ON MOBILE AGENT BASED
TRANSACTIONS IN MODERATELY
HOSTILE ENVIRONMENTS *

Niklas Borselius, Chris J. Mitchell, Aaron Wilson
Mobile VCE Research Group, Information Security Group,
Royal Holloway , University of London

Egham, Surrey TW20 OEX, UK

Niklas.Borselius@rhul.ac.uk, C.Mitchell@rhul.ac.uk, aaron@gmx.co.uk

Abstract  When using mobile agents, numerous security issues must be consid-
ered. In this note we propose two methods to improve the security and
reliability of mobile agent based transactions in an environment which
may contain some malicious hosts.

Keywords: mobile agent, digital signature, transaction, security

1. Introduction

In this paper we consider strategies for the deployment of mobile
trading agents to reduce certain security threats to their operation. In a
future world of co-operating mobile and fixed devices, the mobile agent
computing model is expected to become an increasingly important one.
In the domain of e-commerce/m-commerce transactions, mobile trading
agents could play a very useful role. Users could launch such agents to
make transactions on their behalf, and the agents would look for the
‘best buy’ by visiting multiple merchant sites without any direct user
intervention. Indeed such activity could take place while the user has
no current network connectivity.

The mobile agent computing model gives rise to a range of security
threats. These threats can be divided into two main classes:

*The work reported in this paper has formed part of the Software Based Systems work area
of the Core 2 Research Programme of the Virtual Centre of Excellence in Mobile & Personal
Communications, Mobile VCE, www.mobilevce.co.uk, whose funding support, including that
of EPSRC, is gratefully acknowledged. More detailed technical reports on this research are
available to Industrial Members of Mobile VCE.



m threats to the platform from malicious and /or unauthorised agents,
including threats to the integrity of the platform and other agents,
threats to the confidentiality of stored data, and denial of service
threats, and

m threats to the agent from malicious platforms, including threats to
the confidentiality of agent stored data, and threats to the integrity
of the agent and its computations.

In this paper we are concerned with the second class of threats, and
in particular with threats to agents deployed for trading applications.
Specifically, users will need to give trading agents certain authority to
authorise transactions, whilst at the same time users will wish to protect
themselves against malicious merchants forcing an agent to make a non-
optimal purchase.

We consider simple ways in which deployment of multiple agents can
reduce the threat to trading agents from platforms outside of their direct
control. We consider two general approaches. In the first approach
multiple agents are equipped with ‘shares’ of the means to commit to
a transaction. In the second approach a single trusted host provides
a location for multiple agents to ‘report back’ information enabling a
purchasing decision to be made.

The paper has the following structure. The next section explores
threats to trading agents in more detail. This is followed in Sections 3
and 4 by a discussion of the models used here for agent platforms and
for trading agents. Sections 5 and 6 then explore the two approaches to
enhancing trading agent security.

2. Agent Security Issues

The use of mobile agents raises a number of security concerns. Agents
need protection from other agents and from the hosts on which they
execute. Similarly, hosts need to be protected from agents and from
any party which can communicate with the platform. The problems
associated with the protection of hosts from malicious code are quite
well understood.

The problem of malicious hosts seems the hardest to solve. In fact
some people hold the opinion that it is insoluble. The particular attacks
that a malicious host can make have been described in [Hohl, 1998a] and
[Hassler, 2000], and can be summarised as follows.

m  Observation of code, data and flow control,

»  Manipulation of code, data and flow control — including manipu-
lating the route of an agent,



On mobile agent based transactions in moderately hostile environments 3

Incorrect execution of code — including re-execution,
Denial of Execution — either in part or whole,
Masquerading as a different host,

Eavesdropping of agent communication,
Manipulation of agent communication,

False system call return values.

There have been many attempts to address these threats either com-
pletely or in part. Most of these attempts fall into one of the following
broad categories.

The first category comprises approaches that do not allow an agent
to leave a trusted environment. Solutions to this include using a
host infrastructure that is operated by a single party, allowing
agents to migrate only to trusted hosts [Farmer et al., 1996], or
possibly hosts with a good reputation [Rasmusson and Jansson,
1996].

The second category is pragmatic; it consists of solutions to a
single part of the malicious host problem. These consist of agents
detecting when they have been modified [Vigna, 1997], and proof
verification techniques [Yee, 1997].

The third class consists of assuming that there is special, tamper-
proof hardware available, see for example [Yee, 1997] or [Wilhelm
et al., 1998].

The final category uses software methods to obscure the code
from the host. Approaches include obfuscation [Hohl, 1998b] [Ng,
2000], mobile cryptography [Sander and Tschudin, 1998, Sander
and Tschudin, 1997] and using environmental conditions to hide
parts of the code [Riordan and Schneier, 1998].

The approaches described in this paper, based on replicating agents, do
not fit into any of the above four classes. There appears to be relatively
little literature devoted to this approach to dealing with the threats to
agent security.

We now consider the threats to a trading agent in more detail.



4

2.1. Threats to trading agents

We now turn to look at the particular threats to an agent which wishes
to purchase an item (or a service) from a merchant. These all fall into
the categories above. We concentrate on the threats to an agent involved
in a trade, rather than more general threats.

1 A malicious host lies about offer.

Here a host lies about the offer it makes to an agent, in order to
get the trade. The host would then charge a higher price at a later
date. One way around this is to force the host to sign its bid,
thereby committing to it.

2 A malicious host learns other offers and undercuts them.

If a host knows that all offers but its own have been collected and
finds out the best standing offer, it can undercut the best standing
offer slightly (in fact the host need not know all other offers, it
could just undercut the current offers). (In some circumstances
letting hosts undercut each other might be considered a desirable
feature.)

3 A malicious host learns the price a user is prepared to pay and
bids just under this.

In a similar fashion the host may charge more than its normal
price, if it knows the maximum price the user is prepared to pay.
Thus a host must be kept from learning the maximum price a user
is prepared to pay, either by encrypting this information or by not
sending this information with the agent.

4 A malicious host manipulates the requirements.

This is when the host changes the requirements to favour its bid.
For example, it could add a requirement to buy from a certain
host, or remove constraints from the agent.

5 A malicious host alters the agents route.

Here, the host keeps the agent away from its competitors, and
thus secures the agent’s trade. One way to prevent this is to use
more than one agent (possibly an agent per host), send each agent
on a different route and combine the offers on the agent’s return.
Another way is to use one agent with a ‘star’ like route — it returns
home after visiting each host before being sent out to a different
host.



On mobile agent based transactions in moderately hostile environments )

|Merchant| |Merchant| |Merchant|
~—__ AN )
-~ RN /
— e )
S

| Agent Platform A\gent |

Figure 1. A model for agent platforms

6 A malicious host commits to purchases that the user does not wish
to make.

This happens when a host can abuse the committal function that
an agent has. A method to discourage this is to force the host to
sign a transaction, as well as the user (thus providing traceability).

7 A malicious host denies the agent a service.

Here a host would stop an agent from moving further on its route.
This of course could be traced if an agent reports when it arrives
on a host.

8 A malicious host captures electronic money.

Here a host would remove the electronic money that an agent may
have to purchase an item and either steal the money outright, or
use it for a different purchase.

We do not consider the payment process here, as we are concerned
only with the part of a transaction involved in selecting a merchant and
committing to the transaction.

3. Models of Agent Platforms

Mobile agents roam between platforms. However, they can also com-
municate with each other, and with other hosts. This leads to the ques-
tion as to the best “platform” model to use for trading (or indeed any
other) agents. There are clearly two basic approaches which we now
describe.

The first approach (see Figure 1) is to have a designated platform
(or a collection of such platforms) to which we can send an agent to
execute. This agent then communicates with merchant servers to seek
information and commit to purchases.



The second model (see Figure 2) is to have an agent roam to each
merchant server in turn and collect the information it requires. After
collecting all the information the agent can then either return to the
user to make the purchase, return to the chosen merchant to make the
purchase or make the purchase from the final host.

In a mobile telecommunications environment it may also be beneficial
to have a third model. This is where the requirements for a purchase are
communicated to a ‘home platform’ (the user’s home PC or a network
operator controlled device) which then forms the agent and conforms to
one of the above models.

In the above, any of the platforms may be malicious, with the possible
exception of the home platform. The solutions proposed below can be
made to fit into any of the above situations, although they both fit better
into the first model.

The security risks associated with the above two models clearly differ.
In the first case, the ‘designated platform’ might be trusted to keep
secret certain agent information. An example of where this might be
useful is when the agent contains details of the user ‘expected’ price (or
maximum price), which it would be helpful not to reveal to the merchant.
Of course, the threat then arises that one of the designated platforms
will collude with one or more of the merchants. In the second case, it
is clearly impossible to try and keep any information in the agent secret
from the merchants. In both cases, however, as we will show in the
remainder of this paper, there are potential benefits to be gained from
the use of multiple agents, albeit not from the confidentiality perspective.

4. Model for a trading agent

We consider the information that an agent wishing to trade must
know. Firstly, when initiating a purchase, a user will have a set of
requirements (for instance the item to be purchased, the maximum price
for that item, a time limit within which the purchase to be made). We

Merchant — Merchant

Merchant +— Merchant

Figure 2. A second model for agent platforms



On mobile agent based transactions in moderately hostile environments 7

will assume that a user encodes these requirements into a string R which
is understood by all parties. When a server quotes for a given purchase,
it will also produce a similar string with its offer.

The agent, if it is to perform the purchase on behalf of the user,
must also carry a function which will commit to the trade. This could
be performed by, for instance, signing the details of the trade. One
scheme to allow an agent to perform a signature operation on behalf of
a user without revealing the user’s private key to a host is proposed in
[Kotzanikolaou et al., 2000]. In this scheme, using RSA, an agent carries
both the hash value, h, of the requirements and the signed hash value,
h® mod n, where (d,n) is the user’s private RSA key. To commit to a
transaction for the user the agent calculates

(h)® = h* = (h®)? mod n

effectively signing h” where z is the server’s offer. An alternative to this
where the agent carries its own private key which the user certifies is
given in [Borselius et al., 2001a].

Thus we assume that a trading agent will carry the following infor-
mation:

s User Identifier — U
m  Requirements for purchase - R

m A committal function — C. The committal function is used by the
agent to commit to a transaction on the user’s behalf. C could be
a signature function using a special private key provided to the
agent by the user. Alternatively, C could be a function of the type
described above, derived from the user’s own private signature
key. In any event, we assume that the function is designed so that
only transactions within constraints defined by the user can be
authorised.

Note that, if a single ‘trading agent’ is deployed there are a number
of problems which might arise. Firstly, although the committal function
will typically be limited to transactions conforming to user-defined pa-
rameters, there is still the possibility that the agent platform will force
the agent to commit to a transaction which is less than optimal. It may
also commit to more than one transaction, even if the user only intended
to make at most one purchase.

One way to reduce this threat is to deploy multiple agents, a subset
of which must agree to the transaction before it can be authorised. Such
an approach is the focus of the remainder of this paper.



8

5. Threshold Scheme

We attempt to solve the malicious host problem by using multiple
agents each of which has a ‘vote.” If one of the possible transactions
receives enough votes, then a transaction will be authorised with the
relevant merchant. We begin by outlining the scheme, and then consider
the details of what a secure vote can consist. We assume use of a (k,n)
scheme — i.e. a server will need k votes out of a possible n to ‘win’.

5.1. The Scheme

Let T = {T1,T5,...,T,} be a set of agent platforms. The user then
sets up a (k,n) voting scheme with shares s1, s9, ..., s,. Clearly k should
exceed the number of ‘suspected’ malicious hosts. Given no information
about the system a sensible value would probably be n/2+ 1. The value
of k reflects the level of trust in the system.

The user then forms n agents A; (1 < i < n) containing the following
information

s User Identifier — U
m  Requirements for purchase - R
m A vote — s;

Each agent is then dispatched to its agent platform. At the platform
there are two modes of execution:

1 The agent contacts each merchant itself, and gathers bids that
meet the requirements.

2 The agent contacts a subset of the merchants and communicates
the best bid to its peers.

We note that case (2), unless only contacting a single host, is a situation
that must be carefully thought out. This is because if there is no overlap
in the merchants, collusion may mean that attacking less than £ servers
is necessary.

When each agent has received all the information about each bid, the
agent sends its vote to the merchant with the best offer. On receipt of
the correct number of votes, the merchant or a nominated third party
can construct (and verify) from the votes the authorisation for the bid.
The merchant or nominated third party can then use this as evidence
that the user has committed to transaction.

We now consider the security of the above scheme. The major ad-
vantage of the scheme is the need to corrupt either n — k + 1 agents



On mobile agent based transactions in moderately hostile environments 9

to prevent the transaction or k£ hosts to divert or alter the transaction.
Thus the choice of k is crucial.

This also means that a denial of service attack is harder as a server
or set of colluding servers will need to terminate (or prevent from com-
municating their vote) (n — k) + 1 agents. Again to force a purchase a
host or hosts must force k& agents to offer their vote.

If an agent visits a subset of the servers involved, the information
could then be used to help identify any malicious hosts.

5.2. The Votes

As mentioned above, the votes can be assembled by either the se-
lected merchant or a nominated third party. Note that there are clear
risks associated with giving votes to the merchant, since the merchant
could now possibly commit the user to a transaction of the merchant’s
choice (within any constraints imposed by the string R). That is, the
merchant is not forced to commit to the transaction as offered to the
agents. Hence the use of a nominated third party to reconstruct the
votes is the preferred approach. The possibility that this may not be
feasible in practise leads to an alternative approach.

One approach is threshold cryptography. Threshold cryptography was
first proposed by Desmedt [Desmedt, 1988]. A typical example of a
threshold cryptosystem is one that would allow a set of ¢ parties to sign
any document such that any coalition of less than ¢ parties cannot sign
any other document. Schemes tend to rely on a combiner which does
not necessarily need to be trusted. Schemes based on both RSA and El
Gamal have been proposed.

Recently Shoup [Shoup, 2000] proposed an RSA scheme which is as
efficient as possible; the scheme uses only one level of secret sharing,
each server sends a single part signature to a combiner and must do
work that is equivalent, up to a constant factor, to computing a single
RSA signature. Although not perfect as a threshold signature scheme
(as it relies on a trusted party to form the shares) this scheme is ideal in
our setting. (Note that an alternative scheme without a trusted dealer
is given in [Damgard and Koprowski, 2001]. This scheme also improves
on Shoup’s scheme by not relying on an RSA modulus made up of ‘safe
primes’). An example of an El Gamal scheme is given in [Langford,
1995]. We note that a (n,n) threshold signature scheme is just a mul-
tisignature; such schemes have been studied for many years — see, for
example, page 488 of [Menezes et al., 1996].

We note, however, that such a threshold signature scheme does not
provide a means for the shares to incorporate an encoding of the string



10

R. Thus, if there were k colluding hosts they could sign (and reconstruct
a signature) for any document. One solution to this problem is for the
user to generate a special signature key pair for the particular purchase
(i.e. for this particular set of agents), and then to generate a certificate
for the public key incorporating a copy of R. When the signature is
reconstructed from the signature shares, it can be verified using this
certificate. However, it is possible to merge the undetachable signature
scheme given in [Kotzanikolaou et al., 2000] with the threshold signature
scheme of Shoup [Shoup, 2000] and details of this are given in [Borselius
et al., 2001b].

6. Using one trusted host

We consider a second solution to the problem, which employs a single
trusted host. We note that the solution described below involves a user
sending out agent(s) to individual merchant servers, whereas it could
just communicate with them to ask for their bids. However, in a wireless
communications setting where communication is expensive, slow, and /or
unreliable, it is believed to be beneficial to be able to dispatch an agent
into the fixed network. When the agent has finished its task it contacts
the user or waits for the user to collect the result.

Let S = {S51,59,...,5,} be a collection of servers offering a service
that a user wishes to purchase. Let T be a host that the user trusts to
act honestly in this transaction. (Note that we do not need to trust this
host fully — it just needs to be neutral in this transaction). Before the
transaction commences we assume that each server S; and T securely es-
tablishes a shared secret key K;. Optionally, a key for message integrity
checks could also be established.

The user despatches an agent A to the trusted host containing the
information outlined in §4. We note that the committal function C may
be of any form with which the user is prepared to trust the host T
However, to reduce the trust requirements we envisage that this will be
the scheme outlined in either [Borselius et al., 2001a] or [Kotzanikolaou
et al., 2000].

There are now several approaches for T. The first is to form a single
subagent containing the following information

m  Agent identifier — 1
m  Requirements for purchase - R
s Host identifier — T

which would then visit each of the servers in S in turn. We note that
the requirements sent out do not need to include pricing information



On mobile agent based transactions in moderately hostile environments 11

(that is the maximum price the user is prepared to pay) or any other
information that the user wishes to be used to help make the decision,
but does not wish to communicate to the server. Another approach is
to form a single agent for each server. A third approach has the above
agent visiting a subset S’ C S of the above servers. Whichever strategy
is employed, at each host the agent performs the following actions:

1 Find out the server’s bid B; for the item specified in the require-
ments R.

2 Encrypts the concatenation of B;, R, S; and I using either K;.
At this point the server could also, optionally, attach a symmetric
MAC (Message Authentication Code) to the bid to protect the
integrity of the server’s bid. Label the encrypted string FE;.

3 The agent then stores the pair (S;, E;).

The agent returns to 7' when it has finished visiting all of its servers.
The agent on T then decides the best offer and commits to it using the
committal function.

We note some of the features of the above scheme.

m Using an agent per server really alleviates the need to encrypt
anything, assuming that agents are always transferred between
hosts in encrypted form.

m Using a single agent leaves yourself open to some attacks.

m  Using more than one agent that does not visit all the hosts could
then be used to (help) identify a malicious host.

If we use a single agent and it visits all the hosts, or we have an agent
that visits more than one host, the agent is subject to the following
attacks:

®  An approach to enable a malicious host to underbid its competi-
tors, is as follows. The host forms a new agent containing the
user’s requirements, a fictitious user identifier, and its own host
identifier. This agent would then traverse the route of the user’s
agent, and discover the bids offered for that set of requirements.
The host could then under bid its competitors, but the user’s agent
would have had to have been kept on the malicious host in the in-
terim period. Thus monitoring the progress of an agent could help
determine if such an attack was being used.



12

= A simple denial of service attack: stop the agent in its tracks. If
there is no progress monitoring (e.g. agent at host S;) then this
attack is hard to defeat.

= A malicious host could alter the pair (S;, F;) to read (S;, junk)
(where junk is a random string of the correct length) to stop the
decryption of a bid. However as the host cannot read the bid, for
this to be successful (i.e. to delete those bids more attractive than
those of the malicious host) the host would have to have knowledge
of all the bids — which it would have to gather itself (possibly by
cloning the agent).

If we use an agent that visits a subset of the hosts, and assume that
the malicious host already knows the “best offer” at any given point, it
will then try to undercut this (this undercut is a lie). If we then require,
we can apply rules to the results of the other agents, and attempt to
identify the malicious host. This also requires careful choice of agent
destinations and routing.

Note that to force T' to purchase from a malicious host, the host has
to lie and then be unscrupulous, or just lie and possibly not profit as
much as it would expect. That is if the malicious host M wants to force
a user to trade with it, then it must have the best price. So it must either
charge more than its advertised price (possibly breaking the committal
function) or make less profit than it expects (because the price advertised
is less than the host should sell for).

We now consider the extent to which the user must trust the host 7.
The user must trust that 7" does not favour a particular server for this
transaction. However, with a sufficiently good committal function then
this is the only trust requirement. For example using the Kotzanikolaou
et al. undetachable signature scheme [Kotzanikolaou et al., 2000], as a
committal function, T can be given the means to commit to the trans-
action without being trusted with a copy of the user’s private signature
key. This may be a situation where using an undetachable signature
scheme has advantages over the creation of a separate signature key for
each agent.

7. Conclusions

We have considered two different ways in which the deployment of
multiple agents can reduce the threat to trading agents from poten-
tially malicious agent platforms. In the first approach multiple agents
are equipped with ‘shares’ of the means to commit to a transaction. A
method implementing this idea using a threshold signature scheme, e.g.
the recently proposed scheme of Shoup, [Shoup, 2000], was outlined. In



On mobile agent based transactions in moderately hostile environments 13

the second approach a single trusted host is employed to collect infor-
mation from multiple agents on possible transactions. This host then
chooses the optimal transaction and commits to it.

The two approaches each have their own advantages. The first ap-
proach avoids the need for a single trusted host. However, implementing
the first approach requires use of some potentially complex cryptographic
signature functions. The second approach is potentially less complex
from a cryptographic perspective, but does require a host which, if not
completely trusted, is at least required to act neutrally with respect to
the set of merchants. Both approaches are of potential practical impor-
tance in future mobile computing environments.

References

[Borselius et al., 2001a] Borselius, N., Mitchell, C. J., and Wilson, A. (2001a). A
pragmatic alternative to undetachable signatures. Preprint.

[Borselius et al., 2001b] Borselius, N., Mitchell, C. J., and Wilson, A. (2001b). Unde-
tachable threshold signatures. To be presented at the IMA Conference on Cryptog-
raphy and Coding, December 2001 (proceedings to be published in the Springer-
Verlag LNCS series).

[Damgard and Koprowski, 2001] Damgard, I. and Koprowski, M. (2001). Practical
threshold RSA signatures without a trusted dealer. In Pfitzmann, B., editor, Ad-
vances in Cryptology - EUROCRYPT 2001, number 2045 in LNCS, pages 152-165.
Springer-Verlag, Berlin.

[Desmedt, 1988] Desmedt, Y. (1988). Society and group oriented cryptography. In
Pomerance, C., editor, Advances in Cryptology — Crypto ’87 proceedings, number
293 in LNCS, pages 120-127. Springer-Verlag, Berlin.

[Farmer et al., 1996] Farmer, W., Guttmann, J., and Swarup, V. (1996). Security for
mobile agents: Authentication and state appraisal. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS), number 1146 in LNCS,
pages 118-130. Springer-Verlag, Berlin.

[Hassler, 2000] Hassler, V. (2000). Security Fundamentals for E-commerce. Artech
House.

[Hohl, 1998a] Hohl, F. (1998a). A model of attacks of malicious hosts against mobile
agents. In Proceedings of the ECOOP Workshop on Distributed Object Security and
4th Workshop on Mobile Object Systems: Secure Internet Mobile Computations,
pages 105-120.

[Hohl, 1998b] Hohl, F. (1998b). Time limited blackbox security: Protecting mobile
agents from malicious hosts. In Vigna, G., editor, Mobile Agents and Security,
number 1419 in LNCS, pages 92-113. Springer-Verlag, Berlin.

[Kotzanikolaou et al., 2000] Kotzanikolaou, P., Burmester, M., and Chrissikopoulos,
V. (2000). Secure transactions with mobile agents in hostile environments. In Daw-
son, E.; Clark, A., and Boyd, C., editors, Information Security and Privacy, Pro-
ceedings of the 5th Australasian Conference ACISP 2000, number 1841 in LNCS,
pages 289-297. Springer-Verlag, Berlin.



14

[Langford, 1995] Langford, S. K. (1995). Threshold DSS signatures without a trusted
party. In Coppersmith, D., editor, Advances in Cryptology — Crypto ’95 proceedings,
number 963 in LNCS, pages 397-409. Springer-Verlag, Berlin.

[Menezes et al., 1996] Menezes, A., van Oorschot, P., and Vanstone, S. (1996). Hand-
book of Applied Cryptography. Discrete Mathematics and Its Applications. CRC
Press. Available on-line at http://www.cacr.math.uwaterloo.ca/hac.

[Ng, 2000] Ng, S.-K. (2000). Protecting mobile agents against malicious hosts. Mas-
ter’s thesis, The Chinese University of Hong Kong.

[Rasmusson and Jansson, 1996] Rasmusson, L. and Jansson, S. (1996). Simulated
social control for secure internet commerce. In New Security Paradigms 96, pages
18-26. ACM Press.

[Riordan and Schneier, 1998] Riordan, J. and Schneier, B. (1998). Environmental
key generation towards clueless agents. In Vigna, G., editor, Mobile Agents and
Security, volume 1419 of LNCS, pages 15—24. Springer-Verlag, Berlin.

[Sander and Tschudin, 1997] Sander, T. and Tschudin, C. (1997). Towards mobile
cryptography. Technical Report 97-049, International Computer Science Insti-
tute, Berkeley. Available at http://ww.icsi.berkeley.edu/ sander/publications/tr-
97-049.ps.

[Sander and Tschudin, 1998] Sander, T. and Tschudin, C. (1998). Protecting mobile
agents against malicious hosts. In Vigna, G., editor, Mobile Agents and Secu-
rity, number 1419 in LNCS, pages 44-60. Springer-Verlag, Berlin. Available from
http://www.icsi.berkley.edu/ sander/publications/MA-protect.ps.

[Shoup, 2000] Shoup, V. (2000). Practical threshold signatures. In Preneel, B., editor,
Proceedings of EuroCrypt 2000, number 1807 in LNCS, pages 207 —220. Springer-
Verlag, Berlin.

[Vigna, 1997] Vigna, G. (1997). Protecting mobile agents through tracing. In Pro-
ceedings of the Third ECOOP Workshop on Operating System support for Mobile
Object Systems.

[Wilhelm et al., 1998] Wilhelm, U. G., Staamann, S., and Buttydn, L. (1998).
On the problem of trust in mobile agent systems. Available from
http://www.isoc.org/isoc/conferences/ndss/98 /ndss98.htm.  Network and Dis-
tributed System Security (NDSS’98) Symposium.

[Yee, 1997] Yee, B. (1997). A sanctuary for mobile agents. In DARPA
Workshop on Foundations for Secure Mobile code. Available from
http://www.cs.nps.navy.mil /research /languages/statemensts/bsy.ps.



