KDP. In this way, we are able to study the concepts of redundancy and

largest sets, within a (G ,F )-KDP. That is, we analyse the points and blocks

that play no role in a (G ,F )-KDP and observe the trade-off between the size

of the set of privileged subsets and the size of the set of forbidden subsets.

This chapter broadens our overall understanding of (G ,F )-KDPs, however

the concepts covered here are somewhat orthogonal to our other studies.

Chapter 5 contains constructions of (G ,F )-KDPs. Some well-known struc-

tures from design theory are applied to (G ,F )-KDPs in order to construct

further (G ,F )-KDPs. For complement structures, a simple construction (The-

orem 5.1.31) is presented. In Section 5.2, three constructions of Mitchell and

Piper [60] are generalised and in Section 5.3 we introduce a new direct con-

struction for (G ,F )-KDPs. This direct construction uses a discrete analogue

of convexity in order to construct many different families of (G ,F )-KDPs.
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In Chapter 6 some results from earlier chapters are applied to determine

bounds on the number of blocks in a (G ,F )-KDP. Some results from the lit-

erature are generalised and new bounds, using new techniques, are presented.

Without introducing any strong constraints on the privileged or forbidden

subsets, some informative results are discovered. However, it is the introduc-

tion of constraints, such as the constraint that the set of privileged subsets

forms a Sperner system, that opens the door to many stronger bounds for

(G ,F )-KDPs. In Section 6.3 the notions of internal and external structures

are generalised and some new bounds are presented.

Chapter 7 summarises this thesis, highlights areas of future study and

lists some related open problems. Finally, Appendix A gives the proof of

Theorem 6.2.5, which is not included in the main body of the thesis, since it

would obfuscate the main purpose of Chapter 6.

The main contributions of this thesis are:

1. The characterisations of when an incidence structure is a (G ,F )-KDP

in terms of its internal structures, (Theorem 5.1.12) and its external

structures, (Theorem 5.1.25). These results go beyond those achieved

by Mitchell and Piper in [60]. In fact, in Theorem 5.1.25 we correct an

error in [60, Lemma 3.4].

2. A direct construction that uses finite convex structures in order to con-

struct a family of (G ,F )-KDPs, (Theorem 5.3.7). For this construction

we are able to precisely calculate |G |, |F | and the block size. This con-

struction seems to be relatively efficient in terms of the number of blocks

required for its construction, see Example 6.1.1.

3. New lower bounds on the number of blocks required for general (G ,F )-

KDPs , (Theorem 6.1.4 and Theorem 6.1.8). These lower bounds do not

require the privileged subsets to form a Sperner system.
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4. A combinatorial inequality, (Theorem 6.2.5, proved in Appendix A),

which is used in conjunction with other results in this thesis in order

to prove a lower bound on the number of blocks required for a specific

(G ,F )-KDP, Corollary 6.2.6.

5. A lower bound on the number of blocks required in a (G ,F )-KDP, under

the additional assumption that the set of privileged subsets forms a

Sperner system, (Theorem 6.2.9).
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Chapter 2

Mathematical Preliminaries

In this chapter we present some prerequisite mathematics necessary for this

thesis.

2.1 Incidence Structures and Designs

The most important notion for our study of key distribution patterns is that

of an incidence structure, see Definition 1.5.1. When appropriate to do so, we

will denote the number of points in the point set of an incidence structure by

v and the number of blocks in the block set by b.

In most of our considerations of incidence structures, we will want to avoid

the situation where two distinct points are incident with the same set of blocks.

Therefore, it is convenient for us to introduce the following definition.

Definition 2.1.1. Let K = (P,B,I ) be a finite incidence structure. We

define an equivalence relation R on the set of points P by (P,Q) ∈ R if, and

only if, (P ) = (Q) and we let [P ] represent the R-equivalence class of P . Then

we say that P is a repeated point if
∣
∣[P ]

∣
∣ > 1.

Similarly, we usually want to avoid the situation where two distinct blocks

are incident with the same set of points.

Definition 2.1.2. Let K = (P,B,I ) be a finite incidence structure. We

define an equivalence relation R on the set of blocks B by (x, y) ∈ R if, and
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only if, (x) = (y) and we let [x] represent the R-equivalence class of x. Then

we say that x is a repeated block if
∣
∣[x]
∣
∣ > 1.

Given any finite incidence structure K = (P,B,I ) there is a natural

partial ordering on the point set P.

Definition 2.1.3. Let K = (P,B,I ) be a finite incidence structure without

repeated points, then define a partial order “≤” on P by P ≤ Q if, and only

if, (P ) ⊆ (Q). We say that a point P ∈ P is the largest element of P if

Q ≤ P for all Q ∈ P. In the same way we say that a point P ∈ P is the

smallest element of P if P ≤ Q for all Q ∈ P.

Designs are perhaps the most important class of incidence structures.

These structures are used widely in many areas of mathematics.

Definition 2.1.4. We define a t-(v, k, λ) design to be a finite incidence

structure K = (P,B,I ) with v points and without repeated blocks, such that:

(i) every block is incident with exactly k points; and

(ii) every set of t points is incident with exactly λ common blocks. That is,

for all T ⊆ P such that |T | = t,
∣
∣
⋂

P∈T (P )
∣
∣ = λ.

The following result is a generalisation of Fisher’s inequality [33]. Fisher’s

inequality has been proved in a variety of different and ingenious ways [37,

66, 79]. The proof given here (taken from [11]) uses linear algebra and is

particularly elegant and concise.

Result 2.1.5. (Fisher’s Inequality) Let A be a finite set of cardinality n

and let A1, A2, . . . , Am be m non-empty subsets of A . If |Ai ∩Aj | = λ for all

i 6= j then n ≥ m. In particular, if K = (P,B,I ) is a t-(v, k, λ) design with

t ≥ 2, then |B| ≥ |P|.

Proof. The result is clearly true if λ = 0, so we shall assume that λ > 0. If

|Ai| = λ for some i, then Ai $ Aj for all j 6= i. That is, {Aj \ Ai : i 6= j}
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is a collection of m − 1 non-empty pair-wise disjoint subsets of A \ Ai. So,

m− 1 ≤ n− λ implying that m ≤ n + 1 − λ ≤ n. Therefore, we may assume

that ai = |Ai| > λ for all i.

Let vi = (vi1, vi2, . . . , vin) ∈ Rn be the indicator vector of the set Ai then,

vi,j =

{
1 if j ∈ Ai

0 otherwise.

Then, vi · vi = |Ai| = ai > λ and vi · vj = |Ai ∩ Aj | = λ for all i 6= j. We

shall show that {v1,v2, . . .vm} is linearly independent and thus m ≤ n. To

this end, let

m∑

i=1

civi = 0.

Now, by taking the dot product of both sides with vj, we get the following:

0 =

m∑

i=1

ci(vi · vj) =

m∑

i=1

i6=j

ci(vi · vj) + cj(vj · vj) = λ

m∑

i=1

ci + (aj − λ)cj.

Now, let

m∑

i=1

ci = F and hence 0 = λF + (aj − λ)cj =⇒ cj =
λ

λ− aj
F . So,

F =
m∑

j=1

cj = F
m∑

j=1

λ

λ− aj
and since aj > λ we know that

m∑

j=1

λ

λ− aj
< 0.

Therefore, F = 0 and thus cj = 0 for all j. Hence {v1,v2, . . .vm} is linearly

independent and so n ≥ m.

2.1.1 Homomorphisms and Isomorphisms

Sometimes in this thesis we will need to compare similar incidence structures.

The appropriate way of doing this is via a homomorphism.

Definition 2.1.6. If K = (P,B,I ) and K ′= (P ′,B′,I ′) are two inci-

dence structures, then we say that a pair of mappings ϕ : P → P ′ and ψ :

B → B′ form a homomorphism from K to K ′ provided that (P, x) ∈ I

if and only if (ϕ(P ), ψ(x)) ∈ I ′ for all (P, x) ∈ P × B.

An important special case of a homomorphism is the following.
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Definition 2.1.7. Let K = (P,B,I ) and K ′= (P ′,B′,I ′) be two inci-

dence structures. If a pair of mappings ϕ : P → P ′ and ψ : B → B′ form a

homomorphism from K to K ′ and are both bijective, then we say that ϕ and

ψ form an isomorphism from K to K ′. In this case we say that K and

K ′ are isomorphic.

Throughout this thesis we will not distinguish between isomorphic inci-

dence structures, that is, we shall consider them to be equivalent. Next, we

give a representation of incidence structures in terms of points and sets of

points. We call this point representation of an incidence structure our stan-

dard representation.

Definition 2.1.8. The standard representation of an incidence structure

K = (P,B,I ) is defined to be K S= (PS,BS,I S), where PS = P, BS =

{(x) : x ∈ B} and I S is defined by (P,X) ∈ I S if, and only if, P ∈ X.

Our interest in the standard representation of an incidence structure stems

from the following observation.

Observation 2.1.9. For any incidence structure K = (P,B,I ) and its

standard representation K S= (PS,BS,I S), the pair of mappings ϕ : P →
PS and ψ : B → BS defined by ϕ(P ) = P and ψ(x) = (x) form a homomor-

phism from K to K S.

Proof. Let K = (P,B,I ) be an incidence structure, K S= (PS,BS,I S)

be the standard representation of K , and ϕ and ψ be the pair of mappings

as defined in the statement of this observation.

Consider (P, x) ∈ P × B, then

(P, x) ∈ I ⇐⇒ P ∈ (x)

⇐⇒ ϕ(P ) ∈ ψ(x)

⇐⇒ (ϕ(P ), ψ(x)) ∈ I
S.

That is, ϕ and ψ form a homomorphism from K to K S.
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An interesting special case of Observation 2.1.9 is given next.

Corollary 2.1.10. Every incidence structure without repeated blocks is iso-

morphic to its standard representation.

Proof. This is a special case of Observation 2.1.9. Clearly, without repeated

blocks the mappings ϕ and ψ are 1-to-1 and onto.

We next define a representation for incidence structures that is essentially

the dual of our standard representation (Definition 2.1.8).

Definition 2.1.11. The block representation of an incidence structure

K = (P,B,I ) is given by K B= (PB,BB,I B), where PB = {(Q) : Q ∈
P}, BB = B and I B is defined by (P, x) ∈ I B if, and only if, x ∈ P .

As is the case with the standard representation, our interest in the block

representation of an incidence structure emanates from the following observa-

tion.

Observation 2.1.12. For any incidence structure K = (P,B,I ) and its

block representation K B= (PB,BB,I B), the pair of mappings ϕ : P → PB

and ψ : B → BB defined by ϕ(P ) = (P ) and ψ(x) = x form a homomorphism

from K to K B.

Proof. Let K = (P,B,I ) be an incidence structure, K B= (PB,BB,I B)

be the block representation of K , and ϕ and ψ be the pair of mappings as

defined in the statement of this observation.

Consider (P, x) ∈ P × B, then

(P, x) ∈ I ⇐⇒ x ∈ (P )

⇐⇒ ψ(x) ∈ ϕ(P )

⇐⇒ (ϕ(P ), ψ(x)) ∈ I
B.

That is, ϕ and ψ form a homomorphism from K to K B.
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In the important special case of an incidence structure without repeated

points we get the following canonical result.

Corollary 2.1.13. Every incidence structure without repeated points is iso-

morphic to its block representation.

Proof. This is a special case of Observation 2.1.12. Clearly, without repeated

points the mappings ϕ and ψ are 1-to-1 and onto.

A more detailed introduction to incidence structures and design theory is

given in [38].

2.2 Set Theory and Sperner Systems

We now consider some basic set operations.

Definition 2.2.1. Let X be a set and let A, B be subsets of X. Then we

define the symmetric difference of A and B, denoted by ∆, to be

A∆B = A\B ∪ B\A.

Note that (2X ,∆) is an Abelian group. Next, we recall the notions of union

and intersection over arbitrary index sets.

Definition 2.2.2. Suppose that A, B and X are sets. If {Sb : b ∈ B} ⊆ 2X

and ∅ 6= A ⊆ B then,

⋃

a∈A

Sa = {x ∈ X : x ∈ Sa for some a ∈ A} and

⋂

a∈A

Sa = {x ∈ X : x ∈ Sa for all a ∈ A}.

In the case when A = ∅,
⋃

a∈A

Sa = ∅ and
⋂

a∈A

Sa = X.

When studying partially ordered sets, it is natural to consider totally or-

dered subsets of them (namely chains).
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Definition 2.2.3. Given a set X, we call any C ⊆ 2X a chain in (2X ,⊆) if

for any A,B ∈ C, either A ⊆ B or B ⊆ A.

In some circumstances it is also natural to consider the opposite of a chain,

i.e. an anti-chain or a Sperner system.

Definition 2.2.4. Given a set X, we call any A ⊆ 2X an anti-chain in

(2X ,⊆) (or alternatively, a Sperner system over X) if for any B,C ∈ A, if
B ⊆ C then B = C.

In [81] (1928), Sperner proved the following theorem (Result 2.2.5) which

now bears his name. The proof that we present here is based upon a simple

proof of Sperner’s Theorem due to Lubell [51]. Similar, but ultimately less

straightforward proofs may also be found in [9, 11, 57, 58, 90]. Our proof relies

on the fact that for 1 ≤ j ≤ n we know that j!(n− j)! ≥ ⌊n/2⌋!(n − ⌊n/2⌋)!,
which follows from the fact that

(
n
j

)
≤
(

n
⌊n/2⌋

)
for all 1 ≤ j ≤ n.

Result 2.2.5. (Sperner’s Theorem) A Sperner system S on a set X where

|X| = n consists of at most
(

n
⌊n/2⌋

)
sets.

Proof. Let Σ denote the set of all bijections from {1, 2, ..., n} onto X, then

|Σ| = n!. Next we define a relation R ⊆ Σ × S by (π, S) ∈ R if, and only

if, S = {π(1), π(2), . . . , π(j)} for some 1 ≤ j ≤ n. Then we let D = {π ∈
Σ : (π, S) ∈ R for some S ∈ S}. Since S forms a Sperner system, for each

π ∈ Σ there is at most one S ∈ S such that (π, S) ∈ R, hence we can

define a function f : D → S by f(π) = S if, and only if, (π, S) ∈ R. Now,

{f−1(S) : S ∈ S} forms a partition of D and by a simple counting argument

we see that |f−1(S)| = |S|!(n− |S|)! for each S ∈ S. Therefore,

n! ≥ |D| =
∣
∣
∣

⋃

S∈S

f−1(S)
∣
∣
∣ =

∑

S∈S

|f−1(S)| =
∑

S∈S

|S|!(n− |S|)!

≥
∑

S∈S

⌊n/2⌋!(n− ⌊n/2⌋)! = |S|⌊n/2⌋!(n− ⌊n/2⌋)!

and hence, |S| ≤ n!

⌊n/2⌋!(n− ⌊n/2⌋)! =

(
n

⌊n/2⌋

)

.
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As a corollary to Sperner’s Theorem we have the following result (also due

to Sperner, [81]), which will be used later, in Theorem 6.2.7.

Result 2.2.6. Let S be a Sperner system on a set X where |X| = n. If

|S| ≤ t ≤ n/2 for all S ∈ S then,

|S| ≤
∣
∣{T ∈ 2X : |T | = t and S ⊆ T for some S ∈ S}

∣
∣.

Proof. Let A = {T ∈ 2X : |T | = t and S ⊆ T for some S ∈ S} and let

B = {(x1, x2, . . . , xt) ∈ X t : {x1, x2, . . . , xt} ∈ A}, then |B| = |A|t!. As in

Sperner’s theorem, let Σ denote the set of all bijections from {1, 2, ..., n} onto

X and let D = {π ∈ Σ : (π, S) ∈ R for some S ∈ S}.
Then define g : D → B by g(π) = (π(1), π(2), . . . , π(t)). Note that g is

well-defined because of the definition of D and the fact that |S| ≤ t for all

S ∈ S. Now, for each (x1, x2, . . . , xt) ∈ g(D), |g−1((x1, x2, . . . , xt))| = (n− t)!.

Therefore, |D| = |g(D)|(n−t)! ≤ |B|(n−t)! and hence |D|/t!(n− t)! ≤ |A|.
However, from the proof of Sperner’s theorem |D| =

∑

S∈S |S|!(n− |S|)! and

so,

|A| ≥ |D|
t!(n− t)!

=
∑

S∈S

|S|!(n− |S|)!
t!(n− t)!

≥
∑

S∈S

1 = |S|.

In Section 6.2, we use the following well-known inequality in order to exploit

Sperner’s Theorem.

Result 2.2.7. For all n ∈ N, 2n−1 ≥
(

n
⌊n/2⌋

)
.

Proof. Let P (n) be the statement “2n−1 ≥
(

n
⌊n/2⌋

)
”, then P (1) is obviously

true.

Now suppose that P (k) is true, then

2(k+1)−1 = 2k = 2(2k−1) ≥ 2

(
k

⌊k/2⌋

)

≥ k + 1

⌊k+1
2
⌋⌈k+1

2
⌉

(
k

⌊k/2⌋

)

=

(
k + 1

⌊k+1
2
⌋

)

.

Therefore, by induction, 2n−1 ≥
(

n
⌊n/2⌋

)
, for all positive integers n.
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We can make better use of Sperner’s theorem if we obtain a better bound

on
(

n
⌊n/2⌋

)
than 2n−1 ≥

(
n

⌊n/2⌋

)
. The following result from Stromberg [87] allows

us to do just that.

Result 2.2.8. [87, page 256] For all n ∈ N with n ≥ 2, we have

exp

(−1

6n

)

<

(
2n

n

)

2−2n
√
πn < exp

( −1

12n+ 1

)

.

We can now give an improved bound on
(

n
⌊n/2⌋

)
, which appears to be new.

Corollary 2.2.9. For all n ∈ N with n ≥ 4, we have

(
n

⌊n/2⌋

)

<
2n

√
(πn

2
)
.

Proof. We consider two cases, even n and odd n.

For even n, (and n ≥ 4),

(
n

⌊n/2⌋

)

<
2n

√
(πn

2
)

follows from Result 2.2.8 since

exp

( −1

12(n/2) + 1

)

< 1.

For odd n, (and n ≥ 5),

(
n

⌊n/2⌋

)

=

(
2r + 1

r

)

for r = ⌊n/2⌋.
Therefore,

(
2r + 1

r

)

=

[(
2r + 1

r

)/(2r

r

)](
2r

r

)

=
2r + 1

r + 1

(
2r

r

)

<
2r + 1

r + 1

22r

√
πr
.

Now,
22r

√
πr

2r + 1

r + 1
≤ 22r+1

√

π(r + 1
2
)

⇐⇒ 2r + 1√
r(r + 1)

≤ 2
√

r + 1
2

⇐⇒ (4r2 + 4r + 1)(2r + 1) ≤ 8r(r2 + 2r + 1) ⇐⇒ 1 ≤ 4r2 + 2r

which is clearly true for all r ∈ N.

Therefore, for all n ∈ N with n ≥ 4,

(
n

⌊n/2⌋

)

<
2n

√
(πn

2
)
.

We note that, for all n ≥ 4, the bound from Corollary 2.2.9 is strictly

better than the bound from Result 2.2.7.
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Chapter 3

Initial Observations

In this chapter we explore some of the basic properties and special classes of

(G ,F )-KDPs. We begin by presenting some simple observations that offer

insight into the mathematics of (G ,F )-KDPs.

In Section 3.2 we investigate trivial (G ,F )-KDPs. To this end, we first

explore the concept of complete security, where all members of each privileged

subset of users can communicate securely against any disjoint set of colluding

attackers. Then, we explore the converse concept of complete communication,

where no colluding forbidden subset of users is able to eavesdrop on any se-

cure communication taking place between any disjoint subset of users. These

concepts have both been explored by other authors, so we relate this work to

our own and clarify some terminology.

In Section 3.3, we consider (G ,F )-KDPs with cardinality constraints on

the privileged and/or forbidden subsets. We explore some of the basic prop-

erties of these cardinality schemes and investigate extreme cases that give rise

to trivial (G ,F )-KDPs. We complete Section 3.3 by presenting a 1-to-1 re-

lationship for (G ,F )-KDPs (used later in Chapter 6) that applies to certain

cardinality schemes.

Finally, in Section 3.4, we present some related definitions from the litera-

ture and clarify their exact relationship to (G ,F )-KDPs.

In summary, the main purpose of this chapter, is simply to establish some of

44



the basic properties of (G ,F )-KDPs and answer some of the obvious questions.

The main concepts that we cover are:

1. Trivial (G ,F )-KDPs - We characterise complete communication and

complete security, exhaustively investigating both concepts.

2. Cardinality schemes - We give an analysis of (G ,F )-KDPs with cardi-

nality constraints on the privileged and/or forbidden subsets.

3. Related definitions - We relate (G ,F )-KDPs to other areas of research

such as Cover Free Families and Intersection Schemes.

By covering these concepts and establishing the basic properties of (G ,F )-

KDPs, we are laying the ground work for the rest of this thesis.

3.1 Basic Properties

We begin this section by reiterating our definition of a (G ,F )-KDP (Defini-

tion 1.5.2).

Definition 3.1.1. Let K = (P,B,I ) be a finite incidence structure and let

G and F be families of non-empty subsets of P. Then K is called a (G , F )-

Key Distribution Pattern (or (G ,F )-KDP), if for all G ∈ G and F ∈ F

such that G ∩ F = ∅,
⋂

P∈G

(P ) 6⊆
⋃

Q∈F

(Q).

As can be seen from Definition 3.1.1, there are situations in which the

security condition will be satisfied vacuously. For example, we allow for the

possibility that:

• there are no disjoint privileged and forbidden subsets;

• the family of privileged subsets G is empty;

• the family of forbidden subsets F is empty.
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In each of these cases the security condition is satisfied vacuously. We note

that since it is possible for the security condition to be satisfied vacuously, it is

also possible that the users in a privileged subset have no subkeys in common,

yet still satisfy Definition 3.1.1. We also allow for privileged subsets of cardi-

nality one, that is, we allow for the seemingly meaningless situation where a

user can set up secure communication with himself. Practically speaking, the

absence of cardinality constraints and other assumptions in Definition 3.1.1

lead to some “small” (G ,F )-KDPs. Whilst these “small” (G ,F )-KDPs are

of limited practical use, keeping Definition 3.1.1 very general permits flexi-

bility and reveals essential properties when proving theorems throughout this

thesis. In practice however, we will tend to impose constraints such as:

• the families of privileged and forbidden subsets must be of a certain size;

• at least one privileged subset must be disjoint from at least one forbidden

subset; and

• the network itself must contain a minimum number of users.

We now make a simple observation directly from Definition 3.1.1.

Observation 3.1.2. Any finite incidence structure is a (G ,F )-KDP for some

G and some F .

Proof. For any finite incidence structure K = (P,B,I ), if we let G = ∅,

then K is a (G ,F )-KDP for any F and if we let F = ∅, then K is a

(G ,F )-KDP for any G . Less trivially, if I 6= ∅, we can set G = {(x) : x ∈
B and (x) 6= ∅} and F = 2P \ {∅}. Then, K is again a (G ,F )-KDP. Such

a (G ,F )-KDP will later be called a trivial G -KDP, see Definition 3.2.4.

We now consider a simple proposition demonstrating that a (G ,F )-KDP

is also a KDP for any smaller collection of sets.
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Proposition 3.1.3. If a finite incidence structure K = (P,B,I ) is a

(G ,F )-KDP, then K is a (G ′,F ′)-KDP for any G ′ ⊆ G and any F ′ ⊆ F .

Proof. The proof of this proposition follows directly from Definition 3.1.1.

Another observation that follows immediately from Definition 3.1.1 is that,

in some sense, (G ,F )-KDPs are stable under the union operation. We first

consider the union of privileged subsets.

Proposition 3.1.4. If a finite incidence structure K = (P,B,I ) is both a

(G ,F )-KDP and a (G ′,F )-KDP, then K is also a (G ∪ G ′,F )-KDP.

We now consider the union of forbidden subsets in the same way.

Proposition 3.1.5. If a finite incidence structure K = (P,B,I ) is both a

(G ,F )-KDP and a (G ,F ′)-KDP, then K is also a (G ,F ∪ F ′)-KDP.

Although Proposition 3.1.3 shows that, in one sense, being a (G ,F )-KDP

is a hereditary property, our next example demonstrates that in another sense

it is not. Specifically, it may be the case that for some G′ ⊆ G ∈ G there exists

an F ∈ F disjoint from G′ such that
⋂

P∈G′(P ) ⊆ ⋃Q∈F (Q) and similarly, it

may be the case that for some F ′ ⊆ F ∈ F there exists a G ∈ G disjoint from

F ′ such that
⋂

P∈G(P ) ⊆ ⋃

Q∈F ′(Q). Essentially, this is because G′ may be

disjoint from an F that no G ∈ G is disjoint from, and similarly F ′ may be

disjoint from a G that no F ∈ F is disjoint from.

Example 3.1.1. Let K = (P,B,I ) be a finite incidence structure repre-

sented by the following binary matrix.

x1 x2 x3 x4

P1 1 0 1 1
P2 1 1 1 0
P3 0 1 1 1
P4 0 1 0 0
P5 1 0 0 1
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Then, K is a (G ,F )-KDP for G =
{
{P1, P2, P5}, {P2, P3, P4}, {P1, P2, P3},

{P1, P3, P5}, {P1, P2}, {P1, P3}, {P1, P5}, {P2, P3}, {P1}, {P2}, {P3}, {P4}
}

and F =
{
{P1}, {P4}, {P5}, {P1, P3}, {P1, P5}, {P2, P4}, {P3, P4}, {P4, P5}

}
.

We note that {P1, P3, P5} ∈ G and {P3, P5} ⊆ {P1, P3, P5}. However, K is

not a (G ′,F )-KDP for G ′ = G ∪ {P3, P5} since (P3) ∩ (P5) ⊆ (P1), {P1} ∈ F

and {P3, P5} ∩ {P1} = ∅. We also note that {P2, P4} ∈ F and {P2} ⊆
{P2, P4}. However, K is not a (G ,F ′)-KDP for F ′ = F ∪{P2} since (P4) ⊆
(P2), {P4} ∈ G and {P4} ∩ {P2} = ∅.

The final basic concept that we cover in this section is that of removing

users from a KDP. There are many practical reasons why users may be removed

from a system, so the motivation for this is clear. When users are removed from

a (G ,F )-KDP it is natural to consider the remaining users and the associated

(G ′,F ′)-KDP. In terms of incidence structures this corresponds to deleting

points from the incidence structure, as shown in the following proposition.

Proposition 3.1.6. If a finite incidence structure K = (P,B,I ) is a

(G ,F )-KDP and D ⊆ P, then K ′= (P ′,B′,I ′), where:

P ′ = P \D, B′ = B and

I ′ is defined by (P, x) ∈ I ′ if, and only if, (P, x) ∈ I ,

is a (G ′,F ′)-KDP, for

G ′ = {G \D : G ∈ G and G \D 6= ∅} and F ′ = {F ∈ F : F ∩D = ∅}.

Proof. Let K = (P,B,I ) be a (G ,F )-KDP and suppose, in order to obtain

a contradiction, that K ′= (P ′,B′,I ′) is not a (G ′,F ′)-KDP. Then, there

exists a G′ ∈ G ′ and an F ′ ∈ F ′ ⊆ F such that G′∩F ′ = ∅ and
⋂

P ′∈G′(P ′) ⊆
⋃

Q′∈F ′(Q′). Now, by definition there exists a G ∈ G such that G′ = G \ D.

Then,
⋂

P∈G(P ) ⊆
⋂

P ′∈G′(P ′) ⊆
⋃

Q′∈F ′(Q′). Also, since F ′ ∩ D = ∅, we

know that G ∩ F ′ = ∅. Therefore, K is not a (G ,F )-KDP and we have a

contradiction.
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In Chapter 4, we consider further ways in which an incidence structure is a

(G ,F )-KDP for several different families of privileged and forbidden subsets.

In particular, in Section 4.2 we look at the largest possible families of privileged

and forbidden subsets that make a given incidence structure a (G ,F )-KDP.

We also consider the trade-off between the size of the family of privileged

subsets relative to the size of the family of forbidden subsets.

3.2 Trivial (G ,F )-KDPs

Up to this point we have not considered the problem of how to assign subkeys

in order to obtain a (G ,F )-KDP for a previously specified family of privi-

leged and forbidden subsets. We now consider two fundamental methods of

achieving this. One of these cases is when a given family of privileged subsets

of users can communicate securely against any collection of colluders, while

the other is the case in which any family of users may communicate safely

against a given family of forbidden subsets of colluders. Both cases will be

used throughout this thesis as a benchmark for all other (G ,F )-KDPs.

3.2.1 Complete Security

We begin by defining the basic concept.

Definition 3.2.1. Let K = (P,B,I ) be a finite incidence structure and let

G be a family of non-empty subsets of P. Then, G is said to be completely

secure with respect to K if for every G ∈ G ,
⋂

P∈G(P ) 6⊆
⋃

Q∈P\G(Q).

When the context is clear we shall simply say that G is completely se-

cure and if K is a (G ,F )-KDP where G is completely secure, then we may

informally refer to K as a completely secure (G ,F )-KDP.

By observing that if
⋂

P∈G(P ) 6⊆
⋃

Q∈P\G(Q) then
⋂

P∈G(P ) 6⊆
⋃

Q∈F (Q)

for any ∅ 6= F ⊆ P \G, we see that G is completely secure if, and only if, for
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each G ∈ G and each F ∈ 2P \ {∅}, such that G ∩ F = ∅,

⋂

P∈G

(P ) 6⊆
⋃

Q∈F

(Q).

Therefore, if G is completely secure, then K is a (G ,F )-KDP for F =

2P \ {∅} and conversely, if K is a (G ,F )-KDP for any F that contains
{
P \G : G ∈ G \ {P}

}
, then G is completely secure.

More informally, for a (G ,F )-KDP, if all members of each privileged subset

of users can communicate securely against any colluders disjoint from that

subset, then we have a completely secure (G ,F )-KDP.

We now consider a completely secure (G ,F )-KDP that can be specified

for any incidence structure.

Observation 3.2.2. Let K = (P,B,I ) be a finite incidence structure and

let G = {(x) : x ∈ B and (x) 6= ∅}. Then G is completely secure.

Proof. Suppose that G is not completely secure. Then there exists a G ∈ G

such that
⋂

P∈G(P ) ⊆
⋃

Q∈P\G(Q). Now, G = (x) for some x ∈ B, so

x ∈
⋂

P∈G(P ) ⊆
⋃

Q∈P\G(Q). Therefore, there exists a Q ∈ P \ G such that

x ∈ (Q), or equivalently Q ∈ (x) = G. Hence, Q ∈ G ∩ [P \ G] = ∅ and we

have a contradiction.

So, for any incidence structure, we have a method of constructing a com-

pletely secure (G ,F )-KDP and, conversely, we have the following remark.

Remark 3.2.3. For any specified family of privileged subsets of users G on a

set P, we can construct an incidence structure K = (P,B,I ), where P is

the set of all users, B = G and I is defined by (P,X) ∈ I if, and only if,

P ∈ X for P ∈ P and X ∈ B. Then, our set of privileged subsets of users G

is completely secure with respect to K .

Definition 3.2.4. Let K = (P,B,I ) be a finite incidence structure and

let G be a family of non-empty subsets of P. Then, K is called a trivial

G -KDP if G ⊆ {(x) : x ∈ B and (x) 6= ∅}.
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Alternatively, and more traditionally, we can define a trivial G -KDP by

indexing both the blocks and the privileged subsets. If K = (P,B,I ) is a

finite incidence structure and G is a family of non-empty subsets of P, where

B = {x1, . . . , xb} and G = {Gi : i ∈ J ⊆ {1, . . . , b}}, then K is a trivial

G -KDP if for each i ∈ J, (P, xi) ∈ I if, and only if, P ∈ Gi. That is, a user

P holds a subkey xi for any i ∈ J ⊆ {1, 2, . . . , b} if, and only if, the user P is

a member of the corresponding privileged subset Gi.

For any trivial G -KDP, every member of each privileged subset of users

holds a subkey that is unique to that subset. In this case, the total number

of privileged subsets can be at most equal to the number of blocks in the

incidence structure.

We also know from Observation 3.2.2 that a trivial G -KDP is a (G ,F )-

KDP for any F ⊆ 2P \ {∅}.
We have already established that a trivial G -KDP is completely secure,

but we have still to consider the converse.

Theorem 3.2.5. Let K = (P,B,I ) be a finite incidence structure. If G is

a completely secure family of non-empty subsets of P and P 6∈ G , then K

is a trivial G -KDP.

Proof. Suppose that G is completely secure, P /∈ G but K is not a trivial

G -KDP. Then there exists a G ∈ G such that G 6= (x) for any x ∈ B, and in

particular G 6= (x) for x ∈
⋂

P∈G(P ). Now,
⋂

P∈G(P ) 6= ∅, since
⋂

P∈G(P ) 6⊆
⋃

Q∈P\G(Q). Also, G ⊆ (x) for every x ∈ ⋂P∈G(P ) = {x1, . . . , xn}, so G is

a proper subset of (x) for any x ∈
⋂

P∈G(P ) . For each 1 ≤ i ≤ n, choose

Pi ∈ (xi)\G and let F = {Pi : 1 ≤ i ≤ n}. Note that G∩F = ∅ and xi ∈ (Pi)

for each 1 ≤ i ≤ n. Then,

⋂

P∈G

(P ) = {x1, . . . , xn} ⊆ (P1) ∪ · · · ∪ (Pn) =
⋃

Q∈F

(Q) ⊆
⋃

Q∈P\G

(Q),

and we have a contradiction.
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The problem of complete security is now totally understood and there is

nothing more for us to investigate. However, later in this thesis we will be

able to refer to and use complete security in order to aid our understanding

of (G ,F )-KDPs.

3.2.2 Complete Communication

Again, we begin this subsection with a definition.

Definition 3.2.6. Let K = (P,B,I ) be a finite incidence structure and let

F be a family of non-empty subsets of P. Then, F is said to permit com-

plete communication with respect to K if for every F ∈ F ,
⋂

P∈P\F (P ) 6⊆
⋃

Q∈F (Q).

When the context is clear we shall simply say that F permits complete

communication and, if K is a (G ,F )-KDP where F permits complete com-

munication, then we may informally refer to K as a (G ,F )-KDP with com-

plete communication.

By observing that if
⋂

P∈P\F (P ) 6⊆ ⋃

Q∈F (Q) then
⋂

P∈G(P ) 6⊆ ⋃

Q∈F (Q)

for any ∅ 6= G ⊆ P \ F , we see that F permits complete communication if,

and only if, for each F ∈ F and each G ∈ 2P \ {∅}, such that G ∩ F = ∅,
⋂

P∈G

(P ) 6⊆
⋃

Q∈F

(Q).

Therefore, if F permits complete communication, then we have a (G ,F )-KDP

for G = 2P \ {∅} and conversely, if we have a (G ,F )-KDP for any G that

contains {P \ F : F ∈ F \ {P}}, then F permits complete communication.

More informally, for a (G ,F )-KDP, if no colluding forbidden subset of

users is able to eavesdrop on any secure communication taking place between

any outside subset of users, then we have a (G ,F )-KDP with complete com-

munication.

We now consider a (G ,F )-KDP with complete communication that can

be specified for any incidence structure.
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Observation 3.2.7. Let K = (P,B,I ) be a finite incidence structure and

let F = {P \ (x) : x ∈ B and (x) 6= P}. Then F permits complete commu-

nication.

Proof. Suppose that F does not permit complete communication. Then there

exists an F ∈ F such that
⋂

P∈P\F (P ) ⊆ ⋃Q∈F
(Q). Now, F = P \ (x) for

some x ∈ B, so x /∈
⋃

Q∈F (Q). On the other hand [P \F ]∩F = ∅ and so P \
F ⊆ (x). Hence, x ∈ ⋂P∈P\F (P ) ⊆ ⋃Q∈F

(Q), but x /∈ ⋃Q∈F (Q), and so we

have a contradiction.

So, for any incidence structure, we have a method of constructing a (G ,F )-

KDP with complete communication. Conversely, for any specified family of

forbidden subsets of users, F , we can construct an incidence structure K =

(P,B,I ), where P is the set of all users, B = {P \F, for all F ∈ F} and

I is defined by (P,X) ∈ I if, and only if, P ∈ X for P ∈ P and X ∈ B.

Then, F permits complete communication with respect to K .

Definition 3.2.8. Let K = (P,B,I ) be a finite incidence structure and let

F be a family of non-empty subsets of P. Then, K is called a cotrivial

F -KDP if F ⊆ {P \ (x) : x ∈ B and (x) 6= P}.

As with trivial G -KDPs, we can give an alternative definition for cotrivial

F -KDPs by indexing the blocks and the forbidden subsets. If K = (P,B,I )

is a finite incidence structure and F is a family of non-empty subsets of P

where B = {x1, . . . , xb} and F = {Fi : i ∈ J ⊆ {1, . . . , b}}, then K is a

cotrivial F -KDP if for each i ∈ J, (P, xi) ∈ I if, and only if, P /∈ Gi. That

is, a user P holds a subkey xi for any i ∈ J ⊆ {1, 2, . . . , b} if, and only if, user

P is not a member of the corresponding forbidden subset Fi.

We know from Observation 3.2.7 that a cotrivial F -KDP is a (G ,F )-KDP

for any G ⊆ 2P \ {∅}.
For any cotrivial F -KDP, every forbidden subset of users does not hold

between them a subkey that every other user disjoint from that forbidden
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subset holds. So, all subsets of users disjoint from forbidden subsets can use

the subkeys not held by those forbidden subsets in order to enable secure

communication. That is, for cotrivial F -KDPs all subsets of users are able

to communicate securely against all disjoint forbidden subsets of users. In a

similar way as for trivial G -KDPs, the total number of forbidden subsets is at

most equal to the number of blocks in the incidence structure.

Since we have already established that a cotrivial F -KDP permits com-

plete communication, we now show the converse.

Theorem 3.2.9. Let K = (P,B,I ) be a finite incidence structure. If F

is a family of non-empty subsets of P that permits complete communication

and P /∈ F , then K is a cotrivial F -KDP.

Proof. Suppose that F permits complete communication, P /∈ F , but K is

not a cotrivial F -KDP. Then there exists an F ∈ F such that F 6= P \ (x)

for any x ∈ B, and in particular F 6= P \ (x) for x ∈ B \
⋃

Q∈F (Q). Now,
⋃

Q∈F (Q) 6= B, since
⋂

P∈P\F (P ) 6⊆ ⋃

Q∈F (Q) and P \ F = ∅. Also, F ⊆
P \ (x) for every x ∈ B \

⋃

Q∈F (Q) = {x1, . . . , xn}, so F is a proper subset of

P\(x) for any x ∈ B\⋃Q∈F (Q). For each 1 ≤ i ≤ n,choose Pi ∈ [P\(xi)]\F ,

then let G = {Pi : 1 ≤ i ≤ n}. Note that G ∩ F = ∅ and xi /∈ (Pi) for each

1 ≤ i ≤ n. Therefore, {x1, . . . , xn} ∩
⋂

1≤i≤n(Pi) = ∅, so

⋂

P∈P\F

(P ) ⊆
⋂

P∈G

(P ) =
⋂

1≤i≤n

(Pi) ⊆ B \ {x1, . . . , xn} =
⋃

Q∈F

(Q),

and we have a contradiction.

The problem of complete communication is now totally understood and

there is nothing more for us to investigate. However, as with complete security,

we will later be able to refer to and use complete communication to aid our

understanding of (G ,F )-KDPs.
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3.2.3 Terminology and Relationships

The notions of trivial G -KDPs and cotrivial F -KDPs were alternatively de-

fined by Martin [52] as Trivial Inclusion KDPs and Trivial Exclusion KDPs

respectively. Trivial G -KDPs were first introduced as a special case of (2, 1)-

KDPs in [60] and cotrivial F -KDPs were first introduced in [32] in the special

case where the set of forbidden subsets consists of all users of size at most w.

We say that a (G ,F )-KDP is non-trivial if it is neither a trivial G -KDP

nor a cotrivial F -KDP. Later, in Section 5.1.3 we introduce the complement

of a (G ,F )-KDP. In fact, Theorem 5.1.31 shows that the complement of a

trivial G -KDP is a cotrivial F -KDP and the complement of a cotrivial F -

KDP is a trivial G -KDP. Due to the fact that both trivial cases usually result

in large numbers of subkeys, more efficient, and therefore more interesting,

(G ,F )-KDPs occur somewhere between these two extremes. To this end, we

use trivial G -KDPs and cotrivial F -KDPs as a benchmark for measuring the

levels of security, communication and efficiency of other (G ,F )-KDPs.

3.3 Special Classes of (G ,F )-KDPs

Historically, cardinality constraints have been used to specify special classes

of KDPs. We begin by considering the situation where each subset of users of

size at most t wishes to communicate securely against all colluding subsets of

users of size at most w.

Definition 3.3.1. A finite incidence structure K = (P,B,I ) is said to be

a (t, w)-KDP for t ≥ 1 and w ≥ 1 if K is a (G ,F )-KDP for,

G = {G ∈ 2P : 1 ≤ |G| ≤ t} and F = {F ∈ 2P : 1 ≤ |F | ≤ w}.

The first KDPs introduced by Mitchell and Piper in [59] were (2, 1)-KDPs.

These KDPs enable every pair of users to communicate securely against any

55



individual eavesdropper. Also in [59], and in more detail in [60], they consid-

ered the concept of w security, as introduced by Blom in [5]. A (2, w)-KDP (or

w-secure KDP) enables every pair of users to communicate securely against

any other w colluding users.

Whilst investigating further developments in [60], Mitchell and Piper in-

troduced (t, w)-KDPs. Since their introduction, (t, w)-KDPs have been inves-

tigated and analysed by many authors in a variety of different ways. Design

theory, finite geometry, orthogonal arrays, projective planes and graph theory

are among some of the techniques used in [47, 63, 64, 72, 74, 82, 84] to con-

struct (t, w)-KDPs. The combinatorial nature and cardinality constraints of

(t, w)-KDPs have enabled extensive analysis.

Under certain circumstances results for (t, w)-KDPs give rise to results for

(G ,F )-KDPs. This is demonstrated in the following remark.

Remark 3.3.2. If a finite incidence structure K = (P,B,I ) is a (t, w)-KDP

where t+w ≤ |P|, then K is also a (G ,F )-KDP for any G and F such that

max{|G| : G ∈ G } ≤ t and max{|F | : F ∈ F} ≤ w.

We can further generalise (t, w)-KDPs to (t,F )-KDPs and (G , w)-KDPs,

the definitions of which follow in a natural way from Definition 3.1.1 and

Definition 3.3.1. Also, we say that a trivial G -KDP where G = {G ∈ 2P : 1 ≤
|G| ≤ t} is a trivial t-KDP and a cotrivial F -KDP where F = {F ∈ 2P :

1 ≤ |F | ≤ w} is a cotrivial w-KDP. Therefore, a (t,F )-KDP with complete

security is a trivial t-KDP and a (G , w)-KDP with complete communication

is a cotrivial w-KDP.

3.3.1 Extreme Cases

In this subsection we deal with some extreme cases of (t, w)-KDPs. These

extreme cases are essentially (t, w)-KDPs with cardinality constraints that

give rise to trivial G -KDPs or cotrivial F -KDPs.

We firstly consider (t, w)-KDPs where t+ w ≥ |P|.
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Proposition 3.3.3. Let a finite incidence structure K = (P,B,I ) be a

(t, w)-KDP such that t < |P| and t+w ≥ |P|. Then, for every G ∈ 2P such

that |P| − w ≤ |G| ≤ t, G = (x) for some x ∈ B. That is, K is a trivial

G -KDP for G = {G ∈ 2P : |P| − w ≤ |G| ≤ t}.

Proof. For every G ∈ G ,
⋂

P∈G(P ) 6⊆ ⋃Q∈P\G(Q) since |P \G| = |P|−|G| ≤
w. So, by Definition 3.2.1, G is completely secure and hence by Theorem 3.2.5,

K is a trivial G -KDP.

In a similar way to Proposition 3.3.3 we can consider a cotrivial result.

Proposition 3.3.4. Let a finite incidence structure K = (P,B,I ) be a

(t, w)-KDP such that w < |P| and t + w ≥ |P|. Then, for every F ∈ 2P

such that |P| − t ≤ |F | ≤ w, F = P \ (x) for some x ∈ B. That is, K is a

cotrivial F -KDP for F = {F ∈ 2P : |P| − t ≤ |F | ≤ w}.

Proof. For every F ∈ F ,
⋂

P∈P\F (P ) 6⊆
⋃

Q∈F (Q) since |P\F | = |P|−|F | ≤
t. So, by Definition 3.2.6, F permits complete communication and hence by

Theorem 3.2.9, K is a cotrivial F -KDP.

It is interesting to note from Proposition 3.3.3 and Proposition 3.3.4 that if

K = (P,B,I ) is a finite incidence structure and K is a (t, w)-KDP where

t < |P|, w < |P| and t + w ≥ |P|, then K is both a trivial G -KDP for

G = {G ∈ 2P : |P| − w ≤ |G| ≤ t} and a cotrivial F -KDP for F = {F ∈
2P : |P| − t ≤ |F | ≤ w}.

Next we consider (G , w)-KDPs where w ≥ |B|.

Proposition 3.3.5. Let a finite incidence structure K = (P,B,I ) be a

(G , w)-KDP. If w ≥ |B|, then K is a trivial G -KDP.

Proof. Suppose that K is a (G , w)-KDP for some w ≥ |B|. By Theorem 3.2.5

it is sufficient to show that for any G ∈ G ,
⋂

P∈G(P ) 6⊆ ⋃

Q∈P\G(Q). Sup-

pose, in order to obtain a contradiction, that there exists a G ∈ G such
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that
⋂

P∈G(P ) ⊆ ⋃

Q∈P\G(Q). Then, for each x ∈ ⋂P∈G(P ), there exists a

Q ∈ P \G such that x ∈ (Q). Since
∣
∣
⋂

P∈G(P )
∣
∣ ≤ |B|,

⋂

P∈G(P ) ⊆
⋃

Q∈F (Q)

for some F ∈ 2P such that 1 ≤ |F | ≤ |B| ≤ w. Therefore, K is not a

(G , w)-KDP and we have a contradiction.

In a similar way to Proposition 3.3.5, we will now consider (t,F )-KDPs

where t ≥ |B|.

Proposition 3.3.6. Let a finite incidence structure K = (P,B,I ) be a

(t,F )-KDP. If t ≥ |B|, then K is a cotrivial F -KDP.

Proof. Suppose that K is a (t,F )-KDP for some t ≥ |B|. By Theorem 3.2.9

it is sufficient to show that for any F ∈ F ,
⋂

P∈P\F (P ) 6⊆ ⋃Q∈F (Q). Suppose,

in order to obtain a contradiction, that there exists an F ∈ F such that
⋂

P∈P\F (P ) ⊆
⋃

Q∈F (Q). Then, for each x ∈ B \
⋃

Q∈F (Q), there exists a

P ∈ P \ F such that x 6∈ (P ). Since
∣
∣
∣B \

⋃

Q∈F (Q)
∣
∣
∣ ≤ |B|,

⋂

P∈G(P ) ⊆
⋃

Q∈F (Q) for some G ∈ 2P such that 1 ≤ |G| ≤ |B| ≤ t. Therefore, K is not

a (t,F )-KDP and we have a contradiction.

The following observation yields a simple lower bound on the number of

blocks in a (t, w)-KDP that follows immediately from some of our earlier propo-

sitions.

Observation 3.3.7. If a finite incidence structure K = (P,B,I ) is a (t, w)-

KDP where t+ w ≤ |P|, then |B| ≥
(

w+t
t

)
.

Proof. Suppose that K = (P,B,I ) is a (t, w)-KDP where t + w ≤ |P|.
Then, for some 0 ≤ d ≤ |P| − 2, we know that t + w = |P| − d. From

Proposition 3.1.6 we can remove d points from the point set and create an

incidence structure K ′= (P ′,B′,I ′) where |P ′| = |P| − d and B′ = B

such that K ′ is a (t, w)-KDP. Since t + w = |P ′| = |P| − d, it follows from

Proposition 3.3.3 that K ′ is a trivial G -KDP where G = {G ∈ 2P′

: |G| = t}.
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By Definition 3.2.4, we know that |G | ≤ |B|. Now,

|G | =

(|P ′|
t

)

=

(|P| − d

t

)

=

(
w + t

t

)

.

Therefore, |B| ≥
(

w+t
t

)
and the proof is complete.

Using this observation it is easy to see how rapidly the number of blocks

in a (t, w)-KDP grows with respect to t and w. For example, any (3, 3)-KDP

on 6 or more points requires at least 20 blocks, any (4, 4)-KDP on 8 or more

points requires at least 70 blocks and any (5, 5)-KDP on 10 or more points

requires at least 252 blocks.

3.3.2 When (G , w)-KDPs are (t, w)-KDPs

It is natural to speculate that any (G , w)-KDP where G = {G ∈ 2P : |G| = t}
is also a (t, w)-KDP. The following example demonstrates that this is not

always the case.

Example 3.3.1. Let t ≥ 2 and let P be any finite set with |P| > t. Further,

let B = {X ∈ 2P : |X| = t} and I ⊆ P × B be defined by (P,X) ∈ I if,

and only if, P ∈ X. Then K = (P,B,I ) is a finite incidence structure. Next

let G = {G ∈ 2P : |G| = t} and let F ⊇ {F ∈ 2P : 1 ≤ |F | ≤ |P| − t + 1}.
Then, K is a (G ,F )-KDP but not a (t,F )-KDP. More specifically, for w ≥
|P| − t+ 1, K is a (G , w)-KDP but not a (t, w)-KDP.

Proof. First let us note that from Definition 3.2.4, K is a trivial G -KDP and

hence is a (G ,F ′)-KDP for any F ′ ⊆ 2P \ {∅}. To show that K is not a

(t,F )-KDP we let H be any subset of P with |H| = t− 1. Let F = P \H ,

then F ∈ F , since |F | = |P|−t+1. Furthermore, F∩H = ∅ and
⋂

P∈H(P ) ⊆
⋃

Q∈F (Q). To see that
⋂

P∈H(P ) ⊆
⋃

Q∈F (Q), note that if X ∈
⋂

P∈H(P ) then

H ⊆ X, and H 6= X (since |H| = t− 1 and |X| = t). Therefore, there exists

a point Q′ ∈ X \H ⊆ F and hence X ∈ (Q′) ⊆
⋃

Q∈F (Q). Thus, K is not a

(t,F )-KDP.
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Despite Example 3.3.1, there are many situations in which a (G , w)-KDP

where G = {G ∈ 2P : |G| = t} is a (t, w)-KDP. We now consider the most

general situation.

Proposition 3.3.8. Let K = (P,B,I ) be a finite incidence structure. Let

G ,G ′ and F be families of non-empty subsets of P with the property that for

every G′ ∈ G ′ and every F ∈ F such that G′ ∩ F = ∅, there exists a G ∈ G

such that G′ ⊆ G and G ∩ F = ∅. If K is a (G ,F )-KDP, then K is a

(G ′,F )-KDP.

Proof. Suppose that K is a (G ,F )-KDP and that G ,G ′ and F are defined as

in the statement of the proposition. Now, suppose that G′ ∈ G ′ and F ∈ F

are such that G′ ∩ F = ∅. Choose G ∈ G such that G′ ⊆ G ⊆ P \ F ,

(or G ∩ F = ∅). Then ∅ 6=
⋂

P∈G(P ) \
⋃

Q∈F (Q) ⊆
⋂

P ′∈G′(P ′) \
⋃

Q∈F (Q).

Therefore, K is a (G ′,F )-KDP.

We can now use Proposition 3.3.8 to obtain a result for (t, w)-KDPs.

Corollary 3.3.9. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP for some t such that 1 ≤ t < |P|, G = {G ∈ 2P : |G| = t} and

F ⊆ {F ∈ 2P : 1 ≤ |F | ≤ |P| − t}, then K is a (t,F )-KDP. In particular,

if K is a (G , w)-KDP and 1 ≤ w ≤ |P| − t, then K is a (t, w)-KDP.

Proof. Suppose that K is a (G ,F )-KDP as defined in the statement of the

corollary and let G ′ = {G′ ∈ 2P : 1 ≤ |G′| < t}. Choose G′ ∈ G ′ and F ∈ F

such that G′ ∩ F = ∅. Now, let H be any subset of P \ [G′ ∪ F ] such that

|H| = t− |G′| ≥ 1. Note that this is possible since,

∣
∣P \ [G′ ∪ F ]

∣
∣ = |P| − |G′ ∪ F |

= |P| −
[
|G′| + |F |

]
(since G′ ∩ F = ∅)

≥ |P| − |G′| −
[
|P| − t

]

= t− |G′|.
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We know that |G′∪H| = t, so G = G′∪H ∈ G . That is, there exists a G ∈ G

such that G′ ⊆ G and G ∩ F = ∅. Therefore, by Proposition 3.3.8, K is a

(t,F )-KDP.

3.3.3 When (t,F )-KDPs are (t, w)-KDPs

In a similar way to Example 3.3.1, Example 3.3.2 demonstrates that it is not

always the case that any (t,F )-KDP where F = {F ∈ 2P : |F | = w} is also

a (t, w)-KDP.

Example 3.3.2. Let w ≥ 2 and let P be any finite set with |P| > w.

Further, let B = {X ∈ 2P : |X| = |P| − w} and I ⊆ P × B be defined

by (P,X) ∈ I if, and only if, P ∈ X. Then K = (P,B,I ) is a finite

incidence structure. Next let G ⊇ {G ∈ 2P : 0 < |G| ≤ |P| − w + 1} and

let F = {F ∈ 2P : |F | = w}. Then, K is a (G ,F )-KDP but not a (G , w)-

KDP. More specifically, for t ≥ |P| − w + 1, K is a (t,F )-KDP but not a

(t, w)-KDP.

Proof. First, let us note that from Definition 3.2.8, K is a cotrivial F -KDP

and hence is a (G ′,F )-KDP for any G ′ ⊆ 2P \ {∅}. To show that K is

not a (G , w)-KDP, we let H be any subset of P with |H| = w − 1. Let

G = P \ H and note that |G| = |P| − w + 1, and thus G ∈ G . Also,

G ∩ H = ∅ and
⋂

P∈G(P ) ⊆
⋃

Q∈H(Q), since
⋂

P∈G(P ) = ∅. That is, K is

not a (G , w)-KDP.

In contrast to Example 3.3.2, there are many situations in which a (t,F )-

KDP where F = {F ∈ 2P : |G| = w} is a (t, w)-KDP.

Proposition 3.3.10 is similar to Proposition 3.3.8 and sets up the most

general situation.

Proposition 3.3.10. Let K = (P,B,I ) be a finite incidence structure. Let

G ,F and F ′ be families of non-empty subsets of P with the property that
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for every F ′ ∈ F ′ and G ∈ G such that G ∩ F ′ = ∅, there exists an F ∈ F

such that F ′ ⊆ F and G ∩ F = ∅. If K is a (G ,F )-KDP, then K is a

(G ,F ′)-KDP.

Proof. Suppose that K is a (G ,F )-KDP and that G ,F and F ′ are as defined

in the statement of the proposition. Now, suppose that F ′ ∈ F ′ and G ∈ G

are such that G ∩ F ′ = ∅. Choose F ∈ F such that F ′ ⊆ F ⊆ P \ G,

(or G ∩ F = ∅). Then ∅ 6=
⋂

P∈G(P ) \
⋃

Q∈F (Q) ⊆
⋂

P∈G(P ) \
⋃

Q′∈F ′(Q′).

Therefore, K is a (G ,F ′)-KDP.

The following corollary is similar to Corollary 3.3.9.

Corollary 3.3.11. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP for some w such that 1 ≤ w < |P|, G ⊆ {G ∈ 2P : 1 ≤ |G| ≤ |P| −w}
and F = {F ∈ 2P : |F | = w}, then K is a (G , w)-KDP. In particular, if K

is a (t,F )-KDP and 1 ≤ t ≤ |P| − w, then K is a (t, w)-KDP.

Proof. Suppose that K is a (G ,F )-KDP as defined in the statement of the

corollary and let F ′ = {F ′ ∈ 2P : 1 ≤ |F ′| < w}. Choose F ′ ∈ F ′ and G ∈ G

such that G ∩ F ′ = ∅. Now, let H be any subset of P \ [G ∪ F ′] such that

|H| = w − |F ′| ≥ 1. Note that this is possible since,

∣
∣P \ [G ∪ F ′]

∣
∣ = |P| − |G ∪ F ′|

= |P| −
[
|G| + |F ′|

]
(since G ∩ F ′ = ∅)

≥ |P| −
[
|P| − w

]
− |F ′|

= w − |F ′|.

We know that |F ′ ∪ H| = w, so F = F ′ ∪ H ∈ F . That is, there exists an

F ∈ F such that F ′ ⊆ F and G ∩ F = ∅. Therefore, by Proposition 3.3.10,

K is a (G , w)-KDP.
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3.3.4 Special Properties of (G , w)-KDPs

In this subsection we make an observation establishing a 1-to-1 relationship

within (G ,F )-KDPs possessing certain properties. This observation is pre-

sented here because it applies particularly to the case of (G , w)-KDPs.

Observation 3.3.12. Let a finite incidence structure K = (P,B,I ) be a

(G ,F )-KDP with the property that if G,G′ ∈ G and G 6= G′ then there exists

an F ∈ F such that either:

(i) G ∩ F 6= ∅ and G′ ∩ F = ∅; or (ii) G ∩ F = ∅ and G′ ∩ F 6= ∅.

Then, the mapping G→ ⋂

P∈G(P ) from G into subsets of B is 1-to-1.

Proof. Suppose that K is a (G ,F )-KDP as defined in the statement of the

observation and choose G,G′ ∈ G such that G 6= G′. Then, there exists an

F ∈ F such that either (i) G∩F 6= ∅ and G′ ∩F = ∅ or (ii) G∩F = ∅ and

G′ ∩ F 6= ∅.

If (i) holds, then
⋂

P∈G(P ) ⊆
⋃

Q∈F (Q) and
⋂

P ′∈G′(P ′) 6⊆
⋃

Q∈F (Q), and if

(ii) holds then
⋂

P∈G(P ) 6⊆
⋃

Q∈F (Q) and
⋂

P ′∈G′(P ′) ⊆
⋃

Q∈F (Q), since K

is a (G ,F )-KDP. In either case, it follows that
⋂

P∈G(P ) 6=
⋂

P ′∈G′(P ′) and

hence the mapping G→
⋂

P∈G(P ) from G into subsets of B is 1-to-1.

Observation 3.3.12 can be applied to many different (G ,F )-KDPs and

Remark 3.3.13 specifies some of them, including any (G , w)-KDP.

Remark 3.3.13. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP and F contains all the singletons (in particular any (G , w)-KDP), then

the mapping G→
⋂

P∈G(P ) from G into subsets of B is 1-to-1.

Establishing a 1-to-1 mapping from the privileged subsets to the common

block sets for those subsets is significant because it will later (Chapter 6)

enable us to determine a lower bound for the number of blocks in terms of the

number of privileged subsets. That is, for the special classes of (G ,F )-KDPs,
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as specified in Observation 3.3.12, we will find a lower bound for the number

of subkeys in terms of the number of groups requiring secure communication.

3.4 Related Definitions

As previously mentioned, (G ,F )-KDPs have, in one form or another, been

investigated and analysed by many authors in a variety of different ways. In

this section we shall compare some of these approaches to our own.

We first compare KDPs from two incidence structures with a homomor-

phism between them.

Proposition 3.4.1. Let K = (P,B,I ) and K ′= (P ′,B′,I ′) be two in-

cidence structures and let a pair of mappings ϕ : P → P ′ and ψ : B → B′

form a homomorphism from K to K ′. If K is a (G ,F )-KDP, then K ′ is

a (G ′,F ′)-KDP where G ′ = {ϕ(G) : G ∈ G } and F ′ = {ϕ(F ) : F ∈ F}.

Proof. Suppose that K is a (G ,F )-KDP and consider ϕ(G) ∈ G ′ and ϕ(F ) ∈
F ′ for some G ∈ G and F ∈ F such that ϕ(G)∩ϕ(F ) = ∅. Then G∩F = ∅

and since K is a (G ,F )-KDP, there exists an x ∈ B such that x ∈ ⋂P∈G(P )\
⋃

Q∈F (Q).

Now, x ∈
⋂

P∈G

(P ) \
⋃

Q∈F

(Q)

⇐⇒ (P, x) ∈ I and (Q, x) /∈ I , for all P ∈ G and all Q ∈ F

⇐⇒ (ϕ(P ), ψ(x)) ∈ I
′ and (ϕ(Q), ψ(x)) /∈ I

′,

for all P ∈ G and all Q ∈ F

⇐⇒ (P ′, ψ(x)) ∈ I
′ and (Q′, ψ(x)) /∈ I

′,

for all P ′ ∈ ϕ(G) and all Q′ ∈ ϕ(F )

⇐⇒ ψ(x) ∈
⋂

P ′∈ϕ(G)

(P ′) \
⋃

Q′∈ϕ(F )

(Q′).

Therefore, K ′ is a (G ′,F ′)-KDP for G ′ = {ϕ(G) : G ∈ G } and F ′ = {ϕ(F ) :

F ∈ F}.

64



Loosely speaking, Proposition 3.4.1 shows that homomorphisms acting be-

tween incidence structures map a (G ,F )-KDP to a (G ′,F ′)-KDP for appro-

priate G ′ and F ′. Next, we shall show, with a small additional constraint

on the mapping acting between the block sets, that the inverse image of a

(G ′,F ′)-KDP under a pair of homomorphism maps is a (G ,F )-KDP.

Proposition 3.4.2. Let K = (P,B,I ) and K ′= (P ′,B′,I ′) be two inci-

dence structures and let the pair of mappings ϕ : P → P ′ and ψ : B → B′

form a homomorphism from K to K ′. If K ′ is a (G ′,F ′)-KDP and both ϕ

and ψ are surjective, then K is a (G ,F )-KDP where G = {ϕ−1(G′) : G′ ∈
G ′} and F = {ϕ−1(F ′) : F ′ ∈ F ′}.

Proof. Suppose that K ′ is a (G ′,F ′)-KDP and consider ϕ−1(G′) ∈ G and

ϕ−1(F ′) ∈ F for some G′ ∈ G ′ and F ′ ∈ F ′ such that ϕ−1(G′)∩ϕ−1(F ′) = ∅.

Then, since ϕ is surjective, G′∩F ′ = ∅ and since K ′ is a (G ′,F ′)-KDP there

exists a x′ ∈ B′ such that x′ ∈
⋂

P ′∈G′(P ′) \
⋃

Q′∈F ′(Q′). Further, since ψ is

surjective there exists an x ∈ B such that ψ(x) = x′.

Now, x′ ∈
⋂

P ′∈G′

(P ′) \
⋃

Q′∈F ′

(Q′)

⇐⇒ (P ′, x′) ∈ I
′ and (Q′, x′) /∈ I

′, for all P ′ ∈ G′ and all Q′ ∈ F ′

⇐⇒ (ϕ(P ), ψ(x)) ∈ I
′ and (ϕ(Q), ψ(x)) /∈ I

′,

for all P ∈ ϕ−1(G′) and all Q ∈ ϕ−1(F ′)

⇐⇒ (P, x) ∈ I and (Q, x) /∈ I ,

for all P ∈ ϕ−1(G′) and all Q ∈ ϕ−1(F ′)

⇐⇒ x ∈
⋂

P∈ϕ−1(G′)

(P ) \
⋃

Q∈ϕ−1(F ′)

(Q).

Therefore, K is a (G ,F )-KDP for G = {ϕ−1(G′) : G′ ∈ G ′} and F =

{ϕ−1(F ′) : F ′ ∈ F ′}.

By combining Proposition 3.4.1 and Proposition 3.4.2 we obtain the fol-

lowing useful result.
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Theorem 3.4.3. Let K = (P,B,I ) and K ′= (P ′,B′,I ′) be two incidence

structures such that a pair of mappings ϕ : P → P ′ and ψ : B → B′ form a

homomorphism from K to K ′. If ϕ is bijective and ψ is surjective, then K is

a (G ,F )-KDP if, and only if, K ′ is a (G ′,F ′)-KDP for G ′ = {ϕ(G) : G ∈ G }
and F ′ = {ϕ(F ) : F ∈ F}.

Proof. This follows from Propositions 3.4.1 and 3.4.2, since ϕ−1(ϕ(G)) = G

and ϕ−1(ϕ(F )) = F for each G ∈ G and F ∈ F .

If we recall the standard representation of an incidence structure, Defini-

tion 2.1.8, then we can present an interesting special case of Theorem 3.4.3.

Corollary 3.4.4. A finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP if, and only if, the standard representation of K is a (G ,F )-KDP.

We now present another special case of Theorem 3.4.3.

Corollary 3.4.5. Let K = (P,B,I ) and K ′= (P ′,B′,I ′) be two inci-

dence structures such that a pair of mappings ϕ : P → P ′ and ψ : B → B′

form an isomorphism from K to K ′. Then, K is a (G ,F )-KDP if, and

only if, K ′ is a (G ′,F ′)-KDP for G ′ = {ϕ(G) : G ∈ G } and F ′ = {ϕ(F ) :

F ∈ F}.

3.4.1 Stinson’s Definition

In [82] Stinson defined (G ,F )-KDPs using set notation and by considering

each block as a set of points.

Definition 3.4.6. Let K = (P,B,I ) be a finite incidence structure where

B ⊆ 2P \ {∅} and I ⊆ P × B is defined by (P,X) ∈ I if, and only if,

P ∈ X. If G and F are families of non-empty subsets of P, then, K is said

to satisfy Stinson’s Definition with respect to G and F , if

{X ∈ B : G ⊆ X and F ∩X = ∅} 6= ∅,

for all G ∈ G and F ∈ F such that G ∩ F = ∅.
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Or, equivalently, for all G ∈ G and F ∈ F such that G ∩ F = ∅, there exists

an X ∈ B such that G ⊆ X and F ∩X = ∅.

The standard representation of an incidence structure (Definition 2.1.8)

will now assist us in comparing Stinson’s Definition to our own definition of

(G ,F )-KDPs.

Theorem 3.4.7. Let K = (P,B,I ) be a finite incidence structure and let

K S= (PS,BS,I S) be the standard representation of K . Then, K is a

(G ,F )-KDP if, and only if, K S satisfies Stinson’s Definition with respect to

G and F .

Proof. We know from Corollary 3.4.4 that K is a (G ,F )-KDP if, and only

if, K S is a (G ,F )-KDP. So, it remains to show that K S is a (G ,F )-KDP

if, and only if, K S satisfies Stinson’s Definition with respect to G and F .

Suppose that G ∈ G , F ∈ F and G ∩ F = ∅, then there exists an X ∈ BS

such that:

X ∈
⋂

P∈G

(P ) \
⋃

Q∈F

(Q)

⇐⇒ X ∈ (P ) and X /∈ (Q), for all P ∈ G and all Q ∈ F

⇐⇒ (P,X) ∈ I
S and (Q,X) /∈ I

S, for all P ∈ G and all Q ∈ F

⇐⇒ P ∈ X and Q /∈ X, for all P ∈ G and all Q ∈ F

⇐⇒ G ⊆ X and F ∩X = ∅

⇐⇒ {X ∈ B
S : G ⊆ X and F ∩X = ∅} 6= ∅.

Therefore, K S is a (G ,F )-KDP if, and only if, K S satisfies Stinson’s Defi-

nition with respect to G and F . Hence, K is a (G ,F )-KDP if, and only if,

K S satisfies Stinson’s Definition with respect to G and F .

We are now able to use Stinson’s Definition when referring to (G ,F )-

KDPs, but we should be wary, since Stinson’s Definition does not allow for
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repeated blocks (Definition 2.1.2) within a (G ,F )-KDP, whereas our original

definition (Definition 3.1.1) does. This is not an important issue, as will be

highlighted in Section 4.1, since repeated blocks contribute nothing to the

security of a (G ,F )-KDP and may be considered redundant.

Stinson used his definition in order to study the relationship between t −
(v, k, λ)-designs (see Definition 2.1.4) and (t, w)-KDPs [82]. He was also able to

construct (G ,F )-KDPs using combinatorial objects [47, 84], (see Chapter 5).

3.4.2 Cover Free Families

Cover Free Families (CFFs), were first introduced by Kautz and Singleton [40]

in 1964. Essentially CFFs are families of finite sets such that the intersection

of any collection of t of these sets is not covered by the union of any other

collection of w of them.

Definition 3.4.8. Let X be a set and S ⊆ 2X. Then, S is said to be a

(t, w)-Cover Free Family (or (t, w)-CFF) on X, for t ≥ 1 and w ≥ 1, if

for any t subsets P1, P2, ..., Pt ∈ S and any other w subsets Q1, Q2, . . . , Qw ∈ S,
t⋂

i=1

Pi 6⊆
w⋃

j=1

Qj.

Originally t was set to 1, but since the introduction of CFFs to investigate

superimposed binary codes, they have been investigated, discussed and gen-

eralised in many different ways [29, 30, 34, 78, 86]. In fact, Key Distribution

Patterns are one such generalisation of CFFs.

Superimposed binary codes [24, 40, 42] have been used to represent docu-

ment attributes within an information retrieval system and as a basis for chan-

nel assignments to relieve congestion in crowded communications bands. They

consist of a set of codewords whose digit by digit Boolean sums have a pre-

scribed level of distinguishability. More precisely, a binary (t, w)-superimposed

code is exactly the incidence matrix of a (t, w)-CFF.
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The precise relationship between (t, w)-CFFs and (t, w)-KDPs is given

next. However, its simple proof is omitted.

Theorem 3.4.9. Let K = (P,B,I ) be a finite incidence structure with no

repeated points. Then, K is a (t, w)-KDP, for t ≥ 1 and w ≥ 1, if, and only

if, S = {(P ) : P ∈ P} is a (t, w)-CFF on B.

Naturally enough, the study of CFFs has been useful in the study of (t, w)-

KDPs. In particular, several lower bounds on the information storage of (t, w)-

KDPs have been proved [85], see Chapter 6.

Cover Free Families have also been considered under other names. For

example, in [26], Dyer, Fenner, Freize and Thomason called (t, w)-CFFs, w-

secure t-intersection schemes. By using probabilistic methods [1, 10, 80], as

opposed to a deterministic approach, Dyer et al. [26] were able to analyse

t-intersection schemes in a new way. Generating the sets randomly and min-

imising the probability of getting “bad cases”, that is,
⋂t

i=1 Pi ⊆
⋃w

j=1Qj , they

were able to generate “good” t-intersection schemes with high probability.

Also in [26], bounds are given on the number of subkeys in a system, con-

structions show the existence of t-intersection schemes with a specified number

of subkeys and the practical aspects of the probabilistic approach are analysed.

We do not pursue the probabilistic approach within this thesis. However, the

bounds in [26] on the number of subkeys in a system are considered in Chap-

ter 6, and the existence results allow for the construction of new KDPs from

old (see Chapter 5).

69



Chapter 4

Secondary Observations

In this chapter we consider two main concepts. Firstly, we consider the concept

of redundancy within a (G ,F )-KDP and secondly, we consider the largest

possible sets of privileged and forbidden subsets. These two concepts both

emerge by first considering some predefined incidence structure, K and then

considering the sets of privileged and forbidden subsets for which K is a

(G ,F )-KDP. This approach is different to that used throughout the majority

of this thesis, and although interesting the results in this chapter do not have

a large impact on the rest of the thesis.

In Section 4.1 we begin by considering the points and blocks that, for a

given incidence structure K , play no role in any (G ,F )-KDP, regardless of

the choice of privileged and forbidden subsets. We next consider privileged

and forbidden subsets that satisfy the security condition vacuously, and in

both cases, we show that if an incidence structure K is a (G ,F )-KDP, then

we can remove the redundancy from K without affecting any “real” security

or communication.

In Section 4.2, for a predefined incidence structure, K , we attempt to find

the largest possible set of privileged and forbidden subsets for which K is a

(G ,F )-KDP. We observe the trade-off between the size of the set of privileged

subsets and the size of the set of forbidden subsets and consider the largest set

of privileged subsets for a given set of forbidden subsets and the largest set of
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forbidden subsets for a given set of privileged subsets. Finally, we show that

there is, in general, no largest (G ,F )-KDP for a given incidence structure,

instead there are many distinct maximal (G ,F )-KDPs.

4.1 Redundancy

This section contains an analysis of redundancy within a (G ,F )-KDP.

4.1.1 Point and Block Redundancy

In an incidence structure K = (P,B,I ) we will consider a point or a block to

be redundant if it plays no “role” in any (G ,F )-KDP regardless of the choice

of privileged and forbidden subsets. We start by tackling repeated points and

repeated blocks (see Definition 2.1.1 and Definition 2.1.2).

Repeated points correspond to users holding identical sets of subkeys. Such

users will have identical communication privileges within any (G ,F )-KDP and

all secure communications will be visible to any user who holds an identical

subset of subkeys to the sender. That is, users holding identical subsets of

subkeys will not be able to use the system to exclude each other from any

secure communications. On the other hand, there are practical situations

where it may be beneficial for two or more users to have identical access. Any

job sharing scenario or situation where immediate and complete information

sharing is important could be facilitated by users holding identical sets of

subkeys. Therefore, we will not consider repeated points to be redundant.

Repeated blocks correspond to subkeys held by an identical set of users.

When calculating a secret key, this set of users will combine all such sub-

keys, but when compared to simply using just one of these repeated subkeys,

there is no extra benefit. Intuitively, repeated blocks enable no additional

communication and offer no extra security. More precisely, the standard rep-

resentation of an incidence structure contains no repeated blocks. Recall, from
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Corollary 3.4.4 that an incidence structure is a (G ,F )-KDP if, and only if, its

standard representation is a (G ,F )-KDP, for the same G and the same F .

In this way we see that removing repeated blocks does not affect either the

security or the communication within a (G ,F )-KDP. Therefore, we consider

repeated blocks to be redundant for all (G ,F )-KDPs.

Other blocks that we will consider to be redundant are those that are

not incident with any points in the incidence structure. Similarly, we will

consider points to be redundant if they are not incident with any blocks in the

incidence structure. Such blocks correspond to subkeys held by no users and

such points correspond to users holding no subkeys. Clearly, these blocks and

points play no significant role in any (G ,F )-KDP that can be constructed on

the incidence structure.

The points and blocks that we have specified as redundant, are redundant

for any (G ,F )-KDP regardless of the choice of privileged and forbidden sub-

sets. However, one might want to consider additional notions of redundancy,

specific to a particular choice of privileged and forbidden subsets. For exam-

ple, given a (G ,F )-KDP, any block x such that x /∈
⋂

P∈G(P ) \
⋃

Q∈F (Q)

for any G ∈ G and F ∈ F such that G ∩ F = ∅, and any point P such

that P /∈
⋃

G∈G
G ∪

⋃

F∈F
F , play no role in that (G ,F )-KDP and may be

considered redundant.

4.1.2 Irreducible (G ,F )-KDPs

In this section we consider the consequences of removing redundant points and

blocks from a (G ,F )-KDP. We begin with a definition.

Definition 4.1.1. Let K = (P,B,I ) be a finite incidence structure. Then,

K is said to be irreducible if (i) it contains no repeated blocks, (ii) for all

P ∈ P there exists an x ∈ B such that (P, x) ∈ I and (iii) for all x ∈ B

there exists a P ∈ P such that (P, x) ∈ I .
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That is, an incidence structure K = (P,B,I ) is irreducible if it contains

no redundant blocks and no redundant points. If K = (P,B,I ) is an irre-

ducible incidence structure and K is a (G ,F )-KDP, then we say that K is

an irreducible (G ,F )-KDP.

The following theorem shows that we can reduce a (G ,F )-KDP to an

irreducible (G ′,F ′)-KDP whilst essentially maintaining the secure communi-

cation properties of the original (G ,F )-KDP.

Theorem 4.1.2. Let K = (P,B,I ) be a finite incidence structure, let K S=

(PS,BS,I S) be the standard representation of K and let G and F be fam-

ilies of non-empty subsets of P. If
⋂

P∈G(P ) 6= ∅ for all G ∈ G , then K is a

(G ,F )-KDP if, and only if, the incidence structure K ′= (P ′,B′,I ′), where

P
′ = {P ∈ P : (P, x) ∈ I for some x ∈ B},

B
′ = {x ∈ B

S : (P, x) ∈ I
S for some P ∈ P}

and I
′ = I

S ∩ (P ′ × B
′)

is an irreducible (G ,F ′)-KDP for F ′ = {F ∩ P ′ ∈ 2P′ \ {∅} : F ∈ F}.

Proof. It is immediate from Definition 4.1.1 that K ′= (P ′,B′,I ′) is an

irreducible incidence structure. It only remains to show that K is a (G ,F )-

KDP if, and only if, K ′ is a (G ,F ′)-KDP.

Firstly, suppose that K is a (G ,F )-KDP and, in order to obtain a con-

tradiction, suppose that K ′ is not a (G ,F ′)-KDP. Then there exists a G ∈ G

and an F ′ ∈ F ′ such that G ∩ F ′ = ∅ and
⋂

P∈G(P ) ⊆ ⋃

Q′∈F ′(Q′). By

the definition of F ′, there exists an F ∈ F such that F ∩ P ′ = F ′. More-

over, since G ∩ P ′ = G, F ∩ G = F ∩ P ′ ∩ G = F ′ ∩ G = ∅. Therefore,
⋂

P∈G(P ) ⊆
⋃

Q′∈F ′(Q′) ⊆
⋃

Q∈F (Q), which contradicts the assumption that

K is a (G ,F )-KDP.

Now suppose that K ′ is a (G ,F ′)-KDP and, in order to obtain a contradic-

tion, suppose that K is not a (G ,F )-KDP. Then there exists a G ∈ G and an
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F ∈ F such that G∩F = ∅ and
⋂

P∈G(P ) ⊆ ⋃Q∈F (Q). Since
⋂

P∈G(P ) 6= ∅,

F ∩ P ′ 6= ∅, so by definition F ′ = F ∩ P ′ ∈ F ′ and G ∩ F ′ = ∅. Now,
⋂

P∈G(P ) ⊆
⋃

Q∈F (Q) =
⋃

Q′∈F ′(Q′), which contradicts the assumption that

K ′ is a (G ,F ′)-KDP.

Therefore, K is a (G ,F )-KDP if, and only if, K ′ is a (G ,F ′)-KDP.

Since incidence structures are often represented using binary matrices, it

is sometimes useful to describe an irreducible incidence structure in terms of

its matrix representation. It is easy to see that a matrix representation of

an irreducible incidence structure will have no repeated columns, no all zero

columns and no all zero rows.

We now demonstrate Theorem 4.1.2 by means of an example.

Example 4.1.1. Let K = (P,B,I ) be a finite incidence structure repre-

sented by the following 5 × 5 binary matrix.

x1 x2 x3 x4 x5

P1 1 0 1 1 0
P2 1 0 1 1 1
P3 1 0 0 1 1
P4 0 0 0 0 0
P5 0 1 1 0 1

Then, K is a (G ,F )-KDP where,

G =
{
{P1, P2, P3}, {P5}, {P1, P2, P5}, {P2, P3, P5}, {P1, P2}, {P2, P3},

{P2, P5}, {P1}, {P2}
}

and

F =
{
{P1}, {P3}, {P4}, {P5}, {P1, P2}, {P4, P5}, {P1, P2, P3}, {P1, P2, P5},

{P1, P2, P3, P5}, {P1, P2, P4, P5}
}
.

Column x4 is identical to column x1 and row P4 contains all 0’s, so both

column x1 and row P4 are redundant. When these redundancies are removed,

we are left with the following irreducible incidence structure.
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x1 x2 x3 x5

P1 1 0 1 0
P2 1 0 1 1
P3 1 0 0 1
P5 0 1 1 1

This new matrix represents a (G ′,F ′)-KDP where,

G ′ =
{
{P1, P2, P3}, {P5}, {P1, P2, P5}, {P2, P3, P5}, {P1, P2}, {P2, P3},

{P2, P5}, {P1}, {P2}
}

and

F ′ =
{
{P1}, {P3}, {P5}, {P1, P2}, {P1, P2, P3}, {P1, P2, P5}, {P1, P2, P3, P5}

}
.

Note that the only change to the set of privileged and forbidden subsets

is that the redundant points (just P4 in this case) are removed. Redundant

points will only appear in a privileged subset if that subset is not disjoint from

any forbidden subset. So, in this example (as will often be the case), the set

of privileged subsets remains unchanged.

4.1.3 Passive Subsets

A different type of redundancy is that eluded to in Example 4.1.1. Any privi-

leged subset not disjoint from any forbidden subset and any forbidden subset

not disjoint from any privileged subset will satisfy the security condition vac-

uously. In a sense these subsets may be considered redundant as they play no

significant role in the (G ,F )-KDP.

Definition 4.1.3. Let a finite incidence structure K = (P,B,I ) be a

(G ,F )-KDP. Any G ∈ G such that G ∩ F 6= ∅ for all F ∈ F is said to

be a passive privileged subset, and any F ∈ F such that G ∩ F 6= ∅ for

all G ∈ G is said to be a passive forbidden subset.

Looking back at Example 4.1.1, we see that the two forbidden subsets

{P1, P2, P5} and {P1, P2, P3, P5} are both passive, since neither of them is

disjoint from any privileged subset.
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Although passive subsets appear to play no real role in a (G ,F )-KDP,

there are situations in which they do arise. For example, when the definitions

of G and F are prescribed (as in (t,F )-KDPs and (G , w)-KDPs ) they may

naturally include passive privileged and/or forbidden subsets. Also, one may

simply be given a set of privileged and forbidden subsets with passive subsets

already included in them.

Definition 4.1.4. Let a finite incidence structure K = (P,B,I ) and let G

and F be families of non-empty subsets of P such that K is a (G ,F )-KDP.

The set of privileged subsets G is said to be tight if for all G ∈ G there exists

an F ∈ F such that, G ∩ F = ∅. The set of forbidden subsets F is said to

be tight if for all F ∈ F there exists a G ∈ G such that, G∩F = ∅. Finally,

a (G ,F )-KDP is said to be tight if both G and F are tight.

That is, a tight (G ,F )-KDP is a (G ,F )-KDP that does not include any

passive privileged subsets or any passive forbidden subsets. We now give a

method for reducing any (G ,F )-KDP to a tight (G ′,F ′)-KDP.

Theorem 4.1.5. Let a finite incidence structure K = (P,B,I ) be a (G ,F )-

KDP. Let X ⊆ 2G ×2F be the set of all ordered pairs (G ′,F ′) ∈ 2G ×2F such

that K is a tight (G ′,F ′)-KDP and let “ ≤ ” be the partial order on X defined

by (G ′′,F ′′) ≤ (G ′,F ′) if G ′′ ⊆ G ′ and F ′′ ⊆ F ′. Then

G ′ = {G ∈ G : G ∩ F = ∅ for some F ∈ F}
and F ′ = {F ∈ F : G ∩ F = ∅ for some G ∈ G }

are the largest G ′ and F ′, with respect to (X,≤), for which K is a tight

(G ′,F ′)-KDP.

Proof. We begin this proof by showing that the (G ′,F ′)-KDP where G ′ and

F ′ are given by G ′ = {G ∈ G : G ∩ F = ∅ for some F ∈ F} and F ′ = {F ∈
F : G ∩ F = ∅ for some G ∈ G } is tight. That is, we must show that for

every G ∈ G ′, G ∩ F = ∅ for some F ∈ F ′ and for every F ∈ F ′, G ∩ F = ∅
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for some G ∈ G ′ . Let ϕ : F ′ → G be any map such that F ∩ ϕ(F ) = ∅

for every F ∈ F ′ (note that this is well-defined by the definition of F ′). We

claim that ϕ actually maps F ′ into G ′. Take an arbitrary F ∈ F ′, then since

ϕ(F ) ∈ G and F ∩ ϕ(F ) = ∅, it follows that ϕ(F ) ∈ G ′. In the same way, let

ψ : G ′ → F be any map such that G ∩ ψ(G) = ∅ for every G ∈ G ′ (again we

note that this is well-defined by the definition of G ′). We claim that ψ maps G ′

into F ′. Take an arbitrary G ∈ G ′, then since ψ(G) ∈ F and G∩ ψ(G) = ∅,

it follows that ψ(G) ∈ F ′.

It remains to show that the largest element in the partially ordered set

(X,≤) is (G ′,F ′). Suppose, in order to obtain a contradiction, that there is

an ordered pair (G ′′,F ′′) in the partial order (X,≤) such that (G ′′,F ′′) 6≤
(G ′,F ′). Since the (G ′′,F ′′)-KDP is tight, G ′′ ⊆ {G ∈ G : G ∩ F =

∅ for some F ∈ F} and F ′′ ⊆ {F ∈ F : G ∩ F = ∅ for some G ∈ G }.
That is, G ′′ ⊆ G ′ and F ′′ ⊆ F ′ and so (G ′′,F ′′) ≤ (G ′,F ′). Therefore we

have a contradiction and so (G ′,F ′) is indeed the largest element in the par-

tially ordered set (X,≤). Hence, G ′ = {G ∈ G : G∩F = ∅ for some F ∈ F}
and F ′ = {F ∈ F : G ∩ F = ∅ for some G ∈ G } are the largest G ′ and F ′,

with respect to (X,≤), for which K is tight (G ′,F ′)-KDP.

Theorem 4.1.5 shows that every (G ,F )-KDP contains a canonical tight

(G ′,F ′)-KDP. Moreover, the following theorem shows that (in a sense) reduc-

ing to this tight (G ′,F ′)-KDP preserves the secure communication properties

of the larger (G ,F )-KDP. This is not really surprising, considering the fact

that we are only removing passive privileged and forbidden subsets.

Theorem 4.1.6. A finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP if, and only if, K is a (G ′,F ′)-KDP for

G ′ = {G ∈ G : G ∩ F = ∅ for some F ∈ F}
and F ′ = {F ∈ F : G ∩ F = ∅ for some G ∈ G }.
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Proof. Let K = (P,B,I ) be a finite incidence structure and G and F be

families of non-empty subsets of P. Suppose that K is a (G ,F )-KDP, then

from Proposition 3.1.3 we know that K is a (G ′,F ′)-KDP.

Now suppose that K is a (G ′,F ′)-KDP and, in order to obtain a contra-

diction, suppose that K is not a (G ,F )-KDP. Then, there exists a G ∈ G

and an F ∈ F such that G ∩ F = ∅ and
⋂

P∈G(P ) ⊆ ⋃

Q∈F (Q). Since

G ∩ F = ∅, G ∈ G ′ and F ∈ F ′ which contradicts the assumption that K is

a (G ′,F ′)-KDP. Hence K is a (G ,F )-KDP.

From Theorem 4.1.2, Theorem 4.1.5 and Theorem 4.1.6 we see that if an

incidence structure K is a (G ,F )-KDP, then by possibly passing to a smaller

point set and block set, as well as reducing the size of the sets of privileged and

forbidden subsets, we can reduce K to an irreducible, tight (G ′,F ′)-KDP. In

this reduction, no real security or communication between the users is lost.

4.2 Largest Sets

Our goal in this section is to attempt to find, for a given incidence structure

K , the largest possible sets of privileged and forbidden subsets for which K

is a (G ,F )-KDP. From Observation 3.1.2, we know that every finite incidence

structure is a (G ,F )-KDP for some G and some F . In fact, from Section 3.2,

we know that every finite incidence structure can be a (G ,F )-KDP where the

set of forbidden subsets is as large as possible
(
that is, a trivial G -KDP where

F = 2P \{∅}
)

or a (G ,F )-KDP where the set of privileged subsets is as large

as possible
(
that is, a cotrivial F -KDP where G = 2P \ {∅}

)
. Thus, under

any reasonable ordering on the set of privileged and forbidden subsets for a

given incidence structure, there appears to be no natural largest element (this

is shown more precisely at the end of this section). Hence, we must modify

our goal in order to proceed.
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One way in which to proceed is based upon the fact that for any (G ,F )-

KDP, there is always a trade-off between the size of the set of privileged

subsets and the size of the set of forbidden subsets. That is, adding to the set

of privileged subsets restricts the possible set of forbidden subsets, and adding

to the set of forbidden subsets restricts the possible set of privileged subsets.

Therefore, it makes sense to consider how to maximise the size of the set of

privileged subsets relative to the set of forbidden subsets and vice versa. More

precisely, for a given incidence structure K and a set of forbidden subsets F ,

it makes sense to attempt to find the largest possible set of privileged subsets

G such that K is a (G ,F )-KDP.

4.2.1 Largest Sets of Privileged Subsets

For a (G ,F )-KDP we attempt to add to the set of privileged subsets, whilst

measuring the impact on the set of forbidden subsets (and hopefully minimis-

ing that impact).

Theorem 4.2.1. Suppose that a finite incidence structure K = (P,B,I ) is

a (G ,F )-KDP. If G1, G2, . . . , Gn ∈ G and G′ =
⋂n

j=1Gj 6= ∅, then K is a

(G ′,F ′)-KDP for
G ′ = G ∪ {G′} and

F ′ = {F ∈ F : Gj ∩ F = ∅ for some 1 ≤ j ≤ n or G′ ∩ F 6= ∅}.

Proof. By Proposition 3.1.3, we know that K is a (G ,F ′)-KDP. Therefore,

it remains to show that
⋂

P∈G′(P ) 6⊆
⋃

Q∈F (Q) for all F ∈ F ′ such that

G′ ∩ F = ∅. Suppose that F ∈ F ′ such that G′ ∩ F = ∅. Then from the

definition of F ′, Gj ∩ F = ∅ for some 1 ≤ j ≤ n. Since Gj ∈ G and K is

a (G ,F ′)-KDP,
⋂

P∈Gj
(P ) 6⊆

⋃

Q∈F (Q). However, as G′ =
⋂n

i=1Gi, G
′ ⊆ Gj,

it follows that
⋂

P∈Gj
(P ) ⊆ ⋂P∈G′(P ). Hence,

⋂

P∈G′(P ) 6⊆ ⋃Q∈F (Q) and the

proof is complete.

If the set of forbidden subsets consists of all the singletons, then we have

an interesting special case of Theorem 4.2.1.
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Remark 4.2.2. In Theorem 4.2.1, if F = {F ∈ 2P : |F | = 1}, then F ′ = F .

From Theorem 4.2.1 we can extract a more amenable result for extending

the set of privileged subsets without affecting the set of forbidden subsets.

Corollary 4.2.3. Suppose that a finite incidence structure K = (P,B,I )

is a (G ,F )-KDP where G1, G2, . . . , Gn ∈ G and G′ =
⋂n

j=1Gj 6= ∅. Also,

for each P ∈ P suppose that λG′(P ) =
∣
∣{j ∈ {1, 2, . . . , n} : P ∈ Gj}

∣
∣. If

∑

P∈F λG′(P ) < n for each F ∈ F such that G′ ∩ F = ∅, then K is a

(G ′,F )-KDP for G ′ = G ∪ {G′}.

Proof. From Theorem 4.2.1 it is sufficient to show that

F
′ = {F ∈ F : Gj ∩ F = ∅ for some 1 ≤ j ≤ n or G′ ∩ F 6= ∅} = F .

Clearly F ′ ⊆ F , so it only remains to show that F ⊆ F ′. To this end,

consider F ∈ F . If G′ ∩ F 6= ∅, then F ∈ F ′, so we may suppose that

G′ ∩ F = ∅. Then, since

∣
∣{j ∈ {1, 2, . . . , n} : Gj ∩ F 6= ∅}

∣
∣ ≤

∑

P∈F

λG′(P ) < n,

Gj ∩ F = ∅ for some 1 ≤ j ≤ n. Therefore, F ∈ F ′ and hence F ⊆ F ′.

We now consider the special case of (G , w)-KDPs.

Corollary 4.2.4. Suppose that a finite incidence structure K = (P,B,I )

is a (G , w)-KDP for w ≥ 1 and suppose that G1, G2, . . . , Gn ∈ G . If G′ =
⋂n

j=1Gj =
⋂

j∈J Gj 6= ∅ for all J ⊆ {1, 2, . . . , n} such that |J | ≥ n/w, then

K is a (G ′, w)-KDP for G ′ = G ∪ {G′}.

Proof. From Corollary 4.2.3 it is sufficient to show that
∑

P∈F λG′(P ) < n

for all F ∈ 2P such that 1 ≤ |F | ≤ w and G′ ∩ F = ∅. Suppose that

F ∈ 2P , 1 ≤ |F | ≤ w and G′ ∩ F = ∅. Consider P ∈ F , then P 6∈ G′

and since G′ =
⋂

j∈J Gj for all ∅ 6= J ⊆ {1, 2, . . . , n} such that |J | ≥ n/w,

λG′(P ) < n/w. Now, since 1 ≤ |F | ≤ w,
∑

P∈F λ(P ) < w(n/w) = n.
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We demonstrate the effect of Corollary 4.2.4 in the following example.

Example 4.2.1. Let K = (P,B,I ) be any finite incidence structure repre-

sented by the following 4 × 3 binary matrix.

x1 x2 x3

P1 0 0 1
P2 0 1 0
P3 1 0 0
P4 1 1 1

Then, K is a (G , 2)-KDP where, G =
{
{P3, P4}, {P2, P4}, {P1, P4}

}
. In fact,

one can check that K is a (G , 3)-KDP.

Now, let G1 = {P3, P4}, G2 = {P2, P4} and G3 = {P1, P4}. Then, G′ =
⋂3

j=1Gj = {P4} =
⋂

j∈J Gj for J ⊆ {1, 2, 3} such that |J | ≥ 3/2. Therefore,

K is a (G ′, 2)-KDP, where G ′ =
{
{P3, P4}, {P2, P4}, {P1, P4}, {P4}

}
. Note

however, that K is not a (G ′, 3)-KDP since
⋂

P∈G′(P ) = (P4) =
⋃

P∈F (P ),

where F = {P1, P2, P3}.

In order to be more precise about the meaning of the largest possible set

of privileged subsets with respect to a predefined set of forbidden subsets, we

introduce the following definition.

Definition 4.2.5. Let K = (P,B,I ) be a finite incidence structure and

let F be a family of non-empty subsets of P. Let X be the collection of all

families G of subsets of P such that K is a (G ,F )-KDP, and let “≤” be

the partial order on X defined by G ′ ≤ G if, and only if, G ′ ⊆ G . From

Proposition 3.1.4 we know that X is closed under finite unions. Therefore,
⋃

G∈X G ∈ X and is clearly the largest element in (X,≤), which we denote by

G (K ,F) and refer to as the largest G for F with respect to K .

When the context is clear, we can refer to G(K ,F ), less formally, as the

largest G .

We now give another description of the largest G , which follows directly

from Definition 3.1.1, by taking all subsets of points and removing those that

fail the security condition.
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Observation 4.2.6. Let K = (P,B,I ) be a finite incidence structure and

let F be a family of non-empty subsets of P, then

G(K ,F ) =
[
2P \ {∅}

]
\
{

G ∈ 2P : ∃F ∈ F ,
⋂

P∈G

(P ) ⊆
⋃

Q∈F

(Q) and G∩F = ∅
}

.

We note that if F = {F ∈ 2P : 1 ≤ |F | ≤ w}, then we can relabel G(K ,F )

as G(K ,w). If we restrict ourselves to (G , 1)-KDPs, then we get the following,

more concrete description of the largest G .

Theorem 4.2.7. Let K = (P,B,I ) be a finite incidence structure, then

G(K ,1) =

{
⋂

x∈J

(x) : J ⊆ B and
⋂

x∈J

(x) 6= ∅

}

.

Proof. We know from Theorem 4.2.1 and Remark 4.2.2 that K is a (G(K ,1), 1)-

KDP, so it only remains to show that G(K ,1) is the largest G for F = {F ∈
2P : |F | = 1} with respect to K .

Let G be a family of non-empty subsets of P such that K is a (G , 1)-KDP.

Then take any G ∈ G ; either G = P or G 6= P. If G = P, then G ∈ G(K ,1)

since
⋂

x∈∅
(x) = P. If G 6= P, let J =

⋂

P∈G(P ). We know that J 6= ∅

since K is a (G , 1)-KDP. Now define G′ =
⋂

x∈J(x). Clearly, ∅ 6= G ⊆ G′

and so G′ ∈ G(K ,1). We claim that G = G′. Suppose, in order to obtain a

contradiction, that G 6= G′. Then, there exists a Q ∈ G′ \ G. Since Q ∈ G′,

J ⊆ (Q) and so
⋂

P∈G(P ) ⊆ (Q) which gives a contradiction since K is a

(G , 1)-KDP. Therefore, in both cases, G ∈ G(K ,1) and hence G(K ,1) is the

largest G .

At this stage we are unable to give a good description of G(K ,w). How-

ever, from Corollary 4.2.4 we are able to show that certain subsets are always

included in G(K ,w).

Observation 4.2.8. Let K = (P,B,I ) be a finite incidence structure, w ≥
1 and ∅ 6= J ⊆ B. If G′ =

⋂

x∈J(x) 6= ∅ and G′ =
⋂

x∈J ′(x) for all J ′ ⊆ J ⊆
B such that |J ′| ≥ |J |/w, then G′ ∈ G(K ,w).
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4.2.2 Largest Sets of Forbidden Subsets

In the same way as for privileged subsets, we now consider how to maximise

the size of the set of forbidden subsets. We begin by considering a (G ,F )-

KDP and attempting to add to the set of forbidden subsets whilst only having

a small measured impact on the set of privileged subsets. The proof of the

following theorem is analogous to that of Theorem 4.2.1.

Theorem 4.2.9. Suppose that a finite incidence structure K = (P,B,I ) is

a (G ,F )-KDP. If F1, F2, . . . , Fn ∈ F and F ′ =
⋂n

j=1 Fj 6= ∅, then K is a

(G ′,F ′)-KDP for

G ′ = {G ∈ G : G ∩ Fj = ∅ for some 1 ≤ j ≤ n or G ∩ F ′ 6= ∅}
and F ′ = F ∪ {F ′}.

If the set of privileged subsets consists of all the singletons, then we have

the following interesting special case.

Remark 4.2.10. In Theorem 4.2.9, if G = {G ∈ 2P : |G| = 1}, then G ′ = G .

From Theorem 4.2.9 we can extract a more amenable result for extending

the set of forbidden subsets without affecting the set of privileged subsets.

Corollary 4.2.11. Suppose that a finite incidence structure K = (P,B,I )

is a (G ,F )-KDP where F1, F2, . . . , Fn ∈ F and F ′ =
⋂n

j=1 Fj 6= ∅. Also,

for each P ∈ P suppose that λF ′(P ) =
∣
∣{j ∈ {1, 2, . . . , n} : P ∈ Fj}

∣
∣. If

∑

P∈G λF ′(P ) < n for each G ∈ G such that G ∩ F ′ = ∅, then K is a

(G ,F ′)-KDP for F ′ = F ∪ {F ′}.

We now consider the special case of (t,F )-KDPs.

Corollary 4.2.12. Suppose that a finite incidence structure K = (P,B,I )

is a (t,F )-KDP for t ≥ 1 and suppose that F1, F2, . . . , Fn ∈ F . If F ′ =
⋂n

j=1 Fj =
⋂

j∈J Fj 6= ∅ for all ∅ 6= J ⊆ {1, 2, . . . , n} such that |J | ≥ n/t,

then K is a (t,F ′)-KDP for F ′ = F ∪ {F ′}.
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In the same way as Definition 4.2.5, we now precisely define the largest

possible set of forbidden subsets with respect to a given set of privileged sub-

sets.

Definition 4.2.13. Let K = (P,B,I ) be a finite incidence structure and

let G be a family of non-empty subsets of P. Let Y be the collection of all

families F of subsets of P such that K is a (G ,F )-KDP, and let “≤” be

the partial order on Y defined by F ′ ≤ F if, and only if, F ′ ⊆ F . From

Proposition 3.1.5 we know that Y is closed under finite unions. Therefore,
⋃

F∈Y F ∈ Y and is clearly the largest element in (Y,≤), which we denote by

F (K ,G ) and refer to as the largest F for G with respect to K .

When the context is clear, we can refer to F(K ,G ), less formally, as the

largest F .

We now give another description of the largest F which follows directly

from Definition 3.1.1, by taking all subsets of points and removing those that

fail the security condition.

Observation 4.2.14. Let K = (P,B,I ) be a finite incidence structure and

G be a family of non-empty subsets of P, then

F(K ,G ) =
[
2P \ {∅}

]
\
{

F ∈ 2P : ∃G ∈ G ,
⋂

P∈G

(P ) ⊆
⋃

Q∈F

(Q) and G∩F = ∅
}

.

Note that if G = {G ∈ 2P : 1 ≤ |G| ≤ t}, then we can relabel F(K ,G ) as

F(K ,t).

In a similar way to Theorem 4.2.7, if we restrict ourselves to (1,F )-KDPs,

then we get the following, more concrete description of the largest F .

Theorem 4.2.15. Let K = (P,B,I ) be a finite incidence structure, then

F(K ,1) =

{
⋂

x∈J

[P \ (x)] : J ⊆ B and
⋂

x∈J

[P \ (x)] 6= ∅

}

.
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Proof. We already know from Theorem 4.2.9 and Remark 4.2.10 that K is a

(1,F(K ,1))-KDP, so it only remains to show that F(K ,1) is the largest F for

G = {G ∈ 2P : |G| = 1} with respect to K .

Let F be a family of non-empty subsets of P such that K is a (1,F )-KDP.

Then take any F ∈ F ; either F = P or F 6= P. If F = P, then F ∈ F(K ,1)

since
⋂

x∈∅
[P \ (x)] = P. If F 6= P, let J =

⋂

Q∈F [B \ (Q)]. We know that

J 6= ∅ since K is a (1,F )-KDP. Now define F ′ =
⋂

x∈J [P \ (x)]. Choose

Q ∈ F , then for every x ∈ J ,

x ∈ B \ (Q) =⇒ x 6∈ (Q) =⇒ Q 6∈ (x) =⇒ Q ∈ [P \ (x)].

So, F ⊆ [P \ (x)] for every x ∈ J . Therefore, ∅ 6= F ⊆
⋂

x∈J [P \ (x)] = F ′

and thus F ′ ∈ F(K ,1). We claim that F = F ′. Suppose, in order to obtain a

contradiction, that F 6= F ′. Then, there exists a P ∈ F ′ \ F . Since P ∈ F ′,

x 6∈ (P ) for each x ∈ J and so J ∩ (P ) = ∅, or equivalently (P ) ⊆ B \ J .

Hence,

(P ) ⊆ B \
[
⋂

Q∈F

[B \ (Q)]

]

=
⋃

Q∈F

(Q) (by De Morgan’s Law),

which gives a contradiction since K is a (1,F )-KDP. Therefore, in both cases,

F ∈ F(K ,1) and hence F(K ,1) is the largest F .

As was the case with G(K ,w), we are unable to give a good description

of F(K ,t). However, from Corollary 4.2.12 we are able to show that certain

subsets are always included in F(K ,t).

Observation 4.2.16. Let K = (P,B,I ) be a finite incidence structure,

t ≥ 1 and ∅ 6= J ⊆ B. If F ′ =
⋂

x∈J [P \ (x)] 6= ∅ and F ′ =
⋂

x∈J ′[P \ (x)]

for all J ′ ⊆ J ⊆ B such that |J ′| ≥ |J |/t, then F ′ ∈ F(K ,t).

4.2.3 Maximal (G ,F )-KDPs

We now return to the problem of finding the largest possible set of privileged

and forbidden subsets that make a given incidence structure a (G ,F )-KDP.
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To be more precise about this, we need to introduce a partial ordering on the

set of privileged and forbidden subsets. In fact, we will consider a more general

notion, namely that of a partial ordering on “extensions” of an existing set of

privileged and forbidden subsets.

Definition 4.2.17. Suppose that a finite incidence structure K = (P,B,I )

is a (G ,F )-KDP. Let X ⊆ 2P × 2P be the set of all ordered pairs (G ′,F ′) ∈
2P × 2P such that K is a (G ′,F ′)-KDP and G ⊆ G ′ and F ⊆ F ′ . Let

“ ≤ ” be the partial order on X defined by (G ′′,F ′′) ≤ (G ′,F ′) if G ′′ ⊆ G ′

and F ′′ ⊆ F ′. Then, the largest (G ′,F ′)-KDP with respect to (X,≤) (if it

exists) will be called the largest (G ′, F ′)-KDP for G and F with respect

to K .

As alluded to at the start of this section, there is, in general, no largest

element with respect to the partial ordering given above (see Example 4.2.2).

The best that one can do is identify maximal elements with respect to this

partial ordering. We will call such elements maximal (G ′,F ′)-KDPs for G

and F with respect to K .

Suppose that we are given a finite incidence structure K that is a (G ,F )-

KDP. We can increase G to the largest G for F with respect to K and let

G1 = G(K ,F ). Then, we can increase F to the largest F for G1 with respect

to K and label this F1. In the same way (but in the other order) we can

increase F to the largest F for G with respect to K and let F2 = F(K ,G ),

then we can increase G to the largest G for F2 with respect to K and label

this G2.

It is not difficult to show that both (G1,F1) and (G2,F2) are maximal

with respect to the partial ordering in Definition 4.2.17. So, we now have

two potentially distinct maximal (G ′,F ′)-KDPs for G and F with respect

to K . The following example demonstrates that, in general, these maximal

(G ′,F ′)-KDPs are distinct. This in turn shows that there is, in general, no
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largest (G ′,F ′)-KDP for G and F with respect to a given incidence structure

K .

Example 4.2.2. Let K = (P,B,I ) be any finite incidence structure such

that K is not a (2P \ {∅}, 2P \ {∅})-KDP and let G = ∅ and F = ∅, then

K is a (G ,F )-KDP. We can show that G1 =G(K ,F )= 2P \ {∅}, in which

case the largest F for G1 with respect to K , (denoted F1) is restricted by the

incidence structure and is not all of 2P\{∅}. Also, F2 =F(K ,G )= 2P\{∅}, in

which case the largest G for F2 with respect to K , (denoted G2) is restricted

by the incidence structure and is not all of 2P \ {∅}.

That is, for almost all incidence structures, G1 6= G2 and/or F1 6= F2 and

we may have many distinct maximal (G ′,F ′)-KDPs, with no largest one.
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Chapter 5

Constructions

The construction of “good”generalised Key Distribution Patterns is an impor-

tant area of investigation. There are three approaches when it comes to con-

structing (G ,F )-KDPs. The first approach is to take existing (G ,F )-KDPs

and construct new (G ,F )-KDPs from them. Mitchell and Piper use this ap-

proach extensively in [60] and present several constructions. In Section 5.1

and Section 5.2 we will generalise some of Mitchell and Piper’s constructions

(from (2, w)-KDPs to (G ,F )-KDPs) and use definitions and results from de-

sign theory in order to present some new constructions of (G ,F )-KDPs from

existing (G ,F )-KDPs.

The second approach to (G ,F )-KDP constructions is to construct (G ,F )-

KDPs directly from other mathematical objects. As mentioned in Section 3.3,

a number of authors have used combinatorial objects in order to construct

(t, w)-KDPs. O’Keefe [63, 64] and Rinaldi [74], used special finite geometric

structures, (more specifically circle geometries and Minkowski planes) in the

construction of (t, w)-KDPs. Quinn [72] constructed (t, w)-KDPs from conics

arising from finite projective planes and affine planes. Also, Lee, Stinson

and VanTrung, [47, 48, 82, 84] used design theory, graph theory, orthogonal

and perpendicular arrays to construct specific (G ,F )-KDPs with particular

properties.

In Section 5.3 we present a family of constructions of (G ,F )-KDPs. These
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(G ,F )-KDPs are constructed directly using a discrete analogue of convexity.

Although this is our only direct construction method, it can be used to give

many different families of (G ,F )-KDPs and can be generalised, to give many

more constructions.

We finally note the third approach to (G ,F )-KDP constructions. This

third approach is the use of probabilistic techniques. In [26], Dyer et al. give

non-constructive existence results for (t, w)-KDPs. However, we do not pursue

the probabilistic approach in this thesis, instead we shall restrict ourselves to

deterministic constructions.

The main results in the chapter are:

1. Theorem 5.1.12 - In this theorem we characterise when an incidence

structure is a (G ,F )-KDP in terms of its internal structures.

2. Theorem 5.1.25 - In this theorem we correct Mitchell and Piper’s re-

sult [60, Lemma 3.4] and characterise when an incidence structure is a

(G ,F )-KDP in terms of its external structures.

3. Theorem 5.1.31 - In this theorem we show that the complement of a

(G ,F )-KDP is a (F ,G )-KDP. This simple, yet powerful result proves

to be useful in Chapter 6, when calculating bounds for (G ,F )-KDPs.

4. Theorem 5.3.7 - In this theorem we construct a family of (G ,F )-KDPs

directly from a finite convex structure. From this construction we are

able to precisely calculate |G |, |F | and the block size. We also suggest a

generalisation that will potentially give rise to many more such families

of (G ,F )-KDPs.
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5.1 Constructions from a Single KDP

If K is a finite incidence structure, then there are several established ways

in which K can be used to construct new incidence structures. For exam-

ple, internal, external, complement and dual structures. In this section we

will use some definitions and results from [38], in order to investigate the in-

ternal structure, the external structure, the complement and the dual of an

existing (G ,F )-KDP. However, first we shall consider two general, yet simple,

constructions.

Our first theorem takes an existing (G ,F )-KDP and constructs a new

(G ,F ′)-KDP with more forbidden subsets.

Theorem 5.1.1. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for each n ∈ N, there exists a finite incidence structure Kn=

(Pn,Bn,In) with Pn = P, and |Bn| ≤
∑m

j=1

(
|B|
j

)
where m = min{n, |B|},

such that Kn is a (G ,Fn)-KDP where

Fn =
{ ⋃

1≤j≤n

Fj : Fj ∈ F for 1 ≤ j ≤ n
}

.

Proof. Let K S= (PS,BS,I S) be the standard representation of K . Then,

from Corollary 3.4.4 we know that K S is a (G ,F )-KDP. Let n ∈ N and define

Pn = P and

Bn =

{
m⋂

j=1

Bj : Bj ∈ B
S for 1 ≤ j ≤ m and

m⋂

j=1

Bj 6= ∅

}

.

Also define In ⊆ Pn × Bn by, (P,B) ∈ In if, and only if, P ∈ B.

We claim that the incidence structure Kn= (Pn,Bn,In) is a (G ,Fn)-

KDP where

Fn =
{ ⋃

1≤j≤n

Fj : Fj ∈ F for 1 ≤ j ≤ n
}

.

To prove this, suppose that G ∈ G , F ∈ Fn and G ∩ F = ∅. Since F ∈ Fn

there exists Fj ∈ F , for 1 ≤ j ≤ n, such that F =
⋃n

j=1 Fj .
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Now, since K S is a (G ,F )-KDP, for each 1 ≤ j ≤ n there exists a

block Bj ∈ BS such that Bj ∈
⋂

P∈G(P ) \
⋃

Q∈Fj
(Q), that is, G ⊆ Bj and

Bj ∩ Fj = ∅. Let B =
⋂n

j=1Bj ∈ Bn. Then, G ⊆
⋂n

j=1Bj = B and

B ∩ F = B ∩
[

n⋃

j=1

Fj

]

=
n⋃

j=1

[Fj ∩B] ⊆
n⋃

j=1

[Fj ∩Bj ] = ∅.

Therefore, B ∈ ⋂P∈G(P ) \⋃Q∈F (Q) and hence Kn is a (G ,Fn)-KDP.

An immediate consequence of this theorem is the following.

Corollary 5.1.2. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then for each n < |P|/w, there exists a finite incidence structure Kn=

(Pn,Bn,In) with Pn = P and |Bn| ≤
∑m

j=1

(
|B|
j

)
where m = min{n, |B|},

such that Kn is a (G , wn)-KDP.

Remark 5.1.3. If K = (P,B,I ) is a (G , 1)-KDP, then using Corollary 5.1.2

we can construct an incidence structure K ′ = (P,B′,I ′) such that K ′ is a

(G , 2)-KDP and |B′| ≤
(
|B|+1

2

)
.

The following theorem is similar to Theorem 5.1.1, but takes an existing

(G ,F )-KDP and constructs a new (G ′,F )-KDP with more privileged subsets.

Theorem 5.1.4. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for each n ∈ N, there exists a finite incidence structure Kn=

(Pn,Bn,In) with Pn = P, and |Bn| ≤
∑m

j=1

(
|B|
j

)
where m = min{n, |B|},

such that Kn is a (Gn,F )-KDP where

Gn =
{ ⋃

1≤j≤n

Gj : Gj ∈ G for 1 ≤ j ≤ n
}

.

Proof. Let K S= (PS,BS,I S) be the standard representation of K . Then,

from Corollary 3.4.4 we know that K S is a (G ,F )-KDP.

Let n ∈ N and define Pn = P and

Bn =

{
m⋃

j=1

Bj : Bj ∈ B
S for 1 ≤ j ≤ m and

m⋃

j=1

Bj 6= ∅

}

.
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Also define In ⊆ Pn × Bn by, (P,B) ∈ In if, and only if, P ∈ B.

We claim that the incidence structure Kn= (Pn,Bn,In) is a (Gn,F )-

KDP where Gn = {
⋃

1≤j≤nGj : Gj ∈ G for 1 ≤ j ≤ n}. To prove this,

suppose that G ∈ Gn, F ∈ F and G ∩ F = ∅. Since G ∈ Gn there exists

Gj ∈ G , for 1 ≤ j ≤ n, such that G =
⋃n

j=1Gj and since G ∩ F = ∅,

Gj ∩ F = ∅, for 1 ≤ j ≤ n.

Now, since K S is a (G ,F )-KDP, for each 1 ≤ j ≤ n there exists a

block Bj ∈ BS such that Bj ∈ ⋂P∈Gj
(P ) \ ⋃Q∈F (Q), that is, Gj ⊆ Bj and

Bj ∩ F = ∅. Let B =
⋃n

j=1Bj ∈ Bn. Then,

G =

n⋃

j=1

Gj ⊆
n⋃

j=1

Bj = B and B ∩ F =

n⋃

j=1

Bj ∩ F = ∅.

Therefore, B ∈
⋂

P∈G(P ) \
⋃

Q∈F (Q) and hence Kn is a (Gn,F )-KDP.

Not surprisingly this theorem has consequences for (t,F )-KDPs.

Corollary 5.1.5. If a finite incidence structure K = (P,B,I ) is a (t,F )-

KDP, then for each n < |P|/t, there exists a finite incidence structure Kn=

(Pn,Bn,In) with Pn = P and |Bn| ≤
∑m

j=1

(
|B|
j

)
where m = min{n, |B|},

such that Kn is a (tn,F )-KDP.

Remark 5.1.6. If K = (P,B,I ) is a (1,F )-KDP, then using Corollary 5.1.5

we can construct an incidence structure K ′ = (P,B′,I ′) such that K ′ is a

(2,F )-KDP and |B′| ≤
(
|B|+1

2

)
.

The constructions given so far are quite general, as they contain no con-

straints at all, on either the set of privileged subsets, or the set of forbidden

subsets. The price one pays for this generality is that the number of blocks

required for their construction is not as small as could be achieved if the fam-

ilies of privileged and forbidden subsets had more structure. However, the

constructions in this section may still prove to be useful. For example, in Sec-

tion 7.2, we are able to use Theorem 5.1.1 in order to estimate lower bounds

on the number of blocks in “reasonably” general (G ,F )-KDPs.
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5.1.1 Internal Structures

We begin with the following fundamental definition.

Definition 5.1.7. Let K = (P,B,I ) be a finite incidence structure. Then,

for each point P ∈ P we define KP , the internal structure of K at P , to

be KP= (PP ,BP ,IP ), where

BP = (P ), PP = (BP ) \ {P} and

for any Q ∈ PP and x ∈ BP , (Q, x) ∈ IP if, and only if, (Q, x) ∈ I .

That is, the point set of the internal structure of a finite incidence structure

K at a point P consists of all the points incident with any block that is

incident with P , except the point P itself. The block sets consists of all the

blocks incident with P and the incidence relation follows naturally from the

incidence structure K .

For convenience, we introduce some new notation representing the blocks

incident with a point and the points incident with a block in an internal

structure. For a finite incidence structure K = (P,B,I ) and a point P ∈ P

we define (Q)P = (Q)∩BP and (x)P = (x)∩PP for every Q ∈ PP and every

x ∈ BP .

We demonstrate the definition of an internal structure with the following

illustrative example.

Example 5.1.1. Let K = (P,B,I ) be an incidence structure determined

by the following binary matrix:

x1 x2 x3 x4 x5

P1 0 0 1 0 1
P2 0 1 1 1 0
P3 1 0 1 1 0
P4 1 1 0 1 0
P5 1 1 1 0 1
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The matrix representation of the internal structure of K at point P1 is:

x3 x5

P2 1 0
P3 1 0
P5 1 1

The following result from [38] shows that the internal structure of a

t− (v, k, λ) design is again a design.

Result 5.1.8. Let K be a t− (v, k, λ) design with t ≥ 2 and let P be a point

of K , then KP is a (t− 1) − (v − 1, k − 1, λ) design.

The corresponding result for (G ,F )-KDPs is given next.

Theorem 5.1.9. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for each P ∈ P, KP= (PP ,BP ,IP ) is a (GP ,FP )-KDP, where

GP = {G \ {P} : P ∈ G ∈ G and ∅ 6= G \ {P} ⊆ PP} and

FP = {F ∩ PP : P 6∈ F ∈ F and PP ∩ F 6= ∅}.

Proof. Suppose that K is a (G ,F )-KDP and P ∈ P. Consider GP ∈ GP

and FP ∈ FP , such that GP ∩ FP = ∅. Then GP = G \ {P} ⊆ PP for some

P ∈ G ∈ G and FP = F ∩ PP 6= ∅ for some P 6∈ F ∈ F . Now, since P 6∈ F

and GP ∩ FP = ∅, G ∩ F = ∅. Therefore, if
⋂

Q1∈GP

(Q1)P ⊆
⋃

Q2∈FP

(Q2)P , then

⋂

Q1∈G

(Q1) =
⋂

Q1∈GP

(Q1) ∩ (P ) =
⋂

Q1∈GP

(Q1)P

⊆
⋃

Q2∈FP

(Q2)P ⊆
⋃

Q2∈F

(Q2)P ⊆
⋃

Q2∈F

(Q2).

This contradicts the fact that K is a (G ,F )-KDP and hence KP is a

(GP ,FP )-KDP.

Note that, if we include the additional assumption in Theorem 5.1.9 that

|G| ≥ 2 and
⋂

Q∈G(Q) 6= ∅ for all G ∈ G , then our set of privileged subsets

simplifies to GP = {G \ {P} : P ∈ G ∈ G }.
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We have the following corollary for the special case when F consists of all

subsets of P of cardinality at most w. Corollary 5.1.10 will be used later, in

the proof of Theorem 5.1.15.

Corollary 5.1.10. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then for each P ∈ P, KP= (PP ,BP ,IP ) is a (GP , w)-KDP where

GP = {G \ {P} : P ∈ G ∈ G and ∅ 6= G \ {P} ⊆ PP}.

Proof. This follows from Theorem 5.1.9, since if F = {F ∈ 2P : 0 < |F | ≤ w},
then for any P ∈ P,

FP ={F ∩PP :P 6∈ F ∈ F and F ∩P 6= ∅}={F ∈ 2PP :0 < |F | ≤ w}.

In a similar way to Theorem 5.1.9, if we include an additional condition in

Corollary 5.1.10 and specify that 2 ≤ |G| < |P| for all G ∈ G , then our set of

privileged subsets simplifies to GP = {G \ {P} : P ∈ G ∈ G }.
A natural case of Corollary 5.1.10 is the situation when G consists of all

the subsets of P of cardinality at most t.

Corollary 5.1.11. If a finite incidence structure K = (P,B,I ) is a (t, w)-

KDP with 2 ≤ t ≤ |P| − w, then for each P ∈ P, KP= (PP ,BP ,IP ) is a

(t− 1, w)-KDP.

Proof. This is a special case of Corollary 5.1.10.

For G = {T ∈ 2P : 1 < |T | ≤ t} it follows that

GP = {T ′ ∈ 2PP : 0 < |T ′| ≤ t− 1}, for any P ∈ P.

We can now obtain a characterisation for an incidence structure being a

(G ,F )-KDP in terms of its internal structures.

Theorem 5.1.12. Let K = (P,B,I ) be a finite incidence structure and

let G and F be families of non-empty subsets of P such that |G| ≥ 2 and
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⋂

Q∈G(Q) 6= ∅ for all G ∈ G . Then, K is a (G ,F )-KDP if, and only if, for

each P ∈ P, KP= (PP ,BP ,IP ) is a (GP ,FP )-KDP, where

GP = {G \ {P} : P ∈ G ∈ G } and

FP = {F ∩ PP : P 6∈ F ∈ F and PP ∩ F 6= ∅}.

Proof. It follows directly from Theorem 5.1.9 that if K is a (G ,F )-KDP then

for each P ∈ P, KP is a (GP ,FP )-KDP, so we shall consider the converse. In

order to obtain a contradiction, suppose that K is not a (G ,F )-KDP. That

is, suppose that there is some G ∈ G and some F ∈ F such that G ∩ F = ∅

and
⋂

Q1∈G(Q1) ⊆
⋃

Q2∈F (Q2).

Fix some point P ∈ G, then note that:

1. P 6∈ F ;

2. G \ {P} ⊆ PP , since (P ) ∩
⋂

Q∈G\{P}(Q) =
⋂

Q∈G(Q) 6= ∅;

3. F ∩ PP 6= ∅, because of the following

∅ 6=
⋂

Q1∈G

(Q1) = (P ) ∩
⋂

Q1∈G

(Q1) ⊆ (P ) ∩
⋃

Q2∈F

(Q2)

⊆
⋃

Q2∈F

[(Q2) ∩ (P )] .

Therefore, if we set GP = G \ {P} and FP = F ∩ PP then GP ∈ GP ,

FP ∈ FP and

⋂

Q1∈G

(Q1) ⊆
⋃

Q2∈F

(Q2) =⇒
⋂

Q1∈G

(Q1) ∩ (P ) ⊆
⋃

Q2∈F

(Q2) ∩ (P )

=
⋃

Q2∈FP

(Q2) ∩ (P ) (since FP = F ∩ PP )

=⇒
⋂

Q1∈G\{P}

(Q1)P ⊆
⋃

Q2∈FP

(Q2)P

=⇒
⋂

Q1∈GP

(Q1)P ⊆
⋃

Q2∈FP

(Q2)P .

Hence, KP is not a (GP ,FP )-KDP and the proof is complete.
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Corollary 5.1.13 is the special case of Theorem 5.1.12 in the situation when

F consists of all subsets of P of cardinality at most w.

Corollary 5.1.13. Let K = (P,B,I ) be a finite incidence structure and let

G be a family of subsets of P such that |G| ≥ 2 and
⋂

Q∈G(Q) 6= ∅ for all

G ∈ G . Then K is a (G , w)-KDP if, and only if, for each P ∈ P, KP is a

(GP , w)-KDP for GP = {G \ {P} : P ∈ G ∈ G }.

Proof. Since F = {F ∈ 2P : 0 < |F | ≤ w}, it follows that

FP = {FP ∈ 2PP : 0 < |FP | ≤ w}, for any P ∈ P.

A natural case of Corollary 5.1.13 is the situation when G consists of all

subsets of P of cardinality at most t.

Corollary 5.1.14. Let K = (P,B,I ) be a finite incidence structure, let

2 ≤ t < |P| and let w ≤ |P| − t. If
⋂

Q∈G(Q) 6= ∅ for each G ∈ 2P with

|G| = t, then, K is a (t, w)-KDP if, and only if, for each P ∈ P, KP is a

(t− 1, w)-KDP .

Proof. Since G = {G ∈ 2P : 0 < |G| ≤ t}, it follows from Corollary 5.1.13

that GP = {GP ∈ 2PP : 0 < |GP | ≤ t− 1}, for any P ∈ P.

As an application of our results on internal structures we can deduce some

crude estimates for the number of blocks incident with any point (that is, the

number of subkeys held by any user).

Theorem 5.1.15. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP where 2 ≤ |G| < |P| for each G ∈ G , then

log2 |{G ∈ G : P ∈ G}| < |(P )|, for any P ∈ P.

Proof. Let P ∈ P and let GP = {G \ {P} ⊆ PP : P ∈ G ∈ G } = {G \ {P} :

P ∈ G ∈ G }, since
[
⋂

Q∈G\{P}(Q)
]

∩ (P ) =
⋂

Q∈G(Q) 6= ∅ for each G ∈ G

containing P .
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Then, by Corollary 5.1.10, KP is a (GP , w)-KDP. Hence, by Remark 3.3.13,

the mapping GP 7→
⋂

Q∈GP
(Q)P , from GP into non-empty subsets of BP , is

1-to-1. Therefore,

|GP | =

∣
∣
∣
∣
∣

{
⋂

Q∈G

(Q)P ∈ 2BP \ {∅} : G ∈ GP

}∣
∣
∣
∣
∣
≤ 2|BP | − 1.

Hence, log2 |GP | ≤ log2

(
2|BP | − 1

)
< log2

(
2|BP |

)
= |BP | = |(P )|.

In Section 5.1.2 we combine Theorem 5.1.15 with Theorem 5.1.28, (a sim-

ilar result for external structures) in order to estimate the number of blocks

incident with each point of a (G ,F )-KDP. We then revisit this combined

result in Chapter 6.

5.1.2 External Structures

Again, we begin with a fundamental definition.

Definition 5.1.16. Let K = (P,B,I ) be a finite incidence structure. Then,

for each point P ∈ P we define K P , the external structure of K at P ,

to be K P= (PP ,BP ,I P ), where

B
P = B \ (P ), P

P = (BP ) and

for any Q ∈ P
P and x ∈ B

P , (Q, x) ∈ I
P if, and only if, (Q, x) ∈ I .

That is, the point set of the external structure of a finite incidence structure

K at a point P consists of all points incident with any block that is not

incident with P . The block set consists of all the blocks not incident with

the point P and the incidence relation follows naturally from the incidence

structure K .

As with internal structures, we introduce some new notation representing

the blocks incident with a point and the points incident with a block in an

external structure. For a finite incidence structure K = (P,B,I ) and a
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point P ∈ P we define (Q)P = (Q) ∩ BP and (x)P = (x) ∩ PP for every

Q ∈ PP and every x ∈ BP .

We demonstrate this definition with the following illustrative example.

Example 5.1.2. Let K = (P,B,I ) be an incidence structure determined

by the following binary matrix:

x1 x2 x3 x4 x5

P1 0 0 1 0 1
P2 0 1 1 1 0
P3 1 0 1 1 0
P4 1 1 0 1 0
P5 1 1 1 0 1

The external structure of K at point P1 is

x1 x2 x4

P2 0 1 1
P3 1 0 1
P4 1 1 1
P5 1 1 0

The following result for external structures, taken from [38], is analogous

to Result 5.1.8.

Result 5.1.17. Let K be a t− (v, k, λ) design with t ≥ 2 and let P be a point

of K . Then K P is a (t−1)−(v−1, k, λt−1−λ) design, where λt−1 = λ (v−t+1)
(k−t+1)

.

A similar result for key distribution patterns can be found in [60], where

Mitchell and Piper state the following.

Result 5.1.18. [60, Lemma 3.4] Let K = (P,B,I ) be a finite incidence

structure. For w ≥ 2, K is a (2, w)-KDP if and only if K P is a (2, w − 1)-

KDP for every P ∈ P.

Unfortunately, in the proof of Result 5.1.18, Mitchell and Piper assume

that for a finite incidence structure K = (P,B,I ) the point set of the exter-

nal structure of K , taken at any point P ∈ P, is given by PP = P \ {P}.
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However, as can be seen by considering the external structure of K at the

point P5, in Example 5.1.2, this assumption is not true in general, for any inci-

dence structure K . In fact, Result 5.1.18 as stated, is false and the following

example demonstrates this.

Example 5.1.3. Let K = (P,B,I ) be an incidence structure determined

by the following binary matrix:

x1 x2 x3 x4 x5 x6 x7

P1 1 1 1 0 0 0 1
P2 1 0 0 1 1 0 1
P3 0 1 0 1 0 1 1
P4 0 0 1 0 1 1 1
P5 0 0 0 0 0 0 1

In this example, K is not a (2, 2)-KDP, (in fact, not even a (1, 1)-KDP),

however K P is a (2, 1)-KDP for every P ∈ P.

Out of interest, we note that Example 5.1.3 is consistent with our earlier

characterisation of an incidence structure being a (G ,F )-KDP in terms of its

internal structures (Theorem 5.1.12). In fact, one can check that the internal

structure of K at any of the points P1, P2, P3 or P4, fails to be a (1, 2)-KDP.

We shall correct and generalise Result 5.1.18 for (G ,F )-KDPs. However,

before we do this, we first make an observation involving Sperner systems.

Observation 5.1.19. If K = (P,B,I ) is a finite incidence structure such

that for any two distinct points P1, P2 ∈ P, (P1) 6⊆ (P2), (that is, {(P ) : P ∈
P} forms a Sperner system over the set of all blocks) then PP = P \ {P}
for every P ∈ P.

For some specific (G ,F )-KDPs, the family of subsets of blocks incident

with each point in the point set will always form a Sperner System. In partic-

ular, we have the following remark.
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Remark 5.1.20. It follows from Observation 5.1.19 that, if K = (P,B,I ) is

a (t, w)-KDP and t ≤ |P| − w, then {(P ) : P ∈ P} forms a Sperner system

and so PP = P \ {P} for every P ∈ P.

Next, we shall consider a partial generalisation of Result 5.1.18. We delay

our full generalisation until we have overcome some technical details.

Theorem 5.1.21. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for each P ∈ P, K P= (PP ,BP ,I P ) is a (G P ,F P )-KDP where,

G
P = {G ∈ G : G ⊆ P

P} and

F
P = {F ∩ P

P : P ∈ F ∈ F and F ∩ P
P 6= ∅}.

Proof. Suppose, in order to obtain a contradiction, that for some P ∈ P there

exists a G′ ∈ G P and an F ′ ∈ F P such that G′ ∩ F ′ = ∅ and

⋂

P ′∈G′

(P ′)P ⊆
⋂

Q′∈F ′

(Q′)P .

Now, by the definition of F P , there exists an F ∈ F such that P ∈ F and

F ′ = F ∩ PP . Hence,

⋂

P ′∈G′

(P ′) ⊆
⋂

P ′∈G′

[ [
(P ′) ∩ B

P
]
∪ (P )

]

=

[
⋂

P ′∈G′

(P ′) ∩ B
P

]

∪ (P )

=

[
⋂

P ′∈G′

(P ′)P

]

∪ (P ) ⊆
⋃

Q′∈F ′

(Q′)P ∪ (P ) ⊆
⋃

Q∈F

(Q).

This contradicts the fact that K is a (G ,F )-KDP, since G′ ∩ F = ∅, G′ ∈ G

and F ∈ F , and the proof is complete.

As before, with Corollary 5.1.10 we shall consider the special case when F

consists of all the subsets of P of cardinality at most w.

Corollary 5.1.22. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP for w ≥ 2, then for each P ∈ P, K P= (PP ,BP ,I P ) is a (G P , w−1)-

KDP, where G P = {G ∈ G : G ⊆ PP}.
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Proof. This follows from Theorem 5.1.21. If F = {F ∈ 2P : 0 < |F | ≤ w},
then F P = {F P ∈ 2PP

: 0 < |F P | ≤ w − 1}, for any P ∈ P.

A natural case of Corollary 5.1.22 is the situation when G consists of all

the subsets of P of cardinality at most t.

Corollary 5.1.23. If a finite incidence structure K = (P,B,I ) is a (t, w)-

KDP with t ≤ |P|−w and w ≥ 2, then for each P ∈ P, K P= (PP ,BP ,I P )

is a (t, w − 1)-KDP.

Proof. This is a special case of Corollary 5.1.22.

For G = {T ∈ 2P : 0 < |T | ≤ t} it follows that

G P = {T ′ ∈ 2PP

: 0 < |T ′| ≤ t}, for any P ∈ P.

We shall extend Theorem 5.1.21 to obtain a characterisation for (G ,F )-

KDPs. However, we first require a result concerning the cardinality of the

point set of an external structure. Within Lemma 5.1.24 we refer to repeated

points and the smallest point in an incidence structure, (see Definition 2.1.1

and Definition 2.1.3 from Chapter 2).

Lemma 5.1.24. Let K = (P,B,I ) be a finite incidence structure without

repeated points and without a smallest point. Let G and F be families of non-

empty subsets of P such that for every three distinct points P1, P2, P3 ∈ P

there exists a G ∈ G and F ∈ F such that P1 ∈ G, P2, P3 ∈ F and G∩F = ∅.

If for each P ∈ P, K P= (PP ,BP ,I P ) is a (G P ,F P )-KDP where

G P = {G ∈ G : G ⊆ PP} and

F P = {F ∩ PP : P ∈ F ∈ F and F ∩ PP 6= ∅},

then PP = P \ {P} for every P ∈ P.

Proof. Let K = (P,B,I ) be a finite incidence structure and let G and F

be families of non-empty subsets of P that satisfy all the properties from the
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statement of the lemma. Now, suppose, in order to obtain a contradiction,

that for some Q ∈ P, PQ 6= P \ {Q}. Then there exists P1 ∈ P such that

P1 6= Q and (P1) ⊆ (Q).

Since there is no smallest point in P, we know that there exists a point

P2 ∈ P such that (P1) 6⊆ (P2) and, in particular, P2 6∈ {P1, Q}. Without loss

of generality we can choose P2 so that (P1) 6⊆ (P2) and |(P2)| = min{|P | : P ∈
P and (P1) 6⊆ (P )}. (Note that since K does not have any repeated points,

PP2 = P \ {P2}.)
Now choose G ∈ G and F ∈ F , where G ∩ F = ∅, such that P1 ∈ G and

P2, Q ∈ F .

Then, G ∈ G P2 and F \ {P2} ∈ F P2. However,

⋂

P ′∈G

(P ′) ⊆ (P1) ⊆ (Q) ⊆
⋃

Q′∈F\{P2}

(Q′) and so
⋂

P ′∈G

(P ′) ⊆
⋃

Q′∈F\{P2}

(Q′).

That is, K P2 is not a (G P2,F P2)-KDP and the proof is complete.

We may now give the previously alluded to characterisation, concerning

when an incidence structure is a (G ,F )-KDP in terms of its external structure.

Theorem 5.1.25. Let K = (P,B,I ) be a finite incidence structure without

repeated points and without a smallest point. Let G and F be families of

non-empty subsets of P such that:

1. for every three distinct points P1, P2, P3 ∈ P there exists a G ∈ G and

F ∈ F such that P1 ∈ G, P2, P3 ∈ F and G ∩ F = ∅;

2. |F | ≥ 2 for every F ∈ F .

Then, K is a (G ,F )-KDP if, and only if, for each P ∈ P, K P=

(PP ,BP ,I P ) is a (G P ,F P )-KDP where G P = {G ∈ G : G ⊆ PP} and

F P = {F ∩ PP : P ∈ F ∈ F and F ∩ PP 6= ∅}.
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Proof. Suppose that K = (P,B,I ) is a finite incidence structure and that

G and F are families of non-empty subsets of P that satisfy the properties

1. and 2. from the statement of the theorem.

Now suppose that K is a (G ,F )-KDP. From Theorem 5.1.21 we know

that K P is a (G P ,F P )-KDP for every P ∈ P.

Conversely, suppose that for every P ∈ P,K P is a (G P ,F P )-KDP. Take

any G ∈ G and any F ∈ F such that G ∩ F = ∅. Then choose P1 ∈ F . We

know from Lemma 5.1.24 that PP1 = P \ {P1}, so G ∈ G P1 and F \ {P1} ∈
F P1 because |F | ≥ 2.

Since K P1 is a (G P1 ,F P1)-KDP,

∅ 6=
⋂

P∈G

(P )P1 \
⋃

Q∈F\{P1}

(Q)P1 =
⋂

P∈G

(P ) ∩ B
P1 \

⋃

Q∈F\{P1}

(Q) ∩ B
P1

=
⋂

P∈G

(P ) ∩ B
P1 \

⋃

Q∈F

(Q) ∩ B
P1

=

[
⋂

P∈G

(P ) ∩ B
P1

]

∩
⋂

Q∈F

[B \ (Q) ∪ (P1)] (by De Morgan’s Law)

=

[
⋂

P∈G

(P ) ∩ B
P1

⋂

Q∈F

B \ (Q)

]

∪
[
⋂

P∈G

(P ) ∩ B
P1 ∩ (P1)

]

=
⋂

P∈G

(P ) ∩ B
P1

⋂

Q∈F

B \ (Q) since
⋂

P∈G

(P ) ∩ B
P1 ∩ (P1) = ∅

=
⋂

P∈G

(P ) ∩ B
P1 \

⋃

Q∈F

(Q) (by De Morgan’s Law)

⊆
⋂

P∈G

(P ) \
⋃

Q∈F

(Q).

Therefore, ∅ 6=
⋂

P∈G(P ) \
⋃

Q∈F (Q).

Hence, K is a (G ,F )-KDP and the proof is complete.

A canonical case of Theorem 5.1.25 is when G consists of all the subsets

of P of cardinality at most t and F includes all subsets of P of cardinality

at most w + 1.

Corollary 5.1.26. Let K = (P,B,I ) be a finite incidence structure without

repeated points and without a smallest point. Then, for any t ≤ |P|− (w+1),
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K is a (t, w+1)-KDP if, and only if, for each P ∈ P, K P= (PP ,BP ,I P )

is a (t, w)-KDP.

Proof. This is a special case of Theorem 5.1.25.

Let G = {G ∈ 2P : 0 < |G| ≤ t} and F = {F ∈ 2P : 1 < |F | ≤ w + 1}, then

K satisfies properties 1. and 2. from Theorem 5.1.25. So K is a (t,F )-KDP

and by Proposition 3.3.10, K is a (t, w + 1)-KDP.

Remark 5.1.27. Note that Example 5.1.3 (our earlier counterexample to Re-

sult 5.1.18) is consistent with Corollary 5.1.26, since point P5 in Example 5.1.3

is actually a smallest point. If we were to remove point P5 from Example 5.1.3

then we would be left with a finite incidence structure K1= (P1,B1,I1) such

that K1 is a trivial 2-KDP on 4 points (and hence a (2, 2)-KDP) and K P
1 is

a trivial 2-KDP on 3 points (and hence a (2, 1)-KDP) for every P ∈ P1.

As with internal structures we can apply our results on external structures

to deduce some crude estimates for the number of blocks incident with any

point.

Theorem 5.1.28. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP for w ≥ 2 then,

|(P )| < |B| − log2 |{G ∈ G : P 6∈ G}| for any P ∈ P.

Proof. Let K = (P,B,I ) be a (G , w)-KDP for w ≥ 2 and let P be a point

of K . Note that since K is 1-secure for each G ∈ G P = {G′ ∈ G : P 6∈ G′},
⋂

Q∈G

(Q)P 6= ∅ and in particular G
P = {G ∈ G : G ⊆ P

P}.

We know from Corollary 5.1.22 that because K is 2-secure, K P is 1-

secure. Therefore, by Observation 3.3.12, the mapping G 7→ ⋂

Q∈G(Q)P from

G P into non-empty subsets of BP is 1-to-1. Thus,

|G P | =

∣
∣
∣
∣
∣

{
⋂

Q∈G

(Q)P ∈ 2BP \ {∅} : G ∈ G
P

}∣
∣
∣
∣
∣
≤ 2|B

P | − 1.
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Hence, log2 |G P | ≤ log2(2
|BP | − 1) < log2(2

|BP |) = |BP | = |B| − |(P )|.

That is, |(P )| < |B| − log2 |{G ∈ G : P 6∈ G}| and the proof is complete.

By combining Theorem 5.1.15 and Theorem 5.1.28 we obtain the following

estimate for the number of blocks incident with a given point.

Corollary 5.1.29. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP where 2 ≤ |G| < |P| for all G ∈ G and w ≥ 2, then for each P ∈ P

log2 |{G ∈ G : P ∈ G}| < |(P )| < |B| − log2 |{G ∈ G : P 6∈ G}|.

We shall revisit this result later, in Chapter 6, when we estimate the num-

ber of blocks incident with a given point in an incidence structure.

Next we consider another way of creating new incidence structures from

old ones.

5.1.3 Complement (G ,F )-KDPs

We begin with the fundamental definition of the complement of an incidence

structure.

Definition 5.1.30. Let K = (P,B,I ) be a finite incidence structure. We

define the complement of K denoted C(K )= (C(P), C(B), C(I )) such

that C(P) = P, C(B) = B and (P, x) ∈ C(I ) if and only if (P, x) 6∈ I .

That is, the point and block sets of the complement of an incidence

structure K coincide with those of K . The only thing to change is the

incidence relation itself, which is replaced by the complement relation, i.e.

C(I ) = (P × B \ I ).

We can visualise the effect of taking the complement of an incidence struc-

ture by considering its matrix representation. We already know from Obser-

vation 1.5.3 that an incidence structure K = (P,B,I ) can be represented

by a v × b binary matrix A = (ai,j) defined as follows:

ai,j =

{
1 if (Pi, xj) ∈ I

0 otherwise.
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From this it is easy to see that C(K ) can be represented by the v× b matrix

C(A) = (a′i,j) defined as follows:

a′i,j =

{
0 if (Pi, xj) ∈ I

1 otherwise.

As with internal structures and external structures, we now introduce some

new notation representing the blocks incident with a point and the points inci-

dent with a block in a complement structure. For a finite incidence structure

K = (P,B,I ), we let (P )C = {x ∈ C(B) : (P, x) ∈ C(I )} for each

P ∈ C(P) and we let (x)C = {P ∈ C(P) : (P, x) ∈ C(I )} for each

x ∈ C(B). Note that (P )C = B \ (P ) and (x)C = P \ (x) .

For (G ,F )-KDPs, taking the complement has the effect of interchanging

the roles of G and F . This is shown precisely in the following theorem.

Theorem 5.1.31. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then the complement of K , C(K ) is an (F ,G )-KDP.

Proof. Suppose that K = (P,B,I ) is a (G ,F )-KDP and that C(K )=

(C(P), C(B), C(I )). Consider G′ ∈ F and F ′ ∈ G such that G′ ∩ F ′ = ∅.

Then,
⋂

P∈G′

(P )C =
⋂

P∈G′

B \ (P ) = B \
⋃

P∈G′

(P )

⋃

Q∈F ′

(Q)C =
⋃

Q∈F ′

B \ (Q) = B \
⋂

Q∈F ′

(Q).

Therefore,

⋂

P∈G′

(P )C ⊆
⋃

Q∈F ′

(Q)C ⇐⇒ B \
⋃

P∈G′

(P ) ⊆ B \
⋂

Q∈F ′

(Q)

⇐⇒
⋂

Q∈F ′

(Q) ⊆
⋃

P∈G′

(P ).

However, since F ′ ∈ G , G′ ∈ F and F ′ ∩G′ = ∅,
⋂

Q∈F ′(Q) 6⊆
⋃

P∈G′(P ) and

so
⋂

P∈G′(P )C 6⊆ ⋃Q∈F ′(Q)C , which completes the proof.

An interesting case concerning (t, w)-KDPs follows from Theorem 5.1.31.
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Corollary 5.1.32. If a finite incidence structure K = (P,B,I ) is a (t, w)-

KDP for any t ≤ |P|−w, then the complement of K , C(K ) is a (w, t)-KDP.

Theorem 5.1.31 and Corollary 5.1.32 will be used later in Chapter 6 to

calculate upper bounds for the number of blocks incident with a given point.

We conclude our discussion of complement (G ,F )-KDPs with a simple

observation concerning trivial G -KDPs.

Observation 5.1.33. If K = (P,B,I ) is a trivial G -KDP such that 1 ≤
|G| < |P| for every G ∈ G , then the complement of K is a trivial G ′-KDP

for G′ = {P \G : G ∈ G }.

Proof. Firstly, let K = (P,B,I ) be a trivial G -KDP with the block set

B = {x1, x2, . . . , xb} and G = {Gi : i ∈ J ⊆ {1, . . . , b}}. Then, for each i ∈ J ,

(P, xi) ∈ I if, and only if, P ∈ Gi.

Now let C(K )= (C(P), C(B), C(I )) be the complement of K such that

C(P) = P, C(B) = B and (P, xi) ∈ C(I ) if, and only if, (P, xi) 6∈ I . Also,

let G ′ = {G′
i : i ∈ J ⊆ {1, . . . , b}}, where G′

i = P \Gi.

For i ∈ J ,

(P, xi) ∈ C(I ) ⇐⇒ (P, xi) 6∈ I ⇐⇒ P 6∈ Gi

⇐⇒ P ∈ P \Gi ⇐⇒ P ∈ G′
i.

Given that 1 ≤ |G| < |P| for every G ∈ G , it follows that 1 ≤ |G′| < |P| for

every G′ ∈ G ′ and so C(K ) is a trivial G ′-KDP.

An alternative proof of Observation 5.1.33 follows from Theorem 5.1.31,

by applying Observation 3.2.2 and Theorem 3.2.5, which were the first results

that we presented for trivial G -KDPs. We finally note, as a special case

of Observation 5.1.33, that the complement of a trivial t-KDP is a trivial

(|P| − t)-KDP for any t < |P|.
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5.1.4 Dual (G ,F )-KDPs

As in the previous subsections, we will begin with a fundamental definition.

Definition 5.1.34. Let K = (P,B,I ) be a finite incidence structure. We

define the dual of K , denoted K T= (PT ,BT ,I T ) such that PT = B,

BT = P and (x, P ) ∈ I T if and only if (P, x) ∈ I .

That is, the dual of an incidence structure is constructed by interchanging

the roles of the points and blocks of the original structure. If A is an incidence

matrix for a structure K , then the transpose of A, AT , is an incidence matrix

for K T .

Our first and only result in this section investigates the families of privi-

leged and forbidden subsets in the dual of a (G ,F )-KDP.

Theorem 5.1.35. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then K T= (PT ,BT ,I T ) is a (G T ,F T )-KDP where

G
T =

{ ⋂

P∈J

(P ) : J ⊆ P and
⋂

P∈J

(P ) 6= ∅
}

and

F
T =
[
2B\{∅}

]
\
{

F ∈ 2B : ∃ GT ∈ G
T,
⋂

P∈GT

(P ) ⊆
⋃

Q∈F T

(Q) and GT ∩F T = ∅
}

.

Theorem 5.1.35 is not a natural result. The description of G T and F T could

essentially be applied to any incidence structure. We have simply specified that

G T be the largest set of privileged subsets such that F T ⊇ {F T ∈ 2B : 1 ≤
|F | ≤ w} and that F T be the largest set of forbidden subsets for G T with

respect to K .

However, Theorem 5.1.35 is the best that we have been able to obtain. This

is because there is no obvious correspondence between the original families of

privileged and forbidden subsets and those corresponding to the dual (G ,F )-

KDP. As such, we are unable to find any natural results for (G ,F )-KDPs

concerning duals and therefore we do not consider duals further in this thesis.
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5.2 Constructions from Multiple KDPs

In [60], Mitchell and Piper consider three ways in which two (2, w)-KDPs may

be joined to give a new (2, w)-KDP that provides pair-wise secure communica-

tion for a larger network of users. In this section we generalise these techniques

for (G ,F )-KDPs.

Our first result generalises [60, Construction 1.5]. We essentially take the

union of the two point sets and the cross product of the two block sets.

Theorem 5.2.1. Let the finite incidence structures K1 = (P1,B1,I1) and

K2 = (P2,B2,I2), where P1∩P2 = ∅, be a tight (G1,F1)-KDP and a tight

(G2,F2)-KDP, respectively.

Let P = P1∪P2, B = B1 ×B2 and the incidence relation I be defined by:

(i) For P ∈ P1, (x, y) is incident with P if, and only if, (P, x) ∈ I1;

(ii) For P ∈ P2, (x, y) is incident with P if, and only if, (P, y) ∈ I2.

Then K = (P,B,I ) is a (G ,F )-KDP with

G = G1 ∪ G2 ∪ {G1 ∪G2 : G1 ∈ G1, G2 ∈ G2}
and F = F1 ∪ F2 ∪ {F1 ∪ F2 : F1 ∈ F1, F2 ∈ F2}.

Proof. Suppose that P = P1 ∪ P2, B = B1 × B2 and that the incidence

relation is defined as in the statement of the theorem. Moreover, for each

P ∈ P we define (P )′ to be the set of all blocks in B1 × B2 incident with P

with respect to I . Then K = (P,B,I ) is a (G ,F )-KDP, with G and F

defined as in the statement of the theorem, if
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′ for all

G ∈ G and F ∈ F such that G ∩ F = ∅.

To show this we shall consider three cases:

1. when G ∈ G1 and F ∈ F ;

2. when G ∈ G2 and F ∈ F ; and

3. when G ∈ {G1 ∪G2 : G1 ∈ G1 and G2 ∈ G2} and F ∈ F .
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[Case 1] G ∈ G1 and F ∈ F .

We break Case 1 down into three further subcases.

[1a] Suppose that G ∈ G1, F ∈ F1 and G∩F = ∅. Since G ∈ G1 and F ∈ F1,
⋂

P∈G(P ) 6⊆ ⋃Q∈F (Q) and so
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′.

[1b] Suppose that G ∈ G1, F ∈ F2 and G ∩ F = ∅. Since F2 is tight, there

exists a block y1 ∈ B2 such that (x, y1) 6∈
⋃

Q∈F (Q)′ for all x ∈ B1. Also, since

G1 is tight there exists a block x1 ∈ B1 such that (x1, y) ∈
⋂

P∈G(P )′ for all

y ∈ B2. Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[1c] Suppose that G ∈ G1 and F ∈ {F1 ∪ F2 : F1 ∈ F1 and F2 ∈ F2} such

that G ∩ F = ∅. We know that there exists a block x1 ∈ B1 such that

(x1, y) ∈
⋂

P∈G(P )′ \
⋃

Q1∈F1
(Q1)

′ for all y ∈ B2. Also, there exists a block

y1 ∈ B2 such that (x, y1) 6∈
⋃

Q2∈F2
(Q2)

′ for all x ∈ B1. Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
[
⋃

Q1∈F1
(Q1)

′ ∪
⋃

Q2∈F2
(Q2)

′
]

and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[Case 2] G ∈ G2 and F ∈ F .

The proof of this case is identical to that of Case 1.

[Case 3] G ∈ {G1 ∪G2 : G1 ∈ G1 and G2 ∈ G2} and F ∈ F .

Again we break this down into three further subcases.

[3a] Suppose that G ∈ {G1 ∪ G2 : G1 ∈ G1 and G2 ∈ G2} , F ∈ F1 and

G ∩ F = ∅. We know that there exists a block x1 ∈ B1 such that (x1, y) ∈
⋂

P1∈G1
(P1)

′ \
⋃

Q∈F (Q)′ for all y ∈ B2. Also, since G2 is tight there exists

a block y1 ∈ B2 such that (x, y1) ∈ ⋂P2∈G2
(P2)

′ for all x ∈ B1. Therefore,

(x1, y1) ∈
[⋂

P1∈G1
(P1)

′ ∩
⋂

P2∈G2
(P2)

′
]
\
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[3b] Suppose that G ∈ {G1 ∪ G2 : G1 ∈ G1 and G2 ∈ G2}, F ∈ F2 and

G ∩ F = ∅. The proof of this case is similar to that of Case 3a.
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[3c] Suppose that G ∈ {G1∪G2 : G1 ∈ G1 and G2 ∈ G2} , F ∈ {F1∪F2 : F1 ∈
F1 and F2 ∈ F2} and G∩F = ∅. We know that there exists a block x1 ∈ B1

such that (x1, y) ∈
⋂

P1∈G1
(P1)

′ \
⋃

Q1∈F1
(Q1)

′ for all y ∈ B2. We also know

that there exists a block y1 ∈ B2 such that (x, y1) ∈
⋂

P2∈G2
(P2)

′\
⋃

Q2∈F2
(Q2)

′

for all x ∈ B1. Therefore,

(x1, y1)∈
[
⋂

P1∈G1

(P1)
′ ∩
⋂

P2∈G2

(P2)
′

]

\
[
⋃

Q1∈F1

(Q1)
′ ∪
⋃

Q2∈F2

(Q2)
′

]

=
⋂

P∈G

(P )′ \
⋃

Q∈F

(Q)

and hence
⋂

P∈G

(P )′ 6⊆
⋃

Q∈F

(Q)′.

That is,
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′ for any G ∈ G and F ∈ F such that G∩F =

∅. This completes the proof.

We now consider Theorem 5.2.1 in the special case of (t, w)-KDPs.

Corollary 5.2.2. Let the finite incidence structures K1 = (P1,B1,I1) and

K2 = (P2,B2,I2), where P1 ∩P2 = ∅, be (t, w)-KDPs for t ≤ min(|P1| −
w, |P2| −w). Let P = P1 ∪P2,B = B1 ×B2 and the incidence relation I

be defined as in Theorem 5.2.1. Then K = (P,B,I ) is also a (t, w)-KDP.

Although Theorem 5.2.1 is a natural construction, it produces (G ,F )-

KDPs with relatively large numbers of blocks, compared to the numbers of

blocks in the component (G ,F )-KDPs. That is, any (G ,F )-KDPs produced

using Theorem 5.2.1 will not be particularly efficient. For example, if we begin

with a tight (G1,F1)-KDP with six blocks and a tight (G2,F2)-KDP with sx

blocks, then the resultant (G ,F )-KDP will have 36 blocks.

Using Theorem 5.2.1 it is possible to combine two trivial G -KDPs (or

cotrivial F -KDPs) in order to construct a much larger non-trivial (G ′,F ′)-

KDP. Thus, the problem of constructing a “large” non-trivial (G ,F )-KDP

reduces to constructing two “small” trivial G -KDPs.

Our second result in this section generalises [60, Construction 1.6]. Here we

do not simply take the cross product of the two original block sets. Instead, we
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first reduce the size of one of those block sets before taking the cross product.

In this way, we reduce the number of blocks in the resultant (G ,F )-KDP.

Theorem 5.2.3. Let the finite incidence structures K1 = (P1,B1,I1), where

P ∗ ∈ P1, and K2 = (P2,B2,I2), where P1 ∩ P2 = ∅, be a tight (G1,F1)-

KDP and a tight (G2,F2)-KDP, respectively.

Let P = P1 ∪ P2,B = [B1 \ (P ∗)] ∪ [(P ∗) × B2] and the incidence relation

I be defined by:

(i) For P ∈ P1 and x ∈ B1 \ (P ∗), x is incident with P if, and only if,

(P, x) ∈ I1;

(ii) For P ∈ P1 and (x, y) ∈ (P ∗)×B2, (x, y) is incident with P if, and only

if, (P, x) ∈ I1;

(iii) For P ∈ P2, (x, y) ∈ (P ∗) × B2 is incident with P if, and only if,

(P, y) ∈ I2.

Then K = (P,B,I ) is a (G ,F )-KDP with

G = G1 ∪ G2 ∪ {G1 ∪G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2} and

F = F ∗
1 ∪ F2 ∪ {F1 ∪ F2 : F1 ∈ F ∗

1 and F2 ∈ F2}
where F ∗

1 =
{
F ∈ F1 : (P ∗) 6⊆

⋃

Q∈F (Q)
}
.

Proof. Suppose that P = P1∪P2,B = [B1\(P ∗)]∪[(P ∗)×B2] and that the

incidence relation is defined as in the statement of the theorem. Moreover, for

each P ∈ P we define (P )′ to be the set of all blocks in [B1\(P ∗)]∪[(P ∗)×B2]

incident with P with respect to I . Then K = (P,B,I ) is a (G ,F )-KDP,

with G and F defined as in the statement of the theorem, if
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′ for all G ∈ G and F ∈ F such that G ∩ F = ∅.

To show this we shall consider three cases:

1. when G ∈ G1 and F ∈ F ;

2. when G ∈ G2 and F ∈ F ; and

3. when G ∈ {G1 ∪G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2} and F ∈ F .
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[Case 1] G ∈ G1 and F ∈ F .

We break Case 1 down into three further subcases.

[1a] Suppose that G ∈ G1, F ∈ F ∗
1 and G ∩ F = ∅. Since G ∈ G1 and

F ∈ F1,
⋂

P∈G(P ) 6⊆ ⋃Q∈F (Q) and so
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′.

[1b] Suppose that G ∈ G1, F ∈ F2 and G ∩ F = ∅. Since G1 is tight, there

exists a block x1 ∈ B1 such that x1 ∈
⋂

P∈G(P ). If x1 ∈ B1 \ (P ∗) then,

x1 ∈ ⋂P∈G(P )′ \ ⋃Q∈F (Q)′. Otherwise, x1 ∈ (P ∗) and (x1, y) ∈ ⋂P∈G(P )′

for all y ∈ B2 and, since F2 is tight, there exists a block y1 ∈ B2 such

that (x, y1) 6∈
⋃

Q∈F (Q)′ for all x ∈ (P ∗). Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′ in both situations.

[1c] Suppose that G ∈ G1, F ∈ {F1 ∪ F2 : F1 ∈ F ∗
1 and F2 ∈ F2} and

G ∩ F = ∅. We know that there exists a block x1 ∈ B1 such that x1 ∈
⋂

P∈G(P ) \
⋃

Q1∈F1
(Q1). If x1 ∈ B1 \ (P ∗) then, x1 ∈

⋂

P∈G(P )′ \
⋃

Q∈F (Q)′

otherwise x1 ∈ (P ∗) and (x1, y) ∈
⋂

P∈G(P )′ \
⋃

Q1∈F1
(Q1)

′ for all y ∈ B2.

Also, there exists a block y1 ∈ B2 such that (x, y1) 6∈ ⋃

Q2∈F2
(Q2)

′ for all

x ∈ (P ∗). Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
[
⋃

Q1∈F1
(Q1)

′ ∪
⋃

Q2∈F2
(Q2)

′
]

and

hence
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′.

[Case 2] G ∈ G2 and F ∈ F .

We break Case 2 down into three further subcases.

[2a] Suppose that G ∈ G2, F ∈ F ∗
1 and G ∩ F = ∅. Since G2 is tight, there

exists a block y1 ∈ B2 such that (x, y1) ∈ ⋂P∈G(P )′ for all x ∈ (P ∗). Also,

since (P ∗) 6⊆
⋃

Q∈F1
(Q) for all F1 ∈ F ∗

1 , there exists a block x1 ∈ (P ∗) such

that (x1, y) 6∈
⋃

Q∈F (Q)′ for all y ∈ B2. Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[2b] Suppose that G ∈ G2, F ∈ F2 and G∩F = ∅. Since G ∈ G2 and F ∈ F2,
⋂

P∈G(P ) 6⊆ ⋃Q∈F (Q) and so
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′.
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[2c] Suppose that G ∈ G2, F ∈ {F1 ∪ F2 : F1 ∈ F ∗
1 and F2 ∈ F2} and

G ∩ F = ∅. We know that there exists a block y1 ∈ B2 such that (x, y1) ∈
⋂

P∈G(P )′ \
⋃

Q2∈F2
(Q2)

′ for all x ∈ (P ∗). Also, since (P ∗) 6⊆
⋃

Q∈F1
(Q) for all

F1 ∈ F1, there exists a block x1 ∈ (P ∗) such that (x1, y) 6∈
⋃

Q1∈F1
(Q1)

′ for all

y ∈ B2. Therefore, (x1, y1) ∈
⋂

P∈G(P )′ \
[
⋃

Q1∈F1
(Q1)

′ ∪
⋃

Q2∈F2
(Q2)

′
]

and

hence
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′.

[Case 3] G ∈ {G1 ∪G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2} and F ∈ F .

We break Case 3 down into three further subcases.

[3a] Suppose that G ∈ {G1 ∪ G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2}, F ∈ F ∗
1 and

G ∩ F = ∅. Since P ∗ ∈ G1, there exists a block x1 ∈ (P ∗) such that (x1, y) ∈
⋂

P1∈G1
(P )′ \

⋃

Q∈F (Q)′ for all y ∈ B2. Also, since G2 is tight there exists a

block y1 ∈ B2 such that (x, y1) ∈
⋂

P2∈G2
(P2)

′ for all x ∈ (P ∗). Therefore,

(x1, y1) ∈
[⋂

P1∈G1
(P1)

′ ∩
⋂

P2∈G2
(P2)

′
]
\
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[3b] Suppose that G ∈ {G1 ∪ G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2}, F ∈ F2

and G ∩ F = ∅. We know that there exists a block x1 ∈ (P ∗) such that

(x1, y) ∈
⋂

P1∈G1
(P )′ for all y ∈ B2. Also, there exists a block y1 ∈ B2 such

that (x, y1) ∈
⋂

P2∈G2
(P2)

′ \
⋃

Q∈F (Q)′ for all x ∈ (P ∗). Therefore, (x1, y1) ∈
[⋂

P1∈G1
(P1)

′ ∩
⋂

P2∈G2
(P2)

′
]
\
⋃

Q∈F (Q)′ and hence
⋂

P∈G(P )′ 6⊆
⋃

Q∈F (Q)′.

[3c] Suppose that G ∈ {G1 ∪G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2}, F ∈ {F1 ∪F2 :

F1 ∈ F ∗
1 and F2 ∈ F2} and G ∩ F = ∅. We know that there exists a block

x1 ∈ (P ∗) such that (x1, y) ∈
⋂

P1∈G1
(P1)

′ \
⋃

Q1∈F1
(Q1)

′ for all y ∈ B2. Also,

there exists a y1 ∈ B2 such that (x, y1) ∈ ⋂P2∈G2
(P2)

′ \ ⋃Q2∈F2
(Q2)

′ for all

x ∈ (P ∗). Therefore,

(x1, y1)∈
[
⋂

P1∈G1

(P1)
′ ∩
⋂

P2∈G2

(P2)
′

]

\
[
⋃

Q1∈F1

(Q1)
′ ∪
⋃

Q2∈F2

(Q2)
′

]

=
⋂

P∈G

(P )′ \
⋃

Q∈F

(Q)

and hence
⋂

P∈G

(P )′ 6⊆
⋃

Q∈F

(Q)′.
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That is,
⋂

P∈G(P )′ 6⊆ ⋃Q∈F (Q)′ for any G ∈ G and F ∈ F such that G∩F =

∅. This completes the proof.

We note that the combined point set in Theorem 5.2.3 includes the point

P ∗. In this way Theorem 5.2.3 is not a direct generalisation of [60, Con-

struction 1.6] as [60, Construction 1.6] excludes this point. However, using

Proposition 3.1.6 we can obtain a true generalisation of [60, Construction 1.6]

by deleting the point P ∗.

Corollary 5.2.4. Let the finite incidence structures K1 = (P1,B1,I1),

where P ∗ ∈ P1, and K2 = (P2,B2,I2), where P1 ∩ P2 = ∅, be a tight

(G1,F1)-KDP and a tight (G2,F2)-KDP, respectively.

Let P = [P1 \ {P ∗}] ∪ P2,B = [B1 \ (P ∗)] ∪ [(P ∗) × B2] and the inci-

dence relation I be defined as in Theorem 5.2.3. Then K = (P,B,I ) is a

(G ,F )-KDP with

G = G ∗
1 ∪ G2 ∪ {[G1 \ {P ∗}] ∪G2 : P ∗ ∈ G1 ∈ G1 and G2 ∈ G2} and

F = F ∗
1 ∪ F2 ∪ {F1 ∪ F2 : F1 ∈ F ∗

1 and F2 ∈ F2}, where

G
∗
1 =
{
G\{P ∗} :G∈G1 and G\{P ∗} 6=∅

}
and F

∗
1 =

{

F ∈F1 : (P ∗) 6⊆
⋃

Q∈F

(Q)

}

.

We now give another corollary to Theorem 5.2.3 for the special case of

(t, w)-KDPs.

Corollary 5.2.5. Let the finite incidence structures K1 = (P1,B1,I1),

where P ∗ ∈ P1, and K2 = (P2,B2,I2), where P1 ∩ P2 = ∅, be (t, w)-

KDPs for t ≤ min(|P1| − w, |P2| − w). Let P = [P1 \ {P ∗}] ∪ P2,B =

[B1 \ (P ∗)]∪ [(P ∗)×B2] and the incidence relation I be defined as in Theo-

rem 5.2.3. Then K = (P,B,I ) is also a (t, w)-KDP.

Our final result in this section generalises [60, Construction 1.7]. Here we

reduce the size of both original block sets before taking the cross product. In

this way, we reduce the number of blocks in the resultant (G ,F )-KDP even

further.
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Theorem 5.2.6. Let the finite incidence structures K1 = (P1,B1,I1), where

P ∗ ∈ P1, and K2 = (P2,B2,I2), where Q∗ ∈ P2 and P1 ∩ P2 = ∅, be a

tight (G1,F1)-KDP and a tight (G2,F2)-KDP, respectively.

Let P = P1 ∪ P2,B = [B1 \ (P ∗)] ∪ [B2 \ (Q∗)] ∪ [(P ∗) × (Q∗)] and the

incidence relation I be defined by:

(i) For P ∈ P1 and x ∈ B1 \ (P ∗), x is incident with P if, and only if,

(P, x) ∈ I1;

(ii) For P ∈ P1 and (x, y) ∈ (P ∗) × (Q∗), (x, y) is incident with P if, and

only if, (P, x) ∈ I1;

(iii) For P ∈ P2 and y ∈ B2 \ (Q∗), y is incident with P if, and only if,

(P, y) ∈ I2;

(iv) For P ∈ P2 and (x, y) ∈ (P ∗) × (Q∗), (x, y) is incident with P if, and

only if, (P, y) ∈ I2.

Then K = (P,B,I ) is a (G ,F )-KDP with

G = G1 ∪ G2 ∪ {G1 ∪G2 : P ∗ ∈ G1 ∈ G1 and Q∗ ∈ G2 ∈ G2} and

F = F ∗
1 ∪ F ∗

2 ∪ {F1 ∪ F2 : F1 ∈ F ∗
1 and F2 ∈ F ∗

2 }, where

F
∗
1 =

{

F1 ∈ F1 : (P ∗) 6⊆
⋃

Q∈F1

(Q)

}

and F
∗
2 =

{

F2 ∈ F2 : (Q∗) 6⊆
⋃

Q∈F2

(Q)

}

.

Proof. The proof of this theorem is similar to that of Theorem 5.2.3.

In a similar way to Theorem 5.2.3 we note that the combined point set

in Theorem 5.2.6 includes the points P ∗ and Q∗. In order to give a true

generalisation of [60, Construction 1.7] we again use Proposition 3.1.6 to get

the following corollary.

Corollary 5.2.7. Let the finite incidence structures K1 = (P1,B1,I1),

where P ∗ ∈ P1, and K2 = (P2,B2,I2), where Q∗ ∈ P2 and P1 ∩ P2 = ∅,

be a tight (G1,F1)-KDP and a tight (G2,F2)-KDP, respectively. Let P =

[P1 \{P ∗}]∪ [P2 \{Q∗}],B = [B1 \ (P ∗)]∪ [B2 \ (Q∗)]∪ [(P ∗)× (Q∗)] and the
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incidence relation I be defined as in Theorem 5.2.6. Then K = (P,B,I )

is a (G ,F )-KDP with

G = G ∗
1 ∪G ∗

2 ∪
{
[G1\{P ∗}]∪[G2\{Q∗}]∈ 2P\{∅} :P ∗∈ G1 ∈ G1, Q

∗∈ G2∈ G2

}

and F = F ∗
1 ∪ F ∗

2 ∪ {F1 ∪ F2 : F1 ∈ F ∗
1 and F2 ∈ F ∗

2 },
where G ∗

1 = {G1 \ {P ∗} : G1 ∈ G1 and G1 \ {P ∗} 6= ∅},
G ∗

2 = {G2 \ {Q∗} : G2 ∈ G2 and G2 \ {Q∗} 6= ∅},
F

∗
1 =

{

F1 ∈ F1 : (P ∗) 6⊆
⋃

Q∈F1

(Q)
}

and F
∗
2 =

{

F2 ∈ F2 : (Q∗) 6⊆
⋃

Q∈F2

(Q)
}

.

We now give our final corollary of this section. Corollary 5.2.8 generalises

[60, Construction 1.7] for the special case of (t, w)-KDPs.

Corollary 5.2.8. Let the finite incidence structures K1 = (P1,B1,I1),

where P ∗ ∈ P1, and K2 = (P2,B2,I2), where Q∗ ∈ P2 and P1 ∩ P2 = ∅,

be (t, w)-KDPs for t ≤ min(|P1| − w, |P2| − w). Let P = [P1 \ {P ∗}] ∪
[P2 \ {Q∗}],B = [B1 \ (P ∗)] ∪ [B2 \ (Q∗)] ∪ [(P ∗) × (Q∗)] and the incidence

relation I be defined as in Theorem 5.2.3. Then K = (P,B,I ) is also a

(t, w)-KDP.

Within this section we have generalised the three constructions of Mitchell

and Piper [60]. The following example demonstrates the increasing efficiency

of these generalised constructions.

Example 5.2.1. Let K1 = (P1,B1,I1) and K2 = (P2,B2,I2) be trivial

2-KDPs on four points and six blocks. Then, K1 and K2 are both tight (2, 2)-

KDPs. Starting with K1 and K2, Theorem 5.2.1 would construct a (2, 2)-KDP

on eight points and 36 blocks. Theorem 5.2.3 would construct a (2, 2)-KDP on

eight points and 21 blocks and Theorem 5.2.6 would construct a (2, 2)-KDP

on eight points and 15 blocks.

In general, if we denote the number of blocks from B1 that are incident

with the point P ∗ by r(P ∗) and the number of blocks from B2 that are incident
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with the point Q∗ by r(Q∗), then we can measure the total number of points

and the total number of blocks in the (G ,F )-KDPs resulting from each of the

constructions in this section.

Number of Number of

Points Blocks

Theorem 5.2.1

(G , F )-KDPs |P1|+|P2| |B1||B2|
Corollary 5.2.2

(t, w)-KDPs |P1|+|P2| |B1||B2|
Theorem 5.2.3

(G , F )-KDPs |P1|+|P2| |B1|+r(P ∗)(|B2|−1)

Corollary 5.2.4

(G , F )-KDPs |P1|+|P2|−1 |B1|+r(P ∗)(|B2|−1)

Corollary 5.2.5

(t, w)-KDPs |P1|+|P2|−1 |B1|+r(P ∗)(|B2|−1)

Theorem 5.2.6

(G , F )-KDPs |P1|+|P2| |B1|+|B2|+(r(P ∗)−1)(r(Q∗)−1)−1

Corollary 5.2.7

(G , F )-KDPs |P1|+|P2|−2 |B1|+|B2|+(r(P ∗)−1)(r(Q∗)−1)−1

Corollary 5.2.8

(t, w)-KDPs |P1|+|P2|−2 |B1|+|B2|+(r(P ∗)−1)(r(Q∗)−1)−1

Note that, in Theorem 5.2.3 and Theorem 5.2.6, (and the corresponding

corollaries), when we choose the points P ∗ and Q∗ from the incidence struc-

tures K1 and K2 respectively, if we choose the points incident with the least

number of blocks, then we minimise the total number of blocks in the con-

structed incidence structure K . That is, if we have an estimate for the number

of blocks incident with each point, then we have a method for minimising the

number of blocks in the constructed (G ,F )-KDP. In Chapter 6 we investigate

bounds on the number of blocks incident with a given point and, the total

number of blocks in a (G ,F )-KDP.
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5.3 Direct Constructions

The origins of the family of constructions in this section stem from convex

analysis [23, 35, 41]. More specifically, the separation theorems that tell us

that disjoint convex sets can be separated by half spaces, (equivalent to the

Hahn-Banach Theorem, [23, Page 58], [35, Page 69] and [41, Page 118]).

We begin with some basic definitions.

Definition 5.3.1. A subset C of Rn is called convex if for each x,y ∈ C and

λ ∈ [0, 1], λx + (1 − λ)y ∈ C.

A half space in Rn essentially splits Rn into two disjoint convex sets.

Definition 5.3.2. A subset H of Rn is called a closed half space if there

exists a vector a ∈ Rn and an α ∈ R such that,

H = {x ∈ Rn : a · x ≤ α} .

Within this section we shall consider a discrete analogue of convexity and

of the following separation theorem.

Result 5.3.3. Given any two disjoint, closed and bounded convex subsets A
and B of Rn there exists a closed half space H of Rn such that:

(i) A ⊆ H and (ii) H ∩ B = ∅.

The fact that separation theorems might be useful in this setting, emanates

from the fact that there are many more pairs of disjoint convex sets than there

are half spaces. We treat Zn as a group under addition and, in Definition 5.3.6,

we describe how to generate a finite incidence structure from any finite subset

of Zn. For sets A,B ⊆ Zn we shall set

A+B = {x ∈ Zn : x = a + b for some a ∈ A and b ∈ B}

and − A = {x ∈ Zn : x = −a for some a ∈ A}.
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Also, in this section, if a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are

elements of Zn, then we let “≤” be the partial order on Zn defined by a ≤ b

if, and only if, ai ≤ bi for all 1 ≤ i ≤ n. In addition to this, we define

[a, b] = {x ∈ Zn : a ≤ x ≤ b}.
The following intuitive lemma is a natural result that probably exists in

the literature. However, due to the lack of a convenient reference, we have

included a complete proof of Lemma 5.3.4.

Lemma 5.3.4. For a, b, c, d ∈ Zn, if a ≤ b and c ≤ d then

[a, b] + [c,d] = [a + c, b + d].

Proof. It is immediate that [a, b] + [c,d] ⊆ [a + c, b + d], so it only remains

to show that [a + c, b + d] ⊆ [a, b] + [c,d]. Suppose, in order to obtain a

contradiction, that [a, b] + [c,d] $ [a + c, b + d], in which case there exists

x = (x1, x2, . . . , xn) ∈ [a + c, b + d] \ ([a, b] + [c,d]).

Let X = {y′ ∈ [a, b] + [c,d] : y′ ≤ x}. Then X 6= ∅, since a + c ∈ X.

Now (X,≤) is a non-empty finite partially ordered set and so has a maximal

element y = (y1, y2, . . . , yn). Then, y < x and so yi ≤ xi ≤ bi + di for all

1 ≤ i ≤ n, and yj < xj ≤ bj + dj for some 1 ≤ j ≤ n.

By the definition of y, there exists v = (v1, v2, . . . , vn) ∈ [a, b] and w =

(w1, w2, . . . , wn) ∈ [c,d] such that y = v + w. In particular vj + wj < xj ≤
bj + dj. Hence, either vj < bj or wj < dj. In either case, we can see that if

y′ = (y′1, y
′
2, . . . , y

′
n) ∈ [a+c, b+d] is defined by, y′i = yi for i 6= j and y′j = yj+1

then y′ ∈ X since y′ ≤ x and y′ ∈ [a, b] + [c,d]. However, y < y′ ∈ X which

contradicts the maximality of y. Therefore, [a, b] + [c,d] = [a + c, b + d].

In the following lemma we will use the fact that for a, b, c, d ∈ Zn,

if a ≤ b and c ≤ d, then [a, b] ∩ [c,d] = ∅ if, and only if,

0 6∈ [a, b] − [c,d] = [a, b] + [−d,−c] = [a − d, b − c] (from Lemma 5.3.4).
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Lemma 5.3.5. Suppose that a, b, c, d ∈ Zn satisfy a ≤ b and c ≤ d. If

[a, b] ∩ [c,d] = ∅, then there exists 1 ≤ i ≤ n such that either di < ai or

bi < ci.

Proof. Since [a, b]∩ [c,d] = ∅, 0 6∈ [a−d, b−c]. Now, since 0 6∈ [a−d, b−c],

there exists 1 ≤ i ≤ n such that 0 6∈ [ai−di, bi−ci]. Therefore, either 0 < ai−di

or bi − ci < 0. That is, either di < ai or bi < ci.

In order to simplify the statement of our next theorem we introduce some

preliminary notation.

Definition 5.3.6. For any a, b ∈ Zn, where a ≤ b, we let K b

a
= (Pb

a
,Bb

a
,I b

a
)

be the finite incidence structure defined by:

Pb

a
= [a, b],

Bb

a
={Lj

i :1 ≤ i ≤ n and ai+1≤j≤bi}∪{Rj
i :1 ≤ i ≤n and ai≤j ≤bi−1}

where for each 1 ≤ i ≤ n, Lj
i = {(x1, x2, . . . , xn) ∈ Pb

a
: xi ≥ j} for

ai+1≤j≤bi and Rj
i = {(x1, x2, . . . , xn) ∈ Pb

a
: xi ≤ j} for ai≤j≤bi−1,

and I b

a
⊆ Pb

a
× Bb

a
is defined by (x, B) ∈ I b

a
if, and only if, x ∈ B.

Theorem 5.3.7. If a, b ∈ Zn and a ≤ b, then the finite incidence structure

K b

a
= (Pb

a
,Bb

a
,I b

a
) is a (G ,F )-KDP, where

G = F = {[c,d] : a ≤ c ≤ d ≤ b}.

Proof. Suppose that the finite incidence structure K b

a
= (Pb

a
,Bb

a
,I b

a
) is de-

fined as above and that G and F are defined as in the statement of the

theorem.

Suppose also that G ∈ G , F ∈ F and G ∩ F = ∅. Then, G = [c,d]

and F = [e,f ] for some a ≤ c ≤ d ≤ b and a ≤ e ≤ f ≤ b. Then, by

Lemma 5.3.5 we know that there exists 1 ≤ i ≤ n such that either fi < ci

or di < ei. If fi < ci, then [c,d] ⊆ Lci

i and Lci

i ∩ [e,f ] = ∅. On the other
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hand, if di < ei, then [c,d] ⊆ Rdi

i and Rdi

i ∩ [e,f ] = ∅. Therefore, in either

case there exists a B ∈ Bb

a
such that [c,d] ⊆ B and B ∩ [e,f ] = ∅. That is,

B ∈
⋂

P∈G(P ) \
⋃

Q∈F (Q) and hence K b

a
is a (G ,F )-KDP.

The following one dimensional example demonstrates Theorem 5.3.7.

Example 5.3.1. Let K = (P,B,I ) be the finite incidence structure defined

by the following:

P = {1, 2, 3, 4, 5},
B =

{
{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5}, {4, 5}, {5}

}
,

and for any P ∈ P and B ∈ B, (P,B) ∈ I if, and only if, P ∈ B.

Then, K is a (G ,F )-KDP where,

G = F =
{
{1}, {2}, {3}, {4}, {5}, {1, 2}, {2, 3}, {3, 4}, {4, 5},

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}
}
.

More intuitively, we can consider the points in a line, as shown below. Each

point can be separated from the next, as shown by a vertical line. Every set

of points to the left of a vertical line, or to the right of a vertical line, make

up the blocks in the block set. The privileged and forbidden subsets are all

the subsets of consecutive points.

51 2 3 4

In a similar way to Example 5.3.1, in two dimensions, the privileged and

forbidden subsets are all the subsets of adjacent points that form a rectan-

gle. Also, in three dimensions, the privileged and forbidden subsets are all

the subsets of adjacent points that form a three dimensional box. That is,

Theorem 5.3.7 enables secure communication for “neighbourhoods” of users.

Due to this, we have a family of (G ,F )-KDPs that potentially lends itself
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to applications such as certain types of wireless sensor networks, where nodes

relay data to adjacent (or “neighbouring”) nodes.

In Theorem 5.3.7, it is possible to precisely calculate |G |, |F | and |B|, as

shown in the following remark.

Remark 5.3.8. In Theorem 5.3.7,

|G | = |F | =

n∏

i=1

[
(bi − ai + 1)(bi − ai + 2)

2

]

and |B| =

n∑

i=1

2(bi − ai).

The fact that we can precisely calculate the number of blocks in the con-

struction from Theorem 5.3.7 means that we have an insight into the efficiency

of the construction. It is easy to see from Remark 5.3.8 that the efficiency of

the construction from Theorem 5.3.7 improves as the number of dimensions

increases. We can combine Theorem 5.3.7 with other results from this chapter

in order to construct other (G ,F )-KDPs. More specifically, if we want to

construct (G , w)-KDPs or (t,F )-KDPs, then Theorem 5.3.7 can be used in

conjunction with Theorem 5.1.1 or Theorem 5.1.4 respectively. Also, by con-

sidering the following definition, we can potentially extend the applicability of

Theorem 5.3.7.

Definition 5.3.9. For a set ∅ 6= A ⊆ [a, b] ⊆ Zn we shall let

co(A) =
{
x ∈ [a, b] : min{ai : a ∈ A} ≤ xi ≤ max{ai : a ∈ A}

}
.

Suppose that we are given a set P of points and families G and F of

non-empty subsets of P, as well as a 1-to-1 mapping ϕ : P → [a, b] ⊆ Zn

such that co[ϕ(G)] ∩ co[ϕ(F)] = ∅ whenever G ∈ G , F ∈ F and G ∩ F = ∅.

Then, we can use K b

a
to construct an incidence structure K = (P,B,I )

that is a (G ,F )-KDP, in the following way:

Let B = Bb

a
and let I ⊆ P × B is defined by (P,B) ∈ I if, and only if,

(ϕ(P ), B) ∈ I b

a
, (i.e. ϕ(P ) ∈ B). It is now routine to check that K is indeed

a (G ,F )-KDP.
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This raises the question of how to construct such a mapping ϕ, (if indeed

such a mapping exists at all) given the sets P, G and F . This question is

not pursued here, however it does seem worthy of further investigation.

It would also seem reasonable that other “convex structures” (see [27])

might be useful in the construction of (G ,F )-KDPs, where the G ’s and F ’s

correspond to collections of convex sets (in the convex structure) and the

blocks correspond to half spaces. All that is required is for an appropriate

separation theorem to hold in the convex structure. Theorem 5.3.7 is just one

example.
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Chapter 6

Bounds

In this chapter we present various bounds demonstrating the efficiency levels

of (G ,F )-KDPs. As introduced in Section 1.3.3, the network storage and

user storage requirements in a KPS are the main measures of efficiency of a

scheme. In a (G ,F )-KDP these measures correspond to the total number of

blocks in the incidence structure and the number of blocks incident with each

point. The fewer the blocks, the more efficient a (G ,F )-KDP is considered to

be, and an efficient (G ,F )-KDP is seen as a “good” (G ,F )-KDP. Therefore,

within this chapter, we find bounds on these efficiency measures and aim to

show how efficient we can expect a (G ,F )-KDP to be.

Other authors have also found bounds of this type for (G ,F )-KDPs. In

[78], Ruszinkó gives an upper bound for (t, w)-CFFs and in [26], Dyer et al.

use probabilistic techniques to find bounds and give existence results for (t, w)-

CFFs. Quinn presents several lower bounds for (t, w)-KDPs in [71] and [73]

and in [85] and [86], Stinson et al. provide various bounds for (t, w)-CFFs.

Within this chapter we are able to generalise some of these known results to

(G ,F )-KDPs and construct some new bounds of our own.

As well as bounds indicating the efficiency of (G ,F )-KDPs, some generic

techniques that can be applied to (G ,F )-KDPs in order to improve their effi-

ciency are also considered in the literature. In [71] and [73], Quinn introduces

a technique for improving the efficiency of a KDP based upon the idea of using
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an information map in order to reduce the information content of the keys. In

[82] and [84], Stinson et al. introduce a technique based on the use of resilient

functions. This method allows for a trade off between the level of security

in a (G ,F )-KDP and the amount of key storage. Within this thesis we do

not attempt to improve on these already strong results, instead we simply ac-

knowledge that they can be applied to our (G ,F )-KDPs in order to improve

their efficiency.

We begin this chapter by considering bounds for general (G ,F )-KDPs.

Without introducing any major constraints on the sets of privileged and for-

bidden subsets, we are able to produce some informative results. After this,

we introduce the constraint that the set of privileged subsets forms a Sperner

system (which encompasses the case of (t, w)-KDPs). As a consequence of

this constraint we are able to give improved bounds for (G ,F )-KDPs. We

conclude the chapter by reviewing some bounds that we essentially get for

“free”. By generalising the notions of internal and external structures and

using some bounds from earlier in the chapter, we are able to give some new

bounds estimating (among other things) the number of blocks incident with

each point in a (G , w)-KDP.

The main results in this chapter are:

1. Theorem 6.1.4 - In this theorem we provide a lower bound on the number

of blocks required for any (G ,F )-KDP with the property that, for every

G ∈ G and for some fixed n ∈ N, there exist F1, F2, . . . , Fn ∈ F (not

necessarily distinct) such that P \G =
⋃

1≤j≤n

Fj .

2. Theorem 6.1.8 - In this theorem we take the symmetric difference of

certain block sets (those incident with all points in a privileged subset)

in order to find a new bound for completely general (G , w)-KDPs.

3. Corollary 6.2.6 - In this corollary we make use of several earlier results,
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(Corollary 5.1.11, Corollary 5.1.23, Corollary 6.2.4 and Theorem 6.2.5)

and present our best bound for (t, t)-KDPs.

4. Theorem 6.2.9 - In this theorem we use techniques of Füredi in order

to give a Quinn style bound for (G , w)-KDPs, under the additional as-

sumption that the set of privileged subsets forms a Sperner system. This

is our best bound for (G , w)-KDPs in the case when |G | ≈ w2 .

For a finite incidence structure K = (P,B,I ) we use the following no-

tation :

• b = |B| (the total number of blocks in K );

• r(P ) = |(P )| (the number of blocks incident with the point P ∈ P).

Note that if the incidence structure is indexed, as in K ∗= (P∗,B∗,I ∗)

or K∗= (P∗,B∗,I∗), then we let |B∗| = b∗ and |B∗| = b∗.

As will be seen in Section 6.3, calculating bounds on the number of blocks

incident with each point in a (G ,F )-KDP is equivalent to calculating bounds

on the total number of blocks in another (G ,F )-KDP. Therefore, we shall be

focusing our attention on finding bounds for the total number of blocks in a

given (G ,F )-KDP.

6.1 General Bounds

In this section we attempt to obtain lower bounds on the total number of

blocks required for the construction of a completely general (G ,F )-KDP (that

is, a (G ,F )-KDP with no constraints on the sets of privileged and forbidden

subsets). Unfortunately, in order to make progress, it was necessary for us to

impose some natural restrictions on the set of forbidden subsets. With these

added restrictions we have been able to obtain a number of lower bounds on

the number of blocks required for a given (G ,F )-KDP. Our first result is also

our most general result.
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Theorem 6.1.1. Let a finite incidence structure K = (P,B,I ) be a (G ,F )-

KDP with the property that if G,G′ ∈ G and G 6= G′ then there exists an

F ∈ F such that either (i) G ∩ F 6= ∅ and G′ ∩ F = ∅ or (ii) G ∩ F = ∅

and G′ ∩ F 6= ∅. Then, b ≥ log2 |G |.

Proof. We know from Observation 3.3.12 that for a (G ,F )-KDP, as defined

in the statement of the theorem, the mapping G →
⋂

P∈G(P ) from G into

subsets of B is 1-to-1. Therefore,

|G | =
∣
∣{
⋂

P∈G

(P ) : G ∈ G }
∣
∣ ≤ |2B| = 2b

and so b ≥ log2 |G |.

An important special case of this general theorem is given next.

Corollary 6.1.2. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then b ≥ log2 |G |.

Next, we combine some of our results from earlier in this thesis to give

a new and reasonably general approach to finding the minimum number of

blocks required for the construction of a (G ,F )-KDP.

Definition 6.1.3. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then we define K to be an n-cover complete (G ,F )-KDP, for n ∈ N,

if for each G ∈ G there exist F1, F2, . . . , Fn ∈ F (not necessarily distinct) such

that P \G =
⋃

1≤j≤n

Fj.

Theorem 6.1.4. Let K = (P,B,I ) be a finite incidence structure. If K

is an n-cover complete (G ,F )-KDP and n ≤ |B|, then

|G | ≤
n∑

j=1

(|B|
j

)

<
(|B| + 1)n

n!
and so ⌊ n

√

n! |G | ⌋ ≤ |B|.
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Proof. Suppose that K = (P,B,I ) is an n-cover complete (G ,F )-KDP. By

Theorem 5.1.1, we know that for each n ∈ N, there exists a finite incidence

structure Kn= (Pn,Bn,In) with Pn = P, and

|Bn| ≤
m∑

j=1

(|B|
j

)

where m = min{n, |B|},

such that Kn is a (G ,Fn)-KDP, where

Fn =

{
⋃

1≤j≤n

Fj : Fj ∈ F for 1 ≤ j ≤ n

}

.

Now, since K is an n-cover complete (G ,F )-KDP, P \G ∈ Fn for each

G ∈ G . That is, Kn is a completely secure (G ,Fn)-KDP and so by Theo-

rem 3.2.5, Kn is a trivial G -KDP.

Hence, as noted in Section 3.2.1,

|G | ≤ |Bn| ≤
m∑

j=1

(|B|
j

)

≤
n∑

j=1

(|B|
j

)

.

Finally, by induction (on n), we obtain the following inequality:
n∑

j=1

(|B|
j

)

<
(|B| + 1)n

n!
.

Remark 6.1.5. If a finite incidence structure K = (P,B,I ) is a (t, w)-KDP,

then K is

⌈
v − t

w

⌉

-cover complete, where v = |P|.

In the following example, we will be referencing notation and results from

Section 5.3.

Example 6.1.1. Let us begin by observing that for any a, b ∈ Zn such that

a ≤ b, the incidence structure K b

a
= (Pb

a
,Bb

a
,I b

a
) is a 2n-cover complete

(G b

a
,F b

a
) -KDP, where G b

a
= F b

a
= {[c,d] : a ≤ c ≤ d ≤ b}.

Next, we restrict our attention to the case when a = (1, 1) and b = (v, v)

for some v ∈ N, that is, Pb

a
= {1, 2, . . . , v} × {1, 2, . . . , v} ⊆ Z2. In this case,

we know from Remark 5.3.8 that, |Bb

a
| = 4(v − 1) and |G b

a
| = |F b

a
| =

(
v+1
2

)2
.
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At the same time, by applying Theorem 6.1.4, (which in turn relies on

Theorem 5.1.1), we can estimate a lower bound for the number of blocks

(which we shall denote b) in any 4-cover complete (G ,F )-KDP. Specifically

we get
⌊

4

√

24|G |
⌋
≤ b. Thus, in the case when |G | =

(
v+1
2

)2
, we get

⌊
4
√

6v
⌋
< b,

which implies that
4
√

6(v − 1) < b.

The discrepancy between 4 and 4
√

6, in this particular case, follows mainly

from the fact that the block set B4 constructed in Theorem 5.1.1 only has
(

v+1
2

)2
blocks, rather than

∑4
j=1

(
b
j

)
. This is due to the fact that some of

the potential “new” blocks in B4 are either empty (in which case they are

discarded) or else they reduce to already existing blocks. For example, the

intersection of two “left” blocks is again a “left” block and, similarly, the

intersection of two “right” blocks is again a “right” block. We also acknowledge

that some of the inequalities used in this example are quite crude and so

contribute to the discrepancy between 4 and 4
√

6.

We showed in Example 6.1.1 that, to some extent, the (G ,F )-KDPs gener-

ated from Theorem 5.3.7 are quite efficient in terms of the number of blocks re-

quired for their construction. Example 6.1.1 also demonstrates that the lower

bound on the number of blocks given by Theorem 6.1.4 can be reasonably

tight. On the other hand, with some more careful analysis of Theorem 6.1.4

and, in particular, Theorem 5.1.1, it should be possible to improve this lower

bound for |B|.
Although, in general, it is difficult to estimate the number of blocks in a

(G ,F )-KDP, there is a special case when this is possible. Specifically, we saw

in Section 3.2.1 that for a trivial G -KDP, K = (P,B,I ), it is possible to

estimate the number of blocks in K . That is, we obtained b = |B| ≥ |G |. In

fact, if we remove any redundancy from K then we obtain b = |B| = |G |.
Thus, if we are given any families G and F of non-empty subsets of a given

set P, then we can always construct an incidence structure K = (P,B,I )

that is a (G ,F )-KDP and has at most |G | blocks. This provides a natural
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upper bound on the number of blocks required for any “good” (G ,F )-KDP.

It also suggests an approach to estimating the number of blocks in a (G ,F )-

KDP. That is, to determine how close a given (G ,F )-KDP is to being trivial.

This is just what we do next. More precisely, we show that for w sufficiently

large relative to |G |, every (G , w)-KDP is “almost trivial”. This is not entirely

surprising, since we showed in Proposition 3.3.5 that for a (G , w)-KDP, K =

(P,B,I ), if w ≥ |B| then K is a trivial G -KDP and thus has at least |G |
blocks.

Lemma 6.1.6. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP and b <

(
w + 2

2

)

, then

∣
∣{G ∈ G : G = (x) for some x ∈ B}

∣
∣ ≥ |G | − w.

Proof. Let G ′ = {G ∈ G : G 6= (x) for any x ∈ B} and for every G ∈ G ′ set

Ḡ =
⋂

P∈G(P ). Our goal is to show that |G ′| ≤ w, but first we need to show

that for any distinct elements G′
0, G

′
1, . . . , G

′
i ∈ G ′, where |G′

j| ≥ |G′
i| for all

0 ≤ j ≤ i ≤ w, |Ḡ′
i \
⋃

0≤j<i Ḡ
′
j| ≥ w − i+ 1.

So suppose, in order to obtain a contradiction, that |Ḡ′
i\
⋃

0≤j<i Ḡ
′
j | ≤ w−i.

Then we can write Ḡ′
i\[Ḡ′

0∪Ḡ′
1∪· · ·∪Ḡ′

i−1] = {x1, x2, . . . , xk} for 1 ≤ k ≤ w−i.
Since G′

i ∈ G ′, for each 1 ≤ j ≤ k there exists a point Pj ∈ (xj) \ G′
i. On

the other hand, for each 0 ≤ j < i there exists a point Qj ∈ G′
j \ G′

i, since

|G′
j| ≥ |G′

i| and G′
j 6= G′

i.

Therefore,

Ḡ′
i ⊆ [Ḡ′

0 ∪ Ḡ′
1 ∪ · · · ∪ Ḡ′

i−1] ∪ Ḡ′
i \ [Ḡ′

0 ∪ Ḡ′
1 ∪ · · · ∪ Ḡ′

i−1]

= [Ḡ′
0 ∪ Ḡ′

1 ∪ · · · ∪ Ḡ′
i−1] ∪ {x1, x2, . . . , xk}

⊆ (Q0) ∪ (Q1) ∪ · · · ∪ (Qi−1) ∪ (P1) ∪ (P2) ∪ · · · ∪ (Pk),

which is not possible since {Q0, Q1, . . . , Qi−1, P1, P2, . . . , Pk} ∩ G′
i = ∅ and

i+ k ≤ w. Hence,
∣
∣
∣Ḡ′

i \
⋃

0≤j<i

Ḡ′
j

∣
∣
∣ ≥ w − i+ 1.
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Next we assume, in order to obtain a contradiction, that |G ′| > w. Then,

there exist w + 1 distinct elements G0, G1, . . . , Gw ∈ G ′ and, after possibly

reordering them, we may assume that |Gi| ≥ |Gi+1| for 0 ≤ i < w. Then,

∣
∣
∣

⋃

0≤i≤w

Ḡi

∣
∣
∣= |Ḡ0|+|Ḡ1\Ḡ0|+|Ḡ2\(Ḡ1∪Ḡ0)|+· · ·+|Ḡw\(Ḡw−1∪Ḡw−2∪· · ·∪Ḡ0)|

≥ (w+1) + w + (w−1) + · · · + 2 + 1 =
(w + 1)(w + 2)

2
=

(
w + 2

2

)

.

Hence, b ≥
∣
∣
∣

⋃

0≤i≤w

Ḡi

∣
∣
∣ ≥

(
w + 2

2

)

. However, b <

(
w + 2

2

)

so we have a

obtained a contradiction and thus |G ′| ≤ w.

Therefore,
∣
∣{G ∈ G : G = (x) for some x ∈ B}

∣
∣ = |G |−|G ′| ≥ |G |−w.

We now use Lemma 6.1.6 to obtain a lower bound on the total number of

blocks in a (G , w)-KDP. The inspiration for Theorem 6.1.7 comes from [73,

Theorem 3.6], where Quinn gave a lower bound of the same style for (t, w)-

KDPs.

Theorem 6.1.7. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then

b ≥ min

{

|G | − w,

(
w + 2

2

)}

.

Proof. Let a finite incidence structure K = (P,B,I ) be a (G , w)-KDP, for

w ≥ 1. In order to obtain a contradiction, suppose b < min
{
|G | − w,

(
w+2

2

)}
.

In particular, b <
(

w+2
2

)
, so by Lemma 6.1.6,

∣
∣{G ∈ G : G = (x) for some x ∈ B}

∣
∣ ≥ |G | − w.

Which gives a contradiction since

b ≥ |{x ∈ B : G = (x) for some G ∈ G }|
≥ |{G ∈ G : G = (x) for some x ∈ B}| ≥ |G | − w.

Theorem 6.1.7 shows that if
(

w+2
2

)
≥ |G | − w then the number of blocks

required for a (G , w)-KDP is only w fewer than the number of blocks required
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for a trivial G -KDP. So in this case we have a good estimate on the number

of blocks required for a (G , w)-KDP. However, in the case when |G | >> w2,

Theorem 6.1.7 does not provide a good lower bound (on the total number of

blocks required). We address this deficiency in our next theorem, which is

completely new.

Theorem 6.1.8. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then b ≥ log2

( |G |
⌈w/2⌉

)

.

Proof. If ⌈w/2⌉ = 1 then the result follows from Corollary 6.1.2. So we shall

only consider the case when k = ⌈w/2⌉ ≥ 2.

Let D = {X ∈ 2G : |X| = k}, let Ḡ =
⋂

P∈G(P ) for every G ∈ G

and let ϕ : D → 2B be defined by, ϕ({G1, G2, . . . , Gk}) = Ḡ1∆Ḡ2∆ · · ·∆Ḡk

(where ∆ denotes the symmetric difference). Note that ϕ is well-defined,

since if {G1, G2, . . . , Gk} = {G′
1, G

′
2, . . . , G

′
k} ∈ D then ϕ({G1, G2, . . . , Gk}) =

ϕ({G′
1, G

′
2, . . . , G

′
k}) (essentially, this follows from the fact that (2B,∆) is an

Abelian group).

We claim that ϕ is 1-to-1 on D. To this end, let us suppose, in order to ob-

tain a contradiction, that ϕ({G1, G2, . . . , Gk}) = ϕ({G′
1, G

′
2, . . . , G

′
k}) for some

{G1, G2, . . . , Gk} ∈ D and {G′
1, G

′
2, . . . , G

′
k} ∈ D such that {G1, G2, . . . , Gk} 6=

{G′
1, G

′
2, . . . , G

′
k}. Then, after cancelling out any common sets and possi-

bly relabelling, we obtain that {G1, G2, . . . , Gj} ∩ {G′
1, G

′
2, . . . , G

′
j} = ∅ and

Ḡ1∆Ḡ2∆ · · ·∆Ḡj = Ḡ′
1∆Ḡ

′
2∆ · · ·∆Ḡ′

j for some 1 ≤ j ≤ k. Note that if j = 1

then we are done, since if Ḡ1 = Ḡ′
1 then G1 = G′

1, by Remark 3.3.13, and so

{G1, G2, . . . , Gk} = {G′
1, G

′
2, . . . , G

′
k} in these cases.

So, we shall suppose that 2 ≤ j. Again, by relabelling and possibly inter-

changing the G′s with the G′′s, we may assume that

|G1| = min
{
|G′′| : G′′ ∈ {G1, G2, . . . , Gj, G

′
1, G

′
2, . . . , G

′
j}
}
.

Then, for every 2 ≤ i ≤ j there exist points Pi ∈ Gi \ G1 and P ′
i ∈ G′

i \ G1.
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Of course, there also exists a point P ′
1 ∈ G′

1 \G1. Now,

Ḡ1 ⊆ [Ḡ1∆(Ḡ2∆ · · ·∆Ḡj)] ∪ [Ḡ2 ∪ Ḡ3 ∪ · · · ∪ Ḡj]

= [Ḡ′
1∆Ḡ

′
2∆ · · ·∆Ḡ′

j ] ∪ [Ḡ2 ∪ Ḡ3 ∪ · · · ∪ Ḡj ]

⊆
⋃

1≤i≤j

Ḡ′
i ∪

⋃

2≤i≤j

Ḡi

⊆ (P ′
1) ∪ (P ′

2) ∪ · · · ∪ (P ′
j) ∪ (P2) ∪ (P3) ∪ · · · ∪ (Pj).

This contradicts the fact that K is a (G , w)-KDP, and therefore ϕ is indeed

1-to-1.

Hence,

( |G |
⌈w/2⌉

)

= |D| = |ϕ(D)| ≤ |2B| = 2b and so log2

( |G |
⌈w/2⌉

)

≤ b.

Theorem 6.1.8 is the best that we can do without imposing any constraints

on the set of privileged subsets.

6.2 Bounds for Sperner Systems

In this section we shall restrict our attention to the case when the families

of privileged subsets form a Sperner system. We shall see that under this

additional assumption, we are able to obtain better lower bounds on b than

in the previous section. Note that the special case of G = {G ∈ P : |G| ≤ t}
fails to form a Sperner system. However, if we were to set G ′ = {G ∈ P :

|G| = t} then G ′ ⊆ G and G ′ forms a Sperner system on P. Moreover, if

t+ w ≤ |P|, then we showed in Corollary 3.3.9 that if an incidence structure

K = (P,B,I ) is a (G ′, w)-KDP then K is a (t, w)-KDP. Hence, the case of

(t, w)-KDPs is indeed covered within this subsection.

For the purpose of clarity, we split this section into three subsections. In

the first subsection we generalise existing bounds. In the second we use a

version of Stirling’s approximation (Corollary 2.2.9) to further tighten these

generalised bounds. Finally, in our third subsection, we consider a theorem

of Füredi [34]. We use some techniques of Füredi in our own theorem and

explore some similar results by other authors.
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6.2.1 Generalised Bounds

The bounds that we present in this subsection are simple and explicit. Before

we can introduce them, however, we require two short lemmas.

Much work has been done on inequalities associated with CFFs (see, for

example [28, 78, 85] and [86]). As can be seen from the following lemma, our

studies (when the set of privileged subsets forms a Sperner system) converge

with those of CFFs.

Lemma 6.2.1. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP and G forms a Sperner system on P, then the set of common blocks,

S =
{⋂

P∈G(P ) : G ∈ G
}
, has the property that if S0, S1, . . . , Sw ∈ S and

S0 6∈ {S1, S1, . . . , Sw} then S0 6⊆
⋃w

k=1 Sk. (That is, S is a (1, w)-CFF.)

Proof. Suppose, in order to obtain a contradiction that there exists G0 ∈ G

and G1, G2, . . . , Gw ∈ G \ {G0} such that

⋂

P∈G0

(P ) ⊆
⋂

P∈G1

(P ) ∪
⋂

P∈G2

(P ) ∪ · · · ∪
⋂

P∈Gw

(P ).

Since G forms a Sperner system we know that for each 1 ≤ k ≤ w there exists

a point Pk ∈ Gk \G0. Then,

⋂

P∈G0

(P ) ⊆
⋂

P∈G1

(P ) ∪
⋂

P∈G2

(P ) ∪ · · · ∪
⋂

P∈Gw

(P ) ⊆ (P1) ∪ (P2) ∪ · · · ∪ (Pw),

which contradicts the fact that K is a (G , w)-KDP.

The following lemma enables us to employ Sperner’s theorem to estimate

the number of blocks required in a (G , w)-KDP in the case when the family of

privileged subsets G forms a Sperner system. Lemma 6.2.2 is implicit in [26,

Theorem 6].

Lemma 6.2.2. Let X be a set and S ⊆ 2X. If S is a (1, w)-CFF, then

S ′ =

{
⋃

1≤k≤w

Sk : S1, S2, . . . , Sw ∈ S and Si 6= Sj for i 6= j

}

forms a Sperner system on X.
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Proof. If |S| < w then there is nothing to prove since S ′ = ∅ in this case.

So let us assume that |S| ≥ w. Let us also assume, in order to obtain a

contradiction, that S ′ is not a Sperner system on X. Then there exist distinct

sets S1, S2, . . . , Sw ∈ S and S ′
1, S

′
2, . . . , S

′
w ∈ S such that

{S1, S2, . . . , Sw} 6= {S ′
1, S

′
2, . . . , S

′
w} and

⋃

1≤k≤w

Sk ⊆
⋃

1≤k≤w

S ′
k.

Now, there must exist some 1 ≤ j ≤ w such that Sj 6∈ {S ′
1, S

′
2, . . . , S

′
w} for

otherwise {S1, S2, . . . , Sw} ⊆ {S ′
1, S

′
2, . . . , S

′
w} and in this case we would have

{S1, S2, . . . , Sw} = {S ′
1, S

′
2, . . . , S

′
w}, as both sets have cardinality w.

Then, Sj ⊆
⋃

1≤k≤w S
′
j, which contradicts the fact that S is a (1, w)-CFF.

Therefore, S ′ must indeed be a Sperner system on X.

The following theorem uses Result 2.2.7 to generalise [26, Theorem 6] and

[73, Theorem 3.4] from (t, w)-KDPs to (G , w)-KDPs where the set of privileged

subsets forms a Sperner system.

Theorem 6.2.3. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP and G forms a Sperner system on P, then

b ≥ log2

(|G |
w

)

+ 1.

Proof. From Lemma 6.2.2 and Lemma 6.2.2 we know that

S =

{
⋃

1≤k≤w

⋂

P∈Gk

(P ) : G1, G2, . . . , Gw ∈ G and Gi 6= Gj for i 6= j

}

forms a Sperner system. Therefore, from Result 2.2.7 and Result 2.2.5

(Sperner’s Theorem), we have

|S| ≤
(

b

⌊b/2⌋

)

≤ 2b−1.

So,

(|G |
w

)

≤ 2b−1 and hence, b ≥ log2

(|G |
w

)

+ 1.
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The following corollary demonstrates an immediate consequence of this

theorem.

Corollary 6.2.4. If a finite incidence structure K = (P,B,I ) on v points

is a (t, w)-KDP and t+ w ≤ v, then

b ≥ max

{

log2

((v
t

)

w

)

, log2

((v
w

)

t

)}

+ 1.

Proof. It follows from Theorem 6.2.3 that b ≥ log2

((v
t

)

w

)

+ 1. However, we

also know from Theorem 5.1.31 that the complement of K is a (w, t)-KDP on

b blocks. Therefore, from Theorem 5.1.31, b ≥ log2

((v
w

)

t

)

+ 1 and the result

follows.

In order to fully exploit Corollary 6.2.4 it is necessary to understand the

precise relationship between

((v
t

)

w

)

and

((v
w

)

t

)

.

Theorem 6.2.5. If 1 ≤ w ≤ t < v are natural numbers, then

((v
t

)

w

)

≤
((v

w

)

t

)

.

Despite its simplicity, the proof of Theorem 6.2.5 (also given in [61]) is long

and cumbersome. However, the result is new and potentially of independent

interest. Therefore, in order to avoid derailing the flow of the thesis, we have

omitted the proof of Theorem 6.2.5 in favour of including it in Appendix A.

We can now deduce the following corollary, motivated by [86, Lemma 2.4].

Corollary 6.2.6. If a finite incidence structure K = (P,B,I ) on v points

is a (t, t)-KDP and 2t ≤ v, then

b ≥ 2 log2

((v−1
t−1

)

t

)

+ 2.

Proof. Let K = (P,B,I ) be a finite incidence structure on v points and for

some arbitrary point P ∈ P, let KP= (PP ,BP ,IP ) be the internal structure

of K at P and let K P= (PP ,BP ,I P ) be the external structure of K at P .
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Now, b = bP +bP and if K is a (t, w)-KDP on v points, then KP is a (t−1, w)-

KDP (Corollary 5.1.11) and K P is a (t, w− 1)-KDP (Corollary 5.1.23), both

on v − 1 points. Since K is a (t, t)-KDP, it follows from Corollary 6.2.4 and

Theorem 6.2.5 that,

b = bP + bP ≥ log2

((v−1
t−1

)

t

)

+ 1 + log2

((v−1
t−1

)

t

)

+ 1

= 2 log2

((v−1
t−1

)

t

)

+ 2

and the proof is complete.

6.2.2 Tightening the Bounds

Using Corollary 2.2.9 we can improve further upon our previous bounds on

the total number of blocks required for a (G , w)-KDP. For example, from

Theorem 6.2.3 we know that if a finite incidence structure K = (P,B,I ) is

a (G , w)-KDP and G forms a Sperner system on P, then

b ≥ log2

(|G |
w

)

+ 1 = log2

[

2

(|G |
w

)]

.

Now, using Corollary 2.2.9 we can improve upon this bound:

log2

(|G |
w

)

≤ log2

(
b

⌊b/2⌋

)

< b− 1

2
log2

(π

2
b
)

.

Therefore,

b > log2

(|G |
w

)

+
1

2
log2

(π

2
b
)

> log2

(|G |
w

)

+
1

2
log2

[
π

2

(

log2

[

2

(|G |
w

)])]

.

This new bound comes directly from substituting in the bound from The-

orem 6.2.3 and it can be easily verified that if
(
|G |
w

)
≥ 4 then we have a better

bound than that from Theorem 6.2.3.

In fact, we can continue substituting in bounds for b to get better bounds

at each substitution. Unfortunately, this gets messy quite quickly and the

improvements to the bound diminish rapidly.
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However, if we really wanted to “squeeze the pips” out of this approach,

we could inductively define a sequence by

a1 = log2

[

2

(|G |
w

)]

and an+1 = log2

(|G |
w

)

+
1

2
log2

(π

2
an

)

.

Then, a2 = log2

(|G |
w

)

+
1

2
log2

[
π

2

(

log2

[

2

(|G |
w

)])]

and

an+1 − an =
1

2

[

log2

(π

2
an

)

− log2

(π

2
an−1

)]

=
1

2

[

log2

an

an−1

]

≥ 0, if
an

an−1
≥ 1.

Clearly a2 ≥ a1 if
(
|G |
w

)
≥ 4 and, inductively, if an ≥ an−1 then an+1 ≥ an, so

the sequence is increasing for all n, and is bounded above by b, so convergent.

However, for the reasons stated earlier, we have chosen not to pursue these

bounds any further.

6.2.3 Bounds using Techniques of Füredi

In this subsection, we modify a proof technique of Füredi in order to improve

upon some of our bounds from Subsection 6.2.1 and Subsection 6.2.2 (for

(G , w)-KDPs with |G | large).

As demonstrated by Lemma 6.2.1, CFFs are intimately connected to the

study of (G , w)-KDPs. Of particular interest to us is the calculation of the

smallest possible cardinality of any set X that admits a w-CFF. There have

been many results on this topic. However, we will focus our attention on a

result of Füredi, [34], which although not the best bound in the literature, it

is the simplest and easiest to apply in the setting of (G , w)-KDPs. So, next

we will present the result from [34] in the setting of (G , w)-KDPs and give the

full details of the proof. We also give an explicit formula for the error term,

which is not given in [34].
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Theorem 6.2.7. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, where 2 ≤ w ≤ b and G forms a Sperner system on P, then

log2 |G |
b

<
4 log2(w) +H(w, b)

w2

where H(w, b) =
w2

b

[

3 log2(w) + log2

(e

2

)]

+ 2 log2

(e

2

)

.

Proof. Firstly let

t =
⌈

(b− w)/

(
w + 1

2

)⌉

and note that b/2 ≥ t > 0.

Let S =
{⋂

P∈G(P ) : G ∈ G
}
, then |G | = |S| since the mapping G →

⋂

P∈G(P ) is 1-to-1 (Remark 3.3.13) and no set S ∈ S is contained in the

union of w other members of S (Lemma 6.2.1).

Next define St ⊆ S as the family of members of S having their own t-subset.

That is, St = {S ∈ S : there exists a t-element set T ⊆ S such that T 6⊆
S ′ for any other S ′ ∈ S}.

Let T be the family of these t-subsets, let S0 = {S ∈ S : |S| < t} and let

R be the family of t-sets containing a member of S0, that is,

R = {R ∈ 2B : |R| = t and S ⊆ R for some S ∈ S0}.

Since no set S ∈ S is contained in any other member of S (i.e. S forms a

Sperner system), T and R are disjoint. Moreover, from Result 2.2.6 we have

|S0| ≤ |R|. From this it follows that

|S0 ∪ St| = |S0| + |St| ≤ |R| + |T | = |R ∪ T | ≤
(
b

t

)

.

Let S ′ = S \ (S0 ∪St). We will eventually show that |S ′| ≤ w, but first we

will show that for any distinct elements S ′
0, S

′
1, . . . , S

′
i ∈ S ′ where i ≤ w,

|S ′
i \

⋃

0≤j<i

S ′
j | ≥ t(w − i) + 1.

In order to obtain a contradiction, we shall suppose that |S ′
i \
⋃

0≤j<i S
′
j | ≤

t(w−i). Now, since S ′
i 6∈ S0, we know that |S ′

i| ≥ t. Therefore, there exist some
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t-element subsets {Ti+1, T1+2, . . . , Tw} of S ′
i such that S ′

i \ [S ′
0 ∪ S ′

1 ∪ · · · ∪ S ′
i−1]

⊆
⋃

i<j≤w Tj ⊆ S ′
i. Since S ′

i 6∈ St for each i < j ≤ w, there exists an Sj ∈
S such that Tj ⊆ Sj . Therefore, S ′

i \ [S ′
0 ∪ S ′

1 ∪ · · · ∪ S ′
i−1] ⊆

⋃

i<j≤w Tj ⊆
⋃

i<j≤w Sj and so S ′
i ⊆

⋃
{Sj : 0 ≤ j ≤ w and j 6= i}, which is a contradiction

since no set S ∈ S is contained in the union of w other members of S.

Next we assume, in order to obtain another contradiction, that |S ′| > w.

Then, there exist w + 1 distinct elements S0, S1, . . . , Sw ∈ S ′ and we have

∣
∣
∣

⋃

0≤i≤w

Si

∣
∣
∣= |S0|+|S1\S0|+|S2\(S1∪S0)|+· · ·+|Sw\(Sw−1∪Sw−2∪· · ·∪S0)|

≥ (tw+1) + (t(w−1)+1) + (t(w−2)+1) + · · ·+ (2t+1) + (t+1)

= tw + t(w−1) + t(w−2) + · · ·+ 2t+ t+ (w+1)

= (w+1) +
tw(w + 1)

2
= (w+1) + t

(
w + 1

2

)

= (w+1) +

⌈

(b− w)
/
(
w + 1

2

)⌉(
w + 1

2

)

≥ b+ 1.

So, b ≥
∣
∣
∣

⋃

0≤i≤w

Si

∣
∣
∣ ≥ b+ 1 and we have a contradiction, therefore |S ′| ≤ w.

Now, |G | = |S| = |S0 ∪ St| + |S ′| ≤
(
b

t

)

+ w for t =
⌈
(b− w)

/
(
w + 1

2

)
⌉
.

So, |G | ≤ w +

(
b

⌈
(b− w)

/(
w+1

2

)⌉

)

.

Also, since

1. log2(w + x) ≤ log2(w) + log2(x) = log2(wx), if 2 ≤ w ≤ x, and

2. (b− w)
/
(
w + 1

2

)

=
2(b− w)

w(w + 1)
≤ 2b

w2
≤ b

2
,

it follows that

log2 |G | ≤ log2w + log2

(
b

⌈
(b− w)

/(
w+1

2

)⌉

)

≤ log2w + log2

(
b

⌈
2b
/
w2
⌉

)

.

Now, from Stirling’s approximation [87, page 253],

(
n

r

)

≤ nr

r!
<
(en

r

)r

.
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Therefore,

log2 |G | < log2w + log2






(

eb
⌈
2b/w2

⌉

)
⌈
2b/w2

⌉




≤ log2w + log2





(
eb

2b/w2

)
⌈
2b/w2

⌉



≤ log2w + log2

[e

2
w2
]( 2b

w2
+1)

= log2w +

(
2b

w2
+ 1

)[

2 log2w + log2

(e

2

)]

= log2w +

(
4b

w2
+ 2

)[

log2w +
1

2
log2

(e

2

)]

=
4b

w2
log2w + 3 log2w +

(
2b

w2
+ 1

)

log2

(e

2

)

=
b

w2

[

4 log2w +
3w2

b
log2w +

(

2 +
w2

b

)

log2

(e

2

)]

.

Hence,
log2 |G |

b
<

4 log2(w) +H(w, b)

w2

where H(w, b) =
w2

b

[

3 log2(w) + log2

(e

2

)]

+ 2 log2

(e

2

)

.

We now show that for large b, the quantity H(w, b) from Theorem 6.2.7 is

small.

Remark 6.2.8. For fixed w ≥ 2,

lim
b→∞

H(w, b) = lim
b→∞

w2

b

[

3 log2(w) + log2

(e

2

)]

+ 2 log2

(e

2

)

= 2 log2

(e

2

)

< 1.

We may recall from Section 6.1 that for a (G , w)-KDP, K , if |G | ≈ w2/2,

then K is “almost” trivial. We next use the proof techniques of Füredi in

order to improve upon Theorem 6.1.7, under the additional assumption that

the set of privileged subsets forms a Sperner system. Note that, as with

Theorem 6.1.7, Theorem 6.2.9 is written in the style of [73, Result 3.6].
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Theorem 6.2.9. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP and G forms a Sperner system on P, then

b ≥ min

{

|G |,
(
w + 2

2

)}

.

Proof. In order to obtain a contradiction, suppose b < min

{

|G |,
(
w + 2

2

)}

.

For every G ∈ G let Ḡ =
⋂

P∈G(P ) and let

G1 =
{

G ∈ G : Ḡ \
⋃

{Ḡ′ : G′ ∈ G and G′ 6= G} 6= ∅
}

.

Then, for each G ∈ G1 choose xG ∈ Ḡ \
⋃
{Ḡ′ : G′ ∈ G and G′ 6= G}. The

mapping G → xG, from G1 into B is 1-to-1, so |G1| = |{xG : G ∈ G1}| ≤ b.

Since b < |G |, we know that |G1| < |G |. Hence, G ′ = G \ G1 6= ∅. For each

G′ ∈ G ′, Ḡ′ ∩ {xG : G ∈ G1} = ∅ and, as we shall show next, |Ḡ′| ≥ w + 1.

To see that |Ḡ′| ≥ w + 1, we proceed indirectly, that is, we suppose that

|Ḡ′| ≤ w. Therefore, Ḡ′ = {x1, x2, . . . , xk} for k ≤ w. Since G′ ∈ G ′, for each

1 ≤ j ≤ k there exists a Gj 6= G′ such that xj ∈ Ḡj . However, as G forms a

Sperner system on P, there exists a point Pj ∈ Gj \ G′ for each 1 ≤ j ≤ k.

Therefore,

Ḡ′ = {x1, x2, . . . , xk} ⊆ Ḡ1 ∪ Ḡ2 ∪ · · · ∪ Ḡk ⊆ (P1) ∪ (P2) ∪ · · · ∪ (Pk)

and we have a contradiction since k ≤ w. Now,

b ≥ |Ḡ′ ∪ {xG : G ∈ G1}| = |Ḡ′| + |{xG : G ∈ G1}|

= |Ḡ′| + |G1| ≥ (w + 1) + |G1|.

That is, |G1| ≤ b− (w + 1) and hence

|G ′| = |G \ G1| = |G | − |G1| > b− |G1| ≥ b− [b− (w + 1)] = w + 1.

We will now show that for any distinct elements G′
0, G

′
1, . . . , G

′
i ∈ G ′,

with i ≤ w, |Ḡ′
i \
⋃

0≤j≤i−1 Ḡ
′
j| ≥ w − i + 1. Suppose, in order to ob-

tain a contradiction, that |Ḡ′
i \
⋃

0≤j≤i−1 Ḡ
′
j| ≤ w − i. Then, we can write
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Ḡ′
i \ [Ḡ′

0 ∪ Ḡ′
1 ∪ · · · ∪ Ḡ′

i−1] = {x1, x2, . . . , xk} for 1 ≤ k ≤ w − i. Since

G′
1 ∈ G ′, for 1 ≤ j ≤ k there exists a G′

j ∈ G such that xj ∈ Ḡ′
j. For each

1 ≤ j ≤ k choose Pi+j ∈ G′
i+j \ G′

i. Now, for each 0 ≤ j < i there exists a

point Pj ∈ G′
j \G′

i, since G forms a Sperner system on P. Therefore,

Ḡ′
i ⊆ [Ḡ′

0 ∪ Ḡ′
1 ∪ · · · ∪ Ḡ′

i−1] ∪ Ḡ′
i \ [Ḡ′

0 ∪ Ḡ′
1 ∪ · · · ∪ Ḡ′

i−1]

= [Ḡ′
0 ∪ Ḡ′

1 ∪ · · · ∪ Ḡ′
i−1] ∪ {x1, x2, . . . , xk}

⊆ (P0) ∪ (P1) ∪ · · · ∪ (Pi−1) ∪ (Pi+1) ∪ (Pi+2) ∪ · · · ∪ (Pi+k).

This gives a contradiction since {P0, P1, . . . Pi−1, Pi+1, Pi+2, . . . , Pi+k}∩G′
i = ∅

and i+ k ≤ w. Therefore, |Ḡ′
i \
⋃

0≤j≤i−1 Ḡ
′
j| ≥ w − i+ 1.

Now, from earlier we recall that |G ′| > w+ 1. Therefore, there exist w+ 1

distinct elements G0, G1, . . . , Gw ∈ G ′ and
∣
∣
∣

⋃

0≤i≤w

Ḡi

∣
∣
∣= |Ḡ0|+|Ḡ1\Ḡ0|+|Ḡ2\(Ḡ1∪Ḡ0)|+· · ·+|Ḡw\(Ḡw−1∪Ḡw−2∪· · ·∪Ḡ0)|

≥ (w+1) + w + (w−1) + · · · + 2 + 1 =
(w + 1)(w + 2)

2
=

(
w + 2

2

)

.

Hence, b ≥
∣
∣
∣

⋃

0≤i≤w

Ḡi

∣
∣
∣ ≥

(
w + 2

2

)

. However, b <

(
w + 2

2

)

so we have obtained

a contradiction and thus b ≥ min

{

|G |,
(
w + 2

2

)}

.

From this latest theorem we see that if an incidence structure K is a

(G , w)-KDP, and |G | ≤
(
w + 2

2

)

, then the number of blocks in K is at least

as many as in a trivial G -KDP. Hence, in these situations, the best, (in the

sense of the least number of blocks) that we can achieve is via a trivial G -KDP.

Similar results to Theorem 6.2.7 have been obtained by other authors in

the case of (t, w)-KDPs, see [25, 78, 86]. In particular, Stinson, Wei and Zhu

[86] give the following bound on b for (1, w)-KDPs.

Result 6.2.10. [86, Theorem 1.1] For any (1, w)-KDP on v points, where

w ≥ 2,

b ≥ c
w2

log2w
log2 v for some constant c.
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In fact, Stinson et al. suggest that the constant c may be approximately

1/2 for any w ≥ 2. This compares favourably to Theorem 6.2.7 in which

the error term, H(w, b), is dependent upon w. However, there appears to be

an oversight in Result 6.2.10, as the only non-negative constant c that makes

Result 6.2.10 true for any w ≥ 2 is c = 0. This is demonstrated in the following

example.

Example 6.2.1. For each b ∈ N, where b ≥ 3, let Bb be any finite set of b

elements, let Pb = {{x} : x ∈ Bb} and let (P, x) ∈ Ib if, and only if, P = {x}.
Then, the finite incidence structure Kb = (Pb,Bb,Ib) is a (1, w)-KDP on v

points, where v = b and w = b− 1.

If, b ≥ c
w2

log2w
log2 v, holds for Kb, then

b ≥ c
(b− 1)2

log2(b− 1)
log2 b ⇒ b ≥ c(b− 1)2 ⇒ c ≤ b

b2 − 2b+ 1
.

Therefore, c = 0 is the only constant for which b ≥ c
w2

log2w
log2 v holds for all

the incidence structures Kb, since lim
b→∞

b

b2 − 2b+ 1
= 0.

Later, in [86, Theorem 3.2], the constant from Result 6.2.10 is used induc-

tively. Unfortunately, c = 0 renders [86, Theorem 3.2] trivial. On the other

hand, for v large relative to w, Theorem 6.2.10 holds and, as such (with some

alterations to the proof), Theorem 3.2 in [86] can be partially resurrected.

6.3 Internal and External Bounds

In this section we use our earlier bounds on the total number of blocks in a

(G ,F )-KDP, K , in order to estimate, among other things, the number of

blocks incident with each point of K . The way that we accomplish this is by

considering the internal and external structures of a given (G ,F )-KDP.

We first restate (using our new notation) a bound from Chapter 5 (Corol-

lary 5.1.29) which was obtained by using both the internal and external struc-

ture of a given incidence structure.
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Theorem 6.3.1. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP where 2 ≤ |G| < |P| for all G ∈ G and w ≥ 2, then for each P ∈ P

log2 |{G ∈ G : P ∈ G}| < r(P ) < b− log2 |{G ∈ G : P 6∈ G}|.

Our next result in this direction improves upon Theorem 6.3.1.

Proposition 6.3.2. If a finite incidence structure K = (P,B,I ) is a

(G , w)-KDP, where 2 ≤ |G| < |P| for all G ∈ G and w ≥ 2, then for

each P ∈ P,

log2

( |GP |
⌈w/2⌉

)

≤ r(P ) ≤ b− log2

( |G P |
⌈(w−1)/2⌉

)

,

where GP = {G ∈ G : P ∈ G} and G P = {G ∈ G : P /∈ G}.

Proof. We know from Corollary 5.1.10 that KP = (PP ,BP ,IP ) is a (G ′
P , w)-

KDP, where G ′
P = {G\{P} : P ∈ G ∈ G }. We also know from Corollary 5.1.22

that K P = (PP ,BP ,I P ) is a (G P , w−1)-KDP, since G P = {G ∈ G : G ⊆
PP} = {G ∈ G : P /∈ G}. Now, from Theorem 6.1.8 we have

bP ≥ log2

( |G ′
P |

⌈w/2⌉

)

and bP ≥ log2

( |G P |
⌈(w−1)/2⌉

)

.

Since r(P ) = bP = b− bP , the result follows.

If the set of privileged subsets forms a Sperner system then we may further

improve upon this bound.

Proposition 6.3.3. If a finite incidence structure K = (P,B,I ) is a

(G , w)-KDP, where 2 ≤ |G| < |P| for all G ∈ G , w ≥ 2 and G forms a

Sperner system on P, then for each P ∈ P,

log2

(|GP |
w

)

+ 1 ≤ r(P ) ≤ b− log2

( |G P |
w − 1

)

− 1,

where GP = {G ∈ G : P ∈ G} and G P = {G ∈ G : P /∈ G}.
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Proof. As with Proposition 6.3.2, KP = (PP ,BP ,IP ) is a (G ′
P , w)-KDP,

where G ′
P = {G\{P} : P ∈ G ∈ G } and K P = (PP ,BP ,I P ) is a (G P , w−1)-

KDP. Since, G forms a Sperner system on P, GP forms a Sperner system on

PP and G P forms a Sperner system on PP . From Theorem 6.2.3 we have

bP ≥ log2

(|G ′
P |
w

)

+ 1 and bP ≥ log2

( |G P |
w − 1

)

+ 1.

Since r(P ) = bP = b− bP , the result follows.

By generalising the notion of an internal structure we are able to calculate

lower bounds on the number of blocks incident with every point in a given set

of points.

Definition 6.3.4. Let K = (P,B,I ) be a finite incidence structure. Then,

for any set of points ∅ 6= X ⊆ P we define KX , the internal structure of

K at X to be KX= (PX ,BX ,IX), where BX =
⋂

P∈X(P ), PX = (BX)\X,

and for any P ∈ PX and x ∈ BX , (P, x) ∈ IX, if, and only if, (P, x) ∈ I .

Thus, for the internal structure KX of a finite incidence structure K =

(P,B,I ) at ∅ 6= X ⊆ P, |BX | =
∣
∣
⋂

P∈X(P )
∣
∣. Hence, the problem of

calculating the number of blocks incident with every point in a given set of

points X reduces to the problem of calculating b in an appropriate internal

structure. Before we can do this, we first show that the internal structure of a

(G ,F )-KDP at a set X is a (G ′,F ′)-KDP for some G ′ and F ′. Theorem 6.3.5

is a generalisation of Theorem 5.1.9 however, its proof is completely analogous

and so is not presented here.

Theorem 6.3.5. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for every ∅ 6= X ⊆ P, KX= (PX ,BX ,IX) is a (GX ,FX)-

KDP where, GX = {G \ X : X ⊆ G ∈ G and ∅ 6= G \ X ⊆ PX} and

FX = {F ∩ PX : X ∩ F = ∅ and F ∩ PX 6= ∅}.

The following corollary is for the special case when F consists of all the

subsets of P of cardinality at most w.
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Corollary 6.3.6. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, where w ≥ 1 and |G| < |P| for all G ∈ G , then for every ∅ 6= X ⊆ P,

KX= (PX ,BX ,IX) is a (GX , w)-KDP where, GX = {G \X : X $ G ∈ G }.

We can now calculate a lower bound on the number of blocks incident with

every point in a given set of points.

Theorem 6.3.7. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, where w ≥ 1 and |G| < |P| for all G ∈ G , then for any ∅ 6= X ⊆ P,

∣
∣
∣
∣
∣

⋂

P∈X

(P )

∣
∣
∣
∣
∣
≥ log2

( |GX |
⌈w/2⌉

)

, where GX = {G ∈ G : X $ G}.

Proof. We already know from Corollary 6.3.6 that KX= (PX ,BX ,IX) is a

(G ′
X , w)-KDP where, G ′

X = {G \X : X $ G ∈ G }. Then, from Theorem 6.1.8

we have

bX ≥ log2

( |G ′
X|

⌈w/2⌉

)

and the result follows.

If G forms a Sperner system on P, then G ′
X forms a Sperner system on

PX and we can improve upon this bound using Theorem 6.2.3.

Theorem 6.3.8. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, where w ≥ 1 , |G| < |P| for all G ∈ G and G forms a Sperner system

on P, then for any ∅ 6= X ⊆ P,
∣
∣
∣
∣
∣

⋂

P∈X

(P )

∣
∣
∣
∣
∣
≥ log2

(|GX |
w

)

+ 1, where GX = {G ∈ G : X $ G}.

Now, by generalising the notion of an external structure we are able to

calculate upper bounds on the number of blocks incident with any point in a

given set of points.

Definition 6.3.9. Let K = (P,B,I ) be a finite incidence structure. Then,

for any set of points ∅ 6= X ⊆ P we define K X , the external structure
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of K at X to be K X= (PX ,BX ,I X), where BX = B \⋃P∈X(P ), PX =

(BX), and for any P ∈ PX and x ∈ BX , (P, x) ∈ I X , if, and only if,

(P, x) ∈ I .

Thus, for the external structure K X of a finite incidence structure K =

(P,B,I ) at ∅ 6= X ⊆ P, |BX | = b −
∣
∣
⋃

P∈X(P )
∣
∣. Hence, the problem

of calculating the number of blocks not incident with any point in a given

subset of points, X, reduces to the problem of calculating b in an appropriate

external structure. Before we can do this, we first show that the external

structure of a (G ,F )-KDP at a set X is a (G ′,F ′)-KDP for some G ′ and

F ′. Theorem 6.3.10 is a generalisation of Theorem 5.1.21, however its proof

is completely analogous and is not presented here.

Theorem 6.3.10. If a finite incidence structure K = (P,B,I ) is a (G ,F )-

KDP, then for every ∅ 6= X ⊆ P, K X= (PX ,BX ,I X) is a (G X ,F X)-

KDP, where

G X = {G ∈ G : G ⊆ PX} and

F X = {F ∩ PX : X ⊆ F ∈ F and F ∩ PX 6= ∅}.

The following corollary is for the special case when F consists of all the

subsets of P of cardinality at most w.

Corollary 6.3.11. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then for every ∅ 6= X ⊆ P, where |X| < w, K X= (PX ,BX ,I X) is

a (G X , w − |X|)-KDP, where G X = {G ∈ G : G ∩X = ∅}.

We can now calculate an upper bound on the number of blocks incident

with any point in a given set of points.

Theorem 6.3.12. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP, then for any ∅ 6= X ⊆ P where |X| < w,
∣
∣
∣
∣
∣

⋃

P∈X

(P )

∣
∣
∣
∣
∣
≤ b− log2

( |G X |
⌈w−|X|

2

⌉

)

, where G
X = {G ∈ G : G ∩X = ∅}.
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Proof. We already know from Corollary 6.3.11 that K X= (PX ,BX ,I X) is a

(G X , w−|X|)-KDP, since G X = {G ∈ G : G ⊆ PX} = {G ∈ G : G∩X = ∅}.
Then, from Theorem 6.1.8 we have

bX ≥ log2

( |G X |
⌈w−|X|

2
⌉

)

and the result follows.

If G forms a Sperner system on P, then G X forms a Sperner system on

PX and we can improve upon this bound using Theorem 6.2.3.

Theorem 6.3.13. If a finite incidence structure K = (P,B,I ) is a (G , w)-

KDP and G forms a Sperner system on P, then for any ∅ 6= X ⊆ P where

|X| < w,

∣
∣
∣
∣
∣

⋃

P∈X

(P )

∣
∣
∣
∣
∣
≤ b− log2

( |G X |
w − |X|

)

− 1, where G
X = {G ∈ G : G ∩X = ∅}.

As mentioned at the beginning of Section 6.1, we have been unable to ob-

tain any bounds on the total number of blocks in a completely general (G ,F )-

KDP. However, throughout this chapter we have obtained several bounds on

the total number of blocks in a (G , w)-KDP. We know from Theorem 5.1.31

that the complement of a (G ,F )-KDP on b blocks is a (F ,G )-KDP on b

blocks. Therefore, all our bounds on the number of blocks in a (G , w)-KDP

apply equally to a (t,F )-KDP, but we have not specified these bounds indi-

vidually.
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Chapter 7

Summary and Future Work

In this chapter we summarise the main contributions of this thesis and high-

light areas of future study that follow from our work.

7.1 Summary

Throughout this thesis we have investigated a notion of generalised key distri-

bution patterns, defined as (G ,F )-KDPs in Definition 3.1.1, and studied the

mathematics behind them. Our first results on (G ,F )-KDPs were given in

Chapter 3 and concerned their most basic properties. In investigating these

basic properties we found some unexpected consequences. For example, it is

possible that:

1. for some privileged subsets G ∈ G in a (G ,F )-KDP there may be no

shared blocks, that is, |
⋂

P∈G(P )| = 0;

2. for some G′ ( G ∈ G in a (G ,F )-KDP there may exist an F ∈ F such

that
⋂

P∈G′(P ) ⊆
⋃

Q∈F (Q). In particular, there is a (G , w)-KDP where

G = {G ∈ 2P : |G| = t}, that is not a (t, w)-KDP (see Example 3.3.1).

We also investigated the concepts of complete security and complete com-

munication. That is, the case in which
⋂

P∈G(P ) 6⊆
⋃

Q∈P\G(Q) for every

G ∈ G and the case in which
⋂

P∈P\F (P ) 6⊆
⋃

Q∈F (Q) for every F ∈ F .
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These cases correspond precisely to trivial G -KDPs and cotrivial F -KDPs

respectively.

In Chapter 4 we considered a predefined incidence structure, K , and in-

vestigated all possible sets of privileged and forbidden subsets for which K

is a (G ,F )-KDP. Firstly, we addressed the points and blocks that play no

role in a (G ,F )-KDP. We analysed concepts of redundancy and introduced

techniques for eliminating redundancy from existing (G ,F )-KDPs. Secondly,

we attempted to find the largest possible set of privileged and forbidden sub-

sets for which K is a (G ,F )-KDP. To this end, we observed the trade-off

between the size of the set of privileged subsets and the size of the set of for-

bidden subsets and defined a partial ordering. Finally, we showed that there

is, in general (according to our ordering) no largest (G ,F )-KDP for a given

incidence structure, instead there are many distinct maximal (G ,F )-KDPs.

In Chapter 5, we began by considering some of the standard operations

that may be applied to incidence structures and we examined their effect on

the corresponding (G ,F )-KDPs. In particular, we considered the operations

of internal structures, external structures and complement structures. We also

generalised some of the constructions of Mitchell and Piper [60], from (t, w)-

KDPs to (G ,F )-KDPs. Lastly, we provided a new method for constructing

(G ,F )-KDPs. Notably this method of construction gives rise to (G ,F )-KDPs

that are far from being (t, w)-KDPs. Moreover, it appears that this construc-

tion can be generalised to apply to other abstract finite convex structures,

such as those found in [27]. Since the calculations of |G |, |F |, |B| and |P|
are straightforward for these constructions, they may be used as “test cases”

for some of our theorems, particularly those concerning the number of blocks

in a (G ,F )-KDP.

In Chapter 6 we examined the efficiency of (G ,F )-KDPs, more specifically,

we considered the size of the block set of a (G ,F )-KDP. We were able to obtain

153



several lower bounds for the number of blocks required for a given (G ,F )-

KDP. In the cases when the set of privileged subsets in a (G ,F )-KDP forms

a Sperner system, we were able to obtain similar results to those obtained for

(t, w)-KDPs. However, in the cases when the set of privileged subsets in a

(G ,F )-KDP do not form a Sperner system, we had to work harder in order

to obtain any results. As a consequence of these investigations, we were also

able to find lower bounds on the number of blocks in a given (G ,F )-KDP

that are incident with (i) a single point, or (ii) a set of points. These results

also enabled us to estimate the number of blocks in a given (G ,F )-KDP

that are not incident with (i) a single point, or (ii) a set of points. Some of

these estimates have consequences for other theorems, such as Theorem 5.2.3,

Theorem 5.2.6, Theorem 5.1.1 and Theorem 5.1.4, (also see Section 7.2).

7.2 Future Work

Two of the most important problems in our study of (G ,F )-KDPs remain

open:

1. The problem of constructing efficient (G ,F )-KDPs (that is, (G ,F )-

KDPs in which the number of blocks is minimised) for given families of

privileged and forbidden subsets.

2. The problem of calculating good lower bounds on the number of blocks

in a general (G ,F )-KDP, that is, a (G ,F )-KDP where there are no

constraints on the sets of privileged and forbidden subsets.

7.2.1 Open Problems

We now present some specific open problems that follow directly from our

work. These problems are related to the two main open problems detailed

above.
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Problem 1. Given a set of points P and families of non-empty subsets, G

and F of P, construct an incidence structure K = (P,B,I ) such that K

is a (G ,F )-KDP and

|B| /
∣
∣{(G,F ) ∈ G × F : G ∩ F = ∅}

∣
∣

is as small as possible.

Thus far, the only construction that we have been able to achieve that has

shown any promise in this direction is Theorem 5.3.7.

Problem 2. For a given (G ,F )-KDP, K = (P,B,I ), calculate a “good”

lower bound for |B|.

As previously mentioned, we have been unable to obtain any lower bounds

on the number of blocks in a (G ,F )-KDP unless we impose additional con-

straints on the sets of privileged and forbidden subsets.

Our most general result so far was given in Theorem 6.1.1, where we showed

that |B| ≥ log2 |G | for (G ,F )-KDPs that satisfy a relatively mild restriction

on F . This contrasts with the situation in Chapter 6 where we obtained good

bounds for |B| in the case of (G , w)-KDPs.

Problem 3. Is it possible to extend Theorem 5.3.7 (our direct construction

that uses a discrete analogue of convexity) to construct (G ,F )-KDPs using

other finite convex geometries?

There is a large literature on finite convex geometries, see [27] and the

references within. Some of these convex geometries admit separation theo-

rems, along the same lines as Lemma 5.3.5. For these convex geometries, it

should be possible to construct (G ,F )-KDPs in the same way as we did in

Theorem 5.3.7. It is also probably worth pursuing the question of when it is

possible to embed a given (G ,F )-KDP into one of these convex structures, as

discussed at the end of Chapter 5.
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The next open problem that we consider involves some of our results from

Section 6.3.

Problem 4. Is it possible to recursively use the results from Section 6.3 on

internal and external structures of (G ,F )-KDPs, to obtain lower bounds on

the number of blocks?

In [86], Stinson, Wei and Zhu recursively used results (equivalent to those

of internal and external structures) on (t, w)-CFFs to determine lower bounds

for the size of the ground set of a (t, w)-CFF. With some restrictions on the

sets of privileged and forbidden subsets it seems possible that the approach

taken by Stinson, Wei and Zhu in [86], could be applied to (G ,F )-KDPs.

The final open problem that we present here concerns an inequality that

arose in the study of the number of blocks required in a (t, w)-KDP (see

Corollary 6.2.4).

Problem 5. Suppose that 1 ≤ w ≤ t < v, give a combinatorial proof of the

inequality
((v

w

)

t

)/(
(

v
t

)

w

)

≥ w!(t!)w

t!(w!)t
.

In Appendix A we present an algebraic proof of this inequality. However,

the combinatorial nature of the inequality itself would strongly suggest that a

combinatorial proof is possible and would more intuitively reflect the nature

of the inequality.
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Appendix A

Proof of Theorem 6.2.5

We begin with three inequalities that are required for our theorem.

Lemma A.0.1. [61, Lemma 1] If 1 ≤ w < v and 1 ≤ j ≤ w then,

[v(v − 1) · · · (v − w + 1) − jw!][v − w + j] ≥ v(v − 1) · · · (v − w + 1)(v − w).

Proof. Fix 1 ≤ j ≤ w then,

[v(v − 1) · · · (v − w + 1) − jw!][(v − w) + j] =

v(v−1) · · · (v−w+1)(v−w)+
[
jv(v−1) · · · (v−w+1)− j2w!− jw!(v−w)

]
.

We claim that jv(v − 1) · · · (v − w + 1) − j2w! − jw!(v − w) ≥ 0.

To see this, we simply do more algebra.

jv(v − 1) · · · (v − w + 1) − j2w! − jw!(v − w) ≥ 0

⇐⇒ jv(v − 1) · · · (v − w + 1) ≥ j2w! + jw!(v − w)

⇐⇒
(
v

w

)

≥ j + (v − w).

Now, j + (v − w) ≤ v.

On the other hand, because 1 ≤ w < v, we know that

(
v

w

)

≥ v.

Therefore,

[v(v − 1) · · · (v − w + 1) − jw!][v − w + j]

≥ v(v − 1) · · · (v − w + 1)(v − w).
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Lemma A.0.2. [61, Lemma 2] If 1 < w < v and 1 ≤ j < v then,

[v(v−1) · · · (v−w+1)−jw!] ≥ (v−1)(v−2) · · · (v−w+1)(v−w) ≥ (v−w)w.

Proof. To prove this, we again do some algebra.

[v(v − 1) · · · (v − w + 1) − jw!] − (v − w)(v − 1)(v − 2) · · · (v − w + 1) ≥ 0

⇐⇒ −jw! + w(v − 1)(v − 2) · · · (v − w + 1) ≥ 0

⇐⇒ (v − 1)(v − 2) · · · (v − w + 1) ≥ j(w − 1)!

⇐⇒
[
v − 1

j

][
v − 2

w − 1

]

· · ·
[
v − w + 1

2

]

≥ 1;

which is true since 1 ≤ j < v and w < v.

Lemma A.0.3. [61, Lemma 3] If 1 ≤ w < v, then

[
w∏

j=1

[v(v − 1) · · · (v − w + 1) − jw!]

]

[v(v − 1) · · · (v − w + 1)]

≥ [v(v − 1) · · · (v − w)]w.

Proof. This follows directly from Lemma A.0.1 and the fact that:

[
w∏

j=1

[v(v − 1) · · · (v − w + 1) − jw!]

]

[v(v − 1) · · · (v − w + 1)]

=
w∏

j=1

[v(v−1) · · · (v−w+1)−jw!][v−w+j].

We are now ready to present the relationship between

((v
t

)

w

)

and

((v
w

)

t

)

.

Theorem A.0.4. [61, Theorem 1] If 1 < w < t < v are natural numbers then,

((v
w

)

t

)/(
(

v
t

)

w

)

>
w!(t!)w

t!(w!)t
.
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Proof. Suppose that 1 < w < t < v are natural numbers then,

((v
w

)

t

)

=
1

t!

[
t−1∏

j=0

[v(v − 1) · · · (v − w + 1) − jw!]

w!

]

≥ 1

t!(w!)t

[
w∏

j=0

[v(v−1)· · ·(v−w+1)−jw!]

]

[(v−w)w]t−w−1(by Lemma A.0.2)

=
1

t!(w!)t

[

v(v−1)· · ·(v−w+1)
w∏

j=1

[v(v−1)· · ·(v−w+1)−jw!]

]

[(v−w)t−w−1]w

≥ 1

t!(w!)t

(

[v(v − 1) · · · (v − w)]w · [(v − w)t−w−1]w
)

(by Lemma A.0.3)

=
1

t!(w!)t

(

[v(v − 1) · · · (v − w)(v − w)t−w−1]w
)

≥ 1

t!(w!)t

(

[v(v − 1) · · · (v − w) · · · (v − t+ 1)]w
)

>
w!(t!)w

t!(w!)t

[

1

w!

w−1∏

j=0

[v(v − 1) · · · (v − t+ 1) − jt!]

t!

]

=
w!(t!)w

t!(w!)t

((v
t

)

w

)

.

To understand this inequality better we need the following crude estimate.

Proposition A.0.5. [61, Proposition 2] If 1 ≤ w ≤ t are natural numbers

then
w!(t!)w

t!(w!)t
≥
(
w + 1

2

)(t−w)

≥ 1.

Proof. We need only consider the case when 1 < w < t.

w!(t!)w

t!(w!)t
=

(t!)(w−1)

(w!)(t−1)
=

(t!)(w−1)

(w!)(t−w)(w!)(w−1)
=

[t(t− 1) · · · (w + 1)](w−1)

(w!)(t−w)

=

(
t(w−1)

w!

)(
(t− 1)(w−1)

w!

)

· · ·
(

(w + 1)(w−1)

w!

)

︸ ︷︷ ︸

(t−w)−factors

.
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Now,
j(w−1)

w!
≥ w + 1

2
for all (w + 1) ≤ j since,

j(w−1)

w!
=

(
j

w

)(
j

w − 1

)

· · ·
(
j

3

)(
j

2

)

︸ ︷︷ ︸

(w−1)−times

≥
(
j

w

)(
j

w − 1

)

· · ·
(
j

3

)(
w + 1

2

)

︸ ︷︷ ︸

(w−1)−factors

≥ w + 1

2
.

It it easy to see that Theorem 6.2.5 follows directly from Theorem A.0.4

together with Proposition A.0.5.

It should be noted that the inequality in Theorem A.0.4 is a generalisation

of [36, Theorem 5] which examines the special case when t = 3 and w = 2. In

[61] it is shown that in some sense the inequality in Theorem A.0.4 is sharp.

Furthermore, a generalisation of this result is also given. However, as these

results are not directly relevant to our study of (G ,F )-KDPs they are not

presented here.
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