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CHAPTIR I

I e b s it el R

1. Introducticn,

This dissertation is & general survey of
topics in geometric measure theory and diophantine approx-
imation.

The present chapter contains general
definitions and notation used tahroughout and an introduction
to the theory of Hausdorff measures. Properties of the
Cantor Ternary Set are slso derived here, which will be
needed for the discussion in Chapter II.

Chapter II is devoted ﬁo the study of a
problem whose origins are outlined as follows

Let U be a unitary operator on a Hilbert

space 7(,
v - MY, Uy = wt o= 1,
27
—_ LG“*;\
U = j’ c O.L@
0
where
Fo = O < FG < e o < I = Fzﬂo

U correcsponds to a measurs y on [0, Zir). (Consult [9], for
example ).
For any operator T : Z - Z{, a subspace

M c X is invariant ir. T#lc » .



M is reducing if
W c

Comt ¢t

T is sinjular if every invariant subspace reduces.
Now the measure p is the direct sum of two

measures |

Bo= ouy @ pg s
where ua.is sbsolutely continuous and e is singuler,
#s may also be decomposed thus

B = Hag @ pog o

where p,  1s continuous singuiar.

Similerly,
U = U, ® Us s
US = Uas @ ch .
A bilatcral shift B is such that for {eii_:
convergent in f(, Bgi = €54 °

Fow U_ is reart of a bilateral saift,
<

0 i )
I8 - sl - well, gee.
The following problem arises:

Problemn.
For each ¢ ¢ H, does there exist a sequence

’ (e o]
{vn(f)}n,, of positive integers such that

’
Ugng -~ £ 9
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It is easily verified that the answer is affirmative for

Uas' The question of whether the sasme is true of UCS gives

rise to the problem considered in Chapter II;
N o0

ie. does there exist a seguence {vn}n,1 c N such thet

el¥is0) - (o)

27 :
: iva0 _ 2 23, 2
ie. / X, |e 1]2lgl%au,, - O ¢
(s}
Or, writing lfl = 1, does there exist a sequence of rpositive
o0

integers {vnln.1 such that

“cs{ 6: v 6 - O, modulo 1 I =1 ¢

It is proved thét the answer to the problem
posed is negetive, in that it is impossible to finé such a
[o0]
sequence {vnin,1 of positive integers for certain tyres of
'reguler' set with the given prorerties.
The first part of the chepter is a generesl
discussion of results related to the rrcblem and conteins

o -
an account of the prorerties of the sequence {n}x}k=1
<

o
mecdulo 1, where x elg‘and {nkik.x is any increasing seguence
of positive integers. |
A problem in geometric measure theory is now
considered in Chapter III. An account is given of the origins
of the problem, its relationship to other aspecte of

convexity, of partial solutions, and finally the conrlete

solution,
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Chapter IV is a survey of topics in uniform
dictribution modulo 1 of sequences and related topicse.

2

The msin interest is in the uniform distribution rouulo 1

o«

of se¢ruences of the form {n,x] where x €& and {n]

k=1

Kot
is any increesing seouence of positive intezers, and the
pfOperties of sets of points x for whiéh {nkx}kf1 is
uniformply distributed modulo 1. The uniform distribution
of the integrel parts of sucn sequences is also discussed.
Connections between results here with results in Chagyter II
are pointed out.

Ve begin with the basic definitions and notation

which will be used freely throughout. Other derinitions

reguired for specific results will be given as taey arise.

2. Notation and General Definitions.

For any real number X:
[x] denotes the greatest integer not exceeding x; thet is,

[x] is the unique integer satisfying

[x]

n

x < [x] + 1 ;
(x) derotes the fractional part of x, nemely

(x) = x - [x].
The symbol N is uscd tc denote the set of sll
positive integers.,
30 denotes the cardinal of Wand e¢ = 2 the

cardinal of the contimuum,
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The definition of 2z Fauvsdcerff measure apglies to
any metric space, but problems will only be consiiered in

Fuclidean n-space.

A measure-functicn is defined to be a real-velued

function h(t) defined for t > O, such that

(i) h(t) is continucus and monotone increasing,

(ii) 1im h(t) = O, and h(t) > 0 for t > O.
't—-*O.,.

Suppose E is a set in a metric space X. For eny

d > 0, put

uC; o &

h - mg(E) = inf L nfacy)]
a(cy) < ¢ L=

where d(Ciy) cenotes the diameter of C , and the infimum is
taken over all coverings of I by secuences {C;} of sets
with dicmeter not greater than d.

Now define

e

h - n*(E) = gsupo h - mg(E) (1)
‘ >

As the effect of reducing § is to reduce the class of covers
over which the infimunm is taken, h - mJ(E) does not decrease
as ¢ decreases, and it is the small values of § that.are
relevant in taking the supremum. Thus the formula (1) above
could be replaced by

h-n(8) = .lim h - mo(E)
AR

o+

ie, it is the 'fine' covers - those by sets of gsm2ll cicreter -



that determine h - m*(E);

Now the set function h - m (E) is a Caratheodory
outer measure in X : it therefore defines a class .of
h-measurable subsets of X which includes all Borel sets
(see, for example, [19]). When E is measurable with resrect
to h write

h - m(E) = h-n(E),
and call h - m(E) the h-mecasure of E. All the sets we
consider wilil be cbviously measufable. |

For the analysis of subsets of En of zero Lebesgue

measure it is usual to assume that the function h(t) = o

£
as t - 0+ . (h is called a measurc function of class n).

In the special case h(t) = t%, « > 0, we rerlace
h - ma(E), h - m (&) and h - m(E) by the set functions
A?(E), A:(E) end A*(E) respectively, end the measure so
obtained is called the g-dimensional measure of E. For a
given E and a > O, A%*(E) may be zero, finite and pesitive,
or infinite. E is called an g-set if A®(E) is finite zna
positive.

For example, the classical Cantor Terﬂary Set C
~ (see section 3) constructed on the real line satisfics

o, a > 4,

A%(c)

1 ’ a:d‘,

+00¢ a < d':

if n(t) = t%, where § = log 2 / log 3.
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- n . A . s
All subsets E of R~ hove & numeriesl dimsasion,
which is & real number ¥ € n , and denoted by dim =, fiven
by

dim E

y = i:ﬂf { o > O M !‘Aa(E) = O }-
1f A%(E) = 0 for all a then we write dim E = O.
If dim 2 =1y , it is possible for A’ (E) to be zero, Iinite
and positive, or infinite, but
a > v "‘—-SJCX(E)=O,(0€}'<00;\I-,
O<a<y = Aa(E) is non ¢-finite.
If E is a set in 3Iuclidean n-space, IEi will denote

the Lebesgue measure of I. In that case it can be shown that

8] = a3, nex,

(A™(2) is called the (n)-measure of E) , where

‘n N n-1 ‘1
z
is the volume of a sphere of unit diemeter in n-space.
(see, for example, [19] p. 5u4).
Thus, wnhile Lebesgue msasure assigns unit measure tc the
cube of unit size, An assigns unit measure to the srhere

of unit diameter.

3. Cantor Ternary Set and Ternsry Function.

Denote the open intervzl Gr -2) (Gr -1)

331 n

(3]



by En - and put

s

MUES o
= U E G = U G 5
Gn . e n,r ’ Nzt n ’

then it is clear that G is an open subset of [0,1] and its

complement

¢ = [o0,1]\ @

is called the Cantor Ternary Set. C is gpviously closed.
b
.2t

L=1

For x € [0,1] , write x =

! of O's and 1's does not satisfy

4

where ths scquence {bg

by =1 for i 2 N.
Define
[¢ ]
g
g(x) = il ,  where a; = {0, if
Ly L
L=t {\2 if

by

by

Then g : [0,1] » C is (1-1) and raps [C,1] on to a prorer

subset orf C.
Since C c [0,1] , C has cardinal c.

It is clear that
Xy < Xg = g(xy) < g(x2) ,
80 that for each y € [0,1] ,
g t[o,y] = [0,2] for some z.
If z is dcfined by (2), then we say that

z = f(y).

This defines 1" : [C,1] -~ [0,1] ¢s 2 wmonotone function vliich

e’
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is clearly constant on each of the intervals E71 r , for

s

- : » - 2r - 1
-2 ¢y 21 = r(y) = *F -1
311 31'1 211

. The function f is continuous and monotone increasing since
0. € yy =y2 < 3™ = 0 < f(y.) - £(y2) < 2",

The function f (the Cantor Ternary Function) is

differentisble with zero derivative at each point of G siice

f is constent in each of the intervals En P f increeses st
b4

each roint of C and

1im f(x + h) - £(x)
h -0 h

b
M
Q
.

= +°°,

Let v be the Lebesgue-Stieltjes measure assocliated
with £,
ie. v(a,b] = f£() - f£(a) = v(a,b]
since f is continuous. Then v[0,1] =1 , v(mn’r) =0,
v(Gn) =0, v(G) =0, and v(C) =1 .
Also, if a = log 2 , then A*(C) = 1. An easy proof of this
log 3

fact is provided by lemma 4 of [20]. The lemma siztes:

Lemma 1.1
Suppose that ¥ is & completely adlitive reasure
def'ined on the real Borel sets wnd that E is a Borel set

such thet for each x € © ,
Flx, x + h]

¢(n)

"
=
A
8

lim sup
h-20
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where ¢ is @ Housdorft measure function. Then

k{i¢ - m(®)} =2 F(}E). .

- . L A .
Iow the set C is covered by dl intervals, each of

‘length 3% , for N=1, 2, ... , and so0
1 |
A%(c) < 2N{——ﬁ }O‘ = 1 (3)

If x € C and is of the form

r - 2 ~
X = 3 for some r , N ,

ZN
_ ; -N
then V[x , x +h] = Ofor 0<h< 3",
Suppose X € C and is of the form

r - 1
X = 3 - for some » , N ,

and consider the relationship between v[x , x + h] and h®

z=n

for 0O <chg?3 fcr some n 2 N .

27> o
; NS he
Fig. (i) f s
| RN |
o ~— f(x + h) - 1(x),
- . £ €C
2-T‘l-1 x f_...._____.
‘ ,
)/ .
/ —
/
/ s
-
‘.
{
F
0~ T -n-v Zn “h



Now
37(n+1) ¢ h o< 2370 Se(x e n) - £(x) € 2 ()
| = (370
< n*
and
2,3=(n+1) ¢ p ¢ 3,3-(+1) - z-n

= f(x +h) - £(x) € fh=-2,3 0% . o-(ner).
a |

s h ° . Y
The &-(Gern enf exlends fo generd p srks o’{» C by @ppr‘o\om\a/—m,\) {
e So f(x +h) - f£(x) < »*  for sufficiently small h for
all x € C. ‘ | . |

So

lim sup £{x +&h) - f(x)

< 1 for all x € C .

Applyingz the lemma with B.=C, I = v, ¢(h) = ha y - m = Aa .

we have k=1 , and
A, . 4
AT ) = vEe) = 1 . (&)

Combining (3) with (4) ,

AMc) = 1.
It follows thet dim C = o = 1log 2, for
log 3
A‘B(C) = 0, 3> a,

and AB(C) is non o-finite for 8 < a .



CHAPTHER II

This chapter is‘concerned with the following
'problem :
F is 2 measure on [0,1]‘concentrated on the
subset By, (F(E;) =1) , with F([0,1]) =1 , end |Be| = 0.
Does there exist a sequence of integers

{nkikw1, inereasing to infinity, such that
=

((nx)) - O for almost all x € 2,5, as k - o ,

or, more precisely,

F{xel[0,1] ¢+ ((nkx) » 0, ko] = 1 ?

1. The general behaviour cof the fractional part of nkd .

If 6 is an irrational number and o is any
number such that 0 € o <« 1, then it has been known for some
time thet it is possible to find a sequence of positive

integers ngy, Ny, nzs; ... such that
(nk6) » a, as Xk -» o .

‘Note : The resuli, when & > 0 , asserts that, given any

positive number € , there exists an integer ko such that
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The points ((nk0), k=1, 2, ... , mey lie
on either side of a. But, since ((ngd)) is never negative,
the formula has a special meaning in the particular case in

which a = O :

Any inconvenience arising as a result of this
distinction between the value ¢ = 0 and other values of ¢
may be evoided by agreeing that, when o = 0 , the formula
((nk6}) - o is to be interpreted zs meaning 'the set of
points ((nké), kX =1, 2, ..., hes, as its sole limiting
point or roints, one or both of the points 1 and 0 ', ie. for

any kX 2 Ko, one or other of the inequalities

-

0 < ((m6) < e, 1-€ < ((d) <

is satisfied.
This distinction, however, happens to be cof

no importance in the particular cases considered here.

The following generalisation of tnis result
was first proved by Kronecker (1884) [14] , anad a
comparatively simpler proof is given by Hardy and Littlewood

in [1C] :

Theorenr 2.1

If 04, 025, ..., Op are linearly inqdicirendent

irrationels (ie. if no relation of the type
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aibys + a8zl + EXX S anfm + apes = c .,

Where 84, 82y, eses ap+q &re integers, not all zero , holds
between 0y, G2y eeey Op) » 8NA gy oy eess Un are numbers
-such that C € ap < 1, then a sequence {ngj can be found such
that

((nk51» <+'a1 ’ ((nk62» =+ Q2 3y ees ((nkﬁm» = Un

S k“’&o

]

Further, in the special case wnen all the a's .
are zero, it is unnecessary to meke any restrictive
hypothesis concerning the 6's , or even to sugpose them

irrational.

The special case when all the od's ere zero was
known before by Dirichlet - his proof is strai:htiforward and
there is virtually no difference between the cases of one
and of several variables, {10].

Theorem 2.1 mey also be generzlised tnd is

proved by induction on k :

‘Ppeorem 2.2 110]

If 04, €25 eeey Up are linearly incerencent
irratiorels, and the a's are any nunbers such that ( € a < 1,

then & scouence [ng} can obe found such that

((nkb;) - oij »

[N
It
e

-
L]
L]
L ]

-
—
=
L]




unneces

inte;;ers

Further, if the «'s are all zero, it is

sary to suppose the 6's restricted in any way.

Tor & strictly increasing sequence of rositive

{rnk}] 5 end an irrational number 6, the set of roints

((nké) , k=1, 2, «o., can exiyibit reny different kinds of

behaviour. The following facts are well-known ;

(1)

(i1)

There is no number 6 , 0 < 6 < 1, such that ((k6)
tends to a limit,

(See [18]. If 6 is irrational, the points ((k0)),
k=1, 2, «.. , are dense in the unit intervsl ,

ie. given any real numbers Ay, Az satisfying

O <Ny < Ap €1, there is a positive integer k' such

that Ay < ((k'0)) < N2).

Given any arbitrary strictly incfeasing sequence of
integers {nkl}, the set of real numbers 0 for which

0 < 6 <1 and {((nkf)) tends to a limit as k tends to
infinity has zero linear Lebesgue measure.

(Hardy end Littlewood prove in [10], p.131, that the

set of values of 6 for which the set of points ((nk0))

is not everywhere dense in the interval {0,1) is of

reasure zZero).

It is interestin; to c¢cxemine how the set cof 6

for which ((ny6)) tends to a is aflected when we consider

different secuences of integers [nk}. The precedins r=cvlts

show that this set of ¢ may be emply, and is slways of zero
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linear measure even when it is non-empty.
The following two theorems are due to
Egeleston [7] cnd deal with this problem for two of the

commonest types of seguences of integers : when Igsq is
Ty,

bounded, and when ,{ oo -
D

Theorem 2.3

If a strictly increasing sczquence of rositive

intesers {n } is such that ng,, < X vhere 0 < ¥ < oo
I

for 211 kX, k =1, 2, ..., then Tor any g, 0 < o < 1, there

are at most an enumerable seti of resl nurkers d, C< 6 < 1,
for which ((n6)) »a 235 % 2o .

There is an n-dimnensional analogue of this resulws.

Theoren 2.4

If a strictly increasing sequence of positive

integers {n,} is such that n,, . as k tends to infinity,
o0

Ny
then thé set of g for which ((n.6) - a» O< 6 < 1, as k
tends to infinity, has dimension 1, for any ziven o, C < o < 1.
There is a corfesponding result in n-dimensionsl
space.
A subset of the set concerned in Theorem 2.4 is
constructed and an application of another important thecrem

due to Fgpleston [7] shows that this subset has rositive
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81-measure where O < By < 1, fhus giving the required result,.
The theorem, which will be required later in

the chapter, is a useful device for obtaining a lower bound

for the dimension of certain types of set :

Theorem 2.5

Suppose Ikis a linear set consisting of Ny closed
intervals each of length gy. Let esch interval of I, contain
Nkeq closed intervals of I .4, nNk,, > 2, each of diameter

g s and so distributed that their minimnum distance apart
K+ 1 L

is Pk+ 12 Pkt > Okaq o

et .
P = 0 Ix .
RN
Then, if

lim inf h{& Wre1pre1dR' =2 & > 0 ,

k—-*oo
the set P has positive h-measure.
(Note that if the inequality px+1 > Ok+i 1S not

true but pj4¢ < J; for infinitely many J and o0, p; both

tend to zero, then the result of the theorem still holds).
The most important case of the theorem is when

h(x) = xS so that

1im inf Ng,spk+105k ' > C = A3(P) > ©.

X -+ o

Erdos and Taylor [8] i&ve obtsined s nurber of

results concerning the properties of the set of points x for
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which the scquence { ((nkx)) } behaves in certain ways in order
to investigate the convergence of the lacunary trigonometric

series
o0

E: sin (nex - pgy) (5)
K=t

where {ux] (k =1, 2, ...) is a sequence of constants
satisfying C < pukx < 27 and {ng} (=1, 2, ...) is an
increasing sequence of integers satisfying

D

The classical theory of trigonometric series
:shows that the series (5) may only converge for values of x
in a set of zero Lebesgue meashré.

The coavergence, or ansolute converience, of

the series (5) is closely related to that of the series
o .
Zz (mx) = ax ] (7)
k=1

where {xax! (k =1, 2, ...) is a sequence of real nu:bers
satisfying C € ax € 1, and {nk} satisfies (6). The comnection

is given by

TLemma 2.1

If the series }: /Q@ké%» - %% conver-es,

then the series EE:Sin (nkx =~ pk) converges absolutely.
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Tor

Il

|sin (nkx - pk)l

|sin (ZW{«Ekgéy - %%Z)I :

2\ o Hk
< 2ﬂl(nk2ﬁ» o1 ’

(The converse is not true but the infinite cardinal or
dimension of the seis of absolute convergence of the series

(5) and (7) turn out to be the same).

4 discussion of the convergence of series (7)
leads naturally to the problem of equidistribution of the .
sequence { ((nkx)} , (k =1, 2, ...) , and this is
considered in Chapter IV.

The fsize'

of the set of ahsolute convergence
will depend on the rate at which ty increasss,

If tg is bounded, Theorem 2.3 jmplies there
cannoct be more then a countaple set of x for which

((aex) » y, (0O<y<1), as k > » , and so there is at

most a countable set of valuves of X such that

oCc

}: (nex) < o o

k=1

In the case of a sequence {n,} such that

tk = o we have

Theorem 2.6 [8]

If {n,} is such that t, is an interer for

large values of k,'and tk > 0 88 K - oo , then the set of

N
values of x such that 2: ({nkx)) converges (absolutely)
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has power continuum.
If t, increases rapidly enough to make

AN
24 E; convergent, we also have

Theoren 2.7 (8]

c. o
Suppose {n, ] is such that zl gﬂ converges.,
I3 K

—_—
Then for any {g,} the series > { ((nx) =~ g} converges
L

absolutely for values of x in a set of power continuum.

The dimension in the sense of Besicovitch of
the set of x for which ((nkxj)converges is of intercst only
in the case where the set has-power coentinuum since
enumerable sets necessarily have dimension 0. The dimension
depends on the rate at which t, - » and among the existing

results are :

Theorem 2.8 (Eggleston, [7])
If p >a> 1 and the sequence of positive
increasing integers [n .} satisfies
’C1nﬁ < nk+1 < [Czne I k:: 1, 2; e e 9
K1,6, Tinite positive constants, then the set of resl
numbers x for which

| (nkx) -~ « < ng”Y

for all sufficiently large k and a fixed o, C < a < 1,



has dimencion (p=a) .
— 2
alp - 1)
and

Theorem 2.9 (Erdos and Taylor, [8])

Suppose A > O, u> 0, p > O are constants,

and {nyx} is an increasing sequence of integers such that

‘l\k'o <€ ty < ukp

for each integer k, and {ag} is any sequence of constants

with O € o <€ 1. Then

(1) if 0 < p < 1, the dimension of the set of x for

which ;{:{((nwx» - ag} converges absolutely

is zero ;

(ii) if p > 1 , the dimension of the set of x for

Y
which zlj{((nkxﬁ - o] converges absolutely
1 L4
is 1 - =/,
G- B

Theorem 2.9 is another application of Theorem

2.5 . With €, s satisfying

C <.e < p-1 , 06 < 8 < 1 - ,

& subset P of the set of x such that
[ (ngx) - ax ] < k°'°°

for sufficiently large k is constructed with AS(?) »> O.
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This implies that the set of x for which (7) converges
absolutcly has positive AS-measure and so has dimension at

1
1 t {1 - —}.
cost (1 - 1)

More difficult meihods show that the set where
(5) converges sbsolutely has dimension at most (1 - %;)and
this proves the thecrem.

Similar methods will also yield :

Theorem 2.10

If {ax! is any sequence of constants , O < oy <
and h(z) is any measure function of class 1, there is an
increasing sequence {ng} of integers such that the set of

Ty

values of x for which 2:/{((nkx» - ax} converzes
absolutely has infinite measure with respsct to h(z).

Also, if ty - « , however slowly, and
O0< ¢ < akx < 1 - §,(k =1, 2, ...) , then (7) converges
for x in a2 set of dimension 1. Note that this result cannot

be true for ok = O since the series (7) converges only if

it converges absolutely.

2. The solution of the problem.

In section 1 various properties of the set of
values of x for which-((nkx» + 0 as k » o for particular

seguences {nk} were stated, and in particular that this set

glways has T.chesgue measure zero if [ny,} increases %o infinity.

1y
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In this section we will show that it is not
possible to ;'{Lﬁno(h:;ijiitﬁgsf JeownsiZ & sequence {nk} to
satisfy properties stated in the problem for 'regular'
Cantor-like sets. This idea will he nade precise later.

We begin by taking E, to be the Cantor Ternary

Set C constructed in the unit interval as defined in Chsapter I,

- gection 3.

Lemma 2.2

There exists a subset C' ¢ C and an increasing
sequence of positive integers {n,} tending to infinity such

that the cardinal.of C' is ¢ and

e,
Z ((nx) < w,¥vx€C'.

K=1
Proof
We have
i
c = f{x¢€f{01]:x= ZJ_.E » my € 10,2} 1}
i=1 3
. s o “ _ log 2
with cardinal (C) =c , |C| =0, daim C = , (see
' log 3
Chapter 1, section 3).
s .
Let nk = 32k(k+1) ’ (k= 1, 2, ce e )
Then tk = Dk q = 3K+1 s (k=1: 2, een )
Dk
Define )
c' = {xe¢€[0,1]:x= — , 7M€ {0,2] ..
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Clearly C' c C , 2nd cardinal (C') =c¢ , [C'| = oO.
Suppose x € C'.

Then

and so
A 77,
(( nkx)) = ; .._—l:-onk F} (l{ - 1’ 2’ ocn}

Hence
[o0] [o,0]

Z (nx) = Z{ Z%.,nk }

K=t k=1 i>k

Now when k=1 -1, = B’L s and for -k 21 ,

nk"‘“ < 1
ny 3

Hence

!
5
F3
N
!
—
-
+
W
+
L]
L]
e~

and SO

m‘..;

L=2

i«nkx» < f.?l“ =
ket '

Thus for all x € C' , the series (nkx) . converges.

™~

x

uq
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Thus ((nkx)) - O as k¥ » « for every x € C'.
Suppose p is the Lebesgue-Stieltjes measure -
associated with the Centor Ternery Function f constructed in

Chapter I, cection 3 :

ia - | log 2
‘U(-‘~'> = Aa(ﬁ‘ N C) s o= g _ s B C {0’1] .
log 3
From the definition of C' ,
oo
ct = N D, , where Dy D Do DDz D «.e
N=1

and D, consists of 2k disjoint intervals in [0,1] each of

N . -
length 3 s and y-measure 2 N s where

Rk +1) < N < 3k +1)(x+2) .

So v(py) = 2N , 0 as YN - o , and

v(C') = 0.

Also, since C' is covered by oK intervals each of length B'N

and N ~ %k , for eny a > C ,

Sk (1 0% P
2 — ~ 2 ) a2
* {3'@ 3%

- (R
L3

and so
dim C! = C .

Note that since tx » 0 85 kK N o , it Tollows

in view of Theorem 2.4 that the set of values of X in [C,1]




- 26 -~

for which ((nkx)) - 0 &s ¥k - o has dimension 1.
Lenma 2.2 may be improved in the sense thet it
is possible to make 21/((nkxD converge on a larger cubset

K
of C.

Lemma 2.3

There exists a subset D ¢ C and an increasing

sequence of rpositive integers {nk] tending to infinity such

that
o0
™
L ((n,x) < o VXED ,
K=1
and dim D = 4dim C = log 2 .
log 5
Proof
2k (k+1)
For the sequence n, = 3 , (=1, 2, o),

defined for lemma 2.2, the gaps between the successive terms
increase and contain 3k integers. To define the subset D of C,
we make the gaps smaller so that they still increase but now

contain only s5[log k] integers, ie. write

RN
D = zxec:x.—.LL;
K
L)k
for all seguences {nki} where 7, = O or 2. and
M., = 3'Ngoy » (=1, 2, «ou), 0 <i <k~ [log k7.
[ -

Then D is the intersection of a descending sequence of

intervals E; D E; D E3 D ..o where each E, consists of 2J
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intervals each of length 3°¥ and.

K= 1
T
j o= 211 fr+1-{logrl} ,
Tad :
ek +1) <« N < Hx+1)Xx+2) - [1ogXx] .
o (7Y
As before, v(E,) = 2 g(i) where g(N¥)Pew as N o« SO
that
v(D) = 0.

The same methods as in lemma 2.2 give

)
i.-2~
Lt=2

i ((nex) <

Kt
3

s(log il o N yp 6 [log 1] 1, 3 |

Now i
log i
Since [log l] ¢ 1 and tends to 1 as 1 » o , choose Ng
log i : .
1 + log
so that 1 < Ay < g3 .
2

Then 3flog i] > 1%0 for i 2 I, I a rositive integer,

'-0“2\‘ i .
and so zL 3 [1og 1] is convergent.

{ =2 '

(oo}

Thus :ﬁ ((nx) < o for all x € D and so {{nx) - C
/
[

-

-

Y x € 1.

-h

log 2

Now fix s with 0O <« s
log 3



- 28 -

We apply Theorem 2.5 with

k=1
N« = 25 vhere 3§ = E:' (r +1 ~ [log r]) .,
- Faq
Ok = Pk+1 = B-N: N «~ k2

k K

, —
Now ;ijfr + 1 - {logr]l] = x(x+1) + k - zlj[log r]
r=1 r=1q

s 2k(k + 3) =~ ck'*€

for some pesitive constants ¢ ,e .

So

K 1.2 1,2
Nk+1pk+162—1 ~ ZEfP . [10g PJ}-3 ek 3 2k (s=1)
S 22k(k+3) - ck1+€ j“§k2s
2 yik?
{33)'
- © , k- © . )
Thus D has positive AS -measure for each s < _Jf_g 2.
log 3
. . . . log 2
This implies D has Hausdorff dimension .
) log 3

Corollary.

There is an incressing sequence of positive

o«

integers {%k}k f o such that
1

il

AS{xecCc : ((hx) » 0, k-o} +



for all 8 < o = log 2 .

Tog 3
The methods of lemma 2.3 will also give :
Temma 2.4

If h(x) = x%(x) ~where ¢(x) is monotone
increasing to infinity as x§ 0, 3 {xk;;” 4 « such
that

h-mf{f x€C ¢+ (MW x) » 0O, kowo] = 4o

The sets C', D constructed in lemmas 2.2, 2.3
each have v-measure equal to zero. This suggests that the
same will be true of any subset © of C with the property that

((ngx)) » O for all x € E.

Theorem 2,11

Let {kp] © be any increasing sequence of
p=1
integers tending to infinity. If the set E ¢ C , the Cantor

Ternary Set, is such that

((kpr - 0 @as ©p- e forall x € E,

then
AXE) = 0, tog 2
log 3

Proof

For D.-'-"—1, 25 ess 9 I':'i, 2, eee define

' 1
B = { x€C : ((kpx)) < 7 p>nj.
n,r 3
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Then E1,~rCE2,rcE3,rC... s (I‘=1,, 2y ces)

En’1DEn’23En’3D .'." (n=1’ 2’ .oo)-

Let oo
Fr = U Ep,r = 1limEn,r , (=1, 2, +..) .
Net N0
o0
Then F = rn1 Fr 1s the set of points x in C for which
((kpx)) » 0 a5 Do .
We require to show that v(F) = o.

It is sufficient to show that for € > 0,

v(Fr) < € for sufficiently large r ,

ie. v(Er,r) < € for r > r(e), n > K.
Define
\ 1
Qp,r = { xe [o,1] ((kpx)) < ""r.'g ’
>

(P=1’ 2’ o s 0y 11:1, 2, -oo) -

Then Qp,r consists of kp equally-spaced intervals, each of

[e o}
length : » and C is the intersection N Cy; of a
3 kp Nat

o .
descending sequence {Cylye1 » where each C, consists of o

intervals, each of length- 3=N

1
—f—
Qp,r 3 kp
Lt ’L‘MI. 1 ] | e 1 S |
0 \—m\/_____g 1
1 . . .
- Fig. (ii
%, g. (ii)

Choose n, such that

1 1
3nP+1 < Brko S 3”P
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How (2° - 1) intervals of Cn, do not intersect Q,,, for

every one that does, where

. < 1 )
3F+$ E;EF )
: s
ie. 3 > k, .

So the maeximum number of intervals of Cnp intersecting Qp,r -
. Np -5
is 2" 7° =znd so

V( Qp,r n Cnp ) < 2_5

< € for sufficiently large s°,
ie. for sufficiently large kp »
Since

Eh,r = pg { Q,r N Cn,,f ’
Zn

it follows that wv(B,,,) < ¢ for all sufficiently large n.
It follows from this that there is no increasing
sequence of integers {nk}kT1 such that ((ngx) - © as

k - oo almost everywhere in C with respect to the measure v .

Definitions.

The upper and lower symmetric densities of an

s-set T st X cre given by

lim sup AS{ 2n (x -h, x + h) ]
hiLO hS

S i - +
hvo h° )
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If these densities are equal to each other,

their common value is called the circular density.

The following lemmas are known [17] :

Temma 2.5

The upper circular density of any s=-set is less
than or equal to 2° at almost all (with respect to s-measure)

its points.
Temma 2.6

The upper circular density of any s-set is gresater
than or ecuzl to 1 at almost all its points.

Lemma 2.7

At almost all points outside any s-set, the.

“circular density is equal to zero.

Lemma 2.8

If O« s'< 4 , the circular density fails to

exist at almost every point of any s-set.

Now the Cantor Ternary Set C is an g-set where

. 0< a = log 2 < 4 and so the circular density fails to exist
log 3

at almost every point of C and

. )
4 C n X = h, X + h
2 lim sup AT ( ) 1
hy¢y O n*

202




W

"
oo
=]

Also, an argument similar to that cf Chapter I

shows that for x € C ,

(04
vix -h, x+h] = f{x+h) - f(x-n; > E“
2
for sufficiently small positive h and so
o (X - h
limipe AL CN(x=-h x+h) ] 4
h\j’o ha'

for cach x € C .
This suggests the following generaliszstion of

Theorem 2.41 :

Theorem 2.12

(a4

' oo
Let {kn},., Pe any increasing sequence of
integers tending to infinity.
If B is an s~set with 0 < A°E) < 1,

where 0 <s <1, and 3 J > O such that

i e ATENG-D xeb) ] 5
hv O

n<

for each x € E , then

Al xXEE

—
-
g‘."
-
==
+
O
il
o



Proof :

We may write, where 7 - 0,

E = U
ne

En

I

where & 1s a countable set and Eﬂ c E is such that

= A3 Ep N (x =h, x+h)} 1
(2h)s

0O < h < 7y

\
oy

Then it suffices to show that
Al x€Ep ¢+ ((kpx)» 0} = 0, ne=m .

Let ne= .
We now use methods similar to those of Thecrem 2.11 :

For n=1, 2, eee 3 =1, 2, vee » daefine

= - 4 _
En,r = [ Xx€Ep : ((kpx) < T » b=2ni.
(e o] (0]
The sequence {{En,r}n.s)pr.y 15 incressing in n and decressing
in r .
Let
[o0]
Fr == U En’r’ (I‘=1, 2, cno)o
N=at
[».a]
Then F = N F. is the set of x € E) for which ((k,x)) - O,
re1

As bvefore, we require to show
As(En,r) < € for r Z P(e) ’ n > N .

Define

= fxelo1] :+ (x) < £ .
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Choose
1
p—— < 277 .
kp r T]
%, r RF
L 4 7 ""‘ ﬁ_,,-,.,} L1 — & - S S
o P / : .
a b Pig. (iii)

We now argue that if an interval of Qp,r lhes
a point of E, in it, it cannot have 'a lot' of Ep in it%,

whereas (a,b) does have a reasonable amount of Enin it

(o

because the lower density at points of Ep is 2 4§ >
The number of smaller intervals which contain points of En

is therefore large and each contazins at least

A*[ By (x - g%;s z o+ E§E> ]2 %&{:Efg}s i
. Thus
A Qp,r N By} < 2'78A%(Ey)(kpr)®
)
< €e s > R ,p =>P.
Since
Boye = 0 {(Q,r 0 Ep]

the result follows.

Thus, it is imposcible for

j' (knx) du(x) - 0O
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o
for some sequence [kn}jp.qy TLor the Cantor Ternary 3Set,

because otherwise for a further subsequence, we would have

(knx) - 0  opp.(u) ,

and an application of Thecrem 2.12 shows that it is also
impossible, in general, for any measure U which is fairly
smooth in the sense of Theorem 2.12 (positive lower density

with respect to some Hausdorff measure function).



CHAPTER TIX

In this chapter, we will study a problem

concerned with sets known as endsets.

Definition,.

For any coliection S of line segments in
Euclidean n-srace E", let P{3) denote the set of all end-
points of the members of S. Any set of two or more points
has the form P(S) for some S, but a subset M of E" is here
called an endset if and only if M = P(8) for some

collection S of pairwise disjoint closed line segments.

1. Statement and origin of the problem.

It is obvious that in the real line =' any
endset is countable and so has measure zero.

We are thus led to sk :

Must the n-dimensional Lebesgue measure of
any compact endset in E” be zero? |

This problem originated in a study of the
facial structure of convex bodies [13]. For any convex setl
C'in~E”, aenote the interior of C relative to the smallest
flat containing C by I(C). Now surrose that B is a convex
body in 3", X is the boundary of B, snd X, is the union of

the sets I(C) as C ranges over all maximal convex subsets
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of X. 50, 1f B is a polytope, X, consists of the entire
boundary excert for ﬁoints on (n - 2)-dimensional faces of B.

Klee and Martin [12] conjecture that, as
happens when B is a polytore, X, is elmost all of X in the
‘'sense that the (n - 1)-dimensional messure of the set X\ Xy
is equal to zero,

ie., that the union of the relative interiors
of faces of a convex body in 2" covers almost all of the
boundary in the sense of (n - 1)-neasure.

Por n £ 3, Klee and Martin proved this
[13, 3.4] by using the fact that in E' and E® , compact
endsets have measure zero {12, 13]. They noted that the
conjecture could be proved by their methods for general n
if the aunswer to the problem stated at the beginning of this
section were affirmative.

Bruckner and Ceder [3], however, produced a
counterexanple for n =4 (and so for n > 4 ) by using the
Axiom of Choice and Nikodym's construction of a Gantor Set X
of positive measure in E? such that for each point % of X ,

there is & line in E°®

intersecting X only at x.
(The conjecture has, incidentally, since been

established for all n by Larman [16] ).

2. Solution of the problem.

There is an endset My in E" associated in a

natural way with any real-valued function £ : E""' o E' .
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If the domain of f is a subset Dp of E""?', the endset is
the union of the graph of £ and the graph of the function
£+ 1

b

fe. M = { (x,f(x)):xeDs} U [ (x,2(x)+1): x €Dy
c EM' x gt
= Eno

As the various sets Mp,m» for 0O < 7T < 1,
are pairwise disjoint and all translation equivalent to Mf,'
it follows that either Mf is non-measurable, or the

n—-dimensi onal Lebesgue measure of Mf is zero,

A similar argument shows that the measure of
M = P(8) is zero whenever M is measurable and S is a
collection of pairwise disjoint parallel segments. As the
next paragraph explains, the problem amounts to asking whether

almost parallel is as good as parallel in this context.

For each real number 7 € (0, %) , define a
(n, n)-endset as a compact set of the form P(S), where 8
is a coliection of pairwise disjoint segments having one
end-point within 7 of the ocrigin (Cy ..., 0, 0) in E" zna
the other enrd-point within 7 of the point (1, 0, ..., ©) .
The serments in such a collsction nced not be parallel, but
are very nearly so, especially when 77 is small (see Fig. (iv)).

Then, if there exists npn > O such that any

(n, 7n)-endset is of measure zero, it may be derived Irom
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~~~~~

e S € .
A XN Xe
"! >7\ - LTI T ey /
V0 gy T 3
‘\ i e
N -
|
! rig. (iv)

this, using standard and elementary techniques of measure
theory, that any measurafle endset in E" is of measure zero.

For n= 2, the existence of such a set can
be derived from the fact that if P(S) is a (2, 7)-endset
for small enough 7% , and X, y are the left end-points of two
members of S , then

lx, -yl > ll=-vl (8)

2

for all € € (0, 1) , where X.s ¥, are obtained from x, y by
moving these points a distance ¢ towards the corresponding
right end~points. It follows that the measure of the set of
all Jleft end-points is not much reduced by the e-motion ,
and a similar srgument to that above involving an uncountable
collection of pairwise disjoint sets shows that P(3) has
measure Zero,

For, suppose C is a collection of disjoint
line segments in B? with endset W = F(C) , and choose 7

small and positive, say C < 7 < T%E . For each poir p, ¢ of
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distinct points of E? whose coordinstes are all rational, let
C(p, q) denote the collesction of &l) members of C that have
one end-point within n|lp - |l of p and the other within

nlp = a]l of a . Denote the set of former end-points by

W(p, q) .

Pig. (v)
Then
C = y C(p,a) and W = y W q) .
P,% . P,9
We need only to show that AZW(p, q) = O.

For each point x € W(p, q) , and each € with
O0<e€<7n, let S5(x) be the member of C(p, q) that has x
as one of its end-points and let x. be the point of S(x)

vhose distance from X is € . Let

wE(Ps a) = { X¢ @ x € W(Ps Q) |

Then, assuming Wo(p, q) to be A°-measurable and that

lxe = yell = ||x - y]| (see [13]) for all x, y € W(p, a)
2

eand 0 < € < nn, it follows that

24
AZws(p, Q) > Aw(F’ Q) ,

4
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and, as the various sets We(p, o) are pairwise disjoint,

a contradiction would ensue if A2W(p, o) > O .

The problem is more difficult when 'n = 3.
'In this case, there is no relation of the form (8) , for the
two segments may nearly cross andl]xe - yGU may be smaller
than ”x - y“ » 80 that the above methods are inapplicable

(see Pig. (vi)) .

x ' P
X f‘; — -
TTTee—— e
T

Fig. (vi)

There does exist, however, a compact endset
of positive Lébesgue outer measure in E® , and there exists
a compact set of positive Lebesgue measure in E® which is
comprised of the end-points of a family of pairwise disjoint
arcs.

For the former example, if £ 1is a function

from 3%

into E' whose graph has positive outer Lebesgue
measure, then the graph of f union the graph of the function
f + 1 yields the desired endset.

For the latier example, suppose C is a novhere
dense perfect subset of E' having positive measure. fhen

there exists a simple closed curve J which contains C x C .

s L . 2 .
So J has positive measure in =% ., There exists a homeo-
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morphism of the plane which carries J on to the unit circle.
Since the unit circle is the set of ends of a family of
disjoint arcs, the same is true of J . Extending this

example in the cobvious way to obtain a homeomorphism of #°3

into B3

such that the image of the unit sphere contains

C xC xC vhich has positive measure in E® , the result

follows as before.{This example is due to Klee and Martin).
Also, the method used by Bruckner and Ceder

[3] to construct a compagt endset of positive measure in E.

for n 2,4 will work for n = 3 by using the set constructed

by R. O. Davies [6, corollary to Theorem 7] in place of

Kikodym's set.

The snswer to the problem is thus affirmetive

when n < 2 and negative when n > 3 .

It is not clear from the construction of
Bruckner engd Ceder, relying as it does on the Axiom of Choice
to extract the line segments, that the set L of line
segments can be made Lebesgue measurable. Larman, howcver,
in [15), considers compact sets L of disjoint line segments.
Here, a compact set of disjoint, closed, non~degenerate line
segments is constructed in E? whose endset has positive
3-measure but whose set of 'non-end' points has zero
3-measure. This set has subscquently become known as the
'impossible set' and provides a constructive solution to the

problem in 3 and higher dimensions.,



3. Impossible Sets.

If L 1is a set of disjoint closed line
segments, let Z denote the point set union of members of L ,

and €(L) the point set union of the end-points of L .

Theorem %.1 (Larman, [15])

IT n > 3 there exists a disjoint set
L of closed line segments in E® such that A"{€(L)} > O ena

AMZ\e(L)] = 0, where Z (and €(L) ) is compact.

Note that it is enough to prove tke

N

theorem for E°® since an exemple can be obtained in E" by

taking the cartesian product of the 3-dimensional example

with a compact nowhere dense set in E"~°

of pcsitive (n - 3)-
measure. |

The starting point for the constructiecn
is a lemma sbout plane sets, due to R. 0. Davies, which is
itself based on a construction of A. S. Besicovitch in
connection with the Kakeya Problem. The problem posed by
Kakeya (1917) was to find a set of minimum area in waich &
segment of length 1 could be continuously turned round so &s
to return to its original position with its ends reversed.
The answer vas believed to be the deltoid (three-cuspved
hypocycloid) with area 7/8 , ie. hclf the area of a circle
of diameter 1 . éesicovitch, however, constructed (1920) =&
set with arbitrarily small area vwhich contains segments of

length 1 in all directions and realized in [2] that this set
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could be used to yield the solution of Kakeya's Problem -
that there are sets (called Kakeya Sets) of arbitrarily small
area in which a segment of length 1 can be turned througn
360° by a continuous. movement.

(Such examples of Kaekeya Sets of small area
are highly multiply connected and have large diameters.
Further results concerning Kakeya Sets which are simply
connected and which eliminate *the unboundedness of the
Besicovitch cxemples may be Found in [5]) .

The construction of Besicovitch forms the
basis of a lemma in a paper [6] concerning linear accessibility
(a member of a set of points in the plane is linearly sccess-
ible if‘through it there exists a streight line, infinite in

both directions, containing no other point of the set) .

Lemmz 3.1 (Tavies, [6])

Let R be a parallelogram ABB'A' snd K
any closed set contained in R . Then, given a positive number
€ > 0, we can construct a finite set of parallelograms
Pi» (1i=1, 2, vvv, n) , contained in R and with two sides

in AB and A'B' such. that

(1) kK < U P»
- n
(i1) A%[ U

Then, by considering the 2~dimensional

projections of circular cylinders, wnd using Lemma 5.1 aond
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standard covering theorems, Larman [15] rroves the following
lemma which is the main result nceded for the construction of

the 'impossible set'.

Lemma 3.2 (ILarman, [15])

Let C Dbe the right circular cylinder
C = { (x5 9,2) : x2+32 < a2, c<z<gadl
and suppose ¢ < e < £ £d . Write

Cle, £) = | (x, ¥y, 2) EC :- e <3< T} ;

N

Let C4, o..5 Ok be right circuvlar cylinders
contained in the cylinder C , whose axes have non-parellel
directions u4, ..., Uk respectively, and each having one end
in C(c, e). Let

[isisp bl X
be disjoint closed convex bodies such that

tii)

3‘1 SLJ (et CL\U C‘p s i=1, eo ey k -

2L
Then, given € > 0 , there exists & finite collection of

right circular cylinders

Coaprlui)rtl) k
f[iCLJ11£‘1 G

With CLJ.e C Ci, » (i = 1; ee oy k) ’ such that

(i) C‘.Jk n CL‘J'R' = ¢ ’ i :F i' H
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(ii) one end of C;j, is contained in C(e,e) and

the other end is contained in the interior of

slj 3
k i) k b)) plid)
iii) A% U U s s\ U U U e < €
( ) {L=1 Jt‘ l'J\i'a1 J:n‘l =1 LJd4 } !
kK Ui) pliJg) kK ti)

(iv) A% U U U c-w-ﬁ\_bti1 U 850 < e .

L=1 J=1 p=1 J=1

Each convex set S is thus associated with

vd

p(i, j) right circular cylinders Cij >

Pig. (vii)

each with one end in the interior of §;; , snd the other
end in C{c,e) , so arranged that inecuslities of the form

(iii) and (iv) sbove holad,
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. C s . pli, 5)
e, (iii)" A% {8y \(E1CLJ{ o< et

. pli,j)
(lV)' .A.az Pli1éi'~je\stj } < E' .
~and so that the cylinders Cyiju 'pass between' the cylinders

CL’J'-Q’ j.:#j-‘A -

Ve begin the construction with the cylinder
2 2

C = [ (xy,2) ¢+ x*+y%® € 1,222},

which we split into three parts :

{ (x, ¥, Z)EC'

b = : 1 €z<<2}] ,
Do = { (XQ Vs Z) EC : =1 €3 <1} ,
D—1 = { (xg y, Z) e C H ...2 £ 2 < _1 } .

Defins {6L3LT1 to be a strictly increasing sequence of
positive numbers with 1lim 6; = 3A3(D) .

Into D pack disjoint upright (ie. with axes parallel to the
z~axis) circular cylinders ©D(1), ..., D(n,) , each with

diameter less than 1 , such that
n' R
AfD\UuD(iy) ] < 6, .
L,!*.

Into each ©D(ii) pack disjoint upright circular cylinders
D(iyy 1), «..s D(i,yy, n(i,)) , each with diameter less then % ,
such thot
n, nli)
Aa{D\.L‘) U D(i,, i,) ] < 62 .

L= L;l‘l



‘-LLQ‘-

P

In general, suppose that sets D(i,, ..., i, ) have been

defined incuctively to satisfy

(i) D(i1, LRI 1 ik) C D(i1g t e e g ik-1) .,

iK = 1, oo oy n(i1, « o0y ik—1) H
(ii) diﬂm D(i1, ¢ sy ik) < -112 ;
.. m n(iq.-".i.g.t) .
(131) 3] D\ U oo "U Dy eeny 1k) ] < Ok
L=1 L“1
for k = 1’ 23 X
Then, if
n, n(i.l,---,iu:-t) . .
Ek = U e e 0 U D(11, ® o0y 1k) 3
i=1 L=1
o

{Ek] key is & nested sequence of compact sets, and from (iii)

above,
3 o 1
A D\ U E < lim @ = zA3(D .
{ \k-1 K} k"mwk zA3(D)
Consequently,
o
A3{kU1 Bk i > 2A%(D) > O . (3)

-
Now let EEn}n,o be a decreasing sequence of positive nunbers

such that
[e o]

zz: en < % A3(D) . (10)

N=0

Applying Lemma 3.2 with C, =C , S5 =D, C(e, &) = D.,

we construct a finite sequence of right circular cylinders

{c(j,)}J::1 such that
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(1)

¢(3,) has one end in the interior of D and

the other end is in Doy , Jy =1, ceey m 3
m
(ii) A®{ D n U c(34) 1} > A3(D) - ‘€0 3
J=1
’ m
(iii) A®{ (c\D) n . c(ji)}l < €0
J=

u

e

) I) 4,\.2—
I

I
i
!
\
!

|
1

N

¢

] Fig. (viii)

Suppose the axis of C(j,) has direction u(j,) .for

jy =1, «o4y m , where, by displacing each cylinder if

necessary, we may suppose that the directions [g(j,)}&f1
are all different.
Define

G(3) = D n [Cc(I\,u o) .

1 Jy
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For some rositive integer k1 > 1, let
[ D(ie, weey k) 5 (d4y weey ik, ) € 24}
be the collcetion of all the sets D(ii, .., ik,j and let
D, ey ik, ) s (B e Ik € 033D, Si=1, eel, m ]

be the subcollection such that (i, ..., ikx,) € (1)
if D(iys ee.s i) is in @(j,) . Suppose that k, is

sufficiently large as to ensure

.. . m 0 ]
Aaz U D(l1, e oy 1kl) \ .U U D(l1’ es 0y 1k’) z < €o + 61 °
Q, =1 00.)

Applying Lemma 3.2 again, we define a finite collection of

right circular cylinders {C(j;,j2)}?e? such that
b A
(i) C(j1:32) c C(j,) ’
(i) C(dh,d) n C(i',3) = ¢ , 3 #+ i ;

(iii) ‘the directions u(J; ,Jj. ) of the axes of the

cylinders C(J,,3 ) are 211 different ;

(iv) C(34 ,J2) has one end in D.y and the other end
is in the interior of some D(i1, .., ik‘)

with (i4, ..., ik,) € 02(41) ;

’ i

3 m . . m “\(Jn) : ‘
(v) Af U U D(iy, weey ikd \ U U C(J1,32) } < €25
Jet 020,) =1 ja=
_ g, M n{J ) m )
(vi) AU UiClnda)\ U U Dliy veey 1) ] < ean

'a -Q(Jv)
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Proceeding inductively, we obktain for n a positive integer,
right circular cylinders

(e, === ) Ju=s) }

. co e
J=1

[ eoe § C(3ys eves 3n) 1
and setis

D(i1, ee oy ikn-) r) (i:, e o0y ikn-‘) €ﬂ(j,, e o0y jn-l)

\
such theat, if
D(j1, e e ey ik“-‘) }] (11’ LA | ik”-’) e Qn"1

is the totality of the sets D(i;, eoer ik )
A=~

{

Aai U D(i1g e o oy ikl‘\-!) \ U U D(ii’ s 20 ik’\-') }
ﬂn-‘l . J'u--'»Jf.-lﬂUun',J.n-:)
n=1
< €1 (11)
L=0

and

(1) C(Jd1s eces dn) < C(J1s eees In-t)

U D(ij s ooy ikl\—‘) C U D(i1 s e ooy ik"-l) ;
QGU -- dang) ﬂﬁh-";.jn-z.\
(ii) C(j1, o s oy jn-1) jn) ﬂ C(j:, "”'jl"]-t’ jr‘]> = ¢

AT (J1s eees Jn-a) #F (3 eees 3200

(1ii) the directions u(j,, ..., J,) of the axes of the

C{3ys ++es Jn) =are ail different ;

(iv) C(3ys sees 3n) has one end in D_, and the other
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end is in the interior of some D{(i4, .. ikhq) ,

viith (i1, PEPEPEN iKn_‘) 6 .Q(:Hy o e ey jn-—*\)

(v) Asz U ) U D(i‘l, o ey ikﬂ,\) \
(Jl; = \}A—(\ll(j\, -", Jl\-l\

U C(dis eees dn) 1 < En
(J"a -~ d l'\)

(vi) A% U C(J1s +20s Jn) U U
ldv, -, J") ’ \ (J"; ==y \jr\ﬂ) ijn,—w, Ju-r)

D(i1, o s ey ikﬂ"l) I < Sn.

We now define the set of‘lines L .

For each sequence (J:, Jos ess ) of positive intecers define
w - 3 3 (=] i3 s At
o C(dgs eees 3p) if C(3,5 --esd,)
k. 3

1(Jis Jos eee ) = is defined for n = 1,2,...

¢ s otherwise,

A Y

Then each non-empty [by (i)] set 1(J,, jz, cee ) is =2
closed line segment, of length at least 2 , which Joins D
to the closure of D., . |
Mso, if (Jis Jas eee ) F+ (35 335 «oo ) , 3 n such that
Ji=3l , i <n=~1, and Jnoy #F Jhoq -

From (ii) =shove,

l(jh jz: L ) n 1(3'1, 3'2: e e )

c C(Ziuv'*'s Jn) N C(j'” svey J;‘l)

So L = E 1(j1’ 32, * e )’ ji_elq " j-:‘i; 2, LN }

is a collection of disjoint closed non-degenerate line scgments.



Also, by (ii) , we have
(Z_- o RN oo . .
= U N C(Jss eees Jn) = n U _0(31; R Jn)
(Jr, Jz,---Yn=1 ne1 (Jr, - -, Ja) z
and so0 is a closed set. |
If €*(L) = €(L)N D, then €*(L) contains

the set

(o)

N U U D(iys eeos ik ) N U C(Jys oees dn) ]
Net o (G onmy 300, omy dany S R R P 36 S

(o]
= N P, , say .

N=1
Thus
A3 (®n) > AS§ U U D{iy, eees ik.) ] = €n
AR oA R WA T A ’
by (v)
n
3 v - \ N
> AP{ U D(iyy wees ik, )3 - Lfi. ,
. Sln-y ;
L=0
oy (11) ,

> $AD) - L a%D), by (9), (10),

L4

= L 3
= uA(D)
> 0 .

Since {Fn}nf; is & decreasing sequence of sets ,

A*Ler(L) ] > AN Fal > FA%D) > o. (12)

For the set of 'non-end' points &ﬁ\\E(L) of
L, let V, be the set of points of Z which are at least a



. 1 .
distance 5 from either end of the closed line segment on

which they lie , so that

L\E(@) = pf)j Vv, .

1

Then, since kn > n and diam.{D(is, eee, in)} < % ’

it follows thsot

o U C(drs onr- jn+1)\ U U D1, eeey i)
(.jl, -t Jn-ﬂ ’ ’ (J'l"’ljﬂ)n(j""dn\ "\
(13)
for n=op+1 , p+2 , ... sSo, by (vi) ,
A3 (Vy) < en >, n2>op+i
and thus Aa(Vp) = 0 and
AfLNEe@} = o . ()

since 4 is compact , (12) and (14) complete the construction

of the ‘'impossible set' .

A slight modification of the above argument

will show that A3%{€"(L)} = O where
e~(L) = €e@)no.,, = €(I)\Ner(L) .

For , by defining Wp to be the set of points of A which
are at least a distance % from the end which is contained
in D of the closed line segment or which they lie , we

have

e-(L) e L \e* L) = ch‘ Vi,
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and the inclusion (13) s%till holds with V, replaced by
Wy, » so that A%(W,) = O, p=1, 2, ...

In connection with the problem of section 1
however, it is not clear from the above construction that
€(L) 1is compact, €(L) 1is only a Gg-set in general,
rather thean compact. The sets Fp above are closea so that.
€*(L) is & compact set. But there is no information about
the distribution of the points of €7(L) -~ we only know
that each line 1{js, Jj2, ... ) Oof I has one end in D-; .

The problem is easily resolved, however, by |
cutting off the lower ends of the lines of L Dby the plane
z = =1, for example. Let L' be the resulting set of
lines above the plane 2z = -1 . Then, again each line 1' in
L' has length at least 2. Since Z is compact , the plane
z = =1 intersects ,Z in a compact set Z , of measure zZero ,
and this set together with €*(1L) forms the required
compact endset of positive AS-measure of the uncountszble

and disjoint set of lines L' above the plane 3z = -1 .

The impossible set in E2 .

There is an gnaloéue of lemma 3.2 in 2
dimensions provided the disjointness condition (i) is
relaxed. Rectengles R{ ;g corresponding to the cylinders
Cijp 1oy be constructed with analogous properties , but

disjointnees being a 'stronger' condition in the plane, it
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will not in general be possible to construct the Ry;¢ ,
=1, 2, «.., p(i,J) , without some of the described

‘overlapping occurring.

If R 1is the rectangle
{ (zx, ¥) ¢+ -1<sx<1 , =2<sy<2] ,

and we define

s = {(x,y) € R :+ 1<y<2} ,
So = {(x,y) € R : ~t<y<1} ,
S.1 = [ (% ¥) € R : =2<y< =1} ,

the comstruction leads to a system S(i,, ..., i ),
k=1, 2, «.. 5 Of rectangles with sides parallel %o the
sides of R , packed into S with the properties of
D(i1, eeey ig) , k=1, 2, «.. , and & system R(Jys cees In) »
n=1%, 2, «.. , of rectangles defined for segqguences
Jis» J2s ees. , Of positive iniegers , each having one end in
S-1 and the other end in the interior of some S(ii, .., ik) »
and having =11 the properties of the C(Jis eees Jn)
described above with the exception of the disjointness
conditirn (ii) . . |
Then , as before , if for each sequence

(315 Jos e.. ) of positive integers we define

o0
N R(Jis oeer Jn) 12 R(Jyseees dn

Nw=i

L(dis Jos eee ) = is defined for n=1, 2, ...

4] » otherwise,

—r
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L = { l(j1, j2’ CRCA ) 3 ji, € N s 1:1,,2’ ..a,}

is a collection of closed non-degenerate line segments ,
each of length at least 2 and jJjoining S to the closure of
8- .

Also , A%{e(L)} > 0, A%2jz\e(L)} = O , ana €*(L)
is compact. Since the rectangles R(j1s5...s Jn) are not in

general disjoint , it is not clear whether Z is compzct.

It is interesting to ask how much symmetry can
e achieved in constructing an impossible set. For example .
for the set constructed in E® , by cutting off the hottom

ends of the lines 1(3y, Jos ... ) so that
|1 n p] = |1 n Dol ,

a set of psirwise disjoint lines L' symmetrical in the
plane =z =1 1is obtained with A3{e*(L')} > O,
AILN\E(')] = 0, but A3[e~ (L")} = O.

Also, if o denotes the operation of reflecting
in the plene 2z = 0, the set €E[L U ¢(3)] is symmetrical

in the plane 2z = 0 with
A% er[Luo(L)]} = Afe[Luoc(L)l} > o,
AMLuok) \ elruo@l}} = o ,

but since the lines L U o(L) are not pairwise disjoint.,

the set €[L U ¢(L)] 1is not strictly an endset.
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Probably the main intcrest in more symmctric

endsets is in showing that they cannct exist.

The set constructed shove provides an exearple
of sets A , B and a collection I of line segments with

the properties that :

(i)  every x € A is an endpoint of at least one

l1€L

b X

(ii) every x € B is an endpoint of at least one

1 €L

wse

(iii) each 1 € I has one end in A and the other
end in B

Gv) A s o

(v) |B] > 0O ;

(vi) |L\(auB)| = o0 .

Since 0 < IA U Bl < 40 5 AU B has Hausdorff dimension 3 .
It secems highly likely that it is impossible to construct

such a set for which
daim §Z\N(AUB)}] < dim{ AUB]} .

However, this has not been investigated fully

and so we conclude by stating it as a conjecture :

Conjecture.

If €(L) is the endset corresponding to a

disjoint set L of line segments in E® with the vroperty
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that IG(L)] > 0 , then the lower bound for the Hausdorff
dimension achievable by the union £ \ €(L) of the

interiors of these line segments is 3 ,
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CHAPTER IV

Uniform Distribution

1. In Chapter II the convergence of the series
had
L { ((oex) = o}
K4

where f{ax} ,» k=1, 2, ... ), is & sequence of real

numbers satisfying O < ax <1 , and {nkg} satisfies

Dic+ 1 S
Nk

p > 1,

was considered., This leads to a further discussion on the

equidistribution of the sequence { ((nkx)} , k=1, 2, ...) .

Definition.

The sequence f1, 325 eeey Bry «o. in {(0,1) is
equidistributed in (0,1) [uniformly distributed in (0,1) ,
or uniformly distributed modulo 1] if , for every 1, m
satiefying 0 < 1 <m <1, the density of integers r for

which 1 € B8r < m is exactly (m - 1) ; that is , if

[“1, when 1 < fr < m ,

€r =T

\d 0, otherwise ,

and N(4, k) is the number of members of the finite

SeqQUENCe Hy, Bas «+es Pk iR the interval A = (1,m) , then



lim
Kk - © X kK —»

Il

N
el B
7
o

o

-
N

|
L=

with a corresponding definition for a sequence of

n-dimensionsl vectors é(rc(r =1, 2, «co) in R, mns 1 .

In general, any sequence Lys Loy coos Lrs oee
of real numbers is said to be uniformly distributed rodulo 1
if the seqguence of fractional parts ((B1) s (Bo)) s eoes {Br) s

(in [C,1)) is equidistributed in (C,1) .

Theorem Li.1

Let g’"%(r =1, 2, «s.) be any sequence of
n-dimensional vectors, not necessarily restricted to lie in
the unit cube. The necessary and safficien% conditicn that it

e uniformly distributed modulc 1 is that

viw (LF _
Mol k) o(ee? ] = o
r<k

for all integral vectors m #+ 0 , where
e(x) = exp( 2yix ) , 12 = -1 ,

Note : Since the statenents of the theorem are not affected
by revlacing the vectors é(r)by congruent vectors moculo 1 ’
we may suprose, if we wish, that they all lie in the unit
cube O < B;< 1, (1< Jj<n), in vhich case uniforn

distribution modulo 1 is simply uniform distribution.

Thus, in the 1-dimensional case, we have the

sequence of resl numbers By, Sas cees Prs o.. 15 equi-
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distributed in (0,1) if and only if
K

1 \ ;
Lim { " EL, exp( mBpr2wi ) } = 0
K~ oo

(o}

for every positive intzger m .

This result is duc %o Weyl (1916) [22] ,
Theorem 1 , p.315 .
An application of this theorem yields the

following well-known result : (see [4] or [22] , for example)

Theorem 4.2
Let & be an irrational number. Then the

sequence of nultiples of ¢ ,

£, 28, 3, ...

is uniformly distributed modulo 1 , ie. the sequence of

fractional parts of the multiples of an irrational number & ,

(N, Weh, €3N » ...

is uniformly distributed in the unit interval.

Proof :
et m be a positive inieger and let m§ = 7 .
Then the result. follows if
A}
SK e( n{{xg)) = o(k) .

L
re=i
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il

|i" e( n((x£)) | fz‘ (- alx] )|

rea1 r=1

REDRE

r=1

e( (xk+1)n ) - e(n) ‘
e(n) - 1

2
| e(n) - 1]

Ay

— 1

B lsin Wnl *

Since 7 is not an integer, the resuit follocws.

For a proof of this result direcct from the

definition of uniform distribution modunlo 1 , see [18], p.2L .

In 2-dimensions , if
ér)

(r=1, 2, vo.), and @ is a non-zero integer , then

( ((I‘X)) s ((ry))) » X, ¥y €R',

’ - e( m Q(ﬂ), = l | e(rm@é ) s

where 0 = (x, y)

_ { e( (k+1)m 8 ) =~ e(m 8)
e(z 6) - 1 '{

Y] m . L3 . L3 - . I3
and so {ﬁ“%r_1 is equidistributed in the unit square

(0,1) x (C,1) provided there is no relation g @ = integer
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with integral m # 0,
ie. &> x,y, 1 are linearly independent over the

field of rational nurbers ,

e X , ¥y are both irrational .

In general, in R" , if &4, 2, ..y &y are

n resl numbers, and there is no relation of the form

m&y + M2 + oo + Nmp&n = M+t s

where miy, M2y, e..; Mpn+s1 &are rational numbers (or,

equivalently, integers) , then the sequence of points

{ (€1 , v€2 5 eee 5 TER) )} 5, (=1, 2, o..)

is uniformly distributed modulo 1 ,

ie., the scaguence of points

{ ( ((P§1)), ((r§2>>: eoe » ((rfn») I ’ (P=1, 2"0--)3

is uniformly distributed (and dense, in the sense of (i) ,

Chapter II, p.15) in the n-dimensional cube.

A companion result in case 1, &4, .. 5 &p

are linearly dependent is the following :

Theorem 4.3  [18]
Let &45 eee » En Dbe irrational but.such
that 1, €45 «o. 5 &n are linearly dependent over the fleld

of rational numbers , say



My * Mpfa + eee + MpEp = Dy .
Then the points
( ((1‘151)): «kfz)), see ((%n») y (k=1, 2, ...) ’

whose coordinates asre the fractional parts of the multirles
of €1, eee s &n 1ie on and only on , those portions of

the lines
miXs + MmMaXz + ... + mDnpXp = t

where t is any integer , lying within the unit cube.
Furthermore, the points are dense on these

segments.

Thus far we Irave only considered the secguence
ngk =k, (c=1, 2, ...) .
o0
Suppose {Akir.y 1S5 en increasing seoguence of
integers, or real numbers, tending to infinity.

In 1912 Eardy and Littlewood posed the

following problems :

oo
For vhich seguences [Ng},.., is it true that
[¢e]
{MX} .y 1s dense modulo 1 for every irrational x ?
(Note : {y. ] is dense modulo 1 if | ((yx )1}
is dense in [0,1] ).
Guestion 2.

co
For which sequecnces [Ax}ka.s is it true that
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oo
[ ((Mx)) J <oy is uniformly distributed modulo 1 for almost

all x ¢

Theoren 4.4  (Hardy and Littlewooé {(191L), [10])
Let {XREKT1 be any increasing sequence of
real numbers tending to infinity.

Then {Ax} 1is dense modulo 1 for almost &ll

oC
Now suppose the increasing seguence {Nyfkaq.

of integers is such that

n1 s ng . S n3 §_ LI %S
h; terms h, terms he terms

the first hy terms are equal, then the next h., terms

are cqual, ... , and the last h@ terms up to ng are

equal , so that in {n4, ns, ... , ng} there are q distinct

terms, Then, if there exist constants ¢, € such that

max hL < ck ’
1si<g (Log k)€

-

((nyx)) ] is uniformly distributed in [0,1] for almost all
\ a8 /5

x (Weyl [22] , 87) .

To ansy=2r question 2 we need a measure for
i

the repetitions in the sequence {ng] :

Notztion : Let {nyx} be any sequence of integers. Suppose

that in {nq, ... ,. 0} there are q distinct eliements
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Y,

occurring with frequencies hy, hyy oee h$ s

hy + h, + «.. + hy, = k.
Put
Pr _ hf + hi + ... + hp .
K2
- Definition.

A sequence {xyi] of non-negative numbers is

called agymptotically small if there exists a divergent

series ;{:ak of positive terms such that

Z aka < 4+ .

(Note that this definition is equivalent to

Theoren 4,5 (M. Mehdi)
(e8]
let {nk],., be eny secuence of integers.
(o]
Then { ((nkx)) },., is uniformly distributed
oc

modulo 1 for almost all x if and only if {px},_, is

asymptotically small.

Proof. :
(i) Necessity :
Suppose in  [ng, Nz, ... , Nk}
the distinct terms are Dy s My s e s n%$’ occurring

with frequencies hy , ha , «eee , h% respectively.



Write
k
fy(x) = % ST‘ e2fimng x
-
S=1
where m # 0 is a fixed integer
9
- i}(_ hsemrumn,‘sx .
S=1
a/
1 2 1 NN »
Then f !fk(X)l dx = = Z/ hg = Pk s
Yo L .
S=1
and [fu(x)] < 1, k=1, 2, «o. ) .

Using Theorem 4.1 , by dominated convergence ,

1
[ Ifk(X)lzd}{ ~ -0 as ¥k - « s
Q

:_—> Pk - 0 as X -+ o
= [Pk, is asymptotically small.
(ii) sufficiency :
Suppose {ok}] is

asynptotically small. Then there exists a divergent scries

—
of positive terms zllak such that zg:akpk < +o0

S0 iak /' | £1c (x)] 2 ax < ew

Kat

Y e [ % i
/0 ;i; ak fk(x? ax f
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o
E: i ifk(x)[2 < s+  Dp. in [0,1] .
K=1
This implies fx(x) - O vp. in [0,1] and therefore

in R .

Thus if {nk} is a (strictly) incrzasing

seaquence of integers, hs =1 for gll s and

2 2 2 »
Pk = h1 + h2 * see * h(i < ﬁ max hL
2 .
k 1<L<62,
1
= E s

and so the set of values of x such that ((nkx), k=1, 2,.4.,

is not equidistributed in (0,1) has zero Lebesgue mesasure.

There is an n-dimensional analogue of this
result.

A further problem which may be invcstigazted is

Question 3.

.

Given two increasing secuences of integers

fmg} . {nk] , tending to infinity , does the set

[ (x,¥) + ( {(ngx) s ({(nyy) ) is uniformly

distributed }
have full measure %

The 'size' of the exceptional set for which

((nkx)) is not equidistributed depends on the sequence |ny} .
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For example, if ni is given by a polynomial in k with
integer coefficients, then the set of x for which {«Ihgi» §
is not ecuidistributed is enumerable. (We have scen that

if ng = k , the excepticnal set consists of the PationaIS) .

In this case 1ty = Bke1 L 4 a5 Ko e . However, Xrdos
Dk

and Taylor [8] show that ny,, - ny bounded is not a
sufficient condition to ensure that the exceptional set has

power &,.

Theorem 4.6 (14557 , [8])
There exists a finite constant C , and an

increasing sequence of integers {nk; such that

Nk+1 - nk < C K} (k=1, 2, ) ) s

and the set of x such that ((ncx)) is not equidistributed

is not enumerable.

Proof : .
Suppose {Ay} 1is an enumeration of the
rationals in [%, %] , and each rationesl occurs in the

sequence infinitely often.

Let

ks = 5%, (s=20,1, 2, vuv ) .
Set ny = 1 and suppose for some rositive integer r ,
ng has been defined for Kk <€ Xpr.y4 . Suppose nk-; has been

defined, and let nk be the smallest integer greater than

nkg.4 for which
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cos(nAp2r) > %,
s0 that nk 1is ‘defined by induction in the range
kr‘—" - < k < kr s (I’=1, 2’ o e }.‘,
i 1 . 1 .
Now since T Z e 2 g > Ve have

2w
Dewn = g < < 2w )

o
so that n,, - n, < 100 , (k=1, 2, ... ) .
Also,
ke
>T‘ cos (ngne2w) > % (kp = kpe_,) = 2k._,,
o
Kak_ +1
and so
kf‘
1 L 21 )
Er Z cos { ngAp2m) > E",.'(2k° + 2Ryt el v 2K L)
K=t
S 5r-1
kp
= 4
5 L

Define Ir to be an open interval containing A, such that

if x is in I , then

Ke
1N cos ( nyx27w ) > 1 (15)
kr L K== 5 . h
bimq
Let
o0 o0
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Then ® conteins @ll points x which are in infinitely
many I, a2nd so contains every rational in [‘23-, ‘16‘] . Thus
E is every.here dense in the intervel (:1;, %—) . Also, I
is a Gé\-set, and by the Baire Category Theorem, such a set
which is dense in an interval cannot have power < &, .

If x €E, then"given N, x is in I, for

some r > I . By (15) , there is an integer Xkr>N such

that
Ke Ke .
1 RS 1 0 i
k=1 k=1

Hence, for any x in E ,

Kr
. S\
lim sup % z cos {((nkx)) 27w} > 1lim sup 1—2- Z cos { (nkx) 27}
t —» ® r - oo r ,
Kai K=1
= '15 )

and so, by Theorem 4.1 , {{((nkx))} is not equidistributed in
(0,1) . 3o the sequence {n,} satisfies the required

conditions with C = 100 .

Baker [1] , however, has improved on this
construction by showing that the constant 100 may be

replaced by 2 , and that rather more is true.

Theorem L, 7 (1972, {11)
For a strictly increasing sequence of positive
integers f = {nkikof1 , denote by E(g) the set of x fer

which the sequence | ((n,x) }koj, is not equidistributed.
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Let N be a given positive integer.
There exists a sequence \f of positive integers

such that E(£) is not enumersble, and
(1) 1 < nksyqy - n < 2 , (k>1) ,

(ii) if k4, ko, are indices for which

Dkes =-Dg = 2, then |k, ~k,| > N.

Thus the sequence {nk}kO:1 is just 1, 2, 3, oo
with an integer removed as infrecuently as we wish, in a sense.
Note that if only o(n) of the first n integers vere
removed, E(S) would consist of the rationals.

Proof

| 1 L
Assume W > 2 . Let g\=§m and W = 6N+9 .

o0
Let {A{}i-4 be an enumeration of the rationals in [2¢, 3J]
and let each rational occur in the secquence infinitely often.
Let §Si denote the set of integers n such

that

w2t () € 6, (A=1, 2, ...).

o
"' < n <

: (o]
Define the sequence_gz {nk} ., to consist of those n > 1

which do not belong to any S ..

To show that S satisfies (i) end (ii):

Choose n eg with
< n < MU' and ((an) > &

for some i > 1 &and suppose {(n + 1) ¢§ .



Then (([n +1I7N) < & .
Suppose Ay = Iy +7ny, Iy EN, 15>1n>d .
Then (n+1)N = (T4 +1) +n2, O <8 .

26 <\ <36 = I3 +1 -3 <N <Ly +1 -6

(with possibly ecquality for the special cases Ay = 28 , 35 ) .
Hence
Iy +1 +8<(n+ 2N <Iy+1+56
= (([n+2]N) > ¢
= (n + 2) e £.

Thus :i satisfies (i) .

Also,
It +1+ (2r =3) < (n+12)A\ <Iy+1+ (3r -1)¢
<I1+1 .

fOI‘ r = O, 1, ceve o Iq. sy SO tllat

(In+2IN) > 6, 2

N
i}
N
=
-

and so (n + r) € S, 2<r<n.
Thus -\ satisfies (ii) .

Let Ji denote the set of real x such thst

((nx) > &

21 20+1
whenever K°' € n < M , n¢ s .

Clearly J; 1is open end Ay € Ji .



Then, as in Theorem i1.6, B is uncountable.
Finally, if x € B, and Nc[0,d) is the number of terms

of  ((myx), (A< k), in [0,d),

lim inf N[0, ¢) < *«wi-Tu < ¢ s
k -7 o0 N ¥ - %)
» k k(1 N/

= & < 2.

/e now consider the Hauscdorff dimension of the
: (v ]
exceptional set of x for which { ((nkx)) lx=4 is not
(¢

equidistributed for a semence [niikey satisfying the
conditions of Theorem Li.6 .

Theorem 1.8 . [8]

o

Suppose C is a constant, and {ng}ga.; an

increasing sequence of integers such that
nk.‘.1 - nk < C s (k=1, 2’ ee o ) .

(e o]
Then the set of points x for which [ ((n1x)) }xes

is not equidistributed has dimension zero.

The method of proof may 2lso be used to show
o0
that the excertionzl set of x for vhich | ((nkx)) )., is
not equidistributed has measure zero with respect to the
Hausdorff measure function

h(z) = 1 i} , for every e > C .
[1log :]
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Note that since the sequence {nk} constructed
in Theorem 4.7 satisfies ny = C(k) , Thecrem 4.8 implies
that the Hausdorff dimension of =X(S) is zerc. Also the set

of x for which

is finite.
The methods of Theorem 4.8 may also be used to

yield :

Theoren 4.9 [8]
Suppose C > 0, p > 1 are constants and {ngj

is an increeasing sequence of integsers such that
ne < CkxP , (x=1, 2 .. ).

[> )
Then the set of points x for which [ ((nux)) § k.
is not equidistributed has dimension not greater than
N 0y . : - b 0] ‘ =~
(1 = =) , there being sequences {ngj,_, for which the bound

(1 - =) 1is attained.

©l=o =

The sequences {nk] considered so far d¢o not
increase too quickly. The sequenées of Theorems 4.8 and 4.9

are not lacunary (ie. they do not satisfy (6) of Chapter II,

ty = D s > p > 1), they satisfy
Y

lim inf ¢, = 1 .

k =+ oo .

The case t, —+ o is already discussed in
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anpter IXI. For the set E of values of x such that

Q""‘\ .
2d { (ngx)) - o} converges ; O < o < 41, has dimension 1 .
K=t

We thus have ((nkx)). »a , as X » o , for x in this sct
©o
E , and so { ((nkx)) }.., cannot be cquidistridbuted.

The condition above that the sequence {n}
be lacunary implies that the exceptional set of x for which

oo
{ (nkx)) K<y is not equidistributed has dimension 1 :

Theorem 4.10  [81]

If {nk} 1is an increasing sequence of
integers such that tg > p > 1 , than the set E of values
oo
of x -such that { ((nyx)) }.., is not equidistributed in

(0,1) has dimension 1 .

The proof is another application of Theorem
2.5 to show that E has positive A°-measure for any s

satisfying 0 < s < 1 .

2. The uniform distribution of the integral parts of the

multinles of an irraticnal nuiaber .

Consider the integrel parts of the multiples

of an irrational number & ,

(€1, [2c], (361, ...

The question arises as to whether, in the

limiting sense, there are Jjust as many even numbers as-odd,
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or just as many in each of the three congruence classes
modulo 3 , etc. |
Consider eny sequence of integers ny, No;s agseee
For any modulus m> 1 , define H(k, J, m) as the number
of integers n;, satisfying h< kX and n = j (mod m),
Then the sequence [ng} 1is said to be uniformly distributed

modulo m if

1im Mk, Jyom) 1
K —» o X m

Tfor each of the residue classes J =1, 2, 3, eee 5 M «
:The sequeiice {ni} 1is said to be wniformly distributed if
it is uniformly aistributed modulo m for every positive integer
m=22.

The answer to the above question is'then
affirmative, for the result of Théorem Li.2 may be used to

show that if & is an irrational number, then the integral

parts of its multiples,

[l , legl, (3], ...

form a uniforzly cdistributed sequence of integers [18] .
‘For, if m is a fixed arbitrary integer,

is irrational, and the sequence

(((xg“D\ S 171 B B
AR/ ) L m . |

m | J
is uniformly c¢istributed in the unit interval. Yultiplying

Bl

Il

the terms of this sequence by m , we sec that the szruence



- 80 -

j 3 (1{=1, 2, L Y ) ’

is uniformly distributed (in the obvious sense) over the
real line from C to m . Hence, by toking the integral parts
of this sequence , a sequence of integers which is uniformly

distributed modulo m is obtained ,

{ k§ - ml:%:f_] } = {[kf] - mE_f_] },A (=1, voo)

However, since all multiples of m may be ignored modulo mn. ,
we have that the sequence {[k€]] is uniformly distributed

modulo m for all m 2 2 .

Note that if ¢ 1is irrational and satisfies

-1 < £ <1, then the sequence

(el , lag)l, (3], ...

does not consist of distinct integers, but the definition

of a uniformly distributed sequence of integers contains no

reguiremnent thet the integers be distinct.
For any positive real number g define N,

as the set of integers

{ [a] ’ [Za] ’ [3‘1] 35 eee [ka] s eee } . “ -

Then among other known properties of the
sequence of integral parts of the multiples of a real number

are the following : (See, for example, [18])
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Theorem 4,11

Let o and 2 be positive real nurbers.
Denote the set of all positive intezers by I
and the empty set by ¢ . Then N, and Ng are complementory

sets of positive integers ,

ie. e U I N and Ng N Ng = ¢ ,

if and only if a and [ are irrational and

Q-
+
hﬂ*.
it
-

Theorem .12

)

Given positive real numbers o« and g such
1.1
a.? ﬂ’

of rational numbers, (=>a”', B~! are irrational), then W,

that 1 , are linearly incdependent over the field

and Nﬁ have infinitely many common elements.

Theorem Li.13

Let a and S be positive irrational numbers

such that

8
-+
a

w o

for some inte;ers a , b, ¢ with ab <0 and c¢ & 0 .
:?-

Then N4 and Nﬁ have infinitely muny common

elements.,

Theorem (.14

et « and g be positive irrational nusbors
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such that

+

R >

® I

for some positive integers a , b, c, ¢ > 1.
Then Ng and Ng have infinitely many common

elements.

Theorem U.15

Let o and B be positive real numbers.

The sets N, and N? are disjoint if and only
if o and p are irraticnal and there exist positive

integers a end b such that

a - —
a ﬂ - [} .
Farthermore, if N, and Ng have one common

element they have infinitely meny.

Theorer .16

let o> 1 and B > 1 be irrational.
Then Ny U Ng = N, if and only if

there are positive integers a and b such that
1 R A
a(1 - a) + b1 ﬁ) = 1 .

Theorem 4.17
Let a>1 and 3 > 1 be irrational.
Then N, > Ng 1f and only if there are

positive integers a &and b such that



a(1 - é) + % = 1

Theorem .18

There are no positive resl numbers wu , 5, VY

-

such that Ty , Mg , Ny are pairwisc disjoint.

.~ o . . A oo
3. The uniform distribution modulo 1 of {f(n}}m1 .

Ir £(t) , (t> 0), is a differentiable
function ther the behaviour of f'(t) is an indication of

\

the kind of oscillation (rapid or slow) of f(t) between
the bounds O and 1 . Therefore in certain cases from given
properties of f'(t) conclusions cen be drawn ahout the
continuous distribution of the values of f£(t) (mod 1) ,
and the discrete distribution of the sequence £(1) , £(2) , ...
(nod 1) .

This section contains some known theorems about
the discrete distribution of sequences f(1) , £(2), ...
vnder given’conditions on f'(t). The proofs are generally
based on the known behaviour of the corresponding f(t) ,

(t > 0) , with respect to the continuous distridbution

mocalo i

Lefinition.

The function f(t) is C-uniformly
distributed (mod 1) if for every integral value of h # G ,

T,
lim 4+ / e2Mhfgy . o .
T = o T
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Theorem 4.19  [11]

Let f(t) be a functiocn , differentisble

for t > 0, cnd let

(1) ¢ < £'(t) < o , t20 ;
(ii) tPf'(t) - constant > 0 as &t — o ,
(p fixed , 0 <p < 1) .
Then the sequence f£(1), £(2), £(3), ...

is uniformly distributed modulo 1 .

Proof :

The condition (ii) implies that f£(t) is
C-uniformly distributed (mod 1) . (See [11] , where Ffurther
references may be found) .

Using Euler's summation formula we have

T A
T o . 2. . -

3"‘ o2TLhE(n) / G2MLhEL) g %{e2ﬁLhFU?+ o 2TLREQ) }
J 1
h=1

"+ Zuhi /T B(t)E (t)e2TEhFL gy

1 .
(16)
h - 11 ’ i2 3 eov e ; T = 1, 2, LI F) ‘\'rhel"e

P(t) = ¢t = tt3 - 3 .

If I is the last term on the right-hand side of (16), then

; T
;%l < 7l f £1(t)at < 2w|h|£(T)

T 1 T

(ii) implies that f£'(t) -» 0 as t -+ & , and so

~



Thus

Ml

and so, from (16), for every integer h # 0,

T
1im % E: e27Lh F(n) - o .
T = o0 +

Nev .

The ssme methods will also give :

- Theorem 4.20 [11]

Let f(t) be a differential

M
O
[-.J
(¢
L)
o
]
o
o+
.
O
]
-
g8
-
(o]

let

(iii) f£'(t) monotonically deecreasing , (t = 0) ;
(iv) f£'(t) - 0 as t - o ;

(v) tf'(t) - 0 as t - o .

Then the sequence (1), £(2), ... is
nniformly distributed mod 1 . |

For, (iii) , (iv) , (v) imply that

T . .
lim 1 / e2ﬂbkp&Jdt = o ,
T (o]

T -

£(t) -+ 0 a8 t =+ o

and (iv) implies that
‘ t

and
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(11]

If f£(t) is a differentisble function (t > C) ,

Theorem L. 21

i

and satisfics

(vi) £(t) is C-uniformly distributed mod 1

(vii) '(t) > 0, (t = tq = C) ;
(viii) TCB) 0 if % o e

t

then the sequence f£{(1) , £(2), ... is uniformly distributed

mod 1 .

Theorem 4.2%1 also implies that if f£(t) is a

differentiable function (t > 0) and satisfies

£1(t) logt - C s> 0 &as %t —. o
then the sequence f{(1) , £(2) , ... is uniformly distributed
mod 1 .

Among other known. sufficient conditions for
the sequence f£(i), £(2), ... to be uniformly distributed

mod 1 are [11] :

(A) £(t) 1is a @ifferentiable function with
ket ¢t)] < m , ® = 0o, t = 0) |,
and

(B) f(t) is a function twice differentiable for

t 2 1, and
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(ix) £'(t) and £"(t) are bcounded for t 21 ;

(x) £'(t) - €& (irrationsl) as t - o« .

In [11] , the euthor uses the above theorems
to show that the sequences ~Nn + sha% , (n=1, 2, coe)
end An + sinn, (n=1, 2, «..) , are uniformly
distributed mod 1 , whilst the sequence cos(n + logn ) ,

(n=1, 2, ooo) ’ is not .

L. A generalisation of uniform distribution.

Summary of known theorems

(1)  [vey1]
The necessary and sufficient condition that
{xn} be uniformly distributed mod 1 is that
for any R-integrable function f(x) in [¢,1] ,

i TLED Y ¢ e v 20D T L Mer)ax.
n - oo n Jo

(ii)  [weyl]
The necessary and sufficient condition that

¢

{Xn! Dbe uniformly distributed mod 1 is that

fOI‘ m=0,i1 ,i2, “ce0e
n

E e2Tinx,

e

o(n) .

( £(x) = exp( 2wix) in (1) ) .
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(iii) [van der Corput)
Tet g, {t) = g(t +h) -gt), (h=1, 2, ...).
If {g,(n)} is uniformly distributed mod 1
for any h , then [g(n)} is uniformly
distributed mod 1 .

(iv) [Pejer]
Let g(t) > O be a continuous increasing
function with a continuous derivative g'{t)
for 1 €t < o and satisfy the following

conditions :
(a)‘g(t) » o, 85 t oo ,
(b) g'(t) = 6 monotonically , as t = e« ,
(¢) tg'(t) -» o, as t - o .'

Then {g(n)} is uniformly distributed mod 1 .

Thus 1an¢} » (8> 0, 0> 0, ¢ not an integer) ,
and {a(logrl)a} s (a> 0,0 > 1), are uniformly
distributed mod 1 . If ¢ is an integer and a is irrational,
then {an’} is uniformly distributed mod 1 .

In [24] , Tsugi generalises the notion of uniform

distribution mod 1 as follows :

Let N > O be a sequence which satisfies

(a) Ny 2 Ny 2 s ?)\n)O ’
Y]

(®) Z A= e

N=1
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Let I be an interval in {0,1] and ¢(x) its
characteristic function, ie. ¢(x) =1 for x € I , and |
¢(x) = 0 elsewhere., If for any I,

Mo{ (= D3 o+ oo+ gl ((xn )] = |1]

%1 + LU + ?\n

1im
n — oo

then {xn] 1is said to be {My}l-uniformly distributed mod 1 .

The uniform distribution mod 1 is a special case ,

where A =1, (n=1, 2, ...) .

There are corresponding analogues of the above

" theorems

Theorem l.22  [21]

The necessary and suff'icient condition that
{xn} be {Ap}-uniformly distributed mod 1 is that , for any

'R-integrable function f(x) in [0,1],

tim MELUED T+ on v AEL ()] f f(x)ax .
nl - w ')\1 °

Theorem L.23%3 [21]
The necessary and sufficient condition that

{xn}] be [Ay}-uniformly distributed mod 1 is that , for

>
>).
(¢4]
n
3
50
I
(0]
[ghndaanY
[\/
>’
3
—
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Theorem L., 24 [21 ]

T — .} 3

Let Ap = AN(n) , where AN (t) > 0 is a
continuous decreasing function with a continuous derivative

N(t) for 1 <1t <o, such that
n

Z A~ [n At)at , (0o o) .

r=1
Let g(t) > 0 be a continuous increasing
function with a continuous derivative g'(t) for 1 €t <o ,

and satisfy the following conditions :
(a) g{t) - oo, as t - ;

(b) g'(t) - O monotonically , as t - o ;

(c) g'(t) is monotone for t > t,
ANt)
?

(d) g (t) /t )\(t)dt b oo ’ as t - o .
INGD.

1

Then {g(n)}] is {An}-uniformly distributed

mod 1 .

Thus, for example, if g(t) > 0 is a
continuous increasing function with a continuous derivative

g'(t) for 1 €t < w, and satisfies the conditions :
(a) g(t) » o, &8s t ->0e ,

() g'(t) - O monotonicelly , as t - o ,
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(c) tg'(t) is monotone for t 2 to, ,

(d) tlogt.g'(t) - o, as t =2«

then {g(n)l is {

}—uniformly distributed mod 1 .

s
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