
(o

SOME APPLICATIONS

OP

GEOMETRIC MEASURE THEORY

oy

Roger Eric Overy

Withdrawn
from

A- UHIÏ.



ProQuest Number: 10107362

All rights reserved
INF0RMATION TO ALL USERS 

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if material had to be removed
a note will indicate the deletion.

uest.

ProQuest 10107362
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.
ProQuest LLC 

789 East Eisenhower Parkway 
P.Q. Box 1346 

Ann Arbor, MI 48106-1346



I would like to thank my supervisor , 
Professor S. J. Taylor , for the kind help and encouragement 
given throughout.

I am also grateful to the Science 
Research Council for their support.

R. E. Overy



1 —

CHAPTER I

1. Introduction.
This dissertation is a general survey of 

topics in geometric measure theory and diophantine approx­
imation.

The present chapter contains general 
definitions and notation used throughout and an introduction 
to the theory of Hausdorff measures. Properties of the 
Cantor Ternary Set are also derived here, which will be 
needed for the discussion in Chapter II,

Chapter II is devoted to the study of a 
problem whose origins are outlined as follows :

Let U be a unitary operator on a Hilbert
space ,

V : ^  , U*U =  uu* = I ,

1 0u = I el^oPg ,
J 0

where
Pq = 0 ^ F q ^ ^ I = PgTT •

U corresponds to a measure ^ on [o,2w). (Consult [9], for 
example).

For any operator T : -> a subspace
1fLc ^  is invariant If- T / K g P] .
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'M'V is reducing if

Tffl c itL
T c

T is singular if every invariant subspace reduces.
Now the measure ^ is the direct sum of two

measures
fj. = <S> .

where is absolutely continuous and is singular,
^ may also be decomposed thus 8

f̂ s ~ ^as ^  ^cs * 
where is continuous singular.
Similarly,

A bilateral shift B is such that for 
convergent in Æ ,
Now is part of a bilateral shift,

f b h  - S II - f e T e .

The following problem arises;

Problem.
For each g g , does there exist a sequence

oo
j )i r,..! of positive integers such that

U p ç  - f ?

oc
oo



It is easily verified that the answer is affirmative for
U . The Question of whether the seme is true of U  ̂ gives as OS
rise to the problem considered in Chapter II;

oo
ie, does there exist a sequence c N such that

^ f(e)

ie. f -* 0 ?
•'0

Or, writing |f| = 1, does there exist a sequence of positive
oo

integers such that

L.L I 0 : V Ô -* C, modulo 1 ] =  i ?

It is proved that the answer to the problem
posed is negative, in that it is impossible to find such a

CO
sequence of positive integers for certain types of
’regular* set with the given properties.

The first part of the chapter is a general
discussion of results related to the problem and contains

or
an account of the properties of the sequence jn xjk=i

o~
modulo ij where x 6 and Jn^jk»i is an̂ r increasing sequence 
of positive integers.

A problem in geometric measure theory is now 
considered in Chapter III, An account is given of the origins 
of the problem, its relationship to other aspects of 
convexity, of partial solutions, and finally the complete 
solution.



Chapter IV is a survey of topics in uniform
distribution modulo 1 of sequences and related topics.
The main interest is in the uniform distribution modulo 1
of sequences of the form fn^xj where x 6 ^  and [nvjI K I ' k-i
is any increasing sequence of positive integers, and the 
urouerties of sets of points x for which In^xi is 
uniformly distributed modulo 1. The uniform distribution 
of the integral parts of such sequences is also discussed. 
Connections between results here with results in Chapter II 
are pointed out.

V/e begin with the basic definitions and notation 
which will be used freely throughout. Other definitions 
required for specific results will be given as they arise.

2. Notation and General Definitions.

For any real number x:
[x] denotes the greatest integer not exceeding x; that is,
[x] is the unique integer satisfying

[x] < X < [x] + 1 ;

((xp denotes the fractional part of x, namely

((x)) • = X - [x] .

The symbol N is used to denote the set of all 
positive integers.

denotes the cardinal of N and c = 2^® the
cardinal of the continuum.
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The definition of a Tausccrff measure applies to 
any metric space, but problems will only be considered in 
Euclidean n-space.

A me asure- fune t i on is defined to be a real-valued 
function h(t) defined for t > 0, such that

(i) h(t) is continuous and monotone increasing,
(ii) lira h(t) = 0, and h(t) > 0 for t > 0. 

t*-̂ 0+

Suppose E is a set in a metric space X. For any
cT > 0, put

oo

h - m-(E) =  inf \ h[d(CL)] ,
 ̂ UCl d E Z_y

d(Ci) 3 f L"'

where d(Ci) denotes the diameter of C , and the infimum is 
taken over all coverings of 3 by sequences [CtJ of sets 
with diameter not greater than cT.
Now define

h - m*(E) = sup h - mn(E) (1)
> 0

As the effect of reducing S is to reduce the class of covers 
over which the infimum is taken, h - m^(E) does not decrease 
as S decreases, and it is the small val.ues of S that ,are 
relevant in taking the supremum. Thus the formula (1) above 
could be replaced by

h - m*(E) =  • lim h - m«(E) ,
f ^ 0+ *

ie, it is the ’fine* covers - those by sets of small uicmeter -
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that determine h - m*(E).
Now the set function h - m*(E) is a Caratheodory 

outer measure in X : it therefore defines a class of 
h-measurable subsets of X which includes all Borel sets 
(see, for example, [19] )• 7/hen E is measurable with respect 
to h write

h - m(E) = h - m*(E) ,

and call h - m(s) the h-measure of E. All the sets we 
consider will be obviously measurable,

nFor the analysis of subsets of E of zero Lebesgue 
measure it is usual to assume that the function h(t) -9- oo

as t 0+ , (h is called a measure function of class n).
In the special case h(t) — t^, a > 0, v/e replace 

h - m^(E), h - m'"‘(E) and h - m(s) by the set functions 
A^(e ), A^(s ) and A°^(E) respectively, and the measure so 
obtained is called the a~dimensional measure of E. For a 
given E and a > 0, A^(E) may be zero, finite and positive, 
or infinite. E is called an a-set if A°^(S) is finite and 
positive.

For example, the classical Cantor Ternary Set C 
(see section 3) constructed on the real line satisfies

0 , a > S,

A^(C) = J 1 , a — 6\

+oOf CL K. Ô }

if h(t) = t^, where S = log 2 / log 3.
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All subsets S of R * have a numerical dimension,
which is a real number y < n , and denoted by dim 3, given
by

dim E =  y =  inf { a > 0 ; A^(3) = 0 j .

If A^(s) =  0 for all a then we write dim 2 =  G.
If dim 2 =  y , it is possible for A.^(s) to be zero, finite
and positive, or infinite, but

a > y A^(s) = 0,  ( 0 < y < o o )  ,
0 < a < y A^(e ) is non cr-finite.

If E is a set in Euclidean n-space, ; 3; will denote 
the Lehesgue measure of E. In that case it can be shown that

n
hi

|e| = C ivha) , n e H ,

(A (e ) is called the (n)-measure of s) , where

2^-^rXiin)

is the volume of a sphere of unit diameter in n-space. 
(See, for example, [19] p. 5h).
Thus, while Lebesgue measure assigns unit measure to the

ncube of unit size, A assigns unit measure to the sphere 
of unit diameter.

3• Cantor Ternary Set and Ternary Function.

Denote the open interval f (3r - 2) (3r - 1)
_n3 . j
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by E and putII, r

3"-'

then it is clear that G is an open subset of [O, I] and its 
complement

c = [0,-1] \  G

is called the Cantor Ternary Set, C is obviously closed.00
For X 6 [0,1] , write x =  ) , (bp = 0 or 1 ) ,

I « 1

where the sequence [bpj of 0*s and 1 *s does not satisfy 
b[ -- 1 for i ^ N,
Define

00

g(x) = y  All , where a^ = fo , if b;, = C ,
i 2  ; if bi = 1 .

Then g : [0,1 ] -> C is (1-1 ) and maps [0,1] on to a proper
subset of C,
Since C c  [0,1] , C has cardinal c.
It is clear that

Xi < X2 g(xi) < g(X2) ,

so that for each y 6 [0,1] , •

g"^[0,y] = [C,z] for some z, (2)

If z is defined by (2), then we say that

z = f(y).

This defines f : [ 0,1 ] -> [ C, 1 ] as a monotone function which
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is clearly constant on each of the intervals ^ , for

3^ - ^ < y <  ̂ ^  f(y) = ' .
y- 3» 2^

The function f is continuous and monotone increasing since

0. « yi - ya 6 3 ‘" "  0 < f(y, ) - fCya) < 2‘" .

The function f (the Cantor Ternary Function) is
differentiable with zero derivative at each point of G since
f is constant in each of the intervals E . f increases atn, r
each point of C and

lim f(x + h) - f(x) _  ̂ , X e C.
h 0 h

Let V be the Lebesgue-Stieltjes measure associated
with f ,
ie. v(a,b] = f(b) - f(a) =  v[a,b]
since f is continuous. Then v[o,l] = 1 > v (E ) = 0 ,n, r
i/(G^) = 0, v (G) = 0 , and v(C) = 1 •
Also, if a = log 2 , then A^(C) = 1. An easy proof of this

log 3
fact is provided by lemma 4 of [20]. The lemma states;
Lemma 1.1

Suppose that F is a completely auditive measure 
defined on the real Borel sets and that S is a Borel set 
such that for each x S E ,

lim sup ^ ^^ ^ k < oo 9

^ ° 0(h)
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where ÿ is a Kausdorff measure function. Then 

k{ÿ - m(E)j > F(E) ,

InHow the set G is covered by 2 intervals, each of
length 3 > for N = i, 2, ... , and so

a “ (c ) « ^  j“ = "I . (3)

If X e 0 and is of the form
3r - 2X = for some r , N ,

3“
then v[x , x + h] = 0 for 0 < h < .
Suppose X e C and is of the form

3r — 1X =   • for some r , N ,

and consider the relationship between u[x , x + h] and h^ 
for 0 < h < 3"^ for some n ^ N .

2-n>
I h “

Pig. (i)
f(x f h.) - f(x) ,

X e c
i-n-1 X A

/
/  '

f
//

/

* —  - — -* - • • —  . . . . .  ^  .. .y*0 —n—1 — n h
3 3
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Now
' 3 h < = $ > f ( x + h )  - f(x) < 2-fn+i]

= [3~ (n+ ̂ ) jO

and
2.3 -fn+i) < h < = 3""

f(x + h) - f(x) < |h - 2.3" b+i);G + 2-(n+')

'fk^ /zû cr̂  C  Ay <Lppn>V)rĤ aJ'̂ <rî ^

So f(x + h) - f(x) ^ for sufficiently small h for
all X e G. .
So

lim sup < 1 for all x € G .
h 0 '

Applying the lemma with S. = G., 1? = v, ^(h) = h^ , ÿ - m = , ,
we have k = 1 , and

a “ (G)  > V ( c )  =  I . ( 4 )

Combining (3 ) with (4 ) ,

a “ (C) = 1.

It follows that dim G = a = log 2 , for
log 3

A^(C) = 0 , /3 > a ,
and A (C) is non tr-flnite for /3 < a .
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CHAPTER II

This chapter is concerned with the following
problem ;

P is a measure on [0,1 ] concentrated on the 
subset Eq , (F(Eo ) = 1 ) , with P([0,1]) = 1 , and |Eo | = 0 .

Does there exist a sequence of integers 
[n^i ^  , increasing to infinity, such thatk w 1

((%%)) 0 for almost all x 6 E^ , as k ^ oo ,

or, more precisely,

F ; X 6 [0,1] : ((%x)) -> 0 , k -> œ  } = 1 ?

1. The general behaviour of the fractional part of nkd .

If d is an irrational number and a is any
number such that 0 ^ a < 1> then it has been Imown for some
time that it is possible to find a sequence of positive 
integers n,, n^, n^, ... such that

((nk )) -> OL , as k -+ oo .

Note : The result, when ct > 0 , asserts that, given any
positive number e , there exists an integer ko such that

-e < ((n^d)) - a < c , k ^ ko .
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The points ((nk<̂ )) , k = 1, 2, ... , may lie 
on either side of a. But, since ((nxd)) is never negative, 
the formula has a special meaning in the particular case in 
which 0 = 0 :

ie. 0 < ((ukd)) < e , k > k^ .

Any inconvenience arising as a result of this 
distinction between the value a = 0 and other values of a 

may be avoided by agreeing that, when a = 0 , the formula 
((nk^)) ^ oc is to be interpreted as meaning ’the set of 
points ((nk<5)) , k = 1, 2, ..., has, as its sole limiting 
point or points, one or both of the points 1 and 0 ’, ie. for
any k ^ ko, one or other of the inequalities

0 < ((nkd)) < e , 1 - e < ((nk<9)) < 1

is satisfied.
This distinction, however, happens to be of 

no importance in the particular cases considered here.

The following generalisation of this result 
was first proved by Kronecker (1884) [14] > and a 
comparatively simpler proof is given by Hardy and Littlewood 
in [10] ;

Theorem 2.1
If #1, 02, . .., dfn are linearly in dependent

irrationals (ie. if no relation of the type
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ai^i + 82^2 + ••• + &rn̂ m + S-m+i = 0 ,

where ai, &2, ...» am+i are integers, not all zero , holds 
between ti, Ô2 , ^m) > and ai, ocg, ocm are numbers
such that 0 ^ Op < 1, then a sequence [nk] can be found such 
that

)) 0-1 , ((nk^ 2 )) - > 0 2  9 ••• 9 ((n% y) >

as k —> 00 *

Further, in the special case when all the a ’s . 
are zero, it is unnecessary to make any restrictive 
hypothesis concerning the d ’s , or even to suppose them 
irrational.

The special case when all the 0*3 are zero was 
known before by Dirichlet - his proof is straightforward and 
there is virtually no difference between the cases of one 
and of several variables, [IO].

Theorem 2.1 may also be generalised end is 
proved by induction on k ;

Theorem 2.2 [1O]

If Ô29 •••> Cm are linearly independent
irrationals, and the a*s are any numbers such that C < a < 1, 
then a sequence JUki can be found such that

\i — 1, ..., ]o ,
((llK̂ j)) -* atj , ) '

j  =  1,  . . . ,  m .



-  15 -

Further, if the u*s are all zero, it is
unnecessary to suppose the restricted in any way.

For a strictly increasing sequence of positive 
integers [nk! , and an irrational number 6, the set of points 
((nkd)) , k = 1, 2, ..., can exhibit many different kinds of 
behaviour. The following facts are well-known :

(i) There is no number 0 , 0 <  ̂ < 1, such that ((kd)) 
tends to a limit.
(See [18]. If 0 is irrational, the points ((k^)) , 
k =  1, 2, ... , are dense in the unit interval , 
ie. given any real numbers hg satisfying 
0 < hi < Xg < 1, there is a positive integer k* such 
that < ((k’^))< Xg).

(ii) Given any arbitrary strictly increasing sequence of 
integers jukl, the set of real numbers d for which
0 < d < i and ((nk^)) tends to a limit as k tends to
infinity has zero linear Lebesgue measure,
(Hardy end Littlewood prove in [10], p.181, that the 
set of values of 6 for which the set of points ((iik̂ )) 
is not everywhere dense in the interval (O,1) is of 
measure zero).

It is interesting to examine how the set of Q 

for which ((n^d)) tends to « is affected when we consider 
different sequences of integers [nkj. The preceding results 

show that this set of 0 may be empty, and is always of zero
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linear measure even when it is non-empty.
The following tv/o theorems are due to 

Eggleston [7] and deal with this problem for two of the 
commonest types of sequences of integers : when nk+1 is

bounded, and when n^+i oo •
“ n^T"

Theorem 2.3

If a strictly increasing sequence of positive
int epers [nĵ j is such that n^+i ^ ^ where 0 < E < oo ,

%
for all k, k =  1, 2, ..., then for any a, 0 ^ a < 1, there
are at most an enumerable set of real numbers d, C ^ c < 1,
for which { { n ^ d ) )  a &s k -> oo •

There is an n-dimensional analogue of this result.

Theorem 2.4

If a strictly increasing sequence of positive
integers }n%j is such that n^*, as k tends to infinity,

^k"
then the set of d  for which ((n^a )) -> a , 0 ^ a < 1 ,  a s k
tends to infinity, has dimension 1, for any given a >  C ^ a < 1

There is a corresponding result in n-dimensional
space.

A subset of the set concerned in Theorem 2.4 is 
constructed and an application of another important theorem 

due to Eggleston [7] shows that tills subset has positive
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Si-measure where 0 < s. < 1 , thus giving the required result.
The theorem, v/hich will be required later in 

the chapter, is a useful device for obtaining a lower bound 
for the dimension of certain types of set :

Theorem 2.3

Suppose Ikis a linear set consisting of closed 
intervals each of length Fk* Bet each interval of contain 
n%+i closed intervals of !%+,, n^+i > 2, each of diameter 
cTk+ 1 > and so distributed that their minimum distance apart

f^ Pk+1> Pk+1 > ^k+1 •
Let

P = M  Ik ,k » 1
Then, if

lim inf h(fk)Hk+iPk+ifk^ > S > 0 ,
k —> OO

the set P has positive h-measure.
(Note that if the inequality Pk+i > ^k+i is not 

true but pj+i < <5'j for infinitely many j and d'j, pj both 
tend to zero, then the result of the theorem still holds).

The most important case of the theorem is when 
h(x) = x^ so that

lim inf Nk+iPk+iOk"' > G ==> A^(P) > C .
k —> oo

Erdos end Taylor [o] have obtained a number of 
results concerning the properties of the set of points x for
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which the sequence [ ((n|̂ x)) j behaves in certain ways in order 
to investigate the convergence of the lacunary trigonometric 
series oo

ain (n^x - (5 )
k» 1

where [̂ |̂ j (k = 1 ,  2, ... ) is a sequence of constants 
satisfying C < 2v and {n^j (k = 1, 2, ...) is an
increasing sequence of integers satisfying

Ak+I (6)
nk

The classical theory of trigonometric series 
shows that the series (5) may only converge for values of x 
in a set of zero Lebesgue measure.

The convergence, or absolute convergence, of 
the series (5) is closely related to that of the series

oo

(7)
k « 1

where [xki (k = 1, 2, ...) is a sequence of real numbers 
satisfying C < Ok ^ 1, and [nk] satisfies (6). The connection 
is given by

Lemma 2,1

If the series 2ir converges.

then the series ^  sin (nkX - P k ) converges absolutely,
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For
I sin (nhx - f^k)| =  |sin - ||J)|

^ - #  I '

(The converse is not true hut the infinite cardinal or 
dimension of the sets of absolute convergence of the series 
(5) and (7) turn out to be the same).

A discussion of the convergence of series (7)
leads naturally to the problem of eguidistribution of the 
sequence [ ((n^x)) J , (k =  1, 2, ...) , and this is 
considered in Chapter IV.

The 'size* of the set of absolute convergence 
will depend on the rate at which t^ increases.

If tk is bounded, Theorem 2,3 implies there
cannot be more than a countable set of x for which 
((r-kx)) -> y , ( 0 < y < l ) , a s k - > o o ,  and so there is at
most a countable set of values of x such that

((P-kX))

In the case of a sequence [njJ such that
tk oo we have

Theorem 2,6 [8]

If [Ukj is such that tk is an integer for 
large values of k, and tk -> oo as k co > then the set of 

values of x such that \ ((iikx)) converges (absolutely)

-k“̂  77 ^ oo •

K»1
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has power continuum.
If tk increases rapidly enough to make

1) ;r- convergent, we also have
Z_y

Theorem 2.7 [8]

Suppose [nki is such that \ ^  converges,

Then for any [ap i iBe series  ̂ [ ((n^x)) - cxk Î converges
L I

absolutely for values of x in a set of power continuum.

The dimension in the sense of Besicovitch of 
the set of x for which ((nkX)) converges is of interest only 
in the case where the set has power continuum since 
enumerable sets necessarily have dimension 0. The dimension 
depends on the rate at which tk ^  and among the existing 
results are :

Theorem 2.8 (Eggleston, [7])

If p >q > 1 and the sequence of positive 
increasing integers jUk j satisfies

/Cl

/Cl ,/C2 finite positive constants, then the set of real 
numbers x for which

I ((nkx)) - a 1 < nk"^

for all sufficiently large k and a fixed a, C < a < 1,
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has dimension ( p ~  q)
- J

q (p  - 1 )
and

Theorem 2.9 (Erdos' and Taylor, [8])

Suppose 7 \ > 0 , / i > 0 , p > 0  are constants, 
and jn^j is an increasing sequence of integers such that

3 t% <

for each integer k, and is any sequence of constants
with 0 < #k ^ 1. Then

(i) if 0 < p < 1, the dimension of the set of x for
which ^  1 ((n^x)) - «^1 converges absolutely

is zero ;

(ii) if p > 1 , the dimension of the set of x for
which \ { ((n^x)) - Cki converges absolutely

is (l — -«-*)•^ p/

Theorem 2.9 is another application of Theorem 
2.5 . With e, s satisfying

0 < 6 < p - 1 , 0 <  8 < 1 -  ̂ ^  ̂ ,
P

a subset P of the set of x such that

I ((nkx)) - «k I <

for sufficiently large k is constructed with A^(?) > C.
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This implies that the set of x for which (7) converges
absolutely has positive A^-measure and so has dimension at
least (l - — ) .

P /
More difficult metliods show that the set where

(5) converges absolutely has dimension at most /l - andP /
this proves the theorem.

Similar methods will also yield :

Theorem 2.10

If [«ki is any sequence of constants , 0 < ak < 1>
and h(z) is any measure function of class 1, there is an 
increasing sequence [n^j of integers such that the set of 
values of x for which [ ((nkx)) - Ck! converges

absolutely has infinite measure with respect to h(z).

Also, if tk -> oo , however slowly, and 
0 < cT ^ Ok < 1 *“ c f ^ ( k =1, 2, then (7 ) converges
for X in a set of dimension 1. Note that this result cannot 
be true for Ok =* 0 since the series (7) converges only if 
it converges absolutely.

2. The solution of the problem.

In section 1 various properties of the set of 
values of x for which ((nĵ x)) 0 as k -> oo for particular
sequences jnkj were stated, and in particular that this set 
always has gebesgue measure zero if [n^] increases to infinity.
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In this section we will show that it is not 
possible to y ' 0 1  a sequence }n%j to
satisfy properties stated in the problem for ’regular* 
Cantor-like sets. This idea will be made precise later.

Y/e begin by taking Eq to be the Cantor Ternary 
Set C constructed in the unit interval as defined in Chapter I, 
section 3 *

Lemma 2.2

There exists a subset C* c C and an increasing 
sequence of positive integers [n^J tending to infinity such 
that the cardinal.of C* is c and

\ ((n^x)) < CO , V X e C  .

k « 1
Proof :

We have
CO

C —  [ X £ [0,1 ] ; X \ — T 3 Tji £ [0,2] ]

with cardinal (C) = c ,  |cl = 0 , dim C =  ^ , (see
log 3

Chapter 1, section 3)-

Let n% =  , (.k = 1, 2, ... )

Then t^ = * = 3^*^ > (k = 1, 2, ... )
Ok

Define

C ’ = [ X £ [0,1] : X = ) ^  , rjie [0,2] }
L j 
I «1
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Clearly C' c C , and cardinal ( o ' ) = c , |c'l =  0.
Suppose X e C*.
Then

ana so

Hence

n̂ ,x
CO

t a 1

(( Jikx)) = y — .n,c , (k =  1, 2,
I >k

oo
((n̂ x̂))

k« 1 k a 1 L> k

C O  L -  1

£[ ] • 
I « 2 k » t

Noy/ when k = i - 1 , = 3 ”*̂ > and for k > 1 ,
n

Âk -1 ^ 1
n,

Hence
L-1

5'-
k « 1

a n d  s o
3

C O

k « 1

L -  1

oo

((nKx)) <
L a2

L - 1

OO

Thus for all x € C* , the series \ ((n^x)) , converges.
k * 1
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Thus ((n^x)) 0 as k oo for every x £ C*.
Suppose u is the Lebesgue-Stieltjes measure • 

associated with the Cantor Ternary Function f constructed in 
Chapter I, section 3 :

v(K) = a“ (3 n c )  , a =  h i h  » 2 c  [C,1] .
log 5

From the definition of C ’ ,
CO

C* = n Du , where D Dg D D 3 3 ...1

and consists of 2  ̂ disjoint intervals in [0,1] each of 
length 3 "̂  ̂ > and v-measure 2"^ , where

&k(k + 1) < N < i(k + l)(k + 2) .

So — 2'̂  0 as h 00 3 and

v(G’) =  0 .

Also, since C ’ is covered by 2^ intervals each of length 3”^ 
and F ~ ^k^ , for any a > C ,

k -> 00 f

and so

Note that since tx t w  as k 00 , it follows 
in view of Theorem 2 * k  that the set of values of x in [0,1]

dim O' = 0 . j
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for which, ((n^x)) -► 0 as k -> oo has dimension 1,
Lemma 2.2 may be improved in the sense that it 

is possible to make ^  ((n̂ x̂)) converge on a larger subset
k

of C.

Lemma 2,3

There exists a subset D c C and an increasing 
sequence of positive integers [%%] tending to infinity such 
that oo

) ((%%)) < eo^VX e D ,

and dim D = dim G =
k »i

log 2
l o g  h

Proof :
For the sequence n^ = ^ 2k(k+i)  ̂ (k = 1, 2, ,

defined for lemma 2.2, the gaps between the successive terms 
increase and contain 3^ integers. To define the subset D of C, 
we make the gaps smaller so that they still increase but now 
contain only -[log k] integers, ie. write

D = i X e C : X = I

for all sequences where = 0 or X  and

Hk. = , (k = 1 , 2 , , 0 < i < k - [log k]C
Then D is the intersection of a descending sequence of 
intervals 3 E 2 3 G3 D .*« where each consists of 2^
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intervals each of length 3 ~^ and,
k - 1

3 = \ 1 r + 1 - [log r] i ,
r«i

4k(k + 1 ) ^ H' < i(k + l)(k + 2 ) - [log k] .

As before, v(E^) = 2 where g(k) f co as K -> co so
that

v (d ) =  0 .

The same methods as in lemma 2.2 give 
oo TO

y  ( K % ) )  < 2 . 3 - 1  1  + . . i )  j

k w 1 t » 2

y  , X e D .
L«2

Kow 3 ^^°® if X < 1] log 3 .
log i

Since < 1 and tends to 1 as i -► »  , choose X q
log i

1 + lorr ^so that 1 < Xq <
2

Then 3^^°^ > i^° for i > I, l a  positive integer,
and so \ is convergent.

L «2

Thus V ((nxx)) < oo for all x 6 D and so ((n^x)) -> G
k«1

V X e D.

Now fix s with 0 < s < log 3
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We apply Theorem 2.5 with
k-1

Nk =  2'̂ where j = ^  (r + i - [log r] ) ,
r*i

-A/k Pk+1 3 , N «W 2^2 •
A  ji,

Now \ [r + i - [log r]j =  &k(k + 1) + k - \ [log r]
r»i r «1

> &k(k + 3) - ck' + c

for some positive constants c ,e •
So

^  g s k f k + a )  -  C k  ^ “ 2 k

3" J

oo , k  -» oo

Thus D has positive -measure for each s < ^
log 3

log 2This implies D has Hausdorff dimension
log 3

Corollary.

There is an Increasing sequence of positive
oo

integers oo such thatk»i

A^[ X e C : ((Xkx)) -> 0 , k oo j + oo
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for all s < a = ^

The methods of lemma 2.3 will also give :

Lemma 2.h

If h(x) = x^ÿ(x) where ÿ(x) is monotone
increasing to infinity as x 0 , 3 [^k] ™  f ™  suclik* *
that

h -  mj X  e C : (( h k X  )) -* O , k - ^ o o j  =  + o o .

The sets O ’, D constructed in lemmas 2.2, 2.3
each have v-measure equal to zero. This suggests that the 
same will he true of any subset S of C with the property that
((n̂ xx)) -> 0 for all x £ S.

Theorem 2.11

Let [kpj be any increasing sequence ofp*i
integers bending to infinity. If the set E c C , the Cantor 
Ternary Set, is such that

((kpX)) 0 as p oo for all x £ E ,
then

a "(E) =  b , a =  ^ .
log 3

Proof ;
For n = 1 ,  2, .»• , r = 1 ,  2, ••• , define 

E^ ^ = [ X £ C : ((kpx)) < jr , p > n j .
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Then Ei,r c Eg,r c Es^r c ... , (r = 1, 2, ... ) ,

En, 1 D En, 2 D En, 3 3 ... , (n = 1, 2, ...).

Let 00

Pr =  U En, r = lim En, r , (r = 1, 2, ...)
n-toj

O O
Then P — 0 Pp is the set of points x in C for whichr« 1
((kpx)) -> 0 as p —>oo.
We require to show that v(p) =  0.
It is sufficient to shov/ that for e > 0 ,

y(Pr) < e for sufficiently large r ,

ie. v(En, r) < e for r ^ r(c) , n > N .

Define
Qp,r =  i X e [0,1] ; ((kpx)) < •—  j ,

(p 2, ..., r = 1, 2, ...}■
Then Qp,r consists of kp equally-spaced intervals, each of 

1length — -—  , and C is the intersection 0 of a
3 kp "•*.

O O
descending sequence > where each consists of 2
intervals, each of length 3 "^ •

1nr
Qp,r

I I________________I__ I________   J___ I-------------- i---'----------- — J-‘-------- — ----•
0  V 1

i Fig. (ii)kp

Choose Up such that

1

+ ' 3̂ 'kp " 3"P
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KOW (2® - 1) intervals of do not intersect Qp,p for 
every one that does, where

1 . 1

ie. 3^ > kp .

So the maximum number of intervals of Cn^ intersecting Qp,r 
is end so

Qp#r n ^ ^

< e for sufficiently large s ',
ie. for sufficiently large kp ,

Since

En,r — n [Qp,r C 0^ } ,
P>n

it follows that u(En,r) < € for all sufficiently large n.

It follows from this that there is no increasing 
sequence of integers [n̂ ĵ such that ((n^x)) 0 as
k oo almost everywhere in G with respect to the measure v

Définit! ons.
The upper and lower symmetric densities of an 

s-set E at X ere given by

lim sup a U  3 n  (X -h, X . h) i
h i 0 %s

and
[ 3 n (x - h, X + h) ilim inf _____________

h 4- 0
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If these densities are equal to each other, 
their common value is called the circular density.

The following lemmas are known [17] î

Lemma 2.5

The upper circular density of any s-set is less 
than or equal to 2  ̂ at almost all (with respect to s-measure) 
its points.

Lemma 2.6

The upper circular density of any s-set is greater 
than or equal to 1 at almost all its points.

Lemma 2. 7

At almost all points outside any s-set, the- 
circular density is equal to zero.

Lemma 2.8

If 0 < s < 1 , the circular density fails to 
exist at almost every point of any s-set.

Now the Cantor Ternary Set C is an %-set where
0 < a =  “ < 1 and so the circular density fails to exist

log 3
at almost every point of C and

2“ > lim sup A°! C n  ( x - h ,  X . h) i
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^ lim
2“ n

n  -> oo ^ _ 0in 

r~a n
— lim '

II "> oi t 2 J 

1 , V X e c .

Also, an argument similar to that of Chapter I 
shows that for x 6 C ,

v[x - h, X + h] = f(x + h) - f(x - h) > __
2

for sufficiently small positive h and so

lim inf / f i  C n (% - h, X + h) i ^  ̂ 0 ,
h vk 0 ĵ a

for each x £ 0 .
This suggests the following generalisation of 

Theorem 2.11 :

Theorem 2.12
ooLet [knl be any increasing sequence of 

integers tending to infinity.
If B is an s-set with 0 < A^(E ) < 1 ,

where 0 < s < 1 , and 3 o > 0 such that

lim inf B n (x - h. x + h) j > cV > o .
h 4̂ 0

for each x £ E , then

A^ S X £ E : ((knx)) 0 j =  0.
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Proof ;
We may write, where 77 -> 0 , 

where 5 is a countable set and c E is sucli tiiat

0  < h < V =#> A^i n (x _ h, X + h) i ^ .̂ 3, ,
(2h)s

V  X 6 Et̂  •

Then it suffices to show that

A^[ X 6 E% : ((kpX )) -> 0 j =  0 ,  77 e 5 .

Let 77 e K .
We now use methods similar to tiiose of Theorem 2.11 ;
For n = 1 ,  2, ... , r = 1, 2, ... , define

En, r = [ X 6 E^ : ((kpx)) < g , p ^ n j .
00 <Xt

The sequence I 1 En,rin«iir«i increasing in n and decreasing
in r .
Let

00
Fp = U En,p , ( r = 1 ,  2, ,..).n » 1

00
Then P - n Pp is the set of x 6 E_ -or which ((k^x)) -> 0Pel ‘

As before, we require to show

AS(En,r) < e for r > r(e) , n ^ N .

Define
Qp,r — I X 6 [0,1] : ((kpx)) < ~  j ,
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< 2 t} .
Choose

1
kpr

“‘" r . , V
f~r~l~ r r-r-v-|—q-—I— I— T-T—r-T—r < >— *—I------------- L—‘------------1—I--- ---------A \ ^ /a I b Pig. (ill)

V/e now argue that if an inte rval of Qp, p has 
a point of in it, it cannot have ’a lot’ of 3^ in it,
whereas (a,o) does have a reasonable amount of Ey^in it 
because the lower density at points of Eŷ  is > ^  > 0 .
The number of smaller intervals which contain points of Eyi 
is therefore large and each contains at least

E,J n (x - % + J ~ )  I >

Thus

A®{ Qp,r n Ev; I ^ 2'-SAS(E%)(kpr)s

< e , r ^ R , p ^ p .

Since

En,r —  Q |Qp,r H E^j ,p ̂ n
the result follows.

Thus, it is impossible for 

f ((knx)) d/i(x) (
J n
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for some sequence [knin-i for the Cantor Ternary Set, 
because otherwise for a further subsequence, we would have

((knx)) 0 pp. (At) ,

and an application of Theorem 2.12 shows that it is also 
impossible, in general, for any measure /i which is fairly 
smooth in the sense of Theorem 2.12 (positive lower density 
with respect to some Hausdorff measure function).
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CHAPTER III

In this chapter, we will study a problem 
concerned with sets known as endsets.

Definition.
For any collection S of line segments in 

Euclidean n-space E*̂ , let P(s) denote the set of all end­
points of the members of S. Any set of tv/o or more points 
has the form P(s) for some 3, but a subset K of E^ is here 
called an endset if and only if M = P(s) for some 
collection S of pairwise disjoint closed line segments.

1. Statement and origin of the problem.

It is obvious that in the real line any 
endset is countable and so has measure zero.

We are thus led to ask ;
Must the n-dimensional Lebesgue measure of 

any compact endset in E*̂  be zero?
This problem originated in a study of the 

facial structure of convex bodies [13]. For any convex set 
C in Ê ', denote the interior of C relative to the smallest 
flat containing C by l(C). Now suppose that 3 is a convex 
body in 3*̂ , X is the boundary of 3, and is the '.mion of
tiie sets l(C) as C ranges over all maximal convex subsets
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of X. 3o, if B is a polytope, consists of the entire
boundary except for points on (n - 2 )-dimensional faces of B.

Klee and Martin [12] conjecture that, as 
happens when B is a polytope, X^ is almost all of X in the
sense that the (n - 1 )-dimensional measure of the set X \ X ^
is equal to zero,

ie. that the union of the relative interiors 
of faces of a convex body in covers almost all of the 
boundary in the sense of (n - 1 )-measure.

For n ̂ 3 > Klee and Martin proved this
[13, 3 .4 ] by using the fact that in E"* and , compact 
endsets have measure zero [12, 13]* They noted that the 
conjecture could be proved by their methods for general n 
if the answer to the problem stated at the beginning of this 
section were affirmative.

Bruclmer and Ceder [3], however, produced a 
counterexample for n = 4 (and so for n > 4 ) by using the 
Axiom of Choice and Nikodym’s construction of a Cantor Set X 
of positive measure in E^ such that for each point x of X ,
there is a line in E^ intersecting X only at x.

(The conjecture has, incidentally, since been 
established for all n by Barman [l6 ] ).

2. Solution of the problem.

There is an endset Uf in E^ associated in a 
natural way with any real-valued function f : Ê ""* .
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If the domain of f is a subset of tiie endset is
the union of the graph of f and the graph of the function 
f + 1 :

ie. lin = [ (x , f (x) ) : X e I U [ (x , f (x) + 1 ) : x 6 Dp]

c  E^-1 X Ê

=  E" .

As the various sets for 0 < r < 1 ,
are pairwise disjoint and all translation equivalent to '
it follows that either is non-measurable, or the
n-dimensi onal Lebesgue measure of is zero.

A similar argument shows that the measure of
M = P(b ) is zero whenever M is measurable and 3 is a
collection of pairwise disjoint parallel segments. As the 
next paragraph explains, the problem amounts to asking whether 
almost parallel is as good as parallel in this context.

For each real number ?7 £ (0, j) , define a 
(n, 77)-endset as a compact set of the form P(s), where S 
is a collection of pairwise disjoint segments having one 
end-point within 77 of the origin (0, ..., 0, O) in E^ and 
the other end-point within 77 of the point (I, 0, ..., O) .
The segments in such a collection need not be parallel, but 
are very nearly so, especially when 77 is small (see Eig. (iv)).

Then, if there exists Tjn > 0 such that any
(n, r7n)-endset is of measure zero, it may be derived from



Ij.0 —

■V
n

•

y c —

j Pig. (iv)

this, using standard and elementary techniques of measure 
theory, that any measurable endset in E*̂  is of measure zero.

For n = 2 , the existence of such a set can 
be derived from the fact that if p(S) is a (2, ??)-endset 
for small enough ?7 , and x, y are tlie left end-points of two 
members of S , then

Ilxj. -  yg.ll > 11% -  yll (8 )

for all € e (C, v) , where x^, are obtained from x, y by 
moving these points a distance e towards the corresponding 
right, end-points. It follows that the measure of the set of 
all left end-points is not much reduced by the e-motion , 
and a similar argument to that above involving an uncountable 
collection of pairwise disjoint sets shows that P(s) has 
measure zero.

For, suppose C is a collection of disjoint 
line segments in E^ with endset W = F(C) , and choose 77 

small and positive, say 0 < 77 < . For each pair p, c of



distinct points of whose coordinates are all rational, let 
C(p, q) denote the collection of all members of C that have 
one end-point within ??.(|p - q|| of p and the other within 
7?|1p - q|| of q . Denote the set of former end-points by 
W(p, q) .

G(p, q) Pig. (v)

Then

=  U C(p, q) and W = u W(p, q)
P/I' P/I'

V/e need only to show that Â ',Y(p, q) = 0,

For each point x e W(p, q) , and each e with
0 < e < 7} , let S(x) be the member of C(p, q) that has x
as one of its end-points and let x^'be the point of S(x)
whose distance from x is c . Let

We(p» q) =  1 Xe : X e W(p, q) ]

Then, assuming Wf(p, q) to be A^-measurable and that
\\̂ £ “ yell ̂  ||x - y|( (see [13]) for all x, y 6 W(p, q)

2
and 0 < 6 < 7] , it follows that

A % ( p .  q) > q)
^ 4
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and, as the various sets W^(p, q) are pairwise disjoint, 
a contradiction would ensue if A^Y/(p, q) > 0 *

The problem is more difficult when n = 3 •
In this case, there is no relation of the form (8) , for the 
two segments may nearly cross and (| - ŷ || may be smaller
than IIX - y II , so that the above methods are inapplicable 
(see Fig, (vi)) ,

Fig. (vi)

There does exist, however, a compact endset 
of positive Lebesgue outer measure in , and there exists 
a compact set of positive Lebesgue measure in which is 
comprised of the end-points of a family of pairwise disjoint 
arcs.

For the former example, if f is a function 
from 3^ into whose graph has positive outer Lebesgue 
measure, then the graph of f union the graph of the function 
f + 1 yields the desired endset.

For the latter example, suppose C is a nowhere 
dense perfect subset of having positive measure. Then 
there exists a simple closed curve J which contains C x c  . 

So J has positive measure in . There exists a horneo-
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morphism of the plane which carries J on to the unit circle. 
Since the unit circle is the set of ends of a family of 
disjoint arcs, the same is true of J . Extending this 
example in the obvious way to obtain a homeomorphism of E ̂ 
into E^ such that the image of the unit sphere contains 
C X C X C which has positive measure in E^ , the result 
follows as before,(This example is due to Klee and Martin).

Also, the method used by Bruckner and Ceder 
[3 ] to construct a compact endset of positive measure in E^- 
for n ^ k will work for n = 3 by using the set constructed 
by R. 0, Davies [6, corollary to Theorem 7] in place of 
Nikodym’s set.

The answer to the problem is thus affirmative 
when n ^ 2 and negative when n. > 3 »

It is not clear from the construction of 
Bruckner end Ceder, relying as it does on the Axiom of Choice 
to extract the line segments, that the set L of line 
segments can be made Lebesgue measurable. Larman, however, 
in [15], considers compact sets L of disjoint line segments. 
Here, a compact set of disjoint, closed, non-degenerate line 
segments is constructed in E^ whose endset has positive 
3-measure but whose set of ’non-end* points has zero 
3 -measure. This set has subsequently become Imown as the 
’impossible set* and provides a constructive solution to the 
problem in 3 and higher dimensions.
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3* Impossible Sets.

If L is a set of disjoint closed line 
segments, let ^  denote the point set union of members of L ,
and 6 (l ) the point set union of the end-points of L .

Theorem 3.1 (Larman, [13])

If n ^ 3 there exists a disjoint set
L of closed line segments in such that A*^je(L)| > 0 and
A'^[C\&{'^)] = 0 , where ^  (and e(j_.) ) is compact.

Note that it is enough to prove the 
theorem for since an example can be obtained in by 
taking the cartesian product of the 3-dimensional example 
with a compact nowhere dense set in of positive (n - 3)-
measure.

The starting point for the construction 
is a lemma about plane sets, due to R. 0. Davies, which is 
itself based on a construction of A. S. Besicovitch in 
connection with the Kakeya Problem. The problem posed by 
Kakeya (1917) was to find a set of minimum area in which a 
segment of length 1 could be continuously turned round so as 
to return to its original position with its ends reversed.
The answer was believed to be the deltoid (three-cusped 
hypocycloid) with area tt/8 , ie. half the area of a circle 
of diameter 1 . Besicovitch, however, constructed (1920) a 

set with arbitrarily small area which contains segments of 
length 1 in all directions and realized in [2] that this set
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could be used to yield the solution of Kakeya*s Problem - 
that there are sets (called Kakeya Sets) of arbitrarily small 
area in which a segment of length 1 .can be turned through 
360° by a continuous.movement.

(Such examples of Kakeya Sets of small area 
are highly multiply connected and have large diameters.
Further results concerning Kakeya Sets which are simply 
connected and which eliminate the unboundedness of the 
Besicovitch exemples may be found in [5]) .

The construction of Besicovitch forms the 
basis of a lemma in a paper [6] concerning linear accessibility 
(a member of a set of points in the plane is linearly access­
ible if through it there exists a straight line, infinite in 
both directions, containing no other point of the set) .

Lemma 3.1 (Davies, [6])

Let R be a parallelogram ABB’A* and K 
closed set contained in R Then,' given a positive number

e > 0 , we can construct a finite set of parallelograms
(i = 1, 2, ..., n) , contained In R and with two sides

in AB and A*B* such , that

(i) K  c' ,U Pi
U «  1

(ii) AZ;.U P i\ k  i < e
L *  1 '

Then, by considering the 2-dimensional . 

projections of circular cylinders, and using Lemma 3.I and
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standard covering theorems. Larman. [i5] proves the .following 
lemma which is the main result needed for the construction of 
the ’impossible set’.

Lemma 3.2 (larman, [15])

Let G be the right circular cylinder

C = { (X; y, z) : + y2 < a^, c < z < d j ,

and suppose c ^ e < f < d . Write

C(e, f) = Î (x, y, z ) e c  : e ^ z ^ f j

Let Cl, ..., 0% be right circular cylinders 
contained in the cylinder C , whose axes have non-parallel 
directions Ui, ..., u^ respectively, and each having one end 
in C(c, e ). Let

J  »  1 I «  1

be disjoint closed convex bodies such that 

1/ L)
jY ̂ SI j c C  ̂— *> .. ,, k .

Then, given e > 0 , there exists a finite collection of 
right circular cylinders

with Cij4 c Ci, , (1 = 1, k) , such that

(i) Gijk n Gi,'j<k' =  9) , 1 f  1' ;
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(ii) one end of is contained in C(c,e) and
the other end is contained in the interior of 
Sij ;

, 3 k  t i l )  k  U l )  p ( l j )
(iii) A q  U U 3-,j\,U U U Cijj i < e ;

L « 1  J » 1  U a  1 J  «  1

,  ,  k  U l )  p ( L , j ;  . k  U L )
(iv; A" ( U U U O ’, : A  U U S; : j < € .

L =  1 J * 1  f  =  i  ^ ' 1 - 1  J « 1

Each convex set S^j is thus associated v/ith
p (i,j) right circular cylinders j ,

Pig. (vii)

each with one end in the interior of , and the other
end in C(c,e) , so arranged that inequalities of the form 

(ill) and (iv) above hold.
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PltJ)(iii)’ [ Si,j \ 1 < e'

(iv)’ A=f 8. ; i< » 1

and 30 that the cylinders C^jj? ’pass between* the cylinders 
Cpja , i ^ i' .

Y/e begin the construction with the cylinder

C = [ (x, y, z )  : + y^ < 1 , -2   ̂ z < 2 J ,

Y/hich we split into three parts ;

D =  [ (x, y, z) 6 C
Do =  [ (x, y, z) e C
D_i = [ (x, y, z) e G

ooDefine to be a strictly increasing sequence of
positive numbers with lim 6i = iA^(D) .
Into D pack disjoint upright (ie. with axes parallel to the 
z-axis) circular cylinders D(1), D(n^) , each with
diameter less than 1 , such that

A^r D \ u'D(l, ) j < e,I,. :

Into each D(ii) pack disjoint upright circular cylinders 
D(ii, 1), D(ii, n(i,)) , each with diameter less then ^ ,
such that

n, n(l,)
A^[ d \  U .U D(i,, i j  1 < 02 .L,-i
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In general, suppose that sets D(i,, i p. ) have been
defined inductively to satisfy

(i) D ( i ^, • • • f i %) c  D ( i , ;  •••, i ^ - i )  >

•̂ K “ *) ^(ii) ik-i) 3

(ii) diam D(i,, 1%) < - ;

/ - . \ f \ c I n(Li,— . L ) / V ,(ill) A^l D\ U ... U D(i,, ik) j < 6|< ;
L,» 1 L̂ » 1

for k =  1, 2, ...
Then, if

Ek = U' . ? h u S ( i , ,  ik) ,1*1 I *1
oo

(EkiK*i G nested sequence of compact sets, and from (iii) 
above,

oo
A®! d \ U Eki < lim dk = ^A^Cd ) .k«i k  - >  oo

Consequently,
oo

A^i U Ek Î > 4a =(D) > 0 . (9)k*i
oc-

Now let î^njn*o a decreasing sequence of positive numbers 
such that

oo

Cn < ^ A^(D) . (10)
n«o

Applying Lemma 3.2 with Gi - G , Spj = D , C(c, e) = D_i , 
we construct a finite sequence of right circular cylinders 

such that
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(i) C(ji) has one end in the interior of D and
the other end is in D_i , j, = 1, m ;

(ii) A=[ I) n U C(3i) j > A®(D) - Co 5

m
(iii) A^l (C\D) n U C(ji) j < fo .j,= i

D
3

Jb. I >30o

Fig. (viii)

Suppose the axis of C(ji) has direction u(ji) .for 
ji = 1, ..., m , where, by displacing each cylinder if 
necessary, we may suppose that the directions [li( ji )i j"'., 
are all different.
Define

G(j, ) = D n 1 c(j, )\ U, C(l, ) i .
•̂1 ̂  J J
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For some positive integer ki > 1 , let

1 D ( i 1, ikj) j ( i 1 ) • • • ) ik, ) 0 iZi ]

be the collection of all the sets D(ii, ik̂  ) and let

[ D(ii, ikj) t (iij •••> •••j

be the subcollection such that (ii, ik, ) 6
if D(ii, ..., ik) is in G(ji) . Suppose that k^ is
sufficiently large as to ensure

A^j U D(ii, ik) \ U U D(ii, . ik) i < fo + Ci -
n, J,»-' iio.)

Applying Lemma 3*2 again, we define a finite collection of 
right circular cylinders [ C ( j , such that

(i) C(Di ,32) c C(j, ) ;

(ii) C(ji,j2 ) n =  ÿ , 3i f  j/ ;

(iii) the directions u(ji ,32) of the axes of the 
cylinders 0 (3, ,3*2 ) are all different ;

(iv) C(3i » 32 ) has one end in D_ 1 and the other end
is in the interior of some D(ii, ik,)
with (ii, ik,) 6 n(ji) ;

(v) U y D(ii, ik,) \ U U 0 (31,32) 1 < €2 ;
J.-1
m mUA  ̂ m

(vi) A=f U U C(3,,jj)\ ,U U D(ii, .... i j  j < f
j.«' J," ' v ’nfj,) ■
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Proceeding inductively, we obtain for n a positive integer, 
right circular cylinders

{ ... S C(j,, .... j j  j

end sets

D(ii, ••«, i%^_,) , (i 1, •••, i ^ n(ji3 •••, V

such that, if

D (i 1, ik*_() > (ii> •••» ik^_|) ^ Dn-i

is the totality of the sets D(i,, î  ̂ ) ,

[ U  D ( i i ,  • • • ,  i k  )  \  U  U  D ( i i ,  .  . ,  i k  )  1
î n-1 j.,-*-, jh-j "

n.̂ 1
< ) CL (11)

L *0
and

(i) C(ji, *6*, jn) C C(ji, •••, 3n-i) >

U D(ii, •••, ik ) c U D(ii, •••, ik _.) 5
 Djjî --

(ii) C(ji, 3n-i* On ) D C(j^, *«*, 3n-t* 3̂  ) ~  <p

if (ji, •••» jn-i) ^ (di*> •••> 3n-i) 3

(iii) the directions u(j,, . ) of the axes of the

C(oi, jn ) ^re all different ;

(iv) C(oi, jn ) has one end in D _ a n d  the other
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end is in the interior of some D(ii, i k ,

with (ii, •••, ik%_,) ^ tz(ji, 3n-i) ,

(v) U U D(i,, ik„.,) \
'J»j I Jrt'<)i7.(j>,---

, U  _ 0 ( j i ,  9 »•f O n )  1 ^  ^  n  ,(i*»-, J r\)
(vi) A3| . U . G(ji, jn) U  ̂ u

ĵ ) N no.,---, jM-,\
D(ii , •••, ik^_|) 1 ^ ^n'

We now define the set of • lines L .
For each sequence (j<, jg, ... ) of positive integers define

C(ji, ..., 3^) if CJ(3,j + 

(ji, 32, ... ) = is defined for n =  1,2,...
(p , otherwise.

Then each non-empty [by (i)] set l(j,, j^, ... ) is a
closed line segment, of length at least 2 , which joins D
to the closure of D„, .
Also, if (j,, jg, ... ) (j/, jg, ... ) , 3 n such that
31 = 3l , i < n - 1 , and 3n-i 3n-i •
From (ii) above,

l(jl, 3 2, ... ) ^ i(3l, J2, . . )

C C(ji, •••, jn) ^ f'(ji, j h )

So Ii —  [ l(jl, jz, ... ) , j L ^ ^ f i =  1, 2, ... j
is a collection of disjoint closed non-degenerate line segments.

n « 1
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Also, by (ii) , we have

0̂ - " u n G(ji, dci} ~ n u c(ji, •••, 3n)J,v')
and so is a closed set.

If e+(L) =  e(L) n D , then e+(h) contains
the set

n |  U U D(ii, c.e, i% ) n U C(j-j,«.«, 3n)l
J,..) (Jw--'dV)

oo
n Fn 3 say n a 1

Thus
A^(Fn) > [ U _ U D(ii , ...» ik_) j - Cn ,

(J>( " v)«)iZ-(3*l“-J
by (v) ,

n
€ (, 3

I «0
by (11 ) ,

> ^ A®(e ) - ^  A^(d ) , by (9), (10) ,

= ^  a ®(d )

> 0 .

COSince [Pnln«i is a decreasing sequence of sets ,
D3 J,

A®{ e+(L) j > A®i n Pn i > r  A^(D) > 0 . (12)n » 1 H-

For the set of 'non-end* points <i\s(L) of 
L , let V d be the set of points of XL which are at least a
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distance — from either end of the closed line segment on 
which they lie , so that

oo
^ \ e ( L )  = Vp ■ .

Then, since kn > n and diam. [D(ii, ..., in)! < " ,

U C(ji, * *, 3n+1 ) \  U U D(ii, •••, ik ) 
iJi, - ' -, ' ( J ' l ( 13

it follows that 

Vp c

for n = p+1 , p+2 , ... So, by (vi) ,

A^(Vp ) ^ Cn , n > p+1 ,

and thus A^ (Vp ) = 0 and

A^i e(L) ! = 0 . (14)

Since i— is compact , (12) and (14) complete the construction 
of the 'impossible set* .

A slight modification of the above argument 
will show that A®[6“ (L)j = 0 where

e-(L) =  e(L) n D.1 = e(i) \  e+(L) .

For , by defining Wp to be the set of points of which
-jare at least a distance ~  from the end which is contained 

in D of the closed line segment on which they lie , we 
have

e- ( L )  c /. \  (1 ) = u Wp ,p *1



— 56 —

and the inclusion (13) still holdn with Vp replaced by 
Wp , so that A^(Wp) = 0 , p = 1, 2, ...

In connection with the problem of section 1 
however, it is not clear from the above construction that 
6(L) is compact, 6(L) is only a Q-^-set in general, 
rather than compact. The sets Fn above are closed so that . 
G*(h) is a compact set. But there is no information about 
the distribution of the points of 6"(l ) - we only know
that each line l(ji, js, ... ) of L has one end in D_i .

The problem is easily resolved, however, by 
cutting off the lower ends of the lines of L by the plane 
z — -1 , for example. Let L* be tiie resulting set of 
lines above the plane z = -1 . Then, again each line 1* in 
L* has length at least 2. Since ^  is compact , the plane 
z = -1 intersects xC in a compact set Z , of measure zero , 
and this set together with G*(L) forms the required 
compact endset of positive A-^-measpre of the uncountable 
and disjoint set of lines L* above the plane z =  -1 .

The impossible set in .

There is an analogue of lemma 3.2 in 2 
dimensions provided the disjointness condition (i) is 
relaxed. Rectangles corresponding to the cylinders

may be constructed with analogous properties , but 

disjointness being a 'stronger* condition in the plane, it
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will not in general be possible to construct the Rlj/ t 
1 = 1 ,  2, p(i,j) , without some of the described
■overlapping occurring.

If R is the rectangle

[ (x, y) : -1 < X ^ 1 , -2 < y < 2 j ,

and v/e define

8 = [ (x, y) 6 R : 1 < y < 2 { ,

So = 1 (x, y) £ R ; -1. ̂  y ^ 1 ] ,

8_i == ( (x, y) £ R : -2 ̂  y < -1] ,

the construction leads to a system 8(1,, ..., iĵ ) , 
k =  1, 2, ... , of rectangles with sides parallel to the 
sides of R , packed into 3 with the properties of 
D(ii, ik ) , k = 1 ,  2, ... , and a system R(ji, ..., 2n) >

n = 1, 2, ... , of rectangles defined for sequences 
3i , 32» •*. » of positive integers  ̂ each having one end in 
S-1 and the other end in the interior of some S(ii, ..., ik ) , 
and having all the properties of the C(ji, ..., jn ) 
described above with the exception of the disjointness 
condition (ii) .

Then , as before , if for each sequence 
(ji; j2 » ... ) of positive integers we define

oo
n R(ji, ...» j n) if R( 3i » . . • , jn 

n » 1

l(ji» jz» ... ) = { is defined for n = 1, 2, ...
ÿ , otherwise,
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L = i l(ji» 32» ) > 31 » i = 1» 2, ... |

is a collection of closed non-degenerate line segments , 
each of length at least 2 and joining S to the closure of 
S— i •
Also , A^\e{L)l > 0 , A^[^Ve(L)j = 0 , and 6+ (l)
is compact. Since the rectangles H(ji,..., jn) are not in 
general disjoint , it is not clear whether ^  is compact.

It is interesting to ask how much symmetry can 
be achieved in constructing an impossible set. For example , 
for the set constructed in E® , by cutting off the bottom
ends of the lines l(ji» j23 ••• ) so that

| i  n D| = | i  n Do|

a set of pairwise disjoint lines L* symmetrical in the 
plane z = 1 is obtained with A3}6+(L')! > 0 ,
A = [^ ' \e (L ’ )i = 0 , but A=’ ( e - ( L ’ )I = 0 .

Also, if cr denotes the operation of reflecting
in the plane z = 0 , the set e[L U a"(L)] is symmetrical
in the plane z =  0 with

A®i U o-(L)] i = e"[L U cr(L)] } >  0 ,

A ® [ /  U o-(xL) \  e[L U o-(L)] j = 0 ,

but since the lines L U tr(L) are not pairwise disjoint , 
the set e[L U <t(l )] is not strictly an endset.
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probably the main interest in more symmetric 
endsets is in showing that they cannot exist.

The set constructed above provides an example 
of sets A , B and a collection L of line segments witli 
the properties that :

(i) every x 6 A is an endpoint of at least one
1 e L ;

(ii) every x 6 B is an endpoint of at least one
1 e L ;

(iii) each 1 6 L has one end in A and the other 
end in B I

(iv) I A| > 0 ;
(v) ]B| > 0 ;
(vi) | Z L \ ( A u  B) I = 0 .

Since 0 < |A U B| < +oo , A U B has Hausdorff dimension 3
It seems highly likely that it is impossible to construct 
such a set for which

dim iZ.\ (a U B) j < dim i A U B i .

However, this has not been investigated fully
and so we conclude by stating it as a conjecture ;

Conjecture.
If e(L) is the endset corresponding to a 

disjoint set L of line segments in E^ with the property
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that |£(L)j > 0 , then the lower bound for tiie Hausdorff
dimension achievable by the union Z. \  6(1,) of the 
interiors of these line segments is 3 •
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CHAPTER IV

Uniform Distribution

1. In Chapter II the convergence of the series
ooy [ ((r-kx)) - «k }
k « 1

where [a\̂ ] , (k =  1, 2, ... ) , is a sequence of real
numbers satisfying 0 ̂  < 1 , and [nk] satisfies

k i i  > p > 1 ,
Hk

was considered. This leads to a further discussion on the 
equidistribution of the sequence [ ((nk%)) j , (k = 1, 2, ...) .

Definiti on.
The sequence /?2, ...» ^r, ... in (0,1) is

equidistributed in (0,1) [uniformly distributed in (0,l) » 
or uniformly distributed modulo 1 ] if , for everj^ 1, m 
satisfying 0 < 1 < m < 1 , the density of integers r for
which 1 ^ (3r < m is exactly (m - l) ; that is , if

f 1 , when 1 < /3p < ra ,

Cr “ I
^  0 , otherwise ,

and N(A, k) is the number of members of the finite 
sequence , /3g» ... » /?k the interval A = (l,m) , then
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k  CO o o  ( k J
r « 1

with a corresponding definition for a sequence of 
n-dimensional vectors g(R^(r = 1, 2, ...) in , n > 1 ,

In general, any sequence /3,, /Sg, ...,
of real numbers is said to be uniformly distributed modulo 1
if the sequence of fractional parts ((̂ i )) , ((/?2 )) , ...» ((/5r))
(in [C,1)) is equidistributed in (0,1) .

Theorem 4.1
Let = 1 ,  2, ...) be any sequence of

n-dimensional vectors, not necessarily restricted to lie in 
the unit cube. The necessary and sufficient condition that it 
be uniformly distributed modulo 1 is that

[ k e( m g W )  ] =  0
r<k

for all integral vectors m =#= 0 , where

e(x) = exp( 27rix ) , i^ = -1 ,

Note : Since the statements of the theorem are not affected
by replacing die vectors g^'")by congruent vectors modulo 1 , 
we may suppose, if we wish, that they all lie in the unit 
cube 0 < < 1 , (1 < j < n) , in which case uniform
distribution modulo 1 is simply uniform distribution.

Thus, in the 1-dimensional case, we have the 

sequence of real numbers /3̂ , ylg, ..., /3p, ... is equi-
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distributed in (0,1 ) if and only if
k

lim k ^  ezp( ni,/3p27ri ) j = 0
r « 1

for every positive integer m .

This result is due to Y/eyl (1916) [22j ,
Theorem 1 , p.315 .

An application of this theorem yields the 
following well-known result : (see [4] or [22] , for example)

Theorem 4*2
Let ^ be an irrational number. Then the 

sequence of multiples of g ,

S f 2^ > 3gf

is uniformly distributed modulo 1 , ie. the sequence of 
fractional parts of the multiples of an irrational number S ,

((f))  , ((2f)) , ((3f)) ,  . . .

is uniformly distributed in the unit interval.

Proof ;
Let m be a positive integer and let = 77 .

Then the result follows if

e( rn((rf)) ) = o(k) .
I I

r» I
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Now E
r«i

e( m ((rf )) ) =  j \ e( r?7 - m[rf] )
r»i
k

[ \  e{ VTj )

r»i
e( (k+1 )t? ) - e{r})

e ('/? ) - 1

1 e(%) - 1|

I sin trrjl

Since t) is not an integer, the result follows.

For a proof of this result direct from the 
défini.tion of unifoim distribution modulo 1 , see [18], p. 24 .

In 2-dimensions , if

( ((rx)) , ((ry)) ) , x, y e R’ ,

(r =  1, 2, ...) , and m is a non-zero integer , then 

( ) ®( S ê I = I ^  e( r m d ) I ,
rSk r^k where £ = (x, y)

e( (k+1)m d ) - e(m d)
e(m d) - 1

and so is equidistributed in the unit square
(0,1) X (0,1) provided there is no relation jjj d = integer
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with integral m 0 ,
ie. 2C , y , 1 are linearly independent over the

field of rational numbers ,

X , y are both irrational .

In general, in R'"' , if are
n real numbers, and there is no relation of the form

+ #2^^ + ••• + ” ^n+i >

where m-j, mg, ...» mn+i are rational numbers (or, 
equivalently, integers) , then the sequence of points

{ ( 1  » 2 » .. » n)l » (^ — i» 2, ..,) ,

is uniformly distributed modulo 1 ,
ie. the sequence of points

i ( ( ( r f i ) ) j  ( ( r f z ) )  , . . .  , ( ( r f n ) )  ) J , ( r = 1 ,  2 , . . . )

is uniformly distributed (and dense, in the sense of (i) ,
Chapter II, p.15) in the n-dimensional cube.

A companion result in case 1, f,, ... , 
are linearly dependent is the following :

Theorem 4.3 [18]
Let ... » fn he irrational but.such

that 1, ... , are linearly dependent over tlie field
of rational numbers , say
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Then the points

( l( 1 )j 9 (( 2 )) » • • • » ((kf̂ n ))) > ( k = 1 ,  2, •••) »

whose coordinates are the fractional parts of the multiples
of ... , lie on and only on , those portions of
the lines

mi%i + mgXg + ... + mn%n = t ,

where t is any integer , lying within the unit cube.
Furthermore, the points are dense on these

segments.

Thus far ws have on].y considered trie sequence 
n% =  k , (k = 1; 2, ...) .

oo
Suppose is an increasing sequence of

integers, or real numbers, tending to infinity.
In 1912 Hardy and littlewood posed the 

following problems :

Question 1.
oo

For which sequences i>Nkik«i it true that
CO

{hk%!k,, is dense modulo 1 for every irrational x ?
(Note ; {y%) is dense modulo 1 if j ((yk )) j 

is dense in [0,1 ] ).

Question 2.
oo

For which sequences {Akjk.. is it true that
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[ ((X^x)) = , is uniformly distributed modulo 1 for almost
all X ?

Theorem 4 *4 (Hardy and Littlewood (1914), [10])
r 1 ^Let to any increasing sequence of

real numbers tending to infinity.
Then [X^xj is dense modulo 1 for almost all

X  .

oo
Now suppose the increasing sequence [nklk»i 

of integers is such that

111 ^ ng ^ n^ ^ ... < n^ ^ •

hi terms hg terms h^ terms

the first hi terms are equal, then the next ho terms 
are equal, ... , and the last h^ terms up to n% are 
equal , so that in [ni, ng, ... , nij there are q distinct
terms. Then, if there exist constants c, e such that

max hi, <    ,
(log

{ ((n%x)) ] is uniformly distributed in [0,1 ] for almost all 
X (%eyl [22] , §7) .

To answer question 2 we need a measure for 
tiie repetitions in the sequence jn^j :

Notation ; Let jn^J be any sequence of integers. Suppose 
that in [ni, ... , Uk! there are q distinct elements
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occurring v/ith frequencies hi, hg, o.. , h,̂  , 
h, + hg + ... + h^ = k .
Put

2hPk hi + hg + ... + h ^
k"

Definition.
A sequence [x^j of non-negative numbers is 

called asymptotically small if there exists a divergent 
series U k  of positive terms such that

c t k ^ k  ^  +  o o  «

(Note that this.definition is equivalent to 
lim X k  =  0 ) .

k  oo

Theorem 4 .5 (k. Mehdi )
CO

let !nkik,i he any sequence of integers.
C O

Then | ((nkx)) is uniformly distributed
COmodulo 1 for almost all x if and only if ÎPk!k»i is 

asymptotically small.

Proof :
(i) Necessity :

Suppose in {ni, ng, ... , n^j 
the distinct terms are n^ , n^^ , ... , n^^ occurring 
with frequencies hi , hg , ... , respectively.
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Write

fk(x) = E  T
s*i
where m 4= 0 is a fixed integer^

i  Vk ' "S
S « 1

Then I |fk(%)|^dx =  ^  ^  h
s«i

and |fk(%)| < 1 , (k = 1, 2, ... ) .
Using Theorem 4*1 , by dominated convergence

r  ifk(x)i=d 
J n

dx ■ 0 as k OD ,

Pk ^ 0 as k-i> o o

CO{Pk!k = i is asymptotically small.

(ii) Sufficiency :
Suppose {pki is 

asynptotically small. Then there exists a divergent scries 
of positive terms ^  Uk such that ^  «kpk < + oo

oo

So V  «k ; |fk(x)l^dx < *00 ,
£— I 't 0k » 1

oo

k « 1
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) (%k |fk(x)|^ < + oo pp. in [0,1] .
k«i

This implies fk(%) 0 pp. in [0,l] and therefore
in R r • •

Thus if {nk! is a (strictly) increasing 
sequence of integers, hs = 1 for all s and

Pk = + hi + ... -H h |  ^ i
k"

1
k '

and so the set of values of x such that ((nkx)) , k = 1, 2,..., 
is not equidistributed in (0,1) has zero Lebesgue measure.

There is an n-dimensional analogue of tliis
result.

A further problem which may be investigated is :

Question 3 •
Given two increasing sequences of integers 

{mx! , {nk! , tending to infinity , does the set

[ (x, y) : ( ((iikx)) , ((rnx.y)) ) is uniformly
distributed ]

have full measure ?

The 'size* of the exceptional set for whicli 
((n^x)) is not equidistributed depends on the sequence {nx! .
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For example, if is given by a polynomial in k with,
integer coefficients, then the set of x for which [ ((n,^x)) j 
is not equidistributed is enumerable. (V/e have seen that 
if n% = k , the exceptional set consists of the nationals) . 
In this case t^ = 1 as k oo . However, Erdos

and Taylor [8 ] show that n^+i - n^ bounded is not a
sufficient condition to ensure that the exceptional set has 
power .

Theorem 4 .6 (1557 , [8])

There exists a finite constant G , and an 
increasing sequence of integers [nx! such that

nx-i-1 *“ iix < G , (k = 1, 2, ... ) ,

and the set of x such that ((nx%)) is not equidistributed
is not enumerable.

Proof :
Suppose [Xt j is an enumeration of the 

rationale in g] , and each rational occurs in the
sequence infinitely often.
Let

kg ~ 5 , (s = 0, 1, 2, • •. ) .

Set n, = 1 and suppose for some positive integer r ,
nx has been defined for k < kr-i . Suppose nx-f has been 
defined, and let nx be the smallest integer greater than 

Uk~i for which
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cos(nxXr2îr) > i , 

so that .Tik is defined by induction in the range

kr-i < k < kp , (r = 1, 2, ... ) ,

Now since ^ Xr > T  , we have

%+1 - %  < —  < 214.Tr ,Xr ■'

so that nx+1 - %  < 100 , (k =  1, 2, ... ) .
Also,

kr
^ * cos ( nxXp27T) > (kp — kp„i) =  2kp_^ ^

and so
k*k._ +1

kr
... + 2 k )4  Y' cos(nkXr27r) > ^  (2ko + 2k^ + ... ■ — --i

k«i
> 5r-i 

kr

1
= 5 •

Define Ir to be an open interval containing Xp such that 
if X is in Ip , then

k
 ̂ i  cos(nkX2ir) > ^ . (15)

k • 1
Let

oo oo
E = n U Ip = lim sup Ip 

1 r 5 (g,
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Then 3 contains all points x which are in infinitely
i 1many Ip aaid so contains every rational in [g-, g] . Thus

1 iE is everywhere dense in the interval (— , . Also, S
is a G^-set, and by the Baire Category Theorem, such a set 
which is dense in an interval cannot have power < .

If X e E , then'given IT , x is in Ir for 
some r > IT . By (15) , there is an integer k r > N  such 
that

kr
^  V  cos }((nKx))2T7j = ^  y  C03(n^x2ir) > I

k « 1 k » 1

k
Kence, for any x in E ,

lim sup 7 ) cos {((n^x)) 2 tt] > lim sup —  \  cos [((uĵ x)) Z tt]
t - > û o ^ Z _ /  p oo

k  « 1 k »  1

a n d  so, by Theorem 4*1 , [ ((n%x)){ is not equidistributed in 
(0,1 ) . 3o the sequence [n^} satisfies the required 
conditions with C -- 100 .

Baker [l] , however, has improved on this 
construction by showing that the constant 100 may be
replaced by 2 , and that rather more is true.

Theorem 4 .7 (1972, [1])
For a strictly increasing sequence of positive 

integers S  =  (nki » denote by E(^) the set of x for 
which the sequence [ ((n^x)) ] is not equidistributed.
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Let N be a given positive integer.
There exists a sequence ^  of positive integers 

such that E(,§) is not enumerable, and

(i) 1 nk+1 - n% 3 2 , (k > 1) ,
(ii) if ki, kg are indj.ces for which

nk+1 - Hk == 2 , then I kg - k J  > IT .

Thus the sequence is just 1, 2, 3,
with an integer removed as infrequently as v/e wish, in a sense. 
Note that if only o(n) of the first n integers were 
removed, S(^) would consist of the nationals.

Proof :
Assume ÎT ^ 2 . Let 4 and M = 6lT +9 .

00
Let ihLÎt = i an enumeration of the nationals in [2 6 ', 3cT]
and let each rational occur in the sequence infinitely often*

Let St denote the set of integers n such
that

M®'*' < n < , ((nXt)) < S , (i = 1, 2,

Define tlie sequence f  = consist of those n > 1
which do not belong to any St .

To show that'^ satisfies (i) and (ii):
Choose n e ̂  with

< n < and ((nXt)) > (T

for some i ̂  i and suppose (n + i ) ^ .



— 75 -

Then (( [n + 1 ]Xt )) ^ o

Suppose nXt = Ii + , Ii 6 N , 1 > 771 > cT .
Then (n + 1 )'hi = (li + I) + , 0 < ^2 ^ ̂

2S < Xi < 3S Ii + 1  - 3cT < nXt < Ii + 1 - cT ,

(with possibly equality for the special cases X(, == 2S , 3S ) 

Hence

Ii + 1  + (T < (n + 2)Xt < Ii + 1 + 5cT

(([n + 2]Xl )) > (f

— ( n + 2 ) 6 ̂  .

Thus satisfies (i) .
Also,

Ii + 1 + (2r - 3 )^ < (n + r)Xt < Ii + 1 + (3r - 1 )<3"

< Ii + 1 ,

for r = 0, 1, ... , N , so tliat

(([n + r]Xt)) > S , 2 < r < N ,

and so (n + r) 6 , 2 = ^ r < I T .
Thus ^  satisfies (ii) .

Let Jt denote the set of real x such that

((nx)) > S

whenever < n < , n ^ 8  ̂ .
Clearly Ji is open end Xq 6 J1 .
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Let E n U Jt .

Then, as in Theorem 4*6, E is uncountable•
Finally, if x 6 E , and Nk [ 0 , cT ) is the number of ten 
of ((n^x)) , (h < k) , in [O , cT) ,

lim i.nf ^*[0 ; ^ ^ — — j— _  < (f ^
k "  k M(1 -  1 )

=#> E c E(^) .

We now consider the Hausdorff dj. mens ion of the
oo

exceptional set of x for which [ ((iikx)) , is not
oo

equidistributed for a sequence [nkjk=i satisfying the 
conditions of Theorem 4.6 .

Theorem 4* 8 . [8]
CO

Suppose G is a constant, and |n.kik = i ^  

increasing sequence of integers such that

n k+ 1 ~ ^ k ^ C , (k == i, 2, ••• ) «
CO

Then the set of points x for which [ ((nkx)) 
is not equidistributed has dimension zero.

The method of proof may also be used to show
oo

that the exceptional set of x for which [ ((nk%)) , is
not equidistributed has measure zero with respect to the
Hausdorff measure function

h(z) =  1 , for every e > C ,
r i i i + c[log -]
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Note that since the sequence [nkj constructed
in Theorem 4.7 satisfies — 0(k) , Theorem 4*8 implies
that the Hausdorff dimension of E(3) is zero. Also the set 
of X for V7hich

lim sup fk -» oo

is finite.
The methods of Theorem 4.8 may also be used to

yield ;

Theorem 4*9 [8]
Suppose C > 0 , p > 1 are constants and [nkJ

is an increasing sequence of integers such that

UK < C , (k = 1, 2, ... ) .

00
Then the set of points x for which [ ((n^x)) 

is not equidistributed has dimension not greater than
/ 1 N OO(1 ~ p) > there being sequences [nki for which the bound 
(1 - is attained.

The sequences [nki considered so far do not 
increase too quickly. The sequences of Theorems 4.8 and 4*9 
are not lacunary (ie. they do not satisfy (6 ) of Chapter II,

1 ^ p > 1 ), they satisfy
^k

lim inf t^ =  i

The case t^ •-> oo is already discussed in
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Chapter II. For the set B of values of x such that
[ ((ii'kx)) ~ a ] converges , 0 < a < 1 , has dimension ^

k « 1
V/e thus have ((n^x)). -> a , as k -+ oo , for x in this set

oo
E , and so [ ((n^x)) {^ = 1 cannot be equidistributed.

The condition above that the sequence [n^j 
be lacunary implies tliat the exceptional set of x for which

oo
[ ((nkx)) = i is not equidistributed has dimension 1 :

Theorem 4.10 [8]
If în^} is an increasing sequence of 

integers such that t% ^ p > 1 , than the set E of values
oo

of X such that [ ((n^x)) is not equidistributed in
(0,1 ) has dimension 1 .

The proof is another application of Theorem 
2.5 to show that S has positive A^-measure for any s 
satisfying 0 < s < i .

2. The uniform distribution of the integral parts of the 
multiples of an irrational number .

Consider the integral parts of the multiples 
of an irrational number ^ ,

[f] , [2f] , [3f] , ...

The question arises as to whether, in the 
limiting sense, there are just as many even numbers as odd,
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or just as many in each of the three congruence classes 
modulo 3 f etc.

Consider any sequence of integers n̂  , n-,, 1I3, 
For any modulus m > 1 , define N(k, j, m) as the number 
of integers n/̂  satisfying h < k and n = j (mod m).
Then the sequence [h k ] is said to be uniformly distributed 
modulo m if

lim K(k, 3. m) _ 1  _
m

for each of the residue classes j = 1, 2, 3» ••• , m .
The sequence [n^j is said to be uniformly distributed if 
it is uniformly distributed modulo m for every positive integer 
m > 2 .

The answer to the above question is then 
affirmative, for the result of Theorem 4*2 may be used to 
show that if ^ is an irrational number, then the intégral 
parts of its multiples,

[f] , [2f] , [3^] ,

form a uniformly distributed sequence of integers [13] .
For, if m is a fixed arbitrary integer,

—  is irrational, and the sequence m r = rL m m

is uniformly distributed in the unit interval. Multiplying 
the terms of this sequence by m , we see that the sequence
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m J '
(k = 1, 2, ... )

is uniformly distributed (in the obvious sense) over the 
real line from 0 to m • Hence, by tolling the integral parts 
of this sequence , a sequence of integers which is uniformly 
distributed modulo m is obtained ,

[ kf - m 1 =  (" [kf] - mm J L _m_
(k = 1, .

However, since all multiples of m may be ignored modulo m. , 
we have that the sequence is uniformly distributed
modulo m for all m > 2 .

Note that if ^ is irrational and satisfies 
-1 < g" < 1 , then the sequence

[f] , [2f] , [3f] ....

does not consist of distinct integers, but the definition 
of a uniformly distributed sequence of integers contains no 
requirement that the integers be distinct.

For any positive real number a define 
as the set of integers

[ [(%] , [ ,  [3#] > ••• , [kcxj , ••• I •

Then among other known properties of the 
sequence of integral parts of the multiples of a real number 
are the following : (See, for example, [18])
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Theorem 4.11
Let a and /3 be positive real nuiLbers.
Denote the set of all positive integers by II 

and the empty set by ÿ . Then Kq and are complementary
sets of positive integers ,

ie. U = H and ITqt (1 ,

if and only if a and /3 are irrational and

1 1 
; + ? =  ̂ •

Theorem 4.12
Given positive real numbers a and such

1 1that 1 , ~ ~  , are linearly independent over the field
of rational numbers, ( a" \  (3"̂  are irrational), then 
and have infinitely many common elements.

Theorem 4.13
Let a and /3 be positive irrational numbers

such that

a b
OL p ~ ^

for some integers a , b , c with ab < 0 and c 0 .
Then Ng and IT̂  have infinitely many common

elements.

Theorem 4.14
let a and p be positive irrational numbers
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such that

- - I =a ■ p
for some positive integers a , h , c , c > 1 .

Then Ncj and have infinitely many common
elements.

Theorem 4.15
Let a and p he positive real numbers.
The sets and are disjoint if and only

if a and p are irrational and there exist positive 
integers a and b such that

Furthermore, if and have one common
element they have infinitely many.

Theorem 4.16
Let a > 1 and /5 > 1 be irrational.
Then Ng U = N , if and only if

there are positive integers a and b such that

a(i - + b(l - ~) =  1

Theorem 4.17
Let a > 1 and ;d > 1 be irrational.
Then d  if and only if there are

positive integers a and b such that



a(1 - ^) + I = 1 .

Theorem 4 »18
There are no positive reel numbers u , (3 , y 

such that j;T(v , Njg , are pairwise disjoint.

3. The uniform distribution modulo 1 of [f(n)j^^^ *
If f(t) , (t > O) , is a differentiable 

function then the behaviour of f*(t) is an indication of 
the kind of oscillation (rapid or slow) of f(t) between 
the bounds 0 and i . Therefore in certain cases from given 
properties of f*(t) conclusions can be drawn about the 
continuous distribution of the values of f(t) (mod 1 ) , 
and the discrete distribution of the sequence f(l) , f(2 ) , . 
(mod 1 ) .

This section contains some known theorems about 
the discrete distribution of sequences f (1 ) , f(2 ) , 
under given conditions on f'(t). The proofs are generally 
based on the known behaviour of the corresponding f(t) ,
(t > O) , with respect to the continuous distribution 
modulo 1 .

Definition.
The function f(t) is C-uniformly . 

distributed (mod 1 ) if for every integral value of h 0 ,

lin ^ ^ 0 .
T -> OO J Q
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Theorem 4-19 [11]

Let f(t) he a function , differentiable 
for t ^ 0 , and let

(i) C ^ f*(t) < 0 0 ,  t > 0 ;

(ii) tPf*(t) -> constant > 0 as t 00 ,

(p fixed , 0 < p < i ) .
Then the sequence f (1 ) , f(2) , f(3) > 

is uniformly distributed modulo 1 .

Proof :
The condition (ii) implies that f(t) is 

C-uniformly distributed (mod 1) . (See [II] , where further 
references may be found) .

Using Euler's summation formula we have
T

I / J 1K ** 1

+ 2Vhi y  ,
(16)

h = ±1 , ± 2 ,  ... ; T = 1 ,  2, ... , where

P(t) —  t - [t] -

If I is the last term on the right-hand side of (I6 ), tlien

ill ^ [ W  f'(t)dt < 2r|h|f(T)
T J 1 T

(ii) implies that f*(t) 0 as t-+oo, and so
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(t) . 0  as t -> oo

Tiius
0  as T  —» oo

and so, from (16), for every integer h 0 ,
T

lim i y  = 0 .
T ^ OO L jn«i

The same met ho iis will also give ;

Theorem 4 > 20 [11]
Let f(t) be a differentiable function , and

let

(iii) f ’(t) monotonie ally decreasing , (t > O) ;

(iv) f*(t) 0 as t -» oo ;

(v ) tf '(t) —> 0 as t —>00 •

Then the sequence f(l) , f(2) , is
uniformly distributed mod 1 ,

For, (iii) , (iv) , (v) imply that

lim 1
T -> oo Jo

f r tand (iv) implies that '  ̂ 0  as t -+ oo ;
t

and
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Theorem i-u2'i [111
If f(t) is a differentiable function (t ^ c) ,

and satisfies

(vi) f(t) is G-uniformly distributed mod 1 ;

(vii) f*(t) > 0 , (t > to > C) ;

(viii) -+ 0 if t -•> CO ;
t

then the sequence f(l) , f(2 ) , is uniformly distributed
mod 1 .

Theorem 4.21 also implies that if f(t) is a 
differentiable function (t > O) and satisfies

f*(t) log t C > 0  as t CO ,

then the sequence f(l) , f(2 ) , ... is uniformly distributed
mod 1 .

Among other known, sufficient conditions for 
the sequence f (1 ) , f(2 ) , ... to be uniformly distributed 
mod 1 are [11J :

(a ) f(t) is a differentiable function with
ltf'(t)| < M , {U > 0 , t > 0) ,

and

(B) f(t) is a function twice differentiable for 
t ^ 1 , and



“ 37 ■"

(ix) f*(t) and f*’(t) are bounded for t > 1 ;

(x) f*(t) “► S (irrational) as t -+oo •

In [11] , the author uses the above theorems 
to show that the sequences Vn + sin^ , (n =  1, 2, -..) ,
and Vn + sinn , ( n =  1, 2, <>..), are uniformly
distributed mod 1 , whilst the sequence cos. ( n + logn ) ,
(n =  1, 2, ..,) , is not •

4 « A generalisation of uniform distribution.

Summary of known theorems :

(i) [V/eyl]
The necessary and sufficient condition that 
[Xnj be uniformly distributed mod 1 is that
for any R-integrable function f(x) in [0,1] ,

lim )) i + i =  f f ( x ) t o .
n “> 00 n j o

(ii) [ V/eyl]
The necessary and sufficient condition that
[xni be uniformly distributed mod 1 is that
for m = 0 , ±1 , ±2 , .... , 

n
g27T‘imx^ =  o(n) •

rmi

( f(x) = exp ( 2vix) in (i) ) .
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(iii) [van der Corput]
Pet 8k(t) = g(t + h) - g(t) , (h =  1, 2, ...).
If [g^(u)J is uniformly distributed mod 1 
for any h , then [g(n)J is uniformly 
distributed mod 1 .

(iv) [Pejer]
Let g(t) > 0 be a continuous increasing 
function with a continuous derivative g*(t) 
for 1 ^ t < oo and satisfy the following 
conditions :

(a ) g(t) CO , as t —> oo ,

(b ) g*(t) -4- 0 monotonically , as t oo ,

(c) t g ' ( t )  -+ oo , as t oo

Then ig(n)] is uniformly distributed mod 1 .

Thus jan^ j, ( a > 0 , c r > 0 ,  or not an integer) , 
and [a(logn )̂ j , (a > 0 , cr > 1 ) , are uniformly
distributed mod 1 . If cr is an integer and a is irrational,
then [an^j is uniformly distributed mod 1 •

In [21] , Tsugi generalises the notion of uniform 
distribution mod 1 as follows :

Let Tsn > 0 be a sequence which satisfies

(a) ^ X 2 ^ ^ Afi > 0 ,
CO

(h ) ^  Xn = 03 ,

n « 1
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Let I be an interval in [0,1] and 0(x) its 
characteristic function, ie. ÿ(x) = 1 for x 6 I , and 
0(x) = 0 elsewhere. If for any I ,

lim ((Xi3 ) + ... + {(xn)) j _
n -> OO -v . .Ai + « • • + An

then [xn] is said to be {Xni-uniformly distributed mod 1 .

The uniform distribution mod 1 is a special case , 
where Xn =  1 , (n = 1, 2, ... ) .

There are corresponding analogues of the above 
theorems :

Theorem 4 .22 [21]

The necessary and sufficient condition that 
[Xni be {Xni-uniformly distributed mod 1 is that , for an̂ r
R-integrable function f(x) in [0,1 ] ,

lim ((xn)) j _  T  f(x)dx .
A, + ... + An °

Theorem 4.23 [21]
The necessary and sufficient condition tiiat 

{XnJ be {Xni“Uniformly distributed mod 1 is that , for
m =  0  , ±1 , ±2  , . . • f

n n

^  Xre^^miXr =  Y Xp

r»i r«i
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Theorem 4.24 [21]
Let Xp = X(n) , where X(t) > 0 is a 

continuous decreasing function with a continuous derivative 
X*(t) for 1 < t < oo , such that

j X(t) dt , (n -4 oo)T 
r »  1

Let g(t) > 0  he a continuous increasing 
function with a continuous derivative g'(t) for 1 < t < oo 
and satisfy the following conditions :

(a) g(t) -4 oo , as t -4 CO ;

(b) g'(t) -4 0 monotonically , as t oo ;
g ̂ ( t )

(c)  —  is monotone for t ^ to ;
X(t)

(d) ?.S ..2 [ X(t)dt -4 oo J as t -4 oo .
X(t) J,

Then }g(n){ is {Xpj-uniformly distributed
mod 1 .

Thus, for example, if g ( t ) > 0  is a 
continuous increasing function with a continuous derivative 
g*(t) for 1 ^ t < CO , and satisfies the conditions :

(a) g(t) -4 oo , as t -> CO ,

(b ) g'(t) -4 0 monotonically , as t -+ oo ,
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(c) tg’(t) is monotone for t ^ to ,

(d) tlogt.g'(t) coj cl s t —> OC' ,

then [g(n)i is — J-imiformly distributed mod 1 .
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