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Abstract 
 

It has been suggested that the Anterior Cingulate Cortex (ACC) plays an important role in 

decision-making. Activity in this area reflects processing related to two principles of 

Reinforcement Learning Theory (RLT): (i) signalling the predicted value of actions at the time 

they are instructed and (ii) signalling prediction errors at the time of the outcomes of actions. 

It has been suggested that neurons in the gyrus of the ACC (ACCg) process information about 

others’ decisions and not one’s own. An important aim of this thesis is to investigate whether 

the ACCg processes others’ decisions in a manner that conforms to the principles of RLT. Four 

fMRI experiments investigate activity in the ACCg at the time of cues that signal either the 

predicted value of others’ actions or that signal another’s predictions are erroneous. 

 Experiment 1: Activity in the ACCg occurred when the outcome of another’s decision 

was unexpectedly positive. 

 Experiment 2: Activity in the ACCg varied parametrically with the discrepancy between 

another’s prediction of an outcome and the actual outcome known by the subject, in a 

manner that conformed to the computational principles of RLT. 

 Experiment 3: Activity in the ACCg varied with the predicted value of a reward, 

discounted by the amount of effort required to obtain it.  

 Experiment 4: Activity in the ACCg varied with the value of delayed rewards that were 

discounted in a manner that conformed to a social norm. 

These results support the hypothesis that the ACCg processes the predicted value of others’ 

actions and also signals when others’ predictions about the value of their actions are 

erroneous, in a manner that conforms to the principles of RLT. 
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Chapter 1: Introduction 

 

 

 

 1.1 Introduction 

 
For many years it has been known that damage to the frontal lobe can affect social behaviour. 

The famous case of Phineas Gage highlighted how damage to the frontal lobe can change 

many aspects of an individual’s personality, including how they behave during social 

interactions. More recent evidence has suggested that damage to the medial wall, particularly 

to the Orbitofrontal Cortex (OFC) and the Anterior Cingulate Cortex (ACC), can result in 

patients being afflicted with severe deficits in social behaviour (Tranel et al., 2002). Indeed, 

some have suggested that patients with such damage suffer from “acquired sociopathy” (Saver 

and Damasio, 1991), whereby the brain damaged patients behave similarly to psychopathic 

patients. However, the most prominent theoretical accounts of social cognition have not 

considered the ACC or the OFC as regions which are important for social cognitive abilities 

(Gallese and Goldman, 1998; Frith and Frith, 2006; Keysers and Gazzola, 2007; Schubotz, 

2007). In this thesis, it will be argued that a portion of the ACC plays an important role in social 

cognition. 

Experimental lesion studies, which have the advantage of greater anatomical specificity in the 

location of the lesion compared to patients with acquired damage, have suggested that 

disruption of the ACC and not the OFC are the cause of the perturbed social behaviour 

(Hadland et al., 2003). More specifically, lesions to the gyral surface of the Anterior Cingulate 

Cortex (ACCg) and not the sulcus (ACCs) in the macaque monkey, have been shown to disrupt 

normal social behaviour and also the processing of social stimuli (Rudebeck et al., 2006a). 

Interestingly, these two regions have distinct anatomical properties. The cytoarchitecture of 

the gyral surface and the sulcus are distinct along the entire extent of the ACC (Vogt et al., 

1995). Similarly, there are distinctions in the connectional properties of these two regions; 

with the ACCg connected to areas of the brain that are implicated in processing social 

information that the ACCs is not connected to.  
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How does the ACCg contribute to social cognition? Despite the evidence implicating the ACCg 

in processing social information, there has been a notable absence of any theoretical accounts 

of the role of this region in social cognition. However, one seminal fMRI study in humans 

highlighted how the ACCg may process similar information to the ACCs, particularly during 

decision-making. However, the ACCs processes the information that guides first-person 

decisions, whereas the ACCg processes this information about others’ decisions (Behrens et al., 

2008). To understand how the ACCg contributes to social cognition it is therefore important to 

understand the contribution of the ACCs to one’s own cognitive processes. Whilst there is an 

absence of a literature investigating what socially relevant information is processed in the 

ACCg, there are a considerable number of studies that have investigated the functional 

properties of the ACCs.  

What information is processed in the ACCs? Several theoretical accounts of the functional 

properties of the ACCs have been proposed (Bush et al., 2000; Holroyd and Coles, 2002; 

Botvinick, 2007). However, these theories cannot account for all of the data that speaks to the 

functional properties of the ACCs. In this chapter, an alternative framework for information 

processing in the ACCs will be outlined. This framework is based around two important 

notions; firstly, that the ACCs processes how rewarding an action is, discounted by other costs 

associated with performing the action in order to receive the reward, and secondly, that 

information processing in the ACCs conforms to the principles of a well established model of 

learning, namely Reinforcement Learning Theory (RLT). The two most important components 

of RLT are; firstly that predictions are made about the outcomes of actions that guide decisions 

between different actions, and secondly, that these predictions are updated when new 

information reveals the prediction was erroneous. In this chapter, lesion studies, 

neurophysiological recordings and functional imaging evidence will be cited that supports the 

claims that the ACCs processes predictions about the discounted value of actions and also 

signals when predictions are erroneous. In this thesis, it will be argued that this framework can 

also be applied to the ACCg, to explain how this area processes social information. Specifically, 

this thesis makes the claim that the ACCg processes the variables that guide other’s decision-

making and processes them in a manner that conforms to the computational principles of RLT. 

In this specific chapter the anatomical and functional properties of the ACCg will be outlined, 

highlighting the area as a candidate for processing social information. I will then argue that the 

ACCg processes similar information to the ACCs.  Therefore, in order to generate hypotheses 

about the contribution of the ACCg to social cognition, a discussion of the theoretical accounts 

of ACCs function will be provided, before a framework for how the ACCs contributes to first-
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person decision-making is outlined. Each of the four studies in this thesis will examine whether 

the ACCg codes the same information as the ACCs, but processes this information about the 

actions and decisions of others. Specifically, two questions are asked: 

(i) Does the ACCg process information in a manner that conforms to RLT? 

(ii) Does the ACCg process information about the variables that guide others’ 

decisions? 
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1.2 The Social Brain 
 

Many species live in complex social environments, in which survival depends on the ability to 

interact successfully with other conspecifics. In their lifetime each individual will engage in a 

large number of social interactions that can take a variety of different forms. In addition, for 

each social exchange to be successful, a diverse array of complex cognitive processes must be 

performed. The significance of these social cognitive abilities is underscored by the link 

between forebrain size, the number of conspecifics with which an individual interacts and the 

complexity of the interactions in which an individual engages (Dunbar and Shultz, 2007; Shultz 

and Dunbar, 2007; Shultz and Dunbar, 2010). Increases in the size of a social group and the 

complexity of interactions with individual members of that group, are correlated with 

interspecies increases in the brain size of birds and several mammalian species including 

humans (Silk et al., 2003; Holekamp et al., 2007; Silk, 2007). Social cognitive abilities are 

therefore considered as one of many important selection pressures that are linked to an 

individual’s survival and evolutionary fitness (Dunbar and Shultz, 2007; Silk, 2007). Identifying 

and understanding the neural mechanisms that underpin social cognitive processes has 

therefore become a hugely important area of research. 

It is unequivocal that humans engage in the most complex social behaviour of any species. This 

complexity has meant that a comprehensive understanding of the cognitive processes that 

underpin social behaviour has not yet been achieved. As a result, localizing the neural 

antecedents of social cognitive abilities has been equally challenging. Historically, there were 

two accounts of the cognitive processes that underpinned social behaviour. One account 

suggests that one’s own cognitive processes are mirrored when trying to  understand the same 

cognitive processes of another (Gallese and Goldman, 1998). As such, individuals understand 

the intentions and actions of others by simulating them, as if having the same intentions or 

performing the same actions themselves (i.e. “putting oneself in their shoes”). Evidence to 

support the claims of simulation theory has been provided by the discovery of mirror-neurons 

in the macaque premotor and parietal cortices (Gallese and Goldman, 1998; Rizzolatti and 

Craighero, 2004). The defining property of these neurons is that they increase their spike rate 

when a monkey makes a goal-directed action and also when the same actions are observed 

being performed by another. An alternative account of social cognition suggests that we 

understand others by making theories about the desires, attitudes and beliefs that drive their 

behaviour (Baron-Cohen et al., 1985). The ability to understand and represent the mental 
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states of others is often referred to as “theory of mind” or “mentalizing”. This account makes 

the specific prediction that the processing of others’ mental states will occur in networks that 

are specialised for the functions necessary to deduce the intentions, desires and beliefs from 

others’ behaviours. Support for this claim has come from neuroimaging studies in humans that 

consistently find activity in three areas when subjects are processing the mental states of 

others. This core-circuit of areas which is engaged when mentalizing consists of the 

paracingulate cortex (a region lying at the border of areas 8, 9 and 32’ on the medial wall), a 

region in the depths of the posterior Superior Temporal Sulcus (pSTS) lying adjacent to the 

Tempero-Parietal Junction (TPJ) and a region at the tip of the temporal poles (Frith and Frith, 

2003; Frith and Frith, 2006).  

In this section I review some of the evidence that supports each theory. I will then highlight 

how neither can account for how damage to the ACC, an area which is not considered as part 

of the core-circuit or the mirror-neuron system, can significantly disrupt social behaviour. 

 

1.2.1 Simulation Theory 
 

Simulation theory states that we understand the actions and goals of others by simulating 

them in circuits that process our own goals and actions (Gallese and Goldman, 1998). The first 

evidence to support this notion came from the discovery mirror-neurons that increase their 

spike rate when a monkey makes a goal-directed action and also when the same actions are 

observed being performed by another. Neurons that have such properties were first found in 

area F5 in the macaque monkey premotor cortex (Gallese et al., 1996; Rizzolatti et al., 1996). 

Following this, neurons with similar properties were identified in area PF in the macaque 

parietal lobe (Fogassi et al., 2005). Neuroimaging studies have also found that homologous 

areas of the human brain have similar mirror-like properties, activating both when observing 

an action, or performing the same action oneself (Buccino et al., 2001; Buccino et al., 2004; 

Iacoboni et al., 2005). The notion that the premotor and parietal cortices have mirror-like 

properties is supported by an fMRI study by Buccino et al., (2001). Subjects observed one of 

three actions, the biting of an apple (a mouth movement), reaching and grasping of an object 

(a hand movement) and the kicking of a ball (a foot movement). Activity was compared 

between these conditions and conditions where the same body part was viewed when static. 

They reported activity in both parietal (area 7) and premotor areas (BA 44) that are 

homologous to area PF and area F5 in the macaque brain respectively, when subjects observed 
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the actions of another. Interestingly, they also found that the activity at the time of these 

actions was organised topographically in the same manner that the premotor cortex responds 

in a topographic manner when performing an action oneself, i.e. the area that responded to 

the foot actions was located medially, whereas the area that responded to the mouth actions 

was lateral. Other studies have shown that area 44 is also engaged when others’ actions can 

be predicted. Ramnani and Miall (2004) performed an fMRI study in which subjects monitored 

cues that instructed a third-person or a computer to perform an action, and also performed 

similarly cued actions themselves. When an abstract cue informed the subject of the specific 

action that would be taken by the third-person, the premotor cortex was activated. When 

similar cues were uninformative about the specific action that would be taken by a third-

person, the premotor cortex was not activated. They also reported that a portion of the 

premotor cortex was activated when cues instructed the specific action that they would be 

required to perform. These results highlighted the mirror-like properties of human premotor 

cortex. Numerous fMRI studies have since supported the assertion that both the parietal lobe 

and the premotor cortex have mirror-like properties, although there is still considerable 

debate as to whether they can be considered a “mirror-neuron” system in humans in the same 

way as they are in the monkey (Rizzolatti and Craighero, 2004; Iacoboni and Dapretto, 2006; 

Kilner et al., 2009; Kilner, 2011). However, these studies highlight how recognising others’ 

actions, requires the ability to simulate those actions in functional anatomy that guides one’s 

own actions. 

  

1.2.2 Theory of Mind 
 

Another prominent account of social cognition suggests that we understand the behaviour of 

others by making theories about their mental states. Since the development of neuroimaging 

methods, a large number of studies have investigated the neural processes that underpin such 

theory of mind abilities. A striking finding is that across a variety of different tasks, in a large 

number of different studies, three areas are consistently reported as activated, namely the 

paracingulate cortex, the posterior Superior Temporal Sulcus (pSTS) and the temporal poles. 

This includes studies that have required subjects to read stories (Fletcher et al., 1995; 

Gallagher et al., 2000), read cartoons (Gallagher et al., 2000; Sommer et al., 2007), monitor 

animations (Castelli et al., 2000) or monitor others’ actions and decisions (Ramnani and Miall, 

2004; Rilling et al., 2004). The consistent activation in these three areas across studies and the 
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fact they are anatomically connected to each other (Seltzer and Pandya, 1989; Barbas et al., 

1999) has led to them being referred to as the core-circuit for mentalizing. 

The region of the paracingulate cortex that is typically activated by mentalizing tasks lies 

superior to the cingulate sulcus, putatively at the borders between areas 32’, 8 and 9 (Amodio 

and Frith, 2006).  Whilst this area has been found to be activated in many tasks where mental 

states have to be attributed to others, there is some evidence to suggest that this area has a 

more specific role. It has been claimed that the paracingulate cortex is engaged specifically 

when the intentions that another wishes to communicate are inferred (Amodio and Frith, 

2006). One study that supports this claim was conducted by Walter et al. (2004). They 

reported activity in the paracingulate cortex when subjects saw cartoons in which the 

intentions of another to communicate during a social interaction could be inferred. Activity 

was not found when a mental state could be attributed to another, but the actions of another 

were not communicative (Walter et al., 2004). Other studies have since supported the claim 

that the paracingulate cortex is important for the processing of communicative intentions 

(Walter et al., 2009). 

There is still considerable debate as to the contribution of the pSTS to mentalizing abilities, 

however it appears to have a specific role in detecting that motion in a scene is caused by a 

biological agent. For example, neurons in the pSTS increase their firing rate when the motion 

of point lights takes the form of a moving biological agent, which is not the case when the 

movement of the point lights is random (Puce and Perrett, 2003). Neuroimaging studies have 

supported this claim, showing that the movement of limbs and also faces moving during 

speech, result in an increased BOLD response in the pSTS (Puce et al., 1998; Puce and Perrett, 

2003; Pelphrey et al., 2004; Thompson et al., 2007). Other studies have shown that activity 

occurs in this area even when abstract objects interact in a manner that suggests the 

movement is of two biological agents interacting (Castelli et al., 2000). Some have therefore 

suggested that the role of pSTS may be to code for instances when the motion detected in a 

scene is that of another organism (Frith and Frith, 2003) .  

The polar region of superior temporal gyrus, lying adjacent to the amygdala, is often activated 

in tasks in which subjects attribute mental states to others (Frith and Frith, 2006). This would 

implicate the pSTS in processing information about the mental states of others. However, 

there is some evidence to suggest that processing in this area is not actually related to mental 

states. There are a number of studies that have shown that this area is engaged when 

processing semantic information. When retrieving the meaning of words during sentences, the 
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temporal pole shows an increased BOLD response (Mazoyer et al., 1993; Fletcher et al., 1995). 

This area is also activated when performing lexical decision-making tasks and when making 

semantic judgements (Noppeney and Price, 2002). This would suggest that the temporal poles 

may be engaged by the retrieval of semantic information and not specifically when processing 

the mental states of others. Some support from this comes from the fact that the majority of 

tasks that examine mentalizing processes which report activity in the temporal pole are those 

which use vignettes or cartoon based stimuli (Fletcher et al., 1995; Gallagher et al., 2000; 

Vogeley et al., 2001; Frith and Frith, 2003). Studies that use tasks where the stimuli do not 

contain any semantic information, do not show activity in the temporal poles when subjects 

are attributing a mental state to others (Castelli et al., 2000; Ramnani and Miall, 2004; Rilling 

et al., 2004). Thus, there is no clear picture as to whether a portion of the temporal poles is 

engaged specifically when processing others’ mental states. However, in general, there is 

considerable evidence to suggest that the pSTS and the paracingulate cortex form a network 

that processes others’ mental states. 

 

1.2.3 Theory of Mind, Simulation and the Anterior Cingulate Cortex 
 

It is clear from the evidence provided that parts of the motor system are activated both when 

observing and performing the same action. In addition, when processing others’ intentions, 

desires and beliefs there is activity in a core-circuit of areas that may be specialised for such 

processes. However, given the complexity of social behaviour, an obvious question arises: Can 

these theories explain all aspects of social behaviour and social cognition? In this thesis, it will 

be argued that these theories, in their current form, cannot account for how we understand 

the actions and decisions of others. In this next section, I provide evidence which suggests that 

the integrity of areas that are not part of the mentalizing system or the mirror-neuron system 

may also be important for social cognition. 

Neurological patients offered the first insight into how areas on the medial wall in the frontal 

lobe (inferior and rostral to the paracingulate cortex) might contribute to social cognition. 

Patients with lesions to this region often show changes to their social behaviour in comparison 

to their behaviour before a lesion, without any changes in performance on other cognitive 

tasks (Barrash et al., 2000; Tranel et al., 2002; Bar-On et al., 2003). A series of patients who 

have suffered significant damage particularly to the medial wall including the OFC, the ACC and 

ventral portions of the superior frontal gyrus, have shown that changes in social behaviour can 
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be quite severe (Saver and Damasio, 1991; Barrash et al., 2000). Indeed, some have suggested 

that such damage can result in “acquired sociopathy” (Saver and Damasio, 1991), whereby 

patients respond to emotional and social stimuli in the same manner as psychopathic patients. 

Such symptoms are evident in patient E.V.R, who had extensive damage across a large portion 

of the ventral areas of the medial wall (Saver and Damasio, 1991; Anderson et al., 1999). When 

patient E.V.R observes distressing social situations, the change in skin conductance that are 

observed in the normal population do not occur. This absence of a change in skin conductance 

is also present in patients with psychopathy (Anderson et al., 1999).  

Whilst it is difficult to impute function to a specific brain area following acquired damage 

which is not constrained to a specific anatomical location, there is some evidence that it is 

damage to the ACC that results in changes in social behaviour. Tranel and colleagues  (Tranel 

et al., 2002) examined what they termed ‘social conduct’ in seven patients who had damage to 

the medial wall in ventral portions of the frontal lobe. They examined the changes that 

occurred in patients’ social behaviours following the lesion, as measured by a clinical 

assessment, their record of employment, their social status and their interpersonal skills 

(measured by reports from close relatives). Four patients were rated as showing significant 

changes and deficits on each of those four measures. In their paper, Tranel and colleagues 

(2002) reported that each of these patients had lesions that extended predominantly into the 

right hemisphere and not the left hemisphere, arguing that social cognition may be lateralized. 

However, it is notable that these patients all had lesions that extended over large portions of 

the ACC, whereas the patients with lesions that were constrained to the OFC or the most 

subgenual portions of the ACC showed very little change in their social behaviour. This 

suggests that it could be lesions to the ACC in these patients that disrupts their social cognitive 

abilities, not lesions to the OFC or damage in one hemisphere. Thus, the tentative conclusion 

that can be drawn from this study that it is lesions to the ACC and not the OFC that cause 

deficits in social behaviour.  

Patients who have undergone a cingulotomy (removal of grey matter in the cingulate cortex) 

offer the possibility of examining how damage to the ACC changes behaviour. A cingulotomy 

typically involves lesions to the dorsal portions of the ACC, to relieve symptoms of chronic pain 

or Obsessive-Compulsive Disorder (OCD) (Ballantine et al., 1967; Ballantine et al., 1987; Jenike 

et al., 1991; Wilkinson et al., 1999). A number of studies have reported behavioural and 

cognitive changes that are consequent from a bilateral cingulotomy, beyond the improvement 

in the symptoms of the disorder that was being treated by the lesion. Typically these studies 

have shown that a cingulotomy causes deficits in generating actions and sustaining attention 
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during cognitive tasks (Janer and Pardo, 1991; Cohen et al., 1999). However, there is little 

evidence that a cingulotomy results in deficits in social behaviour (Janer and Pardo, 1991; 

Jenike et al., 1991; Cohen et al., 1999; Cohen et al., 2001; Ochsner et al., 2001; Davis et al., 

2005). Indeed, the only evidence of changes in social behaviour following a cingulotomy, are 

that many patients report an improvement in relations with others in the months after the 

surgery (Wilkinson et al., 1999; Cohen et al., 2001). However, this is most likely due to the 

improvement in the symptoms of the disorder for which the surgery was conducted.  

One important point to note is that the studies that have investigated behavioural deficits 

following a cingulotomy, have all investigated deficits in patients with lesions to the sulcus of 

the ACC and not the gyrus. This is not surprising, as a cingulotomy typically involves lesions to 

the sulcus and not the gyrus. In the next two sections of this chapter I will report evidence that 

suggests it is the gyrus of the ACC that is important for social behaviour. This may explain why 

there is an absence of any reported deficits in social behaviour in patients who have 

undergone a cingulotomy. 

This section has outlined evidence which suggests that the ACC an area of the brain that is not 

considered part of a Theory of Mind network or the mirror-neuron system, is important for 

human social cognition. In later sections, I will argue that it is a specific portion of this region, 

on its gyral surface, that is engaged when processing social information. However, before 

there is any further discussion of the functional properties of the area, the anatomical 

properties of the ACC will be discussed, so that future discussions about the localization of 

functions within different portions of the ACC can be made coherently 

 

 
 

1.3 Anatomy of the Anterior Cingulate Cortex 
 

The aim of cognitive neuroscience over the last 60 years has been to localize function in the 

brain. Few cortical areas have been ascribed more functions than the Anterior Cingulate Cortex 

(ACC). Functional imaging, neurophysiological and electrophysiological recordings, electrical 

stimulation and lesion studies suggest that the ACC has diverse functional properties. Some of 
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this research has implicated the ACC in autonomic processes, including the regulation of blood 

pressure, heart rate and breathing (Ward, 1948; Kaada et al., 1949; Pool and Ransohoff, 1949; 

Showers, 1959; Terreberry and Neafsey, 1984, 1987; Liotti et al., 2001). Other studies report 

this area as being important for the control of limb movements (Luppino et al., 1991). One 

might conclude from this that the ACC is involved in the control of low-level, predominantly 

visceral processes. However, seemingly contradictory evidence highlights the ACC as important 

for higher-order cognitive and emotional processes, including volition, self-awareness and 

even conscious experience (Devinsky et al., 1995; Posner and Rothbart, 1998; Bush et al., 

2000; Allman et al., 2005; Posner et al., 2007). One could try and reconcile these two 

viewpoints by identifying the common property that underpins each of these processes. 

However, an alternative approach might be to examine the validity of the assumptions that 

such research makes. 

Much of the research investigating the functional properties of the ACC, particularly those that 

use neuroimaging methods, are underpinned by the assumption that the ACC is an 

anatomically homogenous zone. However, examination of the anatomical properties of the 

region often referred to as ACC, invalidates such an assumption. Neither the cytoarchitecture 

nor the afferent or efferent connections are homogenous across the spatial extent of the ACC.  

There is also evidence to suggest that many of the different functions that are processed in the 

ACC can be localized to distinct sub-regions which have different anatomical properties 

(Beckmann et al., 2009). In this chapter, it will be argued that the processing of social 

information can be localized to a portion of the gyral surface of the ACC. In this specific 

section, the anatomical properties of the cingulate cortex will be outlined, focusing on the 

differences in cytoarchitecture and connectional properties of the Anterior Cingulate Sulcus 

(ACCs) and the Anterior Cingulate Gyrus (ACCg). 
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1.3.1 Cingulate Cytoarchitecture 
 

“The functions of a cortical area are determined by its extrinsic connections and intrinsic 

properties” 

(Passingham, Stephan & Kotter, 2002) 

An important notion in cognitive neuroscience is that understanding the structure of the brain 

is imperative for understanding its function. Since the work of Brodmann (1909) it has been 

well established that the brain can be anatomically divided into separate regions based on its 

intrinsic cytoarchitecture (Brodmann, 1909). Such divisions have proven extremely useful for 

functional localization and also for examining homologies between species (Passingham et al., 

2002). In this section I will outline the cytoarchitectonic properties of the cingulate cortex. The 

evidence provided will support the case that the sulcus and the gyrus have different functional 

properties.  

 

 

The human cingulate cortex extends along the medial wall of both hemispheres (see fig.1.1) 

around the entire extent of the corpus callosum. The anterior and rostral portion extends 

around the genus (‘subgenually’) and the posterior portion extends around the splenium. The 

cingulate gyrus is segregated from the parietal lobe by the marginal ramus of the cingulate 

Fig.1.1. Illustration of human cytoarchitecture on the medial wall taken from (Vogt et al., 1995). 

The frontal lobe is shown to the left. The * shows the location of the anterior commisure. The 

cingulate cortex encompasses all the regions within the bold dotted line. 
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sulcus. This sulcus extends rostrally segregating the cingulate gyrus from areas 6, 8, 9 and 10 in 

the frontal lobe (Vogt et al., 1995; Paus et al., 1996; Paus, 2001; Palomero-Gallagher et al., 

2008). Whilst cingulate sulci are present in all subjects and in all hemispheres, there is 

considerable variability in terms of the presence and location of an additional paracingulate 

sulcus or superior cingulate sulcus (Vogt et al., 1995). Paus et al., (1996) examined high 

resolution Magnetic Resonance Imaging (MRI) scans of 494 human hemispheres (297 brains). 

A paracingulate sulcus was present in 88% of cases overall. However, it was only prominent in 

45% of brains with a slightly higher incidence in the left hemisphere.  

Possibly the most detailed account of human and monkey cytoarchitecture has been provided 

by the work of Vogt and his colleagues (Vogt et al., 1987; Vogt et al., 1995; Palomero-Gallagher 

et al., 2008). Although there are alternative characterisations of the cingulate cytoarchitecture 

(Ongur et al., 2003), the work of Vogt will be used throughout this thesis. Broadly speaking the 

human cingulate cortex can be divided into four areas, retrosplenial, posterior (PCC), mid 

(MCC) and anterior cingulate cortices (ACC), although there are no gross anatomical landmarks 

to delineate them. The border between the PCC and the MCC lies on average, 22mm posterior 

to a vertical plane in line with the Anterior Commisure (VCA). The border between MCC and 

ACC lies, on average, 30mm anterior to the VCA, with the ACC extending around the genus of 

the corpus callosum (Vogt et al., 1995). However, these borders are only rough estimates, due 

to the considerable variability across subjects in their location and also as they do not lie 

perpendicular to the VCA line (Vogt et al., 1995; Palomero-Gallagher et al., 2008). It is 

important to note that both the anatomically defined ACC and the MCC fall in the region that is 

typically labelled as ACC by functional imaging research. I will therefore restrict further 

discussion to the cellular properties of these areas. 

Both the MCC and the ACC can be further sub-divided into separate zones (Vogt et al., 1995). 

In the most rostral portion of the ACC, in subgenual cortex is area 25. Area 25 is defined by 

broad layers II and III, which are poorly differentiated. Layer V and VI are also poorly 

differentiated with large and densely packed neurons. Area 32 borders area 25, extending in 

the anterior plane to it. Area 32 sweeps caudally on the upper bank the of cingulate sulcus and 

is a dysgranular zone between agranular area 24c/24c’ and the granular frontal areas of 9 and 

10. In cases where there is an additional paracingulate sulcus, this area is typically lies within 

the depths of this additional sulcus (Vogt et al., 1995; Bozkurt et al., 2005). It has a broad layer 

II, with a well differentiated layer III containing large pyramidal cells. It also has a well 

differentiated layer IV containing some layer Va pyramids, which is typical of dysgranular 

cortex.  
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Below area 32 in the lower bank of the cingulate sulcus is area 24c, although in cases where 

there is an additional paracingulate suclus area 24c falls on both upper and lower banks of the 

cingulate sulcus. 24c also extends caudally from a border with area 25. Area 24c lacks a 

granular layer IV, but has a cell-dense layer Va and broad layer II, with no layer Vb, making it 

distinct from area 32. Layer III contains medium sized uniformly distributed pyramids. Area 

24b, lies adjacent to area 24c extending caudally from a border with area 25. However, area 

24b is found predominantly in the gyrus, even in cases where there is an additional 

paracingulate sulcus. This area also lacks a layer IV, but has a highly densely packed layer Va, 

containing both small and large pyramids. Area 24a lies adjacent to area 24b, sweeping 

caudally from its border with area 25. Area 24a is found solely on the gyral surface and does 

not encroach upon the sulcus at any point. Like areas 24c and 24b, 24a has no granular layer 

IV, with well differentiated layers II and III. However, it has a much thinner layer Va than area 

24b. Finally, area 33, which lies in the depths of the cingulate cortex, lies in the callosal sulcus, 

adjacent to the corpus callosum. This area extends across both ACC and MCC. Area 33 is the 

most poorly differentiated area in the cingulate cortex. Layers II and III are broad and 

undifferentiated, layer V has sparse pyramidal neurons and there is no layer VI. 

Lying caudal and posterior to ACC areas 32, 24a, 24b and 24c are areas 32’, 24a’, 24b’ and 24c’ 

in the MCC (Vogt et al., 1987; Vogt et al., 1995). The use of the same numerals, despite a 

transition from ACC to MCC, is unfortunately somewhat misleading. There are clear 

distinctions in the properties of these areas. Area 32’ lies caudal to area 32 on the dorsal bank 

of the cingulate sulcus, but when an additional paracingulate sulcus is present it falls within 

this additional paracingulate sulcus and not in the cingulate sulcus. Area 32’ has an attenuated 

layer IV with respect to area 32, its layer Va is less dense and layer III contains larger pyramidal 

neurons. Layer 24c’ lies caudal to area 24c on the dorsal bank of the sulcus in the MCC. When 

there is an additional paracingulate sulcus, area 24c’ is found on both the dorsal and ventral 

banks of the cingulate sulcus.  Layer 24c’ is distinct from area 24c as it contains medium sized 

pyramidals in layer Vb, a layer which is absent in area 24c. In addition, layer III is much more 

sparse in area 24c’ than area 24c. Area 24c’ is also distinct from area 32’, as it does not contain 

the large pyramidal neurons that’s form a broad layer III and IIIc in area 32’. Area 24b’ lies 

below area 24c’ and caudal to area 24b. Area 24b’ has an attenuated Layer III compared to 

area 24b, has a thinner area layer Va and has clusters of large pyramidal neurons.  However, 

layer Va is more dense in area 24b’ than in area 24c’. Finally, layer 24a’ lies below area 24b’ on 

the gyral surface and caudal to area 24a. Area 24a’ has better differentiated layers II and III 
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than in either areas 24a or 24b’. Layer Va is also thinner in area 24a’ than in 24a (Vogt et al., 

1995; Palomero-Gallagher et al., 2008). 

In summary within both the ACC and the MCC there is a clear distinction between the 

cytoarchitecture in the cingulate gyrus and in the cingulate sulcus (Vogt et al., 1995). This is 

particularly apparent in the MCC, where broadly speaking, areas 24c’ and 32’ lie on the ventral 

and dorsal banks of the sulcus respectively and areas 24a’ and 24b’ lie on the gyral surface. 

This anatomical evidence therefore supports the claim that the sulcus and the gyrus of the 

cingulate cortex are engaged during different processes. In later sections I will argue that it is 

the gyral portion of the MCC that processes social information. 

 

During this thesis I will often use evidence from lesion studies and neurophysiological 

recordings in non-human primates to make claims about how function is localized in the 

cingulate cortex. In particular, I will often refer to work that has been conducted on macaque 

monkeys. It is therefore important to discuss whether there are homologies between the 

cingulate cortex of the macaque monkey and that of the human. Figure 1.2 gives a clear 

illustration of the cytoarchitecture of the macaque monkey on the medial wall (Vogt et al., 

1987). As can be seen, the macaque cingulate cortex can also be segregated into ACC, MCC 

Fig.1.2. Illustration of the macaque monkey cytoarchitecture of the medial wall. Taken from 

(Vogt et al., 1987). 
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and PCC regions as in the human. Vogt and colleagues (Vogt and Pandya, 1987; Vogt et al., 

1995) also claim that the each region can be subdivided into the same divisions as those found 

in the human, using the same criteria. The macaque cingulate cortex also contains a similar 

rostro-caudal differentiation in cytoarchitecture as that of the human. As in the human, area 

25 is located subgenually and areas 24a-c lie caudal to area 25, but rostral to areas 24a’-c’. 

However, it is notable that the cingulate sulcus and gyrus do not extend around the genus of 

the corpus callosum to the same extent as the human cingulate sulcus and gyrus.  

The cytoarchitecture of the macaque also shows a similar differentiation between the sulcus 

and the gyrus. Areas 24c and 24c’ lie predominantly on the ventral bank of the sulcus, with 

areas 24a, 24a’ 24b and 24b’ inferior to the sulcus on the gyral surface. Thus, there is a 

considerable homology between the cingulate cortex in the macaque and the human brain 

(Vogt et al., 1987; Vogt et al., 1995). Despite the homologies, the cellular properties of the 

cingulate cortex have evolved. Historically, many regarded the cingulate cortex as a 

phylogenetically primitive region, due to its composition of only five rather than six layers. 

However, more recently the opposite claim has been made. This reverse has come about 

through the discovery of a class of large spindle neuron (sometimes called “ Von economo 

neurons”) which are present in areas 24b, 24b’, 24a’ and some have argued in area 24c’ (Vogt 

et al., 1995; Nimchinsky et al., 1999). These neurons are found exclusively in the brains of 

humans, great apes, elephants and some cetacean species, but are greatest in number and 

density in humans (Nimchinsky et al., 1999; Allman et al., 2002; Watson et al., 2006; Butti et 

al., 2009; Allman et al., 2010; Allman et al., 2011). However, as yet there is little evidence of 

what specific functional properties the presence of these neurons imputes to a region 

This evidence suggests that distinct functions may be processed in the ACC and the MCC, and 

moreover, different information may be processed within their respective subdivisions. 

However, such information is not particularly useful for understanding the functional 

properties of each subdivision alone. Despite some cellular properties linking closely to the 

function of a region (e.g. giant pyramidal cells in deep cortical layers typically implicate a role 

in motor control) the cellular properties of an area alone are not enough to impute a 

functional property. Thus, to understand the function of an area one must look beyond its 

intrinsic properties, to its extrinsic connections to other areas (Passingham et al., 2002).  
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1.3.2 Connectional anatomy of the Anterior Cingulate cortex. 
  

The location and strength of the anatomical connections of an area can reveal important clues 

about the information it processes (Passingham et al., 2002). In this section I will review 

studies that have investigated the anatomical connections in the nonhuman primate and 

human cingulate cortex. Broadly speaking, both species show similarities in how the cingulate 

cortex can be divided into distinct areas that have different connectivity profiles. In both 

species the connections of the cingulate gyrus are, at least partially, distinct from the 

connections of the sulcus. Moreover, the gyrus in the MCC has connections to areas of the 

brain that are implicated in processing social information, that are not evident in other 

portions of the cingulate cortex. 

1.3.2.1 Animal studies 

 

Tracer studies have been used to investigate anatomical connections in the cingulate cortex. 

Within the limits of practicality, (i.e. constraining the injection of tracer material to a 

cytoarchitectonic zone is not always possible) it is possible to use tracers and cytoarchitecture 

to determine the correspondence between connectivity and cellular architecture. In the 

cingulate cortex, tracer studies have revealed that the ACC and the MCC share connections to 

areas of association cortex and areas that process rewards. However, the sulcus of the MCC is 

the only region of either the MCC or the ACC that has strong connections to the motor system. 

In addition, the gyrus of the MCC is the only region of either the MCC or the ACC that has 

connections to each of the nodes in the core-circuit that is engaged when mentalizing. 

All of the areas in the ACC (25, 24a and 24b) have reciprocal connections with areas 46 and 

portions of area 9, both on the medial surface and also more lateral portions (Pandya et al., 

1981; Vogt and Pandya, 1987; Petrides and Pandya, 2006, 2007). These areas are considered as 

association cortex and process highly abstract motor information (Petrides and Pandya, 1999). 

Subgenual portions of the ACC (area 25) have connections to TS2 and TS3 in the temporal lobe 

which are considered to be portions of the auditory association cortex (Friederici, 2002), 

although only weak connections are found from the more caudal portions of the ACC (areas 

24a and 24b). Perhaps the strongest connections from the subgenual ACC are to the adjacent 

orbitofrontal cortex (OFC) (Morecraft et al., 1992; Carmichael and Price, 1995; Cavada et al., 

2000). In the more subgenual regions these connections are primarily to medial areas 11 and 

14, whereas as the strongest connection in caudal portions of the ACC are found to the more 
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lateral portions of area 11, as well areas 13 and 12 in the lateral OFC. Connections between the 

caudal ACC area and the medial OFC are present, but weaker than in the subgenual area 

(Morecraft et al., 1992; Carmichael and Price, 1995; Cavada et al., 2000). The OFC is well 

known for its role in processing rewarding stimuli (Schultz et al., 2000), with neurons in this 

area sensitive to the magnitude of reinforcers (Padoa-Schioppa and Assad, 2006, 2008). All of 

the areas in the ACC also project to another area which is considered as important in 

processing rewards, the striatum (Apicella et al., 1991; Schultz, 1998). The strongest 

projections from both caudal and subgenual portions of the ACC are to the shell of the nucleus 

accumbens (Yeterian and Pandya, 1991; Lyndbalta and Haber, 1994; Haber et al., 1995). 

Connections are also evident from all portions of the ACC to the basal amygdaloid nuclei 

(Amaral and Price, 1984), an area which is implicated in the processing of appetitive responses, 

and also in the perception of emotion (Adolphs, 2002). Thus, broadly speaking the ACC is 

connected to areas of association cortex, areas that process rewards and also to areas involved 

in the processing of emotions. 

In the MCC there is some overlap between the areas to which the sulcal area 24c’ are 

connected and the areas to which the gyral areas 24a’ and 24b’ are connected. These 

connections also somewhat overlap with the connections of the ACC. Both the sulcal and gyral 

portions of the MCC are reciprocally connected to areas 9 and 46, much like in the ACC 

(Pandya et al., 1981; Vogt and Pandya, 1987; Petrides and Pandya, 1999, 2006). Connections 

are also evident from both the sulcal (24c’/32’) and the gyral (24a’ and 24b’) areas to portions 

of the medial (areas 10 and 11) and the more lateral (areas 12 and 13) regions of the OFC  

(Morecraft et al., 1992; Morecraft and Van Hoesen, 1998). However, there are distinctions 

between the connections of the ACC and the MCC. Notably, the MCC lacks connections to the 

basal amygdaloid nuclei and to areas TS2 and TS3, areas which are strongly connected in the 

ACC. Both the sulcal and gyral portions of the MCC project to the core of the nucleus 

accumbens in the striatum, with very weak connections to the portions of the shell that 

receives projections from the ACC (Kunishio and Haber, 1994; Haber et al., 1995). In addition, 

the Ventral Tegmental Area (VTA), an area which is important for processing primary 

reinforcers (Hollerman and Schultz, 1998; Schultz, 1998; Williams and Goldman-Rakic, 1998), 

also projects strongly to large portions of area 24c’, as well as weakly to areas 24a’ and 24b’ 

(Williams and Goldman-Rakic, 1998). However, these connections have only been shown to 

the more anterior portions of the MCC and unfortunately, it has not been investigated 

whether connections are also found to more caudal portions of the MCC. Both the gyral and 

sulcal regions of the MCC are connected to portions of the association cortex in the parietal 
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lobe, predominantly within medial area 7, but also portions in the intraparietal sulcus (Pandya 

et al., 1981; Vogt and Pandya, 1987). Thus, there is an overlap between the connections of 

sulcal and gyral portions of the MCC to areas of association cortex and also to areas that 

process rewards. 

Despite the fact that both sulcal MCC and the gyral MCC are connected to areas of the brain 

that process rewards, there are also important differences in the areas to which they connect, 

which suggest that they may have different functional properties. Areas 24a’ and 24b’ have 

connections to a portion of the medial wall at the borders of areas 8, 9 and 32’, often referred 

to as paracingulate cortex (Pandya et al., 1981; Vogt and Pandya, 1987; Petrides and Pandya, 

2007). The gyral surface of the MCC also has strong reciprocal connections with a region in the 

depths of the posterior superior temporal sulcus (pSTS), in a region that borders the tempero-

parietal junction and also to portions of the most anterior regions of the superior temporal 

gyrus (Markowitsch et al., 1985; Seltzer and Pandya, 1989; Barbas et al., 1999). The intriguing 

aspect of these connections is that these areas are considered to be the core-circuit that is 

engaged when processing others’ mental states. There is no evidence of connections from all 

three of these regions to the sulcal MCC. In addition, the ACC also does not have connections 

to the same portions of the pSTS or the paracingulate cortex, although there are some weak 

connections to the similar areas within the temporal poles (Markowitsch et al., 1985; Seltzer 

and Pandya, 1989). Thus, it would seem that the gyral surface of the MCC is the only portion of 

the cingulate cortex that has access to information related to the mental states of others. 

The sulcus of the cingulate cortex contains three agranular areas, which are referred to as the 

Cingulate Motor Areas (CMAs). The CMAs consists of the rostral (CMAr), ventral (CMAv) and 

dorsal (CMAd) regions that are defined as motor areas by their direct projections to the spinal 

cord (Hutchins et al., 1988; He et al., 1995; Dum and Strick, 1996). In addition, electrical 

stimulation of neurons in each of these areas results in limb movements (Luppino et al., 1991). 

The ventral and dorsal CMAs lie in the most anterior regions of the PCC (area 23c). The CMAr 

lies in the lower bank of the sulcus in the MCC in area 24c’. The CMAs each have strong 

connections to primary motor, premotor, supplementary motor (SMA) and pre-supplementary 

motor (pre-SMA) cortices (Showers, 1959; Picard and Strick, 1996; Wang et al., 2001). Outside 

of the CMAr in area 24c’, there are no neurons that project to the spinal cord. However, 

projections to the primary motor cortex and premotor cortex are found rostrally along the 

ventral bank of the sulcus (Wang et al., 2001), although such connections are not found along 

the entire extent of area 24c’. Projections to the SMA and the Pre-SMA are found across the 

whole length of the sulcal MCC (Wang et al., 2001). Thus, a large proportion of area 24c’ has 
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connections to areas within the motor system. Crucially, no portion of the gyral surface of the 

MCC has connections to the spinal cord, primary motor cortex or to premotor cortex and very 

few cells are found that project to the SMA or pre-SMA. Therefore, whilst area 24c’ has 

connections to areas that process rewards like areas 24a’ and 24b’, its connections strongly 

implicate the region as being part of the motor system. 

Whilst there is segregation between the long-range connections of the different portions of 

the cingulate cortex, there is considerable evidence that each of the different areas within the 

cingulate exchange information with each other. Some of the strongest projections appear to 

be from the gyral MCC to the CMAr in the sulcus (Pandya et al., 1981; Vogt and Pandya, 1987; 

Morecraft and Van Hoesen, 1998), suggesting that the information processed in the gyrus may 

have an indirect link to the motor system. Both the CMAr and the gyral MCC are also 

connected to the most rostral portions of the sulcal MCC and also areas 24a and 24b in the 

ACC (Pandya et al., 1981; Vogt and Pandya, 1987; Carmichael and Price, 1995). The dominant 

projections from the subgenual portions of the ACC are to also to areas 24a and 24b, although 

some weaker projections to posterior portions of the MCC are also found (Pandya et al., 1981; 

Vogt and Pandya, 1987; Carmichael and Price, 1995; Petrides and Pandya, 2007). This would 

suggest that information can be exchanged locally within the cingulate cortex, particularly 

between the gyral MCC and the CMAr. 

Broadly speaking, the evidence from tracer studies suggests that there is a similar pattern 

evident in the connectional anatomy of the ACC, to that which is found in the cytoarchitecture. 

There are changes in connectivity along the rostro-caudal axis and also distinctions between 

the connectivity profiles of the sulcus and the gyral surface.  In general, anatomical evidence 

implicates the regions within the ACC in reward-related and affective processes. The MCC also 

exchanges information with areas that process rewards. However, the gyral surface of the 

MCC is the only portion of the cingulate cortex that has strong connections to each of the 

nodes in the core-circuit that is engaged when mentalizing. 

 

1.3.2.2 Human Studies 

 
So far I have outlined a case that supports the notion that the sulcal MCC processes 

information related to rewards and actions, and the gyral MCC processes socially relevant 

information. However, this evidence all comes from nonhuman primate research. Until 
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recently, it was difficult to acquire data that was informative as to the connectional properties 

of the human brain. However, modern neuroimaging techniques now allow for data that 

examines anatomical connectivity to be acquired. Techniques such as Diffusion Tensor Imaging 

(DTI) allow for the claims which have been made based on nonhuman primate tracer studies to 

be examined in the human brain. DTI is an MRI based technique that enables the 

measurement of diffusion of water. When water is contained, its direction of diffusion is 

restricted. When such diffusion occurs in white matter tracts, its diffusion will be restricted in 

the direction of the pathway (Le Bihan et al., 2001; Le Bihan, 2003). By examining the direction 

of diffusion of adjacent voxels one can examine whether there are white matter pathways 

from one brain area to another. Such an approach can be used to examine white matter tracts 

in vivo, in humans. However, at this point it should be noted that DTI is prone to false negative 

results (i.e. a real tract is present but not identified) due to the insensitivity of the method in 

areas where white matter fibres cross (Ramnani et al., 2004a). In addition, although DTI 

examines white matter pathways in the brain, it does not reveal whether connections exist 

between neurons at the synaptic level, only whether tracts between areas can be traced. 

An alternative method that can be used to examine connectivity between brain areas in 

humans, is to examine resting-state fMRI data (Beckmann and Smith, 2004; Beckmann et al., 

2005). By examining the statistical relationship between BOLD responses in different areas, 

one can examine whether activity in two areas fluctuates in a similar manner, implicating the 

two regions as being functionally connected. Obviously, much like DTI, this method is not 

sensitive as to whether there are connections between areas at the synaptic level. However, it 

is still informative as to whether the timecourse of activity in two areas is statistically related, 

and therefore indicative of functional connectivity between areas. 

The results of DTI and resting state fMRI studies identify similar patterns of connectivity in the 

cingulate cortex as those identified in animal tracer studies. Studies highlight a similar change 

in connectivity extending along the rostro-caudal axis of the cingulate cortex and also suggest 

distinctions in connectivity between the sulcus and the gyrus (Margulies et al., 2007; 

Beckmann et al., 2009). Thus, there is some correspondence between human and animal 

studies in terms of how the cingulate cortex can be subdivided based on its connectivity. In 

addition, the studies in humans identify similar connectivity profiles of each zone within the 

cingulate cortex, as those identified in animal studies. However, it should be noted that they 

do not necessarily highlight the identical connectivity profiles as those identified by tracer 

studies. Also, there are discrepancies in the connections identified by DTI and by resting-state 

methods. However, the discrepancies are likely to be due to significant differences in the 



 38 

 

nature of the data examined by each method, and the lack of sensitivity of both methods for 

identifying monosynaptic pathways in the brain. Margulies and colleagues (Margulies et al., 

2007) examined resting-state activity in 16 different seed voxels, located across the MCC and 

the ACC. They found a clear distinction between the areas in which activity covaried with 

activity within the ACC seed voxels, from those in which activity covaried with activity in the 

MCC seed voxels. This evidence supports the assertion that the connectivity profiles of the 

MCC and ACC regions are distinct. DTI methods also support this claim. As can be seen in figure 

1.3, Beckmann et al., (2009) performed a DTI-based parcellation of the cingulate cortex, 

revealing clearly distinct zones in the territory of the ACC and the MCC.   

 

 

 

 

 

 

 

 

Margulies et al. (2007) also found that activity in the MCC covaried with activity in a number of 

brain areas that were shown to be anatomically connected in the monkey MCC.  Activity in the 

more caudal parts of what they refer to as superior cingulate cortex (putatively lying in the 

sulcus of the MCC) was statistically related to activity in areas that process rewarding stimuli, 

including the OFC, the striatum, the PCC and the frontal pole. Activity was also statistically 

related to the premotor and primary cortices. Beckmann et al. (2009) also identified tracts 

between a dorsal cingulate region (extending into the sulcus, putatively in MCC) and areas that 

contain reward sensitive neurons, including parietal cortex and the striatum, as well as 

connections to the primary motor and premotor cortices. Each of these areas have been found 

Fig.1.3. (A) Illustration of the cytoarchtectonic zones of the ACC (in blue) and the MCC (in red) taken from 

Bush et al., (2000), (B) DTI based parcellation of the cingulate cortex by Beckmann et al., (2009). The region 

immediately adjacent to the corpus callosum in dark red lies on the gyral surface approximating to the 

location of areas 24a’ and 24b’.  

A B 
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to be connected to area 24c’ in nonhuman primates. These connections support the notion 

that the sulcal MCC is important for processing both rewards and actions. 

The results revealed by methods investigating the connectivity of the MCC gyrus in humans is 

less clear. A DTI study by Beckmann et al. (2009) found that although an area corresponding to 

the gyrus of the MCC showed a distinct pattern of connectivity to the rest of the cingulate 

cortex, it did not show strong connections to any specific area. However, in their examination 

of resting state data, Margulies et al. (2007) reported that activity in the “inferior cingulate 

cortex” which putatively corresponds to the gyral MCC, statistically varied with activity in 

reward processing areas including the striatum, the OFC and portions of the parietal cortex. 

Importantly this study also reported activity in the paracingulate cortex and the posterior 

superior temporal cortex that covaried with activity in the gyral MCC. As stated in section 1.2, 

these two areas constitute part of a core-circuit which is engaged when processing others’ 

mental states. Thus the functional connectivity of the gyral MCC in humans does show some 

correspondence with the regions that are also anatomically connected in animals. Therefore, 

bearing in mind the sensitivity of these methods, the evidence they provides supports 

assertions that were made above; The MCC has separate gyral and sulcal regions which both 

process reward-related information. The connections of the sulcus suggest that it processes 

information which guides actions, whereas the connections of the gyrus suggest that it 

processes social information. Later in this chapter, I will argue that the gyral surface and the 

sulcus in the MCC process similar information during reward-guided decision-making. 

However, the gyrus processes information about the reward-guided decisions of others. 
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1.4 The ACC and Social Cognition. 
 

As discussed in section 1.2, the evidence from patients with lesions that included portions of 

the ACC, suggests that the ACC is involved in processing social information. However, the 

damage in such patients is not informative as to what specific cognitive processes are 

disrupted and where such processes are localized within the cingulate cortex. In this section, I 

present evidence from experimental lesion studies that show that a specific sub-region of the 

ACC is involved in social behaviour and in processing social stimuli (Rudebeck et al., 2006a). 

These studies show parallels with the anatomical evidence reported in the previous section, 

highlighting the gyral surface, rather than the sulcus, as a candidate for processing social 

information. It should be noted that in these studies, lesions are made to both the sulcal and 

gyral portions of the ACC and the MCC, but they are referred to as the ACCs, (cingulate sulcus) 

and the ACCg (the cingulate gyrus). I will use this nomenclature throughout this section, in 

order to remain consistent with the authors’ discussion of their results. I will, however, discuss 

anatomical locations when they are relevant. 

The connections of the ACCg to the core-circuit implicated in theory of mind processing raise 

the possibility that the ACCg may be similarly engaged when processing others’ mental states. 

In the second part of this section I will discuss this possibility. However, as will become clear, 

there is an absence of any functional imaging evidence implicating the region in processing 

others’ mental states. In the final section, I will attempt to reconcile the contrasting results 

from animal and human studies, by reporting evidence that the ACCg may process information 

about others in the same manner that the ACCs processes information about oneself. 

 

1.4.1 Animal Studies 
 

Over the last decade a number of paradigms have been developed that are able to measure 

the extent to which an animal is evaluating and processing information about another. In a 

seminal study by Hadland et al. (2003), the social behaviours of three macaque monkeys were 

recorded following lesions to the ACC and compared with three macaque monkeys without 

such a lesion. The location of the lesions extended across the ACCg and the ACCs, in both MCC 

and ACC regions, and in one case extended across a portion of the paracingulate cortex. 

However, in all three cases a portion of the gyral surface in the MCC was ablated. The 

behaviour of the monkeys was examined whilst housed in a cage with two other monkeys 
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without an ACC lesion. The ACC lesioned monkeys spent less time stationary next to another 

monkey, less time interacting with other monkeys and performed fewer vocalisations directed 

at other monkeys than the control group. In a second experiment, lesions were made to the 

ACC in the monkeys that had acted as control monkeys in the first experiment.  The monkeys 

that were lesioned in this second experiment showed the same pattern of behaviour as the 

group who had lesions in the first experiment. Importantly, these behavioural changes could 

not be the result of general akinesia as the animals spent a significantly increased amount of 

time playing with a toy object following the lesion (Hadland et al., 2003). This study supported 

the tentative conclusions that can be drawn from the patients with acquired sociopathy 

discussed earlier in this chapter. That is, a portion of the cingulate cortex may be important for 

processing information that guides social behaviours. Similar findings have been found in rats. 

Lesions to the entire ACC in the rat have been shown to reduce the amount of time that the 

animals spend engaging in behaviours which constitute social interactions, such as sniffing 

other rats (Rudebeck et al., 2007).  This would therefore suggest that the ACC may be 

important for guiding social behaviour in several different species. 

 

 

Rudebeck and colleagues (Rudebeck et al., 2006a) performed a set of experiments that 

extended the results of Hadland et al., (2003). In their study, they examined the latency that 

occurs before reaching for a food item when the food was presented simultaneously with 

Fig.1.4. Figure taken from Rudebeck et al.,(2006). The graph shows the latencies before reaching 

for a food item, when the food is presented with another stimulus. Lesions to the ACCg resulted 

in significantly reduced latencies when the food was presented at the same time as a social 

stimulus. Lesions to the ACCs and the orbitofrontal cortex (PFv+o) did not show such significant 

reductions in the latency. 
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different types of social and emotional stimuli. Monkeys without lesions, with lesions to the 

lateral OFC or lesions to the ACCs, showed a similar latency before reaching for a food item 

when it is presented with a social stimulus. In contrast, monkeys with a lesion specifically to 

the ACCg (including the entire gyrus in the ACC and a portion of the gyrus in the MCC) showed 

significantly decreased latencies, in the presence of multiple different types of social stimuli. In 

fact, the latencies in these monkeys were the same as those exhibited by the control monkeys 

when the food was presented at the same time as a neutral stimulus (see fig.1.4). In addition, 

the ACCg lesions also resulted in a reduction in communicative behaviours such as lip smacking 

and communicative vocalizations, which were not reduced with OFC or ACCs lesions. This 

study therefore supports the notion, that it is the ACCg that processes social information and 

guides behaviours during social interactions. This study therefore corroborates with the 

anatomical evidence that the ACCg plays an important role in social behaviour. 

 

1.4.2 Does the ACCg process others’ mental states? 
 

As outlined in section 1.3, the ACCg has strong reciprocal connections to the paracingulate 

cortex, the pSTS and the temporal poles. These areas are considered a core-network that 

processes others’ mental states. This suggests that the ACCg has access to information about 

others’ mental states, which in turn implicates this area as an additional candidate for 

processing the mental states of others. One might therefore expect that tasks in which 

subjects are processing others’ mental states, which activate the paracingulate cortex and the 

pSTS, might also activate the ACCg. However, the majority of neuroimaging studies that have 

investigated Theory of Mind processing do not show any mentalizing related responses in the 

ACCg (Fletcher et al., 1995; Vogeley et al., 2001; Berthoz et al., 2002; Berthoz et al., 2006; Saxe 

et al., 2006; Young et al., 2007; Hooker et al., 2008; Aichhorn et al., 2009; Apperly and 

Butterfill, 2009; Young et al., 2010a; Zaitchik et al., 2010; Cloutier et al., 2011; Rothmayr et al., 

2011; Schnell et al., 2011). There are only a limited number of studies that have reported 

activity in any region of the ACC during conditions in which subjects are attributing mental 

states to others and these either fall in the most anterior portions of the ACC or in the sulcus 

(Brunet et al., 2000; Chaminade et al., 2007; Sommer et al., 2007). As such, these isolated 

studies do not report activity in the portion of the ACCg (in the gyral MCC) that in this thesis is 

argued to process social information.   
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The absence of many studies reporting activity in the ACCg when processing others’ mental 

states is not restricted to studies that specifically examine Theory of Mind abilities. A recent 

meta-analysis of over 200 studies which investigated the processing of social information in 

many different contexts, also failed to find many studies which reported activity in the ACC. 

This meta analysis included studies which investigated the processing of others’ negative and 

positive emotions, social norms and others’ personality traits (Van Overwalle and Baetens, 

2009). Within and across these different categories, the gyral surface of the MCC was not 

implicated in processing social information.  

There is one notable exception to the studies that do not find ACCg activity when mentalizing. 

In the study by Walter et al., (Walter et al., 2004) that has already been reported in section 1.2, 

activity was found in the paracingulate cortex when subjects processed the communicative 

intent of others. In their study, they reported activity in the ACCg during the control condition, 

where the mental states of others’ could be processed but their mental states related to 

actions that were not related to social interactions. For example, the ACCg was activated when 

subjects observed another about to change a light bulb. Thus, the subjects could infer the 

mental states of another at the time that the predictions about others’ actions were being 

processed. In later sections of this chapter I claim that the function of the ACCg may be to 

process others’ predictions about their actions, which may therefore account why this study 

identified such activity. 

In summary, despite strong connections to areas of the brain which are engaged when 

processing another’s mental state, the majority of neuroimaging studies in humans which 

investigate mentalizing abilities fail to find any ACCg activity occurring when attributing mental 

states. This contrasts with the evidence from lesions in both humans and also in animals which 

have implicated the ACC and particularly its gyral surface as important for social behaviour. 
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1.4.3 Reconciling Human neuroimaging and Animal lesion studies 
 

Starkly contrasting conclusions can be drawn from the neuroimaging literature investigating 

mentalizing processes and the lesion studies investigating disruptions in social behaviour. Can 

the two sets of evidence be reconciled? An obvious way to reconcile these two conflicting 

strands of evidence would be to take single-cell recordings from the ACCg when monkeys are 

interacting with others. However, to the best of my knowledge, there have been no studies 

which have recorded from the ACCg during social interactions. In fact, there is absence of 

studies that have documented the functional properties of neurons on the gyral surface of the 

MCC at all.  

Another possible reconciliation, given that differences occur between species, could come 

from an evolutionary perspective. In section 1.3 I highlighted that the ACCg had evolved in 

humans, with a significantly increased density and quantity of spindle neurons in the ACCg in 

comparison to any other species. Thus, it could be argued that as a result of evolutionary 

pressures the ACCg is no longer engaged by social information. However, this argument lacks 

any empirical support and, in fact, contradicts the only evidence relating to the evolution of 

the ACCg. Indeed, spindle neurons (see section 1.3.1) are found only in species that engage in 

complex social interactions and the complexity of social interaction correlates with the 

quantity of this type of neuron (Nimchinsky et al., 1999; Butti et al., 2009; Allman et al., 2011). 

Thus, although this is only a correlation, the only evidence examining the evolution of the 

ACCg argues for it having a more prominent role in processing social information in humans. 

An important fMRI study (for the field in general, but particularly for the work in this thesis) by 

Behrens et al. (2008) offered an alternative reconciliation. They noted that the ACCg and the 

ACCs, despite different connectivity profiles, share connections to systems that are engaged in 

processing the rewarding outcomes of decisions. They hypothesised that the ACCs and the 

ACCg might compute similar information about the outcomes of one’s own and others’ 

decisions respectively. Subjects performed a two-choice decision-making task which required 

them to track the probability of receiving a reward and the stochasticity of the ratios between 

two different rewarding options, i.e. track the volatility of the delivery of rewarding outcomes. 

During the experiment the reward schedules changed, such that in some periods the reward 

schedules were more stochastic than in others. On each trial, they also received advice from 

another participant (a confederate) about which was the better of the two options. They 

tested the hypothesis that the ACCs would code for how volatile the association was between 
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their chosen options and the rewarding outcomes and the ACCg would code for how volatile 

the association was between the confederate’s chosen options (the advice) and the rewarding 

outcomes. They reported activity in the ACC at the time of the outcomes. Activity in the ACCs 

and the ACCg was found to vary with degree to which people should learn from their choices 

and the confederate’s choices respectively, as a function of the volatility of the feedback (see 

fig.1.5). This study suggests that the ACCs and the ACCg process the same information about 

one’s own and other’s decisions respectively. 

 

 

Importantly, the nature of the activity that was identified in this study may also be informative 

as to the absence of studies which report this area as being engaged when mentalizing. In this 

study, the ACCg was shown to process the level of volatility of another’s advice. Activity in this 

area varied with a computation in a learning model (computational models will be discussed in 

section 1.6 in more detail). Thus, the response in the ACCg was parametric and occurred time-

locked to a specific event during decision-making. As discussed earlier, studies investigating 

theory of mind processing typically use block designs, where activity is aggregated across a 

whole vignette. However, if the ACCg processes social information only at the time of 

particular events and activity in this area varies parametrically, subtraction designs between 

activity aggregated over blocks would not have enough power to identify activity in this area. 

The study by Behrens et al., (2008) therefore provides important evidence to suggest that the 

ACCg processes information about others during social interactions. A handful of other studies 

have shown activity in the ACCg when subjects are interacting with others. In a similar manner, 

they show that the ACCg is engaged when subjects’ monitor the decision-making of others and 

that activity in this area occurs time-locked to specific events. Such studies have shown that 

Fig.1.5. Figure taken from Behrens et al.,(2008. 

Activity shown in the ACCs (green) and the ACCg 

(red). Activity in these two areas was found at the 

time of the outcome of decisions. Activity in the 

ACCs coded for the volatility of decision-outcome 

contingencies. Activity in the ACCg coded for the 

volatility of the advice provided by a confederate. 

Both clusters were putatively in the MCC. 
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the ACCg in the brain of a subject is engaged when processing cues that instruct others to 

make a decision (Tomlin et al., 2006; Baumgartner et al., 2009), when the response another 

has made is observed (King-Casas et al., 2005; Baumgartner et al., 2009) and when the 

outcomes of another’s decision is monitored (Shane et al., 2008; Apps et al., accepted). The 

results of human studies and animal studies may therefore be reconciled by the notion that 

the ACCg is engaged specifically when monitoring the decision-making of others. In this thesis, 

four studies will be presented that examine what specific contribution the ACCg makes to 

understanding the decision-making of others.  
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1.5 Theoretical Accounts of ACC Function 
 

The absence of a substantial body of literature implicating the ACCg in processing social 

information has also resulted in an absence of a theoretical account of its contribution to 

social cognition. Behrens et al., (2008) suggested that the ACCg may process similar 

information about others, which the ACCs processes about oneself. If analogous information is 

processed in these two areas, the ACCg may conform to the same theoretical principles as the 

ACCs. In contrast to the absence of theoretical accounts of the role of the ACCg in social 

cognition, there have been several theoretical accounts of the function of the ACC as a whole. 

In this section, I will outline several theories of ACC function and review the findings of studies 

that have used electrical stimulation, single-unit recordings, lesions and functional imaging to 

test them. Once the functional properties of the ACCs have been outlined, it will be possible to 

hypothesise what contribution the ACCg makes to social cognition. In this section I will 

continue to use the terms ACCg, ACCs and ACC to refer to both the MCC and ACC, in order to 

remain consistent with the authors’ discussion of their results. 

 

1.5.1 Historical accounts of ACC function  
 

For the majority of the twentieth century there were two opposing and seemingly parallel 

viewpoints on the function of the ACC. One viewpoint was that that the ACC is involved in 

highly abstract processes (Devinsky et al., 1995). This line of thinking arose due to changes in 

behaviour that occur when the ACC is damaged. Patients who have undergone a cingulotomy 

often report an absence in motivation and spontaneous response in the months following 

surgery, sometimes lasting up to 12 months (Cohen et al., 2001). Such a behavioural change is 

also evident and even more striking in patients who suffer from akinetic mutism, which can 

occur following ACC damage (Buge et al., 1975; Nemeth et al., 1988; Devinsky et al., 1995). 

Patients’ who suffer from this debilitating disorder, have the ability to speak and respond to 

others, as well as the ability to make normal movements. However, they do not perform any 

action or speech spontaneously without external input (Buge et al., 1975; Nemeth et al., 1988). 

Patient E.V.R suffered from akinetic mutism following the removal of a large meningioma on 

the medial wall of the frontal lobe that was removed at age 8. Following the removal of the 

tumour there was considerable damage affecting the left hemisphere, including a large portion 

of the ACC. Although E.V.R suffered from many deficits for a considerable period after the 

surgery, she recovered from the akinetic mutism and was later able to offer considerable 
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insight into the syndrome. The patient reported that she did not perform actions or speech 

because she felt no “will” to respond, as if her actions had no value and “nothing mattered”. 

Some suggested on the basis of this evidence, that the ACC must be a region that is important 

for conscious experience  (Damasio and Van Hoesen, 1983; Damasio and Geschwind, 1984). 

However, it is important to exercise caution when trying to use such evidence to ascribe 

function to an anatomical region. Lesions that are the result of brain damage are not specific 

to any one gross anatomical or cytoarchitectonic region. In addition, lesions may result in 

diaschisis, disrupting processing across a distributed network. Thus strong conclusions should 

not be drawn from such data.   

In contrast to the viewpoint that the ACC is involved in higher-order processes, there is 

considerable evidence that the ACC is engaged in very low-level visceral processes. Studies in 

animals that have stimulated the cingulate gyrus report changes in heart rate, blood pressure, 

and aggressive behaviours (Kaada et al., 1949; Terreberry and Neafsey, 1983; Hurleygius and 

Neafsey, 1986; Neafsey et al., 1986; Terreberry and Neafsey, 1987; Frysztak and Neafsey, 

1994). Neuroimaging studies have also shown that activity in the ACC responds to breathing 

rate and also levels of hunger (Brannan et al., 2001; Liotti et al., 2001). Each of these processes 

is visceral and contrasts with the neuropsychological evidence above.  

So, how can the ACC be a structure that processes low-level, visceral, autonomic processes and 

also the most complex, abstract information necessary for human conscious experience? Some 

have attempted to reconcile these two accounts, suggesting that the ACC is engaged in the 

planning, execution and generation of behaviours (Paus, 2001). Some have also suggested that 

the ACC is involved in translating high-level information to low-level systems or vice versa (e.g. 

transmitting emotional responses into autonomic systems or translating emotions into 

cognitive systems) (Devinsky et al., 1995; Morecraft and Van Hoesen, 1998; Bush et al., 2000). 

Yet, such descriptions are highly unspecific, unfalsifiable and possibly could be used as a 

description of many areas of the brain. As stated in section 1.3, part of this confusion arises 

from the use of the term ACC when referring to an anatomically, and therefore functionally, 

heterogonous area. Important clues as to the functional properties of the two areas that are 

examined in this thesis (the sulcus and the gyrus of the MCC) can be found in neuroimaging 

studies in healthy human adults. The findings of such studies may reveal important clues as to 

how the ACCs may contribute to behaviour and therefore be informative as to how the ACCg 

might contribute to social cognition. 

 



 49 

 

1.5.2 Cognitive and Affective divisions in the ACC 
 

Whilst historical accounts of ACC function have used evidence from lesions and 

electrophysiology, more recent theories have been developed around the findings of 

neuroimaging studies in humans. Functional imaging research, has implicated the ACC in 

processing a broad range of different information, including: pain (Bush et al., 2000), the 

detection of response errors (Carter et al., 1998), conflict monitoring (Botvinick et al., 1999; 

Kerns et al., 2004) and action selection (Rushworth et al., 2004). However, neuroimaging 

research has revealed that in the cingulate cortex there are functional divisions that 

correspond with the anatomical divisions. Specifically, there are changes in function along the 

rostral-caudal axis. Broadly speaking, the anatomically defined ACC responds during the 

processing of emotions, whereas the MCC responds during cognitive processes.  

One convincing body of evidence that highlighted an ACC-MCC division in the processing of 

affective and cognitive information was provided from studies using the Stroop test (Stroop, 

1935; Bush et al., 2000). The Stroop task is a long-standing psychological test of the ability to 

process incongruent stimuli. Subjects are required to read aloud a list of colours, that are 

either congruent or incongruent with the colour in which the text is printed (i.e. red and blue 

are congruent, but red and blue are incongruent). Behaviourally, an increase in reaction times 

occurs when a words’ meaning is incongruent with the font colour. In addition, on some trials 

subjects make an error, reporting the colour of the text rather than the written word. This task 

has also been adapted to examine the processing of incongruent emotional and cognitive 

stimuli.  In the emotional counting Stroop task, subjects are required to count the number of 

words on the screen and then identify when a word is emotionally different from the other 

words. Another adaptation is the cognitive counting Stroop task, where subjects count the 

number of numbers that have been presented in a series and have to detect when the written 

number is incongruent from the number of stimuli which they have counted (Davis et al., 

2005). These tasks can be used to examine the processing of emotional stimuli and cognitive 

abilities.   
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Two neuroimaging studies that were conducted on the same nine subjects, found that activity 

during the emotional and cognitive Stroop tasks, activated different portions of the ACC (Bush 

et al., 2006; Whalen et al., 2006). When the emotional Stroop task was performed, a region 

was activated in the caudal regions of the anatomically labelled ACC (i.e. in areas 24a-c). In 

contrast, in the same subjects, a more dorsal region in the MCC was activated when subjects 

performed the cognitive Stroop (i.e. in areas 24a’-c’). In addition to the evidence from these 

two studies, a meta analysis of neuroimaging studies investigating cognitive and emotional 

processes supports the assertion that there is correspondence between MCC-ACC and 

cognitive-affective cingulate divisions (Bush et al., 2000). As can be seen in figure 1.6, the peak 

coordinates of studies investigating cognitive processing are almost all in the MCC, whereas 

the affective tasks peak coordinates predominantly lie rostral to the MCC in the ACC.  

The meta-analysis conducted by Bush et al. (2000) revealed that there is an important 

distinction between information processing in the ACC and the MCC, with the MCC being 

engaged by cognitive processes. Intriguingly, the majority of the reported activations in tasks 

Fig.1.6. Figure taken from Bush et al., (2000). A meta-analysis of studies investigating the 

processing of emotion (blue squares) or cognitive processes (red squares). Emotion processing 

studies activated the caudal ACC, whereas cognitive studies activated the MCC. 
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that investigate cognitive processing lie superior to the gyrus, in the sulcus of the MCC. This 

corroborates with the anatomical evidence presented earlier, which highlighted the rostro-

caudal, sulcal-gyral distinctions in morphology and connectivity. In previous sections I have 

suggested that the gyrus in the MCC processes social information. Is the ACCg engaged when 

monitoring others’ cognitive processes? This hypothesis was tested in an fMRI experiment by 

Shane et al. (2008). Subjects were required to perform, or observe a third-person performing, 

a go/no-go task. Go/ no-go tasks are considered a cognitive task as they require the ability to 

cancel and inhibit a prepotent response or to perform an unplanned response. Shane et al., 

(2008) reported activity in the ACC, in a similar portion of the sulcus in the MCC area engaged 

during the cognitive Stroop task, whenever an erroneous response or absence of a response 

occurred, regardless of whether the trial was performed by the subject or performed by a 

third-person. However, an additional portion of ACCg, on the gyral surface of the MCC, 

responded exclusively to the erroneous inhibitions and erroneous responses of the third-

person (Shane et al., 2008). Thus, when the cognitive processes of another are erroneous, 

activity is found in the ACCg. These studies offer tentative support for the view that the ACCg is 

engaged when subjects are monitoring the behaviour of others, that reveals important 

information about their cognitive processing. Thus, the MCC can be considered as an area 

engaged during cognitive processing, with the gyrus sensitive specifically to others’ cognitive 

processes.  

 

1.5.3 Theoretical accounts of ‘Cognitive’ ACC? 
 

As stated in previous sections, there is an absence of a theoretical account of how the ACCg 

contributes to social cognition. I have argued that the ACCg is engaged by similar cognitive 

processes as the ACCs, but processes this information when monitoring the behaviour of 

others. Thus, in order to understand how the ACCg might contribute to social cognition, it is 

first important to understand the cognitive processes that are performed in the ACCs 

As the aim of this thesis is to understand how the cingulate cortex contributes to social 

cognition, and not to the processing of emotions, future discussion in this chapter will be 

restricted to discussions about the functional properties of the MCC. The research I have 

reported thus far, has not examined what cognitive processes engage the MCC. In this section, 

I will outline three theoretical accounts of cognitive ACC function. In later sections, I will argue 

that these theories cannot account for all of the functions that can be ascribed to the cognitive 
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ACC division. However, these theories have been pervasive in the literature and research 

continues to test their underlying assumptions. Additionally, the research investigating these 

theories has revealed important information about the functional properties of the cognitive 

ACC division that any framework must incorporate. For these reasons a discussion of these 

accounts is pertinent. It should be noted that alternative theories have been proposed for ACC 

function. For instance, some have suggested that the ACC is involved in consciousness 

(Devinsky et al., 1995) and others have suggested that the ACC is involved in attention 

(Corbetta et al., 1991). However, considerable research has highlighted their insufficiency and 

so they will not be discussed here. 

 

1.5.3.1 Conflict Monitoring 

 

The most prominent and comprehensive theory of ACC function to date, suggests that this 

area is crucial for detecting conflicts in information processing (Botvinick et al., 1999; Barch et 

al., 2000; Botvinick, 2007). Conflict monitoring stems from an idea from cognitive psychology, 

that novel or unexpected items require prepotent responses to be overridden. Many have 

suggested that the ACC is well placed to signal such conflicts as it has such widespread 

connections to areas of association cortex. It has therefore been proposed that the ACC signals 

when there is conflict between two different streams of information processing and also, that 

the greater the level of conflict, the greater the response in the ACC will be (Botvinick, 2007). 

This theory has considerable support, particularly from studies using neuroimaging methods in 

humans.  

Evidence for a role of the ACC in conflict monitoring was first presented by studies using the 

Stroop task that has already been described (Bush et al., 2000; Kerns et al., 2004; Bush et al., 

2006; Whalen et al., 2006). In this task, when a novel or unexpected item is presented (“blue”) 

following the word that has been repeated (“blue”) , there is conflict between the prepotent 

response (“blue”) and the response that is now required (“red”). Thus, it is suggested that at 

the time of incongruent stimuli, there is conflict between previously repeated responses to the 

congruent stimuli and the new response which must override the prepotent one. In line with 

this suggestion, activity at the time of an incongruent stimulus is greater in dorsal ACC regions 

(putatively in the sulcus in the MCC) than at the time of a congruent stimulus in the Stroop 

task (Kerns et al., 2004; Bush et al., 2006; Nee et al., 2011). Other neuroimaging studies which 

have used very different tasks, which also result in conflicts in information processing, have 
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reported activity in the MCC.  Experiments using the Go/No-Go task, where a subject is 

required to make a response on many trials (“Go” trials) before a trial occurs where they are 

required not to make a response (“No-Go”), have reported activity in the ACC. In particular, 

activity is greater in the ACC on the trials where the unexpected event occurs (Kawashima et 

al., 1996; Menon et al., 2001; Rubia et al., 2001). This has been interpreted as indicative of 

conflict occurring between the prepotent “Go” response and the now required “No-Go” 

response or vice versa.  In fact, many different tasks that require a prepotent response to be 

overridden by another, report activity in the dorsal ACC when such a conflict is present (Kerns 

et al., 2004; Sohn et al., 2007; Fan et al., 2008; Pochon et al., 2008; Nee et al., 2011). Activity in 

the ACC also increases with the number of possible actions that can be taken, which is 

interpreted as being indicative of the increased level of conflict between the different possible 

actions. Such an effect has been demonstrated in decision-making paradigms, where activity in 

the ACC increases at the time of instruction cues when the number of alternative possible 

choices that are available increases (Braver et al., 2001; Fan et al., 2008; Pochon et al., 2008).  

Whilst there is a considerable body of neuroimaging research which supports the conflict 

monitoring account of ACC function, there is little support from studies investigating the 

functional properties of neurons in this area. Studies in non-human primates have found little 

evidence of neurons in which activity is sensitive to changes in conflict (Amiez et al., 2005; 

Sallet et al., 2007; Quilodran et al., 2008; Kennerley et al., 2009; Kennerley and Wallis, 2009b, 

a; Hayden and Platt, 2010; Hayden et al., 2011b). Indeed, several of the studies that use single-

cell recording methods to examine the functional properties of neurons in the ACC find 

neurons which change their firing rate in response to stimuli, when the level of conflict has 

been experimentally controlled. However, it is possible that conflict monitoring processes only 

occur in human ACC, explaining the absence of such processing in non-human primate ACC. 

Rare single-unit recording data in humans, that recorded from the sulcus in dorsal MCC 

support this claim, showing that there are neurons which increase their firing rate with level of 

cognitive conflict during a Stroop task (Davis et al., 2005). 

Studies that examine the processing of conflict typically activate the sulcal MCC. Is the ACCg 

engaged when monitoring others’ conflict?  In the study by Shane et al. (2008), it was noted 

that activity in the ACCg occurred on the trials in a Go/No-Go task when subjects observed 

another failing to correctly inhibit, or correctly perform an action. This could be interpreted as 

the subject monitoring the conflict of a third-person. As such, this could suggest that the ACCg 

is engaged when processing others’ conflict. 
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1.5.3.2 Error Detection 

 

Whilst many proponents of the conflict monitoring viewpoint suggest that the activity on 

incongruent trials during a Stroop task is a signature of conflict, there are alternative 

interpretations of such activity. One of the most prominent is that an incongruent trial in a 

Stroop task signals an error in the prediction of an upcoming stimulus (Bush et al., 2000; 

Holroyd and Coles, 2002). It is suggested that the Stroop task engages the ACC, as this region 

has a general role in coding for erroneous responses. 

The majority of the evidence which supports the error detection perspective comes from EEG 

studies. The ACC is believed to be the dipole source of an electrophysiological response that 

occurs whenever an erroneous response is made, known as the Error-Related Negativity (ERN). 

A large number of studies show that the ERN occurs when an action does not result in the 

desired goal (Braver et al., 2001; Menon et al., 2001; Nieuwenhuis et al., 2001; Holroyd and 

Coles, 2002; Holroyd et al., 2003; Frank et al., 2005). fMRI studies have also found a portion of 

the ACC is engaged when processing erroneous responses. The location of error related 

activity in fMRI studies appears to closely correspond to the localization of the source of the 

ERN and typically falls in the ACCs (Carter et al., 1998; Kiehl et al., 2000; Braver et al., 2001; 

Garavan et al., 2002; Holroyd et al., 2004).  Thus, the evidence in humans broadly supports the 

claim that the ACC is engaged when responses are erroneous.  

The study by Shane et al., (2008), could be considered as evidence supporting the notion that 

others’ erroneous responses are processed in the ACC. As already discussed, they reported 

activity in the ACCg when another’s response or absence of a response was erroneous. 

Proponents of the error detection account would suggest that these trials in a Go/No-Go task 

reflect erroneous responses, rather than conflicts in information processing, Thus, the error 

detection account of the results of Shane et al., (2008) would suggest that the ACCg processes 

others’ erroneous responses in the same manner as the ACCs processes one’s own. 

Evidence in support of the error detection account of ACCs function is also provided from 

animal neurophysiology data. It has been shown that there are neurons in this area that 

respond exclusively when an action does not lead to an expected outcome (Matsumoto et al., 

2007). In addition, other studies have also shown that there are neurons that respond when a 

predicted reward is not received (Amiez et al., 2005; Sallet et al., 2007). Neurons which exhibit 

such a response profile conform closely to the predictions made by the error detection 

account.  



 55 

 

1.5.3.3 Response Selection 

 

In monkeys, the CMAr has direct projections to the spinal cord and also to the premotor and 

primary motor cortices (Dum and Strick, 1996; Picard and Strick, 1996). Electrical stimulation 

of neurons in this region, elicits complex multi-joint movements (Luppino et al., 1991). As a 

result, many have suggested that the most important functional property of the ACCs must be 

that it is involved in selecting and guiding actions. In humans, although the location is much 

debated, there is a homologous region which is often called the Rostral Cingulate Zone (RCZ). 

fMRI studies using the most basic of motor paradigms, such as finger tapping, reliably activate 

the ACCs (Kawashima et al., 1999; Buchel et al., 2002; Ullen et al., 2003), suggesting that the 

RCZ may be homologous to the CMAs.  

If the ACCs is involved in the generation of actions, one would expect that the lesions to the 

ACC would inhibit the willingness to perform actions. As has been discussed, this is the case in 

patients with akinetic mutism, which can occur following damage to the ACC. These patients 

report an absence in the motivation for performing an action (Damasio and Van Hoesen, 

1983). More specifically, lesions to the ACC and also separate lesions to the adjacent 

Supplementary Motor Areas (SMA) in a monkey, result in a decrease in the number of actions 

that are performed without an external cue (Thaler et al., 1995). Interestingly, a number of 

fMRI studies also implicate the SMA (or pre-SMA) and the RCZ in generating actions. Both of 

these areas have been found to be activated before the onset of an action that occurred 

without any external cue (Lau et al., 2004b; Lau et al., 2004a; Lau et al., 2006; Passingham et 

al., 2010). However, whilst the SMA appears to be involved predominantly in self-generated 

actions, the ACCs is engaged both by internally and externally cued actions (Lau et al., 2006). 

Thus, there is considerable evidence that highlights the ACCs and particularly the CMAr as 

important for the selection of an action. However, it is important to note that unlike the error 

detection and conflict monitoring accounts, there has been no reported evidence that 

highlights the ACCg as a region which is engaged when processing others’ actions. 
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1.5.3.4. Critique of the three theories of ACC function 

 

In the previous sections, I have presented the cases in support of three of the most prominent 

accounts of the functional properties of the ACC. In this section I critique these as accounts of 

the functional properties of the ACCs. Whilst the studies reported are not examining 

information processing in the ACCg, parallels are being drawn between the functional 

properties in the ACCs and the ACCg later in the chapter. The discussion in this section is 

therefore important for understanding the functional properties of both areas. 

An important consideration, before critiquing these theories as explanations of the functional 

properties of the entire ACC, is where the response selection, error detection and conflict 

monitoring processes are localized in the same portions of the ACC. If these processes can be 

localized to the same portion of the ACC, then they can be considered as opposing theoretical 

accounts. Recently, a meta-analysis of fMRI studies by Beckmann et al., (2009) examined the 

correspondence between the location of several different functions which are known to be 

processed in the ACC and a DTI based parcellation of the cingulate cortex. This study grouped 

previous research that reported activity in any portion of the entire cingulate cortex (inclusive 

of the PCC) into one of 7 categories: emotion, reward, conflict, error detection, motor 

function, memory and pain. This meta-analysis showed that the peak results of the studies in 

the error, motor and conflict categories each overlapped with the same cluster from the DTI 

parcellation. However, there was variability in peak coordinates, with some of the peak 

coordinates from the studies investigating conflict lying anterior to the error and motor peak 

results. In addition, some of the peak coordinates from the motor studies lay posterior to the 

peak results from the motor and error studies. A recent fMRI study examined activity in the 

ACC of subjects who were performing three different tasks which tested the hypotheses of 

each of the three theories (Nee et al., 2011). This study examined activity on trials where there 

was conflict, when subjects were required to switch to an alternative action (task-switching) 

and when monitoring the outcome of erroneous actions. They reported activity in the ACCs 

during all three tasks, supporting the notion that the ACC is engaged by all three processes. 

They also reported considerable overlap in the location of activity for each of these processes. 

However, the cluster that was activated during the outcome monitoring task lay posterior to 

the cluster that responded to the conflict and task-switching tasks. This would suggest that 

there are distinct sub-regions within the ACC that are engaged when selecting actions, 

monitoring conflict and when detecting errors. However, these results contradict with the 

results of the meta-analysis by Beckmann et al., (2009), who showed that motor tasks typically 
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activate slightly more posterior regions of the ACC than error detection or conflict monitoring 

tasks. Previous meta-analyses have also attempted to delineate zones in the ACC which 

process each of these types of information (Koski and Paus, 2000; Paus, 2001; Margulies et al., 

2007; Nee et al., 2007). These have also failed to find any consistent delineation between 

these processes.  

As there appears to be overlap in the anatomical localization of conflict, error and response 

selection processes, the theoretical accounts can be considered as opposing explanations of 

ACC function. However, there is considerable evidence to suggest that none of these theories 

can account for all of the data that speaks to the function of this area. The first criticism that 

can be directed at all three theories is that none of the studies can account for all of the 

evidence from single-unit recording studies. As stated above, there is little evidence to suggest 

that there are neurons in the ACC that are sensitive to conflict in the monkey. By contrast, 

there is considerable evidence to suggest that the ACC contains neurons that signal when a 

response was erroneous (Amiez et al., 2005; Matsumoto et al., 2007). In addition, stimulation 

of neurons in the CMAr of the ACC results in limb movements, highlighting how this region is 

important for the generation of actions (Luppino et al., 1991). However, these are not the only 

types of information that are processed in this same region of the ACC. For example, it has 

become well documented that in nonhuman primates there are neurons in the same region (in 

the CMAr) which are sensitive to reward magnitude, reward probability and  the amount of 

effort that is required for a reward (Shidara and Richmond, 2002; Sallet et al., 2007; Quilodran 

et al., 2008; Kennerley et al., 2009; Kennerley and Wallis, 2009a). These neurons increase their 

firing rate to such information at the time that actions are instructed and also at the time the 

outcomes of actions are monitored. It could be argued, that the ACCs has evolved and 

therefore may process different information in the human than it does in the monkey, 

accounting for the discrepancy between nonhuman and human data. However, there is 

evidence to counter this claim, with a number of neuroimaging studies showing that activity in 

the ACCs varies with the magnitude and probability of rewards in humans (Knutson et al., 

2000; Knutson and Cooper, 2005; Rolls et al., 2008; Smith et al., 2009). Therefore, at the time 

that actions are performed and at the time that outcomes are evaluated, the ACC codes for 

information related to rewards.  None of the three theories outlined in this section can 

account for the processing of reward-related information at these two points in time. The 

error detection theory cannot account for the evidence that suggests that the ACC processes 

reward-related information, before an action has been made and the outcome evaluated. The 

response selection viewpoint cannot account for the substantial body of literature that shows 
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that the ACC codes reward-related information at the time of the outcome of an action. 

Finally, the conflict monitoring viewpoint cannot account for the fact that neurons in the ACC 

code for the reward associated with an action, when no alternative action can be selected i.e. 

when there is no conflict. 

In summary, these three prominent accounts of ACC function are all supported by evidence, 

indicating that the ACCs may have an important role in all three processes. However, neurons 

in the ACCs are sensitive to processes that do not conform to the predictions of any of these 

theories. In particular, these theories cannot account for the processing of rewards both at the 

time of cues that instruct actions and also at the time that an outcome is delivered. Thus, a 

better account of the functional properties of the ACC will need to encompass the processing 

of information during both reward-guided action selection and outcome monitoring.  

 

1.6 A Theoretical framework of ACC function. 
 

Having critiqued three of the most prominent accounts of ACC function, it is apparent that 

none of them provides a sufficient account of the functional properties of this region. Can 

anything be learned from the evidence that supports the response selection, error detection 

and conflict monitoring accounts? Intriguingly, the evidence which tested each of these 

theories can be interpreted as indicative of two processes being performed within the ACC. 

Firstly, the ACC is engaged when evaluating information at the time actions are planned and 

performed, and secondly, the ACC plays an important role in monitoring outcomes and 

evaluating whether they have achieved their goal. These two processes conform to the basic 

principles of one of most well founded and prominent theories of learning and decision-

making: Reinforcement Learning Theory (RLT) (Sutton and Barto, 1981; Sutton and Barto, 

1998). RLT posits that actions are guided by their predicted value at the time of cues that 

instruct their performance. These values are updated when the outcome of an action reveals 

that the predicted value was erroneous. Thus, there are clear parallels between the studies 

that have reported that the ACC is engaged when selecting actions and monitoring their 

outcomes and the points in time at which RLT framework would predict a response. In this 

section, an outline is provided of RLT, evidence is presented of how activity in several areas of 

the brain conforms to the predictions of RLT and then this theory is critiqued as an explanation 

of the functional properties of the ACCs.  In the rest of this chapter, I will highlight a framework 
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for how the ACCs guides decision-making. Each of the studies in this thesis will then examine 

whether the same framework can be applied to the ACCg when subjects’ monitor the decisions 

of others. 

1.6.1 Reinforcement learning theory 
 

Much behaviour is aimed at maximising reinforcement. To maximise the amount of obtained 

rewards, one will often have to choose between alternative courses of action, that have 

differing levels of reward associated with them. Thus, actions (or a series of actions) are 

assigned an abstract value that is determined by the expectation that they will lead to a 

beneficial outcome. At the time of making a decision, the value of each course of action is used 

to guide choices. The value of an action therefore constitutes a prediction about the outcome 

of the decision to select it. Optimal decision-making is therefore dependent on accurate 

predictions being made about the value of each course of action. Accurate estimates of value 

can be learned through the history of reinforcement associated with previous performances of 

the action. Reinforcement Learning Theory (RLT) is a computational framework that can be 

used to explain how individuals acquire estimates of the value of actions through experience 

dependent learning (Schultz, 1998; Sutton and Barto, 1998; Dayan and Balleine, 2002).  

RLT has been developed in parallel predominantly by behavioural psychologists and computer 

scientists, and not neuroscientists (Rescorla and Wagner, 1972; Kawato and Samejima, 2007). 

However, increasingly it is being used to make predictions and test whether the brain 

processes information in a manner that conforms to its principles. RLT is underpinned by two 

important principles (i) a decision is guided by predictions about the value of actions and (ii) 

when new information reveals that a prediction was erroneous, the values are updated by a 

prediction error signal (Rescorla and Wagner, 1972; Sutton and Barto, 1998). To illustrate, 

imagine a monkey learning how much juice will be received for pressing a lever. If the monkey 

has previously received a small amount of juice following a lever press, it will assign a low 

value to the action of pressing the lever, predicting that future presses of the lever will lead to 

only a small juice reward. However, if a large juice reward is received following the next lever 

press, there is a discrepancy between the monkey’s prediction and the actual outcome of the 

lever press. Thus, the monkey experiences a prediction error. This positive prediction error 

updates the value of a lever press, increasing its value, making its performance more likely in 

the future. In contrast, if the monkey performed the lever press and no juice reward was 

forthcoming, a negative prediction error would occur. As a result the value assigned to the 
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lever press would be decreased and future performance of the lever press would become less 

likely. 

Although many sophisticated algorithms have been used (Sutton and Barto, 1998), this 

theoretical framework can also be described using a very simple computational model that 

was first outlined by Rescorla and Wagner (R-W) (1972). The R-W model assumes that the 

associative value of an action (or stimulus) changes once new information reveals that the 

actual outcome of a decision is different from the predicted outcome (Rescorla and Wagner, 

1972). Thus, for each performance of an action, its value is updated by a prediction error signal 

when the outcome reveals that the prediction was erroneous. The evolution of the values for 

an action are given by: 

 

(1) 

 

 Where: 

 

(2)         

 

In both (1) and (2), n is the number of times an action, a has been performed and η is the rate 

at which the values are updated. In (1) the value of the action in the future ( ) is a 

function of current predicted value of the action ( ) added to the prediction error ( ), 

which is multiplied by the learning rate. The learning rate defines the extent to which the 

prediction error updates the predicted value.  As such, a slow learning rate will minimise the 

effect of the prediction error and the amount that the value is updated. The prediction error 

shown in (2), compares the actual value of an action ( ) to the prediction of its value ( ). 

This discrepancy is what drives the updating of the predicated value in the future. The 

asymptotic value (λ) of an action is defined as the finite value which can be reached once all 

learning has occurred and there is no longer a discrepancy between the prediction and the 

actual outcome. Thus, slow learners will experience a greater number of prediction errors 

before reaching the asymptotic value than fast learners (see Fig.1.7). 
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An important aspect of the R-W algorithm and other models based around the principles of 

RLT, are the assumptions that it makes about learning. The algorithm includes a free 

parameter, the learning rate. This free parameter defines the extent to which an individual 

updates the values of a performed action, regardless of the magnitude of the prediction error. 

Thus, RLT assumes learning is idiosyncratic, allowing for individual differences in learning and 

decision-making to be accounted for. In addition, this framework also makes the assumption 

that learning the value of actions is underpinned by the same computational mechanisms, 

across individuals and across species. 

Another intriguing aspect of RLT is that it proposes that there are areas of the brain that will 

signal for predictions about the value of actions before they are selected and similarly there 

will be areas that will signal when these predictions are erroneous. Such an account appears to 

closely overlap with the common properties of the three theories of ACC function that I 

referred to in the critique provided above. I suggested that any framework of ACC function 

must account for activity both when selecting actions and when evaluating their outcomes. 

Thus, RLT may be a useful a framework in which to discuss the functional properties of the 

Fig.1.7 Graph illustrating how values are assumed to be learned over repeated performances of 

an action over trials in the R-W model. Subjects with high learning rates (η) acquire the 

asymptotic value (λ) in fewer trials than the subject with low learning rates. Over trials the 

magnitude of the prediction error decreases as the prediction (Va) approaches the asymptotic 

value. 
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ACC. However, before I move on to discuss this possibility I will examine the evidence that 

signals predicted by RLT are processed in any area of the brain. 

 

1.6.2 Reinforcement learning in the brain 
 

RLT was originally developed to explain learning behaviour. In the case of the R-W algorithm, 

its original purpose was to explain Pavlovian conditioning behaviour of animals (Rescorla and 

Wagner, 1972). However, this theoretical approach has been extended to explain many 

different types of learning behaviours, including those that require instrumental learning 

processes. Whilst such algorithms were designed to examine behaviour, they also make 

specific predictions about how information is processed and how this relates to learning. As 

such, these algorithms make predictions about the nature of signals that would be expected in 

the brain, in order for learning to take place (O'Doherty et al., 2007). As such, specific 

hypotheses can be tested to examine whether these algorithms not only explain behaviour, 

but have antecedents in the brain that drive learning.  

An important aspect of neurophysiological and neuroimaging methods which investigate 

reinforcement learning processes, is that they make specific predictions about the parametric 

nature of responses in the brain (O'Doherty et al., 2007; Dayan and Daw, 2008). In most 

algorithms that are based on the principles of RLT, predicted values are not binary. As can be 

seen in the plot above (fig.1.7), the predicted value increases parametrically over repeated 

performances of an action. Similarly, prediction error signals vary parametrically over learning, 

decreasing in magnitude as the predicted value approaches the asymptotic value. As such, 

studies which use single-cell recording methods to investigate the firing properties of 

individual neurons, examine whether the spike rate of neurons varies with the predicted 

values or the magnitude of prediction errors. Neuroimaging methods can also be used to 

examine whether the amplitude of the BOLD response varies with magnitude of predictions or 

prediction errors. 

This thesis is focussed on examining information processing in the ACC and not the whole 

brain. As such a full discussion of the extensive body of research that has examined the neural 

antecedents of RLT across the whole brain will not be provided (for comprehensive reviews 

see Schultz (2006) and Rushworth et al.,(2008)). However, it is important to outline the 

evidence that highlights the utility of RLT for explaining activity in the brain. Here I will discuss 
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the most important and relevant findings of neurophysiological and neuroimaging research 

that show the ubiquity of reinforcement learning signals across different tasks and across 

different neural systems (O'Doherty et al., 2007; Rushworth et al., 2009). 

The earliest work investigating the most significant feature of RLT, the prediction error signal, 

implicated dopamine neurons in the midbrain as signalling when an unexpected outcome 

occurs. The firing of neurons in the Ventral Tegmental Area (VTA) varies quantitatively with the 

magnitude of the prediction error (Schultz, 1998). That is, the greater the discrepancy between 

a prediction and an outcome, the greater the change in the firing rate of dopamine neurons in 

the VTA (Fiorillo et al., 2003). These neurons have also been implicated in responding in a 

directional manner, such that there is an increase in spike frequency for positive prediction 

errors, a decrease in spike frequency for negative prediction errors and no change when the 

outcome is the same as the prediction (Schultz et al., 1997; Schultz and Dickinson, 2000). In 

humans, neuroimaging methods have found reward prediction error signals in other areas 

including the striatum and the OFC (McClure et al., 2003; O'Doherty et al., 2003; Ramnani et 

al., 2004b), regions that are connected to the VTA (Williams and Goldman-Rakic, 1998). There 

is however some debate as to whether the responses in these regions are signed as they are in 

the VTA, or unsigned, increasing their response with the magnitude of the error regardless of 

whether it is a positive or negative outcome (Schultz, 2006). In addition, it has also been 

argued that activity in the OFC may vary with the expected value of an outcome at the time 

that feedback is delivered and not with the magnitude of a prediction error (Schoenbaum et 

al., 2009). However, such expected value signals may still be important for prediction error 

computations that are processed distally (Schoenbaum et al., 2009). Areas connected to the 

VTA may therefore play an important role in processing information at the time of the 

outcomes of decisions, particularly when expectations about the outcomes of decisions are 

violated. 

Recent findings however, suggest that prediction error signals may occur outside of systems 

that process rewards and reflect a rather more ubiquitous functional property of the brain. 

Predictions error signals are found during a broad range of different processes in neural 

systems that process very different types of information (Rushworth et al., 2009). Recently, 

‘predictive coding’ models of sensory systems suggest that the discrepancy between a 

predicted and actual sensory outcome are processed at several levels of sensory systems, 

continuously updating different types of prediction through error signals (Bar, 2007, 2009). 

Support for this view has been provided from an fMRI study that has reported activity in 

several areas within the visual cortex that process discrepancies between predicted and actual 
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sensory input during a simple forced choice decision-making task (Summerfield et al., 2006; 

Summerfield and Koechlin, 2008). Den Ouden et al. (den Ouden et al., 2009) examined activity 

when subjects learnt the association between an auditory tone and the presence of a visual 

stimulus. They found evidence of prediction error signals in primary visual cortex and the 

putamen that occurred whenever a visual stimulus was not predicted by the tone. In addition, 

prediction errors have now been found in other cortical areas such as the pSTS and the 

paracingulate cortex during social interactions (Behrens et al., 2008; Kennerley and Wallis, 

2009a; Burke et al., 2010). Thus, there is tentative evidence to suggest that prediction error 

signals are found outside of systems that process first-person rewards and reward prediction 

errors. Indeed prediction error signals may well be an important common mechanism for 

learning and decision-making in the brain, regardless of the nature of the information that is 

being learnt. 

The other important component of RLT are predicted value signals. Areas which process 

rewards at the time that actions are selected are found across a large number of cortical and 

subcortical areas. Indeed, the spike rate of neurons in the Posterior Cingulate Cortex (PCC), 

ACCs, OFC , intraparietal cortex, the ventral striatum, the VTA and lateral portions of the 

prefrontal cortex, are sensitive to the magnitude of a reward at the time that prediction are 

made (Schultz et al., 1997; Schultz, 1998; Schultz et al., 2000; Waelti et al., 2001; Fiorillo et al., 

2003; Tobler et al., 2005; Padoa-Schioppa and Assad, 2006, 2008; Kennerley et al., 2009; 

Kennerley and Wallis, 2009b; Hayden and Platt, 2010; Hillman and Bilkey, 2010; Louie and 

Glimcher, 2010; Heilbronner et al., 2011; Litt et al., 2011; Pearson et al., 2011). Neuroimaging 

evidence can be found for each of these areas that supports the notion that these areas are 

engaged by rewarding stimuli (Ramnani and Miall, 2003; McClure et al., 2004; Rogers et al., 

2004; Kable and Glimcher, 2007; D'Ardenne et al., 2008; Rolls et al., 2008; Boorman et al., 

2011). Of course it should be noted that each of these areas may be processing value in a 

different manner or context, as often expected reward values are confounded with other 

factors, such as reward probability, risk, or motivational salience. However, the claim still 

stands that these areas are engaged in processing predictions about upcoming events. Thus, 

much like for prediction error signals, predicted value signals are processed in many different 

task contexts and in many different cortical and subcortical structures.  

There is therefore considerable evidence that there are signals in the brain that conform to the 

principles of RLT. Moreover, the evidence suggests that RLT may be an important and useful 

framework for understanding neural and behavioural plasticity in many different contexts. 

Thus, it is now pertinent to discuss whether there is evidence of predicted values and 
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prediction errors being processed in the ACC, to examine whether information processing in 

this area conforms to the principles of RLT. 

 

1.6.3Reinforcement learning theory and the ACC 
 

The connectivity profile of the ACC (particularly the MCC) implicates the area in processing 

both rewards and prediction error signals. As outlined in section 1.2, this region shows strong 

projections to the ventral striatum and the OFC, areas that code for both predicted reward 

values and prediction errors (Kunishio and Haber, 1994; Carmichael and Price, 1995). In 

addition, it has monosynaptic connections with dopamine neurons in the VTA in the midbrain 

(Williams and Goldman-Rakic, 1998), which are believed to be the origin of reward prediction 

error signals in both humans and nonhuman primates (Haber and Fudge, 1997; D'Ardenne et 

al., 2008). As such, the ACCs receives direct projections from areas which process predictions 

about rewards and discrepancies between these predictions and actual outcomes. 

Over the last decade, the ACC has become increasingly well known for its role in processing 

rewards. Perhaps the most convincing case for the processing of reward predictions in the ACC 

comes from single-unit recording studies. Some of the earliest work to identify reward 

sensitive neurons in the ACC was provided by Shima and Tanji (1998). They trained three 

monkeys to perform one of two movements (either a push or turn of a handle), whilst they 

recorded from the rostral portion of the CMA. During separate blocks, one of the movements 

was rewarded consistently, resulting in the monkeys continuously performing this action trial 

upon trial. After an extended period, the reward level was lowered, resulting in the monkeys 

choosing the alternative movement. In addition, monkeys performed control trials where a 

switch to the alternative movement was cued by an auditory stimulus.  They reported four 

important findings: (i) the CMAr contains neurons for which the spike frequency varies with 

the level of reward (ii) the CMAr contains neurons that are sensitive to reward information 

only on the trials immediately preceding the trials where a switch in behaviour was evident (iii) 

the majority of the recorded neurons responded specifically to the rewarding value of one 

action or the other (iv) the region of the CMAr that was recorded from was the region which 

shows strong projections to the primary motor cortex and the spinal cord (V) injection of 

muscimol, to chemically inactivate the region, resulted in an inability of monkeys to select the 

more rewarding actions. This intriguing set of results indicated that in the ACCs there are 

neurons which are sensitive to magnitude of a reinforcer that is associated with a specific 
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action during decision-making. Since the findings of Shima and Tanji (1998), a large corpus of 

studies have shown that neurons in area 24c’, and particularly the CMAr in its posterior 

portions, are sensitive to the magnitude of rewards (Shidara and Richmond, 2002; Amiez et al., 

2005; Sallet et al., 2007; Quilodran et al., 2008; Kennerley et al., 2009; Kennerley and Wallis, 

2009a; Hayden and Platt, 2010; Hillman and Bilkey, 2010; Hayden et al., 2011a). At this point it 

should be noted that there is also evidence that there are neurons that process reward-related 

values that are modulated by other factors. However, for the purposes of discussing whether 

the ACC is engaged by rewards and predictions, I will leave discussion of this research until the 

next section. As such, neurophysiological evidence supports the view that the ACCs is engaged 

in processing predictions about the rewarding value of actions.  

There is also evidence to suggest that the ACCs is involved in processing predictions that guide 

decision-making. The performance of monkeys on tasks in which the processing of rewards is a 

prerequisite for accurate performance, is reduced when the ACCs is lesioned. For instance, 

Kennerley et al., (2006) showed that lesions to the ACCs of the macaque monkey prevented 

the ability to sustain continuously reinforced behaviours. Similarly, lesions to the ACCs also 

impair the ability to learn an association between an action and a reward, but not the ability to 

learn associations between a stimulus and a reward (Rudebeck et al., 2008). Thus, evidence 

from animal lesion studies suggests that the ACCs is sensitive to rewarding values and, in 

particular, learning about the value of actions. 

Functional imaging studies in humans support the notion that the ACC is involved in processing 

predictions about the rewarding value of actions and also that value signals in this area guide 

choice behaviour. A number of studies report that the ACC is engaged when learning 

associations between rewards and actions and also when choosing between differently valued 

options. A recent fMRI study of reversal-learning, where subjects are required to learn that 

there are switches in the contingencies between one of two actions and one of two rewards, 

highlighted the importance of the ACC for reward-related learning and decision-making 

processes. By using a multivariate pattern analysis approach, they were able to decode the 

choices made by subjects, solely based on the timecourse of activity in three regions: the ACC, 

the ventral striatum and the supplementary motor areas (Hampton and O'Doherty, 2007). In 

another study, which specifically examined the processing of predictions and prediction error 

in the ACC, increased activity was found in the ACCs (in the RCZ) when high reward actions 

were selected compared to low reward actions in a similar reversal-learning paradigm (Jocham 

et al., 2009). Studies using different types of reward-based decision-making paradigms, also 

highlight the ACC as active at the time of cues which are informative as to the value of actions 
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(Kable and Glimcher, 2007) and also cues that instruct decisions to be made (Rogers et al., 

2004), although the activations reported in these studies lay in the anterior portions of the 

MCC. Thus, there is considerable correspondence between the findings of neurophysiological 

studies and lesion studies in animals and the findings of neuroimaging studies in humans. 

Across the sulcus in the MCC there is sensitivity to rewards at the point in time when an 

individual is able to make predictions about the value of different courses of action. 

Interestingly, the ACC is also implicated in processing such valuations in conditions where 

learning and decision-making is required. As such, the functional properties conform to one of 

the principles of RLT, that predictions are made about the value of actions. 

The second, component of RLT is the prediction error. I have already outlined a considerable 

body of evidence in section 1.6.1 that highlights the ACC as a region that signals when 

responses are erroneous. However, an important question is whether the ACC signals 

prediction errors parametrically that update future valuations of actions. There is a 

considerable body of single-unit recording studies that have tested this hypothesis. Perhaps 

the most convincing investigation into reward prediction error signals in the ACC, was 

performed by Matsumoto et al., (2007). In their task, monkeys learnt arbitrary associations 

between actions and secondary reinforcers (visual cued positive or negative feedback cues) by 

trial and error. They found neurons in the ACCs (in the MCC, lying rostral to the CMAr) that 

responded to negative feedback when an incorrect action was performed and a separate set of 

neurons that responded to positive feedback when a correct action was performed. Crucially, 

these neurons showed their greatest response on the first presentation of a type of feedback 

for a particular action, with decreased responses for each presentation of the same feedback 

for that action i.e. neurons that responded to negative feedback showed the greatest response 

at the time of the outcomes of the first performance of an erroneous action, with a decreasing 

response each time that action was subsequently performed. Similarly, positive feedback 

preferring neurons showed the greatest response to the first correct feedback for an action 

and then decreasing responses at the time of the feedback on subsequent trials where the 

correct action was performed again. Thus, these neurons showed a profile of response that 

closely matched what would be predicted by a reinforcement learning algorithm, with 

decreasing prediction error responses occurring as the discrepancy between a prediction and 

outcome becomes smaller. Other studies also support this claim. Amiez et al., (2005) identified 

neurons in the ACCs, including neurons within the CMAr and some slightly more rostral in the 

sulcus, that signalled when erroneous responses were made. However, the response in these 

neurons was modulated by the magnitude of reward that was predicted. That is, the greater 
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the predicted reward, the greater the response in ACCs neurons when an action was 

erroneous. Such results also support the assertion that there are neurons in the ACCs that 

signal the degree of discrepancy between a prediction and an outcome. However, crucial for 

the RLT framework, is that these prediction error signals result in a change in the value that is 

assigned to an action. One study directly tested this claim. Rhesus monkeys performed a zero-

sum game, making binary choices. As in the other studies, they found neurons, in the CMAr 

and a portion of the sulcus that lay rostral to it, that responded to unexpected outcomes and 

also neurons that responded to predictions about the value of actions. However, they found 

that activity in these neurons was modulated by the history of previous rewards associated 

with a choice, in a manner that conformed to the predictions of a reinforcement learning 

algorithm (Seo and Lee, 2007).  

The neurophysiological evidence therefore indicates that there are neurons extending across 

the CMAr and more rostral portions of the MCC, which respond in a manner that would be 

predicted by RLT. However, is the firing of single neurons, informative for the function of the 

ACC as a whole?  Neuroimaging and electrophysiological studies suggest that prediction errors 

are an important functional property of the ACCs. In section 1.5, I reported the results of a 

host of studies that have implicated the ACC as the source of the ERN, a signal which occurs 

when erroneous responses are made. Previously many proponents of the error detection 

theory claimed that the ERN only occurs when feedback reveals that an erroneous response 

has been performed. However, some studies have suggested that actually these signals closely 

match those that are found using single-celled recording in monkeys. To examine this issue 

Holroyd et al., (2009) performed three studies in which they examined the magnitude of the 

ERN. They showed that the ERN occurs at time of feedback that signals either a positive or 

negative prediction error, and shows the greatest amplitude when future behaviour is 

dependent on that feedback. Thus, these results support the view that the ACCs codes 

prediction error signals at the time of the outcomes of decisions. 

Whilst the cases provided from neurophysiology and electrophysiological accounts highlight an 

important role for the ACCs in processing prediction errors, the evidence from fMRI studies is 

less supportive. Studies which have examined activity in the brains of subjects who are 

performing tasks requiring reinforcement learning mechanisms, have not found activity in the 

ACCs which varies with the prediction error parameter from a RLT algorithm (Behrens et al., 

2007; Brovelli et al., 2008; Jocham et al., 2009). For example, Brovelli et al. (2008) fitted a R-W 

algorithm to the behaviour of subjects in a conditional motor learning paradigm (i.e. learning 

arbitrary associations between instruction cues, actions and secondary reinforcers). Whilst 
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they identified activity in the ventral striatum that varied with the prediction error parameter, 

no such activity was found in the ACC. In contrast to such findings, the number of studies that 

report ACC activity when the outcome of a decision is unexpected is considerable. This 

includes studies that show that the ACCs signals both unexpectedly rewarded and 

unexpectedly unrewarded actions (Jessup et al., 2010; Nee et al., 2011). More recently, some 

have suggested that the ACC may be involved in the reinforcement learning process, but may 

code the learning rate rather than the prediction error. When learning the value of actions, 

where the probability of receiving a reward is uncertain, decision-making can only be 

optimised if individuals adapt their learning rate to reflect the volatility of the outcomes of 

decisions. Behrens and colleagues (2007) found that activity in the ACCs (putatively in the 

MCC) varied with the learning rate in a reinforcement learning model, when the volatility of 

associations between decisions and outcomes was variable. However, a very recent paper has 

countered this claim, suggesting that the ACCs may signal prediction errors when several 

actions (and therefore predictions) are embedded within a larger task goal. Ribas-Fernandes et 

al. (2011) used a hierarchical reinforcement learning model, in which the predictions and 

prediction errors for several actions (or subroutines) were embedded in a larger task goal. 

They found that activity in the ACCs (putatively in the MCC), in a region extending over the 

sulcus, varied with the prediction error for each of the embedded actions. Thus, the fMRI 

literature paints a slightly confusing picture, although there is clear evidence that in certain 

tasks contexts, the BOLD signal varies with the discrepancy between a predicted and actual 

outcome of an action. 

In summary, there is considerable neurophysiological, electrophysiological and neuroimaging 

evidence that supports the view that the ACC is engaged in processing predictions about the 

value of actions. In addition, although the fMRI evidence only provides tentative support, there 

is also evidence that the ACCs signals when there is a discrepancy between the predicted value 

of an action and its actual value, at the time of an outcome of a decision. I therefore argue that 

such evidence supports the notion that the ACCs codes for the value of actions and updates 

these values in a manner that conforms to the principles of RLT. In this thesis, I will test 

whether the ACCg conforms to the same computational principles when monitoring the 

actions and decisions of others. 

 

 

 



 70 

 

1.6.4 Rewards, values and discounting variables 
 

The value of a reward is dictated by more than just the magnitude of a reinforcer. Reward 

values are discounted by other factors (or variables), making the performance of the actions 

associated with the reward less likely. As such, actions can be assigned a net value that reflects 

the amount of reward discounted by its associated costs. The probability that an action will 

result in a reward, the effort required for a rewards receipt, and the length of time before a 

reinforcer is delivered, are all important factors that modulate reward values and impact upon 

decision-making. For example, a monkey may forego the receipt of a large volume of fruit at a 

distal location, in order to receive the smaller amount of reward at a proximal location 

(Hayden et al., 2011a). The effort (in this example a metabolic cost) of travelling the greater 

distance has discounted the value of the larger reward, such that the reward that is smaller in  

magnitude is preferred (Phillips et al., 2007). Examples of how effort, probability and temporal 

delays can impact upon decision-making can be found in many different species. 

Understanding the neural mechanisms that underpin the process of discounting the value of 

rewards is, therefore unsurprisingly, a topic that has attracted a considerable amount of 

research interest. Several areas have been implicated in processing the variables that discount 

the value of rewards, including the ACCs. 

An important body of work by Kennerley and colleagues, reported in two papers (Kennerley et 

al., 2009; Kennerley and Wallis, 2009a), shows strong evidence in support of the claim that the 

ACCs processes variables that discount reward values and guide decision-making. Kennerley 

and his colleagues taught monkeys the associations between a series of abstract cues, actions 

and rewards. Each cue was associated with either (i) a specific number of lever presses 

(manipulating effort), (ii) a specific amount of juice (manipulating reward magnitude) and (iii) a 

specific probability of obtaining a juice reward. Five different levels of effort, reward 

magnitude and reward probability were manipulated and each cue was associated with one of 

each variable. By manipulating these variables they were also able to examine whether 

neurons multiplex information about each of the variables. Subjects were required to make 

choices between a pair of these stimuli on each trial. They recorded from neurons in the ACCs 

(which putatively extended across the CMAr and anterior parts of the MCC) both at the time of 

instruction cues and also at the time the outcome of the decision was presented. They 

reported several important findings: (i) there are neurons in which the spike frequency varies 

with the level of the different variables that they manipulated (effort, probability and reward 

magnitude), (ii) there are neurons that multiplex the different variables signalling the net value 
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of rewards, i.e., less effort for, or higher probability of, a reward equates to greater net value 

and increased firing in these neurons, (iii) some neurons signal only at the time the instruction 

cue is presented and some only at the time at the time of outcome, (iv) other neurons code for 

expected values at the time of the instruction cue and then actual values at the time of the 

outcome. This research therefore provided convincing evidence that the ACCs processes the 

variables that discount the value of rewards. Moreover, it suggested that the ACCs process 

reward magnitudes discounted by the cost of performing the actions. Another recent study 

showed that neurons in the ACCs are important for processing variables that guide complex 

foraging decisions (Hayden et al., 2011a). The spike rate of neurons in the ACCs steadily 

increased the longer spent in a food patch until the monkey made the choice to move to a new 

food patch. Thus, it appears that neurons in the ACCs were coding for the motivation for 

moving to a new foraging patch. As the resources in the current location are increasingly 

depleted, the cost of moving to a new location decreases and the value of moving increases. 

This therefore suggests that the ACCs plays a key role for assigning values to different courses 

of actions during complex decision-making.  

This neurophysiological research therefore suggests that across the sulcal MCC, there are 

neurons which multiplex information about rewards and costs, providing the net value for a 

course of action. Support for this claim can be found in the neuroimaging literature. A number 

of studies have shown that activity in the Rostral Cingulate Zone (RCZ), believed to be the 

homologue of CMAr, varies with the probability a reward will be received and also with the 

magnitude of a reward (Rogers et al., 2004; Rolls et al., 2008; Bickel et al., 2009; Wunderlich et 

al., 2009). Both of these variables modulate the firing of neurons in the CMAr (Shidara and 

Richmond, 2002; Sallet et al., 2007; Quilodran et al., 2008). In addition, Croxson et al., (2009) 

performed a study which examined activity at the time of cues that indicated the magnitude of 

a reward available and also the number of actions (or effort) that would be required for its 

receipt. They showed that activity in the ACCs signalled an interaction between the level of 

effort and reward, with the highest activity occurring when the cues signalled that a high 

reward was available with only a small amount of effort was required for its receipt.  Other 

neuroimaging studies have also shown that activity in the ACCs varies with value of rewards 

discounted by the length of delay before their receipt (Kable and Glimcher, 2007; Luhmann et 

al., 2008; Peters and Buchel, 2009; Prevost et al., 2010). The study by Behrens et al. (2007) that 

has already been discussed also reported activity in the ACCs that coded for the volatility of 

the history of rewards associated with an action. In this study, volatility reflected an 

interaction between the reward probability and stochasticity of the reward schedule over the 
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history of trials. Thus, there is neuroimaging evidence that supports the claim that the ACC 

codes variables which guide decision-making by discounting the value of rewards associated 

with an action.  

In summary, there is considerable evidence from lesion, neurophysiology, and neuroimaging 

studies that highlight the ACCs as an area that as important for processing the variables that 

guide action selection and decision-making. This area codes for the motivation for the 

performance of an action in the form of a prediction about the value of performing it. These 

values can sometimes reflect more than one variable that can guide decision-making, such that 

the magnitudes of rewards are discounted by associated costs. In addition the evidence also 

suggests that predictions about the value of an action are updated through prediction error 

signals in a manner that conforms to the principles of RLT. 

1.7 Statement of Thesis Aims 
 

At the beginning of this chapter several claims are made about the contribution of the ACC to 

social cognition. Firstly, it is argued based on lesion studies and anatomical evidence, that it is 

the gyral surface of the MCC (which is referred to as the ACCg) that is involved in the 

processing of social information and not the adjacent sulcus. Secondly, a small number of 

studies are used as evidence to suggest that the gyrus may process similar information to the 

sulcus, but process this information about others, rather than about oneself. Due to an 

absence of a theoretical account of the contribution of the ACCg to social cognition, it is 

therefore suggested that important clues as to how it may contribute may be found by 

reviewing the literature investigating the functional properties of the ACCs. A framework is 

outlined for information processing in the ACCs. This framework proposes that the ACCs 

conforms to the principles of RLT, processing predictions about the values of one’s own actions 

and updating values through prediction error signals. In addition, in this framework it has been 

suggested that the ACCs processes the variables that discount the value of rewards, such that 

activity in the ACCs signals the net value (or motivation) for performing actions. Does the ACCg 

process others’ predictions about the discounted value of their actions and also signal when 

their predictions are erroneous?  

The aim of this thesis is to investigate whether the ACCg processes the same information 

about the actions of others, that the ACCs processes about one’s own actions. Specifically two 

important questions are asked about information processing in the ACCg: 
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(i) Does information processing in the ACCg conform to the principles of RLT, 

signalling the predicted value of others’ actions and also signalling when others’ 

predictions are erroneous?  

 

(ii) Does the ACCg process the discounted value of others’ actions, in the same 

manner that the ACCs processes the discounted value of first-person actions? 

This thesis contains four behavioural and fMRI experiments examining information processing 

in the ACC during social decision-making tasks.  Each of these experiments uses an event-

related design to examine activity time-locked to stimuli that signal the value of actions, or 

that signal that predictions are erroneous. The studies use a combination of both factorial 

experimental designs and computational modelling approaches to examine the two core 

themes outlined above. The four key questions that are addressed by each experiments are: 

1. Do prediction error signals in the ACCg code for others’ false-beliefs about the 

outcomes of their decisions? 

2. Do the predictions error signals in the ACCg conform to the computational principles 

of RLT? 

3. Does the ACCg process others’ predictions about the net value of effortful actions? 

4. Does the ACCg process the value of delayed rewards when they are discounted in a 

manner that conforms to others’ preferences? 
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Chapter 2: General Methods 

 

Within this thesis, four experiments using both behavioural and functional Magnetic 

Resonance Imaging (fMRI) methods will be reported. In this chapter, some of the methods 

which are generic to several of the experiments will be outlined.  

2.1 Procedures 

2.1.1 Subjects 
 

The subjects for all of the experiments were recruited from the Undergraduate and 

Postgraduate student population at Royal Holloway, University of London. All subjects were 

healthy, screened for psychological and neurological conditions, right-handed and within the 

age range of 18-35. All participants gave written informed consent. The studies were approved 

by the Royal Holloway, University of London Psychology Department Ethics Committee and 

conformed to the regulations set out in the CUBIC MRI rules of Operations 

(http://www.pc.rhul.ac.uk/sites/cubic/). The experiments in this thesis involved deception, 

thus secondary consent was required following data collection, ensuring that subjects still 

consented to the use of their data. Debriefing sheets are included in appendix A. 

2.1.2 Piloting and Quality Assurance  
 

Before fMRI data were collected for experiments, several important steps were performed to 

minimise noise in the fMRI data and to ensure that subjects performed the task in the manner 

intended by the experimental design.  Behavioural pilot experiments were conducted prior to 

the full experiments inside a mock fMRI scanner. For these behavioural pilot experiments, it 

was essential that subjects performed the tasks in the manner intended by the experimental 

designs. This included both the performance of the task itself and belief in the deception (see 

‘social decision making task procedures’ below). If problems were identified in this pilot, then 

elements of the experiments were altered and a new behavioural pilot study was conducted. 

Once a behavioural pilot was successful, quality assurance (QA) was conducted on the Echo-

planar image sequence that would be used on the MRI scanner. This involved scanning a 

‘phantom’ (an anthropogenic Perspex sphere containing Magnetic resonance sensitive 

http://www.pc.rhul.ac.uk/sites/cubic/
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material) using the same scanner parameters that would be used during the experiment. 

Several measures were used to assess this data. Firstly, a slice-by-slice Fourier Transform was 

used to look for any cyclical changes in signal intensity across the scanning period. Secondly, 

plots of the signal intensity (corrected by the mean of each slice) over volumes, the mean 

volume signal intensity in each volume and the standard deviation of each volume were used 

to determine whether there were any spikes (i.e volumes in which all slices showed a 

significantly different signal intensity to the mean and to neighbouring volumes). Thirdly, 

mean, standard deviation and signal to noise images were created to examine the severity of 

any aretfacts such as ghosting and any other transient artefacts. Experimental data collection 

only commenced if there were no spikes, no ghosting effects and no transient noise artefacts. 

The results of the data collected before each experiment are included in the Appendix (B).   

 

2.1.3 Social Decision-Making Task Procedures 
 

Each of the experiments in this thesis required subjects to be deceived in order to maintain 

experimental control. For three of these studies (reported in chapters three, four and five), the 

subjects were instructed that they would perform the task whilst inside the MRI scanner, with 

another participant performing the task in the control room next to the scanner. The scanned 

subjects were informed that they would be monitoring the responses of the other participant 

in real-time. The subjects were also informed that this other participant was being paid for 

their participation. However, in each of these studies, the responses observed by the scanned 

subject were in fact pre-programmed, computer-controlled responses (details are provided in 

each chapter about the nature of the responses they observed). In addition, the participants 

situated outside the scanner were actually confederates. The confederates took on a different 

pseudonym for each participant. This avoided the possibility that subjects would become 

aware of the deception by conversing with other subjects after training but before scanning (as 

they were conducted on separate days). In addition, to remove potential confounds that may 

surround differences in the interpersonal interactions between subjects,  it was ensured that 

the confederates were not acquainted with the scanned subjects. 

In the experiment reported in chapter 6, the nature of the deception differed from the other 

studies. The subjects were not engaged in a social interaction with a confederate. Instead, 

during a training session they were told that they were learning what was the majority 

behaviour on the task. They then reproduced this behaviour once inside the scanner. However, 
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the behaviour they learnt during the training session was not that of a real majority behaviour 

but invented for the purposes of the experiment. 

In each of these studies, the deception was crucial to the experimental design. In order to 

elucidate whether subjects had maintained a belief in the deception throughout each 

experiment, subjects were asked a series of standardised questions immediately following 

data collection (see appendix C). In each experiment, before the subjects were debriefed, they 

were asked questions that might provoke them to indicate that they had not maintained a 

belief in the deception throughout the experiment. Following debriefing, in which they were 

informed of the nature of the deception, they were asked a series of questions to determine 

whether they had been deceived throughout the experiment. If a subject reported being 

aware of the deception during the experiment they were excluded from the behavioural and 

fMRI analyses. This approach has previously been used in other social decision-making 

experiments to ensure that subjects perform the task in the manner intended by the 

experimental design (Ramnani and Miall, 2004; Apps et al., accepted). 

2.2 Apparatus 

 

All of the behavioural and fMRI data reported in this thesis was collected using the same 

experimental setup and apparatus (see fig.2.1 for a schematic). Identical setups were used in 

the MRI scanner and also in a mock MRI scanner that was used for both training participants 

before scanning and also for collection of pilot behavioural data. All subjects were scanned 

using the 3tesla Siemens Trio scanner housed at Royal Holloway, University of London. During 

data collection, subjects lay supine in the scanner with the fingers of the right hand positioned 

on a on MRI-compatible 4-button response box. Stimuli were projected onto a screen behind 

the subject and viewed in a mirror positioned over the subject’s head. Presentation software 

(Neurobehavioral Systems, Inc., USA) was used for experimental control (stimulus presentation 

and response collection). A custom-built parallel port interface connected to the PC running 

Presentation received transistor-transistor logic (TTL) pulse inputs from the response keypad. 

It also received TTL pulses from the MRI scanner at the onset of each volume acquisition, 

allowing events in the experiment to become precisely synchronized with the onset of each 

volume acquisition (in the mock MRI scanner, these were simulated by the Spike2 software 

(see below)). The timings of all events (stimulus presentation, button presses and TTL pulses 

from the scanner) in the experiment were sampled accurately, continuously and 
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simultaneously (independently of Presentation) at a frequency of 1 kHz using an A/D 1401 unit 

(Cambridge Electronic Design, UK). Spike2 software was used to create a temporal record of 

these events. Behavioural data analysis was performed offline, and event timings were 

prepared for subsequent general linear model (GLM) analyses of fMRI data. Analyses of fMRI 

data were conducted in SPM5 (chapter three) and SPM8 (chapters four, five and six) on a 

Viglen Genie machine running 2x Intel(R) 64MHz duo core 4500 CPUs, with 1.9GB or RAM, 

running Linux (Ubuntu) and Matlab (2007a; MathWorks Inc.). The computational modelling 

aspects of the thesis were scripted and analysed in Matlab. The statistical analysis of 

behavioural data was conducted in SPSS 12 and 14 on a Viglen machine with 2x Intel Core 2 

6320 CPU’s with 1.97GB RAM running Windows XP (SP3). 

 

 

 

 

 

 

 

Fig.2.1 Apparatus used for fMRI studies. A similar setup was used inside a mock MRI scanner, for pilot 

experiments and training sessions. In the mock MRI scanner the TTL pulses were mimicked by Spike 2. 
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2.3 Data Acquisition 

2.3.1 MRI  
 

All of the experiments in this thesis involved the collection of both structural and functional 

images. In each experiment, the first image acquired was a high resolution T1-weighted 

structural image, acquired at a resolution of 1x1x1mm using an MPRAGE sequence. These 

anatomical images were used for the purposes of normalization (see below), the creation of 

masks used for correcting for multiple comparisons (see ‘anatomical localization and small 

volume correction’) and displaying results. 

Following the acquisition of structural images, subjects performed the experimental tasks 

during the acquisition of Gradient Echo-planar Images (EPI). EPI imaging has become the most 

commonly employed technique in human fMRI, due to the sensitivity to changes in the Blood-

Oxygen-Level Dependent (BOLD) signal (Ogawa et al., 1990) and rapid acquisition time (a 

whole brain volume can be acquired following a single Radio-Frequency pulse) (Mansfield, 

1984; Stehling et al., 1991). 

Despite their utility, EPI images are susceptible to losses in signal and image distortions. These 

are particularly prominent at borders between substances which have different magnetic 

properties, such as the borders between differing tissue types and the borders between tissue 

and air. At these borders, inhomogeneities in the magnetic field can occur (known as 

susceptibility artefact), distorting the intensity of the voxels in the image. This is particularly 

problematic for studies investigating areas of the brain which lie close to air/tissue borders and 

particularly for examinations of subgenual, orbitofrontal and frontal polar cortices (Lipschutz 

et al., 2001). A number of methods have been proposed to reduce susceptibility artefact. One 

possible method is to use tailored, subject-specific radio-frequency pulses for excitation 

(Stenger et al., 2000). However, such an approach is impractical for multiple subject 

experiments of the nature employed in this thesis, as it requires the design of a unique 

excitation pulse for each subject before the start of the fMRI experiment. An alternative 

approach may be Z-shimming, in which multiple images are acquired with different gradient 

pulses (Glover, 1999). However, the acquisition of multiple images significantly reduces 

temporal resolution, making this approach unsuitable for event-related designs such as those 

reported here. Alternative methods, such as placing resistive shim coils in the mouths of 

subjects (Hsu and Glover, 2005), were also not employed as they were not practical.  
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Two methods were employed to minimize the impact of susceptibility artefact on the data 

collected in this thesis. Firstly, images were acquired at an oblique angle to the AC-PC line. 

Whilst susceptibility artefact is a result of field inhomogeneities caused by differences between 

the properties of neighbouring tissues, susceptibility is also influenced by in-plane and 

through-plane gradient susceptibility i.e. different gradients in the image have an increased 

susceptibility to signal loss. This loss of signal can be redistributed to areas which are not as 

susceptible to dropout by acquiring images at a different orientation (Merboldt et al., 2001; 

Deichmann et al., 2002). In this thesis, hypotheses are being tested relating to the processing 

of rewards in the ACC. It was therefore essential to examine activity in areas which have strong 

connections to the ACC and that are also well-known for the processing of rewarding stimuli. 

One area which shows such a profile is the Orbitofrontal Cortex (OFC) (Ongur and Price, 2000; 

Rolls, 2000; Schultz, 2002). The OFC is one area where considerable signal loss can occur due 

to susceptibility artefact. It was therefore important to ensure that the slice orientation used 

in each of the studies reduced the impact of susceptibility artefact. Previously it has been 

shown that using an orientation of 30˚ oblique to the AC-PC line decreases signal loss and 

increases sensitivity to the BOLD signal in the OFC (Deichmann et al., 2003). This hypothesis 

was tested when using the EPI parameters that would be used during the experiments 

contained in this thesis. 6 EPI images were taken at each of four angles (0˚, 25˚, 30˚ and 40˚) 

and two different in-plane acquisition directions (Anterior-Posterior or Posterior-Anterior). The 

results confirmed the hypothesis that an angle of approximately 30˚ oblique to the AC-PC line 

showed increased signal in the OFC and also showed increased signal in the temporal lobes, 

cerebellum and in the striatum. As a result, for all of the studies in this thesis, subjects were 

scanned with an angle of orientation as close to 30˚as possible. In some cases this angle was 

slightly less than 30˚ as it would not have been possible to scan the whole cortex at that angle. 

However, it was found that the lowest OFC signal occurred when images were acquired at 0˚. 

As such, acquiring at angles greater than 0˚, but less than 30˚ may be beneficial compared to 

acquiring parallel to the AC-PC line. It should also be noted that the position of each subject’s 

head differs once inside the scanner. The angle of the AC-PC line with respect to the 

orientation of the field of view therefore differs from subject to subject. The angle of 

acquisition of the AC-PC line was therefore approximated and for this reason the angle of 

acquisition was never exactly 30˚.  

The second approach used to minimize artefactual effects was to unwarp the images post-hoc 

using fieldmaps. The rationale and implementation of this is discussed in the ‘Realignment and 

unwarping’ section below.  
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2.4 fMRI Analysis 

2.4.1 Pre-processing 

2.4.1.1 Realignment 

 

Changes in the signal intensity of one voxel over time can occur as a result of subject head 

motion. Such changes in signal intensity can be much greater than those resulting from task-

related changes in the BOLD response. As a result, head motion significantly increases the size 

of the error term in a General Linear Model (GLM) and in some cases can explain as much as 

90% of the variance in an analysis (Friston et al., 1996). This significantly decreases the 

sensitivity of the analysis to the conditions of interest. This is even more of a concern when 

head movements are temporally correlated with experimental conditions. If this occurs for 

some experimental conditions, but not all, head motion drastically increases the chances of 

there being arefactual activations, particularly on the cortical surface. Such activations would 

lead to false rejections of the null hypothesis (a type I error). It is therefore essential to control 

and correct for head motion as much as possible. 

In SPM (both SPM5 and SPM8) realignment takes place in two stages. Firstly, registration, in 

which the amount of movement is calculated by comparing the first image acquired to all 

subsequent images.  Registration is performed using a rigid body transformation that 

minimises the differences between a reference scan (a mean image or the first image 

acquired) and source images (i.e each successive EPI scan). Three translations (x, y and z 

directions) and three rotations (roll, pitch and yaw) are estimated using a least- squares cost 

function, which minimises the sum of squared differences between the source images and the 

reference image. This least squares cost function selects the optimal set of translations and 

rotations to minimise the differences between the reference and source images, and therefore 

optimally explain the data (Friston et al., 1995a). Once the images have been registered to a 

reference image, they are then transformed (or resliced) based on the parameters estimated 

during registration.  The image transformation occurs through interpolation, where the 

intensity in the transformed image is determined based on the intensity in the original image. 

Image intensity values at a given voxel are taken from the nearest neighbours as a basis for the 

interpolation.  

Although the process of realignment significantly reduces the effects of head motion (Friston 

et al., 1996), it is only an approximation and there is still considerable variance that cannot be 
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explained due to the linear nature of the correction. As such, noise which cannot be explained 

by linear correction methods can also confound statistical results as a result: (i) movements 

between slice acquisitions (ii) Interpolation artefacts (Grootoonk et al., 2000) (iii) spin-

excitation history effects (when the current signal becomes a function of movement history) 

(Friston et al., 1996). To reduce some of these effects, the head motion parameters estimated 

during registration were included in the GLM as regressors of no interest. Although, due to the 

non-linear nature of these artefacts, this approach is unlikely to eliminate them completely. 

 

2.4.1.2 Realignment and Unwarping 

 

As stated above, susceptibility artefact and head motion can independently introduce noise 

into fMRI data and analyses. However, an additional problem is the interaction between these 

two sources of noise (Andersson et al., 2001). When a subject moves, different points in the 

EPI image become distorted due to susceptibility aretefact. The result is an apparent change in 

shape of the subject’s brain that depends on head motion. Thus, the linear method of 

registering images described above becomes less accurate, as the images have different 

geometric properties. However, it is possible to use field maps, which provide a description of 

the properties of the magnetic field, to undistort and correct for inhomogeneities in the 

magnetic field. By combining the field maps with the EPI images, a voxel displacement map can 

be created which characterises the distortions that are common to all images in each subject. 

It is also possible to calculate the distortions between images and use the resulting parameters 

to undistort the EPI images after realignment. By undistorting images in this manner, it is 

possible to improve realignment (Andersson et al., 2001)  and as a result improve 

normalisation (Hutton et al., 2002; Cusack et al., 2003) and group level statistical power 

(Cusack et al., 2003). This approach was applied in chapters four, five and six.  

 

2.4.1.3 Normalization and Unified Segmentation 

 

The aim of the fMRI studies in this thesis is to make inferences about information processing in 

the population. In order to make such inferences, one tests hypotheses about the nature of 

information processing in one anatomical location in all subjects, which are a sample of the 

population. One therefore has to ensure that one voxel reflects the activity of the same 
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anatomical location in all subjects. To achieve this, EPI images are registered with a template 

which is in a standard space. Thus, the brains of all subjects in fMRI experiments are 

approximately within the same stereotactic space and coordinate system. In this thesis images 

are warped into the same space as Montreal Neurological Institute (MNI) template which is 

recognised by the International consortium for Brain Mapping as the standard template. 

The conventional approach to normalisation is to warp the images directly into the space of 

the template image (the approach applied in chapter three). However, in this thesis, an 

improved method is used in which the warping is constrained and optimised by information 

from the subjects anatomical images. The anatomical images are first segmented into separate 

grey and white matter images based on template grey and white matter images.  

In this thesis, anatomical images were segmented using a unified segmentation procedure 

(Ashburner and Friston, 2005) in which structural scans are segmented, spatially normalised 

and bias corrected within a single generative model. The anatomical image is passed through 

an affine registration, in order to align the images to the template. Tissue probability maps, 

which are based on the probability of a particular voxel being grey or white matter in the 

population, are passed through a deformation algorithm, in order to improve the fit to the 

registered anatomical image. This process is optimised by minimising the sum of two terms. 

The first gives the probability of the data given the warping parameters and the second gives 

the probability of the parameters, which becomes lower when the deformations are unlikely. 

This is implemented using Bayesian principles. In addition, the images are corrected to remove 

any smooth, spatially varying, MR physics related bias. The outputs of this process are bias 

corrected, subject-specific segmented grey and white matter probability maps, which are in 

the ICBM template space. The parameters from this generative model can then be used to 

warp all the subjects’ EPI images into the template space. This approach has been shown to 

result in greater overlap of anatomical structures between one brain and the template, as well 

as across subjects, with a particular improvement shown in the ACCg (Klein et al., 2009). This 

greater overlap affords greater statistical power to the GLM analysis, as each voxel is more 

likely to represent the activity of the same anatomical location across subjects. 
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2.4.1.4 Spatial Smoothing 

 

When performing a multi-subject fMRI experiment, one makes important assumptions that 

must be met for statistical inferences to be valid. In particular, it is assumed that errors are 

spatially normally distributed and that the error terms are a representation of a smooth, 

underlying Gaussian field (Friston et al., 1995b). In order to meet these assumptions, a 3D 

Gaussian kernel is applied to each voxel, smoothing the intensity values so that they are 

normally distributed. The optimal kernel corresponds to the size of the effect that is expected, 

which is assumed to be roughly 5mm. However, when averaging across subjects, it is often 

necessary to smooth using a larger kernel (8mm is the kernel applied in this thesis), in order 

that homologies between different subjects’ functional anatomy are expressed. It is important 

to note that although smoothing increases the validity of the statistics and also increases the 

signal to noise ratio, it is at the cost of some of the spatial resolution which is afforded by fMRI. 

Once smoothing has been completed the images can be statistically analysed 

In summary, the EPI images acquired in chapters four, five and six of this thesis were 

preprocessed, using unwarping, realignment, normalisation and smoothing. The pipeline used 

in these studies is outlined in figure 2.2.  
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Fig.2.2 Outline of the pre-processing pipeline implemented in chapters four, five and six. 
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2.4.2 Statistical Inference 

2.4.2.1 The General Linear Model 

 

Statistical Parametric Mapping is typically the term given to the use of a General Linear Model 

(GLM) and Gaussian Random Field Theory (GRF) to produce spatially extended maps of 

univariate statistical tests conducted on fMRI data. This approach involves the application of a 

mass-univariate GLM, at each and every voxel in preprocessed EPI images. The GLM is used to 

partition the observed time-series in a given voxel (Y) into variables of interest and confounds 

(X), scaled by an estimated parameter (β), plus a noise or error term (ε). Thus, mathematically 

the GLM represents the data at a given voxel as: 

 

Or: 

= Xβ + ε 

 

The GLM is implemented in SPM through the creation of a design matrix (X). The design matrix 

represents the time-course of the experiment as experienced by the subject. Each variable in X 

represents one experimental condition or one confound that explains some event (or events) 

that took place during the experiment. These explanatory variables are regressed against the 

data, i.e. the β parameter is estimated to examine the extent to which the data Y can be 

explained by each of the explanatory variables. 

In fMRI the BOLD response (the dependent variable) poses a problem for a typical GLM 

analysis, due to its delayed timescourse. The BOLD response is temporally delayed with 

respect to the neural response following stimulus presentation, typically peaking at ~6s, 

undershooting after ~12s and returning to baseline only after ~32s. If events were modelled as 

simple stick functions at the time of stimulus onset in a GLM, the analysis would not be able to 

model the BOLD signal following a stimulus. Thus, the onsets of stimulus presentations are 

convolved with a basis function, which is a prediction of the response that would be expected 

following a stimulus event. Thus, in a given voxel, the predictions of an experimental variable 

in the design matrix X, should closely match the BOLD signal Y, if there is stimulus induced 

activity. The most typically used basis function and the default in SPM is the canonical 

haemodynamic response function (HRF). The HRF is the sum of two gamma functions which, 
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following a stimulus event, model a peak 6s after onset and an undershooting at 12s. In this 

thesis, the canonical HRF was used in several chapters (4, 5 and 6).  

An important aspect of this thesis was the use of computational models to examine both 

behaviour and the BOLD response. When using such computational approaches it is assumed 

that the value of a parameter in the behavioural model will correspond to a parametric change 

in the magnitude of the BOLD response. In SPM, one can therefore use parameters from a 

computational model as modulators of an experimental variable. When using a parameter as a 

first-order modulation, the convolved HRF is scaled such that the height of the peak 

corresponds to the magnitude of the scaling parameter. This creates a new regressor, which 

models the same points in time during the experiment as the original explanatory variable. 

However, the new regressor makes different predictions about the magnitude of the BOLD 

response following each stimulus onset. 

 

2.4.2.2  Temporal Filtering 

 

Temporal filtering occurs in two forms in a GLM analysis. Firstly, to remove low-frequency 

noise. fMRI time-series are dominated by low-frequency signals which act as noise and reduce 

the efficiency of statistical tests. This noise comes from several sources, including changes in 

ambient temperature (‘scanner drift’) and physiological sources such as breathing and heart 

rate. In order to reduce the impact of this noise, a high-pass filter is used (typically a 

128s/0.008Hz filter). This removes some of the effects of the low-frequency noise on the data. 

Temporal filtering is also used to ensure that data does not violate assumptions about 

sphericity. As stated above, the use of GLM relies on the assumption that error is Gaussian. 

However, the time-course of the BOLD response is slow and EPI images are acquired 

sequentially, resulting in temporal autocorrelations in the images, which violate assumptions 

necessary for parametric statistical tests. It is important to correct for these autocorrelations 

by prewhitening the design matrix (Woolrich et al., 2001; Smith et al., 2007). That is making 

sure that each sample of the BOLD response in a given voxel is independent or “white”. In 

SPM, the design matrix is prewhitened using autoregressive error (Zt) and white noise(et) 

terms, which model the temporal correlations and the nonspherciity of the data within the 

GLM as follows: 

Yt = Xt β + Zt + et 
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In SPM, following prewhitening, the parameters (beta coefficients) in the design matrix are 

estimated, allowing for statistical tests to be conducted and inferences to be made. 

2.4.2.3 Statistical Parametric Mapping and Inference 

 

In fMRI the most common statistical approach is to make post-hoc contrasts at each and every 

voxel, between regressors in the GLM. These contrasts take the form of either a student’s t-

test (or t-contrast) or an ANOVA (F-contrast). The result of these contrasts is a spatial map of 

parametric statistical tests (either SPM{t} for T-contrast or SPM{F} for an F-contrast). Typically, 

when using a single univariate statistic one would apply a statistical threshold, or α-level, to 

make inference over the significance of the test. The standard value used in Psychology is a 

probability of 95% or an α-level of p<0.05. Thus, a difference is considered significant if the 

chance of that result occurring is less than 5% within the distribution. However, when 

employing a mass univariate approach, one runs into the issues that surround the making of 

multiple comparisons. When making multiple comparisons, the probability of a false positive 

increases as the number of comparisons increases. i.e. if one makes 12 comparisons, when 

using an α of <0.05, there is a 60% probability that one of those would produce a falsely 

significant result by chance. In whole-brain fMRI, the mass univariate approach is extended to 

over 100,000 voxels (in this thesis the smallest number of voxels is 110592).Thus, if using an α-

level of p<0.05, one would expect 5000 falsely significant voxels, leading to spurious inference 

about processing in the brain. Correcting for multiple comparisons is therefore essential for 

meaningful statistical inference in fMRI. One approach to correction is to correct the α-level 

based on the number of univariate tests performed, giving a new probability value which is 

used as the threshold. This bonferroni approach divides the α-level by the number of tests to 

be performed (Dunnett, 1970). Thus, if one performed 100,000 univariate tests (with α at 

p<0.05) the p-value would be corrected to P<0.000005. Obviously this approach is highly 

conservative and therefore is also highly likely to result in type II errors. This approach also 

ignores the spatial information that exists in imaging data. That is, neighbouring voxels in an 

EPI image are also reflecting neighbouring brain anatomy and correcting the α level, whilst 

ignoring this information, increases the possibility of false negatives. Another approach is to 

use Random Field Theory (RFT). Random field theory corrects the p-value based on the 

smoothness of the data, assuming that one activated region should correspond to the FWHM 

Guassian kernel used to smooth the data during pre-processing. Thus corrections are not made 

by the number of voxels but the number of resels (or resolution elements) and thus the spatial 

information within the data is not ignored.  
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There are alternative approaches which can be used when a specific anatomical hypothesis is 

not being made; for example, when examining whether activity in any brain area varies with 

the values from a computational model. One such approach is to correct using the False 

Discovery Rate (FDR). Unlike Bonferroni correction, which aims to remove all false positives, 

FDR aims to control the number of false positives (Genovese et al., 2002). FDR uses the 

probability of false positives amongst the voxels declared positive to correct the threshold. 

Thus, the α-level is tied to the signal in the data rather than the number of voxels or the 

smoothness.  

If a study has an apriori anatomical hypothesis, it is not always appropriate to correct for 

multiple comparisons across the whole brain. Instead it is more suitable to make a small 

volume correction (SVC), where a bonferroni correction is applied only to the number of voxels 

within a search volume. This approach avoids false negative results, where the null hypothesis 

is falsely accepted. As such, this is a more appropriate correction for multiple comparisons for 

the work in this thesis than a whole-brain bonferroni correction. Applying bonferroni 

correction for the number of voxels in the whole brain could potentially cause falsely negative 

results within the ACC. In addition, this approach is still considerably more conservative than 

leaving the α-level uncorrected for multiple comparisons. 

2.4.2.4 Group Analysis 

 

As stated above, the aim of the imaging experiments in this thesis is to make inferences about 

population effects. When one is making inferences at the population level, it is essential to 

take into account both between and within subject variability. In fMRI, it is possible to do this 

using a two-stage Random Effects approach (RFX). In a RFX analysis, SPM{t} or SPM{F} images 

are created for each subject, either for a particular contrast between conditions or for the 

main effect of one condition. These images (one per subject per contrast) are then input into 

another design matrix, where further statistical tests are implemented. This second-level 

design matrix identifies voxels which are commonly activated for a given contrast across all 

subjects. This summary statistic approach is seen as highly effective for group analyses of fMRI 

data (Friston et al., 2005). In this thesis, parametric modulators are often used to examine how 

activity in some areas of the brain varies statistically with the predictions of a computational 

model. Thus, these parameters are examined by using a simple contrast between the 

parameteric regressor and baseline. To display the results of such contrasts, the parameter 
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estimates for different regressors will be plotted on a histogram. Error bars for these 

parameters will reflect the standard error of the mean. 

 

2.4.3 Anatomical Localization and Small Volume Correction  
 

An important feature of this thesis is the specificity of the anatomical hypotheses that are 

being tested. Namely, the studies make specific predictions about information processing in 

the ACCs and the ACCg. Therefore, a crucial feature of these studies is the ability to distinguish 

between activity in two neighbouring regions of the cortex. In order to achieve this aim, masks 

were made of the ACCs and ACCg in each subject.  The ACC was defined as the posterior extent 

of the MCC to the anterior and subgenual extents of the ACC as defined in the introduction 

(see section 1.3 in chapter one). The posterior extent was defined as a vertical line, 22mm 

posterior to the Anterior Commisure in MNI space.  

The masks were created on the normalized anatomical image of each subject, by hand, using 

FSLveiw (Smith et al., 2004) and MRIcron (http://www.cabiatl.com/mricro). In order to use 

these as a SVC mask at the group level, all of the subject specific masks were added together 

and then used to create an 80% probability mask (i.e. a mask where voxels that were labelled 

as either ACCg in one mask or ACCs in the other, were only included if they were labelled in 

80% of subjects). This threshold was applied to avoid voxels being excluded which fell within 

the anatomical region of interest. Given the high variability in the anatomy of the ACC, a 

maximum probability mask would have excluded many voxels which fell within the ACC of the 

majority of the subjects and therefore the population. These were then used as the search 

volumes for the SVC. Thus, the SVC approach was specific to the anatomical region to which 

the hypothesis pertained. In addition to specific hypotheses about the ACC, anatomically 

specific hypotheses were also made about other areas, based on the results in previous 

studies. To test hypotheses based on previous literature, masks were created with an 8mm 

sphere around the reported peak coordinate. Alternatively, when examining a hypothesis 

pertaining to a previous chapter, a mask of the voxels that were significant in the studies 

relevant contrast were used. These masks were then used as the search volume for a small 

volume correction.  

In addition to the activity that is examined in the ACCg and the ACCs, activations will also be 

discussed for which less specific hypotheses are defined (i.e those which survive whole brain 
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FDR correction). For the localization of these areas, the atlas of Duvernoy and Bourgoiun 

(1999) was used as an anatomical reference. Results will be displayed on a mean anatomical 

image in MNI space, created by normalizing each subject’s anatomical image and then 

averaged over subjects. Unless stated otherwise, images will be displayed at the statistical 

threshold that the result was significant at. For small volume corrected results in the ACC, only 

voxels that fall within the masks are displayed. For results that are reported as small volume 

corrected, outside of the ACC, the images are displayed at an uncorrected threshold of 

p<0.001. 

2.5 Behavioural Analysis 

 

2.5.1 Statistical Analysis 
 

Each of the studies in this thesis involved the collection of behavioural data. For each of the 

studies the behaviour was an important index of the subjects understanding of the task. 

Typically this data was analysed using SPSS. In chapters where repeated measures ANOVAs 

have been used to analyse behavioural data, Greenhouse-Geisser correction has been applied 

to the degrees of freedom. This is to compensate for the extent of the violation of the 

assumption of sphericity. Typically one might use a Mauchly’s significance test to determine 

whether the data violates the assumptions of sphericity. However, Mauchly’s is insensitive to 

such violations when the number of subjects is small. As the number of subjects in each study 

of this thesis is small, corrections were applied to the degrees of freedom for every repeated 

measures ANOVA. 

2.5.2 Computational Modelling 
 

An important feature of chapters 4 and 6 is the use of computational models to analyse both 

the behavioural and fMRI data. Both the hyperbolic and the Rescorla-Wagner models  (see 

chapters 4 and 6 for more information on the nature of these models) used in these chapters 

assume that behaviour is driven by assigning value to available choices (or actions). The actions 

chosen (or the decisions made) by the subject, reflect the value they have assigned to that 

choice in comparison to the other available options. It is therefore important to model this 

action selection process in a way that compares chosen to unchosen actions. One commonly 
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used approach in Reinforcement Learning Theory (RLT) is the Softmax algorithm (Sutton and 

Barto, 1981). This algorithm converts values into probabilities i.e. it gives the probability of a 

chosen action, given its value in comparison to the value of all the available actions. Thus the 

algorithm takes on the form: 

(1)    

 

In this equation the probability, P, of the action, a, actually chosen by the subject on trial, n, is 

a function of the value of the chosen action over the value of other available actions. The 

numerator is the exponent of the value, v, of the chosen action, a, divided by a temperature or 

stochasticity parameter β. The denominator is the sum of the exponents of the values of all the 

actions each divided by the temperature parameter. In this equation, the coefficient β 

represents the stochasticity of the behaviour (i.e the sensitivity to the value of each option). As 

β increases (> 1) all actions tend to equiprobability, with lower values of β amplifying the 

differences between the values assigned to each choice and increasing the differences 

between the available choices. The numerator therefore represents the value of the chosen 

action modulated by how sensitive the subject is to the choice values. The denominator 

represents the value of both the chosen and unchosen actions divided by how sensitive the 

subject is to the choice values. Thus, this algorithm assumes that actions become more 

probable when the value of a chosen action approaches the value of all available actions, i.e 

when one action has a much greater value than all other available actions. The output of this 

softmax algorithm is a series of probabilities of the choices made by the subject. This algorithm 

was used in both of the computational chapters to fit the models to the data.  

An important aspect of both the computational models and the softmax procedure is that they 

contain idiosyncratic free parameters. In this thesis, a maximum log-likelihood approach was 

used to select the best fitting set of parameters for the behaviour of each subject. This 

maximum likelihood approach involves varying each of the free parameters within a 

reasonable range, such that all possible combinations of each of the free parameters are 

estimated. For each set of parameters the log-likelihood is calculated: 

(2)                             (n) 

Where the likelihood of each set of parameters (L) is determined by the probability of the 

performed action, Pa, at trial, n, according to the model. The set of probabilities are log-
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transformed such that if the model perfectly predicts the data, and Pa = 1 on every trial, the 

Likelihood (L) would be 0. When Pa is less than 1 on any trial, the likelihood of the set of 

parameters reflecting the underlying decision-making process decreases, and the likelihood (L) 

assumes negative values.  The best fitting parameters were selected using the following 

algorithm: 

 

    (3)     

 

This algorithm identifies the set of parameters for which L was closest to 0 and therefore the 

parameters which produce the highest probabilities of the choices actually made by the 

subjects. Where  is the parameter set and L is the log-likelihood. This approach has previously 

been used to fit different types of computational models to different types of decision-making 

behavior (Brovelli et al., 2008; Pine et al., 2009).   
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Chapter 3: Prediction errors signal others false beliefs 
 

3.1 Abstract 
 

Interacting successfully in social environments requires the ability to understand that the 

predictions (or beliefs) of others can be distinct from one’s own. False-belief tasks , which test 

whether an individual is capable of understanding that another’s prediction is false, have been 

used extensively to examine the neural basis of processing other’s mental states. However, 

such studies have not examined brain activity that occurs when another’s predictions about the 

outcomes of decisions are false. In this chapter, an fMRI study is presented which examines the 

processing of cues which reveal privileged information, only to a scanned subject, about the 

outcome of a third-person’s or computer’s decisions. On some trials these cues indicated that 

the outcome would be unexpected. Subjects performed a false-belief judgement task indicating 

whether the actual outcome was the same as the predicted outcome. This allowed for testing 

of the hypotheses that activity in the ACCs would change whenever an outcome was 

unexpected and that activity in the ACCg would signal the erroneous predictions of a third-

person. 
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3.2 Introduction 

 

One of the aims of this thesis is to examine whether similar computations are performed in the 

ACCg when processing the outcomes of other’s actions, as those that are performed in the 

ACCs when monitoring the outcomes of one’s own actions. As already discussed, neurons in 

the ACCs have been shown to code prediction error signals in a manner that conforms to the 

principles of Reinforcement Learning Theory (RLT). Therefore, a particularly pertinent question 

in the context of this thesis is whether similar signals occur in the ACCg to code for the 

erroneous predictions of others. To investigate this issue, it is important to use a paradigm in 

which the predictions of a subject and the predictions of another are distinct from each other 

at the same point in time. In this study, one of the most well-established paradigms in social 

cognition research is employed, namely, a false-belief task. However, the typical false-belief 

design is adapted to the context of reward-related predictions and outcomes. This approach 

enables the examination of prediction error signals triggered by others’ false-beliefs about the 

outcomes of their decisions. 

Understanding that another’s belief is false is widely regarded as one of the most sensitive and 

reliable measures of whether an individual is able to understand the mental states of others 

(Wimmer and Perner, 1983; Saltmarsh et al., 1995; Perner and Lang, 1999; Saltmarsh and 

Mitchell, 1999; Hughes et al., 2000; Wellman et al., 2001). As a result, many diagnostic test 

batteries of disorders of social cognition, such as autism, include different variants of the false-

belief task (Hughes et al., 2000). Although aspects of the tests may differ, they share several 

common properties which allow them to explore whether individuals are capable of 

representing the mental states of another. The most well-known false-belief task and a useful 

illustration of their basic principles, is the Sally-Anne paradigm devised by Wimmer and Perner 

(Wimmer and Perner, 1983). In this task, subjects observe a cartoon with two protagonists, 

Sally and Anne, who play out one of two scenarios. In both conditions, one character (Sally) 

places an object (a ball or food item) inside a basket and leaves the room. In the false-belief 

scenario, another character (Anne) then moves the object to a different location. In the true 

belief scenario she does not move the object from its original location. After this, Sally returns 

to the room. The subject is tasked with deciding whether Sally will look for the object in the 

original location, or where the object now actually resides. If the subject performing the task 

has a Theory of Mind (ToM), they will realise that Sally’s belief about the location of the object 

is false when Anne has moved the object, but true when the object is in the original location. 
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The subject should therefore indicate that Sally will always look in the location where she left 

the object. False-belief trials therefore require the ability to represent the mental states of 

another, when they are distinct from one’s own. As these tasks create situations where the 

beliefs of two individuals are distinct, they are extremely useful for examining the neural basis 

of mentalizing abilities.   

There is now a considerable body of research which has used neuroimaging methods to 

examine the neural basis of false-belief processing and mental state reasoning (Frith and Frith, 

1999; Frith and Frith, 2003; Frith and Frith, 2006). In these studies, human subjects are 

required to read stories, cartoons or watch videos and make inferences about the mental 

states of one or more protagonists (Fletcher et al., 1995; Gallagher et al., 2000; Vogeley et al., 

2001; Saxe and Kanwisher, 2003; Saxe and Wexler, 2005; Perner et al., 2006; Saxe and Powell, 

2006; Sommer et al., 2007; Hooker et al., 2008; Liu et al., 2009; Miller, 2009; Young and Saxe, 

2009; Sommer et al., 2010; Young et al., 2010b; Young et al., 2010a; Zaitchik et al., 2010). In 

the same manner as the Sally-Anne task described above, subjects are required to indicate 

whether the beliefs of one of the protagonists are true or false. These studies have identified 

three interconnected areas which are recruited when processing the mental states of others, 

namely the temporal poles (TPs), paracingulate cortex and the Posterior Superior Temporal 

Sulci (pSTS) (Frith and Frith, 2003), i.e. the core circuit which is engaged when processing the 

mental states of others.  

Despite the consistency of activation of the core-circuit across many tasks which engage 

mentalizing processes, there are limitations to the designs that have been employed. Firstly, in 

these tasks, subjects are engaged in processing the hypothetical mental state of a protagonist. 

The subjects are therefore not processing the mental state of a human counterpart with whom 

they are interacting with in real-time. The second limitation of the studies listed above, is that 

they have either examined activity that occurs when subjects are indicating their judgement 

about the true or false nature of the protagonist’s belief or alternatively activity aggregated 

across the whole of a vignette. Thus, although there have been studies which have 

investigated false-belief processing, none have examined activity that occurs at the exact 

moment that the true or false nature of the protagonist’s belief is made apparent. Another 

limitation of these studies relates to the specificity of the beliefs to which the tasks pertain. 

The complexity of the vignettes used in most studies result in multiple true and false beliefs 

being maintained at the same time. As such, it is not clear in these studies what specific belief 

the stories are examining. To illustrate this point, in the Sally-Anne task predictions are made 

about multiple variables including the reward associated with finding the object, the prediction 



 96 

 

of the spatial location of the object, the identity of the object etc. More stringent control of 

the predictions made by a third-person during a false-belief task, may therefore lead to a 

better understanding of the neural processes underlying mentalizing.  The study presented in 

this chapter examines the processing of false-beliefs, but removes many of the confounds 

which are found in the false-belief paradigms which have been used to date. It examines the 

processing of false-beliefs when they pertain to predictions made by others about the 

outcomes of decisions in real-time. None of the studies listed above have examined whether 

prediction error signals occur at the point in time when another’s prediction (or belief) about 

the outcome of a decision is false. 

Interestingly, false-belief processing and reinforcement learning processes share some 

similarities. In reinforcement learning, prediction error signals occur when the actual outcome 

of a decision is discrepant from the predicted outcome (Schultz, 2006). Similarly, in a false-

belief task, the prediction of a protagonist is discrepant from the actual outcome they will 

receive (Wimmer and Perner, 1983). In order to perform the task, the subject must be able to 

identify this discrepancy between the protagonist’s prediction and the actual outcome. For 

example, Sally’s prediction becomes erroneous at the moment in time that Anne moves the 

object to a new location. Thus, both false-belief processing and reinforcement learning require 

the ability to identify a discrepancy between a prediction and an outcome. Do prediction error 

signals occur when a subject knows that another’s belief about the outcome of a decision is 

false? 

As stated above, the aim of this thesis is to examine whether comparable information 

processing occurs in the ACCg and the ACCs. In this study, I examine whether prediction error 

signals, which are known to occur in the ACCs (Amiez et al., 2005; Matsumoto et al., 2007; 

Sallet et al., 2007), also occur in the ACCg when the outcomes of another’s decisions are 

unexpected. Subjects monitored the predictions and outcomes of another participant’s trials 

(see table.3.1) (the other participant was actually a confederate and throughout this chapter 

the term “confederate” will be used to refer to the individual that the scanned subject 

believed was performing the task with them in real-time). Similar to the Sally-Anne task, the 

subjects received privileged information, which was not relayed to the confederate. This took 

the form of cues that the subjects believed were only relayed to them inside the scanner. The 

cues informed the subject of the outcome of the trial, enabling them to infer whether the 

predictions of the confederate were true or false. The subjects task was to decide whether this 

outcome was the same or different from the predicted outcome. Thus, the task was the same 

of that being performed by subjects performing the Sally-Anne task. On each trial one of two 
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predictions (positive or negative) could be made by the confederate and there could be one of 

two actual outcomes (positive or negative). In addition to monitoring the trials of the 

confederate, the subjects also monitored identical trials performed by a computer. The 

computer acted as a control agent. This allowed for the examination of trials where there was 

discrepancy between a predicted and actual outcome, but these factors were not specific to 

another biological agent’s responses (see table.3.1 for design). In this study, activity was 

examined time-locked to cues which signalled the privileged information only to the scanned 

subject. This enabled two hypotheses to be tested: firstly, that the ACCs will be activated 

whenever there is a discrepancy between a predicted and actual outcome of a trial (i.e. on 

both the confederate and computer trials) and secondly, that the ACCg will be activated 

exclusively when there is a discrepancy between the predicted and actual outcome on the 

confederate’s trials. 
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3.3 Methods 
 

3.3.1 Subjects 
 

The subjects were sixteen, healthy right-handed participants (aged between 18 and 30; 9 

female), screened for neurological and psychological disorders. One subject (1 female) failed to 

complete the whole scanning session and was excluded from the analyses. Subjects were 

paired up with one of two confederate participants, who they believed were a naïve 

participant. The subjects were not paid for their participation but were offered a picture of 

their brain as an incentive. The subjects were informed that the other participant performing 

the task with them (confederate) were being paid £5 for their participation as they were not 

being scanned. 

 

3.3.2 Training 
 

Subjects were pre-trained in pairs with a confederate one day prior to the scanning session. 

Training was conducted in two phases.  

 

In the first phase, the subject and the confederate were seated in front of the same monitor, 

each with their own keypad. They each performed a series of delayed-outcome conditional 

motor learning trials. During this phase, each trial consisted of an instruction cue (a coloured 

shape), a trigger cue (three white lines which indicated that a response should be made), the 

response cue (three white lines with an asterisk over one line indicating which response was 

made; “missed” was presented at this point if a response was not made within the response 

window) and finally a feedback cue was presented (a one pound coin indicating a correct 

response or a one pound coin with a cross through it, indicating an incorrect response, 

“missed” if a response had not been made at the time of the trigger cue). They were both 

required to learn the arbitrary stimulus-response associations between three cues and three 

motor responses by trial and error. They also observed a computer ‘learning’ associations (a 

non-biological control, as used in previous studies (Sanfey et al., 2003; Ramnani and Miall, 

2004; Apps et al., accepted). Subjects had a 750ms window in which to make a response 

following the onset of the trigger cue. The instruction cues were colour-coded, such that the 

subject responded to red shapes, the confederate responded to green shapes and the 

computer responded to black shapes. However, the form of the shapes was identical and all 
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three agents learnt the same associations. As the confederates were paired with multiple 

different subjects throughout the piloting and experimental phases, they were highly over-

trained on the associations. However, they were told to make deliberate errors (both 

responses that were too slow and also incorrect responses) to mimic the learning of a real 

participant. This first training phase ensured that the subject understood each of the stimulus-

response associations and enabled them to observe and monitor the responses of the 

confederate. Once the subject, the confederate and the computer had made three contiguous, 

correct responses for each instruction cue, the task was completed.  

 

In the second phase, the subject and the confederate practised the task that would be 

performed in the scanner on the following day (see task design below). During this phase, the 

subject was played the sound of the scanners EPI sequence through headphones, inside a 

mock scanner. The subject observed the confederate being seated in front of a monitor with a 

response keypad, before they entered the bore of the mock scanner. This practise session 

lasted 12 minutes and consisted of 90 trials. 

 

3.3.3 Scanning 

3.3.3.1 Task Design 

 

 

During the second training phase and the scanning session the confederate and the computer 

continued to make responses on conditional motor learning trials in the same manner as they 

had during the training session.  However, the subject no longer performed trials in the same 

Table 3.1 Experimental design. A 2x2x2 Factorial design was used. The first factor manipulated Agency 
(either the confederate or the computer responded on a trial) the second factor manipulated the 
Prediction (either positive or negative) and the third factor manipulated the actual Outcome (either 
positive or negative). The colours in the table for each condition match the colour used for each 
condition in the PSTH plots in the results. 
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manner, instead they performed a false-belief task on the conditional motor learning trials of 

the other agents (see below). The subjects were informed that they would see the responses 

of the computer and confederate in real-time from inside the scanner. However, the responses 

they observed were actually a series of computer controlled responses which occurred in a 

pre-programmed sequence. To ensure that the subject maintained the belief that the 

confederate was a naïve participant responding to the visual cues, four missed trials and three 

incorrect responses were programmed to occur on the confederate’s trials. None were 

included on the computer’s trials, to ensure that subject’s maintained a sense of biological 

agency for the confederate and not for the computer. The behaviour of the confederate (the 

number of errors and missed responses) was based on the responses of subjects in a pilot 

experiment. 

 

The trials of the confederate and the computer consisted of an instruction cue, a trigger cue 

and feedback, presented in the centre of the scanned subjects’ visual display. All of these trial 

elements were presented in real-time to the scanned subject inside the bore of the scanner. 

The same colour-coding of instruction cues was used for the computer and confederate as 

during training (green for confederate, black for computer). There were 360 trials in total, 180 

of which consisted of one of the three instruction cues for which the correct association had 

been learned during the training session (90 confederate trials, 90 computer trials; 30 trials for 

each cue for each agent). The subject and confederate were also reminded of the stimulus-

response associations they had learned before entering the scanner. However, feedback was 

pre-determined on these learnt cue trials, such that rewarding outcomes were only delivered 

on 2/3 of the trials (20 for each shape, for each Agent), even if a correct response was made. 

Thus, on 1/3 of the learnt cue trials (10 for each shape) a negative outcome was delivered. 

Subjects were told that a negative outcome did not indicate that a correct response had not 

been made. A negative outcome indicated that a correct response was unexpectedly not 

rewarded. Thus, subjects were informed that the correct responses were fixed for the learnt 

cure trials and that a negative outcome did not indicate that behaviour should be changed on 

future trials. The confederate was told this information in the presence of the subject. The 

subject was therefore aware that the confederate would not change their stimulus-response 

mappings following an unexpectedly negative outcome. The subject was told that the 

Computer would always make correct responses on learnt cue trials and therefore maintained 

the same stimulus-response mappings throughout the session. 
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In addition to the ‘learnt’ cues, an extra instruction cue was now presented on 50% of the trials 

(180 trials; 90 computer, 90 confederate trials).  For this ‘random’ cue, the correct response 

changed randomly between each of the three buttons across trials. As such, it was not possible 

to learn the correct response for this instruction cue. Thus, the confederate would predict 

receiving a negative outcome on 2/3 of trials, given that there was a 1 in 3 chance of guessing 

the correct response on each trial. Unbeknown to the subjects, rewarding outcomes were 

fixed to be received on only 1/3 of all ‘random’ cue trials (30 computer trials, 30 confederate 

trials).  The subjects were informed that these positive outcomes were delivered when the 

confederate or computer had made the correct response. Subjects were informed that 

although the Confederate and the Computer may be unexpectedly rewarded on these trials 

when a correct response had been made, the correct response on the next trial was still 

randomised. The subjects were therefore told that the Confederate was aware that a 

rewarding outcome was not indicative of the same actions being rewarded or not on future 

trials. They were also told that the Computer would make a random response on every trial, 

regardless of the outcome of the previous trial. 

 

In summary, the confederate and computer would receive rewarding outcomes on 2/3 of the 

learned cue trials and negative outcomes on 2/3 of the random cue trials. Based on 

probabilities, a positive outcome would be predicted on the learnt cue trials and a negative 

outcome would be predicted on the random cue trials.  

 

During the scanning session, the subject performed a different task inside the bore of the 

scanner. During this session, the subject was required to perform a false-belief task. Following 

the trigger cue, the subject received privileged information that was not displayed to the 

confederate outside the scanner.  The corner of the confederate’s monitor was covered during 

scanning. Before the subject entered the scanner they were shown the monitor that would be 

used by the confederate and its covered area. By covering the corner of the confederate’s 

screen, additional information could be given to the subject in the corresponding corner of the 

screen inside scanner. Thus, the subjects were under the belief that they were receiving 

privileged information that the confederate could not see. On each trial, the subjects received 

an additional cue (the ‘privileged cue’) in the corner of the screen, which informed them what 

the actual outcome of the trial was. At this point in time, the subject knew both the 

confederate’s prediction of the outcome and the actual outcome of the trial. Thus, when there 

was a discrepancy between the confederate’s prediction and the actual outcome of the trial, 

the subject knew that the confederate was a holding a false-belief. Similarly on all of the 
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confederate and computer false-belief trials, this event revealed that there was a discrepancy 

between a prediction and an outcome that was not specific to another biological agent.  

Following the presentation of this privileged information, a trigger cue appeared in the corner 

of the screen. At this point the subject was required to indicate whether the confederate held 

a false-belief. Subjects were instructed to “determine if the outcome is what would be 

predicted” on the computer trials. Subjects had 750ms to indicate whether the belief was true 

or false by pressing the first button on the keypad for true and the second button on the 

keypad for false. 

 

3.3.3.2 Trial Structure (see fig.3.1) 

 

Trials for the subject consisted of an instruction cue (colour-coded shapes for training partner 

or computer), immediately followed by a trigger cue (instructing a computer or training 

partner response), followed by a response cue displaying the response of the partner or 

computer. After a variable delay period a privileged cue was presented (informing the scanned 

subject what the actual outcome of the trial would be, in the corner of the screen). After a 

further variable delay the scanned subject trigger appeared (a cue displayed in the corner of 

the screen, instructing the response from the scanned subject) followed by the scanned 

subject response (displaying the response of the scanned subject in the corner of the screen).  

Finally feedback was presented after another variable delay (displaying the outcome of the 

confederate or computer decision in the centre of the screen).  
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3.3.3.3 Conditions (see table 3.1) 

 

 

To investigate activity that occurred at the specific moment in time when new information 

revealed that the confederate had a false belief, activity time-locked to the ‘privileged’ cues 

was examined. A 2x2x2 Factorial design was used. The first factor was the Predicted outcome 

or ‘Prediction’ which could positive or negative. The second factor was Outcome, which could 

be positive or negative and the third factor was Agency which could be either confederate or 

computer.  This created eight different conditions that occurred time-locked to the cues which 

signalled the privileged information, which were as follows: 

 

Fig 3.1. Trial Structure for the subject (top) and for the confederate (bottom). The subject saw all of the trial events  
that were displayed to the confederate, but also observed additional cues that the confederate could not see. The 
subject monitored the responses of the computer and the confederate.  In addition, they received privileged 
information in the corner of the screen that the confederate could not see outside the scanner (area in black in the 
corner indicates the area of the screen that could only be seen by the scanned subject). Activity in the ACC time-
locked to the outcome reveal event, the point at which predictions could become true or false. The dotted red line and 
circles highlight the area of the confederate’s screen that was covered, which was not covered on the subject’s 
screen. 
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1. Confederate positive false belief (the confederate is predicting a negative outcome on 

the random cue trials, but the actual outcome is positive). 

 

2. Confederate negative false belief (the confederate is predicting a positive outcome on 

the learned cue trials, but the actual outcome is negative). 

 

3. Confederate positive true belief (the confederate is predicting a positive outcome on 

the learned cue trials, and the actual outcome is positive). 

 

4. Confederate negative true belief (the confederate is predicting a negative outcome on 

the random cue trials and the actual outcome is negative). 

 

5. Computer positive false belief (a negative outcome is expected on the computer 

random cue trials, but the actual outcome is positive). 

 

6. Computer negative false belief (a positive outcome is expected on the computer 

learned cue trials, but the actual outcome is negative). 

 

7. Computer positive true belief (a positive outcome is expected on the learned cue trials 

and the actual outcome is positive). 

 

8. Computer negative true belief (a negative outcome is expected on the random cue 

trials and the actual outcome is negative). 

 

The aim of this investigation was to examine activity occurring when new information revealed 

another had a false belief and also activity that occurred whenever an outcome was 

unexpected. To examine these two occurrences, two main contrasts were conducted. The first 

looked for an interaction between Prediction (positive x negative) and Outcome (positive x 

negative), independent of the level of Agency. This would identify voxels that showed 

difference in the BOLD response between true and false belief trials, irrespective of the Agent 

who made the initial response.  In addition to this main interaction, additional contrasts were 

conducted to look for any main effects. The additional contrasts excluded other possible 

interactions that could drive the effect that was identified by the main interaction outlined 

above.  
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The second contrast looked for an interaction between Prediction (positive x negative), 

Outcome (positive x negative) and Agency (confederate x computer). The same interaction 

between Prediction and Outcome for only the computer level of Agency was used as an 

exclusive mask (P<0.05unc). This ensured that any voxels identified were exclusively 

responding to the interaction between Prediction and Outcome on the confederate’s trials. To 

determine whether any one condition was driving interaction effects, contrasts were 

conducted between each confederate false-belief condition and all other conditions. In 

addition to the these main contrasts, an interaction was carried out between prediction and 

outcome on the computer’s trials, masked by the same interaction on the confederate’s trials, 

to determine if there was any region of the ACC which responded exclusively to computer 

related responses.  

Finally, an additional analysis was performed examining activity time-locked to the instruction 

cues. At the time of the instruction cues, the subjects would be able to code the Predicted 

outcome of the trials. To examine activity time-locked to these instruction cues a 2x2 factorial 

design was used. The first factor was the Prediction (positive or negative) and the second 

factor was the Agency (confederate or computer).  

 

3.3.3.4 Experimental timing 

 

An important feature of the study was that activity was time-locked specifically to the point in 

time when privileged information was revealed to the subject. In order to do this, a variable 

delay was introduced between the instruction cue and the privileged cue.  An additional delay 

was also introduced between the privileged cue and the scanned subject trigger cue.  This 

allowed BOLD activity time-locked to the privileged cue to be isolated, without contaminating 

effects of either prior or subsequent trial events (Ramnani and Miall, 2003, 2004). Events in 

each trial took place across four TRs (0–8 s; TR=2s). The interval between scan onset and 

instruction cue onset was varied over the first TR from trial-to-trial. To optimally sample the 

cue of interest, the privileged cue, a randomly varying interval between the scan onset and 

these cues was introduced over the second and third TRs. This achieved an effective temporal 

sampling resolution much finer than one TR for the conditions of interest. These intervals were 

uniformly distributed for each condition, ensuring that Evoked Haemodynamic responses 

(EHRs) time-locked to the privileged cues were sampled evenly across the time period 
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following each outcome reveal. The scanned subject trigger and feedback cues were randomly 

jittered over the fourth TR. 

 

3.3.4 Functional imaging and analysis 

3.3.4.1 Data acquisition 

 

1470 EPI scans were acquired from each participant. 27 slices were acquired in an interleaved 

manner, at an oblique angle (≈30˚) to the AC-PC line to decrease the impact of susceptibility 

artefact in subgenual cortex (Deichmann et al., 2003).  A voxel size of 3×3×4 mm (25% slice 

gap, 0.8 mm) was used; TR=2 s, TE=32, flip angle=80°. The functional sequence lasted 49 

minutes. High resolution T1-weighted structural images were also acquired at a resolution of 

1×1×1 mm using an MPRAGE sequence. 

 

3.3.4.2 Image preprocessing 

 

Scans were pre-processed using SPM5 (www.fil.ion.ucl.ac.uk/spm) by spatial realignment to 

the first scan, normalization to the ICBM EPI template using both linear affine transformations 

and non-linear transformations (Friston et al., 1995a). Lastly, a Gaussian kernel of 8 mm was 

applied to spatially smooth the images in order to conform to the Gaussian assumptions of the 

GLM implemented in SPM5. 

 

3.3.4.3 Event definition and modelling 

 

Nine separate event types were modelled in the analysis. Each of the eight conditions time-

locked to the privileged cue, were modelled as a separate event type. The instruction cues, 

trigger cues, feedback cues, and the privileged cues from trials which were either missed or 

incorrect responses, were modelled as one regressor. Trials were classed as missed if the 

response was too early (before the scanned subject’s trigger cue) or too late (a reaction time > 

750 ms). Each event type was used to construct a series of regressors by convolving the event 

timings with a Fourier set (see below) of five harmonic functions (two sine, two cosine, one 

envelope function with a Hanning window of 32s). The residual effects of head motion were 

modelled in the analysis by including the six parameters of head motion acquired from the 

http://www.fil.ion.ucl.ac.uk/spm
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realignment stage of the preprocessing as covariates of no interest. Prior to the study, a set of 

planned experimental timings were carefully checked so that they resulted in an estimable 

GLM in which the statistical independence of the eight event types was preserved.  

 

In this study, a Fourier basis set was used to examine EHRs following events rather than the 

canonical HRF which was described in chapter two . This circumvented the potentially false 

assumptions that are made when using the canonical HRF to model the BOLD response. The 

canonical HRF assumes that the BOLD response peaks at ~6s and undershoots at ~12s. 

However, the timecourse and form of the BOLD response may not always fit this response 

profile across the whole brain (Henson and Rugg, 2001; Henson et al., 2002). The stimulus 

evoked BOLD response can vary across the brain and across subjects (Handwerker et al., 2004), 

with deviations from this profile identified in the ACC (Lau et al., 2006), which is particularly 

pertinent for this study. Use of the canonical HRF can therefore result in type II errors in which 

real differences in the BOLD response between conditions are not identified because the 

response profile of that brain area differs from that of the basis set used. An alternative 

approach is to convolve a set of Fourier functions to the event onsets. This approach is more 

flexible in the form and the timecourse of the BOLD response following an event. This 

approach has been validated and used successfully in the past to examine event-related BOLD 

responses (Ramnani and Miall, 2003, 2004; Balsters and Ramnani, 2008). 

 

A secondary analysis was conducted to examine activity time-locked to the instruction cues. 

For this, a separate design matrix was created in which the onsets of instruction cues were 

separated into a 2x2 design. The first factor was the Prediction (positive or negative) and the 

second was Agency (computer x confederate).  The instruction cue onsets were fitted with a 

Fourier set of five harmonic functions. The onsets of the different conditions at the time of the 

privileged cue were collapsed into one regressor which modelled all responses to that event. 

The rest of the design matrix remained the same as outlined above. 

 

 

 

3.3.4.4 First-level analysis 

 

The GLMs were estimated in SPM5 (Friston et al., 1995b). SPM{t} contrast images were 

computed at the first-level, one image per basis function. In the primary analysis, 45 SPM{t} 



 108 

 

images were created at the first-level to be used in the second level. In the secondary, 25 

SPM{t} images were taken to the second-level. 

 

3.3.4.5 Random effects group analysis 

 

A random effects analysis (Full-Factorial ANOVA) was applied to determine voxels significantly 

different at the group level. SPM{t} images from all subjects at the first-level were grouped 

into two factors, basis function and condition. F-contrasts were conducted across the Fourier 

basis functions to look for significant interaction effects (see ‘conditions’ above). To apply 

correction for multiple comparisons, we used 80% probability anatomical masks of the ACCg 

and ACCs.  To create each mask, subject-specific masks of the ACCg and ACCs were 

constructed in FSL using the anatomical criteria outlined in chapter two. The ACCs mask was to 

correct for multiple comparisons in the contrasts examining all unexpected events and the 

ACCg mask was used in the contrast examining the confederate’s false beliefs. 

  



 109 

 

3.4 Results 

3.4.1 Behavioural Results 
 

Subjects performed a false-belief task on the predictions of a confederate and also trials 

performed by a computer. On each trial they were presented with a cue which signalled the 

actual outcome of the trial. This cue was privileged and not presented to the confederate. At 

this moment in time the subject was able to determine whether the actual Outcome of the 

trial was discrepant from the Predicted outcome. On each trial, following the presentation of 

this cue, the subjects were required to indicate whether the Predicted outcome was the same 

as the actual Outcome. Subjects performed the task at a high level of accuracy (mean of 92.9% 

of 355 trials performed correctly; mean 25.2 trials incorrect or missed SD±13.54). Thus, 

subjects were able to correctly understand both the predicted and actual outcomes of trials. 

To examine the subjects’ performance of the task in both the confederate and computer 

conditions the number of correct trials in each condition were converted into an overall 

percentage for the confederate and computer trials. To test for any significant difference in 

task performance between the confederate and computer trials, a repeated measures t-test 

was conducted. No significant difference in task accuracy was found between the computer 

and confederate conditions (t(14) = 0.174, P=0.865). Therefore, subjects were able to perform 

the task at the same level of accuracy regardless of whether it was a computer or confederate 

trial. 

3.4.2 Imaging results 
 

3.4.2.1 Instruction cue-related activity 

 

To examine prediction related activity time-locked to the instruction cues, three F-contrasts 

were conducted. The first contrast looked for a main effect of Prediction (Positive <> 

Negative), the second looked for a main effect of Agency (computer <> confederate) and the 

third looked for an interaction between Prediction and Agency. The results showed that there 

was no main effect of Prediction, or Agent and also no interaction between these factors in the 

whole-brain analysis (FDR corrected). In addition, there were no effects of Prediction, Agent or 

an interaction between these factors in the ACCs or ACCg when using a small volume 

correction. Thus, no significant effects were found time-locked to instruction cues. 
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3.4.2.2 Privileged cue-related activity 

 

The main aim of this experiment was to investigate activity time-locked to events that 

signalled an error in another’s prediction. A 2x2x2 factorial design was used to examine activity 

time-locked to the cue which signalled the privileged information only to the scanned subject. 

The first factor was the predicted outcome of the trial (Prediction), which could be positive or 

negative; the second factor was the actual outcome of the trial (Outcome), which could be 

positive or negative and the third factor was the respondent on the trial (Agent) which could 

be either the confederate or the computer.  

The experimental design contained four conditions in which the actual outcome was 

discrepant from the predicted outcome. This included two conditions in which the 

confederate’s prediction of the outcome would be false and two conditions in which an 

unexpected outcome occurred on the computer’s trials (see fig.3.1). Two hypotheses were 

tested: firstly, that the ACCs would respond on every trial where the actual Outcome was 

different from the Prediction, regardless of whether it was a computer or confederate trial. 

Secondly, the ACCg would respond exclusively when the confederate’s prediction was false. To 

stringently test the anatomical hypotheses, masks of the ACCg and ACCs were used as a small 

volume correction for multiple comparisons. These masks ensured that any activated voxel at 

the group level would be within the ACCg or ACCs of 80% of the subject. 

3.4.2.2.1 Prediction error activity 

 

To test the first hypothesis, I looked for an interaction between Prediction and Outcome 

independent of whether the trial was that of the computer or the confederate.  This contrast 

identified voxels which showed a significant effect to any unexpected Outcome, regardless of 

the Agent performing the trial. A significant effect was found in the ACCs (putatively within the 

Rostral Cingulate Zone (RCZ) in midcingulate area 24c’). Examination of peristimulus time 

histograms (PSTH), of data from the peak voxel, revealed that this effect was being driven by a 

significant response to both the confederate and computer positive false belief trials (see 

fig.3.2). To test whether the interaction effect in this peak voxel was being driven by the 

response to these two conditions, additional contrasts were conducted (Table.3.2).  These 

contrasts revealed significant differences between the computer and confederate positive 

false belief conditions, where the outcome was unexpectedly positive, and all other conditions. 

Thus, the interaction was driven by responses to both the confederate and computer positive 

A 
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false belief conditions. Importantly, there was no significant difference between these two 

conditions, even at a much lower threshold (F(5,560) = 0.52; Z = 0.1; p=0.532unc). This 

indicates that the ACCs made a response on all trials where there was an unexpectedly positive 

outcome. 

 

 

 

Fig.3.2. Interaction between 
Prediction and Outcome. (A) 
Activity shown in the ACCs on a 
saggital plane (4, 14, 32; F(5, 560) 
= 4.91; Z=3.95, p<0.005svc), (B) 
Plots of the Fourier Basis sets in 
peri-stimulus time, weighted by 
their parameter estimates, for the 
four false belief conditions, (C) 
plots of the four true belief 
conditions. 

 

Table 3.2. Contrasts conducted to examine the interaction effect identified in the ACCs .This table 
shows that the peak voxel in the ACCs cluster shows a significant difference between the two types 
of unexpectedly positive outcome (the confederate and computer positive false belief conditions) 
and the other conditions. The top three results were small volume corrected for multiple 
comparisons, the bottom result is reported uncorrected. The degrees of Freedom for all 
comparisons were F(5,560). 

 

A B 

C 
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3.4.2.2.2 Confederate false-belief 

 

To test the second hypothesis, I looked for an interaction between Prediction, Outcome and 

Agency. To ensure that voxels which showed an interaction effect between Prediction and 

Outcome on the computer trials did not contribute to this effect they were “masked out” (i.e 

an exclusive mask of the uncorrected (p<0.05) interaction between Prediction x Outcome for 

only the level of computer was used). This ensured that only voxels which showed the 

interaction exclusively for the confederates’ conditions would be identified. A significant effect 

was found in the ACCg (0,8,28, F(5, 560) = 5.2; Z=3.69; p<0.05svc; see fig.3.3) putatively in 

midcingulate area 24a’/24b’. Notably, this area did not overlap with the cluster that was 

activated by any unexpectedly positive outcome reported above (see fig.3.4). Examination of 

the PSTH revealed this effect was driven by a response only to the confederate positive false 

belief condition. To test statistically whether this interaction effect was being driven by this 

response, contrasts were run between this positive false belief condition and every other main 

effect. All seven of these contrasts showed a significant effect (F(5,560); p<0.05 svc) in the 

peak voxel identified in the interaction above. These results indicate that a portion of the ACCg 

responds whenever a subject knows another will unexpectedly receive a positive outcome. 

Fig.3.3. Interaction between 
Prediction, Outcome and Agency -
exclusively masked by the interaction 
between Prediction and Outcome only 
on the computer trials. (A) Activity 
shown in the ACCg on a saggital plane. 
(B) Plots of the fourier basis sets in 
peri-stimulus time, weighted by their 
parameter estimates, for the four 
confederate conditions. (C ) Plots of 
the four computer conditions and the 
confederate positive false belief 
conditions.  

 

A 

B 

C 

A 
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Essential to the interpretation of these results is the anatomical specificity of the activity in the 

sulcus and in the gyrus. It was of particular importance to ensure that the effects specific to 

the confederate prediction errors were within the gyrus and not the sulcus. To test this 

possibility that that a portion of the ACCs signalled the false-beliefs of the confederate, I used 

the 80% ACCs probability mask on the confederate interaction contrast, i.e. used a small 

volume correction of voxels in the sulcus on the contrast examining confederate prediction 

error signals, where the hypothesis related to the gyrus. No significant voxels were present. To 

examine the alternative possibility, that voxels within the ACCg signal any unexpected positive 

outcome, I used the ACCg mask on the interaction between Prediction and Outcome. Three 

voxels showed a significant effect. This potentially confounds the results described above, as 

there are voxels within the ACCg which signal any unexpected outcome. However, it should be 

noted that these 3 voxels were not spatially contiguous, lay at the extremities of the mask (i.e 

each was at the most lateral extent of the mask closest to the sulcus) and were at the border 

between the ACCg and the ACCs masks. Thus, given the lack of spatial resolution of smoothed 

EPI data and the lack of an anatomical boundary between the sulcus and the gyrus by which to 

define the masks, it is possible that these voxels did not fall within the ACCg. 

 
 

 
Fig.3.4 Results of the prediction error and false 
belief contrasts shown on a coronal place (Y = 12). 
A significant response occurred in the ACCg (shown 
in red) for the confederate positive false belief 
conditions. A significant response occurred in the 
ACCs (shown in green) to both the computer and 
confederate positive false belief trials.  

 

 

 

In summary, these findings show that parts of the ACC have the common property of 

sensitivity to unexpectedly positive outcomes of decisions. However, responses of the ACCs 

and ACCg differ in terms of whose errors are being processed. Whereas the ACCs responds to 

any unexpectedly positive outcome, the ACCg responds exclusively when the outcomes of 

another’s decision is unexpectedly positive.  

 



 114 

 

3.5 Discussion 
 

This study tested two hypotheses about the processing of unexpected outcomes and false 

beliefs in the ACC. The first hypothesis was that the ACCs would be engaged at the particular 

point in time that new information revealed that the actual outcome of a decision would be 

different from the predicted outcome. The second hypothesis was that the ACCg would be 

activated at the specific point in time that this information revealed that another’s prediction 

was erroneous. The results show that both the ACCg and the ACCs respond to unexpectedly 

positive outcomes. In line with the hypotheses, the ACCs is sensitive to any unexpectedly 

positive outcome, however the ACCg is sensitive specifically to the unexpectedly positive 

outcomes of another’s decisions. 

 

3.5.1 Prediction errors and the ACC 
 

This study showed activation in the ACC when predictions about the outcomes of decisions 

were erroneous. There is a considerable body of evidence which shows that the ACC is 

involved in processing the outcomes of decisions and more specifically in signalling when they 

are different from expectations (Carter et al., 1998; Walton et al., 2004; Frank et al., 2005; 

Behrens et al., 2007; Walton and Mars, 2007; Rushworth and Behrens, 2008; Kennerley et al., 

2009; Kennerley and Wallis, 2009a). Single-unit recording studies have shown that neurons in 

the ACC show an increased firing rate as the probability of reward increases (Shidara and 

Richmond, 2002; Sallet et al., 2007; Kennerley et al., 2009; Kennerley and Wallis, 2009a; 

Hayden and Platt, 2010) and also increase their firing rate in line with the magnitude of the 

prediction error responses (Amiez et al., 2005; Matsumoto et al., 2007; Sallet et al., 2007). This 

would suggest that the ACC codes reward predictions and errors in the manner proposed by 

Reinforcement Learning Theory (RLT). That is, there are neurons which code predictions about 

the outcomes of choices during choice selection and also neurons in the same region which 

signal when the outcome of the decision reveals that predictions were erroneous. One might 

argue that such prediction error signals, found in a small sample of neurons in these studies, 

may not be informative as to the function of the ACC as a whole. However, there is also 

converging evidence from studies investigating the behavioural effects of lesions in non-

human primates, as well as electrophysiological and neuroimaging studies in humans. These 

studies suggest that the error signals in the ACC may be involved in learning and guiding 
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behaviour. For instance, lesions to the ACCs in monkeys result in an inability to adapt 

behaviour appropriately in a task requiring reinforcement learning processes  (Kennerley et al., 

2006). In humans, the ACC is believed to be the dipole source of the error-related negativity 

(Frank et al., 2005; Holroyd and Coles, 2008; Holroyd et al., 2009), which occurs in many 

situations were an error is experienced, including instances when a positive outcome is 

received when a negative outcome was predicted (Frank et al., 2005). fMRI studies in humans 

also show an analogous BOLD response that occurs whenever an outcome of a decision reveals 

a prediction was erroneous (Carter et al., 1998; Holroyd et al., 2004; Jessup et al., 2010; Nee et 

al., 2011). As such, the signal identified in the ACCs in this study, closely matches many of the 

findings in the literature. However, in this study the signal occurred whenever there was an 

unexpectedly positive outcome on computer or third-person’s trials. This is distinct from the 

findings of previous studies, which have shown such signals to occur when the unexpected 

outcome is that of the subjects’ own decisions. This study also provides evidence for the 

hypothesis that is outlined in chapter one. Similar information processing is performed in the 

ACCs and the ACCg, but the ACCg is processing this information about the decisions of another. 

The view that the ACCs and the ACCg perform similar reward-related computations is 

supported by anatomical evidence. Both areas receive direct projections from dopamine 

neurons within the VTA (Williams and Goldman-Rakic, 1998) and also projections from the  

striatum via the pathway through the ventral pallidum and the thalamus (Yeterian and Pandya, 

1991). Importantly, the VTA and the striatum have been shown to signal reward prediction 

errors (Fiorillo et al., 2003; McClure et al., 2003; O'Doherty et al., 2003; Tobler et al., 2005; 

Seymour et al., 2007; Brovelli et al., 2008; D'Ardenne et al., 2008). Such a ‘connectional 

fingerprint’ implicates the ACC in processing information related to the prediction error signals 

in the ventral striatum and VTA. In addition, both the ACCs and ACCg share connections to 

areas implicated in decision-making and reward processing, portions of the intraparietal sulcus 

(Pandya et al., 1981; Vogt and Pandya, 1987; Petrides and Pandya, 2007), the hippocampal 

formation (Vogt and Pandya, 1987) and parts of the orbitofrontal cortex (Pandya et al., 1981; 

Carmichael and Price, 1995). However, despite many common connections the ACCg and the 

ACCs also exhibit several distinct connections. Firstly, the ACCs shows strong projections to the 

motor system (Dum and Strick, 1991; Picard and Strick, 1996; Takada et al., 2001) which the 

ACCg does not. In contrast the ACCg shows distinct connections to medial parts of the superior 

frontal gyrus (bordering areas 8, 9 and 32’), portions of the pSTS, at the tempero-parietal 

junction (TPJ) and the TPs (i.e. the core-circuit engaged when mentalizing) which are not found 

in the ACCs (Pandya et al., 1981; Vogt and Pandya, 1987; Seltzer and Pandya, 1989; Petrides 
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and Pandya, 2006). This would suggest that the ACCg exchanges information with a circuit 

which processes the mental states of others, but also accesses reward-related information, in 

the same manner that the ACCs has access to reward-related information. Thus, anatomical 

evidence supports the notion that the ACCs and the ACCg signal the discrepancy between a 

prediction and an actual outcome. However, they process this information for one’s own 

predictions, or the predictions of another, respectively. 

As stated above, the results of this study conform to some of the predictions of the RLT of 

decision-making. More specifically there are signals which code for discrepancies between 

predictions and outcomes. Such signals are also hypothesised in many of the computational 

models which are used to examine reinforcement learning behaviours. This study did not use a 

modelling approach. However, it did examine signals that would be predicted by such models 

and therefore adds to the growing evidence that the neural activity which underlies decision-

making can be explained by computational models (Frank et al., 2005; Doya, 2008; Rushworth 

and Behrens, 2008). Recently, a small number of studies have shown that signals predicted by 

RLT occur when subjects were making decisions during social interactions. A number of these 

studies have shown that the ACCg is engaged when there are discrepancies between the 

predictions of a subject and the actual outcomes of decisions in social situations (Behrens et 

al., 2008; Hampton et al., 2008; Baumgartner et al., 2009). However, this study showed that 

the processing in the ACCg may be specifically to compute the discrepancy between another’s 

prediction and the actual outcome of their choices. This research therefore highlights the 

utility of RLT in explaining signals that occur during learning in both social and non-social 

situations. 

 

3.5.2 False-belief and autism 
 

Typically, studies that examine the processing of false beliefs report activation in three 

interconnected areas, namely the paracingulate cortex, the pSTS and the TPs (Fletcher et al., 

1995; Gallagher et al., 2000; Frith and Frith, 2003; Saxe and Kanwisher, 2003; Grezes et al., 

2004; Perner et al., 2006; Sommer et al., 2007; Aichhorn et al., 2009). To date, only one of 

these studies has shown activation in the ACC when processing other’s false beliefs (Sommer 

et al., 2007). The discrepancy between the findings of this study and those of previous studies 

can be attributed to two unique features of the design.  
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Firstly, none of these studies have investigated brain activity that occurs at the exact point in 

time when new information reveals that another’s belief is false. Instead they have 

investigated activity aggregated across entire trials, blocks of trials, or examined activity time-

locked to retrospective false-belief judgements. Thus, they could not attribute activity 

specifically to the event which signalled a false-belief and lacked sensitivity for identifying 

activity in the ACC time-locked to this event.  In this study, activity was time-locked to the 

particular event that allowed a subject to infer the mental state of another. Thus, unlike 

previous studies, activity was examined at the exact moment in time when the discrepancy 

between the beliefs of two individuals was revealed. 

Secondly, in most false-belief tasks the subject does not reason about the mental states of 

another individual whilst interacting with them in real-time (Fletcher et al., 1995; Gallagher et 

al., 2000; Saxe and Kanwisher, 2003; Perner et al., 2006). Instead, the subject is reasoning 

about the hypothetical mental state of a protagonist. In this study, the subject was making 

inferences about specific predictions made by another person whilst monitoring their 

behaviour in real-time. Thus, when privileged information revealed that the outcome of 

another’s decision was to be unexpected, it indicated that their current mental state or 

prediction was false. Such differences between other false-belief paradigms and the one used 

in this study, may therefore explain the activation within the ACCg identified in this study that 

has not been found by others.  

 

False-belief paradigms are one of the most commonly used tools to diagnose individuals with 

disordered ToM processing and investigate the age at which individuals acquire ToM abilities 

(Saltmarsh et al., 1995; Perner and Lang, 1999; Saltmarsh and Mitchell, 1999; Wellman et al., 

2001; Onishi and Bailargeon, 2005; Southgate et al., 2007; Surian et al., 2007). Most test 

batteries used to diagnose individuals with Autism Spectrum Disorders (ASDs) contain a false-

belief test (Hughes et al., 2000). A failure to understand another’s false belief indicates that an 

individual is not able to represent the mental state of others. Interestingly, it has been found 

that patients with ASDs have disturbed cytoarchitecture in areas 24a’ and 24b’ which lie 

predominantly in the ACCg (Palmen et al., 2004). Post-mortem analyses have revealed that 

ASD patients have global decreases in cell density and cell size, with specific decreases in the 

quantity of Von Economo Neurons (VEN) compared to a matched control group (Nimchinsky et 

al., 1999; Simms et al., 2009). Thus, failures of ASD patients to pass false-belief tasks may 

partially be a result of disturbed neurobiological properties in the ACCg. Unfortunately, 

however, the limitations of the false-belief studies conducted to date have left discussions of 
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the role of the ACCg in performing such tasks largely absent. As a result, this area has also not 

been considered within the most prominent theories of the social cognitive deficits of ASD 

patients (Baron-Cohen et al., 2000; Williams et al., 2001). The results reported here are 

therefore particularly significant for theories of disturbances in social cognitive processes in 

the Autistic spectrum. 

 

3.5.3 Caveats and Limitations 
 

An important aspect of the results was that no significant effects were identified within the 

ACC for either the confederate or the computer negative false belief trials, i.e. the ACC did not 

show a response to unexpectedly negative outcomes. At first this seems somewhat surprising, 

as there are neurons in the ACC which code both positive and negative prediction errors 

(Amiez et al., 2005; Matsumoto et al., 2007; Sallet et al., 2007). However, this may be 

accounted for by a distinction between the decision-outcome contingencies on the trials 

where a positive outcome was predicted and those on which a negative outcome was 

predicted. Specifically, on the random trials where the stimulus-response mapping could not 

be learned, a negative outcome indicated an incorrect response and a positive outcome 

indicated a correct response. These outcomes were therefore contingent on the responses 

made. However, for the learnt trials, a negative outcome occurred on 1/3 of the trials 

regardless of whether the correct response had been made. As such, on the negative false 

belief trials, there was no direct mapping between a correct response and a positive outcome, 

whereas on the positive false belief trials such a response-outcome contingency was always 

present. It is well documented that in the VTA, prediction error signals occur only when there 

is a contingency between a choice and an outcome (Fiorillo et al., 2003; Schultz, 2006). 

Similarly, fMRI studies have shown that ACC activity is increased when there is a contingency 

between actions and their consequences (Walton et al., 2004; Jocham et al., 2009). In addition, 

lesions to the ACCs impair reinforcement learning processes and not the ability to detect 

erroneous responses per se. (Kennerley et al., 2006; Rudebeck et al., 2008). In this study, the 

lack of contingency between the choice made and the outcome on the negative false belief 

trials, meant that no new information was learnt at the time of these outcomes. The lack of 

contingency between a response and an outcome may therefore explain the absence of a 

response in the ACC on those trials.  
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An additional caveat must be noted in relation to the interpretation of the results offered 

above. Previously I suggested that the signals identified in the ACC are akin to the prediction 

error signals that are proposed by RLT. However, in this study, the confederate was not 

explicitly engaged in a learning task, although, learning may have been occurring on the trials 

where there was contingency between a response and an outcome. Thus, although there were 

discrepancies between predictions and outcomes, these were only one-shot discrepancies and 

the value of an action was not explicitly being updated. This deviates from the strictest 

interpretation of RLT, which suggests that prediction error signals are used for learning and 

guiding future choice behaviour (Sutton and Barto, 1981; Schultz, 2006). However, in the next 

chapter I provide evidence to suggest that the identified signals in the ACCg, conform to the 

computational principles of RLT. 

The final caveat that should be noted relates to the absence of any significant effects time-

locked to the instruction cues. One would typically expect signals to occur in a widespread 

network of brain areas for the prediction of a rewarding outcome (Knutson and Cooper, 2005; 

Schultz, 2006; Hampton and O'Doherty, 2007) and, in particular, one would expect activation 

in the ACC (Rogers et al., 2004; Hampton and O'Doherty, 2007). However, it is highly likely that 

the absence of any effects can be attributed to the lack of power afforded by the experimental 

design for examining instruction cue-related activity. In this experiment, the stimulus timings 

employed were aimed specifically at maximising sampling of the BOLD response following the 

privileged information. Therefore, to maximise sampling of the privileged cues, the jitter for 

the instruction cues was limited to just 750ms, over one TR. As a result, the BOLD response 

following the instruction cues was both unevenly and poorly sampled. The absence of any 

statistically significant effects may therefore have been a result of the inability to detect such 

signals, rather than the absence of changes in neural activity coding reward predictions. 

However, such an approach was necessary to maximise the sampling of the cue of interest (the 

‘privileged cue’) and was therefore a worthwhile sacrifice in order to test hypotheses about 

prediction error signals in the ACC. 

3.5.4 Summary 
 

In summary, this study examined activity in the ACC during a decision-making based false-

belief paradigm. Activity was examined at the point in time when privileged information about 

the outcomes of decisions was revealed to a scanned subject. The results showed that the 

ACCs and the ACCg were engaged when the outcome of a trial was unexpectedly positive. 
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However the ACCg responded exclusively when the unexpectedly positive outcomes occurred 

as the result of another’s decision. These results suggest that prediction error signals, as 

hypothesised by RLT, occur in the ACCs and the ACCg. However, prediction error signals in the 

ACCg code for other’s false beliefs. 
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Chapter 4: ACCg prediction error signals when instructing others 
 

 

 

 

4.1 Abstract 

 

In many species, learning often occurs via the transmission of information from individuals with 

expertise, to novices. Successfully instructing another conspecific requires an expert teacher to 

identify how erroneous the knowledge of a novice student is and instruct them as to the 

accuracy of their knowledge. In the previous chapter, prediction error signals were identified in 

the ACCg when a subject received information that informed them another’s prediction was 

erroneous. Do such signals code for the erroneous predictions of a student in the brain of a 

teacher? In this chapter, an fMRI study is reported which examines the processing in the brain 

of a teacher when they are instructing a novice student. Subjects learnt 10 arbitrary visuomotor 

associations between instruction cues and actions in a training session. They were then 

scanned whilst acting as a teacher providing error feedback to a novice student who was 

learning the same associations. Activity was examined in the brain of the teacher at the 

moment in time when they saw the response of the student. A Rescorla-Wagner algorithm was 

fitted to the behaviour of the student. The prediction error parameter from this model was then 

fitted to the responses of the student. This allowed for testing of the hypothesis that the ACCg 

in the brain of the teacher would signal the erroneous predictions of the student. 
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4.2 Introduction 

 

An aim of this thesis is to investigate the contribution of the ACCg to processing the decision-

making of others. The previous chapter showed that activation of the ACCg occurs whenever 

privileged information reveals that another’s prediction of a negative outcome was false. The 

result was interpreted within the framework of Reinforcement Learning Theory (RLT). 

Specifically, it was suggested that the ACCg signals coded for the discrepancy between the 

prediction of the other person and the actual outcome known only by the subject at that time. 

The caveat to that interpretation was that the prediction and outcome on one trial were not 

dependent on the prediction and outcome of the previous trial. As such, the subject was 

engaged in a “one-shot” learning process. This does not fit with strictest interpretation of RLT 

which suggests that the function of error signals is to correct erroneous predictions, in order to 

optimise future decisions. Thus, the one-shot learning design in the previous chapter does not 

allow for the principles of RLT to be stringently tested. This chapter will test whether activity in 

the ACCg conforms to these principles when subjects compute the discrepancy between 

another’s prediction and their outcome. One form of social interaction which may require such 

processing is during instruction, when a subject is required to monitor the learning of another 

and inform them of their accuracy of their behaviour. 

In many species, learning often occurs via the transmission of information from individuals 

with expertise, to novices (Franks and Richardson, 2006; Thornton and McAuliffe, 2006; 

Hoppitt et al., 2008). In some situations the behaviour of one agent is aimed explicitly at 

facilitating the learning of another, i.e. one agent teaches another. There is a growing body of 

neuroimaging research examining the neural basis of social learning. Such studies have 

examined activity in the brain of the learner either during observational learning or imitation, 

or when recalling information learned from others (Buccino et al., 2004; Leslie et al., 2004; 

Iacoboni et al., 2005; Jackson et al., 2006; Reithler et al., 2007; Monfardini et al., 2008; Shane 

et al., 2008; Gazzola and Keysers, 2009; Burke et al., 2010; Kang et al., 2010). To date, there is 

very little research investigating the neural mechanisms that underpin the teaching process. 

The learning which occurs in studies which investigate social learning processes is passive, with 

the behaviour of the expert not aimed explicitly at correcting errors committed by a learner. 

Thus, there is very little research into the neural and computational mechanisms which 

underpin the behaviour of someone who is engaged explicitly in facilitating the learning of 

another. 
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The aim of any teaching process is for the learner to acquire the same expertise as those 

instructing them (Caro and Hauser, 1992). In order to accurately facilitate learning in another, 

a teacher must monitor the responses of a student, determine the extent to which their 

response is different from the correct response, and then provide them with the appropriate 

feedback. The feedback enables the student to positively or negatively reinforce the chosen 

behaviours, so that in the future they perform the same responses as would be performed by 

the teacher. Thus, students learn from a teacher in a manner that conforms to the principles of 

RLT. I suggest that instructing a student, therefore requires the teacher to model the learning 

of a student. The teacher must inform the student when their predictions are discrepant from 

the outcome known by the teacher. However, no previous study has examined whether 

teachers model the reinforcement learning processes of their students. 

The traditional account of reinforcement learning processes suggested that prediction error 

signals occurr when predictions about rewarding outcome are erroneous. However, there is 

considerable evidence that there are many different types of prediction error signals that 

conform to the same computational principles. These error signals pertain to different forms 

of prediction and may be coded for in separate neural circuits (Dayan and Daw, 2008; 

Rushworth et al., 2009). Neurophysiological investigations have shown that prediction error 

signals occur in the Ventral Tegmental Area (VTA)(Mirenowicz and Schultz, 1996; Montague et 

al., 1996; Schultz et al., 1997; Hollerman and Schultz, 1998; Waelti et al., 2001; Bayer and 

Glimcher, 2005) and in the ACCs (Amiez et al., 2005; Matsumoto et al., 2007; Sallet et al., 

2007). In humans, neuroimaging studies have found prediction error signals in several regions 

including the VTA (D'Ardenne et al., 2008) and the ACCs (Holroyd et al., 2004; Nee et al., 2011). 

In addition, the striatum and the OFC (O'Doherty et al., 2001; McClure et al., 2003; O'Doherty 

et al., 2003; Ramnani et al., 2004b; Seymour et al., 2004; Amiez et al., 2005; Bray and 

O'Doherty, 2007; Matsumoto et al., 2007; Sallet et al., 2007; Seymour et al., 2007; Brovelli et 

al., 2008; Hare et al., 2008), which are both connected to the ACCs and the VTA, show 

prediction error responses for different forms of prediction and outcome. It has been 

suggested that the nature of the prediction error signal is dependent on task context 

(O'Doherty et al., 2004; Seymour et al., 2007; Burke et al., 2010; Glascher et al., 2010). Thus, 

the brain area that codes a prediction error signal may depend on the nature of the prediction 

and the form of learning that is taking place. Interestingly, there is some evidence that in the 

ACCs these signals code for the discrepancy between the predicted value of a chosen actions 

and its actual outcome (Matsumoto et al., 2007). I propose that prediction error signals in the 

ACCg code for the discrepancy between the value that another is placing on an action and its 
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actual value known by the subject. When teaching, such a discrepancy may occur when a 

teacher observes a student’s response. This chapter investigates whether prediction error 

signals occur in the ACCg at the moment in time that a teacher observes a student’s response.  

Fifteen subjects took part in an fMRI experiment conducted in two phases. In the first-phase, a 

training session, the subjects learnt the arbitrary associations between 10 instruction cues and 

one of four possible responses on a keypad. On the following day, subjects took on the role of 

a teacher whilst inside the MRI scanner. They observed the responses of another naïve 

participant (a confederate) who was tasked with learning the same associations that the 

teacher (participant) had learnt during training. The subject was required to monitor the 

responses of this ‘student’ and provide them with error feedback. A Rescorla-Wagner (R-W) 

(Rescorla and Wagner, 1972) learning algorithm was fitted to the behaviour of the student. 

Activity time-locked to the cues which signalled the responses of the student to the teacher 

were examined. The parameters from the learning algorithm were fitted to this point in time. 

This allowed for testing of the hypothesis that the ACCg would signal the erroneous 

predictions of the student, in the brain of the teacher, in the manner predicted by RLT. 
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4.3 Methods 
 

Subjects were sixteen healthy right-handed participants (aged between 18 and 30; 10 female), 

screened for psychological and neurological disorders. One subject failed to complete the 

whole scanning session and was excluded from the analyses. Subjects were paired up with one 

of three confederate participants, who they believed were a naïve participant. The subjects 

were not paid for their participation but were given the incentive of receiving a picture of their 

brain for taking part. The subjects were informed that the other participant performing the 

task with them (confederates) was being paid £5 for their participation as they were not being 

scanned. 

 

4.3.1 Experimental design 
 

4.3.1.1 Training 

 

Subjects were trained in two phases one day prior to scanning. In the first phase, the subject 

was seated in front of a monitor, with a response keypad. They were presented with a series of 

visual stimuli on the screen. Each trial consisted of an instruction cue (a coloured shape), a 

trigger cue (four white lines which indicated that a response should be made), the response 

cue (an asterisk over one of the lines indicating which response had been made) and feedback 

(a one pound sterling coin indicating a correct response or a one pound coin with a cross 

through it, indicating an incorrect response). They were required to learn, through trial and 

error, the arbitrary stimulus-response associations between ten instruction cues (coloured 

shapes that gave no indication of which response was correct) and one of four motor 

responses. There were 100 trials in total, with ten presentations of each instruction cue. The 

instruction cues were presented in two blocks, five instruction cues in the first 50 trials and 

five in the last 50 trials (the rationale for this is provided in 4.3.1.2). The cues were 

pseudorandomly presented in each of these blocks. If the subjects did not respond within 

750ms of the trigger cue, feedback was displayed as “missed”. This first phase of the training 

ensured that all subjects had learnt all the stimulus-response associations. All subjects 

performed at least two contiguous, correct responses for each instruction cue. This enabled 

them to act as a teacher during the scanning session. 
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In the second phase of the training session, subjects practised the task that they would 

perform in the scanner on the following day (see task design below). However, rather than 

performing the task with a confederate as they would during scanning, they practised the task 

with the experimenter.  This enabled the subject to become proficient at providing feedback. It 

was not possible for them to provide feedback to the confederate student during training. If 

the student learnt associations during training, they would no longer be naïve to the 

associations during the scanning session. It was crucial for the design that the subject believed 

that the student had not learnt the correct associations before the scanning session. Both the 

experimenter’s responses during this phase of training and the confederate’s responses in the 

scanning session, were actually a set of pre-programmed computer-controlled responses.  

 

4.3.1.2 Scanning Session (see fig.4.1) 

 

During the scanning session the subject acted as a teacher and taught the associations they 

had learnt during training to the confederate student. They observed the trials and responses 

of the student in real-time. The subject’s task was to monitor the responses of the student and 

provide error feedback. Before the subject entered the scanner they were shown the student 

sitting in front of a monitor the corner of which was clearly covered. This enabled the teacher 

to be presented with stimuli that were not presented to the student.  On each trial the 

subjects were presented with a cue that indicated the correct response (‘the association cue’; 

a number from one to four, corresponding to the buttons on the keypad). This information was 

presented in the corner of the screen and was therefore not available to the Student. This cue 

was presented to remind the teachers of the correct associations they had learnt one day 

previously. The teachers indicated their feedback by making one of two responses on a keypad 

at the time of a trigger cue. This teacher trigger cue was also presented in the corner of the 

screen, ensuring that the student was not aware of the feedback they would receive before 

the feedback cue at the end of trial. The trials were in the same order of presentation as those 

during the first training phase. Thus, there were 100 trials, five associations were learnt in the 

first 50 trials and five in the second 50 trials. Learning was separated into two blocks to ensure 

that learning related activity occurred throughout the session and not just in the trials at the 

beginning of the session.  
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4.3.2 Trial structure 
 

The stimuli used during the scanning session were the same as those the teacher had observed 

during the training session. The teacher believed that the student, seated in the control room 

next to the scanner, was learning via the feedback in a similar manner as they had during the 

training session.  However, in fact, these trials were computer controlled and the responses 

made were actually those of a participant during a pilot experiment. This participant’s 

behaviour was selected on the basis of their learning rate being close to the average learning 

rate of the 6 participants during the pilot experiment. It was noted during this pilot experiment 

that there is sometimes a tendency for subjects to learn by selecting buttons sequentially from 

left to right in the keypad for each stimulus. This could potentially confound the results of this 

study, as the design relied on the subject not being able to predict the actions of the student. If 

the teacher could predict the action of the student, then an additional prediction error, other 

than that which is hypothesised, might occur at the time of the student’s response. That is, the 

teacher may predict the action that will be taken by the student, and update this prediction 

through a prediction error signal when the student response occurs.  Thus, the computer-

controlled behaviour of the student in this experiment did not exhibit any systematic or 

strategic response patterns.  

 

The feedback in this session was provided by the teacher and not by the computer. The 

teacher’s trials consisted of an instruction cue (one of the ten they had learnt associations for 

Fig.4.1 Trial Structure. Each trial started with an instruction cue (a green shape, the form of which provided 

no information as to the correct response); an association cue which informed the teacher of the correct 

response for the instruction cue;  the student’s response, a trigger cue instructing the teacher to make a 

response and a feedback cue. The association cue and the teacher’s trigger cue and response, were displayed 

in the corner of the screen and were therefore not visible to the student. 
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during training), immediately followed by an association cue (informing the subject of the 

correct association for that instruction cue), a student trigger cue (instructing the student to 

make a response), the student response (indicating which response the student had made), a 

teacher trigger cue (instructing  the teacher to make a response), the teacher response cue 

(displaying the response of the teacher) and the feedback (indicating to the student whether 

the response was correct or incorrect). The subject believed that the student was responding 

to these trials in real-time. This subject also did not make strategic responses in order to learn 

these associations.   

 

4.3.3 Computational Modelling 
 

4.3.3.1 Behavioural Modelling 

 

In this study, the learning of the student was modelled using a R-W algorithm (Rescorla and 

Wagner, 1972), using the same approach as that of Brovelli et al., (2008) who used it to model 

first-person learning of arbitrary visuomotor associations (Brovelli et al., 2008). Recently, more 

sophisticated algorithms have been used to model reinforcement learning processes, proving 

more accurate in predicting decision-making behaviours (Behrens et al., 2007; Behrens et al., 

2008; Dayan and Daw, 2008). However, there is still some debate as to whether such 

approaches are better for modelling all types of learning (Dayan and Daw, 2008). In contrast, 

there is a considerable body of evidence which shows that the R-W model provides an 

accurate account of the learning of arbitrary visuomotor associations (Schultz et al., 1997; 

Schultz, 2006). More recently, it has also been used to explain how visuomotor associations 

are learnt though observation during social interactions (Burke et al., 2010). Thus, given the 

evidence to suggest that the R-W model provides an accurate account of the type of learning 

that was being performed by the student in this study, this model was employed here. 

 

Another important consideration for studies using computational approaches is the 

importance of comparing plausible alternative models which could explain both behaviour and 

brain activity.  It has been suggested that without comparing alternative models, one cannot 

make inferences about the precise nature of the computations that are being performed in the 

brain (Mars et al., in press). Thus, it has also been argued that model comparison is essential 

for studies which aim to investigate the computations which are being performed in the brain. 

However, I argue that in certain experimental paradigms, model comparison may not be 
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informative for the hypothesis under investigation and also, as in the case of this study, may 

not provide any further information as to the computations that are performed in the brain. I 

make this case for two reasons. Firstly, Mars et al. (in press) argue that model comparison is 

necessary based on assumptions about the aims of computational studies. Their assumption is 

that model-based studies are aiming to (i) identify whether any brain area codes a particular 

value or parameter from a computational model and (ii) to best explain the algorithms 

computed in the brain which drive the observed behaviour. However, in this chapter, the aims 

of the study contrast with those assumed by Mars et al. (in press) The aims were to (i) examine 

whether a particular computation was performed in a specific brain area and (ii) to examine 

whether activity in this area could be explained by a model that conformed to the basic 

principles of a theory of learning. Thus one of the aims of this study was to identify whether 

activity in the ACCg conformed to the basic principles of RLT and not to accurately define the 

computation being performed in this area. Secondly, in this study, the model is not fitted to 

the behaviour of the subjects themselves. The model is fitted to the behaviour of the student, 

which is in fact a set of pre-programmed responses based on the behaviour of one subject. 

Thus, the behaviour observed by every scanned subject (teacher) and the behaviour that the 

model is fitted to is identical. It therefore follows that one computational model will always fit 

the behaviour of the student best. Thus, model comparison at the behavioural level would only 

be informative for inferring the algorithms that drove the behaviour of the student. This would 

not be informative for inferring how the brain of a teacher models the learning of a student. 

This study therefore used a well established model that has been used to model conditional 

motor learning behaviour previously, the Rescorla-Wagner algorithm (Rescorla and Wagner, 

1972; Brovelli et al., 2008). This model conforms to the computational principles of RLT and 

therefore is useful for testing the hypotheses that were outline in section 4.2. 
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4.3.3.2 The Rescorla-Wagner algorithm 

 

The R-W model assumes that the associative value of an action (or stimulus) changes once new 

information reveals that the actual outcome of a decision is different from the predicted 

outcome (Rescorla and Wagner, 1972). Thus, on each trial, an action has a predicted 

associative value that is updated by a prediction error signal when an outcome reveals that 

this prediction is erroneous. The evolution of the associative values for each action are given 

by: 

 

(1) 

 

 Where: 

(2)         

 

In both (1) and (2), n is the trial number, a = 1 ….k with k  being the number of available actions 

and η is the learning rate. The asymptotic value (λ) of a correct action increases to greater than 

0 once a correct response has been made and is 0 for an incorrect response. The prediction 

error is therefore the student’s prediction of its associative value (  subtracted from the 

actual value of the action ( ) known by the teacher. We instructed the students (and teachers 

on the first day) that 1 of the four finger movements could be correct for each stimulus. 

Importantly, this also ensured that learning the correct association for one instruction cue was 

not informative as to the correct associations for any other instruction cue. Thus the 

associative values of actions for one instruction cue were not informative as to the value of an 

action for another instruction cue. The initial associative strength of each action for each 

stimulus was set to 0.25, given the equiprobability of each of the four actions being correct.  

 

4.3.3.3 Model estimation 

 

To model the action selection process of the student the associative values were transformed 

into probabilities using the softmax equation (see (2) below). These probabilities reflected the 

likelihood of the actions actually chosen by the student, given the value of the free parameters 

in the model. Thus, by varying the value of the free parameters, one can find the value of the 

parameters that maximise the probabilities of the actions actually chosen. The values of the 

parameters that result in the highest probabilities in this algorithm are assumed to reflect the 
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processes underpinning the behaviour of the subject during learning. This method is a 

standard approach used in RLT (Sutton and Barto, 1981). The probability of the action chosen 

by a subject is given by: 

 

  (3) 

 

 

This equation converts the associative values of the action chosen by a subject to a probability 

( . The coefficient β represents the stochosticity (or temperature) of the student’s 

behaviour (i.e. the sensitivity to the value of each option). A high β (greater than 1) results in 

the performance of all actions becoming nearly equiprobable, with a low β amplifying the 

differences in associative values. These two algorithms were used to model the action 

selection of the student over-time. The associative value that the student placed on the 

chosen action ( ) was then updated in the R-W model, based on the feedback. Crucially, 

in this study, this feedback was provided by a teacher inside the scanner. As the teacher had 

expert knowledge of all the associations –and was informed of the correct action on each trial- 

they knew the asymptotic value (λ) of each action chosen by the student. In this experiment, 

the aim was to examine whether the teacher modelled the learning of the student. It was 

therefore assumed that to instruct the student, the teacher would have to calculate the 

discrepancy between the student’s prediction of the outcome  and the asymptotic 

value (λ) of the action chosen by the student. This asymptotic value is known only by the 

teacher whilst the student is still learning; only once the student has learnt the correct 

stimulus-response associations for each cue will there be no discrepancy between the 

asymptotic value known by the teacher and the prediction made by the student. The aim of 

the teacher is therefore to provide the student with appropriate feedback to minimise the 

discrepancy between their expert knowledge and predictions made by the student.  

 

Within the R-W model and the softmax algorithm there are free parameters which need to be 

estimated. To identify the optimal set of free parameters for the student’s behaviour (given 

the teacher’s feedback), the learning rate, the stochasticity parameter β and the asymptotic 

value λ were varied. The output of the softmax algorithm is a series of probability values, 

based on the value of each of the free parameters and the actions chosen by the student. 

When the value of the free parameters are varied, the probability values output by the 

softmax algorithm change. To select the parameters that best fitted the student’s behavioural 
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data (given the teacher’s feedback) a maximum likelihood approach was used. By using a 

maximum likelihood algorithm it was possible to maximise the probabilities of the actions 

chosen by the student and to identify the values of the free parameters which produced the 

highest probabilities. The learning rate (η) was varied between 0 and 1 in steps of 0.05, β 

between 0 and 5 in steps of 0.1 and λ between 0 and 5 in steps of 0.1.  The likelihood of the 

chosen actions were found using: 

 

(4)       (n) 

 

Where the likelihood of each set of parameters (L) is determined by the log of probability of 

the performed action ( (n)) of the student at trial n, according to the model. If the model 

perfectly predicts the actions, the probability of every chosen action would = 1 and L would be 

0. As the probabilities become less than 1 the log-likelihood L assumes negative values.  The 

best fitting parameters were then selected using: 

 

(5)      

 

This identified the set of parameters for which L was closest to 0 i.e. the best fitting parameter 

set. Where  is the parameter set and L is the log-likelihood. Importantly, in this study, the 

student’s data was computer controlled and thus every teacher observed the same responses 

of the student. Variations in these parameters could therefore only be explained by changes in 

the feedback, i.e. if the teacher failed to give the student feedback on a particular trial. The 

maximum likelihood approach revealed, that for the behaviour of the student, the best fitting 

parameters were a λ of 1 a learning rate η of 0.95 and a β values ranging from 2.3 to 2.7- 

reflecting the differences in stochasticity of the behaviour given the teacher’s feedback. 
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4.3.4 Functional imaging and analysis 

4.3.4.1 Data acquisition 

 

1016 EPI scans were acquired from each participant. 38 slices were acquired in an ascending 

manner, at an oblique angle (≈30˚) to the AC-PC line to decrease the impact of susceptibility 

artefact in the subgenual ACC (Deichmann et al., 2003).  A voxel size of 3×3×3 mm (20% slice 

gap, 0.6 mm) was used; TR=3 s, TE=32, flip angle=85°. The functional sequence lasted 51 

minutes. High resolution T1-weighted structural images were also acquired at a resolution of 

1×1×1 mm using an MPRAGE sequence. Immediately following the functional sequence, phase 

and magnitude maps were collected using a GRE field map sequence (TE1 = 5.19ms, TE2 = 

7.65ms). 

 

4.3.4.2 Image preprocessing 

 

Scans were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images from each 

subject were corrected for distortions caused by susceptibility-induced field inhomogeneities 

using the FieldMap toolbox (Andersson et al., 2001). This approach corrects for both static 

distortions and changes in these distortions attributable to head motion (Hutton et al., 2002). 

The static distortions were calculated using the B0 field map acquired after the EPI sequence. 

The EPI images were then realigned, and coregistered to the subject’s own anatomical image. 

The structural image was processed using a unified segmentation procedure combining 

segmentation, bias correction, and spatial normalization to the MNI template (Ashburner and 

Friston, 2005); the same normalization parameters were then used to normalize the EPI 

images. Lastly, a Gaussian kernel of 8 mm FWHM was applied to spatially smooth the images in 

order to conform to the assumptions of the GLM implemented in SPM8. 

 

 

4.3.4.3 Event definition and modelling (Student response) 

 

In this study, multiple GLM analyses were performed to investigate activity time-locked to the 

teacher’s observation of the student’s response. These were performed to ensure that 

activations identified could only be accounted for by the independently explained variance of a 

parameter in the R-W model. Although each of the GLMs differed from the others, they shared 

http://www.fil.ion.ucl.ac.uk/spm
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several common properties. Each GLM analysis contained regressors modelling the Instruction 

cue event, the student response cue, the teacher trigger cue and the feedback cue. Regressors 

were constructed for each of these events by convolving the event timings with the canonical 

Heamodynamic Response Function (HRF). The residual effects of head motion were modelled 

in the analysis by including the six parameters of head motion acquired during preprocessing 

as covariates of no interest. In addition to these regressors defined for the event types, each 

GLM also contained regressors which were first order parametric modulations of the student 

response cue event. These modulators scaled the amplitude of the HRF in line with either the 

λa , Va  or  δ parameters from the R-W algorithm. The values of these parameters corresponded 

respectively to the Teacher’s valuation; the Student’s prediction and the student’s prediction 

error, known only by the teacher at that time (see fig.4.2 for example model parameters). 

When a trial was missed by the student, these parameters all took on a value of zero. Two sets 

of analyses were conducted in this study to examine responses in the brain of the teacher at 

the time of the student’s response: 

 

(1)  Three separate GLMs were created in which the values of one of λ, Va, and δ were used as 

first-order parametric modulators of the student response cues. These models enabled areas 

of the brain in which the BOLD response varied in the manner predicted by one of the 

parameters to be identified. However, due to correlations between the values of these 

parameters in the R-W model, additional analyses were conducted. These GLMs 

orthogonalized one of the parameters with respect to another. Thus, voxels in which activity 

varied in the manner predicted by the orthogonalized regressor, explained a portion of the 

variance uniquely. For these analyses, two GLMs were created for each of the three 

parameters. Within these GLMs the regressor of interest was orthogonalized with respect to 

one regressor modelling one of the other parameters of the model. For example, for the δ 

parameter, three GLMs were constructed in total. The first contained only the values of δ 

parameter as a parametric modulation of the student response cues. The second contained λ, 

as a parametric modulator, with the values of the δ parametric modulator orthogonalized with 

respect to the values λ. The third contained Va, as a parametric modulator, with the values of 

the δ parametric modulator orthogonalized with respect to the values of the Va parameter. 

Regressors were orthogonalized in SPM using a Gram-Schmidt process. Parametric modulators 

are orthogonalized serially by their position in the design matrix, such that the second 

parametric regressor is orthogonalized with respect to the first. A t-contrast was performed on 

each of these regressors in the separate GLMs and taken to a second-level. Voxels are only 

reported if they were significant in an F-contrast in all three of these GLMs at the second-level. 
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This approach was then repeated for the λ and Va parameters. Thus, nine GLMs were 

constructed to examine activity which varied with the values from the parameters of the R-W 

model. It is important to note that typically one would orthogonalize the parameter of interest 

with respect to both of the other parameters, in one GLM. However, this was not possible in 

this study, as the δ parameter was a product of the other two parameters in the R-W model. 

Thus, orthogonalizing the δ parameter with respect to both of the other parameters in this 

model would have removed all statistical power from the regressor. 

(2) An additional GLM was created to control for other possible responses in the ACC at the 

time of the student’s response. This GLM contained control parameters that varied with other 

plausible responses which were not a component of the R-W model. Firstly, it is possible that 

the ACCg could compute the magnitude of the prediction error response, rather than the 

signed prediction error response as in the R-W model. Thus, an ‘unsigned’ parameter was 

constructed that contained the values of the magnitude of prediction error response, i.e. it 

contained only positive values. In addition, it was also possible that the ACCg could signal the 

prediction error responses in a non-parametric manner. To test whether the ACCg made a 

non-parametric response whenever the prediction of another was erroneous, a parameter was 

included that took on a value of 1 when there was an error and 0 when there was no error. 

These parameters were fitted to the responses of the student and included in a GLM, in which 

they were not orthogonalized with respect to each other. t-tests were then conducted 

between them to test which model best explained activity in a given voxel. 

 

4.3.4.4 Event definition and modelling (Feedback) 

 

In addition to the analyses of activity at the time of the student response, analyses were also 

conducted on the feedback cue activity. At this point in each trial, the student is able to 

calculate the discrepancy between their prediction and the outcome. Thus, if any of the brain 

codes a representation of another’s prediction error signal (i.e. an area that responds at the 

exact time that they see another experiencing a prediction error) then activity in such an area 

would vary with the δ parameter in the brain of a teacher at the time that the feedback is 

given to the student. The strategy employed for this analysis followed those employed in the 

first set of analyses. However, for these analyses all parameters were fitted to the feedback 

cues rather than the student’s response cues. 
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4.3.4.5 Group analysis, Contrasts and Thresholding 

 

Random effects analyses (Full-Factorial ANOVA) were applied to determine voxels significantly 

different at the group level. SPM{t} images from all subjects at the first-level were input into 

second-level full factorial design matrices. t-contrasts and F-contrasts were conducted in each 

of the GLMs. These contrasts identified voxels in which activity varied parametrically in the 

manner predicted by the parameters in the R-W model. Separate corrections for multiple 

comparisons were used for the ACCg and the whole brain. To examine activity across the 

whole brain, FDR correction was applied. In contrast, activity in the ACCg was corrected for by 

using an 80% probability mask of the ACCg (see general methods for a description). 

 

For the second set of analyses examining activity time-locked to the student’s response cues, 

the t-contrasts between the prediction error parameter and the control parameters were 

examined at a lower threshold. This was necessary due to the high correlations between each 

of these parameters. For these contrasts a threshold of P<0.01, uncorrected for multiple 

comparisons, was employed.  
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4.4 Results 

4.4.1 Behavioural results 
 

The teacher’s task was to monitor the student’s responses and determine whether each 

response was correct or incorrect. The student’s responses, unbeknown to the teachers, were 

a computer controlled replay of a real subject’s responses during a pilot experiment. The 

student missed three trials and thus, teachers were required to respond on 97 trials. Subjects 

correctly gave feedback to the student on 95.2% (SD ± 2.9; range: 91-99%) of trials, indicating 

that all subjects understood the correct association for each stimulus and also understood 

whether the student’s responses were correct or incorrect.  

 

 

Fig. 4.2 Example parameters from the R-W model. Each of these parameters were then fitted to 

the moment in time at which the teacher saw the student’s response. Dotted line indicates the 

point in which a new set of instruction cues was introduced. 
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4.4.2 Imaging results 

4.4.2.1 Prediction error(δ) 

 

The main aim of this experiment was to examine prediction error responses at the moment in 

time when the teacher saw the student’s response. This study tested the hypothesis that the 

ACCg would signal the discrepancy between a student’s prediction and the actual outcome 

known by a student. In line with the hypothesis, activity was found in the ACCg which varied 

significantly with the prediction error (δ) parameter of the R-W model (4, 30, 12; F(1,84) = 8.49 

Z = 3.17, p<0.05svc). Activity in this area was fitted marginally significantly better by the 

prediction error parameter from the model, than either the unsigned or non-parametric 

control regressors (p<0.05 uncorrected (unc)). In addition, no area of the brain showed a 

significantly greater response to either of these regressors than the prediction error parameter 

from the R-W model. No other brain area significantly varied with the prediction error 

parameter. Two other clusters in the VTA and the Caudate did not survive correction for 

multiple comparisons, but were the only regions activated even at a much lower threshold 

(p<0.05 unc). 

 

Fig 4.3.Prediction error signal in the ACC. (A) Activity displayed on a mean, normalised anatomical 

image. Activity in the ACC covaried with the prediction error parameter estimated in the model. (B) 

Parameter estimates (Beta coefficients) for regressors of in the peak ACC voxel. The graph clearly shows 

that the prediction error parameter fitted the BOLD response in this area better than the actual value of 

the action ( ) or the student’s prediction . The beta coefficients of two additional regressors are 

included; one regressor modelled the unsigned magnitude of the discrepancy between the teacher’s 

valuation and the student’s prediction (‘unsigned’).  The second modelled a non-parametric response to 

every incorrect and first correct trial (‘no modulation’). The prediction error parameter fit the BOLD 

response significantly better than the unsigned parameter (F(1,112) = 9.24; Z = 2.75;p<0.01unc) and also 

the unmodulated parameter (F(1,112) = 12.38; Z =3.23; p<0.05FDR). The beta coefficients of the 

prediction errpr parameter are displayed once the regressor had been orthorgonalized with respect to 

student’s prediction parameter. 

(δ) 

A B 
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4.4.2.2 Student Prediction 

 

In addition to the prediction error parameter, the student’s prediction ( ) parameter was 

also fitted to the moments in time when the teacher saw the student’s response. Activity 

which varied statistically with this parameter was found in a ventromedial prefrontal area 

(VmPFC) extending over gyrus rectus, the superorbital sulcus, and the medial superior frontal 

gyrus (across areas 32, 10p and 10r) and bilaterally in the insula (putatively area Idg).  

 

 

(δ) 

(δ) 

Fig 4.4 Student’s Prediction. BOLD responses which varied with the values of the student’s prediction 

parameter were found in two regions; the Ventromedial Prefrontal Cortex (A;  -14,32,-10; t(84) = 4.61 Z= 

4.34, p<0.05 FDR corrected for multiple comparisons) and bilaterally in the Insula cortex. Activity in the 

right insula ( 48,-4,-2;t(84) = 4.14; Z=3.94, p<0.05 FDR corrected) is reported in B and D. Plots of the 

parameter estimates for each of the parameters of the model are show for VmPFC (C) and insula (D). 

The beta coefficients of the Student prediction parameter are displayed once the regressor had been 

orthorgonalized with respect to the teacher’s valuation parameter (the regressor with which it shared 

the most variance). The other Betas reflect the parameter estimates without being made orthogonal to 

any other parameter. 

 

(δ) 

A B 

D C 
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4.4.2.3 Teacher Valuation 

 

Finally the asymptotic value of the action (λ), known only by the teacher, was fitted to the 

student’s responses.  Activity which varied statistically with this parameter (see fig. 5.4 was 

found in the Superior Frontal Sulcus (SFS) bordering areas 8, 9 and 9/46 and Posterior 

Cingulate Cortex (PCC; putatively BA 23). 

 

 

 

 

 

Fig.4.5 Teacher’s valuation. BOLD responses which varied with the true value of the action known 

only by the teacher. Activity varied with the values of this parameter in only two regions, the 

Posterior Cingulate Cortex (A; -14,-52,32; t(84) = 5.84; Z=5.34, p<0.05 FDR) and the Superior Frontal 

Sulcus (B; -20,32,46; t(84) = 5.07; Z = 4.72;p<0.05 FDR). Plots of the parameter estimates for each of 

the parameters of the model are shown for the PCC (C) and the SFS (D). The beta coefficients of the 

teacher’s valuation parameter are displayed once the regressor had been orthorgonalised with 

respect to the student’s prediction  parameter (the regressor with which it shared the most variance). 

The other Betas reflect the parameter estimates without being made orthogonal to any other 

parameter. 

(δ) (δ) 

A B 

D C 
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4.4.2.4 Feedback-related Activity 

 

The same analysis strategy was employed for examining activity at the time of the feedback 

cues as that which was employed for examining activity at the time of the student’ response. 

Activity was not found to vary significantly with any of the parameters in any brain area. 
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4.5 Discussion 
 

This study investigated activity in the brain of a teacher when monitoring the responses of a 

student. It was predicted that activity in the ACCg would vary with the discrepancy between 

the student’s prediction and the actual outcome of a trial. In line with this hypothesis, activity 

in a portion of the ACCg, in midcingulate area 24b’, varied in the manner predicted by the 

prediction error parameter of the R-W model. In addition, activity was found in other areas 

which covaried with the other parameters in the R-W model. Activity in the SFS and the PCC 

varied with the Teacher’s valuation of the outcome and activity bilaterally in insula cortex and 

in the VmPFC varied with the student’s prediction of the outcome. These results support the 

notion that teacher’s model the learning of students in a manner that conforms to the 

principles of Reinforcement Learning Theory (RLT). 

4.5.1 Prediction errors 
 

The results of this study suggest that the ACCg calculates the discrepancy between another’s 

prediction and the actual outcome of their decision. Interestingly, each of the areas in which 

activity varied with one of the parameters of the R-W model, show reciprocal connections to 

the ACCg (Pandya et al., 1981; Vogt and Pandya, 1987; Carmichael and Price, 1995; Petrides 

and Pandya, 2006, 2007). Given that the ACCg has access to information processed in areas of 

the brain which are coding the predictions and outcomes of others’ decisions, it is well-placed 

to code for the discrepancy between their prediction and outcome. 

This study is not the first to investigate the processing of errors in the ACC in a social context. 

In the ACC an Error-Related Negativity (ERN) signal occurs when subject’s experience an error 

(Frank et al., 2005; Holroyd et al., 2009). When these errors pertain to the actions, decisions 

and outcomes of others’ behaviour, the signal is attenuated (van Schie et al., 2004; Bellebaum 

et al., 2010; Kang et al., 2010; Koban et al., 2010). Previously, it has been suggested that this 

attenuation of the signal was a result of changes in the nature of the signal evoked in the ACC, 

i.e. the same portion of the ACC makes a different response when monitoring other’s errors. 

However, the results reported in this study and in the previous chapter suggest that the 

attenuation may be the result of error signals occurring in the ACCg when processing another’s 

prediction errors. The limited spatial resolution of EEG would make it difficult to disentangle 

sources originating in the sulcus from those originating in the gyrus. Thus, the attenuation of 
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the ERN may be a result of additional activations occurring in the ACCg when errors pertain to 

the behaviour of others.  

Neuroimaging research has also investigated the processing of errors in a social context and, as 

stated in the introduction, some of these have been in the context of social learning. In these 

studies, the erroneous actions of other’s have been shown to activate the ACC (Shane et al., 

2008; Shane et al., 2009), the motor system (Malfait et al., 2010), the striatum (King-Casas et 

al., 2005; Burke et al., 2010) and also the pSTS and paracingulate cortices (Hampton et al., 

2008). In this study, a prediction error signal was found in the ACCg. This result and those listed 

above, support the view outlined in chapter one, that different areas of the brain process 

different forms of prediction error signal. In this study, the results indicate that the ACCg codes 

for the discrepancy between the prediction of another and the outcome that they will receive. 

The design of this study had several advantages over those investigating error processing in a 

social context. Firstly, in this study, activity was time-locked to the exact moment that the 

response of the student was observed by the teacher. Previous studies investigating the 

processing of other’s errors have examined activity at the time of another’s response (Shane et 

al., 2008; de Bruijn et al., 2009; Shane et al., 2009; Kang et al., 2010). However, these studies 

have not examined how the erroneous actions of another are processed when the subject is 

engaged in monitoring and providing another with feedback. Secondly, this study used a R-W 

learning algorithm to model the learning behaviour of the student and test whether activity in 

the brain of a teacher covaried with the parameters of this model. Previous studies have used 

similar approaches to examine whether the learning of another is modelled in the brain 

(Behrens et al., 2008; Hampton et al., 2008; Burke et al., 2010). However, in these studies, the 

subjects own learning was contingent on the behaviour of the other individual. Thus, the 

prediction errors pertained to the subjects own predictions about the other agent being 

erroneous. These studies therefore did not examine whether prediction error signals occur 

when it is another’s prediction that is erroneous and not the subjects own prediction. This 

study therefore supports the interpretation of prediction error signals in the ACCg that was 

outlined in the previous chapter. That is, the ACCg signals the erroneous predictions of another 

in a manner that conforms to RLT. It therefore highlights how prediction error signals occur in 

a distributed network of brain areas, in which the network that processes the prediction error 

signal is dependent on the context of the task. 
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4.5.2 Processing others’ predictions 
 

It is not surprising that activity was found in superior portion of the OFC, in an area often 

referred to as Ventromedial Prefrontal Cortex (VmPFC), and in the insula varied with the 

student’s prediction parameter given that these two areas exhibit strong reciprocal 

connections (Mesulam and Mufson, 1982; Mufson and Mesulam, 1982).  In addition to 

connections to the insula, the VmPFC shows strong connections to the ventral striatum 

(Yeterian and Pandya, 1991), ACCs, and medial and lateral parts of the OFC (Pandya et al., 

1981). These areas are all well-known for their roles in processing rewarding stimuli. This 

connectional fingerprint would therefore implicate a portion of VmPFC in processing reward-

related information. Neuroimaging investigations in humans support this notion, with activity 

in the VmPFC being modulated by expectations about rewarding outcomes. More specifically,  

the BOLD response in this area is scaled by the magnitude of an expected reward following 

choice selection (Hampton et al., 2006; Chib et al., 2009; Hare et al., 2009; Wunderlich et al., 

2009; Prevost et al., 2010; Tricomi et al., 2010). Thus, it appears that the VmPFC codes the 

predicted reward following a choice. Behrens et al., (2008) also found that the activity in this 

area reflected the reward value that a subject expected to receive. However, they showed that 

in some subjects, activity in this area coded the expected reward value, based on the advice 

given by another. This would suggest that the expected value signal in the VmPFC is also 

sensitive to the expected outcomes of other’s decisions. In this study, like in Behrens et al 

(2008), activity in the VmPFC was scaled by the predicted reward value of another. However, 

in this study, the subjects were not expecting a rewarding outcome themselves. As such, the 

VmPFC is coding the subjects’ representation of the student’s expectations. This would suggest 

that the VmPFC can flexibly code expected reward values, when they pertain either to one’s 

own or another’s predictions. 

Activity in the insula was also scaled by the student’s prediction of the outcome. Area Idg 

(putatively the area activated in this study), in the insula has widespread connections across 

the cortex (Mesulam and Mufson, 1982; Mufson and Mesulam, 1982). As a result, it has been 

implicated in a large number of processes including the processing of rewards (Knutson et al., 

2000; Knutson and Bossaerts, 2007; Preuschoff et al., 2008), risk (Cardinal, 2006; Preuschoff et 

al., 2008) pain (Singer et al., 2004) and emotional processes such as fear (Adolphs, 2002; Phan 

et al., 2002). There is also evidence that this area may be involved in the processing of social 

information (Singer et al., 2004; Jabbi et al., 2008; Rilling et al., 2008; Baumgartner et al., 2009; 

Singer et al., 2009). However, the number of processes which activate this portion of the insula 
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and the extent of its connections across the cortex, has resulted in absence of a coherent 

picture of its functional properties. Despite the absence of a precise theoretical account of 

information processing performed in Idg, recent research has suggested that information is 

processed in this area in a manner that conforms to the principles of RLT (Singer et al., 2009). 

That is, within the insula, activity is scaled by different forms of predictions, such as the 

predicted amount of pain, or predicted level of risk. When new information reveals that the 

predicted values were erroneous, error signals occur, updating future estimates of the 

predictions. Such prediction and prediction error signals have been shown for different types 

of information in the insula, including risk (Preuschoff et al., 2008; Quartz, 2009) and 

uncertainty (Rolls et al., 2008). Thus, the insula codes information in a manner that conforms 

to the principles of RLT (Rushworth et al., 2009; Singer et al., 2009). However, these 

predictions are distinct from typical reward prediction errors. In this area the predictions and 

therefore error are reward-related but modulated by a particular decision-making variable 

such are risk or uncertainty. In this study, reward, risk and uncertainty were not manipulated, 

as they were not important for the specific hypotheses under investigation. As such, it is not 

possible to make inferences about whether the activity correlating with the student’ predicted 

reward value, may have been modulated by one of the other variables, such as risk or 

uncertainty, that is known to modulate reward values in this area.  

 

4.5.3 Processing others’ outcomes 
 

In addition to activity correlating with the students’ predictions, activity was found in the PCC 

and the Superior Frontal Sulcus (SFS) that covaried with the teacher’s knowledge of the actual 

outcome. Although these regions are reciprocally connected (Petrides and Pandya, 1999), they 

otherwise show distinct patterns of connectivity and respond to different types of stimuli. 

These distinctions are informative as to the nature of the coding in these two areas in this 

study.  

There are several different accounts of PCC functions, including suggestions that it is part of 

the default mode network, a set of interconnected regions that become deactivated during 

tasks. However, the portion of the PCC activated in this study is anterior and superior to the 

portion that is considered as part of the default-mode network (Cauda et al., 2010). The 

portion of the PCC activated in this study is implicated in processing the value of choices. This 

region is heavily interconnected with the striatum (Yeterian and Pandya, 1991), the ACCs and 
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medial and lateral portions of the OFC (Pandya et al., 1981), areas which are engaged when 

processing rewarding stimuli (Haber and Knutson, 2010). Single-unit recording studies have 

shown that the PCC contains neurons which fire quantitatively with the value of rewarding 

stimuli (Hayden et al., 2008). In humans, fMRI studies have shown that activity in the PCC 

covaries with the subjective magnitude of rewards, rather than the objective reward value 

(Kable and Glimcher, 2007), at the time of a choice. This would suggest that the PCC is engaged 

in processing the rewarding value of the outcomes of decisions. A recent single-unit recording 

study in monkeys showed that neurons in this region increased their spike rate when monkeys 

chose a reward that was accompanied by a social stimulus, compared to when a reward of the 

same magnitude was chosen without a social stimulus (Heilbronner et al., 2011). This study 

provided the first indication that, not only do neurons in the PCC process reward values, but 

activity in these neurons is also sensitive to social information. In this study, activity in the PCC 

covaried with the asymptotic value of the action chosen by the student. However, in a 

conditional motor learning task, modelled with R-W model, reward value and associative 

values are identical. When an incorrect response is made, the reward value and the associative 

strength of the chosen action are both zero, when a correct response is made, they both 

acquire values higher than zero. Thus, given the sensitivity of neurons in this area to rewards 

and social value, it would suggest that in this study, the PCC appears to be coding the 

rewarding value of another’s action.  

In contrast to the PCC, the SFS shows strong connections to premotor cortex and the rostral 

cingulate zone (Petrides and Pandya, 1999). Neurons in the SFS are known to process action-

related information at its most abstract level (Passingham et al., 2010). In order to understand 

the decision-making of another and provide them with appropriate feedback, it may be 

important to have access to abstract motor information. More specifically it may be important 

to code for the associative strengths of actions performed by others. Ramnani and Miall (2004) 

reported activity in the same portion of the SFS when subjects monitored the instruction cues 

of another. They found that this area was engaged only when an instrumental cue signalled 

that the action of another was predictable and not when an action could not be predicted. The 

predictable actions were learnt by arbitrary association and as such, when the action of 

another could be predicted, the associative value of that action could also be coded. The 

results of Ramnani and Miall (2004) and this study therefore suggest that the SFS may play an 

important role in processing the associative values of actions chosen by others.  
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4.5.4 Caveats and Limitations 
 

The aims of this study required that activity in the brain of a teacher was examined at the 

moment in time they saw the responses of a student. Additional analyses were also conducted 

to examine whether any area of the brain showed prediction error responses at the time of 

the feedback. However, no brain area responded significantly to any of the parameters in the 

R-W model. At first this seems somewhat surprising. Previous studies have shown a number of 

different areas signal prediction error responses time-locked to the outcome of other’s 

decisions. Indeed prediction error responses have been found in the dorsal striatum (King-

Casas et al., 2005), the dorsolateral prefrontal cortex (Burke et al., 2010), the ACC (Apps et al., 

accepted) the paracingulate cortex and the pSTS (Behrens et al., 2008; Hampton et al., 2008). 

However, there are important distinctions between the nature of the feedback cues in this 

study and those which have previously found prediction error responses. Specifically, in those 

studies, the feedback cue informed the subjects themselves about the outcome of the trial. 

This information was not available to them before this point in time. In addition, the subjects 

own learning was dependent on monitoring or learning from the other’s outcomes. In this 

chapter, the outcome of the trial was already known by the subject, as they had monitored the 

third-persons responses and provided them with feedback themselves. The subject was also 

not learning from the feedback cues. As such, the subject could perform the task without 

monitoring the feedback cues. This lack of saliency of the feedback cue may explain an 

absence of any significant activity time-locked to them. 

An additional limitation to the design of this study was its inefficiency for examining activity 

time-locked to the instruction cues. At this point in time the student would be preparing an 

action and thus, the teacher may be engaged in modelling the action selection process of the 

student.  However, in this study the instruction cues were not jittered independently from the 

association cues that indicated the correct response for the presented stimulus to the teacher.  

Thus, activity occurring time-locked to the instruction cues would be confounded by signals 

occurring at the time of the association cue.  As such, it was not possible to examine activity 

that occurred during the student’s preparation of a response. This approach was taken in order 

to ensure that the student’s response cues could be jittered independently from all other cues 

i.e. maximising the statistical independence of the cue to which the main aims of the study 

pertained. However, in chapter 5, a study is reported which examines activity time-locked to 

the instruction cues. In that chapter, hypotheses will be tested about the processing of reward-

related information at the time of instruction cues. 
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The final limitation to the design of this study relates to the use of the R-W algorithm to model 

behaviour. In this study, the behaviour of the student and the activity in several areas of the 

brain of the teacher were significantly well explained by parameters from the R-W algorithm. 

Whilst this model is one of the most well established models of learning (Schultz, 2006), there 

are alternative models which have also been used recently to explain learning behaviour 

during both social and non-social decision-making (O'Doherty et al., 2007; Mars et al., in 

press). In this study, a comparison between models was not performed (for reasons outlined in 

section 4.3) and as such, it is not possible to claim that the R-W algorithm is the best model to 

explain the data in this study. An important point to note however, is that although other 

models differ from the R-W algorithm, ubiquitous across each of the models is that values are 

updated when predictions are erroneous (Bar, 2007; Behrens et al., 2008; Hampton et al., 

2008; Yoshida et al., 2008). As the aim of this study was to examine whether activity in the 

ACCg varied with the discrepancy between a prediction and an actual outcome, more 

advanced models may have further elucidated the precise form of the prediction error signal in 

the ACCg. However, as other models contain variants of the prediction  error parameter, the 

interpretation of the results of this study would have remained the same even if one of these 

models was a better fit to the data than the R-W algorithm. Thus, the aim of future research 

should be to develop models that can account for the behaviour and activity in the brain of a 

teacher when monitoring a student’s responses. 

 

4.5.5 Summary  
 

This study examined activity in the brain of a teacher, whilst they monitored the responses of a 

student. This chapter extended the findings of the previous chapter in which activity in the 

ACCg was found to signal when another’s prediction of an outcome was erroneous. Here, I 

have shown that activity in the ACCg also signals the erroneous predictions of another at the 

time when their response is observed. Moreover, activity in this area varied with the 

prediction error parameter from a R-W algorithm. These results suggest that the ACCg signals 

the erroneous prediction of other’s in a manner that conforms to RLT. In addition, activity in 

the VmPFC and insula at the time of the student’s response signalled the predictions of the 

student and activity in the PCC and SFS signalled the actual outcome that the student would 

receive. Thus teachers appear to model the learning of their student’s in a manner that 

conforms to RLT. 
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Chapter 5: ACCg - Signalling the effort-discounted value of others’ 

actions 

 

 

 

5.1 Abstract 
 

In the previous chapter, activity was identified in the ACCg at the time of another’s action that 

coded for the discrepancy between another’s prediction and the actual value of their action. 

Such activity conforms to the principles of Reinforcement Learning Theory (RLT). However, RLT 

proposes that choices between different courses of action are guided by predictions about the 

value of actions. These predictions are processed at the time of cues that instruct actions or 

choices between different courses of action. To fully test the hypothesis that the ACCg 

processes the valuations that other’s place on actions in a manner that conforms to RLT, it is 

important to examine whether activity in the ACCg codes for the predicted value of other’s 

actions. The predicted value of an option can be modulated by the amount of effort that has to 

be expended in order to receive it. Does the ACCg signal the value of effort-discounted rewards 

that are to be performed by others? In this chapter, subjects performed trials in which they had 

to expend differing amounts of effort (2, 3, 8 or 12 cued button presses) in order to receive 

either a high (16p) or low (4p) reward. They also observed identical trials performed by a third-

person. The amount of reward, the amount of effort and who was to respond on each trial was 

instructed by a series of 16 cues. Activity time-locked to these instruction cues was 

investigated. This study tested two hypotheses, firstly, that activity in the ACCs would vary with 

the net value of rewards on the first-person trials and secondly, that activity in the ACCg would 

vary with the net reward value on the third-person trials. 
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5.2 Introduction 
 

The two previous chapters have shown that the ACCg signals how erroneous the predictions of 

others are, in a manner that conforms to the principles of RLT. These results support the 

notion that the ACCg processes the same information about other’s actions that are processed 

in the ACCs about one’s own actions. However, although the ACCs is well known for processing 

prediction error signals at the time of the outcome of one’s own decisions, it is also known for 

coding for predictions about the value of actions at the time they are instructed (Amiez et al., 

2005; Kennerley et al., 2009; Hayden and Platt, 2010). Does the ACCg signal the predicted 

value of other’s actions in the same manner that the ACCs processes the predicted value of 

one’s own actions? The study reported in this chapter explores this question, investigating 

activity in the ACC at the time of cues that signal the amount of reward available and the 

amount of effort that must be expended for its receipt. 

Choice behaviour is driven by the rewards associated with different courses of action (Doya, 

2008). However, the value of a choice can be discounted by the cost associated with 

performing the necessary actions to receive a reward (Charnov, 1976). As such, a cost-benefit 

analysis is performed on each option, with the actions that have a higher net reward value 

(benefit – cost) preferred over actions that have a lower net reward value. Thus, the greater 

the cost associated with performing the actions, the more the magnitude of the reward is 

discounted. As a result, one course of action becomes less likely, when a less rewarding but 

less costly option is an alternative.  

Effort is one of the most important variables that can modulate reward values and influence 

choice behaviour (Charnov, 1976). The majority of animal foraging behaviour is aimed at 

maximising rewards, whilst minimising the amount of effort expended to receive them 

(Charnov, 1976; Stephens and Charnov, 1982; Bernstein et al., 1991). For example, the choice 

behaviour of birds reflects not only the rate at which they will be rewarded, but also the 

metabolic costs associated with the behaviour to receive the reward (Bautista et al., 1998; 

Bautista et al., 2001). Similarly rat, monkey and human choice behaviour is influenced by both 

the amount of reward and also the number of actions (or level of effort) required for its receipt 

(Rudebeck et al., 2006b; Walton et al., 2006; Botvinick et al., 2009; Kurniawan et al., 2010). 

Work investigating the neural antecedents of effort-related costs in animals has implicated the 

ventral striatum and interconnected portions of the ACC (in the rostral cingulate motor areas). 

Lesions to the dACC (areas Cg1 and Cg2) of the rat have been shown to bias animals away from 
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investing a greater amount of effort to receive a greater reward (Rudebeck et al., 2006b). 

Single-cell recording studies in both rats and non-human primates have found neurons in the 

ACC (putatively in ACCs area 24c in primates) in which activity is sensitive to both reward 

magnitude and also effort-related costs (Kennerley et al., 2009; Hillman and Bilkey, 2010). 

Importantly, Kennerley et al. (2009) also showed that the spike rate of some neurons that 

respond to predicted reward magnitude is modulated by the anticipated number of lever 

presses that the monkey would have to make to receive the reward. This suggests that the 

ACCs may be important for calculating the net value of rewards, i.e. the value of the rewards 

discounted by the effort required to obtain them. Croxson et al., (2009) tested this hypothesis 

in humans using fMRI. Subjects performed trials where they would receive either a high 

reward or a low reward following either a high or low level of effort. They examined activity at 

the time of cues that instructed subjects as to the level of reward available and how much 

effort was required for its receipt on each trial. They found that activity in a dorsal portion of 

ACCs (in posterior MCC/RCZ) showed an interaction between the level of effort and the reward 

value at the time of the cues that instructed the actions. Thus, it appears that the ACCs may 

process anticipatory net reward values at the time that actions are instructed.  

This thesis examines two main questions (i) does the ACCg process similar information to the 

ACCs? and (ii) does information processing in this area conform to the principles of RLT? In the 

previous chapters, activity was found in the ACCg which codes for the erroneous predictions of 

others, in a manner that conforms to RLT. However, to examine whether this area is engaged 

when processing predicted values, the other major component of RLT, it is important to 

examine activity at the time that other’s make predictions about the outcomes of their actions. 

Does the ACCg process the predicted value of effort discounted rewards that are to be 

received by another? In this study, I examine activity in the ACC at the time of cues that 

instruct either a first-person or a third-person to perform a series of actions. Specifically 

examining whether activity in the ACCs varies with the net value of first-person rewards and 

activity in the ACCg varies with the net value of third-person rewards. 

Subjects performed two tasks. For the first task (the effort task) they performed a series of 

cued actions to receive either a high or low financial reward. The actions entailed the 

cancellation of a series of targets by making responses on a keypad. The number of 

cancellations required pertained to the level of effort necessary to receive the reward (2, 3, 8 

or 12 cancellations). In the second task, subjects monitored trials where the third-person 

(confederate) was required to make cancellations. On each trial, the subjects had to indicate 

the magnitude of the reward that would be received by the third-person (16p, 4p or 0p if the 
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third-person made the incorrect number of cancellations). The level of effort, reward and who 

would respond on each trial, was cued by a series of circular stimuli as used in previous studies 

(Knutson and Cooper, 2005; Croxson et al., 2009; Kurniawan et al., 2010). Activity time-locked 

to these instruction cues was examined. This allowed for an examination of brain activity that 

varied with the level of first-person and third-person anticipated rewards, anticipated effort 

and anticipated net reward value (reward/effort).This experiment tests two hypotheses: 

Firstly, that activity in the ACCs will vary with the net-reward value on the first-person trials, 

and secondly, that activity in the ACCg will vary with the net-reward value on the third-person 

trials. 
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5.3 Methods 

 

5.3.1 Subjects 
 

Subjects were sixteen, healthy right-handed participants screened for neurological disorders 

(aged between 18 and 32; 13 female). Two subjects were excluded from the analyses. Both 

subjects failed to maintain a belief in the deception and one of these subjects failed to perform 

the judgement task (see below) better than chance (one male). Subjects were paired up with 

one of two confederate participants, who they believed were also naïve participants. The 

subjects believed that they would be paid for their participation based on their performance of 

the task during a scanning session (see below). They also believed that the confederate would 

be paid based on their performance in the same manner. 

 

 

5.3.2 Experimental design 
 

The aim of this experiment was to examine the processing of cues that instructed a first-

person and a third-person as to how much reward they would receive following the exertion of 

effort. Subjects performed a task over two days with a training partner (confederate). On the 

first day, the subject and the confederate learned the associations between a set of instruction 

cues, a financial reward, and how much effort they were required to expend for its receipt. On 

the second day, both agents continued to perform effortful actions to receive rewards. During 

this session, the subject performed these trials whilst inside the MRI scanner, with the training 

partner situated in the adjacent control room.  

A 2x2x2 Factorial design was employed to examine activity time-locked to instruction cues (see 

fig.5.1). The first factor was Agency. On each trial either the subject (first-person) or the 

confederate (third-person) performed a series of cued button presses (or ‘cancellations’) on a 

keypad to receive a reward. The second factor was the reward level that was obtainable on 

each trial. This could be either high (HR), if 16p was obtainable on the trial, or low (LR), if only 

4p was obtainable. The third factor was the level of effort. There were four levels of effort 

(2,3,8 or 12 responses), which corresponded to the number of cancellations (cued button 

presses) that were required to receive the reward. These were collapsed into either low effort 
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(LE; 2 or 3 cancellations) or high effort (HE; 8 or 12 cancellations) conditions for a factorial 

design (see below). All cues were colour-coded on each trial, such that the first-person 

responded when stimuli were blue and the third-person when stimuli were brown. On each 

trial, the instruction cues signalled the level of reward available and effort required by either 

the first-person or the third-person. The instruction cue stimuli were based around those used 

in previous studies (Knutson and Cooper, 2005; Croxson et al., 2009) that investigated first-

person reward prediction processing. The stimuli were 80mm diameter circles containing 

crosshairs. The position of the crosshairs indicated both the amount of reward that was 

obtainable and the number of cancellations (cued button presses) required to receive that 

reward. Reward was represented vertically on the circle (16p was high on the circle, 4p was 

low). Effort was represented horizontally with increasing levels of effort represented from left 

to right.  

In total there were 16 different trial types dependent on the reward level, effort level and the 

agent performing the cancellations. There were eight different trial types for each level of 

Agent.  

Fig. 5.1 Experimental design. Instruction cue stimuli signalled the level of effort (2, 3, 8, or 12 

cancellations) and the level of reward on each trial. The height of the crosshairs was an index of the 

financial reward (high = high reward, 16p ; low = low reward, 4p). They were also an index of the 

required level of effort (increasing from left to right). The effort levels were represented on the stimuli 

on a log-scale, to ensure a clear disparity between the position of the crosshairs for 2 and 3 button 

presses. The stimuli were also colour-coded to indicate who was required to perform the effort task 

(either the first-person or the third-person) and the reward that was available. The net reward values 

reflect the level of reward divided by the level of effort for each stimulus. The log transformed net 

reward values are shown underneath. 
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The aim of this study was to investigate whether activity in the ACC signalled the value of a 

reward discounted by effort. Two strategies were employed to examine the processing of 

anticipated reward and effort at the time of the instruction cues: 

1. Parametric. Although a factorial approach was used, the majority of the results 

reported in this chapter are from a set of parametric analyses. Given the experimental 

design, a factorial approach would lack sensitivity to identify activity which responded 

to net reward values (and log net reward values). Specifically, the large number of 

conditions used in the experiment (16 conditions in total) resulted in a small number 

of repetitions (12 of each instruction cue) of each type of cue. This was a necessity to 

keep the duration of the experiment practical (the scan was 48.5minutes in duration).  

A parametric approach, examining activity which varied with the net level of reward or 

the level of effort, therefore had greater sensitivity when compared to the factorial 

approach: 

a. Net Reward Value - To examine whether activity in any voxels varied with the 

reward values discounted by effort, a net reward parameter was created for 

the net reward values (reward/effort; see fig. 5.1 for table of net reward 

values). Separate parameters which were scaled by the net reward value were 

created for the first-person and third-person trials. To identify voxels which 

responded exclusively to the net reward values at the time of the third-person 

instruction cues, voxels in which the timecourse varied significantly 

(p<0.05unc) with the first-person net reward values were excluded. To identify 

voxels which responded exclusively to first-person net reward values, voxels in 

which the timecourse varied significantly (p<0.05unc) with third-person net 

reward values were excluded. To examine areas in which activity was scaled by 

net reward values regardless of the Agent who was to receive it, a conjunction 

was conducted between the two parameters. 

b. Log Net Reward Value – There is evidence that animals and humans represent 

effort related costs on a logarithmic scale (Brunner et al., 1992; Croxson et al., 

2009; Kurniawan et al., 2010). In addition, Croxson et al., (2009) found that 

activity in the ACCs varied with the log-scaled value of rewards. Thus, in this 

study, the net reward values were log-transformed. The log-transformed 

values (see fig. 5.1) were then used as the parameters in a new set of analyses, 

which used the same approach as outlined in (a) above.  
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c. Effort - The final parametric analysis examined whether activity in any voxel 

was scaled with the level of effort. One parameter was created for the level of 

effort on the first-person trials and one parameter for the level of effort on the 

third-person trials. As outlined in (a) for net reward value, to examine activity 

that responded exclusively to effort for an Agent, voxels in which activity 

varied with the anticipated level effort for the other Agent were excluded. 

 

2. Factorial analysis. In addition to the parametric analyses, a factorial design was 

employed for two reasons: Firstly, to examine undiscounted reward values. As there 

were only two levels of reward (16p or 4p), there was not enough variation for the 

values of reward to be parameterised. However, undiscounted rewards could be 

examined in a factorial design. Secondly, this design had the added benefit of allowing 

PSTH plots to be created for the peak voxels identified by the parametric analyses 

(these are included in appendix D). The 2x2x2 factorial design outlined above was used 

to examine activity time-locked to the instruction cues. To identify voxels which 

processed reward value (a differential response between HR and LR, regardless of the 

level of effort) a contrast was conducted to look for the main effect of reward, 

regardless of Agent or Effort. To identify voxels which responded exclusively to first-

person reward value, regardless of the level of effort, a two-way interaction was 

conducted between Reward and Agent. Voxels which showed a main effect of third-

person reward were excluded (p<0.05unc). To identify voxels which responded 

exclusively to third-person reward value, regardless of the level of effort, a two-way 

interaction was conducted between Reward and Agent. Voxels which showed a main 

effect of first-person reward were excluded (p<0.05unc). 

 

5.3.3 Trial Structure 
 

Each trial (see fig.5.2) began with one of 16 different colour-coded instruction cues. These cues 

indicated both the level of reward that was available on each trial and also the level of effort 

required for its receipt. The colour of these cues also indicated who would have to perform the 

cancellations on each trial (blue for the first-person, brown for the third-person). Following the 

instruction cue there was an effort period, during which subjects made cancellations by 

pressing buttons on a keypad. During the effort period on the first-person trials, subjects were 
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required to make a series of cued button presses (cancellations). On the third-person’s trials 

the cancellations were actually pre-programmed computer controlled responses (see below 

for more details). At the end of the effort period, a stimulus then displayed the number of 

cancellations that had been made during the effort period. Following this stimulus, a trigger 

cue (three lines, with 16p over the left hand line, 4p over the middle line and 0p over the right 

hand line) was presented on the screen, which cued the first-person or the third-person to 

make a judgement of the amount of reward that would be received by the other agent on that 

trial. Each line corresponded to one line on the keypad. Subjects had 750ms to make their 

response. If they did not respond in this time window it was classified as an incorrect response. 

Following this, a feedback cue indicated the accuracy of the judgement (“correct” if the 

judgement was correct and “-10p” if incorrect) and then finally a feedback cue indicated the 

reward received by the agent who performed the cancellations (16p, 4p or 0p). The full trial 

structure and timings can be seen in figure 5.2.In total there were 192 trials, 96 first-person 

trials where the subject made cancellations and 96 where they monitored the third-person’s 

cancellations. Each instruction cue was presented on twelve trials. 

 

 

Fig. 5.2.Trial Structure. Each trial began with one of 16 different colour-coded instruction cues. If the cue 

was blue, the first-person would perform a series of cancellations and the third-person would make a 

judgement of the amount of reward the first-person would receive; If brown, a third-person would 

perform a series of cancellations and the first-person would make a judgement of the reward to be 

received by the first-person. The instruction cue onsets were uniformly and randomly jittered over the 

first two TRs. Following the instruction cue there was an effort period. During this time a series of cued 

button responses were made on the keypad. The responses were cued by the position of a square target 

over one of four lines which corresponded to the four buttons on the keypad. Following the effort period, 

the number of cancellations made (i.e. target button responses) was presented on the screen. After this, 

a trigger cue was presented, instructing a judgement to made by one agent about the reward to receive 

by the other agent. Feedback then indicated the accuracy of that judgement, and finally feedback was 

presented for the outcome of the performance of the effort period. 
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5.3.4 Task 
 

Subjects performed two tasks during scanning. On first-person trials subjects performed an 

‘effort task’ where cancellations were made in order to receive financial rewards. On the third-

person’s trials subjects performed a judgement task, monitoring the third-person’s 

performance of the effort task and indicating the amount of reward they would receive. 

5.3.4.1 Effort Task 

 

During scanning, subjects performed trials where they were required to make the correct 

number of cancellations to receive a financial reward. The ‘effort task’ required subjects to 

make a series of cancellations during the effort period. Each cancellation was cued by the 

position of a square stimulus above one of four lines on the screen. Each line on this cue, 

corresponded to one button on the keypad. The position of the square highlighted a target 

button. A cancellation constituted one press of the target button i.e. one finger movement of 

one finger on the right hand. Once this target button was pressed, the position of the square 

would move to highlight a new target button. Each target button was always different to the 

previous. Subjects could make up to 14 of these cancellations during the fixed time window of 

the effort period (6600ms). Target buttons were randomised across the experiment and within 

each effort period. Subjects were therefore unable to make any prediction about which button 

would be the next target.  

During scanning, subjects were told that they were accumulating monetary rewards for their 

performance on this task. As such subjects believed that they were earning the reward 

available on each first-person trial, if they performed the correct number of cancellations. 

Subjects were told that if they performed every cancellation correctly they would accumulate 

£10 as payment for the experiment. However, unbeknown to the subjects, they would be paid 

£10 for participation regardless of their task performance.  

 

5.3.4.2 Judgement Task 

 

In addition to the effort task, subjects also performed a judgement task on the trials where the 

third-person was performing the effort task.  For this task the subjects were required to 

indicate the level of reward that would be received by the third-person, which could be 16p or 

4p for the correct number of cancellations or 0p if the number of cancellations was incorrect. 
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Subjects were required to perform this judgement on every trial performed by the third-

person. Subjects believed that they were punished for each incorrect judgement (when the 

subject indicated that the amount of money earned by the confederate on the third-person 

trials, was different from the amount they would actually earn) by 10p being removed from 

the money they were accruing on the effort task. A correct judgement left the rewards 

accumulated during the effort task the same. Thus, if subjects performed every set of 

cancellations correctly, but every judgement incorrectly, they would receive no payment for 

the experiment. Thus, subjects were motivated to perform both tasks to the same degree of 

accuracy. The punishment therefore ensured that subjects attended to the rewarding value 

and the effort information contained in the instruction cues on the third-person’s trials. 

Importantly, the punishment used as the motivation for the subject on the third-person’s 

trials, was unrelated to the anticipated reward and effort level that would be processed at the 

time of the instruction cues. 

 

The effort task used in this study is very similar to that employed by Croxson et al., (2009) that 

was used to investigate first-person effort-discounting. Given this similarity, it is important to 

note the differences between the task employed here and that used by Croxson et al., (2009). 

Croxson et al., (2009) used 8 different instruction cues in which crosshairs indicated the level 

of effort and the amount of reward obtainable. There are two important differences between 

the effort task employed in that study and that employed here. Firstly, unlike in this study, 

there were no constraints placed upon the time which subjects had to make cancellations. 

Secondly, unlike in this experiment, subjects were only presented with the correct number of 

targets to be cancelled. However, these two aspects of their task were not suitable for the 

purposes of this study. Crucial to the design of this study, was that subjects were required to 

make a judgement on the reward to be received by a third-person. This task ensured that 

subjects attended to the effort and reward levels at the time of the instruction cues on the 

third-person’s trials. Without a temporal constraint on the effort period, there would be no 

possibility of making an incorrect number of cancellations, and thus, the confederate would 

not make errors on the effort task. Without confederate errors, the subject could perform the 

judgement task by attending to the level of reward at the time of the instruction cues on the 

third-person’s trials and not the level of effort. Thus, in this experiment, a temporal window 

was a necessity. In addition, in this experiment subjects could cancel up to 14 targets, more 

than the maximum instructed number of 12, regardless of how many cancellations they were 

required to make. This created the potential for catch trials, where the confederate made an 

error in the number of cancellations, which the subject would need to identify correctly in 
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order to maximise their own financial rewards. These two distinctions from the task used by 

Croxson et al., (2009) required subjects to attend to both the effort and reward level on every 

confederate trial. 

 

5.3.5 Procedure 

5.3.5.1 Training Session 

 

Subjects were trained in two phases one day prior to scanning. In the first phase, the subject 

was seated in front of a monitor with a confederate (third-person). They were each provided 

with a response keypad. A series of visual stimuli were presented on the screen. Both the 

confederate and the subject performed the effort task on separate trials. During this session 

both the confederate and subject learned the contingency between the position of the 

crosshairs on the instruction cue stimulus, the amount of reward (16p or 4p) and the required 

number of cancellations (button presses) to receive the reward. They were informed before 

this that there would be two levels of reward and that they would have to make two, three, 

eight or twelve button presses. During training there were 64 ‘first-person’ trials where the 

subject performed the cancellations and 64 ‘third-person’ trials performed by the confederate. 

The subjects were told that the rewards were fictional during training and their payment for 

the experiment would be based solely on performance during the scanning session. 

 

In this session, as the subjects were seated next to the confederate, the confederates’ 

performed the effort task on separate trails from the subject. As the confederates were paired 

with multiple different subjects throughout the piloting and experimental phases, they were 

highly over-trained on the effort task. To ensure that subjects maintained the belief that the 

confederates’ were naïve participants like themselves, they were told to make deliberate 

errors in the number of cancellations performed during the first phase of training, to mimic the 

learning of a real participant. 

 

In the second phase of training, subjects practised the task that would be performed during 

the scanning session (see below). The subject performed this from inside a mock scanner, with 

the confederate seated in front of a monitor adjacent to the mock scanner. The subject was 

played the sound of a genuine scanner’s EPI sequence via headphones. During this training 

phase and during scanning the responses on the third-person trials were computer controlled. 
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5.3.5.2 Scanning Session 

 

Prior to scanning subjects were shown the confederate seated in front of a monitor in the 

control room next to the scanner. They were told that they would see all of the responses of 

the third-person in real-time inside the scanner. In fact these responses were all computer 

controlled, pre-programmed responses. The apparent reaction times of the confederate during 

the effort task were pseudorandomly organised. The reaction times of the second to twelfth 

button presses fitted a normal distribution around a mean (525ms), with a range of 325ms to 

725ms. The confederate’s reaction times to the first target were extended, to reflect the 

unpredictability of the onset of this target. These formed a normal distribution around a mean 

of 600ms, with a range of 400ms to 800ms. These timings were based on the reaction times of 

five participants during a pilot experiment. Key for the design of this experiment was that 

subjects attended to both their own instruction cues and those of the third-person in the same 

manner. There was one potential caveat to the judgement task used to motivate subjects to 

attend to the instruction cues of confederate. Specifically, if the confederate performed the 

correct number of cancellations on every trial, the subject could, over time, learn to perform 

the judgement without attending to the level of effort, only the reward level. To address this 

potential confound, errors were pre-programmed into the behaviour of the confederate. On 

nine of the trials where the effort task was performed by the confederate, the number of 

cancellations performed was not correct for the instruction cue presented. These ‘catch’ trials 

were used as an index of the extent to which subjects were attending to the effort expended 

by the confederate. 

 

5.3.6 Experimental timing 
 

An important feature of this study was that activity was examined that was time-locked 

specifically to the instruction cues. These cues signalled the anticipated reward and anticipated 

effort on both the first-person and the third-person trials. To examine activity time-locked to 

the instruction cues, a variable delay was introduced between the instruction cue and the 

onset of the effort period, and also the offset of the effort feedback. This allowed for BOLD 

activity time-locked to the instruction cues to be isolated, without the contaminating effects of 

either prior or subsequent trial events. Events in each trial took place across six TRs (0s–15 s; 

TR=2.5 s). To optimally sample the instruction cue related activity, a randomly varying interval 
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between the scan onset and these cues was introduced over the first and second TRs. This 

achieved an effective temporal sampling resolution much finer than one TR for the conditions 

of interest. These intervals were uniformly distributed for each of the 16 different conditions, 

ensuring that Evoked Haemodynamic Responses (EHRs) time-locked to the instruction cues 

were sampled evenly across the time period following each instruction cue. The effort period 

and all events that followed were jittered over the first 1250ms of the third TR.  

 

5.3.7 Functional imaging and analysis 

5.3.7.1 Data acquisition 

 

T1-weighted structural images were acquired at a resolution of 1×1×1 mm using an MPRAGE 

sequence. 1164 EPI scans were acquired from each participant. 34 slices were acquired in an 

ascending manner, at an oblique angle (≈30˚) to the AC-PC line to decrease the impact of 

susceptibility artefact in subgenual cortex (Deichmann et al., 2003). A voxel size of 3×3×3 mm 

(25% slice gap, 0.8 mm) was used; TR=2.5s, TE=32, flip angle=81°. The functional sequence 

lasted 48.5 minutes. Immediately following the functional sequence, phase and magnitude 

maps were collected using a GRE field map sequence (TE1 = 5.19ms, TE2 = 7.65ms). 

 

5.3.7.2 Image preprocessing 

 

Scans were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images from each 

subject were corrected for distortions caused by susceptibility-induced field inhomogeneities 

using the FieldMap toolbox (Andersson et al., 2001). This approach corrects for both static 

distortions and changes in these distortions attributable to head motion (Hutton et al., 2002). 

The static distortions were calculated using the phase and magnitude field maps acquired after 

the EPI sequence. The EPI images were then realigned, and coregistered to the subject’s own 

anatomical image. The structural image was processed using a unified segmentation procedure 

combining segmentation, bias correction, and spatial normalization to the MNI template 

(Ashburner and Friston, 2005); the same normalization parameters were then used to 

normalize the EPI images. Lastly, a Gaussian kernel of 8 mm FWHM was applied to spatially 

smooth the images in order to conform to the assumptions of the GLM implemented in SPM8. 

http://www.fil.ion.ucl.ac.uk/spm
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5.3.8 Statistical Analysis 
 

5.3.8.1 First-Level analyses 

 

First-level GLMs were created for both factorial and parametric analyses.  

 

1. Factorial Analysis. There were 10 event types. Each event-type was used to construct a 

regressor by convolving the stimulus timings with the canonical HRF. Each of the eight 

conditions was modelled as a separate regressor. In addition, one regressor modelled 

the activity during the effort periods (regardless of whether it was a first-person or 

third-person trial) and another regressor modelled the onsets of the other trial 

elements on every trial. Trials in which the subject failed to perform the correct 

number of cancellations during the effort period, failed to respond within 750ms of 

the onset of the trigger cue for the judgement task, or failed to make the correct 

response on the judgement task were modelled separately as an extra regressor. This 

regressor included the onsets from all of the trial elements from these events.  The 

residual effects of head motion were modelled as covariates of no interest in the 

analysis by including the six head motion parameters estimated during realignment.  

 

2. Parametric Analysis.  Five GLMs were created at the first-level which employed a 

parametric approach. Each of these GLMs was constructed using the same events as 

those used in the factorial analysis (see above). For these GLMs, however, the 

instruction cue regressors were collapsed down into one regressor for the first-person 

instruction cues and one regressor for the third-person instruction cues. The 

parameters outlined above (section 5.3.2) were then used as first-order parametric 

modulators of first-person and third-person instruction cue events. To examine activity 

which varied with the net reward value parameter, the net reward parameters were 

orthogonalised with respect to the effort parameters. This ensured that activity which 

varied with either first-person net reward values, third-person net reward values or 

both could not be explained by the level of effort alone. The second GLM was 

identical, except that the log-transformed net reward values were used for the values 

of the parametric modulator. The third and fourth GLMs were similar except that the 

effort parameters were orthogonalised with respect to the net value and log net value 

parameters. The final GLM contained both the log net reward value and net reward 
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value parameters for both the first-person and third-person trials without 

orthogonalisation. This allowed for a contrast to be conducted to determine whether 

the net or log net reward value parameters were a better fit of the data. 

 

5.3.8.2 Second-level analysis 

 

Random effects analyses (Full-Factorial ANOVAs) were applied to determine voxels 

significantly different at the group level. SPM{t} contrast images from all subjects at the first-

level were input into second-level full factorial design matrices. F-contrasts were conducted in 

each of the second-level Random-effects analyses. For the whole brain analyses, FDR 

correction was applied. To test the specific hypothesis of the thesis, 80% probability masks of 

the ACCg and ACCs were created and used as the search volumes for small volume correction. 

In addition, given the similarity in design between this study and that of Croxson et al., (2009), 

small volume corrections were applied as a sphere with 8mm radius around the peak 

coordinates from their analyses. This correction was applied by making a mask combining each 

of the spheres around the peak coordinates (The coordinates are included in Appendix E). 
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5.4 Results 

5.4.1 Behavioural results 
 

The subjects performed two tasks whilst inside the MRI scanner. They performed a first-person 

effort task and also a judgement task on the trials where the third-person was performing the 

effort task. For the effort task, subjects were required to make either 2, 3, 8 or 12 cancellations 

in order to receive a financial reward. An important issue in this experiment was that the 

cancellation task constituted effort and not difficulty. In previous studies, the effort period 

(Botvinick et al., 2009; Croxson et al., 2009) was not constrained by a time-period, and as such 

cancelling a large number of targets was not more difficult than a small number. In this 

chapter, the fixed response window (6600ms) may have caused subjects to find it more 

difficult to complete the 12 cancellations than the 8, 3 or 2 cancellations. This would confound 

any interpretation of the results as being effort-related, as effort-related activity would have 

been confounded with activity occurring due to the difficulty of the task. To determine 

whether effort was confounded with task difficulty, the behavioural accuracy of subjects 

across each of the four effort levels were examined on the first-person trials (see fig.5.3). A 

repeated measures ANOVA was performed examining the effect of effort on task accuracy (% 

of correct responses). No main effect of effort on task accuracy was identified (F(2.18,28.37) = 

2.098, p>0.1). Planned pairwise comparisons between levels of effort revealed no significant 

differences in accuracy between any two levels of effort for 2<>3 (t(13) = 1.528, p= 0.151); 

2<>8 (t(13) = 1.749, p= 0.104); 2<>12 (t(13) = 0.366, p= 0.720); 3<>12 (t(13) = 1.046, p= 0.315); 

8<>12 (t(13) = 1.249, p= 0.234)) apart from a significantly lower accuracy for 8 cancellations 

than 3 cancellations (t(14)= 2.621,p<0.05). Fig.5.2 shows the means and standard error for task 

accuracy at each level of effort. Importantly, the trials where 12 cancellations were required 

were performed at the same level of accuracy as trials where 2, 3 or 8 cancellations were 

required, suggesting that having a fixed response window did not impact upon the difficulty of 

the effort task. 

  

  

 

 

Fig. 5.3 First-person effort task accuracy 
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The second task performed by subjects was a judgement of the reward that would be received 

by the third-person. Subjects were required to monitor the responses of the third-person and 

indicate whether they would receive the high reward (16p), low reward (4p) or no reward (0p) 

on each trial. Performance on this task was an important index of subjects’ understanding of 

the level of reward available and the effort necessary for its receipt, on the third-person’s 

trials. It was of particular importance that subjects performed ‘catch trials’, where the third-

person made the incorrect number of cancellations, above the chance level of accuracy 

(33.3%). On these trials subjects could not perform the judgement task correctly without 

attending to the reward level and required effort level at the time of the instruction cue and 

also the number of cancellations actually made by the third-person (see fig.5.4 for results). A 

paired samples t-test revealed that subjects’ overall task accuracy (mean = 93.93%) was 

significantly better than chance (t(14) = 54.5, P<0.0001). On the catch trials the accuracy was 

lower (mean = 78.64%) but still significantly greater than chance (t(14) = 12.76. P<0.001). 

These results indicate that subjects were attending to the reward value, the level of effort and 

the number of cancellations made by the third-person. A repeated measures ANOVA also 

revealed that there was no effect of the level of effort on task accuracy (F(2.549, 33.142) = 

1.97, p = 0.145). Planned pairwise comparisons between 2<>3 (t(13) = 0.798, p= 0.439); 2<>8 

(t(13) = 0.332, p= 0.745); 2<>12 (t(13) = 20.32, p= 0.061); 3<>8 (t(13) = 0.660, p= 0.520); 3<>12 

(t(13) = 1.290, p= 0.220); 8<>12 (t(13) = 2.034, p= 0.063)) revealed no significant differences in 

task accuracy between any two levels of effort. The accuracy of subjects on the judgement task 

therefore cannot be explained by the level of effort that the third-person was required to 

exert. The performance of subjects on both tasks indicates that they were processing the 

reward value and the effort level at the time of the instructions cues on both first-person and 

third-person trials. 

 

 

 

 
 

 

Fig. 5.4. Judgement task accuracy of the first-person. Subjects performed a judgement of the level 

of reward that would be received by the third-person on each trial. Catch trials were trials where 

the third-person performed the incorrect number of cancellations. ‘All third-person’ shows the 

accuracy across both catch (0p), 4p and 16p trials. The dotted line represents the chance level on 

the task. 
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Fig. 5.5. First-person log net reward values. (A) Activity shown in the ventral striatum (-8, 14, -4, Z = 

2.8, P<0.05svc), (B) Beta coefficients of peak voxel for the log net reward values for the First-

person, Third-person log net reward and effort parameters. The beta values are taken from the 

parametric analysis in which the reward parameters were orthogonal to the effort parameters.  

 

5.4.2 Imaging results 

5.4.2.1 Net Reward Value 

 

A parametric analysis was conducted to examine brain activity which was scaled parametrically 

with the net value of rewards discounted by effort. Two different parameters were used, a net 

reward value parameter (reward/effort) and a log-transformed net reward value parameter. 

These were fitted to the instruction cues of the first-person and the third-person trials and the 

different parameters were entered into separate GLMs. Two compare the two parameters in 

terms of their fit to the data, they were entered into a separate GLM, where they were not 

orthogonalised with respect to each other. 

 

To examine activity which varied with the net reward value on the first-persons trials an F-

contrast was applied on the parameter, which had been orthogonalised with respect to the 

effort parameter. To examine voxels which varied exclusively with first-person net reward 

value, voxels which responded to third-person net reward value were excluded. Activity was 

found in the ventral striatum, putatively in the nucleus accumbens (- 8, 14, -4, t(104) = 2.92, Z 

= 2.8; p<0.05 svc around the peak coordinate from Croxson et al. 2009) that varied with the log 

transformed net value on the first-person trials (see fig. 5.5). Activity in this area was explained 

marginally better by the log-transformed parameter (t(104), p<0.05 unc) than the 

untransformed net values. This area also showed a marginally significant interaction between 

first-person Reward and Effort in the factorial analysis (F(1,130) = 5.55, Z = 2.06, p<0.05 svc).  

 

 

 

 

A B 
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Fig. 5.6. Third-person log net reward value related activity. (A) Activity shown in the gyral portion MCC 

area 24a’/24b’ (4, 22 ,20, Z = 4.2; P<0.05svc), (B) Plots of the Beta coefficients from the parametric 

analysis. The beta values are taken from the parametric analysis in which the reward parameters were 

orthogonal to the effort parameters.  

To examine whether activity in any brain area was scaled by the net reward value on the third-

persons trials, an F-contrast was applied to the third-person net (or log net) value parametric 

regressors. To ensure that any area that was identified by this contrast was sensitive 

exclusively to third-person net reward value, voxels which showed a significant effect 

(P<0.05unc) of the first-person instruction cue events, the first-person effort parameter or the 

first-person net reward parameter were excluded. Activity was found to vary with the log net 

reward parameter in only one area, the ACCg (4, 22, 20,F(1,91) = 9.8  Z = 2.8, p<0.01svc; 

putatively in MCC area 24b’, see fig.5.6). Activity in this area was explained marginally better 

by the log-transformed net value parameter than the untransformed net reward values 

(F(1,104) = 2.7, Z = 2.3, p<0.05unc). This area also showed a significant interaction between 

Effort and Reward in the factorial analysis (F(1,130) = 11.34, Z = 3.09, p<0.05svc). No voxels 

were found in the ACCs that responded exclusively to third-person net -value. No voxels within 

the reported cluster encroached into the ACCs and did not overlap with any other cluster 

reported as activated in the ACC in any contrast. 

 

 

 

 

 

 

A B 
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Fig. 5.7. Third-person undiscounted rewards. (A) Activity shown in the gyral portion of midcingulate area 24b’ 

in red which showed a significant difference between HR and LR at the time of the third-person instruction cues 

(4,16,26; p<0.05FDR). This cluster was spatially separated from the region which showed a parametric 

response to the third-person log net reward values, shown in green (B) PSTH of the responses in the peak ACCg 

voxel. For display purposes the conditions are collapsed into first-person and third-person, HR and LR 

conditions. 

5.4.2.2 Reward Value 

 
To examine whether any brain area responded to the magnitude of the reward not discounted 

by effort, main effect contrasts were performed in the factorial analysis. It was not possible to 

analyse reward values parametrically as there were only two levels of reward (high or low). 

There was therefore not enough variation in the reward values for them to be parameterised. 

An F-contrast comparing HR with LR conditions for the first-person instruction cues revealed 

no voxels which responded to first-person undiscounted reward. An F-contrast comparing HR 

with LR at the time of the third-person instruction cues revealed activity in four areas that 

showed a main effect of reward. This included a region extending across gyrus rectus, the 

superorbital gyrus and the medial superior frontal gyrus commonly referred to as 

Ventromedial Prefrontal Cortex  (VmPFC; 6, 42, -4, F(1,130) = 18.50, Z = 3.9, p<0.05FDR; 

extending across areas 32, 10p and 10r (Ongur and Price, 2000)), a frontal polar region in area 

10 (10, 64, 8; F(1,130) = 18.52, Z = 3.9, p<0.05FDR), and also an activation that extended across 

a large portion of the gyral MCC (area 24a’/24b’; 4, 16, 26; F(1,130) = 14.15, p<0.05FDR, Z = 

3.66). Importantly, this portion of the ACCg did not overlap with the cluster in which activity 

varied with the log net reward value reported above (see fig.5.7). Examination of the PSTH 

shows that this area made significantly negative responses to undiscounted third-persons 

rewards, with the most negative response to the highest reward. 

 

 

A B 
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Fig. 5.8. Conjunction between first-person and third-

person effort parameters. (A) Activity shown in the 

posterior portions of the sulcal midcingulate area 24c’, (B) 

PSTH of the peak voxel from the conjunction between first 

and third-person effort. For display purposes PSTH values 

were collapsed across the two levels of Reward and 

Agency, to give the main effect PSTH for High and Low 

Effort.  

 

5.4.2.3 Effort 

 
To examine activity that varied with the level of effort, separate F- contrasts were applied to 

the parametric regressors which varied with the level of effort for either the first-person or 

third-person. Activity was found to vary with the first-person effort level in several brain areas 

(table 5.1.). Activity which varied exclusively with the third-person effort level was found in the 

lingual gyrus (p<0.05FDR). A conjunction across both first-person and third-person effort 

parameters showed that activity in a posterior portion of the sulcal MCC/RCZ (0, -22, 52; 

F(1,104) = 16, Z = 3.44,  p<0.05svc, putatively area 24c’ see fig.5.8) varied with the level of 

effort, regardless of whether the effortful actions were to be performed by the first or third-

person. This was the only region to show such a profile. This region also showed a significant 

main effect of effort, regardless of the level of Agent, in the factorial analysis (p<0.05unc). This 

area did not overlap with the activations reported in the ACCg. 

 

 

 
 

Anatomical region MNI Coordinate Z-value 

Parietal   
Intraparietal sulcus 52, -28, 50 3.2 

Cingulate   
Anterior Cingulate Sulcus -12, -2, 40 3.19 

Frontal   
Middle frontal Gyrus 20, 40, 22 3.38 

Temporal   
Posterior Superior Temporal Sulcus -64, -56, 20 3.97 

Parahippocampal gyrus 34, -34, -24 3.51 
Central Insular Sulcus 50, 6, -6 3.53 

Cerebellum   
Lobule VI 16, -46, 16  4.06 

Table 5.1 First-person effort responses. All regions corrected for multiple comparisons (P<0.05FDR) with 
(1,104) degrees of freedom. 

 

A 
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5.5 Discussion 

 

This study tested two hypotheses about the processing of anticipatory reward signals when 

effortful actions are instructed. The first hypothesis was that activity in the ACCs would be 

scaled with net reward value (the value of a reward discounted by the amount of effort to be 

expended) at the time of the instruction cue on the first-person trials. The second hypothesis 

was that the ACCg would signal this information at the time of the instruction cues on the 

third-persons trials. In contrast to the first hypothesis activity in the ACCs was not scaled by 

net reward value and in fact, was not modulated by reward at all. However, activity in this area 

was scaled with the anticipated level of effort regardless of whether the actions were to be 

performed by the first-person or the third-person. Activity was found to vary with first-person 

net reward value in the ventral striatum, in line with previous studies (Botvinick et al., 2009; 

Croxson et al., 2009; Kurniawan et al., 2010). In support of the second hypothesis, this study 

showed that activity in a portion of the ACCg, in the midcingulate area 24b’, scaled with the log 

net value of effort discounted rewards when the actions were to be performed by another. In 

addition, a more posterior portion of the midcingulate area 24a’/b’ signalled the anticipated 

reward, regardless of the level of effort, when this reward was to be received by another. The 

results therefore support the notion that the ACCg signals the anticipated value of rewards 

that are to be received by another. Different portions of this area code for the undiscounted 

magnitude and the effort discounted net value of rewards. 

5.5.1 First-person effort based valuation  
 

This study highlighted that activity in the ACCs and the ventral striatum (putatively in the 

nucleus accumbens) varies with the level of effort and net value respectively. These results 

therefore suggest that the ventral striatum and the ACCs may form part of a network that is 

engaged in valuing actions, based on the cost associated with their performance. This notion is 

supported by anatomical evidence. In non-human primates there is evidence to suggest that 

the posterior portions of MCC (area 24c’) project primarily to dorsal portions of the striatum, 

with additional weaker connections to the core of the nucleus accumbens (Kunishio and 

Haber, 1994). In humans diffusion weighted imaging data supports the notion that these two 

areas are connected, with tractography revealing the presence of white matter fibres between 

the posterior MCC and a portion of the ventral striatum, including the nucleus accumbens 

(Beckmann et al., 2009). Both areas 24c’ in the ACCs and several portions of the ventral 
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striatum also show strong connections to the Posterior Cingulate Cortex (PCC) (Pandya et al., 

1981), portions of the intraparietal sulcus (Yeterian and Pandya, 1991, 1993; Leichnetz, 2001) 

and the OFC (Morecraft et al., 1992; Carmichael and Price, 1995; Haber et al., 1995; Cavada et 

al., 2000) which are known to contain neurons which are sensitive to rewarding stimuli. The 

portion of the ACCs activated was in the Rostral Cingulate Zone (RCZ), the human homologue 

of the CMAs. This area has strong connections to areas within the motor system and also with 

the spinal cord (Picard and Strick, 1996). The connectional anatomy of these two regions 

makes them well placed to process reward-related and motor related information 

respectively. Thus, these are highlighted as candidates for processing the value of a reward 

discounted by the number of actions that are required for its receipt. 

There is evidence to support the notion that information is exchanged between the ACC and 

the basal ganglia during effortful decision-making. Consistent with this interpretation, the 

region of the ACCs that was activated in this study (in the posterior MCC/RCZ) is connected, 

although only weakly, to the core of the nucleus accumbens (Kunishio and Haber, 1994), which 

in turn projects to the ventral pallidum (Spooren et al., 1996). This output nucleus also projects 

to posterior area 24c’in the ACCs, via the thalamus (Alexander et al., 1986; Alexander and  

Crutcher, 1990; Groenewegen et al., 1993; Middleton and Strick, 2000; Nakano et al., 2000; 

Haber and Knutson, 2010). Intriguingly, disruptions to the striato-pallidal connection (Mingote 

et al., 2008) and also to the striato-cingulate connection (Hauber and Sommer, 2009) perturb 

normal behavioural patterns on tasks that require a choice between options that have 

different associated costs. Thus, there is evidence to suggest that the portions of the ACCs and 

the ventral striatum that responded during first-person effort-based discounting in this 

experiment are anatomically connected. Disruptions to any of the connections in the loop 

between them disrupts behaviours that require effort to be evaluated, highlighting the 

importance of this loop. 

Although most of the work in this thesis examines decision-making processes, in this chapter 

subjects were not presented with a choice. It could therefore be argued that the results of this 

study do not reflect the processes that underpin decisions between effortful actions, only 

those that signal the value of instructed actions. However, there is considerable evidence in 

rats and nonhuman primates that the ACCs and the ventral striatum are involved in the 

process of guiding choices between effortful options. Lesions to dorsal portions of the ACC 

(Rudebeck et al., 2006b; Walton et al., 2006; Floresco and Ghods-Sharifi, 2007) and depletions 

of dopamine within the ventral striatum (Ishiwari et al., 2004; Denk et al., 2005; Salamone et 

al., 2007; Floresco et al., 2008), particularly to the core of the nucleus accumbens, impair 
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effort-related decision-making processes. Such lesions bias choices towards less effortful but 

less rewarding options. Thus, the integrity of both of these regions is required for the process 

of deciding between courses of actions which require different amounts of effort to be 

expended. This would suggest that the ACCs and the ventral striatum form an important circuit 

for valuing different effortful options during decision-making. 

Neurophysiological evidence also implicates the ACCs as a region which is engaged in 

processing the costs associated with a reward. Several studies have found neurons that are 

sensitive to the value of a number of variables that guide choice behaviour, such as reward 

probability, reward magnitude and also effort (Amiez et al., 2005; Sallet et al., 2007; Quilodran 

et al., 2008; Kennerley et al., 2009; Hayden and Platt, 2010). Kennerley et al., (2009) provided 

convincing evidence that the ACCs of the monkey contains neurons which decrease their firing 

rate as the level of effort to be expended increases. This would support the result identified in 

this chapter, where activity in the ACCs was modulated and varied by the level of effort.  

Kennerley et al., (2009) also showed that within the ACCs there are neurons in which the 

coding is specific to one decision variable and also neurons which multiplex this information, 

coding for interactions between variables. This is intriguing, as Croxson et al., (2009) found 

that activity in the ACCs coded for an interaction between the anticipated levels of effort and 

the levels of reward. Thus, there is evidence to support the claim that the overarching function 

of the ACCs may be to signal the net value of the rewards. This contrasts with the results of 

this study where activity in the ACCs was not modulated by the level of reward, only by the 

level of effort. The results of this study and that of Croxson et al. (2009) can be reconciled if 

one considers differences in the nature of the effort and the rewards in the two studies. 

Specifically, the reward values used in Croxson et al. (2009) were higher (25p and 5p) than 

those used in this chapter (16p and 4p). There was therefore a greater discrepancy between 

the HR and LR in that study than there was in this chapter. This greater discrepancy may have 

resulted in greater power to detect an interaction between reward and effort. As such, in this 

chapter, the ACCs activity may not have been modulated by reward, due to the low overall 

level of reward available in this study, which did not allow interactions to be identified. 
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5.5.2 Third-person effort-based valuation 
 

To the best of my knowledge this study is the first to examine the neural basis of processing 

the amount of effort that another will expend to receive a reward. Key to the design of this 

study was that the processing of third-person reward and effort was not confounded with the 

subjects own reward and effort processing at the time of the instruction cues. This study was 

therefore able to examine whether activity in the ACCg varied with the anticipated net value of 

actions that were performed, and the reward received, by a third-person. Thus, the results of 

this study show that the ACC plays an important role in understanding the value of other’s 

actions.  

Broadly speaking the results of this study support claims made in chapter one, and in the 

previous two chapters, about the nature of information processing in the ACCg. The first claim 

was that the ACCs and the ACCg would process the discounted value of first-person and third-

person actions respectively. The results of this study do not strictly support this interpretation; 

activity in the ACCg varied with third-person net-value, whereas activity in the ACCs was not 

attenuated by reward. Rather, activity in the ACCs varied with the amount of effort to be 

expended. Thus, the same information was not processed in these two areas. However, the 

ACCs was still engaged by effort-related information and, as suggested in section 5.5.1, this 

supports the notion that the area may still be important for the process of discounting rewards 

based on the level of effort to be expended. Thus, in general the results support the notion 

that both the ACCs and the ACCg are engaged in processing effort-related information for first-

person and third-person actions respectively. 

Anatomical evidence supports the notion that the ACCg may be engaged by effort-related 

information. The ACCg is strongly connected to area 24c’ in the ACCs (Pandya et al., 1981; Vogt 

and Pandya, 1987), in which activity in this study varied with the level of effort. In addition, 

projections from the ACCg to the core of the nucleus accumbens partially overlap with 

projections from the ACCs (Devinsky et al., 1995; Haber et al., 1995). As stated above, both the 

ACCs and the nucleus accumbens are engaged when processing the value of rewards is 

discounted by an associated cost. The connections to these areas suggest that the ACCg has 

access to the effort-discounted reward values that are processed in the loop between the 

ventral striatum, ventral pallidum and the ACCs. Given that the ACCg also has connections to 

areas of the brain that are engaged in mentalizing (Vogt and Pandya, 1987; Frith and Frith, 
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2003), the connectional anatomy of the ACCg highlights this area as a region which may 

process other’s predictions about the effort-discounted value of their actions. 

Another interesting finding in this chapter was that the ACCg responded not only to a third-

person’s effort discounted reward values, but also to the undiscounted magnitude of a third-

person’s rewards. Whilst the aim of this study was not to test whether the ACCg processes the 

undiscounted magnitude of a third-persons rewards, these results support the notion that the 

ACCg processes similar information to the ACCs. There is considerable single-unit recording 

(Shidara and Richmond, 2002; Amiez et al., 2005; Sallet et al., 2007; Kennerley et al., 2009; 

Kennerley and Wallis, 2009b) and neuroimaging (Rogers et al., 2004; Knutson and Cooper, 

2005; Hampton and O'Doherty, 2007) evidence to suggest that the ACCs codes for predictions 

about the magnitude of a reward, undiscounted by any other variable. In addition, the ACCg 

has strong connections to portions of the OFC (Carmichael and Price, 1995), PCC (Pandya et al., 

1981) and intraparietal areas (Vogt and Pandya, 1987) that process rewarding stimuli. Thus, 

the functional properties of the ACCg highlight it as a candidate region for processing the 

predicted value of rewards that will be received by another. 

Whilst this study tested specific hypotheses related to the ACC, results were also identified in 

other areas. Indeed, activity in several other areas either varied with the level of effort to be 

expended by another or responded differentially to high and low rewards that were to be 

received by another. Interestingly, there was very little overlap in the areas that processed 

these variables on the third-persons trials and those that processed them on the first-person 

trials. This result therefore suggests that different areas are engaged when processing other’s 

predictions about the outcomes of effortful actions than those that are engaged when 

processing predictions about one’s own effortful actions. However, two areas that have been 

implicated in processing first-person reward values were found to process third-person 

undiscounted rewards in this study. A cluster extending over the VmPFC and a separate region 

in the frontal pole showed a differential response to HR and low LR exclusively on the third-

persons trials. As stated in the previous chapter, the VmPFC has strong connections to areas of 

the brain which are known to process the rewarding value of stimuli, such as the OFC, ventral 

striatum and the PCC and also to the ACCg (Pandya et al., 1981; Yeterian and Pandya, 1991; 

Morecraft et al., 1992). The VmPFC appears to respond to reward values flexibly, in many 

different task contexts. Neuroimaging research has shown that activity in this area varies with 

the predicted outcome of a decision, when the predicted value is based at least partially upon 

another’s valuation (Behrens et al., 2008; Hampton et al., 2008). In the previous chapter, it was 

also shown that activity in this region coded for the predicted value that another was assigning 
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to their choice. These results therefore converge on the notion the VmPFC is engaged in 

processing reward predictions about upcoming responses. The results in this study extend 

upon previous findings, highlighting the VmPFC as important for processing another’s 

prediction about the magnitude of reward they will receive for performing a series of actions.  

 

5.5.3 Caveats and Limitations 
 

Whilst the study provides new insight into how the value of other’s effortful actions are 

processed, there are limitations to the design. 

Firstly, the aim of this study was to examine how reward values are discounted by the amount 

of effort that is to be expended for their receipt. However, in the literature there is a debate as 

to what entails effort. In this study the effort task consisted of a series of targets cancelled by 

making finger movements to press buttons on a keypad. The preparation and execution of a 

button press therefore entailed physical effort. In addition, the number of cognitive operations 

that would be required to perform a large number of motor responses would be greater than 

when a small number of responses are required. Thus, the predicted amount of physical and 

cognitive effort expended would be confounded at the time of the instruction cues. However, 

recently, Kurniawaran et al. (2010) performed an fMRI experiment using a paradigm in which 

only physical exertion was modulated. They found that a portion of the striatum, in the 

putamen, responded to the level of physical effort. However, the reported activation was 

lateral in relation to the stratial activation reported in this chapter and in Croxson et al. (2009). 

Another study by Botvinick and colleagues  (Botvinick et al., 2009) used a task where only 

‘mental effort’ was manipulated and not physical effort. They showed that a portion of the 

ventral striatum was activated that was in close proximity to that activated in Croxson et al., 

(2009) and in this study. Thus, in this chapter, the modulatory effects of effort on the striatal 

signal may not be a result of the anticipated level of physical exertion. However, in this study, 

it is not possible to make claims, or speak to the debate, on what element of effort is 

processed in the ACC. 

The second caveat relates to the length of time that subjects had to perform effortful actions. 

Tasks which examine the processing of different levels of effort, can sometimes confound the 

length of time that each series of effortful actions takes to perform with the amount of effort 

to be expended (Phillips et al., 2007; Wanat et al., 2010). In such cases, the reward may be 
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discounted by the length of the delay before receipt, rather than the level of effortful exertion 

(Day et al., 2010; Wanat et al., 2010). Alternatively, in tasks where the length of time for the 

effortful exertion is fixed, the task may become more difficult when the number of actions to 

be performed is greater. As such, the reward may be discounted by the task difficulty, but not 

by effort. To circumvent these problems in this study, subjects performed and observed 

another performing an effort task where the time period was fixed, but where subjects did not 

find the more effortful actions more difficult to perform. The accuracy of subjects in each of 

the four levels of effort was therefore an index of task difficulty. Subjects did not find the 12 

cancellations more difficult than the two cancellations, indicating that performing 12 

cancellations was not more difficult than 2 cancellations, but was more effortful. 

5.5.4 Summary 
 

In this chapter I tested two hypotheses relating to the valuation of rewards discounted by 

effort at the time of instruction cues. In support of the first hypothesis, activity in the ACCg 

varied with the net value of a third-persons reward discounted by effort. However, in contrast 

activity in the ACCs did not signal the net value of first-person rewards as hypothesised, rather 

it signalled the level of effort to be expended regardless of who was to perform the actions.  

The results of this study suggest that separate neural systems are used to value the effortful 

actions of oneself and others. 
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Chapter 6: Neural correlates of delayed rewards discounted by a social 

norm 
 

 

6.1 Abstract 
 

Understanding the behaviour of others requires the ability to understand that their subjective 

valuation of a reward may be distinct from your own. In some instances, one must use others’ 

valuations to guide one’s own behaviour, in order to conform to social norms. The previous 

chapter showed that the ACCg codes for the value of rewards that will be received by others, 

discounted by the effort expended for its receipt. Reward values are also discounted by the 

temporal delay before their receipt. This leads to the question: does the ACCg code for the 

value of rewards that are temporally discounted in a manner that conforms to a social norm? 

In this chapter, subjects performed delay-discounting trials, where they made a choice between 

a small reward, received immediately (£3), or a larger reward (£3.10 - £20) received following a 

delay (1 – 180 days). They were required to indicate either their own preferences or the 

preferences as dictated by a social norm on separate trials. Hyperbolic and exponential 

preference functions were fitted separately to the behaviour of subjects on the subjective trials 

(where they indicated their own preferences) and the normative trials (where they indicated 

the norm preference). The resulting idiosyncratic subjectively and normatively discounted 

reward values were fitted to the points in time when the subjects saw the delayed option and 

also to the points in time when they were instructed to indicate their choice. This design 

enabled two hypotheses to be tested. Firstly, that activity in the ACCs would vary with the 

subjectively discounted reward values and secondly that activity in the ACCg would vary with 

the normatively discounted reward values. 
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6.2 Introduction 
 

In many situations individuals publically adapt their behaviour in order to conform to the 

attitudes and beliefs of the majority of others (Fehr and Fischbacher, 2004). Such conformity is 

often only public and individuals will continue to perform behaviours based on their own 

preferences when in private (Cialdini and Goldstein, 2004). There is considerable evidence that 

social norm conformity can occur despite considerable conflict between personal preferences 

and the preferences of the majority of others (Bond and Smith, 1996). This was illustrated by 

the seminal work of Asch (Asch, 1956). Asch (1956) showed that individuals conformed to a 

group answer on a perceptual judgement task, even when the norm judgement was a clear 

violation of both the subjects' own perception and the objectively correct answer. However, 

despite the fact that social norms can significantly bias an individual’s decision-making, few 

studies have examined the processes that underpin normative economic decision-making. 

Since the eighteenth century, much economic theory has been based around the concept that 

the objective value of a financial reward does not equate to the desirability of that reward to a 

subject (Bernoulli, 1954). The relationships between objective values and their subjective 

desirability can often be mathematically described using ‘preference functions’ (Mazur, 2001). 

One instance in which the objective value of a reward does not equate to the magnitude of the 

reinforcer subjective valuation was examined in the previous chapter, i.e. effort. Another 

variable that can discount the value of rewards subjectively is the delay before receipt (Mazur, 

1985; Mazur et al., 1985; Green et al., 1994a). An individual who possesses a cheque for £10 

which can be cashed in one month, might trade this for an £8 cheque they can cash 

immediately. The £10 has therefore been discounted such that its subjective value is now less 

than £8. This phenomena is known as temporal (or delay) discounting (Ainslie, 1974). Subjects 

can differ significantly on their preferences, with some individuals waiting only a few days for 

the £10, whereas others might wait many months. However, their behaviour can normally be 

explained by simple preference functions that contain a discount factor (Mazur, 1997; Richards 

et al., 1997). Discount factors relate the objective value of the rewards to the delay, 

idiosyncratically for each subject. Thus, the value of a subjectively discounted, delayed reward, 

motivates choices between differing financial options. 

Rewards are discounted by delays before their receipt in many different species, for many 

different types of reinforcer. There is considerable evidence that humans, monkeys, rats, and 

many birds discount the value of primary reinforcers when their receipt is delayed (Ainslie, 
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1974; Ainslie, 1975; Freeman et al., 2009; Hwang et al., 2009; Jimura et al., 2009; Minamimoto 

et al., 2009; Dalley et al., 2011; Mar et al., 2011). Humans have also been shown to discount 

secondary reinforcers, such as delayed financial rewards (Rachlin et al., 1991; Green et al., 

1994a; Green et al., 1994b; Kirby and Marakovic, 1996). Intriguingly, across species and across 

the different types of reinforcement, choices between a large delayed rewards and a smaller 

immediate reward can be explained by a hyperbolic preference function (Rachlin et al., 1991; 

Green et al., 1994a; Green et al., 1997; Kirby, 1997; Mazur, 1997; Richards et al., 1997; Mazur, 

2001; Johnson and Bickel, 2002). However, to the best of my knowledge, no previous study has 

examined the behaviour of subjects on an economic delay-discounting task, when their 

choices must conform to a social norm. 

In 2007, an influential paper was published by Kable and Glimcher (2007). They used fMRI to 

examine activity in the brains of subjects whilst they performed delay-discounting trials. They 

reported that the subjective preferences between a fixed immediate reward ($20) and a larger 

delayed reward  (ranging between $20.25 and $110, delayed between 6 hours to 180 days) 

could be explained with a hyperbolic preference function. They found that activity varied 

parametrically with the idiosyncratically discounted subjective value of the delayed rewards in 

the ACCs, the ventral striatum, the posterior cingulate cortex (PCC), the intraparietal sulcus 

and superior portions of the OFC on the medial wall (Kable and Glimcher, 2007). Importantly, 

in the context of this thesis, these results highlight the ACCs as a candidate for processing the 

value of rewards discounted by one’s own discount factor. Other neuroimaging studies have 

since shown support for the notion that the ACCs is engaged when discounting the value of 

delayed rewards (Peters and Buchel, 2009, 2010)  

One of the aims of this thesis is to examine whether the ACCs and the ACCg process 

information that guides one’s own decision-making and aids the understanding of other’s 

decisions respectively. In the previous chapter, I examined activity in the ACC when rewards 

were discounted by the amount of effort required for their receipt. The study showed that the 

ACCs was engaged when subjects discounted the value of rewards they would receive, based 

on how much effort they would have to expend. The ACCg coded for the effort-discounted 

value of rewards, but did so when the effort that was to be expended, and the reward was to 

be received, by another. The previous chapter therefore showed that the ACCg codes for the 

net value of others’ actions. Does the ACCg also process the value of delayed rewards when 

they are discounted by another’s discount factor? This study examines whether activity in the 

ACCg codes for the discounted value of delayed rewards, when reward values are discounted 

in a manner that conforms to a (fictitious) social norm discount factor. 
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Subjects performed a delayed-response, temporal discounting task. On each trial subjects 

were presented with a choice between receiving £3 as payment for participation as soon as 

the experiment was complete or a larger reward (up to £20), the receipt of which would be 

delayed (between 1 day and 180 days). However, on 50% of trials subjects were required to 

indicate the social norm preferences, which they had learnt during a training session, instead 

of their personal preferences. Hyperbolic and exponential preference functions were fitted 

separately to the behaviour of the subject on both the subjective trials (where they indicated 

their own preferences) and on normative trials (where they performed the social norm 

behaviour). Each trial consisted of the presentation of the financial option (option cue) and 

then a trigger cue where they were required to indicate their choice between the delayed or 

immediate option. Activity was examined at both of these points in time on both the 

normative and subjective trials. Two hypotheses were tested: firstly, that activity in the ACCs 

would vary with subjective value of the discounted rewards and secondly, that activity in the 

ACCg would vary with the normative value of the delayed rewards. 
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6.3 Methods 
 

6.3.1 Subjects 
 

Subjects were sixteen healthy right-handed participants (aged between 18 and 30; 13 female), 

screened for neurological and psychological conditions. One (male) subject failed to respond 

on 30% of the trials and made multiple inter-slice head movements greater than 3mm. This 

subject was excluded from the analyses. Subjects were paid for their participation (see 

‘payment’ below). The subjects were informed that a previous behavioural experiment had 

taken place with 102 participants. They were told that these participants received payment in 

the same manner that they had. 

 

6.3.2 Experimental Design 
 

The aim of this experiment was to examine the processing of delayed rewards, the value of 

which was either discounted subjectively, or in a manner that conformed to a social norm. 

Subjects performed a task over two consecutive days. On the first day, subjects learnt what 

they were told was the normative performance on a delay-discounting task. On the second 

day, subjects performed a delay-discounting task, where on separate trials they were required 

to indicate either their own “subjective” preferences or the “normative” preferences, which 

they had learned during training.  

On each trial subjects were presented with a delayed option. Their task was to was to choose 

between this delayed option, or an immediate option of £3. The delayed options were always 

higher in magnitude than £3. The magnitude of the delayed options were £3.10p, £3.75p, £5, 

£8, £12 and £20 and were available at delays of 1 day, 15 days, 30 days, 60 days, 100 days and 

180 days. Thus there were 36 different combinations of delay and magnitude that were used 

as the delayed options. The subjects were told that prior to the MRI experiment a behavioural 

experiment had been conducted on 102 subjects. Subjects were told that each of these 102 

participants in the behavioural experiment had performed exactly the same delay-discounting 

task with the same delayed options as they would be presented with. They were told that, 

although preferences varied on the task, there was always at least 69% agreement (at least 70 

participants) on which was the better option (to wait for the delayed reward or take the 

smaller reward immediately) for every delayed option they would see. During training, 
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subjects learnt this majority preference for each of the delayed options. This threshold of 69% 

ensured that subjects maintained the belief that they were learning a majority preference (or 

social norm). It should be noted that no such behavioural experiment was performed and the 

normative preferences that were learned were fictional. On the second day, during the 

scanning session, subjects performed trials where they chose between the delayed option or 

the immediate option. On some trials they were required to indicate their own preferences, on 

others they were told to choose what the social norm preference would be. 

 

 

6.3.3 Trial Structure 
 

Subjects performed 216 delay-discounting trials (see fig.6.1) where they were presented with a 

delayed option and were required to choose between this option or the immediate option 

(£3). Each trial began with a trial-type cue (either the word “YOU” or “GROUP”), that indicated 

whether subjects were required to make subjective preferences (“YOU”) or normative 

preferences (“GROUP”) on the trial. Following the trial-type cue, after a variable delay,an 

option cue was presented that indicated the magnitude and delay of the delayed option. After 

a further variable delay, a trigger cue was presented where subjects were required to indicate 

their choice. A “now” stimulus was used to signify the £3 immediate option and a “wait” 

Fig. 6.1 Trial Structure. Each trial began with a trial-type cue that indicated whether the subjects should 

indicate their own preference or the normative preference. For a subjective preference the word “you” was 

the stimulus and for a normative preference the word “group” was the stimulus. Following a variable time 

period, the option cue was presented that indicated the delayed option. Subjects indicated their choice 

following the onset of a trigger cue. All stimuli were colour-coded, such that when the stimuli were yellow, 

the subject would indicate the norm preference and when the stimuli were white the subject would indicate 

their own preference. 
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stimulus was used for the delayed option. Subjects were required to indicate their choice at 

the time of the trigger cue, by pressing one of two buttons on a keypad. The trigger cue was 

presented for 1000ms, any responses before or after this time period resulted in the trials 

being classified as missed. Subjects were instructed to press the button which corresponded to 

“now” if their choice was the £3 immediate option or “wait” for the larger delayed option. In 

order to prevent subjects from preparing a specific digit response at the time of the option 

cue, the position of the “now” and “wait” stimuli were pseudorandomly organised, such that 

subjects could not predict which button would be “now” and which would be “wait” at the 

time of the option cue. All stimuli were also colour-coded to ensure that it was clear whether a 

subjective or normative preference was required on each trial. Yellow cues indicated that a 

normative choice should be made and white cues indicated that a subjective choice should be 

made. Subjects were presented with each of the delayed options six times. Thus, there were 

108 subjective trials and 108 normative trials.  

 

 

6.3.4 Procedure  

6.3.4.1 Training 

 

Subjects were trained in two phases one day prior to scanning.  In the first phase the subject 

was seated in front of a monitor, with a response keypad. They were presented with a series of 

visual stimuli on the screen. They performed a series of delay-discounting trials where they 

were required to indicate their own preferences between a delayed or immediate option. Each 

trial consisted of an option cue (an amount of money and a delay period) and a trigger cue 

(two lines corresponding to two buttons on the keypad, with the words “wait” above one line 

and “now“ above the other line). During this phase of training subjects performed 108 trials. 

This stage of the training enabled subjects to familiarise themselves with performing delay-

discounting trials. 

 

In the second phase of training, subjects performed a task where they learned the normative 

preferences for each delayed option. Each trial consisted of a delayed option cue, a trigger cue 

and a feedback cue. The feedback cue indicated the social norm preference for the delayed 

option on each trial. The cue was either the word “NOW” or “WAIT”, which indicated whether 

the normative preference was for the immediate or delayed option respectively. Subjects were 

instructed to indicate the normative preferences on each trial. Thus, subjects were required to 
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monitor the feedback to improve their normative preference judgements on subsequent trials. 

The normative preferences learnt during this session were based around the behaviour of 

subjects during a pilot experiment (see “computational modelling” below for more details). 

During this session, subjects performed 108 trials, with the delayed options presented in the 

same order as they had been presented during the first phase of training. This session enabled 

subjects to learn the social norm preferences. 

 

6.3.4.2 Scanning Session 

 

On the day following the training session, subjects performed similar delay-discounting trials 

inside the MRI scanner. There were 216 pseudorandomly organised trials, 108 where they 

indicated their own preference (subjective trials) and 108 where they indicated the majority 

preference (normative trials). The same delayed reward options were used as during the 

training sessions. In this session, there was no feedback cue on the normative trials. Subjects 

were therefore required to recall the normative preferences they had learned during training. 

In this session, all stimuli were colour-coded, such that when stimuli were white, the subjects 

indicated their own preference and when stimuli were yellow they indicated the normative 

preference. There were 3 repetitions of each of the 36 delay-reward combinations for the 

subjective trials and the normative trials. 

 

6.3.4.3 Payment 

 

Subjects were told that their payment would be based on their choice on one of the trials 

during training or scanning. This payment would be determined by them selecting a number at 

random “out of a hat”. The number would correspond to one of the trials during the training 

and scanning session and their payment would be based on whichever preference they 

indicated on that trial. This approach has previously been used to ensure that subjects are 

incentivised to accurately indicate their preferences on all trials (Kable and Glimcher, 2007; 

Pine et al., 2009). Subjects were informed that they would be paid by cheque for their 

participation. If on the selected trial they chose the delayed option, they would be paid that 

higher reward value, but the cheque would be dated such that it could not be cashed until the 

delay had passed. If they chose the immediate option then the cheque would be dated the 

same day. All of this information was provided to the subjects before the experiment, thus 

subjects were aware that their decisions during the experiment were real economic decisions.  
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The subjects were also told that their payment for the task would be based upon only their 

own preferences and not the normative preferences. It was possible that subjects could bias 

their choices on normative trials to make their payment for the experiment subjectively better. 

Thus, it was a necessity to pay subjects only based only on their subjective preferences in 

order to control the experimental design. Despite the subjects being told before the 

experiment that they would be paid based on a trial during either the scanning or training 

sessions, payment was based only on choices during the first phase of the training session. It 

was possible that subjects might alter their subjective preferences during scanning in order to 

conform or dissent from the normative preferences that they learned in the second phase of 

training. As the social norm in this study was fictional, it would have been unethical for the 

payment of a subject to have been biased by a normative behaviour created by the 

experimenter. 

 

6.3.5 Computational Modelling 

6.3.5.1 Behavioural Modelling 

 

Previous research has shown that behaviour in delay-discounting tasks can be modelled using 

a number of different functions (Mazur, 1985, 1986; Green et al., 1994a; Green et al., 1997) 

that contain discount factors (free parameters that explain how rewards are idiosyncratically 

discounted by time). In this chapter, two models were compared separately in terms of their 

fit to the subjective preferences of the subjects and also the subject’s behaviour on the 

normative trials. The first was a hyperbolic model (Mazur, 1986, 1997), in which the subjective 

value of a reward (V) is a function of its magnitude (M) and the delay (d): 

 

(1)       

 

In this model k is the discount factor, an idiosyncratic free parameter that discounts the 

magnitude (M) of the reward, such that the subjective value (V) is less than its objective 

magnitude. The value of k therefore reflects the extent to which a subject discounts a delayed 

reward, such that a high k decreases the value of the reward quickly as the delay becomes 

greater. There is considerable evidence that this model can explain preferences in delay-
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discounting tasks (Kirby, 1997; Richards et al., 1997; Mazur, 2001; Johnson and Bickel, 2002; 

Madden et al., 2003; Kable and Glimcher, 2007). 

As stated in chapter 4 (section 4.3), an important issue with studies using a computational 

modelling approach is whether the model reflects an accurate account of the computation’s 

driving behaviour. To evaluate models thoroughly it is important to compare an alternative 

model that could also explain the behaviour on the task (Mars et al., in press). In this chapter, 

an alternative model was used that has previously been used extensively to examine delay-

discounting behaviour (Kirby and Marakovic, 1996; Kirby, 1997; Johnson and Bickel, 2002; 

Madden et al., 2003). In this second model, the subjective value of the rewards (V) were 

discounted by an exponential function where: 

 

(2)      

 

In (2) the discounting effect of the delay is expressed as an exponential transform ( ) of the 

discount factor (k) multiplied by the delay period (d). As such, the magnitude of a reward (M) is 

idiosyncratically, but exponentially discounted by the length of delay before its receipt. The 

hyperbolic and exponential models were fitted separately to the preferences on the subjective 

trials and the choices on the normative trials. Thus, separate discount factors (k) could be 

estimated for the subjective and normative preferences. 
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6.3.5.2 Model estimation 

 

To fit the two models to the behaviour of the subjects on both the subjective and normative 

trials, the softmax algorithm (Sutton and Barto, 1981; Sutton and Barto, 1998) was used. The 

softmax approach was employed separately for estimation of the normative and subjective 

discount factors. This method assigns a probability to the choices made by the subjects: 

 

  (3) 

 

 

This equation converts the subjective values of the choices made by the subjects ( ) into a 

probability ( , as a function of the value of both options. Vo2 is the value of the delayed 

option and the value of the immediate option was always equal to 3 (£3 was always the 

immediate option). The coefficient β represents the stochasticity (or temperature) of the 

behaviour (i.e. the sensitivity to the value of each option). This algorithm therefore compared 

the value of the chosen option to the other options, the output is the probability of that option 

being chosen, given the value of the free parameters (k and β). The values were taken from the 

two models (see equation (1) and (2)) outlined above and fitted separately to both the 

subject’s own preferences and also the behaviour on the normative trials. This allowed for 

comparisons to be made between the fit of the exponential and hyperbolic models for both 

the subjective and normative behaviours. 

Within the two preference functions, and also in the softmax algorithm, there are free 

parameters which need to be estimated. To identify the optimal set of free parameters for 

each preference function, the values of the discount factors (k) were varied from 0.00001 to 

0.2 in steps of 0.00001 and β was varied from 0.01 to 2 in steps of 0.01. The output of the 

softmax algorithm is a series of probabilities, based on the values of each of these parameters 

and the choices made by the subject. These parameters were varied separately both for the 

subjective and normative preference behaviours. By varying the parameters, the probabilities 

output by the softmax algorithm differ. To select the parameters that best fitted the choice 

behaviour, given the preference function, a maximum likelihood approach was used. By using 

a maximum likelihood algorithm it was possible to maximise the probabilities of the choices 
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made by the subjects and esimate the values of each of the parameters that produced the 

behaviour. The likelihood of the chosen responses were found using: 

 

(4)       (n) 

Where the likelihood of each set of parameters (L) is determined by the log of the probability 

of the chosen response ( ) at trial n, according to the model. If the model perfectly predicts 

the actions, the probability of every chosen response would equal 1 and L would be 0. As the 

probabilities become less than 1 the log-likelihood L assumes negative values. The best fitting 

parameters were then selected using: 

 

(5)      

This identified the set of parameters for which L was closest to 0, i.e. the best fitting parameter 

set. Where  is the parameter set and L is the log-likelihood. In this study, it was also 

important to determine which of the two preference functions fit better to the subjective 

preferences and also the choices on the normative trials. To determine which was the best 

fitting model, the log evidence for the best fitting parameters in each subjects were entered 

into a 2x2 repeated measures ANOVA. One factor was the nature of the preference (normative 

or subjective) and the second was the preference function (hyperbolic or exponential). It is 

important to note that more sophisticated methods of model comparison exist, such as the 

Akaike information criterion or the Bayesian information criterion (Mars et al., in press). 

However, these approaches are only appropriate when comparing models with different 

numbers of free parameters. Here, both the hyperbolic and exponential functions required the 

estimation of the same number of free parameters. As such, comparing the models based on 

their log-likelihood is a suitable approach.  

During the training session subjects learnt the normative preferences through feedback. The 

normative behaviour that was presented as the feedback cues was actually the predicted 

choices of a hyperbolic model, with a fixed discount factor of 0.02173 and a temperature (β) of 

1. These values reflected a mean of 8 subjects’ behaviour on the delay-discounting task during 

a pilot experiment. The hyperbolic model was chosen for this purpose, rather than the 

exponential model, as previous studies have shown that the hyperbolic model accounts for 
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discounting behaviour better than an exponential model (Green et al., 1997; Kirby, 1997; 

Mazur, 2001; Madden et al., 2003; Kable and Glimcher, 2007). 

 

6.3.6 Experimental timing 
 

An important feature of the study was that activity was time-locked to two different time 

points on each trial. In order to do this, a variable delay was introduced between the delayed 

option and the trigger cue. This allowed for BOLD activity time-locked to both the option cues 

and the trigger cues to be isolated, without the contaminating effects of either prior or 

subsequent trial events (Ramnani and Miall, 2003, 2004). Events in each trial took place across 

four TRs (0s–12s; TR=3s). To optimally sample the cues of interest, randomly varying intervals 

between the scan onset and these cues were introduced over the first and second TRs for the 

option cues and over the third and fourth TRs for the trigger cues. This achieved an effective 

temporal sampling resolution much finer than one TR for the conditions of interest. The 

intervals for both the trigger cue and option cue were evenly distributed, ensuring that EHRs 

time-locked to each cue was sampled evenly across the time period following an event. 

Separate jitters were employed for the option cues and the trigger cues on the subjective trials 

and on the normative trials. 
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6.3.7 Functional imaging and analysis 

6.3.7.1 Data acquisition 

 

878 EPI scans were acquired from each participant. 38 slices (10% distance factor) were 

acquired in an ascending manner, at an oblique angle (≈30˚) to the AC-PC line to decrease the 

impact of susceptibility artefact in the subgenual ACC (Deichmann et al., 2003).  A voxel size of 

3×3×3 mm (20% slice gap, 0.6 mm) was used; TR=3s, TE=32ms, flip angle=85°. The functional 

sequence lasted 51 minutes. High resolution T1-weighted structural images were also acquired 

at a resolution of 1×1×1 mm using an MPRAGE sequence. Immediately following the functional 

sequence, phase and magnitude maps were collected using a GRE field map sequence (TE1 = 

5.19ms, TE2 = 7.65ms). 

 

 

6.3.7.2 Image preprocessing 

 

Scans were pre-processed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images from each 

subject were corrected for distortions caused by susceptibility-induced field inhomogeneities 

using the FieldMap toolbox (Andersson et al., 2001). This approach corrects for both static 

distortions and changes in these distortions attributable to head motion (Hutton et al., 2002). 

The static distortions were calculated using the phase and magnitude maps acquired after the 

EPI sequence. The EPI images were then realigned, and coregistered to the subject’s own 

anatomical image. The structural image was processed using a unified segmentation procedure 

combining segmentation, bias correction, and spatial normalization to the MNI template 

(Ashburner and Friston, 2005); the same normalization parameters were then used to 

normalize the EPI images. Lastly, a Gaussian kernel of 8 mm FWHM was applied to spatially 

smooth the images in order to conform to the assumptions of the GLM implemented in SPM8. 

 

6.3.7.3 Event definition and modelling 

 

In this study, two GLM analyses were performed to investigate activity that varied 

parametrically with the subjective and normative values of temporally discounted rewards. 

The first GLM was employed to examine activity that varied with the normatively and 

subjectively discounted values. Regressors which modelled the subjective and normative 

values were orthogonalised with respect to regressors that modelled the delay periods. Thus, 

http://www.fil.ion.ucl.ac.uk/spm
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activity that varied with the value parameters was not shared with the effort parameters. In 

the second GLM the delay parameters were orthogonalised with respect to the subjective and 

normative values parameters. 

 

 Each GLM design matrix contained regressors modelling: 

 Trial-type cue (informing the subject whether they should indicate their own 

preference or the majority preference on the trial)  

 Subject option cue (the delayed reward option on the trials where the subjects 

indicated their own preferences) 

 Norm option cue (cuing the subject to indicate the normative preference) 

 Subject trigger cue (the trigger cue when the subject indicated their own preference) 

 Norm trigger cue (cuing the subject to indicate the normative preference) 

 Missed trials (a regressor modelling the onsets of the option and trigger cues of 

missed trials) 

 

Regressors were constructed for each of these events by convolving the event timings with the 

canonical Haemodynamic Response Function (HRF). The residual effects of head motion were 

modelled in the analysis by including the six parameters of head motion acquired during 

preprocessing as covariates of no interest. In addition to the regressors defined for the event 

types outlined above, each GLM also contained regressors which were first order parametric 

modulations of the option cue and trigger cue events. These modulators scaled the amplitude 

of the HRF in line with either the length of the delay or the discounted reward values. Separate 

parametric modulators were created for the delay and discounted reward values on the 

subjective trials and the normative trials. It was not possible to use the undiscounted reward 

values as parametric modulators, due to the colinearity with the subjective (or normative) 

reward values (i.e. the subjective reward values of subjects with low discount factors were 

highly correlated with the undiscounted reward values). To examine activity that varied with 

the subjective and normative values, the regressors which constitute the parametric 

modulators of the two values were orthogonalised with respect to the delay parametric 

modulators. As such, activity varying with the subjective reward parameters at the time of 

both the subject trigger cue and the subject option cue events could not be explained by 

activity related to the delay. Likewise, activity that varied with the value of normative reward 

parameters at the time of both the norm trigger cue and the norm option cue events could not 

be explained by delay related activity. This approach allowed for two hypotheses to be tested: 
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(i) that activity in the ACCs would vary with the subjectively discounted reward values on the 

subjective trials, and (ii) that activity in the ACCg would vary with the normatively discounted 

values on the normative trials.  

 

A second GLM was also constructed which contained the same regressors as outlined above. 

However, in this GLM the delay parameters were orthogonalised with respect to the subjective 

and normative reward parameters. This GLM therefore allowed for activity which varied with 

the length of the delay to be examined. 

6.3.7.4 Group analysis, Contrasts and Thresholding 

 

Random effects analyses (Full-Factorial ANOVA) were applied to determine voxels significantly 

different at the group level. SPM{t} images from all subjects at the first-level were input into 

second-level full factorial design matrices. F-contrasts were conducted on the regressors for 

the delay and reward parameters in each of the GLMs. These contrasts identified voxels in 

which activity varied parametrically in the manner predicted by the subjective or normative 

value or the delay parameters. Separate corrections for multiple comparisons were used for 

the ACCg, ACCs and the whole brain. To examine activity across the whole brain, FDR 

correction (P<0.05) was applied. In contrast, activity in the ACCg and ACCs was corrected for by 

using an 80% probability mask of each region (see chapter two for a description). In addition, 

due to the close similarity of the design to that of Kable and Glimcher (2007), small volume 

corrections were applied around the peak coordinates from their analysis (see appendix E for 

table of coordinates). 8mm diameter spheres were created around those coordinates, and 

then used as one mask containing the spheres from all regions. 
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6.4 Results 

6.4.1 Behavioural results 
 

Subjects performed a delay-discounting task, in which they indicated either their own 

preferences or preferences dictated by a social norm, on separate trials. Hyperbolic and 

exponential preference functions were fitted separately to the subjects’ behaviour on the 

subjective trials and the normative trials. Log-evidence was calculated for the best-fitting set of 

parameters for each preference function for both the normative and subjective behaviours. A 

repeated measures 2x2 ANOVA was conducted examining log-evidence for the two preference 

functions (Hyperbolic or Exponential) and two types of trial (Subjective or Normative) across 

subjects. No interaction between the log evidence for the different levels of trial type and 

preference function was found (F(1,14) = 3.874, p = 0.069). However, there was a significant 

main effect of preference function (F(1,14) = 17.554, P<0.001), with no main effect of trial type 

(F(1,14) = 4.391, P = 0.055). Examination of the log-evidence (see fig.6.2) shows that the 

hyperbolic model had a significantly lower log-evidence than the exponential model for both 

the subjective and normative trial types. Thus, the hyperbolic model explained preference 

behaviour in both the subjective and normative conditions better than the exponential model. 

In addition, there was no difference in log-evidence between the hyperbolic model on the 

normative and subjective trials. As the hyperbolic model was a better fit of the data in both 

conditions, this model was analysed further behaviourally and the values it output were used 

as the values for the parametric modulators in the fMRI analysis.  

 

 

 

 

 

 

 

 

Fig 6.2 Mean Log-evidence across subjects for the hyperbolic and exponential preference 

functions on both the subjective and normative trials. Log evidence values closer to zero 

indicate a better fit to the data. 
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This study assumed that subjects acquired a model of a social norm discount factor (k) during 

training, in order that they could reproduce the normative behaviour during scanning. It was 

therefore pertinent to examine whether the estimated discount factor (k) of the behaviour of 

subjects in the normative condition, was not significantly different from the discount factor 

which underpinned the social norm preferences that they learned during training. A paired 

samples t-test was conducted to examine whether the best fitting values of k across subjects 

(mean k= 0.029) was different from the k which was used to develop the normative 

preferences (actual k = 0.02173). No significant difference was found between the mean k of 

the subject’s behaviour on the normative trials from the k which underpinned the norm 

preferences (t(14) = 0.919, p = 0.374). This indicates that the model the subjects’ formed of the 

normative discount factor was not significantly different from the discount factor that 

underpinned the social norm. Another pertinent question, both behaviourally and for the 

interpretation of the fMRI results, is whether subjects’ results could be explained by their 

divergence from the social norm i.e., does the divergence of the normative discount factors 

from the social norm discount factor (k = 0.02173) correlate with the divergence of the 

subjective discount factors from the social norm. A Spearman’s rank correlation revealed no 

significant correlation between the divergence of the normative and subjective discount 

factors from the actual social norm discount factor (R2 = 21.9, p = 0.078, one tailed). Thus, 

subjects’ performance of the social norm preferences on the normative trials was not 

correlated with their own subjective preferences or divergence from the social norm. 

 In addition to examining the discount factor, it was also pertinent to examine how accurate 

the subjects were at predicting the choices that would have been made based on the social 

norm discount factor. All subjects were better than chance at predicting the normative 

preference (i.e. the number of trials where the chosen option was the same as the actual 

normative preference; mean across subjects 82.59%, S.D ±7.11). A paired samples t-test 

showed that the accuracy of subjects in terms of performing the normative choice preferences 

was significantly different (t(14) = 17.76, P<0.001) from chance (50%). This suggests that 

subjects’ discounted reward values on the normative trials hyperbolically, and in a manner 

that closely fitted with the actual normative preferences. 

An additional consideration was whether the hyperbolic model more accurately predicted the 

choices of subjects in the normative or subjective conditions. To examine this issue a paired t-

test was conducted on the accuracy of the model (percentage of the choices accurately 

predicted by the model) on the subjective trials (mean = 86.7%) compared to the normative 

trials (mean = 86.1%). No significant difference in model accuracy was identified between the 
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two types of trials (t(14) = 0.368, p = 0.718). In addition, as reported above, there was no 

difference in log-evidence between the fit of the hyperbolic model in the subjective and 

normative conditions. These results suggest that the hyperbolic model did not differ in 

accuracy between the two types of behaviour. 

The behavioural results therefore indicate that, in line with previous studies, subjects personal 

preferences on a delay-discounting task could be explained with a hyperbolic preference 

function. In addition, the results indicate that subjects could learn and reproduce normative 

preferences on a delay-discounting task and this behaviour could also be explained with a 

hyperbolic function. 

 

6.4.2 Imaging results 
 

6.4.2.1 Subjective reward value 

 

To examine activity that varied with the subjective value of rewards, and not the normative 

value, at the time the delayed option, idiosyncratic parametric modulators were fitted to the 

option cues of each subject. This parameter modelled the subjective value of a reward, based 

on the subject’s own discount factor in the hyperbolic model. To examine whether activity in 

areas previously implicated in processing the subjective value of rewards varied with this 

parameter in this study, a small volume correction was applied around the peak coordinates of 

Kable and Glimcher (2007). Activity was found to vary with the subjective reward values in the 

three areas, the ventral striatum/nucleus accumbens (-14,10,-8,  F(1,126) =25.21, Z=4.64, 

p<0.05FDR), in the ACCs  (-4,46,14; F(1,126) = 6.96 Z = 2.93, p<0.05svc), on the borders of the 

rostral MCC/caudal ACC (at the borders of areas 24c, 24c’, 32 and 32’, see fig. 6.3) and the 

posterior Superior Temporal Sulcus  (64, -54, 16; F(1,126) = 12.69, Z = 3.24, p<0.05svc). 

Correcting for multiple comparisons across the whole-brain did not identify activity in any 

areas that varied significantly with the subjective value of reward at the time of the option cue. 
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In addition to examining activity at the time of the option cue, activity was also examined at 

the time of the trigger cue. A whole brain analysis revealed activity in the ventral striatum (-2, 

6,-4; F(1,140) = 18.24, Z = 3.97, p<0.05 svc, see fig.6.4) and a cluster extending over subgenual 

cortex (12, 40, 0; F(1,140) = 22.06, Z = 4.37 p<0.05 svc) and the superorbital sulcus, often 

referred to as Ventromedial Prefrontal Cortex (VmPFC). 

 

 

Fig 6.3 Subjective reward values at the time of the delayed option cue. (A) Activity shown in the ACCs   

(-4, 46, 14) that varied with the subjective valuation of the delayed option. (B) Beta coefficients of 

activity from the peak ACCs voxel. The parameter estimates are taken from the GLM in which the 

subjective and normative value parameters were orthogonal to the delay parameters. 

Fig 6.4 Subjective reward values at the time of the trigger cue. (A) Activity shown in the ventral 

striatum (-2, -6,-4) that varied with the subjective valuation of the delayed option. (B) Beta 

coefficients of activity from the peak striatal voxel. The parameter estimates are taken from the 

GLM in which the subjective and normative value parameters were orthogonal to the delay 

parameters. 

A B 

A B 
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6.4.2.2 Normative reward value 

 

To examine activity that varied exclusively with the normative reward values, idiosyncratic 

parametric modulators were fitted to the option cues on the normative trials. The values of 

this parameter were taken from the output of the hyperbolic model on the normative trials. A 

whole-brain analysis revealed activity in several areas which varied with the normative reward 

values (see table 6.1). No voxels in the ACCg were found to vary with the magnitude of the 

normatively discounted reward at the time of option cue. However activity was found in the 

paracingulate cortex (0, 20, 46; F(1, 84) = 37.65, Z = 5.44, p<0.05FDR), a region heavily 

implicated in the processing of social information (See fig.6.5). In addition to activity at the 

time of the option cue, activity was also examined at the time of the trigger cues. No brain 

area was found when correcting for multiple comparisons across the whole brain. However, 

activity in the ACCg (putatively midcingulate area 24b’; see fig.6.5) survived small volume 

correction of the ACCg (4, 24, 28; F(1,140) = 2.95, Z = 2.90, p<0.05svc). 
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Anatomical region MNI Coordinate Z-value 

Parietal   
Intraparietal Sulcus 36, -60, 50  5.93 
Short Insular Gyrus -32, 22, 0 3.75 

Frontal   
Paracingulate Sulcus 0, 20, 46 5.67 
Middle frontal Gyrus 42, 32, 18 4.56 

Orbital Gyrus 42, 51, -6 3.67 
Limbic   

Posterior Cingulate Gyrus -4, -38, 34 4.86 
Hippocampus -20, -34, -10 4.17 

Striatum   
Ventral Caudate/Subcallosal Gyrus 4, 4, -4 4.05 

Occipital   
Cuneus -14, -80, -8 3.89 

 

Fig 6.5 (A) Activity shown in paracingulate cortex that varied with the normative value of the delayed 

option at the time of the option cue. Activity also shown in the Subcallosal gyrus and the posterior 

cingulate gyrus/retrosplenial cortex. (B) Beta coefficients of activity from the peak paracingulate voxel. 

(C) Activity shown in the ACCg that varied with the normative values of the delayed option at the time 

of the trigger cue. (D) Beta coefficients of activity from the peak ACCg voxel. The parameter estimates 

are taken from the GLM in which the subjective and normative value parameters were orthogonal to 

the delay parameters. 

Table 6.1 Areas in which activity varied with the normative reward values at the time of the 

option cue. All regions survived whole brain FDR (P<0.05) correction for multiple comparisons. 

All contrasts were F(1,140) contrasts on the normative reward parametric modulators, 

exclusively masked by the subjective parametric modulator (p<0.05unc). 

A B 

C D 
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6.4.2.3 Subjective and normative reward values. 

 

To identify whether activity in any region varied with the value of rewards discounted by delay, 

regardless of the whether they were subjectively or normatively valued, conjunctions were 

performed between the normative and subjective value parameters. At the time of the option 

cue, no area was identified in a whole-brain analysis. Small volume correction of the ACCs 

identified a region in the anterior portion of the ACC (putatively area 32’). Uncorrected this 

cluster extended across a large portion of the Ventromedial Prefrontal Cortex (-8, 44, 16; F(2, 

126) = 6.58, Z = 2.38, p<0.05svc). Activity in this area varied with the value of discounted 

rewards, regardless of whether they were normatively or subjectively discounted. At the time 

of the trigger cue, a different portion of the ACCs (in posterior midcingulate area 24c’) (-12, 14, 

38; F(2,126) = 7.28, Z= 2.42, p<0.05svc) varied with both the subjectively and normatively 

discounted reward values. 
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Fig 6.6 (A) Activity shown in Ventromedial Prefrontal cortex (-8, 44, 16 ; VmPFC) that varied with 

both the normative and subjective valuations at the time of the option cue. This image is shown 

uncorrected for display purposes (B) Beta coefficients of activity from the peak VmPFC voxel. (C) 

Activity shown in the ACCs (-12, 14, 38) that varied with the normative and subjective values of 

the delayed option at the time of the trigger cues. (D) Beta coefficients of activity from the peak 

ACCs voxel.  The parameter estimates are taken from the GLM in which the subjective and 

normative value parameters were orthogonal to the delay parameters. 

A 

C 

B 

D 
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6.4.2.4 Normative and Subjective Delays 

 

In addition to the subjective and normative reward values, the delay parameter was fitted to 

the option cue and the trigger cue events. No activity was found to vary with the length of the 

delay on the subjective trials at either the time of the option cue or the trigger cue. However, 

several areas were found to vary with length of delay on the normative trials at both the time 

of the option cue (see table 6.2 for results) and the time of the trigger cue (see table 6.3 for 

results). 

 

Anatomical region MNI Coordinate Z-value 

Parietal   
Superior Parietal Gyrus -8, -68, 28 4.74 

Sub parietal Sulcus -14, -48, 34 3.90 
Cingulate   

Posterior Cingulate Gyrus 6, -20, 34 3.42 
Posterior Cingulate Sulcus -2, -22, 56 3.88 

Frontal   
Middle frontal Gyrus -30, 18, 50 3.89 

Table 6.2 Areas responding to the length of delay at the time of the option cue on the normative trials. 

Whole brain corrected for multiple comparisons (p<0.05 FDR). All contrasts were F (1,126) on the 

normative delay parametric modulator masked by the subjective delay parameter. 

 

 

Anatomical region MNI Coordinate Z-value 

Parietal   
Superior Parietal Gyrus 10, -80, 48 4.34 

Cerebellum   
Crus I/II 34, -78, -26 4.21 

Frontal   
Olfactory Sulcus -20, 24, -12 4.40 

Inferior Frontal Gyrus -56, 24, 26 4.35 
Gyrus Rectus 2, 50, -22 4.17 

Superior Frontal Gyrus -2, 60, 32 3.98 
Middle Frontal Gyrus 48, 34, 28 3.82 

Table 6.3 Areas responding to the length of delay of the delayed option at the time of the trigger cue. 

Whole brain corrected for multiple comparisons (p<0.05 FDR). All contrasts were F (1,126) on the 

normative delay parametric modulator masked by the subjective delay parameter 
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6.5 Discussion 
 

This study tested two hypotheses related to the processing of rewarding values, discounted by 

the temporal delay before their receipt. The first hypothesis was that activity in the ACCs 

would vary with the value of rewards hyperbolically discounted by a subject’s own discount 

factor. The second hypothesis was that activity in the ACCg would vary with the value of 

rewards hyperbolically discounted by a social norm discount factor. In accordance with both 

hypotheses, subjects behaviour was better explained by a hyperbolic preference function, than 

an exponential preference function, both when indicating their own preferences and 

normative preferences. In line with the first hypothesis, activity in the ACCs varied with the 

magnitude of the delayed reward at the time that the delayed option was presented. In line 

with the second hypothesis, activity in the ACCg varied with the magnitude of the normatively 

discounted delayed rewards, at the time of trigger cue. Activity was also found in the 

paracingulate cortex that varied with the normatively discounted rewards values, at the time 

the delayed option was represented. In addition, activity in two different portions of the ACCs 

varied with the magnitude of the discounted rewards regardless of whether it was subjectively 

or normatively discounted. These results support the claim that the ACC is important for 

processing the value of delayed reward. Activity in the ACCs signals the value of a reward 

regardless of the source of the temporal discounting, whereas activity in the ACCg codes for 

the valuations of others. 

 

6.5.1 Temporally discounted value signals in the ACC 
 

This study showed that activity in different portions of the ACC code for both subjectively and 

normatively discounted rewards, highlighting the ACC as a whole as an important area in 

processing discounted reward values. Interestingly, activity in the ACCs (in posterior MCC, 

putatively in the RCZ) and the ACCg occurred at the time that subjects were required to make 

their response and not at the time that the delayed option was first presented. This result 

would suggest that the ACCg, and also the ACCs, are important for the process of assigning 

value to actions, rather than discounting the value of a delayed option when it is first 

presented. The notion that the ACCg is engaged in processing values when they can be 

assigned to actions is supported by the work in previous chapters. In chapter five, activity in 

the ACCg signalled the value of another’s rewards that were discounted by the number of 
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effortful actions they would be required to perform. Thus, in both this chapter and the 

previous, the ACCg coded the value of actions that were devalued by a cost. Chapter 4 showed 

that activity in the ACCg occurs when another’s prediction of the value of their action is 

erroneous. Thus, whilst no study has stringently tested whether the role of the ACCg is to 

process the value that others place on actions, the evidence in this thesis supports this claim. 

The results in this chapter extend beyond those of previous fMRI studies which have 

investigated how other’s valuations of rewards guide first-person behaviour. Firstly, the results 

indicate that the ACCg does not just process the value of rewards discounted be the 

expenditure of effort, or the volatility of other’s reward-related decision-making (Behrens et 

al., 2008), but also processes the normative valuation of temporally discounted rewards . 

Secondly, the results indicate that the ACCg also processes other’s reward valuations (in this 

case a norm valuation) when they are guiding first-person behaviour. This study is not the first 

to show that the ACCg plays a role in guiding first-person behaviour. Behrens et al., (2008) 

showed that activity in the ACCg varied with the volatility of another’s advice about the value 

of two rewarding options. Moreover, the level of activity in the ACCg correlated with the 

degree to which subjects’ decision-making was biased by their advice. Subjects’ whose activity 

in the ACCg was increased but decreased in the ACCs were more influenced by others’ 

valuations that those with the opposite profile. However, the study reported here is distinct 

from Behrens et al. (2008) in two ways. Firstly, in this chapter the signal in the ACCg reflected a 

normative valuation of a reward, not just the valuation of one individual. Secondly, the activity 

in the ACCg varied with the values of a temporally discounted rewards and not the value of 

another’s advice in terms of its volatility, as in Behrens et al. (2008).  The results reported in 

this chapter and the study of Behrens et al. (2008) therefore support the notion that the ACCg 

codes for other’s valuations, when a subject is required to use that valuation to guide their 

own behaviour. 

Whilst activity in the RCZ occurred at the time of the trigger cue, activity in a more anterior 

region (at the border between MCC and ACC) occurred at the time the delayed option was 

presented. Interestingly, this activity varied both with the normatively and subjectively valued 

delayed rewards. Neurons in this region have been shown to be sensitive to the value of 

rewards (Amiez et al., 2005; Kennerley et al., 2009; Hayden and Platt, 2010). The cluster also 

overlapped with the activation reported in Kable and Glimcher (2007), who also showed that 

activity in this area varied with the subjective value of temporally discounted rewards. 

However, unlike in this previous studies, activity in this study could be examined at the point in 

time when the delayed option was presented and also separately at the time that an action 
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was triggered. Thus, this study was able to extend upon the results of Kable and Glimcher 

(2007), showing that the anterior MCC is processes temporally discounted rewards at the time 

a delayed option is valued, but activity in the RCZ processes activity when such signal motivate 

actions. 

 

6.5.2 Social Norm Discounting  
 

This study showed that areas typically implicated in processing the subjective value of delayed 

rewards also process normatively discounted delayed rewards. The Intraparietal sulcus (IPS), 

OFC, the middle frontal gyrus and the PCC varied parametrically with the value of normatively 

discounted delayed rewards at the time of the option cue. Each of these areas has previously 

been implicated in processing discounted reward values (Cardinal, 2006; Doya, 2008; 

Rushworth et al., 2009). Single-unit recording studies have shown neurons in the IPS (Louie 

and Glimcher, 2010), OFC (Roesch et al., 2006; Roesch et al., 2007) and the DLPFC (Kim et al., 

2008) which are sensitive to reward values discounted by a temporal delay before their 

receipt. Neuroimaging studies also show activity in each of these areas and also in the PCC 

when subjects discount delayed rewards (Apicella et al., 1991; Knutson et al., 2000; McClure et 

al., 2004; Kable and Glimcher, 2007; Luhmann et al., 2008; Peters and Buchel, 2009; Pine et al., 

2009; Kable and Glimcher, 2010; Prevost et al., 2010). This would suggest that discounting 

rewards based on a social norm discount factor, requires the engagement of a system that is 

also involved in processing first-person valuations of delayed rewards. There is an obvious 

caveat to this interpretation, in that these areas did not vary with the subjective reward values 

in this experiment. However, one possible explanation for this is that there is considerable 

variability in the type and magnitude of rewards and delay periods that have been used in the 

previous studies. Single-unit recording studies in non-human primates and lesion studies in 

rats use primary reinforcers, rather than the secondary reinforcers, such as the financial 

incentives used in this chapter (Richards et al., 1997; Denk et al., 2005; Roesch et al., 2006; 

Rudebeck et al., 2006b; Kobayashi and Schultz, 2008; Wanat et al., 2010). Neuroimaging 

studies investigating delay-discounting which have used financial incentives, have used 

different levels of reinforcement to those employed in this chapter (Kable and Glimcher, 2007; 

Pine et al., 2009; Prevost et al., 2010). Other studies have also used non-financial stimuli to act 

as reinforces (Prevost et al., 2010). In addition to variability in the incentives used, there is also 

considerable variability in the durations before which the reinforcer is received in both the 
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animal and human studies. Such variability in the type and range of reinforcement and the 

durations before the receipt of the reinforcer, may in part explain why this study failed to find 

activity on the subjective valuation trials, in the areas which have previously been implicated in 

processing first-person discounted rewards. It is therefore pertinent not to interpret the 

absence of such signals in this study as indicative of these areas not being engaged in 

subjective reward valuation.  Thus, despite the caveat, it is still reasonable to suggest that 

normative delay-discounting may rely in part on systems which are engaged in subjectively 

valuing delayed rewards. 

The results of this study suggest that the ACCg and the paracingulate cortex may be important 

for processing other’s valuations of delayed rewards. Anatomical evidence suggests that the 

paracingulate cortex and the ACCg may exchange information with these areas which are 

engaged when valuing delayed rewards. Paracingulate cortex (at the border between area 8/9 

and 32’ on the medial surface) in the macaque brain, shows strong reciprocal connections with 

area 14 (medial OFC; Petrides and Pandya, 2006, 2007), area 24c’ (the CMAr/RCZ; Vogt and 

Pandya, 1987; Petrides and Pandya, 2006, 2007), areas 23c’/31 (PCC; (Petrides and Pandya, 

2006, 2007)  and it also send projections to the ventral portions of the striatum (Apicella et al., 

1991; Yeterian and Pandya, 1991; Kunishio and Haber, 1994; Haber et al., 1995). As outlined 

above, each of these areas has been implicated in processing temporally discounted reward 

values previously. Paracingulate cortex and the ACCg are also reciprocally connected (Vogt and 

Pandya, 1987; Yeterian and Pandya, 1991; Morecraft et al., 1992; Morecraft and Van Hoesen, 

1998). Thus, these two areas are connected to each other and also to areas of the brain which 

process discounted reward values when the valuation is subjective. The connectivity profiles of 

these two regions therefore suggest that areas which are specialised for processing social 

information exchange information with areas which guide reward-related first-person 

decisions. This supports the view that behaviour guided by social norms requires circuits that 

guide first-person behaviour to have access to information in circuits specialised for processing 

social information. 

The paracingulate cortex is well known for its role in processing social information and 

particularly the mental states of others (Frith and Frith, 2003; Amodio and Frith, 2006; Frith 

and Frith, 2006). Recently, two studies have suggested that activity in this area may vary 

parametrically with the value of reward-related predictions during social interactions. 

Hampton et al. (2008) showed that activity in this area was scaled by the expected reward 

value on each trial. This value signal incorporated the influence that the subject’s choice would 

have on their behavioural strategy. Behrens et al., (2008) also showed that activity in this area 
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was scaled by the probability that another’s advice about rewarding values was truthful. Thus, 

activity in this area appears to be scaled by values that guide decision-making when these 

values are related to the mental states of others. The results in this chapter support the claims 

made in these two studies, showing that the paracingulate cortex is engaged when processing 

other’s valuations of a delayed financial reward. However, unlike these two studies, this study 

shows that the paracingulate cortex is not only sensitive to the valuation of one other 

individual during social interactions. Here, the paracingulate cortex was shown to be engaged 

by social norm valuations, that reflect the value assigned to an action by the majority of 

others. 

This study is not the first to investigate the neural circuitry which underpins the processing of 

social norms. Several studies have looked at how attitudes are processed when deciding 

whether to punish others for violations of social norms (Buckholtz et al., 2008). Other studies 

have also investigated the neural processes that underpin decisions of whether to conform to 

a norm (Berns et al., 2005; Spitzer et al., 2007; Klucharev et al., 2009) and also accidental 

violations of social norms (Berthoz et al., 2002; Berthoz et al., 2006; Spitzer et al., 2007; Prehn 

et al., 2008). None, however, have examined the processing of rewards temporally discounted 

in a manner that conforms to a social norm. Intriguingly, one previous study found activity in 

the ACC when processing normative valuations of facial attractiveness (Klucharev et al., 2009). 

Specifically they found that the RCZ coded for the discrepancy between a subjects’ judgement 

of the attractiveness of another’s face and its normative attractiveness. The magnitude of the 

signal in the RCZ correlated with the extent to which subjects conformed to the social norm on 

future trials. This suggests that first-person valuations are updated due to the discrepancy with 

a social norm valuation, much like a prediction error signal. In this study, activity in the ACCs 

signalled both subjective and normative values, suggesting that this region codes values that 

guide actions, regardless of the source of the valuations. Thus, both studies suggest that the 

ACCs may be important for processing normative values that guide first-person actions. 

However, this study had the advantage of testing whether computational models that have 

been shown to underpin first-person choice behaviour, can also explain behaviours when they 

are dictated by a social norm valuation. 
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6.5.3 Caveats and Limitations 
 

An important feature of the design of this study was that subjects performed their own 

preferences on some trials and indicated a normative preference on other trials. The subjects 

were therefore making real economic decisions about the payment they would receive for 

their participation in the experiment. However, subjects were told prior to the experiment that 

they would not be paid based on their performance of the normative trials. This was necessary 

in order to maintain experimental control. If subjects had been paid based on the normative 

trials, they may have biased their decisions on those trials towards their own subjective 

preferences. As a result, subjects’ performance on the social norm trials would have been 

different from the actual norm and also would have reflected a subjective valuation and not a 

normative valuation. In addition, it would have been unethical to pay participants based on 

their choices on the normative trials, when the normative valuations learnt during training 

were in fact fictional (there is no normative behaviour on this task). It is therefore plausible 

that any differences in activity between the subjective and normative conditions could be 

explained by a difference in incentive for performing each trial type. However, recently Bickel 

et al. (Bickel et al., 2009) used fMRI to examine activity in the brains of subjects performing an 

intertemporal choice task, for either real or fictive financial rewards. The results showed 

activity in the ACCs, ventral striatum and PCC in both the fictive and real monetary conditions. 

Crucially, no areas of the brain showed a significant difference in activity between the real or 

fictive subjective valuations. This result shows that areas of the brain that are involved in 

delay-discounting respond regardless of whether choices are made between real monetary 

values or not. In addition, behavioural studies have shown that when using real or fictitious 

rewards, behaviour can be equally well explained by a hyperbolic function, as was also the 

case in this study (Johnson and Bickel, 2002; Madden et al., 2003). It therefore follows that 

differences in brain activity between the normative trials (where the rewards were 

hypothetical) and subjective trials (where a real financial reward was available) in this chapter, 

cannot be accounted for by differences in the incentive available to participants on each type 

of trial. 

The design of this study was such that subjects learnt social norm preferences that were 

actually fictional. These normative preferences were the output of a hyperbolic preference 

function. This model was chosen due to the substantial body of evidence that highlights this 

model as fitting closely with the behaviour of subjects on delay-discounting tasks (Rachlin et 

al., 1991; Green et al., 1994a; Kirby and Marakovic, 1996; Green et al., 1997; Kirby, 1997; 
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Mazur, 1997; Richards et al., 1997; Mazur, 2001; Madden et al., 2003). However, there is 

considerable debate as to the best model for explaining temporal discounting behaviours 

(Green et al., 1994a). Whilst there is evidence that hyperbolic functions are better at 

predicting temporal discounting behaviours than exponential functions (Green et al., 1997; 

Kirby, 1997; Johnson and Bickel, 2002; Madden et al., 2003; Kable and Glimcher, 2007), there 

are other models for which the hyperbolic function does not provide a better fit to the data. 

Area under the curve methods provide a univariate approach to examining discounting curves 

which perform as well as a hyperbolic function (Myerson et al., 2001). Utility based models 

that separate out a discounting into a hyperbolic discounting component and utility valuation 

component have been shown to predict behaviour better than a hyperbolic function on its 

own (Pine et al., 2009). Pine et al., (2009) examined the neural correlates of such a utility 

based model. In their study, subjects performed a delay-discounting task where they were 

required to choose between two delayed options, rather than between a delayed and an 

immediate option. Unlike in this study, or that of Kable and Glimcher (2007), they found that 

activity in the ACCs signalled the degree of discrepancy between the value of the two delayed 

options. One could argue, therefore, that the reason for activity being found in the ACCs to 

process subjective value is because a model that does not best explain the behavioural data 

was used. However, it should be noted that Pine et al. (2009) found that activity in the ACCs 

was modulated by subjective values, but it was the value of both the delayed options that 

modulated activity in this area. Thus, the results of Pine et al. (2009) still support the claims in 

this chapter, that activity in the ACCs codes for subjective and normative valuations of delayed 

rewards. 

Whilst this chapter has interpreted the results as reflecting the neural processes driving 

normative behaviours, it is important to note that an alternative interpretation. Specifically 

subjects could have performed this task by simply retrieving valuations of delayed rewards 

from memory on the normative trials. This account is given credence by the design of the task, 

as the delayed options were the same in the training session when they learnt the normative 

behaviour, and the scanning session when they reproduced the normative behaviour. Subjects 

could therefore simply retrieve the behavioural responses from the training sessions to guide 

their behaviour on the normative trials in the scanning session. However, whilst this offers a 

plausible alternative interpretation there are two important reasons why the results of this 

study being reflective of the processing of social norms, rather than memory retrieval, is a 

more parsimonious account. Firstly, there is little evidence of the portions of the paracingulate 

cortex or the ACCg that were activated in this study being engaged when storing or retrieving 
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information from memory (Bush et al., 2000). Lesions to the ACCg in the nonhuman primate 

do not disturb tasks that require information to be retrieved from memory (Rudebeck et al., 

2006) and neuroimaging studies do not typically report differential activity in these areas 

during the processing of semantic or procedural memories (Frith and Frith, 2003, Amodio and 

Frith, 2006). As stated in previous chapters, these areas are both implicated in the processing 

of social information. It therefore seems unlikely that activity in these particular regions is 

being driven by the retrieval of behaviours stored in memory. Secondly, activity that is 

reported in this study was found to vary parametrically with the value of a delayed reward and 

therefore was not simply differential activity between the delayed or immediate options, or 

remembering or not remembering the correct behaviour. In addition, the delayed reward 

options do not differ substantially in terms of the demands that they place on memory. As 

such, an account of the results as being related to the retrieval of memories, could not account 

for the parametric nature of activity in the areas that are reported here. 

 

6.5.4 Summary 
 

This study tested two hypotheses about the processing of delayed rewards in the ACC. The first 

hypothesis was that activity in the ACCs would signal the value of subjectively discounted 

rewards. In line with this hypothesis, activity in the ACCs varied with subjects own 

hyperbolically discounted rewards values at the time they made their responses. In addition, 

activity was found in the ventral striatum that varied with the subjectively discounted rewards 

values at the time the delayed option was presented. The second hypothesis was that activity 

in the in ACCg would signal the value of hyperbolically discounted delayed rewards that 

conformed to a social norm. In line with this hypothesis, activity in the ACCg varied with the 

normatively discounted rewards at the time that subjects made their response. In addition, 

activity in the paracingulate cortex varied with the value of the normatively discounted 

rewards at the time the delayed option was presented. These results suggest that making 

decisions that are guided by a social norm recruits parallel systems. One system is engaged in 

valuing different decision based on the social norm. Another system is engaged in processing 

values regardless of the source of the valuation. The exchange of information between these 

two systems may be crucial for making decisions which are guided by social norms. 

 

  



 211 

 

Chapter 7: General Discussion 
 

Studies investigating the functional properties of the ACC have implicated the region in a range 

of different processes including, pain (Rainville et al., 1997; Hutchison et al., 1999; Wager et 

al., 2004), response selection (Rushworth et al., 2004), the regulation of emotion (Bush et al., 

2000; Phillips et al., 2003; Davis et al., 2005), error detection (Carter et al., 1998; Bush et al., 

2000; Holroyd and Coles, 2002) and conflict monitoring (Botvinick et al., 1999; Barch et al., 

2000; Kerns et al., 2004). The diversity of such processes has resulted in an absence of a clear 

picture of how this area contributes to behaviour. However, when one looks at the anatomy of 

the ACC, the reason that this region is implicated ubiquitously across a wide range of motor, 

cognitive and emotional processes becomes clear. Within the region commonly referred to as 

the ACC by functional imaging studies, there is considerable anatomical heterogeneity. Within 

this portion of the ACC there are at least 9 different cytoarchitectonic zones (Vogt et al., 1995; 

Bush et al., 2000; Paus, 2001; Palomero-Gallagher et al., 2008). In addition, the different sub-

regions of the ACC are each connected to different areas of the brain (Pandya et al., 1981; Vogt 

and Pandya, 1987; Beckmann et al., 2009). Thus, an understanding of the ACC may come from 

localizing functions to specific sub-regions and testing hypotheses that are specific to each 

zone. 

An aim of this thesis is to examine the functional properties of two different regions within the 

ACC. One region lies within the sulcal portion of the midcingulate cortex (MCC) which 

predominantly contains area 24c’ (Vogt et al., 1995) and a second, is in the gyral MCC which 

predominantly contains areas 24a’ and 24b’ (Vogt et al., 1995). In order to discuss results 

consistently with the imaging literature and also due to the absence of any visible boundary 

between the MCC and its surrounding areas on an MRI image, these two areas have been 

referred to as the ACCs and the ACCg respectively throughout this thesis. However, it is 

important to note that the hypotheses tested and the overarching aim of the thesis has been 

to examine information processing in the MCC.  

In chapter one, I highlighted how the absence of a theoretical account of the contribution of 

the ACCg to social cognition, was a result of the paucity of human functional imaging research 

which has tested the hypothesis that the ACCg processes social information. However, it was 

noted that a highly influential study made the claim that the ACCg processes similar 

information to the ACCs (Behrens et al., 2008). That study reported activity in the ACCg when 

subjects processed the outcomes of others’ decisions and activity in the ACCs when subjects’ 
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processed the outcomes of their own decisions. Therefore, as proposed in chapter one an 

understanding of the contribution of the ACCg to social cognition may come from drawing 

parallels with how information is processed in the ACCs.  

There is considerable evidence that the ACCs is involved in processing information both at the 

time that choices are instructed and made, as well as at the at the time an outcome of a 

response is monitored (Rushworth et al., 2004; Walton et al., 2004; Kennerley et al., 2009). 

Such information processing conforms to the principles of a well founded theoretical 

framework, namely Reinforcement Learning Theory (RLT) (Rushworth et al., 2007; Holroyd and 

Coles, 2008; Rushworth and Behrens, 2008). There are two key principles to this theory (i) 

predictions are made about the value of an action and (ii) these values are updated when new 

information reveals that the prediction was erroneous. As outlined in chapter one, there is a 

considerable body of neurophysiology and neuroimaging evidence that supports the notion 

that the ACCs processes information in a manner that conforms to these two principles. In 

addition, a large number of studies have suggested that the predicted values encoded by 

neurons in the ACCs are modulated by variables that discount the value of rewards (Kennerley 

et al., 2009; Kennerley and Wallis, 2009; Hayden and Platt, 2010; Hillman and Bilkey, 2010). 

The four studies in this thesis tested whether the ACCg processes the discounted value of 

others’ actions at the time that predictions are made and also whether the ACCg signals when 

others’ predictions about the outcomes of their actions are erroneous. The results of all four 

studies can be summarised as follows: 

 Chapter three: The ACCg responded exclusively when the outcome of a third-person’s 

decision was unexpectedly positive. The ACCs responded to the unexpectedly positive 

outcomes of either a third-person’s or a computer’s responses. 

 Chapter four: Activity in the ACCg varied with the discrepancy between a third-

person’s prediction and the actual outcomes of their action, in a manner that 

conformed to the computational principles of RLT. 

 Chapter five: Activity in the ACCg varied with the net value of rewards, discounted by 

the effort expended by a third-person. Activity in the ACCs varied with the predicted 

level of effort regardless of whether the actions were to be performed by the subject 

or by a third-person. 

 Chapter six: Activity in the ACCg varied with the value of delayed rewards, discounted 

in a manner that conformed to a social norm. Activity in the ACCs was found to vary 

with both the subjective and normative value of delayed rewards. 
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Broadly speaking, these results support the view that that the ACCs and the ACCg process 

variables that guide decision-making in a manner that conforms to RLT. In the ACCg this 

information is processed for third-person actions, whereas in the ACCs this information is 

processed regardless of whether it pertains to the actions of oneself or another. 

7.1 Contributions of the ACCg to Social Cognition 
 

One of the important features of this thesis was that specific anatomical predictions were 

made about the location of first-person and third-person information processing in the ACC. In 

this section, I discuss the extent to which the results support the claim that the gyral surface of 

the MCC is engaged when processing information about others’ actions. Specifically, this 

section examines whether the ACCg processes the discounted value of others’ actions and also 

whether information processing in this area conforms to the principles of RLT. 

7.1.1 Does a portion of the ACC respond exclusively to social information? 
 

All four experimental chapters in this thesis reported activity in the ACCg when processing 

social information. Chapters’ three and four reported activity in this region when others’ 

predictions were erroneous and chapters five and six reported activity in this area which varied 

with others’ valuations of actions. Importantly, the ACCg was not activated in any of the 

studies by first-person predictions or when first-person predictions were erroneous. The 

notion that it is the ACCg and not the ACCs that processes social information was first 

proposed by Rudebeck et al. (2006a). As stated in chapter one, they examined the time 

between the presentation of a food item and a monkey reaching for the food item, when the 

food was presented simultaneously with an additional stimulus. When this stimulus was that 

of another monkey, or a human, there was latency before the monkey reached for the food 

item. This latency was reduced when the food item when was presented simultaneously with a 

neutral stimulus (such as moving dots). Lesions to the ACCg, but not the ACCs or the OFC, 

resulted in a significant decrease in the latency before the monkey reached for the food when 

it was paired with a social stimulus (see fig.1.4 in chapter one). The ACCg lesions also resulted 

in changes in the monkey’s behaviour when interacting with other conspecifics, which did not 

occur following OFC or ACCs lesions. Thus, lesions to the ACCg and not the ACCs impact upon 

the processing of social information. The results of Rudebeck et al. (2006a) compliment the 

results in this thesis in highlighting the ACCg as important for processing social information. 
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Fig. 7.1 (A) Activity shown in the ACCg for the four studies 

reported in the thesis, shown on the MNI template. Results 

from chapter three (yellow), in which the ACCg signalled 

when a third-person would receive an unexpectedly positive 

outcome; chapter four (green), in which activity in the ACCg 

signalled the discrepancy between a third-person’s 

prediction and the actual outcome known by the subject; 

chapter five (red) in which activity in the ACCg varied with 

net value of a third-person’s effortful actions and chapter six 

(blue) in which activity in the ACCg varied with the 

normative value of a delayed reward. (B) Results of DWI 

based parcellation of the cingulate cortex  by Beckmann et 

al. (2009). The results in the studies of this thesis all 

putatively fall within the ACCg cluster shown in red. (C) An 

illustrative schematic of the cytoarchitectural zones of the 

ACCg taken from Bush et al (2000). Putatively, each of the 

results in (A) falls within area 24b’.  

 

 

 

 

The results in this thesis all fell on the gyral surface of the MCC. Rudebeck et al. (2006a), 

lesioned the entirety of areas 24a and 24b and the majority of areas 24a’ and 24b’ on the gyral 

surface of the cingulate cortex in the macaques’ brains. However, the most posterior portions 

of areas 24a’ and 24b’ were not lesioned. It should be noted here, that the same criteria were 

used to define these regions in the macaque and the human brain by Vogt and his colleagues 

(Vogt et al., 1987; Vogt et al., 1995). However, although the regions are homologous, it is 

difficult to determine whether the activations reported in this thesis fall within the same 

portion of the MCC that was lesioned. Nevertheless, figure 7.1 highlights how the clusters in 

two of the studies in this thesis, putatively lie in the most rostral portion of area 24a’ and 24b’, 

and therefore are likely to fall within the same portion of the MCC which was lesioned by 

Rudebeck et al., (2006a) in the macaque monkeys. The clusters activated in chapter three and 

five lie in the posterior portions of the MCC, and it is therefore not clear whether these fall in 

C 
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the portion of the gyrus that was lesioned. The study by Behrens et al., (2008) that has been 

discussed previously in this thesis, reported activity in the ACCg that varied with the volatility 

of the advice provided by a third-person at the time of the outcomes of the subjects’ decisions. 

Interestingly, the cluster that responded to the third-person information (the volatility of the 

confederate advice) in their study fell within a slightly more posterior portions of the gyral 

MCC, possibly in the area that was not lesioned by Rudebeck et al., (2006a). This cluster 

overlaps with the results of the two chapters which showed activity in posterior MCC. Another 

fMRI study by Apps et al. (accepted), also reported activity in the ACCg when processing the 

outcomes of others’ decisions. In their task, subjects learnt a series of arbitrary associations 

between instruction cues and actions, and also observed different arbitrary associations being 

learnt by a third-person and a computer. Activity was examined at the time of the outcomes of 

each agent’s decisions. There could be one of three possible outcomes on each trial: correct, 

incorrect, or ambiguous (a neutral stimulus that was uninformative about the accuracy of the 

response). They reported that activity in the ACCg, also in a more posterior portion of the 

MCC, was increased when the outcome of the third-person’s trial was unexpectedly 

ambiguous. This region showed no response to any of the outcomes of the first-person’s or 

computer’s trials. The results of previous research and those in this thesis therefore support 

the notion that the overarching property of the gyrus in the MCC is to process social 

information. 

Examination of the anatomical location of the results from each of the four studies in this 

thesis shows that the activated clusters all fall into an anatomical area that lies on the gyral 

surface of the cingulate cortex. Specifically the clusters lie posterior to the genus of the corpus 

callosum, inferior to the sulcus and anterior to the PCC. This anatomical area corresponds to 

the gyral surface of the MCC and therefore suggests that each of the activations reported in 

the ACCg in this thesis fall within either areas 24a’ or 24b’. Figure 7.1 illustrates the 

correspondence between the locations of these clusters and areas 24a’ and 24b’ in the MCC. 

Interestingly, Beckmann et al. (2009) showed that a portion of the gyral surface of the 

cingulate cortex, extending over the whole of the MCC area, may have different connectional 

properties to the rest of the cingulate cortex. They parcellated the cingulate cortex using 

Diffusion-Weighted Imaging (DWI), showing that the gyral MCC shows a different pattern of 

connectivity from other portions of the cingulate cortex. An examination of figure 7.1 shows 

that the activations in the ACCg that are reported in this thesis all appear to overlap with the 

cluster resulting from the DWI paracellation, suggesting that the results in this thesis all fall 

within an area that has distinct connections from the other portions of the cingulate cortex. 
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The results of tracer studies in nonhuman primates support the notion that the connectivity 

profile of the gyral surface of the MCC is distinct from any other portion of the cingulate 

cortex. The most notable distinction is that this area is connected to posterior portions of the 

superior temporal sulcus, the paracingulate cortex and the temporal poles that are not found 

in the adjacent sulcus (Pandya et al., 1981; Vogt and Pandya, 1987; Seltzer and Pandya, 1989). 

These areas comprise the core-circuit which is engaged when mentalizing (Frith and Frith, 

2003). Thus, the clusters activated in each of the studies in this thesis all fall within a portion of 

the MCC that has a connectivity profile that is distinct from other regions of the cingulate 

cortex. Specifically, the clusters fall within the only portion of the cingulate cortex that has 

access to a network that is specialised for processing social information. 

An important finding in three of the chapters in this thesis is that the ACCs responds to the 

predicted values or erroneous predictions of others. In chapter five, activity in the ACCs varied 

with the level of effort on the third-person’s trials and in chapter six, activity in the ACCs 

covaried with normative valuations of delayed rewards. In addition, in chapter three activity in 

the ACCs was found when the outcome of a third-person’s response was unexpectedly 

positive. It could therefore be argued that the ACCs, like the ACCg, processes others’ 

predictions and outcomes, invalidating the claim that it is the gyral surface of the MCC and not 

the sulcus that processes social information. However, crucially in none of the studies in this 

thesis was activity found in the ACCs exclusively when subjects’ processed the predicted 

values, or the erroneous predictions of others. In each study, activity in the ACCs was also 

found to process first-person predicted values or first-person prediction errors (apart from 

chapter 4 where there was no first-person predicted value or prediction error related event) 

Thus, the ACCs is not engaged exclusively when processing social information, suggesting that 

it may process the predicted value of actions and signal erroneous predictions about actions, 

regardless of the source of the decision that led to the prediction. This therefore supports the 

claim that the ACCg is the only region of the cingulate cortex that is involved in processing the 

predictions and erroneous predictions of others 

One caveat to this interpretation of ACCg function is that very few studies have tested 

specifically whether it is the gyrus, and not the sulcus, that is engaged in processing social 

information. As outlined in chapter one, in general the large corpus of studies investigating the 

neural antecedents of mentalizing abilities have not reported activity in the ACCg when 

subjects are processing the mental states of others (Van Overwalle and Baetens, 2009). In that 

chapter the methodological and conceptual reasons for why these studies may not have 

detected activity in the ACCg when subjects were processing information about others were 
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outlined. Typically, with an absence of neuroimaging data to support one’s claims, one would 

examine the neurophysiological properties of neurons in the area under question. However, as 

also outlined in chapter one, to the best of my knowledge there has been no study that has 

recorded from neurons in the ACCg when subjects are processing a social stimulus. Thus, 

whilst the studies in this thesis were consistent in finding activity in the ACCg when processing 

other’s predictions and erroneous predictions, there are only a limited number of other 

studies that support its claims.  

 

7.1.2 Does the ACCg process the variables that guide other’s decision-

making? 
 

In the ACCs, single-unit recording studies have shown that the there are neurons in which the 

activity varies with reward magnitude, reward probability and effort-related costs (Kennerley 

et al., 2009; Kennerley and Wallis, 2009; Hayden and Platt, 2010). Neuroimaging studies have 

also shown that activity in the sulcus of the MCC is modulated by reward probability and 

magnitude (Knutson et al., 2000; Knutson and Cooper, 2005; Knutson and Bossaerts, 2007). 

Activity in this area is also modulated by variables that discount rewards such as temporal 

delays before receipt (Kable and Glimcher, 2007; Luhmann et al., 2008; Bickel et al., 2009; 

Peters and Buchel, 2009) and the amount of effort to be expended (Croxson et al., 2009). This 

thesis examined whether the ACCg processes these variables about others’ decisions, 

specifically examining whether the ACCg processes the net value of others’ actions. Chapter 

five reported that activity in two different portions of the ACCg was engaged when subjects 

were processing the effort-discounted value or the undiscounted value of others’ rewards. In 

chapter six, activity was also reported in the ACCg that signalled the value of delayed rewards 

that were discounted in a manner that conformed to a social norm. These two chapters 

therefore support the claims that the ACCg processes the effort-discounted and delay-

discounted value of others’ rewards, in the same manner that the ACCs processes the value of 

one’s own rewards. However, the ACCg processes this information about others’ valuations of 

rewards. None of the studies in this thesis explicitly examined the processing of reward 

probability. However, both chapter three and four showed that the ACCg signals the 

discrepancy between another’s prediction and the actual outcome, when the predictions were 

probabilistic in nature. As such, the third-person’s prediction, and therefore the error, was also 

probabilistic. Overall, the results of this thesis highlight the ACCg as a region which codes the 
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same variables that are coded in the ACCs. However, the evidence in this thesis suggests that 

the ACCg processes this information about the decisions and actions of others. 

Anatomical evidence indicates that the ACCg may have access to information in areas that are 

engaged when subjects’ discount the value of rewards. The gyral MCC has connections to the 

core of the nucleus accumbens and the CMAr (Dum and Strick, 1991; Kunishio and Haber, 

1994; Morecraft and Van Hoesen, 1998), as well as portions of the ACCs that lie rostral to it 

(Pandya et al., 1981; Vogt and Pandya, 1987; Morecraft et al., 1992). Both the nucleus 

accumbens and the CMAr are implicated in processing effort-discounted reward values. 

Previous neuroimaging studies and chapter five in this thesis have reported activity in the 

CMAr and the nucleus accumbens that varies with the value of effort-discounted rewards 

(Botvinick et al., 2009; Croxson et al., 2009). In addition, neurons in the CMAr have been found 

to increase their firing rate with the predicted level of effort to be expended (Kennerley et al., 

2009) and lesions to the nucleus accumbens disrupt choices between rewarding options with 

different levels of effort required  for their receipt (Ishiwari et al., 2004; Salamone et al., 2007). 

As such, the gyral surface of the MCC would appear to have access to information about the 

effort-discounted value of rewards. Similarly, the MCC is connected to areas of the brain that 

have been found to be engaged when subjects discount the value of delayed rewards, 

including the intraparietal sulcus the PCC, as well as the nucleus accumbens and more anterior 

portions of the MCC (Pandya et al., 1981; Hurleygius and Neafsey, 1986; Vogt and Pandya, 

1987; Buckwalter et al., 2002; Vianna et al., 2002; Kable and Glimcher, 2010; Louie and 

Glimcher, 2010; Prevost et al., 2010). Thus, the ACCg may have access to information in areas 

that process both the effort-discounted and the temporally discounted value of rewards. 

These connections and those to the core-circuit engaged when mentalizing discussed earlier, 

highlight the ACCg as a candidate for processing the discounted value of others’ rewards. 

Thus far, it has been claimed that the ACCg is engaged when the reward value associated with 

others’ actions are processed. However, as outlined in chapter one, the conflict monitoring 

account of the functional properties of the ACC is the most prominent in the literature (Carter 

et al., 1998; Botvinick, 2007; Cole et al., 2009, 2010). Previously in this thesis, it was argued 

that the conflict monitoring perspective could not account for the results of a number of 

studies investigating the functional properties of the ACC. However, given the prominence of 

this theory in the literature, it is pertinent to discuss whether the results reported in this thesis 

could be accounted for by its predictions. In chapter three, the subjects’ task was to determine 

whether the outcome of a third-person’s or computer’s response was the same as that which 

was predicted on the basis of a fixed ratio of probabilities. Specifically, on 1/3 of trials the 
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outcome was different from that which was predicted. The subjects indicated on each trial 

whether the outcome was discrepant from the predicted outcome by making one of two 

responses on a keypad. It could be argued that on the trials where there was a discrepancy 

between a prediction and an outcome, there was conflict between the subject’s prepotent 

response (i.e. a button press indicating that there was no discrepancy) and the response that 

was now required (i.e. a button press indicating that there is a discrepancy). However, in this 

study, activity in both the ACCs and the ACCg was found when an outcome was unexpectedly 

positive and not when the outcome was unexpectedly negative. Both of these trial types 

would require the cancellation of the same prepotent response. Thus, the absence of a 

response in the ACC to unexpectedly negative outcomes suggests that changes in activity in 

this area could not be explained by changes in the level of conflict. 

In chapter five, activity was examined at the time of instruction cues that signalled the level of 

reward and the amount of effort to be expended. It has been argued that when choices are 

made between different options, the ACCs processes how much conflict there is between 

them (Botvinick, 2007). However, in chapter five, subjects were not presented with a choice, 

but were instructed how much effort needed to be expended to receive a reward. Thus, the 

identified responses in the ACCs and ACCg could not be explained by conflicts between 

different options.  

Finally, in chapter six, activity in the ACC varied with normative and subjective valuations of 

delayed rewards. It could be argued that the activity in the ACC reflected the degree of conflict 

between the delayed and immediate options. However, activity in both the ACCg and the ACCs 

increased as the value of the discounted rewards increased. Thus, as there was an increase in 

conflict between the two options, there was a decrease in the ACC response. Such a profile of 

activity contradicts with the conflict monitoring account, which would predict that the closer 

the values of the delayed and immediate options are, the greater the conflict between the 

options and therefore the greater the response would be in the ACC. Thus, the responses in 

the ACC were diametrically opposite to those which would be predicted by the conflict 

monitoring account. Therefore, in this thesis, there is little evidence in this thesis to support 

the claims of the conflict monitoring account of ACC function. 
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7.1.3 Does information processing in the ACCg conform to the principles of 

RLT?  
 

In chapter one, I suggested that the ACCs may process information in a manner that conforms 

to the principles of RLT. RLT posits that there are two main processes that underpin learning 

and decision-making (Sutton and Barto, 1998; Dayan and Balleine, 2002; Schultz, 2006; Dayan 

and Daw, 2008). Firstly, predictions are made about the value of alternative choices. These 

predicted values are used to guide decision-making, and once a choice has been made, the 

values are coded as the predicted outcome of the chosen response. The second component of 

RLT is the prediction error signal that updates the value of an action when an outcome was 

unexpected. To examine whether information processing in the ACCg conformed to the 

principles of RLT, it was therefore important to examine activity at the time of cues that (i) 

signalled the predicted value of others’ actions and  (ii) signalled a discrepancy between the 

predicted value of another and their actual outcome (the prediction error component). The 

results of this thesis support the notion that the ACCg processes information in a manner that 

conforms to the principles of RLT. In chapters’ three and four, activity in the ACCg signalled the 

discrepancy between another’s prediction about the value of the actions and the actual value 

of that action known by the subject. These two studies therefore support the notion that the 

ACCg processes the prediction error component of RLT. In addition, in chapter five activity in 

the ACCg varied with the net value of another’s effort-discounted rewards at the time of 

instruction cues, suggesting that the ACCg processes the predicted value of others’ actions. In 

addition, in chapter six activity in the ACCg varied with a normative valuation of discounted 

rewards at the time of cues that instructed the choice to be made. Although this study did not 

examine whether the ACCg processed another’s predictions per se., as it was the value 

according to a social norm that was being processed, it still highlights that the ACCg processes 

others’ valuations of rewards at the time when predictions can be made. Thus, the results in 

this thesis broadly support the notion the ACCg processes the predicted values and erroneous 

predictions of others in a manner that conforms to RLT. 

To the best of my knowledge, the research in this thesis is the first to test the hypothesis that 

activity in the ACCg varies with the predicted value of others’ rewards at the time that another 

is instructed about their actions. However, one study has shown that different portions of the 

ACC are engaged when processing other’s actions from those that are engaged when making a 

choice oneself. An influential study by Tomlin et al., (2006) used a pattern analysis approach to 

examine activity in the ACC during a game-theoretic trust task. In this game, the subject and a 
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partner performed an iterative task where one player is required to invest money, which is 

tripled for the other player who makes a decision as to how much money to repay the investor 

(Tomlin et al., 2006). Tomlin et al., (2006) found that the pattern of activity in the MCC was 

different when subjects invested money, from when they monitored the decisions of the other 

player, i.e. at the point in time when they could infer the value that the other was placing on 

the rewards. Unfortunately, due to the pattern analysis technique employed, it is not possible 

to comment on whether this was a result of specific changes in the gyral MCC and not the 

sulcal MCC. However, this study offers tentative support for the notion that distinct portions of 

the ACC process one’s own and other’s predictions about the value of their actions. 

Whilst few studies examined the role of the ACCg in processing social information, two studies 

have reported activity in the ACCg when a subject monitors the outcomes of others’ decisions. 

In one study, subjects were required to perform, or observe a third-person performing, a 

go/no-go task. They reported that the gyral surface of the MCC, was activated exclusively to 

the erroneous inhibitions and erroneous responses of the third-person (Shane et al., 2008). 

This supports the notion that the ACCg signals when others’ responses are erroneous at the 

time that the outcome of their response is revealed. Another study by Apps et al., (accepted), 

found that a portion of the ACCg responded exclusively when the prediction that the outcome 

of a third-person’s decision would be informative was erroneous. Thus, these results 

tentatively support the conclusions that can be drawn from the studies in this thesis, which the 

ACCg signals when the predictions of others are erroneous. 

The gyrus of the MCC is connected to areas that that signal reward prediction errors, 

supporting the notion that the ACCg may also code prediction error signals. The anterior 

portions of the MCC, on the gyral surface, receives monosynaptic projections from neurons in 

the Ventral Tegmental Area (VTA) in the midbrain (Williams and Goldman-Rakic, 1998). 

Neurons in the VTA increase their firing rate quantitatively with the magnitude of the 

discrepancy between a prediction and error (Hollerman and Schultz, 1998; Schultz, 1998; 

D'Ardenne et al., 2008; Bayer and Glimcher, 2005). As yet, unfortunately, no study has 

examined whether such connections are also found from the posterior portions of the MCC. In 

addition, both the posterior and anterior portions of the MCC have connections to the CMAr 

which, as discussed throughout the thesis, contains neurons which signal when predictions are 

erroneous (Matsumoto et al., 2007; Hayden et al., 2011b). In addition, the ACCg also has 

connections to areas that functional imaging research in humans has found to be activated 

when processing the discrepancy between predictions about rewarding outcomes and the 

actual outcome. This includes both the OFC (Carmichael and Price, 1995; Ramnani et al., 2004) 
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and the nucleus accumbens (Kunishio and Haber, 1994; Schultz and Dickinson, 2000; Brovelli et 

al., 2008; D'Ardenne et al., 2008). The ACCg therefore has access to information in many 

regions which signal when predictions are erroneous, highlighting it as a candidate region for 

processing prediction errors as well. 

The results in this thesis support the claim that information processing in the ACCg conforms 

to the principles of RLT. However, the nature of the prediction error signals in the ACCg and 

the ACCs are clearly distinct. Specifically, the ACCs signals when first-person predictions about 

the outcome of a decision is discrepant from its actual outcome (Frank et al., 2005; 

Matsumoto et al., 2007; Holroyd and Coles, 2008; Jocham et al., 2009). In contrast, the ACCg 

signals the discrepancy between the prediction of a third-person and the actual outcome 

which is known by the first-person and not by the third-person. Therefore, the studies in this 

thesis examined activity in the ACCg when the subject processed the erroneous predictions of 

a third-person and not when they were monitoring and processing another’s prediction error, 

i.e. activity was not examined at the point in time when an outcome revealed to the third-

person that their prediction was erroneous. The error signals identified in this thesis therefore 

do not conform to a strict interpretation of RLT, which states that a prediction error signal 

updates predicted values (Sutton and Barto, 1981; Sutton and Barto, 1998; Dayan and Daw, 

2008). In the ACCg the prediction signals occurred when only the first-person was able to 

process the discrepancy between the third-persons’ prediction and the actual outcome. The 

third-person could not have been updating their valuation of an action at that time, as they 

still had not been informed of the outcome of their action. Thus, the identified prediction error 

signal does not reflect the update signal of another per se. However, it should be noted that in 

both of the studies where subjects’ processed the discrepancy between a third-person’s 

predictions and their actual outcomes, the outcomes were also revealed to the third-person in 

a subsequent trial event. Therefore, one possible explanation of the ACCg prediction error 

signal is that the subjects were processing the update of the third-persons predictions when an 

event revealed the outcome to them, knowing that the third-person would update their 

valuation at a subsequent trial event. Unfortunately, the designs of these studies did not 

permit a specific and stringent test of this hypothesis.  
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7.2 ACCs: Signalling the value of actions during decision-making 
 

In chapter one, I outlined a framework of how the ACCs might contribute to the processing of 

actions and also to the monitoring of outcomes. An aim of this thesis was to apply the same 

framework to the ACCg, in order to examine its contribution to social cognition. However, it is 

also pertinent to discuss whether the studies in this thesis support the notion that the ACCs 

processes the value of actions and that information processing in this area conforms to the 

principles of RLT. 

Broadly speaking, each of the studies reported in this thesis supports the claims made about 

information processing in the ACCs in chapter one. As discussed earlier, in chapter three the 

ACCs was activated whenever there was an unexpectedly positive outcome of a response by 

either a third-person or a computer, suggesting that the ACCs was coding for the subject’s own 

erroneous predictions. This therefore supports the substantial body of neurophysiology 

research that has found neurons in the CMAr and also rostral portions of the sulcal MCC, in 

which the spike frequency varies with the degree of the discrepancy between a prediction and 

an outcome in the manner predicted by RLT (Amiez et al., 2005; Matsumoto et al., 2007; Sallet 

et al., 2007; Quilodran et al., 2008). In addition, in chapters’ five and six activity in the ACCs 

varied with predictions about the value of rewards at the time that actions were instructed or 

made. This supports the findings of several neurophysiology and neuroimaging studies that 

report activity in the ACCs that increases parametrically with the predicted value of rewards 

(Knutson et al., 2000; Shidara and Richmond, 2002; Rogers et al., 2004; Williams et al., 2004; 

Amiez et al., 2005; Quilodran et al., 2008; Rolls et al., 2008; Kennerley et al., 2009; Hayden and 

Platt, 2010). In addition, these two chapters also support the claim that the ACCs is engaged 

when subjects’ discount the value of rewards. Chapter five showed that activity in the ACCs 

varied with the level of effort that was to be expended by a subject, in line with previous 

neurophysiology studies that have found neurons in this area in which the spike frequency 

increases with the number of actions that are to be performed (Kennerley et al., 2009; 

Kennerley and Wallis, 2009). Finally, chapter six found that activity in two portions of the ACCs 

varied with the temporally discounted values of rewards, replicating the findings of several 

previous studies (Kable and Glimcher, 2007; Peters and Buchel, 2009; Kable and Glimcher, 

2010). Thus, the results of this thesis corroborate previous findings that the ACCs processes 

predictions about the discounted value of actions and also signals when these are erroneous, 

in the manner predicted by RLT. 

C 

X = 2 
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Throughout this thesis I have suggested that variables which discount the value of rewards are 

processed in the ACCs. Specifically, I have suggested that these variables are processed in 

caudal portions of the sulcal MCC (the RCZ in humans). However, at this juncture it is 

important to note that several areas, including the OFC, the Ventromedial Prefrontal Cortex 

(VmPFC), the ventral striatum, the PCC, and portions of the intraparietal cortex have all been 

implicated in processing similar reward-related values, both in this thesis and in other studies 

(Kennerley et al., 2009; Rushworth et al., 2009; Louie and Glimcher, 2010; Pearson et al., 

2011). Each of these areas contains neurons which respond parametrically to value 

information during decision-making, although they may do so during different behaviours and 

during different events in a task. If the RCZ codes the same values as other areas, what specific 

contribution does it make to guiding behaviour? To answer this question, one has to look at 

the differences between the connectional properties of each of these areas. As outlined in 

chapter one, the rostral CMA (CMAr), which lies in the sulcal MCC (corresponding to a portion 

of the RCZ in the human) has strong connections to areas of the brain which process rewards 

(Vogt and Pandya, 1987; Carmichael and Price, 1995) and also to areas in the motor system 

(Dum and Strick, 1991; Luppino et al., 1991; Devinsky et al., 1995). In particular, this region has 

connections directly to the spinal cord, to primary motor cortex, to premotor cortex and also 

to the supplementary (SMA) and pre-supplementary motor areas (pre-SMA) (Wang et al., 

2001). In the most rostral portions there are fewer neurons that project to the primary and 

premotor cortices, although connections to the SMA and pre-SMA are found up to the MCC-

ACC border (Wang et al., 2001). Crucially, neurons that are sensitive to variables that guide 

decision-making are found across the length of the MCC (Kennerley et al., 2009; Kennerley and 

Wallis, 2009; Hayden and Platt, 2010; Hillman and Bilkey, 2010; Hayden et al., 2011b; Hayden 

et al., 2011a). This would suggest that reward-related processing in the ACCs becomes 

increasingly abstract rostrally along the rostral-caudal axis, consistent with the general 

organisation of the frontal lobe. In the CMAr, the information processed is related specifically 

to providing motivation for the performance of an action. In contrast, information processing 

in the more anterior portions may process reward value in a more abstract form. 

There is some evidence in this thesis for the posterior MCC processing the value of actions. In 

chapters three and five, activity was found in the posterior MCC/RCZ, when an unexpected 

outcome of a response occurred and when processing the number of actions that were to be 

performed respectively. In chapter six, activity in this area varied with the temporally 

discounted value of rewards at the time that an action was selected. A portion of the anterior 

MCC also varied with the temporally discounted value of rewards, however, it processed this 
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information at the time that the delayed option was presented and not at the time the action 

was selected. This tentatively supports the notion that the overarching property of the sulcal 

MCC is sensitivity to reward value. In the anterior portions of this area, the value processed 

may be abstract in relation to the action, whereas in the posterior portions the reward 

information is associated specifically with an action. 

The notion that the ACCs is important for associating rewards with actions is also supported by 

the effects of lesions on tasks that require associations to be made between actions and 

rewards. Kennerley et al., (2006; and later Rudebeck et al., 2008 who analysed the data using a 

different approach) reported two experiments which were performed on monkeys who had 

lesions extending along the sulcus from the most rostral portions of the sulcal ACC to the most 

caudal portions of the MCC. In the first experiment, monkeys performed a task where one of 

two movements of a joystick would result in a rewarding outcome. The rewards were 

deterministic, such that monkeys had to sustain a rewarded movement for 25 trials, after 

which the action-outcome contingencies were switched, such that the previously unrewarded 

action would now be rewarded and the other would not. Monkeys in a control group and the 

ACCs lesioned monkeys were able to switch to the alternative action following an error, i.e. the 

trial immediately following the switch in action-outcome contingencies. However, the lesioned 

monkeys, unlike the control group, were unable to sustain the performance of the rewarded 

action following a switch, suggesting that the monkey was unable to associate the reward with 

the chosen response. In experiment two, monkeys performed similar a task, choosing between 

two lever movements. However, the reward associated with each action was not deterministic 

as in experiment one. Each action was assigned a probability of resulting in the reward that 

was in a fixed ratio with the probability that the other action would result in a reward. The 

reward ratios between options and the probability of each action being rewarded were stable 

in blocks of trials, such that subjects could learn them over several trials during a block. In 

separate blocks the ratios and probabilities were varied. Interestingly, the ACCs lesioned 

monkeys required significantly more trials to learn the ratios and the probabilities of each 

action, again suggesting that they were unable to associate actions with rewards (Rudebeck et 

al., 2008).  

Further support for the claim that CMAr in the posterior MCC processes rewards is provided by 

the study Hayden et al., (2010). Hayden and Platt (Hayden and Platt, 2010) trained monkeys on 

a task where they were required to make one of seven different cued saccades to receive 

either a high or low reward. They found that neurons in this region were sensitive to the 

reward level, but only for a specific saccade direction. This argues against the notion that the 
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ACCs processes abstract information, suggesting that this area is engaged in assigning a value 

to a particular action. One could make the claim that this area is therefore processing 

attention related responses. However, Kennerley et al., (Kennerley and Wallis, 2009b) found 

that there were no neurons in the ACCs that coded for spatial location, suggesting that the 

neurons identified in the ACCs by Hayden and Platt (2010) were firing in response to the 

specific action (the saccade), and not the location of the target. This therefore suggests that 

neurons in the ACCs associate a value with a specific action or series of movements. Thus, 

whilst many areas of the brain process values, in the ACCs these values may be specifically 

associated with actions. 

At this juncture it is important to note that the MCC is implicated by a sizeable corpus of 

literature in the processing of noxious stimuli (Lenz et al., 1998; Hutchison et al., 1999; Becerra 

et al., 2001; Buchel et al., 2002). Single-cell recordings from neurons in both the posterior and 

anterior MCC in the human, have shown that there are neurons that increase their spike 

frequency when thermal (both hot and cold) or mechanical painful stimulation is applied to the 

skin (Hutchison et al., 1999). A neuroimaging study that have applied noxious stimuli to the 

body reported activity in both the posterior and anterior portions of the MCC (Peyron et al., 

2000). The location of activations in such studies has been shown to overlap considerably with 

the portions of the MCC that has been implicated in the processing of rewards, actions and 

conflict (Beckmann et al., 2009). This overlap could potentially be considered a limitation with 

the theoretical framework I have proposed.  

Can the viewpoint that the MCC processes pain and the view that it processes the value of 

actions be reconciled? A recent model of the contribution of the MCC to pain processing 

shows a striking correspondence to the theoretical framework that has been outlined in this 

thesis (Shackman et al., 2011). This model suggested that that the function of this region may 

be to motivate behaviours to avoid painful stimulation. This opens up the possibility that pain, 

much like effort and reward probability, is a factor that modulates the value assigned to an 

action. The higher the level of pain experienced, the greater the motivation for acting to 

prevent continuous stimulation.   

If the contribution of the MCC to pain processing is to motivate avoidance behaviour, it is 

important that the firing of neurons in this area is not related to the detection of pain. In 

accordance with this notion, electrical stimulation of neurons which respond to painful 

stimulation in the human MCC, does not result in subjects’ reporting the detection of a painful 

stimulus (Hutchison et al., 1999). fMRI studies show that activity in the MCC is sensitive to 
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placebo-analgesics that reduce the perceived level of pain (Wager et al., 2004). Thus, the level 

of painful stimulation applied to the body is not directly related to activity in the MCC, 

suggesting that the MCC is not part of the system that detects painful stimulation, but another 

process that precedes or follows detection. Interestingly, a study which took single-unit 

recordings from neurons in the posterior portions of human MCC, found that some of the 

neurons in this region respond when painful stimulation can be predicted (Hutchison et al., 

1999). These neurons responded before the painful stimulation occurred, when the subject 

was told they were about to receive a pinprick to their skin. This would therefore suggest that 

neurons in the MCC are engaged by the process of predicting the receipt of pain, before any 

pain could be detected. This could also be interpreted as being indicative of neurons coding 

the motivation for avoiding painful stimulation.  

Single-unit recordings from the monkey MCC have found that some neurons in the MCC  show 

increased firing rates on trials where monkeys perform a successful action to avoid painful 

stimulation (Iwata et al., 2005). These neurons are found in the same area that contains 

neurons which project to the spinal cord (Dum and Strick, 1996) and that contains neurons to 

which stimulation results in limb movements (Luppino et al., 1991). This might suggest that the 

ACCs signals the motivation for performing an action that avoids a painful stimulus. fMRI 

studies in humans also support this assertion. One study showed that activity in the MCC 

increases parametrically with the proximity of a tarantula (Mobbs et al., 2010), which could be 

indicative of an increased motivation for performing actions to avoid any pain that could be 

inflicted by the spider. In another study, activity in the MCC varied parametrically with the 

proximity of a virtual predator in a maze based hunting game, when the subject was acting as 

the prey (Mobbs et al., 2007). Increased activity was therefore related to an increased 

motivation for performing actions to avoid the predator.  

Lesion studies support the notion that MCC is involved in processing pain, but contrast with 

the notion that it processes the motivation for avoidance behaviour. Lesions to the posterior 

portions of the MCC disrupt normal behavioural responses that occur when an animal is in a 

situation that could result in a painful outcome. In the study by Rudebeck et al. (2006a) that 

has already been described in detail, monkeys were presented with food at the same time as 

another stimulus. In one condition they presented the food simultaneously with a video of 

snake. In the control group, there was a considerable duration between the presentation of 

the stimuli and the monkey reaching for the food item. However, lesions to the ACCs resulted 

in a significantly reduced latency before the monkeys reached for the food. One interpretation 

of this is that the monkeys without lesions to the ACCs, discount the value of the food item 
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due to the perceived threat of the snake causing them pain. A lesion to the ACCs results in the 

value of the food not being discounted by the predicted level of pain associated with the 

threatening stimulus. 

There are considerable parallels between how the ACCs processes pain and how the ACCs 

processes reward and effort. As stated previously in this chapter, Kennerley et al. (2009) 

showed how there are neurons in the ACCs that increase their firing rate as the reward 

magnitude (i.e. the motivation) associated with performing an action increases. However, 

there are also neurons that process the reward value discounted by the amount of effort (or 

cost). Thus, it is possible that pain may be processed in the ACCs in a similar manner to how 

rewards and effort are processed, providing motivation for actions and also discounting the 

value of rewards. 

 

7.3 Theory of Mind, Simulation and Decision-making 
 

As outlined in the introduction, historically there were two prominent accounts of the neural 

basis of social cognition. Simulation theory suggests that the cognitive mechanisms that 

underpin the processing of one’s own actions and intentions are simulated when processing 

the same information about another (Gallese and Goldman, 1998; Gallese, 2007). The Theory 

of Mind account suggests that we understand others by making theories about their mental 

states (Frith and Frith, 2003). The discovery of mirror-neurons and the mirror-neuron system 

supported the claims of simulation theory, highlighting how areas of the brain that are 

engaged when performing an action are also engaged when observing another performing the 

same action (Gallese and Goldman, 1998; Rizzolatti and Craighero, 2004; Gallese, 2007). In 

addition, the discovery of a core-circuit that is engaged when processing others’ mental states, 

added support for the theory of mind account (Frith and Frith, 1999, 2006). However, as 

discussed in chapter one, neither account is sufficient to explain all aspects of social cognition 

and neither can account for the fact that damage to other areas of the brain disrupts social 

behaviour. In this section, I argue that the principles on which these theories are based are still 

useful for understanding the neural basis of social cognition. However the theories need to be 

updated to reflect recent evidence about how the brain responds to rewards during social 

interactions. 
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Recently is has been suggested that the traditional account of the mirror-neuron system is not 

sufficient to explain how others’ actions are predicted, or how the goals of their actions are 

understood (Kilner, 2011). Rather, such functions may be performed by other areas within the 

motor system, that also have mirror-like properties. Evidence in support of this notion has 

been provided by an fMRI study by Ramnani and Miall (2004). As outlined in previous chapters, 

they found activity in portions of the middle frontal gyrus (area 9/46) at the time of instruction 

cues, when subjects’ could predict the actions of a third-person. Area 9/46 in the middle 

frontal gyrus is an area that is typically considered as important for processing abstract 

information about actions and is not considered part of the mirror-neuron system. This 

suggests that predicting which action another will perform, recruits parts of the motor system 

outside of the mirror-neuron circuit. Other studies have also found that parts of the motor 

system, not considered as parts of the mirror-neuron system, are activated when subjects 

observe others’ actions. In an fMRI study on macaque monkeys, areas 45a, 45b and 46 on the 

lower bank of the principal sulcus showed increased activity when the monkeys observed 

others performing actions (Nelissen, 2005). These results therefore suggest that areas in the 

motor system, not considered a part of the mirror-neuron system, also have mirror-like 

properties.  

In this thesis, there is some evidence that another part of the motor system, in the posterior 

portions of the MCC (the RCZ), an area that has strong connections to premotor area 44 

(Picard and Strick, 1996), also has mirror-like properties. In chapters five and three, activity in 

this area processed predicted values and erroneous predictions respectively, regardless of 

whether these values were related to one’s own or another’s predictions. Similarly, in chapter 

six activity in the posterior MCC varied with both subjective and normative valuations of 

delayed rewards. These results suggest that this area codes information in a manner that is not 

agent-specific. Although these studies did not directly test a simulation theory hypothesis, they 

certainly provide evidence to support the notion that the RCZ, an area that is considered part 

of the motor system, also has mirror-like properties. Understanding others’ actions may 

therefore require simulation in many different portions of the motor system.  

The results of this thesis suggest that several other areas also have mirror-like properties. The 

insula and a portion of ventromedial area in the frontal lobe, at the juncture between the 

superior portions of the OFC and the inferior portions of the superior frontal gyrus on the 

medial, are well-known for processing reward values (Hare et al., 2009; Smith et al., 2010; 

Tricomi et al., 2010). However, in chapter four, activity in both of these areas varied with a 

third-person’s prediction about the value of an action, suggesting that depending on the task 
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context, these areas may process values regardless of the source of the valuation. Chapters 

five and six also found activity in the VmPFC and anterior portions of the MCC (anterior to the 

portions described above) that varied with both one’s own and others’ valuations of effort and 

temporally discounted rewards. Two other studies that have been discussed in detail in this 

thesis (Behrens et al., 2008; Hampton et al., 2008), have shown that activity in the VmPFC 

varies with the valuation of a reward that combines first-person and third-person estimates of 

value. These studies therefore support the claim that this area may process the value of 

rewards, regardless of the agent who is valuing it. Interestingly, the studies in this thesis and 

previous neuroimaging studies that have already been discussed also show that these areas 

process prediction error signals (Burke et al., 2010; Preuschoff et al., 2008). Tentatively, 

therefore, I suggest that there are areas of the brain, including the VmPFC, the insula and the 

sulcus of the MCC, in which activity varies parametrically with statistical properties that are 

related to the value of rewards, regardless of whom will receive the reward. In these areas 

that have mirror-like properties, information is processed in a manner that conforms to RLT. 

Whilst there is evidence that there are areas which are engaged when simulating the 

processing of others’ actions and decisions, there is also evidence to suggest that there are 

areas that are recruited exclusively when processing social information. In chapter one, 

evidence was reported in support of the notion that there are a core-circuit of brain areas that 

are involved specifically in processing the mental states of others (Frith and Frith, 2003; Frith 

and Frith, 2006; Frith and Frith, 2010). In several chapters I have also discussed two studies, by 

Behrens et al., (2008) and by Hampton et al., (2008), that reported activity in the paracingulate 

cortex and the pSTS that varies parametrically with reward-related values during social 

interaction tasks.  At several points I have also highlighted how these two previous 

neuroimaging studies have reported that areas in this network process prediction errors. In 

this thesis, I have reported evidence that suggests that the ACCg is similarly specialised, 

processing other’s predictions and erroneous predictions about the value of their actions. 

These studies therefore provide evidence to suggest that the pSTS, the paracingulate cortex 

and the ACCg form an interconnected network of areas that process information about the 

mental states of others. These areas process this information in a manner that conforms to the 

principles of RLT 

In summary, the results of this thesis support the notion that there is a network that is 

engaged exclusively when processing the decisions and actions of others. The ACCg falls within 

this network and may specifically be engaged by processing the value that others’ place on 

their actions. However, this network is not sufficient for all aspects of social behaviour. 
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Interacting successfully in social environments may require others’ value-related information 

to be simulated in networks which also process first-person reward valuations. These two 

systems, however, can be unified by the fact that they process information in a manner that 

conforms to the principles of RLT. 

 

7.4 Future Directions 
 

Like much scientific investigation, the work in this thesis has generated more questions than it 

has answered. Whilst it is not possible to report all of the possible extensions of this work 

here, I will try and summarise the three key areas in which the most interesting and relevant 

work could be pursued. 

Perhaps the most important finding in this thesis is that it was specifically the gyral surface of 

the MCC that was involved in processing social information in each of the studies and not the 

sulcus. In chapter one, I presented a series of studies in which recordings were taken from the 

ACC during decision-making tasks. These studies showed that there are neurons in the ACC 

which are sensitive to variables which guide decision-making. However, in these studies 

electrodes were placed exclusively in the sulcus (Shidara and Richmond, 2002; Amiez et al., 

2005; Sallet et al., 2007; Quilodran et al., 2008; Kennerley et al., 2009; Kennerley and Wallis, 

2009) and to the best of my knowledge no previous study has recorded from neurons in the 

gyrus. As such, the studies in this thesis and one other functional imaging study by Behrens et 

al. (2008), are the only studies that have directly tested whether ACCg, and not the ACCs, is 

engaged when processing the value of others’ actions in a manner that conforms to RLT. Thus, 

the most obvious extension to the research in this thesis would be to examine the functional 

properties of neurons in the ACCg. This research could be conducted in monkeys, or 

alternatively on patients who are about to receive a cingulotomy. To date, recordings of 

neurons in the gyrus have been absent from the literature, largely due to the practical issues 

that surround recording from a region in the depths of the medial wall. However, if such 

practical issues can be overcome, several questions based around the results of this thesis 

could be asked about what specific functional properties neurons in the ACCg have. Firstly, do 

neurons in the ACCg respond when monkeys observe the actions of another? Secondly, if 

neurons respond to others’ actions, do they process the effort, reward magnitude and reward 

probability associated with others’ actions, in the same manner as neurons in the ACCs do for 
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first-person actions? Thirdly, if neurons process the variables that discount the value of others’ 

actions, are there neurons that multiplex this information, in the same manner as in the ACCs? 

Answering these questions may be difficult due to the impracticality of training monkeys on 

tasks where they process these sources of information about other agents. However, the 

answers to such questions may enable stronger conclusions to be drawn about the results of 

the studies reported in this thesis and also further the understanding of the contribution of the 

ACCg to social cognition. 

In this thesis, I presented a framework for information processing in the ACCs, suggesting that 

the overarching function of the region is to process the value of actions during decision-

making. Previous research and the results in this thesis, suggest that the ACC processes the 

value of rewards that are discounted by other variables such as effort and delay. However, I 

have also suggested that values are updated by prediction error signals that occur in the ACC. 

An important issue which has not yet been investigated is whether the ACC processes the 

discrepancy between the predicted net value of delay and effort-discounted rewards and their 

actual value i.e. do prediction error signals in the ACCs code for incidences when the level of 

effort expended is different from the expected level of effort? Further research investigating 

such prediction error signal, may therefore provide additional support for the notion that ACCs 

conforms to the principles of RLT. 

In section 7.2 I suggested that pain may also be a variable that discounts the value of actions 

and, additionally may also be a motivation for the avoidance of actions. However, despite the 

evidence presented that tentatively supports this claim, there is an absence of 

neurophysiological or neuroimaging evidence that has directly tested whether such processes 

are localized to the ACCs. Therefore future research is required to investigate whether pain 

can be incorporated into the framework that has been presented in this thesis. Specific 

questions could be asked to tackle this issue: do neurons in the ACCs increase their firing rate 

in order to motivate a specific action to avoid a painful stimulus? Are there neurons in the 

ACCs that multiplex reward magnitude and pain, in a manner that discounts the value of a 

reward based on the amount of pain that will be suffered for its receipt? Finally, are there 

neurons in the ACCg that increase their firing rate exclusively when another is observed 

receiving pain, or performing an action to avoid a painful stimulus? Answers to these questions 

would provide considerable insight into how the ACC contributes to motivating useful actions 

and avoiding rewarding actions that are associated with significant costs. 
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Appendix A (1) – Experiment one debrief sheet 
Debriefing Sheet.  

Thank you for taking part in the study. We would like to provide you with some further 

information about the experiment so that you are fully aware of the methods and aims. 

The aim of the project was to investigate neural responses that occur when participants are 

monitoring the predictions others’ make about an outcome. We are particularly interested in 

when the predictions made by another person are false. Earlier we told you that on some trials 

you were observing the decisions made by the ‘decision-maker’. However, these responses were 

not related to another person, but were computer generated. Also, the decision-maker was not 

another participant, but a confederate (one of the researchers). 

It was necessary to use these measures because they allowed us to maintain control over the 

experiment whilst maintaining your belief that you were observing the responses and 

predictions related to another person’s outcomes. In light of this new information, we would 

like to give you another opportunity to consider whether or not you will permit us to use your 

data. You are free to withdraw consent for us to use your data without giving reasons. 

We would be grateful if you could indicate your decision on the consent form below. 

  

Second Consent form 

ID number………………. 

 

Monitoring others’ false predictions: An fMRI study. 

 

You have been asked to participate in a study about the brain processes that occur when 

monitoring others’ predictions, which is being carried out by Dr. Narender Ramnani, Matthew 

Apps, Vivien Ainley and Robin Green. 

 Have you (please circle yes or no): 

 Read the information sheet about the study? yes no 

 Had an opportunity to ask questions? yes no 

 Got satisfactory answers to your questions? yes no 

 Understood that you’re free to withdraw from the study 

at any time, without giving a reason  yes no 

(and without it affecting your care/ education if applicable)?  

Do you give consent to use your data in light of the new information provided after the study?

  

 yes no 

Signature___________________  Name in block letters ________________Date _________  

NB: This consent form will be stored separately from the anonymous information you provide.  
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Appendix A (2) – Experiment two debrief sheet 

Thank you for taking part in the study. We would like to provide you with some further 

information about the experiment so that you are fully aware of the methods and aims. 

The aim if the project was to investigate neural responses that occur when participants learn 

that someone else has made a correct or incorrect response and when they are providing 

them with feedback. Earlier we told you that you were observing the decisions made by the 

‘Learner’. However, these responses were not related to another person, but were computer 

generated. Also, the Learner was not another participant, but a confederate (one of the 

researchers). 

It was necessary to use these measures because they allowed us to maintain control over the 

experiment whilst maintaining your belief that you were observing the decisions made by 

another person. In light of this new information, we would like to give you another 

opportunity to consider whether or not you will permit us to use your data. You are free to 

withdraw consent for us to use your data without giving reasons. 

We would be grateful if you could indicate your decision on the consent form below. 

………………………………………………………………………………………………………………………………………….

  

Second Consent form 

ID number………………. 

 

Teaching Other’s: An fMRI study. 

You have been asked to participate in a study about the brain processes that occur when 

monitoring others’ predictions, which is being carried out by Dr. Narender Ramnani and 

Matthew Apps. 

 Have you (please circle yes or no): 

 Read the information sheet about the study? yes no 

 Had an opportunity to ask questions? yes no 

 Got satisfactory answers to your questions? yes no 

 Understood that you’re free to withdraw from the study 
at any time, without giving a reason  yes no 

(and without it affecting your care/ education if applicable)?  

Do you give consent to use your data in light of the new information provided after the study?

  yes no 

  

Signature___________________  Name in block letters_______________Date _________  

NB: This consent form will be stored separately from the anonymous information you provide.  
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Appendix A (3) – Experiment three debrief sheet 

Thank you for taking part in the study. We would like to provide you with some further 

information about the experiment so that you are fully aware of the methods and aims. 

The aim of the project was to investigate neural responses that occur when you have to 

expend different amounts of effort for differing financial rewards. We are particularly 

interested in examining what happens when you are thinking about the amount of effort 

another is expending. We previously told you that you were performing this task with a 

training partner situated outside the scanner. However, in fact, your training partner is a 

member of the research team. The responses you saw on the screen on each trial were 

actually pre-programmed computer-controlled responses. It was necessary to use these 

measures because they allowed us to maintain control over the experiment and examine how 

individuals understand the effort expended by another more reliably. 

In light of this new information, we would like to give you another opportunity to consider 

whether or not you will permit us to use your data. You are free to withdraw consent for us to 

use your data without giving reasons. 

We would be grateful if you could indicate your decision on the consent form below. 

  

Second Consent form 

ID number………………. 

Effort and Rewards: An fMRI study. 

You have participated in a study about the brain processes that occur when you put in different 

amounts of effort to receive financial rewards,which is being carried out by Matthew Apps, 

Erman Misirlisoy, Arleta Woznica and Dr. Narender Ramnani. 

 Have you (please circle yes or no): 

 Read the information sheet about the study? yes no 

 Had an opportunity to ask questions? yes no 

 Got satisfactory answers to your questions? yes no 

 Understood that you’re free to withdraw from the study 
at any time, without giving a reason  yes no 

(and without it affecting your care/ education if applicable)?  

Do you give consent to use your data in light of the new information provided after the study?

  yes no 

  

Signature______________________  Name in block letters_____________Date __________ 

NB: This consent form will be stored separately from the anonymous information you provide.  
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Appendix A (4) – Experiment four debrief sheet 

Thank you for taking part in the study. We would like to provide you with some further information 

about the experiment so that you are fully aware of the methods and aims. 

The aim of the project was to investigate neural responses that occur when people make financial 

decisions. We are particularly interested in examining what happens when participants learn about how 

the majority of people make these financial decisions. We previously told you that we had collected 

data from 102 participants and established that 69% of people agreed on the better option. We also told 

you that on each trial you received this information. However, in fact, we have not collected data from 

any participants other than those involved in this MRI experiment. The information you received was 

not that of any other individual, but was part of the experimental design. The experiment was designed 

so that you may not always choose the same option as the majority of other people. It was necessary to 

use these measures because they allowed us to maintain control over the experiment and investigate 

how people learn about how others make financial decisions. 

We would like to stress that the way people perform this task is highly variable and there is no abnormal 

behaviour. The task does not therefore indicate that the way you make financial decisions is any 

different from how other people make them. In light of this new information, we would like to give you 

another opportunity to consider whether or not you will permit us to use your data. You are free to 

withdraw consent for us to use your data without giving reasons. 

We would be grateful if you could indicate your decision on the consent form below.  

Second Consent form 

ID number………………. 

 
Financial Decision-Making: An fMRI study. 

You have been asked to participate in a study about the brain processes that occur when 

making financial decisions, which is being carried out by Dr. Narender Ramnani and Matthew 

Apps. 

 Have you (please circle yes or no): 

 Read the information sheet about the study? yes no 

 Had an opportunity to ask questions? yes no 

 Got satisfactory answers to your questions? yes no 

 Understood that you’re free to withdraw from the study 
at any time, without giving a reason  yes no 

(and without it affecting your care/ education if applicable)? 

Do you give consent to use your data in light of the new information provided after the study?

 yes no 

Signature______________________  Name in block letters 

__________________________Date _________ 

NB: This consent form will be stored separately from the anonymous information you provide. 
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Appendix B (1) – Quality assurance for chapter three. 
  

 

 

 

 

 

 

 

 

 

 

 

The results displayed are from “phantom” data collected one week prior to onset of collection of data for chapter 

three. In the top left is the mean image of the timeseries. Bottom left is a standard deviation image across the 

timeseries. On the right hand side, from the top, are the mean intensity for each slice, the slice mean corrected 

signal intensity, the variance across volumes and a fast fourier transform on each slice. Data collection for this 

experiment was collected over three months, two more Q.A.’s were also performed during this time. The parameters 

used were the same as those used during the experimental scan. 

Illustration of a Q.A analysis where significant problems were identified prior to chapter three data collection. This 

data was collected three months prior to that displayed above. On the left is the standard deviation image, which 

shows considerable ghosting and time-varying changes in signal intensity in the centre of the phantom. On the 

right are the same plots as in the figure above.The images on the right show the considerable variability in signal 

that occurred across the whole volume. 
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Appendix B (2) – Quality assurance for chapter four, five and six 

 
 

 

 

 

 

Experiment three and four Q.A. results displated are from “phantom” data collected one week before 

chapter six data collection began  and five weeks before chapter five data collection began. Data 

collection was conducted sequentially for these experiments. In the top left is the mean image of the 

timeseries. Bottom left is a standard deviation image across the timeseries. On the right hand side, from 

the top, are the mean intensity for each slice, the slice mean corrected signal intensity, a fourier 

transform on each slice, the mean across volumes and the standard deviation across volumes. Data 

collection was carried out over 10 weeks for both experiments. An additional QA was conducted 6 weeks 

into the scanning period 

Experiment two Q.A. results displayed are from “phantom” data collected two weeks before data collection for 

chapter four began. The displayed images are the same as outlined for experiment one above. 
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Appendix C (1) – Questions about belief in deception for chapter three 

 

 

 

 How did you find the task? 

 How did [confederate’s name] perform on the task? 

 Did you feel it was easy to distinguish between the trials of the Computer and that 

those of your training partner? 

 Where you thinking about the predicted outcome on the trials differently from the 

Computer? 

 Was the performance of your training partner surprising or was you would have 

expected? 

 

---------------- DEBRIEF SHEET GIVEN TO SUBJECT --------------------- 

 

 Are you surprised at what you have just read? 

 Did you believe that the behaviour you observed was that of the training partner 

during the experiment? 

 We would be grateful if you did not inform anyone about the nature of the deception 

in the experiment. 

Questions about belief in deception for chapter four 

 

 How did you find the task? 

 How did [confederate’s name] perform on the task? 

 When they were making a response, were you thinking specifically about them making 

correct or incorrect responses or were you just thinking more generally about it being 

a correct or incorrect response? 

 Was the performance of your training partner surprising or was you would have 

expected? 

 

---------------- DEBRIEF SHEET GIVEN TO SUBJECT --------------------- 

 

 Are you surprised at what you have just read? 

 Did you believe that the behaviour you observed was that of the training partner 

during the experiment? 

 We would be grateful if you did not inform anyone about the nature of the deception 

in the experiment. 
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Appendix C (2) – Questions about belief in deception for chapter five 

 

 How did you find the task? 

 How did [confederate’s name] perform on the task? 

 Could you provide a rough estimate of how much each of you has earned?  

 Did you find the performance of the effort task easy? 

 Did you find it easy to make judgements about how much money they would earn? 

 

---------------- DEBRIEF SHEET GIVEN TO SUBJECT --------------------- 

 

 Are you surprised at what you have just read? 

 Did you believe that the behaviour you observed was that of the training partner 

during the experiment? 

 Did you believe that they were earning money in the same way that you were? 

 We would be grateful if you did not inform anyone about the nature of the deception 

in the experiment. 

 

Questions about belief in deception for chapter six 

 

 How did you find the task? 

 Did you find it easy to learn the group majority behaviour? 

 Were you similar to this majority or different?  

 Were you surprised at the group behaviour? 

 

---------------- DEBRIEF SHEET GIVEN TO SUBJECT --------------------- 

 

 Are you surprised at what you have just read? 

 Did you believe that the behaviour you learnt really represented what the majority of 

other people did on the task? 

 Did you believe that we performed an experiment on over 100 subjects before this 

fMRI experiment? 

 We would be grateful if you did not inform anyone about the nature of the deception 

in the experiment. 
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Appendix D – Peristimulus time histogram plots from chapter five. 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

PSTH plot for activity in the peak ventral striatum voxel shown in figure 5.5 

PSTH plots for activity in the peak ACCg voxel shown in figure 5.6. the top 

shows the response to the first-person instruction cues and the bottom 

shows the response to the third-person instruction cues 
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PSTH plot for activity in the peak ACCs voxel shown in figure 5.8. For display 

purposes the responses were collapsed across the two levels of Reward and 

Agency, to give the overall response for High and Low Effort. 
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Appendix E – Coordinates used for small volume correction in chapters five and six 

 

 

Anatomical region MNI Coordinate 

  
Ventral Striatum -6, 10 -6 

 12, 8, -2 
  
Putamen -26, -8, -2 

 20, 14, -12 
  
Cerebellum  

 10, -46, -28 
  
Midbrain -6, -20, -8 

 4, -20, -8 
 

Coordinates used for small volume correction in chapter 5, taken from Croxson et al., (2009). These 

regions responded to first-person net value in that experiment. Spheres with an 8mm radius around 

these coordinates were made into a mask that was used for the small volume correction; this mask was 

then added to the ACCs mask for correction of any of contrasts for the first-person conditions. Activity 

was only found in the ventral striatum in chapter 5.  

 

Anatomical region MNI Coordinate 

  
Ventral Striatum -11, 5, 1 
  
  
Posterior Cingulate/retropslenial cortex -3, -43, 37 
 

Coordinates used for small volume correction in chapter 6, taken from Kable and Glimcher (2007). 

Activity in these regions varied with the subjective value of temporally discounted rewards. This mask 

was then added to the ACCs mask for correction of the subjective value parameter in chapter 6. 
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Appendix F(1) – masks used for small volume corrections in chapters three and four 

  

Chapter 3 masks. The ACCs (green) and ACCg (red) masks used for small volume correction in 

chapter three. Voxels which are yellow overlap between the two masks. The masks contained only 

voxels which were present in 80% of subjects scanned in this study and overlaid on the mean 

anatomical image. 

 

Chapter 4 mask.The ACCg (red) masks used for small volume correction in chapter four. No 

hypothesis was tested for the ACCs and so no mask was created. The mask contains only voxels 

which were present in 80% of subjects and overlaid on the mean anatomical image. 
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Appendix F(2) – masks used for small volume corrections in chapter five 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 masks.The ACCs (green) and ACCg (red) masks used for small volume correction in chapter 

five. Voxels which are yellow overlap between the two masks. The masks contained only voxels 

which were present in 80% of subjects scanned in this study and overlaid on the mean anatomical 

image. 
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Appendix F(3) – masks used for small volume corrections in chapter six 

 

Chapter 6 masks.The ACCs (green) and ACCg (red) masks used for small 

volume correction in chapter six. Voxels which are yellow overlap between 

the two masks. The masks contained only voxels which were present in 80% 

of subjects scanned in this study and overlaid on the mean anatomical 

image. 


