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ABSTRACT

Thie thesis consists of two parts; part I
deals with the origin of the terrestrial planets
while part II is concerned with evolution of larger

objects, stellar clusters.

PART 1
Chapter 1:

A general outline of the problems involved
in the formation of planets and a brief indication of
our proposed solution is given.

Chapter 2:

The resistance offered by a gas to an object
moving through it with different speeds is calculated
and a comparison between the expressions found is
given. The equation of growth for an object accreting
m aterial is also found.

Chapter 3:

The time taken by an object to fall to the
centre of a gas cloud under the action of the gravita-
tional attraction of the cloud and the resistance of
the gas is found. The resistance and growth laws
found in Chapter 2 are used.

Chapter 4;
The possibility of forming very large grains,

or clumps, by accretion and the probability that these



escape from the cloud on collision is investigated.
Chapter 5:

An estimate for the dispersal time of a con-
densation violating the Roche lim it is given.
Chapter 6:

Ttds gives a brief outline of the proposed
theory together with the conclusions about the whole

part.

PART 11
Chapter 1:

This gives an explanation to some of the terms
used 1n connection with stellar evolution and indicates
some of the problems involved.

Chapter 2:

The problem of stars contracting onto the
main sequence is considered, shov/ing the importance of
the initial conditions chosen.

Chapter 3:

A discussion about the blue stragglers found
in some clusters is given and an investigation into the
possibility that this phenomena is caused by continuous

creation of stars in the cluster is carried out.
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CHAPTER 1

Introduction

One of the most surprising aspects about the
solar system is the sharp division that exists between
the two types of planets present, namely the Major, or
Jovian, planets and the terrestrial planets# They
differ widely, both in mass and in chemical composition.
The major planets have a mass of the order of 10 grammes
and according to present-day calculations, probably
consist mainly of hydrogen, presumably with the usual
sprinkling of the heavier elements. They are thus
similar to most other astronomical objects as regards
chemical composition. The terrestrial planets on the
other hand are only about 1$ as massive as the major
planets, consisting mainly of the heavier elements. It
is now commonly thought that the terrestrial planets
originated after the heavier elements were separated in
some manner from the hydrogen. Various theories have
been proposed in oi'der to achieve this result, among
them the formation of a disc of material surrounding the
sun as suggested by Hoyle gl} and the theories presented
by Russian astronomers such as Sch*rddtL 2]. Most of
these theories concentrate on giving an explanation of

the difference in composition and take no account of the



fact that if we returned hydrogen to the terrestrial
planets such that their chemical composition would he
similar to the major planets, then their masses would
also he comparable to the major planets. A theory by
Irofessor McCrea”3] is one of the few theories that
take account of this second feature.

According to this theory, formation of stars
takes place, in clusters of a hundred or more at a tine,
from an initial massive cloud of hydrogen gas in
molecular form, vdth the usual small amount of other
elements present. This cloud is not assumed to have
uniform density, but to consist of cloudlets of higher
density called flocculee, these fiocculeo moving at
random amongst themsolves* A star is formed at a point
where the path of a number of these floccules converge.
By such an arrangement clearly many stars are formed in
a cluster, none of them possessing a phenomenally high
amount of angular momentum since the floccules approach
from all directions. Hence, this suggestion agrees with
present-day beliefs ttet stars are formed in clusteir,
not individually, and at the same time overcomes the
angular momentum problem, wliich has been the dovmfall of
many a theory in the past and has led to many a drastic

proposal in order that it could be resolved.



All the floccules in a cloud could not possibly
be moving directly tov/ards these points and so, after an
interval of time, we find that while most of the
floccules have formed into stellar condensations, a few
will still be moving, gravitationally captured by one
of these condensationB but not having actually joined
any of them. As time passes, these trapped floccules
will tend to settle into the invariable plane defined by
the angular momentum of the system. As t iis process is
talcing place the flocculee will tend to collide together
and grov;, in a similar way to the formation of the
parent star, though on a smaller scale of course. As a
result of this we would expect the stars to be eventually
surrounded by a few condensations, all of these conden-
sations being rou- hly similar to each other. (In his
paper, Professor McCrea shows that the common mass
would be about equivalent to the mass of a major planet.)
The major planets can thus be formed simply by further
condensing these condensations.

McGrea points out that for any region closer to
the sun than Jupiter’s orbit, a condensation having a
density similar to the floccule density assumed could
not hold together for long due to the tidal action of

the Bun. He suggests that this is the reason for the
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difference between the two types of planets, but does
not give any indication as to bow either the separation
of the elements, or indeed the formation of a condensa-
tion in this region, could possibly take place.

It is intended that this work should give some
indication of how this formation of the terrestrial
planets could come about. It is fairly obvious that if
we could, in some way, cause the heavier elements to
form a core at the centre of the planetary condensation,
with a density high enough to hold together on its own,
then the tidal action of the sun could only remove the
regions of lower density, namely the outer hydrogen
layers, leaving us with a stable condensation of
heavier material or just the ingredients required for a
terrestrifid planet. It is our intention to investigate
the possibility of forming such a core. Clearly the
only practical way of forming this core is by the
heavier elements falling to the centre of the condensa-
tion due to the gravitational attraction of the cloud.
We shall t‘us investigate various ways by which this
falling process can take place, and in what form the
heavier material must be before the time of fall
becomes realistic.

We have also made estimates of the time



required by the tidal action of the sun to disperse
such a condensation as the one above# It is important
that this time be fairly short, otherv;iso the time
taken for the outer hydrogen layers to disperse might
be so long as to make the occurrence impossible during
the sun’s life* Ideally vie would like tiis time to be
longer than the time required for the formation of the
heavy core, as the formation of a terrestrial planet
then follows a very simple pattern*® The condensations
form by collisions between floccules; the heavy
material begins to fall and the tidal action disperses,
but as the time of fall is less than the dispersal time
formation of the core takes place before any appreciable
dispersal. This is an ideal situation and we shall
investigate under what conditions this comos about. If
these requirements are unreasonable we can still obtain
the desired result by having the condensation formed
and orbiting in a region where it does not disperse,
and occasionally dipping into the other region, whence
the outer layers are removed.

In chapter 2, all the equations concerned with
the resistance of a gas cloud to motions through it are
found. Equations are also obtained giving the rate of

growth of a moving particle assuming various methods of
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accretion#

Chapter 3 deals with the actual motion of the
heavy material through a spherical cloud of hydrogen
gas# Solutione of the equations of motion are obtained
in all cases likely to be of interest, together with
numerical values for the time of fall of the heavy
m ateriale

In some of these motions we consider very large
grains# The formation of these {“ains is considered in
chapter 4, together with an investigation into the
probability of these objects escaping from the surround-
ing gas cloud when the cloud is involved in a collision.
It is to be noted that these large grains are comparable
with the planetesimals postulated by various authors on
the origin of the planets# We compare our theory with
these planetesimal theories in chapter 5, where all the
conclusions are given together wita a complete outline

of the theory, vdlthout mathematical detail#
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CHAFi’BR 2
Equations concerned with the motion

of the heavy material

In order to investigate the formation of the
heavy core we require the equation of motion of this
material as it moves through the surrounding gas con-
densation, the only forces operating being the gravita-
tional attraction of the condensation itself and the
resistance offered by this gas to any motion through it.

We shall first investigate this resisting
force, finding various expressions depending on the
speed and size of the object moving through the gas.
For obtaining some of these we can make use of published
work if we regard the falling heavy material as being
another gas.

Throughout this discussion we shall retain the

following notation.

emass of a molecule of the resisting gas.
» mass of a molecule of the moving gas, or
of the particle, as the case may be.
'h m radius of a molecule of the resisting gas.
cfl = radius of a molecule of the moving gas or
v9 particle,

h = number density of the resisting gas.
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G% =number density of the other gas.
f, = edensity of the resisting gas.
f =temperature in degrees Kelvin (assumed
constant).
A =Boltaman’s gas constant.
Any other notation will be explained as the
need for it arises.
Throughout this discussion we assume that all
the molecules and particles can be considered as spheres,
the coefficient of elasticity being 6 for any

collisions between them.

In our first derivation, we follow a method
given by HcCreal 4] in his paper on "Gas motions in
prominences, Wolf-Bayet stars and Bovae" with the small
generalisation that the coefficient of elasticity is 6
instead of unity as assumed by him.

Ooncider a molecule of the moving gas approach-
ing a molecule of the resisting gas with relative speed
U. . This is the same as taking a sphere of mass
at rest, with a sphere of mass approaching it with
speed. IX . Let the straight line joining the centres
of these two spheres subtend an angle 6 with the

direction of the speed IX . The situation is illustrated



in the ssram

>U.

If U] and are the speeds of molecules
(1) and (2) after the collision, along the line of
centres, then conservation of linear momentum along this

line of centres gives

U. u;, +

Tbe coefficient of elasticity is C $ and thus

Hence, on substituting for LI

Ir - U Coo& (1+e)

The gain in linear momentum experlenced by molecule (1)

is thus

— u. (PBCI4C)

along the line of centres, with the corresponding loss

for molecule (2).



The loss in linear momentum along the direction

of the speed LL experienced by molecule (2) is thus

M .f M

It follov/a directly from Newton's laws of motion
that tho force acting on an object is its rate of change
of momentum. Thus, to obtain the resistance we have to
find the number of such exchanges per unit time, that is
clearly the number of such collisions per unit time*

If the thermal velocity of the gas is small
compared with the translation speed (L then we can
obtain the number of collisions as follows.

If two molecules collide, their lino of centres
subtending an angle between 0 and 0 with the speed (/L
then their centres must lie in a cylinder of length U t

and radius A

The volume of such a cylinder is

I'ho volume of the corresponding cylinder, if the anfc;le
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can lie between O and O +c¢/0 ” xE

rif<ri-c\) lit tO"do)
Hence if two molecules collide with their centres atan
angle between 8 and a*-do with the direction of
the speed U- , then their centres must lie in a volume

= lit

If we have 0, molecules of mass M, and molecules
of mass , then the number of collisions per unit
time is

2 B(<F4a)) *,4" 0 Lido (2)

So the resistance acting on a unit volume of gas (2)

would be, due to collision in the range 0 to O%*c/o

3Ti( <% 4<rS £,nx MMx L\+aSuno Cc/oO UV b
M,

On integrating over the tot::* range of 0 , we obtain

f (Ujodo-il*

This is the resisting force on unit volume of the gas.
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The force on one molecule is clearly
r,l
2-C"/ *7].)
and this vail hold whether the object a molecule
or a grain (as vie assumed molecules were spheres anyi“ay
to obtain the formula)*

Clearly only minor alterations to this method
are required to give the resistance of the speed of the
moving material is small compared with the thermal speed
of the gas, which is why all the details were reproduced
from McGrea's paper* The total linear momentum trans-
ferred from one gas to the other remains unaltered by
the above assumption; thus equation (1) is still
operative *

The number of collisions will be modified by
replacing UCcoO by W , where W is the main thermal

velocity of the gas, and is
2 nl<r, +<n)1, Ox OclO\t]

Thus giving a total force due to all collisions in the
range 0 to ( *dé& as
-+ PZ,

or, upon integrating over all possible values of O ,

the resistance to tho motion of the second gas is
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2n U .\AJ
i M, )
Mow for a gas at a temperature whose molecules have
a nasE M, , the N :l!]ermal [a Jocity is defined to be
If we have another gas whose molecules weigh , then

Thus a convenient mean thermal velocity would

be

When we introduce this for W/ in the resistance, it

becomes
4" Cl+e) & (T | ITik! GL
J j N, 41%;.

If we are interested in one molecule only, then wo have
0~ ¢ | and use the expression VV( for the thermal

velocity, giving

JATi*Tn UL 7

Expression (6)was also found by McCrea but proceed-
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ing from Chapman's® 5] genei’al theory of diffusion.
When the temperature and pressure are assumed

uniform the force is

UJ
Grif -20%) T ) /i

where is the coefficient of diffusion*®

Chapman's first approximation for the value of

this coefficient gives

2T d”\"(0)
vfhere

dTix"to) - a(<Piire,i " LA
I it ]

if the molecules are assumed to bo elastic spheres*

Thus the total resistance turns out to be

A

n, <<r,Yj Irik? ti,Nx U. (9)
3 /

i'bin is the same as expression (6) obtained by us,
apart from tho added assumption in (9) that the spheres
are elastic, thus € =(

In future work, we shall be interested in
material other than gas molecules falling through the
gas. For this reason, we require an expression for the

force on these larger bodies. There is nothing in the
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work done by us to obtain expressions (6) and (?) that
actually specifies an application to molecules only.

Thus we can deduce that the resistance would be

cj>-J 2 n k t «, (10)
3 A

since, for a (.rain, <s\»d /" »

Though there seems to be no objection to
obtaining the resistance in this way, there is no
particular reason w"y tho resistance should be the same
for gas and grains. As we can calculate the resistance
on a grain directly, we shall do this and not rely on
deductions from the gas case.

We assume that the molecules of the resisting
gas have a Maxwellian distribution of velocities, that
is to say we assume that the probability of any molecule
having a speed between IT and W+ <tu®“ along a given

direction is A

whez'e h is a constant of value [j / .

Let us then take a particle, considered as a
sphere of radius CI* , moving with speed 44" through a
stationary gas with the properties ¢I) , M , and [/

as already defined by us. We take the centre of this



75

sphere as the pole of a spherical polar system of
coordinates. The direction of the speed LL is taken as
the axis of the 0 coordinate and another arhitary
direction, perpendicular to LL , as the axis of the

third coordinate

Consider the small element of area d .S on
the surface of the sphere and subtending angles betv/een
0 and 6 “cl& , (> and (|>iC//\ at the centre of the

sphere. Then by elementary mathematics we obtain

cl$” c/6c¢c/y

If we now take a new set of rectangular right-
handed coordinate axis stationary in the gas, the axis
of X parallel to the normal to ¢/S i the and Z
axis thus being parallel to the plane of, cJS

The probability that any molecule has speed
between XA and u-tdu along the DC-axis is thus

L

! '

exp”™ u ' j ch
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Tho linear momentum transferred when a molecule

in such a velocity range collides with the particle is

M, C/+e) C &4

along the normal, with no contribution perpendicular to
this normal. In obtaining this expression we have
assumed that the mass of tho particle greatly exceeds
the mass of the colliding molecule. U~ and W are
perpendicular to the normal, so have no contribution.
The number of collisions per unit time betv;een
this CiTea ¢/S and molecules having speed in the range

to utc/c«. along the prescribed axis is
K\*W.+ U-6co06)c/S
where < is tho number of molecules per unit volume

with the prescribed speed.
But A

by virtue of the Maxwellian distribution, and thus the

number of collisions per unit tine is

4 ciu-c¢/S

Hence the force acting, which is equal to the rate of



change of momentum, due to the molecules in the above

speed range is

How, since we are investigating the case of the thermal
velocity exceeding the translation velocity, U ,

and QO we have the force as

U (o»e)d, ( A  u'-jciu. ¢/X

Integrating over all possible values of “u_, the foi’ce
acting on dS along its normal is

hi ~ fcu'-+20tUCto& )cxp”™-A',u j ¢/a.
'N

iliis is the force along the normal to dS

Prom elementary mathematics it is obvious that
the total force in tae direction of IL is A Cco @
viith 1M SvA* Q perpendicular to this.

From symmetry it is obvious that when integrated
over the whole sphere, the sum of VtSo" G is zero.

The total resistance to motion is thus riven by

/A
¢ -aj/  ULC+ei CTN-/ )
3K.M, Ay
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or, since K * )[Zk T

the total resistance to the motion is

tC/+eir),<r/[2n (J. (n)

Ttiis expression (11) is exactly the same as what we
deduced, the resistance for a particle to he from the
corresponding resistance for a gas, namely expression (10).
Thus we can safely conclude that if the translation
velocity is smaller than the thermal velocity of the
resisting medium, the resistance is given by the expression

derived by us, namely

(Tj-J N, U (12)

There exists a well known formula for the
resistance of a fluid to the motion of a sphere, called

Stokeses law. According to this law the resistance is
(13)

where is called the coefficient of viscosity, about
which move information is given below, all the other
symbols being as already defined. Proofs and derivations
of this fomaula are given in various books, for example,
Basset "Treatise in Hydrodynamics** ~6][ $§ Lamb '"Hydro-

dynamics" "7]" and Green "Hydro and Aerodynamics** g8 %.
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For this reason we do not include a detailed proof, we

only give a brief outline of the method, which is enough

to show the basic principles involved and the assumptions

made. Initially the Stokes current function is found,

which is a solution of 1A .place's equation

which satisfies the boundary conditions prescribed.

This allows us to find the motion of the fluid.
From this we derive the tangential and normal components
of the force (resistance) due to the liquid on a small
element of area (j* on the surface of the sphere.
Sum{ition of all such forces clearly gives the total
resistance acting. This turns out to be

I-f %%

where N is a proportionality constant denoting the
amount of slip betv."een the liquid and the sphere. Stokes
in tjiG formula assumes no slip and hence \ X ,

giving t.e result

A A2 LL

as given above. points are to be noted from this

derivation of the resistance.

iV



1) The resisting medium is considered as a viscous
fluid throughout.

2) The layer of fluid immediately in contact with the
sphere is assumed to move with the sphere.

In deriving equation (12) giving the resistance
to a particle, we assumed:

1) That the resisting medium is considered as a
collection of molecules;

2) The layer immediately in contact with the sphere
is exactly similar to the layer far removed from
the sphere.

Thus we see clearly the difference between the
Stokes law of resistance and the one derived by us.

The first set of conditions (Stokes’s law) would
clearly be better satisfied when the sphere is large
compared with the mean free path, while the other con-
ditions apply if the sphere is small compared with the
mean free path. In other words Stokes’s law applies for
large spheres while the other resistance law applies for
small spheres.

Clearly before any intelligent comparison can
be carried out between the two expressions (12) and (13)
for the resistance we require some equation for the

coefficient of viscosity * .
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The simple derivation of such an expression
which we are about to give is essentially the same as
one given by Meyer in his book "The Kinetic Theory of
Gases" 79} apart from changes of notation. We have
included it in the discussion because it is very simple,
shows clearly what is meant by viscosity, and gives an
expression that is very similar to what is given by
more refined and complicated methods.

We consider a gas moving in such a way that,
on choice of a suitable set of axis, the velocity in a
given plane is constant and numerically equal to the
distance of this plane from a fixed plane parallel to
it, which we shall call the base plane. We now take two
adjacent layers in the fluid, their plane of separation
being parallel to the base plane and at a distance X
from it. Now the number of molecules which pass in a
unit time tlirough a unit area of the separation plane
from the layer nearest the base plane to the other layer
is

lo
where, as before, is the number of molecules per
unit volume and W is the mean thernial velocity of
these molecules. The coefficient is obtained by

assuming, as first suggested by Joube, that only V3 of
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the molecules have speed along any given direction.
Half of this number would thus be moving in a positive
sense.

The molecules crossing this separation plane
must, on average, have come froma distanceequal to
the mean free path, L , of the gas awayfrom this
separation plane, that is from a layer distance
from the base plane for crossing one way and (% the
other way.

By our assumption the mean forijard velocity of
these molecules is equal to the distance from the base
plane, and thus the mean linear momentum of a molecule

passing from the slower layer to the other is

M, CX

The total linear momentum passing fron the
slower layer through a unit area of the separation

plane in a unit timeis thus

'"'m, Wly, (X -1)

By an obviously similar argument the amount
of linear momentum transferred from the fast moving

layer to the other is

A AN W CX KA)
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Hence the layer nearest the base plane is
gaining linear momentum through a unit area of the
separation plane at a rate

VIM, (x + i)
6

while the other layer loses the same amount.
But the coefficient of viscosity is defined to

be the force acting on a unit surface and is thus equal

to the rate of change of linear momentum through a unit

area, and is thus

(o

a4)

This expression for the coefficient of
viscosity was first obtained by Maxwell in 1860. More
refined methods for obtaining this coefficient have
since been aiscovered. These can be found in
"Dynamical Theory of gases'" by Jeans jjioj or "Kinetic
Theory of Gases" 11] by the same author, and Kennard’s

"Kinetic Theory of Gases" (jL23

Kennard also gives a result obtained by

Boltaman in "Gas Theory" []13] which is

=0-370 L

This result is modified by Kennard to give a
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final value of

(U =: 0- 3/0 v M,/?,L

Jeans gives reference to a more rigorous derivation
carried out by Chapman in 1911 ul”*1» who obtains the

value
= . HW

If we use Chapman’s value for the mean free path of the

gas, namely

, / 3N
L =

then the expression quoted above for the viscosity

becomes
- 076 /M,n, WL

More recently (1962) Deslodge in "The American Journal
of Physics" LI1?} finds

n —]
A (}Uﬂ CAAA

Using the expression for L given above and the mean

thermal velocity W as 2.V/ o this expression
2
becomes
Moo S ri,w
Si cT,

which is the same as given above- by Chapman, thus
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giving

\ -0 suU ti,ni WL

Thus v/e see that all the above refinements do
not appreciably change the basic expression obtained by
Maxv/ell and any differences occur in the numerical
coefficient only. As Maxwell's result is much simpler
than the others we shall find it more convenient to use

this expression for comparison purposes, he thus retain

= YA \a) L
As already pointed out V)= and so
A= 1 e 1 jliifeTM,

The resistance due to a gas when a large
sphere moves through it is thus given by substituting

this value of # into equation (15), giving

1= Loi. L J znkr M . 11 (15)

We have thus obtained various expressions for the
resistance experienced by a particle (or sphere) as it

moves through a gas cloud. These were -

I. If the velocity of translation is small

(a) radius larger than the mean free path of the gas

It - kn, <~ L Ji-Ti i'T 1N aX (15)
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(b) radius smaller than the mean free path of the gas
but greater than the radius of a molecule

Al M1 JID 7 1 k] * JA. (IP)
(¢) radius similar in magnitude to a molecular radius

- - LL (6)
a J

2. If the velocity of translation is large compared
with the thermal velocity of the Kas

(a) radius larger than a molecular radius
1= U 0%e) M/t 3% LLA
1
(b) radius comparable with a molecular radius

"R = n, C (5)

We are now in possession of the above
expressions for the resistance offered by a gas to
motions tlarough it. It would be both interesting and
instructive to compare these expressions.

Initially let us compare the expressions
talcing account of the variation in the resistance with
speed. The expressions to be compared now are (5) and
(6), (5) being for high speeds while (6) is for a slower
moving object. These two resistances have been plotted

in a diagram, which we have called figure 1. So as to
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be able to use a simple scale for the resistance we have

taicen the quantity T (i - * - ¢ ) * as a scale factor,

Vj being the thermal velocity of the gas, as usual.

In this diagram, the straight line gives the
resistance for small speeds while the curve is the
applicable one for higher speeds. We have used a con-
tinuous marking to shoiv the region where the curve or
line is the correct resistance and broken markings for
the other region. From the diagram it is immediately
evident that the resistance law actually applying at
any given speed is always greater than the other
resistance law.

Let us now turn to the variation of the
resistance with the particle radius. Again this is
best illustrated by means of a diagram. Figure 2 gives
the resistance plotted against the particle radius. W

have now taken the quantity UoWirt/.— UL as a scale

factor, Ix being the mean free path of the gas, the
reason again being just to sim plify the scale.

As before a continuous line denotes the actual
resistance while a broken line gives the resistance
using the other law. The dotted line will be explained

laker. We note tlriat the diagram now shows the actual
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resistance to be smaller than the resistance calculated
from the incorrect law. We see that the difference
between these laws for radii less than about 2 mean free
paths is small.

Comparing the two resistance laws involved
qualitatively we see that one is proportional to OT
while the other is proportional to o-j, L , all other
variable terms being similar in both. Prom an intuitive
point of view this is what is to be expected. In the
first derivation, the force arose from the impact of
molecules against the particle and wuld thus depend on
the area available for impact, that is <3%" . In
Gtokes's law the resistance is due to the drag of the
fluid on the edges, and is thus proportional to the
edge length, or »~ . To keep the dimensions similar
another length must be involved, and the only term of
such dimensions that could conceivably be involved is
the mean free path of the gas, L. . hence for
Stokes's law we obtain ~ L

A well known experiment, first conducted by
Millikan, to measure the ctarge of an electron makes
use of the resistance of air to the motion of an oil
drop. (For a full account of the experimental details

see Tolansky L1S3 or Millikan Q1?J.) For fairly large
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oil drops Millikan found that using Stokes's law as given
above gave accurate and consistent results, hence
indicating that the law is correct. For smaller oil
drops, however, he found that the Gtokes resistance does
not give very accurate results. A resistance
¢ * Oy A (16)
[ =% 4i/<rL

was found to give very satisfactory and accurate results.
This law is the same as Stokes's, apart from ( ( A
in the denominator, A being a constj-mt.

For very small values of becomes
much the dominant term and so for very small radii the

fillikan correction gives the Stoke resistance as

ifhlch is exactly the same as the force found by us for
small radii, apart from numerical constants.

This Millikan law, equation (16), has been
plotted into figure 2, which was the diagram shoiving
the variation of resistance with radius. This is the
dashed line. At first sight this does not agree at all
well with the two curves already present, end as the
experimental evidence shows that this curve cannot be

far wrong for the region studied by Millikan, it could
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suggest that our theoretical results do not apply. It

is to bo noted, however, that for very small radii,
yheire we are very certain that our theoretical curve is
correct, agreement is good, and the experimental data do
not extend to this region. For large radii, the ratio

of the tvio resistances, Stokes's and M illikan's, approach
closer and closer to unit*{ and so agreement is also good
for this region.

It is thus only for a region near the mean free
path of the gas that Millikan's corrected resistance,
which is in good agreement with experimental data,
differs from both our resistance laws. But this is the
region where one law becomes applicable instead of the
other. Hevertheless the method by which this comes
about is surprising. We would expect from physical
considerations that at any radius in this region the
actual resistance would be fairly close to both the
resistance lav/s, and possibly lying in between the two
of them. We find however a fairly large difference,
the actual resistance lying below both of the theoretical
ones. It is. to be noted, however, that this curve found
by Millikan is very similar to the curve one would draw
to join the curve found by us for small radii and

Stokes's law for very large radii.
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We can thus conclude that Millikan*s experiment
gives definite proof that the expressions found by us
are correct when the radius is not comparable with the
mean free path of the gas and also shows how to change
from one law to the other*

It is perhaps interesting to note that the
actual separation between the Stokes line and the
Millikan corrected resistance is independent of radius
and so of course (as we expect) the difference between
the two expressed as a percentage of one of them gets
smaller and smaller*

In a paper "On graphite particles as inter-
stellar grains" Hoyle and Wickranasinghe g 18" use an
expression for the resistance of a gas to a small
object moving through it. They use Stokes's law, but
modify the viecosity by X'eplacing the mean free path
with the object radius. They are thus in effect using
essentially the same resistance as was found by UB
apart from small numerical factors.

There thus seems to be abundant evidence, both
theoretical and experimental, for concluding that the
rosiGtancos vie have obtained and given above as
equations (5), (6), (12) and (15) are essentially

correct and that the region of applicability of these



formulae are roughly as described by us. We have thus
completed our investigation into the resisting forces

acting in a gas cloud.

Possible growth of the aovinfr object

As we have stated, in this chapter we are
interested in the equations governing the motion of
particles through a gas cloud. Under certain conditions
those moving particles could accrete material as they
moved. We thus have to investigate the rate of growth
of such particles assuming different methods of
accretion. We must point out that some of the methods
of accretion outlined below are very unlikely to have
any physical application. They have been included only
for interest and for completeness. The particle that
is accreting material can either be moving faster or
sloiver than the thermal velocity of the accreted
m aterial. This accreted material could also be in the
form of either gas molecules or other particles like
interstellar grains. There are thus four possibilities
to be investigated. WO shall consider these in turn.
1. Accretion of gas molecules by a fast

moving particle.

Let the probability of a molecule being picked
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up on collision with the particle be , all other
notation being as already defined*®

When the particle moves through a distance c¢/x «

the number of molecules colliding with it is clearly

c/x
The amount of material accreted in this distance is thus
dH ™ = 'NiicTt'- M n, ¢/)C

But U n1<KIli , where Is thedensity

of a particle end is assumedconstant. Thus

\ M~AId/

Ixfi*
Integrating we obtain

<r - h (17)

where <$3~0 is theinitialradius of the particle at

the point 3C—O0.

Equation (17) gives the growth of the particle

under the stated conditions.

2. Accretion of particles by fast moving particles.
Let the probability of being picked up after a
collision be ~ again. Let the ratio of particles to

gas molecules, by mass, be jkA , then

MA -

where M and fZ are the mass and number density of



the particles. As before, clearly

(In™ " )sjr m c/x

= c/x

SO

. \fA.M,n,dK
c/61, -

fz being as defined before.

Thus
er, = () + Xf- M/, 3

where CIQ is the radius of the moving particle at some

initial stags where oc= 1

3. Accretion of gas molocules by partides moving
slov/er than the tterraal speed of the gas.

Let have the same mooning as before. As
the particle is moving slower than the thermal speed of
tho gae, more molecules are involved in collision due
to this speed than due to the motion of the particle,
and so the number of collisions depends on the time
rather than the distance moved. Assume again that the
velocity distribution of the gas molecules is Maxwellian.
Then the number of collisions between molecules having
speed in the range u. to u +c/u and an area of

the particle in time dua is

ix duds (/t
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The number of collisions, allowing for all possible

velocities, is thus

uc/s c/e-

% /1, /JL cllr clS
ynyfri

Integrating over the whole surface of the particle,

number of collisions in tlmo .c/t is

T / L o c/ér-
zZJ

The mass gained by the particle in this time is thus

W/t X/vll, 1%
hence
¢ / - hfyj, IJ- . dt:
zfx
BO
0N =Tp 1+ X t
TpTj™h

the

where <$0 is the radius of the particle when L =m0 .

But k= V2.&T and VJ= ~ v so0 we can write the

above result as

03 Y yjJAdy[" (iq)

U. fu
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which gives the size of the particle under the given

growth conditions.

4. Accretion of rarticles by particles moving slower
than the thermal velocity of the accreted material.
Let K and j-K have the meaning already defined.

I'hen as before

A /X 11, 1?/

Clearly the same analyoin can be applied to this case
as to the preceding one. Thus the mass gained by the

moving particle in time d U is

(. 7zl [
i 2. \/TinM
d<r”? [ %
<r: - (o ! /4
A Tfu xITThn

But h.- ijzkT&xio. 2. /27" (= Wx, (say)the thermal velocity
y/

of the particles accreted. Thus

(3a -h Wyfe
Uur»

or

cr”® (Tj -h Xyu At <7 (20)

giving the particle size for this case.
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This completes the investigation into the groxvijh
of particles by accretion. There now remains only one
other factor to discuss about the motion of the heavy
m aterial, the accelerating force# We are primarily
interested in motions through a gas cloud, the only
accelerating force present is thus the gravitational
attraction of this cloud. This force will be acting
tov/ards the centre of the cloud, and by Newton's law of

gravitation its magnitude will be

(TMm M

where is the mass of the particle 7" the position
of the particlG measured from the cloud centre, M
being tho mass of cloud within this radius and ér the
universal gravitation constant.

If we assume tho cloud to possess a uniform

density then the mass inside a radius * is

M= In f

But we lisive already defined the number density of this

cloud to be X~ , so and

h =

which leads to an accelerating force of

P= ATi 6-Mrf.l1, r
A

3 ' (21)



The resistance of the cloud will be in direct
opposition to this force and its magnitude will clearly
be one of the types already discussed by us above. Any
changes in the size of the moving particle are also
governed by the equations of growth due to accretion
we have obtained. Vie are thus able to derive the
equations of motion for any type of notion likely to
arise. No useful purpose vdll be served by writing them
all 0(E/n here as they can be obtained very simply if
required from the information given above. Practical
applications of these equations arc loft until a later
chapter. Hence all the information required at the

beginning of the chapter has been found.
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CKAKER 5
Motion of the heavy material,

with numerical values

In this chapter we shall initially fix the
numerical values of most of the parameters involved in
the formation of the terrestrial planets. By making
use of these values and of the expressions for the
forces acting on a moving particle found in the last
chapter we shall attempt to solve the equations of
motion for the heavy material and by doing this obtain
an estimate for the time required to form the heavy
core, that is the time taken by the heavy material to
fall.

Throughout this discussion the prime considera-
tion is the formation of a terrestrial planet. Vie are
considering the transportation of heavy material
originally spread about in a condensation, to the centre
of this gas condensation, the object being to form a
terrestrial planet out of this heavy material. Hence
the mass of this heavy material must be roughly
equivalent to a terrestrial planet mass, but possibly
slightly greater, to allow for any inefficiency in the

/ 27
process. The mass of the Earth is about b-t/O with



Venus approximately the same, while Mars and Mercury are
slightly smaller. The mass of heavy material in a
condensation must thus he of this order of magnitude.
Now according to Allen in ’Astrophysical
Quantities* ["19], the average proportion, by weight, of
heavy material to gas in an interstellar cloud is about
I 5 100. This proportion is roughly the'same in the Sun
and other stars. The floccules considered by McCrea
and hence our clouds and condensations (that are assumed
to be formed from the floccules) are assumed to be
perfectly normal cloudlets, so this proportion of heavy
m aterial to gas must be the same in these. Thus in
order to have a final planet with a mass of 6
the total mass of the condensation would be ¢ i/i A
if the mechanism was completely efficient. If we allow
for small inefficiencies in this process, while at the

same time obtaining a more convenient mass, numerically

speaking, we obtain /U S for the initial mass of the
condensation.
\ 30
Now, the mass of Jupiter is * AN w hile

Saturn is 6t/0 QMS and thus these major planets
also have a mass of about /O * We thus have the
very satisfactory situation where all planetary

condensations are initially of the same mass and
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composition. The difference in the present day
appearance being due only to the terrestrial planets
losing most of their initial hydrogen at some stage.
From now on, in all numerical work we shall assume that
both the mass and composition of the condensations are
fixed, their actual values being as given above.

The initial density of our problem must be the
density of a floccule, the value chosen by McCrea for
this quantity being './0MAN/eC . Throughout the
period of interest to us, the density of any condensation
is unlikely to have changed much from this value but any
tendency in the condensations to condense would increase
tills slightly. Consequently, we shall take the round
number 10 for our condensation density for any
general argument and use the less convenient value

only if tliis causes a great difference
in the result. We will, of course, attempt to solve
all the problems using algebraic symbols first and will
only introduce these numerical values to obtain a
numerical physical solution, so that other values ior
these parameters could be used if the need arose.

There are other known constants whose values
are recjuired. These have all been taken from Allen s

book We assume that the temperature remains



constant throughout the time interval we are considering
and at all times this will be taken equal to the floccule
temperature. McCrea has given reasons for assuming this
temperature to bo § 0 iC and so we adopt this value for
our condensation.

The complete list of the numerical values for

the constants so far determined by us is as follows.

. M 30
Mass of the condensation « M -10

Density of the condensation & 'f » « /ONIM/ cC
Fa?oportion of heavy material to gas »* » /0O *

Temperature of the condensation » T* * SO K

Mass of hydrogen molecule = M| « 3-3 we

Radius of hydrogen molecule » @ » /maL*iiO

Mass of interstellar grain » = /0

Radius of interstellar grain « S/0

Density of interstellar grain = » DBfrlulAlien value//J

Universal gravitational constant ¢& tr « 4

Boltzman’s gas constant » * = 1344/0

Motion of the heavy material

With this information vie now have to investi-
gate the motion of the heavy material, assuming various
initial configurations for this material and finding

the time required for the formation of a heavy core.



No means of transportation is likely to exist
that could move the heavy material to the centre faster
than all Old.ng the particles to fall freely. It would
thus appear advisable to investigate this free fall time
and so deduce whether this minimum time is a short and
sensible time before proceeding to more complicated
transportation mechanisms.

If we have a particle of mass * in a
spherical cloud of gas with a imiform density f at a
distance T' from the centra of the cloud, then the
force of attraction towards the centre of this cloud is,

by the usual tjravitational laws, given by

where M is the mass included in a radius *

As we are coneidering free-fall, no resistance
exists and so, by Newton*e second law of motion, the
equation of motion of the particle is

r - (1)

1

We note that the mass of the particle, *
is not involved and so this equation of motion holds
independent/of what form we have the heavy material in,

be it molecules, grains or any other particle.
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If we denote the speed of the falling particle

at any instant by X7 , then equation (1) becomes
= kr,
cir [

Integrating this equation, vre obtain

Cr'"- k'"n J (2)
3
where is the initial position of the particle,

where the speed was assumed to be zero#

Then

[ A

Now the speed IT" is positive but if we denote the
velocity by h' this is now negative so the above
equation can be written as
A eln | UL Irf i™0
dhr

upon integration this gives

If we begin our time measurement at the
point * when the particle is beginning to move,

then clearly the value of the constant is **%/z.#
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r 7 A
P Frf *
Cin ~ 10y 1. o/ FIrt

Hence

At the centre of the cloud, #~=U sr.i

the time taken by the particle to fall to this palst Is

clearly o r—
A A J (5)
With the value for the density of /O this

equation gives a time of fall ofl% 4i/0 seconds or
U'94" years.

If we were to use the exact floccule density
given by McCrea of (i L'iiu G this gives a time of
fall of 1-15% years.

Hence, for any density likely to be of interest
to us the time of free-fall for a particle is very
small and is very close to ome year. It thus seems
quite in order to proceed to investigate the time taken
in the more realistic cases when the resistance of the
gas is taken into account. We must note that the above
time of one year is the minimum time possible and so
any of the following methods must give a longer period
than this.

It will obviously be beneficial if we investi-



gate the simpler configurations first since clearly if
these give a satisfactory solution and an acceptable
time there is no need to investigate more complicated
meclianisms.

The simplest possible situation we can have
after the free-fall is obviously when a molecule of the
heavier material falls towards the centre of the gas
cloud. Clearly, as the time of fall cannot be less than
the free fall time, the speed of the molecule cannot be
greater than the thermal velocity of the gas for any
significant period. Also the molecules start from rest
so their initial translation speed is lees than the
mean thermal velocity. The radius of this molecule
must, for obvious reasons, be less than the mean free
path of the gas. The resistance offered by the gas to
such a motion as this is that given by equation (6) of
the previous chapter.

rp  UG<eomdreatfiri A
3 y
We assume that this molecule does not accrete any
m aterial, so its radius is constant through the motion
and the coefficient of elasticity for each collision
will be unity.

The accelerating force towards the centre of



the cloud has already been noted and is

M being used to denote the raass of the heavy molecule
The equation of motion can now obviously be

written down, and is

3 ! 3 J n,-ax,
where we have used the position vector * as the

variable parameter.

The above equation (4) is clearly of the form

Vhere and * are both constants and are given by
oNr= % q,( Il-n A
A \i Hf y (6)
/3 - ktr, J
a

Equation (5) is a standard second order differential
equation with constant coefficients so the solution is

given in the usual manner by

where and 5 are constants of integration that can



be determined from initial conditions. We shall be

interested in the solution when , in which case

and hence the solution is

The initial conditions defined by us are “rTb and

Y 0 at (r* O , therefore

Si '~fSC\ (3) -

giving us a solution as

V

On expanding the small term and taking

the first order terms only we obtain
TTn /'o
As Xtr is likely to be fairly large this gives
b i Wojld'/ (8)

and so the time taken to fall to the centre of the
cloud is given when Q) A and is

I---

3
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Prom equation (5) this is the sort of expression we
would intuitively expect for the time of fall. Inserting
into this expression the values of the constants and
3 from equation (6) the time of fall is then given by
h % hjLhA!lI< (g2)
T (@r?, Mi,( tf. )
where and 3\ are the mass and radius of the
falling molecule. From Allen’s book j]l19] the average
radius of the heavier molecules would appear to be about
Q4/6 Cat while on average the mass would be about
or e Inserting these values into
expression (9) together with the values for all the
other constants we obtain a time of fall of A seconds
or 3-0Q/0"*" years. We note that this time is
independent of the cloud density* The physical reason
for this is tlxat both the resistance and the accelerating
force are proportional to the density and so they cancel
each other out.
This time is a phenomenally long time and
means that if the core was formed by molecules falling
in this way, then the falling process must have started
before any of the known astronomical bodies, including
gale cies, were formed* Clearly this is very unlikely

and so this mode of transportation is of little wuse in



the formation of terrestrial planets.
The above solution is valid provided the two

constants * and satisfy the relation

tx'""- 77  ft

Now on using equation (6)

Inserting the numerical values we have chosen, this

gives

f)

and hence A and the solution we have found above
is valid.

Clearly before a solution becomes of use to
us, the time of fall must be greatly reduced. Expression
(9) shows that this time of fall is proportional
to CI-W and hence if we can reduce tills we reduce
the time. Thus we have to use a larger body if we
require a smaller time. It is normal to assume that
some of the heavy material in interstellar space
w ill bo present in the form of grains. It would thus
be sensible to investigate the time taken by such

objects to fall. The same conditions as before apply
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on the remittance law, but now as the falling object is
larger we can use the simple expression (12) of the

previous chapter, namely

-2 JIt,KTMTf . a
3

All the other expressions are the same as in the case cf
the falling molecule and so the equation of motion

becomes

A '"T  -4-<6IT (refill",Tr

which is again of the form

41" -n f ISK =U (10)
dh-
with now
X A hr,kW(
3 MVV
11
n>:> Ur, (11)
' 5

Clearly the solution of (10) for the case
w ill once again bo

/[ . by , ~<Tvjisfern,

AP Trc
Once again the time is independent of the cloud density
(for the same physical reason). Inserting numerical

values for all the knovm symbols we obtain a time of
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fall of A 'ilo seconds or 2-7 years.

This solution is also valid only if

Again

fi 3 6-

Thus and the solution is valid.

This time again is rather long and is about
the same as the age of an avei’age galactic cluster and
hence cleaz'ly of little use for the foi-mation of planets
It is however significantly shorter than the time
required by the molecules to fall and does suggest that
if we had a large enough body the tine of fall could be
as close as we please to the free-fall time.

For the motion of these large bodies however
we cannot use the given expression (12) for the
resistance as the radius of the body might exceed the
mean free path of the gas and the proper resistance law
is now Stokes's law. For an investigation of the motion
of large bodies we thus have to start the investigation
again.

The resistance due to Stokes's law is given by

equation (15) of the last chapter and is
AN = ixn, (Ji L yji*nk T, .U



where L is the mean free path of the gas, arising
from the viscosity, and is given as in the last chapter by
/ 3n?
A-Va-T.A,

Hence the resistance becomes

.S "kl")),. U
A T cr, / (15)

<i?

The accelerating force due to gravity is the same as

usual and is

p - Un (r-h,n,rr*Y-

i
The equation of motion for these large bodies thus is

f 4/ SEQ@L I LETM, X -0
Ti Nx«S7 " ! 3

which is again of the same form

cly cif* Afi>- ~ O (14)
abh dtr '
with now the new values for OL and of
= ° - A
cX < £ 01V
(15)

The solution of equation (14-) will now be the same as

in the previous cases if 0/ " > , namely
Gg-: 07 - S-UJi »
fh u t (¥



Inserting all the numerical constants into this
expression we obtain
mj.icP
& f
A"/
and thus,with the cloud density of 0 we are
interested in,the time of fall becomes of the same
order as the free-fall time, namely one year when the

radius of the falling body becomes about V 7,

This above solution is valid only as long as

How R >i.-

P (fpiyjh,

and hence this gives ¢/*3~) f3 v;hile at the same time
indicates that we cannot increase /S/* further to
reduce the time or and the time is smaller
than the free-fall time.
Hence if the heavy material in a gas cloud is

concentrated into large bodies with a radius of about

'"Oc”Hthen these objectAs can fall to the centre of
the cloud of density 16 in about one year, which
is a very suitable time for the process we have in mind.
We do not vjish to enter at this stage into any

discussion about the formation of these large objects.



or of hov; tightly hound in the gas condensations they are.
These questions id.11 be investigated in chapter 4. Here
we are only interested in the formation of the heavy

core in a reasonable time, This we have succeeded in

doing.

The motion of growing grains

So far we have only considered objects with a
constant size and mass falling thi'ough the gas cloud.
If a falling object grows as it falls then clearly, in
view of what we liave already found, its time of fall
must be less than the time it would take to fall if it
moved with the constant initial small size. From this
point of view, having a growing particle is very
desirable in our theory. The only conceivable way in
which any falling particle could grov; is by accretion
of some of the surrounding material, namely gas and
dust grains. We do not enter into any discussion about
this mechanism of accretion. We postulate that if a
falling grain is involved in collision with another
grain, accretion can take place. Though no actual proof
is given, in the next chapter we shall discuss briefly
the possibility of this occurrence. It is also possible

(theoretically at least) for the growing particle to



accrete gas laoiecules. AB we only require the trans-
portation of the heavy elements we must postulate some
mechanism by which molecules of the heavy elements are
accreted while hydrogen ones are not. This second
method of accretion is included for academic interest
and for completeness. It is unlikely to be one which
occurs in nature as we can find no means by which only
the heavy element molecules would be accreted.

We shall consider briefly first the unlikely
method of accreting the heavy molecules. We have
already remarked tliat no interest exists for us if the
speed of translation greatly exceeds the thermal
velocity of the gas. The particle accretes the heavy
molecules under these conditions, and so the equation
of growth is equation (19) of the previous chapter,

namely

CTV = A0 4 risn o, [/} fir (16)

This proportionality constant ~ is the ratio of
heavy elements to gas molecules in the cloud. From the
values we have adopted this becomes /O

The accelerating force on this girowing particle

is the same as wc have always used, and is

fz ~ U Tt Cr- M, tty



where ¢#|_ is the mass of the moving particle.

The resistance however presents us with some
difficulty as we do not yet know whether to use Stokes's
law or one of the other resistance laws found by us for
smaller objects.

We know that the change over from Stokes's law
occurs at a radius of the order of the mean free path
of the gas. We also know from the comparison of these
laws which has already been carried out that if we use
the incorrect law we shall be overestimating the
resistance and so overestimating the time of fall.

With the cloud density of which we
are interested in, the mean free path of the gas is
roughly O . Hence if the radius of the body
exceeds this amount we should use Stokes's law.

Using the above equation (16), the equation of
growth, we see that the radius of the growing body

exceeds any given amount <57 after a time given by

Inserting numerical values for the density and radius
we are interested to see that after a time of about
6 110~ seconds the redius exceeds the mean free path

and we should use Stokes's law. Now the free-fall time.
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which is the minimum time of fall for such a cloud, has
been found and is about one year or seconds*

lienee we are outside the region of applicability of

Stokes’s law for , or of the
total time of fall. We shall thus use Stokes’s law for
the resistance throughout the motion, noting that for 0 2**

of the time we are overestimating the resistance*

We thus have the resistance due to Stokes’s law as

where is the coefficient of viscosity and is given
by one of the expressions of chapter 2. The most

accurate of these gives

® 64 T((r,"

The equation of motion thus becomes

d ’\Crir({'(oir ’\gﬂ;gH’\a,n"ir (17)

at’

where 6~\, and f*2|. ore the radius and mass of the

moi'ing particle at the given instant and are connected by

and of course

:Jir
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<S80 is the initial value of the radius of the moving
object and clearly for most of the time bD and

so we take
<r” /X U tr

Inserting this into equation (1?) it becomes

it if. f 6" !

which can clearly be i“ritten as

4- ~6 r 4 6N r1r =0 ~Ne)

where again X¥-and O are constants whose values are

3nn/A./"i,(\uJ A

A PL ( (19)

00 Tl
In oixier to obtain the time of fall we require a
solution of equation (15). A completely rigorous
solution is clearly x'athei- difficult to obtain.
However, from physical considerations, we would expect
the speed of the falling body to approximate to the
teCTiinal velocity of the notion after a short interval
of time. We thus take as a solution the limiting
velocity of the body at any instant to be its actual

speed. Hence we take trr A = 0 (
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as a solution.

Integrating this we obtain
S t

with the obvious initial conditions V-7 o0

The time of fall is thus c”iven by
= I A (21)

Nov inserting numerical values into this equation for
ail the terms and finding the time of fall down to a
radius of %“JO , with the density of /O

find that this time of fall is 3*3i/0 seconds, or / /
years.

In obtaining the above solution we have assumed
that the particle moves with its local limiting velocity
at any instant and so the rate of change of linear
momentum should be small. We can check to see if the
approximation is self consistent.

%
Using (20) fig f* becomes

Ui fv’- S’

And 80 the rate of change of linear momentum is

(ft



~71

Substitute for again from (20)
— AN
sL 1) =
dt f,'- 2T A

Our approximation is self consistent if this term is

small compared with the other terms of equation (13) or

if
/s 7 r
is small.
That is, if
- r )
is small compared with unity*®
2.
This has a maximum positive value when AT

and a maximum negative value at the greatest permissible
value of # , this second value being greater in
absolute terms for the *~ we have given above, and
this maximum value is about 6*"i) *

Thus for all the range

e

dk

< 1

and so our solution is justified® We note, however,
that our solution is not amply justified and if we

increase the density this would not be justified*
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Clearly we are on the border of justification as the time
is also very near the free-fall time and an increase in
density would also decrease this.

After falling for this period of 3 - 3 seconds,
the radius of the growing particle is given by

- = AA = no ort
ufv

Hence if a grain falls ttoough a cloud of gas
similar to the one we have in mind for a planetary
condensation, picking up heavy molecules as it collides
with them, then it will reach the centre of the cloud
in just over one year, the radius of the body by this
time being about /" centimetres. As we have already
stated, this method of transportation is included for
completeness only as we require rather unusual condi-
tions before it works, Wo require the vast majority of
the heavy elements in molecular form, with just enough
grains present to pick these up and transport them to
the centre. No obvious method exists by which the heavy
molecules could adhere to the grains while normal gas
molecules do not. We thus move on to the next method
of accretion, which is a method that could occur in

practice.



Grains Krowing by aocretinE other trains

In this method grains accrete other grains and
v/e have already postulated that all grains involved in
a collision adhere together aften-rards. h'e do not enter
into any discussion about the validity of the above
postulate. W do, however, point out that, as far as is
known, these interstellar grains are to be considered as
soft and wispy like snow flakes rather than hard pellets
like load shot. It is not impossible therefore for the
postulate to be valid.

We first show that the time for any growth due
to thermal collisions is fairly long so that any growth
of interest must be caused by the movement of the grain
tiirough other grains.

The equation of growth due to thermal motions

is equation (20) of the previous chapter, namely

Since all the grains, in view of the postulate, adhere
together, Xn/ , and the size after any given time
is given by
CTA JU,
Uf.

whore W is the thermal velocity of the grains and is
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given by w* where is the mass of a

grain.

Using numerical values, the time taken to grow
to /000 times its original size, that is A
would be 2-'7>//” seconds or nearly years. If
the thermal velocity of the grains decreases as the
grain size increases [“increase in the above time
of years would be further increased. We hope to
show that in about one year the grains will have reached
the condensation centre, and thus the above method of
growth can be ignored.

Hence if a grain originally, for some reason,
is larger than average, then it will fall through the
other grains and grow by this process. It can do this
for some time before groirth of the thermal types can be
compared with it. The same is clearly true for a fast
moving grain.

We have shown that the time of fall for an
average grain is in excess of /U years and so in the
pi'esent work these grains can be considered at rest.
Hence if we have one of these runaway grains we have in
offect a grain moving through stationary grains and so

the equation of growth is

(25)



as given by equation (18) of the last chapter.
As before, if the radius of the grain exceeds
about /O C/f the resistance law will be Stokes's law.

This m il be so when

A Mt H(X

With the density we have in mind * when % exceeds SiH/iJ%i\
the resistance law becomes Stokes's law. But the total
distance to be covered in the cloud radius, which is
about cix and thus Stokes's law doesnot strictly
apply for only about of the path. We can thus
take the resistance to be given by Stokes's law, thus
overestimating the time for o of its path.

Both the resistance and the accelerating force
are the same as in the previous method and so the

equation of motion becomes

d S'6h(2<Tv3c

dfe 3
How, as before, and ¢IL are the mass and radius cf
the falling particle, so 3 A, while we are

using X to denote its position from the outside of

the cloud and

(«)



The equation of motion thus becomes
J A q N fx.n.n.'"i
dir
wilich, cam clearly be written as
A — S5  coe~g T X. (24)
dir
if required, where 34 and ”* are constants given by
A '“¢ 1] H,n,M

We again require a solution of equation (24) and again
a rigorous solution of the equation as it stands is

rather difficult. We can however try taking the speed
of the particle at any instant to be approximately its

limiting velocity and so we try as a solution

r

A C*o A X X
or A ir 71 \ (26)
3C w¥= 0 oc (““a~<y
-2
This is
A _ s: _di-
Integrating v. - X

S .t =y
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We cannot take the limits of integration as x ~0
and since both these points are points whore the
approdmation has singularities} at ocs ¢ the body
radius is zero and at -r-Co the gravitational field is

zero.'" We thus take the end points and X » A

This gives

s.b =
And so our approximation gives a time of

6 f A (2?)

With the density of /0 specified by us and the
other rumorical values inserted wo obtain a time of fall
0; Y years.

The size of the object after ttds time is
given by equation (25) as

CI, =
afu

Hence all that we have to do now is to justify using
the limiting velocity approximation.

For this purpose we shall use the full
expressions, not those derived on substituting 1T~ and *
The lim iting velocity is thus given by

i o (26)
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We are attempting to show that the term @ (iHvx)

is small.

4«.rA ~ f>1

on substituting for #Hy~ and bpcC

[ (m,h) =
db 47-5'6/2ft"
Substitute for X from (28)
d ( X) = f jc
Ui 54!

ah

« Thus

This term has to bo small compared with the other terms

of equation (24) before we can justify our solution.

Hence d less than

A

U fCr
72. 64.

The maximum positive value of this

'bx?C'fo~*" or

S | (29)

quantity, i.e. for

the region X| f is given when x " The
value of the above expression (29) is then given as
about O'IC We have used the formula given for to
give a value of U-*Us/tT"* , which agrees well with
tabulated values.

The maximum absolute value of this quantity
d occurs at the maximum valuepermissible



for 3C , which in tliis case is /70 as that is
''hare we have te3?iainated oui' investigation. With this
value for )( , the value of the expression is / 9 and
is thus close to unity. 3C occuz's to the fourth power
in the expression so wo can conclude that the approxima-
tion holds good up to very nearly /to and so the
time given by us in expression (27) is a fairly accurate
cstin3te of the time of fall.

She term we have boen neglecting is the tens

oi . It is now interesting to compare the two
components of this term, x and X . Now
vIL =
w hile
M T Dc('*2»0 -Sx* X
Hi ic

and X is given by equation (28)* So

l*l/\ A tV (X _/\SA

CVi'O_'A IN - I
ic T * A
which is a diaensionless quantity as we expect. For

small X wo see that x is slightly greater than m”x



at the ratio is 0 and then the ratio is
negative, but with grater than oc and increasing
until the ratio becomes infinite at ,

Thus through most of the range the change in
mass exceeds the change in speed.

We can also give one other indication that for
most of the range the terminal velocity approximation
is good.

If we allow the velocity to differ by an enount 6
fz'ora the terminal velocity, then

JO = 5 6

k

Substitute this into the equation (24)

4 Cm”dc) - Cidj-jc) > Voc/T
db !

"Vac A
dt

and so a negative change in the rate of change of
linear momentum is introduced to compensate for the
too iiigh velocity. The reverse will be true if the
velocity is too low. Hence there will always be this
compensation unless the velocity is close to the

terminal velocity.

We can thus conclude that if a grain falls

through one of our given condensations, accreting all
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other grains in its path, then it can reach the centre
of this condensation in about 7 years, its size then
being about 100 erf » It is thus possible to form a core
of heavy material at the centre of a condensation just
by allowing the grains to fall in the above way.

m'e can thus summarize the cliapter as follows.
The heavy material in a cloud must be in a suitable form
before it can be transported to the centre of a conden-
sation in a suitable time. It can be as large grains,
or clumps of material, with a radius of about 70 ctt *
this then just falls under gravity. Alternatively the
grains can grow as they fall, the final size of these
grains being about /OO ¢cm. The method of growth being
accretion of other go”alns, or in theory at least heavy
molecules.

In all the above cases the time of fall is of
the order of one year, certainly less than /O years.
The acceleration remains fairly small throughout and so
the velocity of these grains reaching the centre of the
condensation is fairly close to the average velocity fee
the motion. This average velocity could not be higher
than f'"«(allowing a time of fall of one
yeai". Using the time of #* years found above, this

speed is less than * and is thus not so



high as to cav.se overheating of the core, or to cause
fragmentation of the core, with possible escape. We
must note however that this does not remove all the
difficulties about the temperature of the earth as this
core still has to contract by an appreciable amount
before a planet is formed.

Hence, if condensations are formed out of
floccules as postulated by McCrea’_‘SJ:r of mass to
and density /O-'éS'Akc, then a core of heavy material
can be formed in a fairly short time using one of the
methods described above.

If at some subsequent epoch one of these
condensations dips inside what is usually called the
Roche lim it, (see Jeans (20)) of which more will be
said later, then the outer hydrogen layers would be
swept away by the sun's tidal action. As a result we
have a small mass of about 102t8 composed mainly of
the heavier elements. This can now contract to give a
planet. For the density of /0" M/cCthis Roche lim it
comes at about the Asteroidal belt. Hence the observed
difference between major and terrestrial planets agrees

i/ith what we obtain from this theory.
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OHAFTER 4

About the large sized grains

The methods we have described for the generation
of the heavy core at the centre of the gas cloud would
appear to be the only two possible ways of forming this
core in a reasonable time. That is to say, the core
could be formed either by bodies falling and groifing as
they fall, or the condensation could contain a few large
bodies, or clumps, which t/ould then fall inwards. The
problem of the growing body was discussed in the last
chapter, where we actually showed as well that a clump
must be about /OO centimetres across before it would
fall inwards in a time of about one year. In this
chapter we shall be interested in these large bodies,
or clumps. There are two problems concerning these
which must be discussed. One is obvious, and is the
formation of such bodies. Just to postulate their
existence would be unreasonable and so we must be able
to produce these clumps before the method of generating
a core using these becomes .justified. Not only must we
form these clumps, they must also be formed in a
condensation, and carried with the condensation after
formation. It is no good to form them if immediately

they leave the gas condensation, or indeed if they



leave the condensation at any subsequent time until the
heavy core is formed. Vo aunt thus investigate the
probability of these clumps escaping from the condensa-
tion after formation as well as show that formation can
take place.

These t%o problems will be tackled in turn,
taking the formation problem first since clearly the
other problem has no meaning if the clumps have not been

formed.

The formation problem

In his paper "The origin of the solar system"
Professor McCrea points out that when the floccules
are initially captured by the sun they will be
distributed in a roughly spherical volume with the sun
as centre. About ten thousand years later these
floccules will have grown by colliding with each other
until they become condensations with a mass similar to
the major planets and w ill have flattened into the-
invariable plane defined by the angular momentum of the
system. Thus at the end of this period the individual
condensations, out of which the planets are to be
formed, are available; hence the large grains, or

clumps, should also now be available.



Before the floccules were captured by the sun
they were essentially part of a diffuse cloud of gas and
this does not appear to be an ideal place for The
formation of the required objects. Thus there remains
only this period, oi 10" yearsduration, during which
the floccules are grov/ing into condensations and
settling into the invariable plane of the angular
momentum in which the formation of the clumps could
conceivably take place.

The only way in which these clumps could be
formed under the above conditions is by accretion. This
process could come about in several ways. A grain could
accrete molecules of the heavy elements, collisions
being caused by the thermal motions of the molecules.

A grain could also grov/ by accretion of other grains.
In this case the required collisions could be caused
either by the thermal notions of the t¢rains or by the
growing grain novinn through the other grains due to it
possessing some velocity.

All of these possibilities will be investigated
in turn. Again we do not enter into any discussion
about the process by which the grains adhere togdber on
collision. As in the previous chapter we postulate

that they do.
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I. Accretion due to colllBioas between a grain

and molecules of the heav?; elements.

It was pointed out in the last chapter how
unlikely it was foi* a grain to move with a speed greater
than the thermal velocity of the gas aolecules. It is
oven more unlikely an occurrence in the present context
since the accelerating forces due to «gravity must be
less foi* the floccules than for the condensations. W
thus consider only accretion caused by the thermal
collisions of the haavjr element molecules with grains.
(Collision with all types of molecules obviously occur
but we only allow the heavy element molecules to adhere
and so are only interested in these.) W have already
worked out the equation of growth under such conditions

in chapter 2, enuation (20), namely

where w is the thermal velocity of the molecules
involved and n, 1is the density of these molecules,
fuK Clearly being the proportion by weight of heavy
elements to gas which has already been chosen as i:(00 «
McCrea has chosen a density of for

the density of the floccules and hence
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lit_e r
\7

The thermal velocity =B 2 as has bean
indicated before.
Introducing all these numerical values into

equation (1) wo obtain

cn = 3 94/J a c/Y

which gives us the radius of the clump so formed after
a time seconds.

Nw the actual maximum time available for
grov?th is / U” years and thus after this period of

time the grain can grow into a clump with a radius of
i~/0" centimetres

This is rather larger than the size required
before the time of fall to the centre of a condensation
becomes about one year andhence there appears to bo
no difficulty in obtainingclumps with the required
radius of /©0cf( or so.

In practice the clumps would probably not grow
to the above size of since molecules might not
adhere so easily at such sizes and material could also
be running short, but it certainly appears possible to
produce clumps as required for the formation of a
core in the last chapter.

If we assume this adhering process to be



FF

active all the time, then groiftb of all f*ains in
interstellar space would occur. It would be satisfying
if the sise of the grains so produced did not conflict
with the observed sise of grains. From Allen”19j we

find that an average interstellar cloud has a density

around 1> ifO Introducing this value into the
above equation (1) and allowing a time of / years
for the (growth we obtain a radius of / for the

resulting object. This is about the estimated radius of
interstellar grains and hence even if the adhering
process had been active since the formation of inter-
stellar clouds the result would not be grains larger
than what is observed.

Hence the process of growth by collisions of
heavy molecules with grains can give us the required
size for our clumps, while at the same time not producing
too large objects in interstellar space if the process

was active for the whole of the past history of a cloud*®

II. Accretion of other Ryains due to

thermal collisions.

The equation of growth for this typo of

collision will clearly be the same as equation (1) above

bh'fx.
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where in this case vy, 1is the thermal velocity of the
rrains and the mass of grains in a unit
volume of cloud, * once again being: the ratio of
grain to gas, which is 7 '>00 |,

With the new values for the thermal velocity

given by % where Mo is the mass of a

V

grain, the equation of grovrfch becomes on inserting

numerical values,

G~ = 17 ilo (2)

As before the total time available is /O”" years and so
the maximum size wliich a clump can grow to using tliis
method is centimetres in radius.

Thus this method does not give clumps of the
required x'adius, though the radius found is sufficiently
close to the required value for this method not to be
completely useless. A slightly higher floccule density
or a floccule containing more grains than average could
render this method useful. If the floccule, for some
reason, was formed before this period of years then
the increased time could also make this method satisfac-
tory.

If this method of growth had been in operation



trircughout the history of the galaxy, then introducing
the interstellar cloud density and the new value fox'
the time into the above ecuation gives a body with a
radius of /O c¢/t . Thus this process would certainly
not pi'odi'ice intei'stellar grains with a radius greater
than what is observed today and so in this respect is

very satisfactory.

ITI. Accretion of other grains by a grain

movinK through them.

The equation of growth for this type of

accretion is equation (19) of chapter 2, namely

3~C VU JC

Here yx. as usual is the proportion of grains to gas.
X is the probability that grains adhere on collision
and as we have postulated that they all adhere this is /

ith the usual value for the floccule density we obtain

) -10
<r=s /o X

(3)

where X is the distance covered by this grain.
Hence in order to produce a clump comparable in
Iv-

size to what we require, X must be about ««ilo crt,

Thus if our grain is to grow into a clump having
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a radius large enough to fall as described in the last
chapter then it 1“ust move through the other grains for
the above distance during the period of time available.

During the period now under discussion the
floccules are continually colliding together and groining.
Their final mass is about /O A'being a condensation
mass, while initially the mass is that of one floccule,
namely , Thus a convenient mean mass for this
stage of the proceedings is about 3. /o , The
radius of a cloudlet having this mass and the prescribed
floccule density is in round numbers.

Let us then first find the time required by a
grain to fall to the centre of such a mean condensation
in much the same way as investigated for the final
condensation in the last chapter. The time of fall,

taken from equation ( of the last chapter, is

where

and

5- A iT'Cr
1> f,
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all the notation being am previously defined and 7o
being the radius of the condensation*®

Inserting all the numerical values into
equation (4) with the usual density of ( and

To 2 the time of moving is given as
seconds, or /O years. Thus in /0" years a clump can
move through many such mean condensations and can quite
easily reach the given size of about ,

With this type of motion there is no connection
with conditions existing in interstellar space and hence
this method could not possibly produce any effects that
would be in disagreement with the size of interstellar

grains *

We see that of the three methods available for
the growth of clumps by accretion in floccules, one of
them, the one involving growth due to the thermal
motions of the grain, does not give the required size
for a clump. The other two,accretion by the thermal
collision of the heavy element molecules and accretion
due to a grain moving: through other grains, both give
satisfactory results. In both cases the required size
is obtained without any difficulty and indeed it appears

that larger sizes could be produced if required. The
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first method also shows that if this process had been
operating for all time, the size of the resulting
interstellar grain would be no larger than present day
interstellar grains. The main weakness of this method

is that no apparent vjay exists in which the heavy element
molecules could adhere to the grain on collision.

The other method requires the adhering of
grains as they collide. Nothing has been said so far
about the possibility of this happening, beyond stating
that these grains are more similar to snow flakes than
lead shot, and so accretion is not impossible. In a
discussion at the Royal Astronomical Society £21J on the
origin and constitution of the planets, during which a
brief outline of the above work was presented by
Professor McCrea, Professor Bernal expressed the opinion
that certain types of grain could indeed act in the way
postulated by us. Hence the assumption that grains
adhere to other grains on collision, which is one of the
major assumptions of the theory, does not seem unrealistic

Having thus concluded that it is quite possible
to produce the clumps required for the core formation we
now turn our attention to the second problem concerning

these objects.
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mPossible escape of clumpB.

If two clouds of gas containing such clumps
as described above are involved in a collision, as they
must if condensations are to be formed, there is a
possibility that those clumps will retain their previous
velocities and in this way travel through the gas, thus
escaping from the condensation. If this occurs then
those clumps are lost from the condensation and cannot
take any part in the formation of the core and so
nothing is achieved in foiTiing them. Hence before the
method of core formation involving clumps becomes useful
we must show that those do not escape from the surroundir”
gas as the condensations collide.

Let the clumps be given a speed relative
to the gas by a collision. Clearly the bigger the value
of AJL 1 the easier escape will be. We thus take the
initial value of the speed /6C to be greater than the
thermal velocity of the resisting gas.

How tbs resistance offered by a gas to an
object moving through it under the above conditions
has been found by us in chapter 2 and is given by

equation (5) of that chapter as
- I Ci+e) h.Mi,
h (3)



If, as in tills case, the object is much larger than a
gas molecule and all collisions are assumed elastic

then the above equation reduces to

q? = TiMm, cr"T- u-A (6)

and the deceleration caused by this force in the clump

is thus
TiC At

How in practice the gravitational field of a condensation
w ill tend to prevent escape as well. We shall however
ignore gravity and hence our conclusion will be stronger
if we can chow that no escape is possible. Thus the

equation of motion of a clump can be written as
(Ur 0-'"*-

or

u-cKr iK' cr' (7)
Uv

where u<' is the constant given hy

Hu

or, as “t !

cV r & ri, At (6)



Integrating equation (7) v? obtain

The initial conditions are that at » =0 the speed is

and hence the constant is A and

/kT} - _ 6 /r

or
U, 9)

The equation for the resistance we have used is only
correct for large velocities. At some velocity, \/ say,
(which as we shall see we do not require a numerical
value for) the resistance law will change to the well
known Stokes law which is of the form A where *
is a constant whose value can he found from chapter 2
if required. If we assume a smooth change over from ore

law to the other, then at ,
c/  \Ir - ANV (10)
For motion below this speed \/ , again ignoring gravity

Lr diT _ -fS O

Integrating

U- = |/ (11)
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where now the initial speed is \/
Thus the speed of the clump becomes zero after
travelling a distance
n y
'13

or, in view of equation (10)

How the distance travelled before the speed
became less than V § from equation(9), is ,

given by

'm- _ ' y

Hence the total distance which this clump must travel

before coming to rest is 'diich is
4 | 1 + (12)

If this quantity is less than the radius of a floccule,
then the clumps cannot possibly escape either from a
floccule, or a condensation greater than a floccule.
Let us now insert numerical values for the
case that is of interest to us.
The random speed of a floccule as given by
McCrea is about a kilometre a second, or *

The collision speed of two floccules will not thus be
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greater than twice this. The maximum initial speed
that the clumps can have relative to the gas Is thus
P,i.l0*oh!ioc. . (This is when one floccule is
completely reversed in motion by the collision and is
obviously an overestimate.) As the proof will be more
convincing if we overestimate the speed rather than
imderestinate we shall take the initial speed of the
clumps relative to the gasto be A0

We are interested in the possibility of escape
during the period when thefloccules are growing by
collisions into condensations and, as already painted
out, the mean mass for this period is . Again
for the reason that we prefer to use unfavourable
conditions rather tlian favourable ones, we shall take
the condensation to be as small as possible, namely one

floccule mass and possessing the usual floccule density

of i/OAON/r¢c ¢ Hence the radius of a floccule is
q ilU CM and as given above must be less
than this.

The actual sise of the clumps required by us
is slightly less than 100 ctX , but again as large ones
can escape easier we shall use /O*cM as the clump
radius. This alloifs our results to apply for the objects

produced in the other methods of forming a core, though
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it seems unlikely that these would escape as they are
not formed until after the planetary condensation is
formed and thus there would be no collisions between
condensations.
fthere now only remains V to be specified.
In reality this is likely to be in the region of the
mean thermal velocity, hence about I0"Clyjstc »
Hm<;ever we shall take it to be only I C'y/i-tc , a very
unfavourable speed as far as equation (12) is concerned.
Inserting all the numerical values into equation

(12) we find that the clump must travel a distance

J

before it is brought to rest.

But this is only one-third of the radius of a
floccule and so the clump, under very unfavourable
conditions, cannot escape from a condensation. Hence
there is strong evidence to conclude that they do not
actually escape.

Throughout this discussion we laave ignored
gravitational effects. If wo take account of these then
we do not have to reduce the speed of the clump to zero,
only reduce it until it is less tlian the escape velocity

from the condensation. The escape velocity from a
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spherical body is given roughly by

) VEATAN

where Af is the mass andT” the radius of the body.
For a floccule, this gives an escape velocity as
If the clump has speed below this then it cannot escape*

Hence, as we have actually succeeded in
reducing the speed to zero we can conclude that the
clumps mentioned above will not escape from the
surrounding gas when tv;o condensations collide.

On the face of it this is a very surprising
x'osult, that tenuous gas like we have in our floccules
can actually bring to rest a body like a clump which
weighs about a hundredweight. We can however see very
simply that this is a sensible result by considering
the mass of the material v/liiich a clump has to push out
of the way to escape. This is the mass inside a
cylinder of radius equal to the clump radius, and

length equal to the floccule length, which is

Yt
. 6
The mass of a clump is /0

And hence the clump has to remove a mass equal to about
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100 times its olm mass before any escape is possible*
Again in this argument we are ignoring the gravitational
effects.

Hence, with absolute conviction, we can conclude
that clumps do not escape from the condensations in any

collision*

A speculative note on comets and meteorites

It would be interesting to obtain an estimate
of the size which a clump must have before any
possibility of escape exists* Again using adverse

conditions we take the taass of the condensation to be
A A

20 ) ) %
/10 S and the radius is thus 5*6h./o err ™ 1If
escape is possible, equation (12) must not give a

value less than S'i#0*ar'r and so

3-AW" < Ay Xc

Let us now take a more rational value for V , hamely

IDAC SA then
/0

if escape is to be possible. But

o/ -  2A,"I
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and hence we ixave I™cely

Thus before a clump can possibly escape from
a condensation it must have a radius of about / R
If it is to escape, its velocity must exceed the escape
velocity given as / when it reaches the outer

layers, hence equation (9) gives

ir z, U tyx

as / N

This means that

which again requires a radius of about S . A
clump of such radius would have a mass of about
These clumps would thus be greater than the meteorites#

The average mass of comets, calculated from

ao /K /'y -0-4 tHo

where * is its mass and <”o its absolute magnitude
appear to be about /0 * and thus is slightly
larger than those escaped clumps#

It is tempting however to suggest that these
clumps, when they manage to escape, are the origin of

comets and meteorites, as these escaped clumps would



presumably have rather eccentric orbits about the sun#
Comets could be formed when a few of them collide
together and adhere, while meteorites (in shoifers)
could be formed when collision results in fragmentation#
Thus, in tliis chapter we have demonstrated how
large grains or clumps could be formed in the gas
floccules in the period when they are growing into
condensations# It was further shown that these methods
would not give rise to abnormally large grains in
interstellar space, even if the growing process had been
operative for the derivation of the galaxy# We have
also concluded that it was impossible for these clumps
to escape from the condensation when this condensation
is involved in a collision# A suggestion is made that
somewhat larger clumps could escape and form the comets

and meteorites of the solar system#



CHAPJER 5

The dispersal of a condensation

Ac is well knoivnh there is a critical distance 4.
from the sun within which a condensation with a given
density f* cannot be in equilibrium due to the tidal
action of the sun. This is often called Roche's lim it
and has been given by Jeans in 'Astronomy and Cosmogony'

jj20j as approximately

" (1)

where fI is the mass of the sun.

Jeans further shows that if this fluid
condensation, assumed incompressible, is in equilibrium
it must be ellipsoidal in shape# If X , 6 and C
denote the semi-ax”s of the critical ellipsoid, that is
the ellipsoid when the fluid is at the critical Roche

limit, then we have that
Ou = A and 6 = u22lr

where ao6(2 j
What we require is some expression for the

dispersal time of a condensation if it cannot hold

together# This we could do fairly easily if we could

write down the gravitational attraction of such an
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ellipsoid on a particle on its outer surface. Unfor-
tunately this attraction is given by a very complicated
expression for an ellipsoid, and involves ellip tic
integrals and the associated elliptic functions as can
be seen in McMillan's 'Theory of the Potential'

A sphere is the only regular volume that has a simple
expression for the gpc*avitational attraction and
consequently we will estimate the dispersal time for
the sphere indicating that a similar result holds for
an ellipse if we chose the sphere properly*®

Consider a spherical cloud of gas, with radius

A and density f# moving in a circular orbit around
the sun, the radius of the orbit being * Let the
angular velocity of the cloud about the sun be and

the angular velocity of the cloud about its centre be
A2, both being in the same plane and in the same

direction®

The condition that the whole of the cloud

(that is the centre of gravity) moves in a circular
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orbit about the sun is clearly

o "0 (2)

where & % /7? is the attraction per unit mass
caused by the sun.

Consider the outermost particle of the system.
If the condensation is not to disperse then this must
keep its position relative to the cloud centre and
hence it must move, at this instant, around the sun,
getting neither closer nor further away.

Now the centrifugal force on this particle is

M/Rwhere Ijr B its speed.

But clearly ir and so the

centrifugal force is

The attractive force t(Evards the sun is notf

M tl

where is the mass of the condensation and is

clearly given by

tt

|
S
~
(]
>
>

Hence A
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In the conditions investigated by Roche, the condensa-
tion alv/ays is 'face on' to the sun and hence if we
apply the same conditions, 00, =td*,- * (say) and (5)

becomes

(R+va)v/\ /'0'-
But, fx’om equation (2)
00~ =u A
A
and hence, if the outermost particle always keeps its

position, then the following condition must be

satisfied

Gg. tiQ 0.1Y
giving
(4)
712,
If we now make the usual assumption, also made
by Roche, that the distance from the condensation to
the sun exceeds the radius of the condensation by a

large factor, or % then equation (4)

sim plifies to

- (3)
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We have already noted that [7- gil » and so (5)
gives

... °uUp = (6)

If we consider a particle advanced by 71/2- from the
one just considered, that is the one following the came
path around the sun as the centre of the cloud, then
the foi'cos along the line from sun to particle are the

same as for the centre, thus

= 6rJtO

In the direction of the centre of the cloud we

have a gravitational force of &M and acentri-
ro®
fugal force In opposition to this of

" = arm

Hence, the force towards the centre of the condensation is

6-IH * ¢ 'fh

But, forthis cloud equation (5) holdsand so

05 nr ATI? #

The above equation thus becomes

Total force towards centre ~ 2 Q#+t"

hro”
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This force is always positive and v/ill always exist if
the conditions are as described*

If the condensation is incompressible, then
this force will set up pressures inside the condensation
which w ill disturb the equilibrium of the outer particle
and so this will be pushed out and the condensation in
fact dispersed® This is what we expect to happen since
if we investigate the density given by equation (6) for
a condensation at a distance from the sun, we see
that they violate the condition of Roche given by
equation (1).

If hmmver the condensation is compressible,
then the parts on which the force is acting can move
inwards causing an increase in the density of the cloud.
As this density increases, it becomes more incompressible.
Let us now find what density this cloud would have if we
allow it to condense until it is the same shape as the
critical ellipsoid found by Roche. Clearly as the
outermost particle (and a similar argument holds for the
innermost) keep their position (we have defined condi-
tions so that they do) then the majoi" axis of the
ellipsoid is equal to the diameter of the sphere, or a z

Now the volume of the ellipsoid is "r,o("c - 3
a

But for the critical ellipsoid ¢ :- A6 Tr and so the



volume of the ellipsoid is 0 ch
a

The volume of the spherical cloud xejy Ve * =
/ A

A

; \
or * 1t fo ’ ) * Hence, the ratio of the densities
3

of the two volumes is

£, J. ,
But we have found the density of the sphere, ¥ iu
equation (6), as 74

Hence, the density of the ellipsoid is

or the critical distance at which this ellipsoid should

be is

AL (G WYVI-6S-) rtoj""3 @)

Thus the agreement is remarkably good, with the critical
distance found in equation (1).

Hence, we conclude that if the spherical cloud
with density and position satisfying equation (5) is
incompressible it will disperse as it does not satisfy
Roche's lim it, but if it is compressible (and thus not
covered by Roche's case) it ivill condense until it has

a similar density to Roche's critical case when it has
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the same shape* If by now the gas has become incompress-
ible we have equilibrium as given by Roche, if not it
will proceed to condense*®

It thus appears that if we investigate the
dispersal of such a gas cloud the results so obtained
will give a fair indication of what happens in the more
complex ellipsoidal case* We thus proceed to investigate
the dispersal of this spherical cloud*

Consider then such a spherical cloud of radius

with a density that does not satisfy the condition

of equation (6) at a distance'"” . Then it must
disperse* Let the centre of this cloud move in a
circular orbit with angular velocity about the sun*
Now, as the condensation cannot be in equilibrium, if
the outermost particle is not to be thrown outwards it
must move slower than the centre of the cloud. Let its
angular velocity be about the sun. (NOT about the
cloud centre as before.)

The cloud centre follows a circular path around

the sun and so

For the outermost particle
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as we also have this particle moving in a smaller circle.
After an interval of time (say) the angle
swept out by the radius from the sun to the centre of
the cloud is U) L while the corresponding quantity fbr
the particle Is C
Thus, after this interval of time the angle
of separation (at the sun) of these two particles is

given by 0 , where

[0 ( - &

Where by |©j wo mean that the signs are
chosen so that a positive angle is given*®

The time taken for a displacement G is thus

" (11)

again with the signs chosen so that we have a positive
time. This will be tme as long as @ is small enough
for the cloud to be still fairly close to a sphere, and
the attraction equations thus being unaltered.
Substituting the values for and from

equations (9) and (10) into equation (11) we obtain

W»( a'''- rp
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Rationalising the denominator in the usual manner,

LAo-A©f J - To " a g

If again we assume that ~ A~ or that the distance
of the condensation from the sun greatly exceeds the

condensation radius, the above equation sim plifies to

n -
As we expect, vie see that the dispersal time becomes

infinite when the condition

Nz~ 7 - - 0

is satisfied, which was the condition of non-dispersal
we found for a compressible sphere.

If dispersal occurs, then T3 since
the gxavitational effects of the cloud are then smaller

than the sun's. Thus, if we take account of the signs,
y - A6"Tro |
oo — Y
In general this equation (15) will be the best

we can obtain, but in certain cases we can sim plify tliis

expression further.
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If rc

clearly reduces to 2.'"K 70 W0

The expression for the dispersal time then becomes

N N R R PR

If Cotrp
then , fi ./ Y
reduces to il N .

and the time in equation (15) becomes

A ¢ 7o
N ' AeMTo

In all these expressions for the dispersal

(15)

time we observe that # varies linearly with the
displacement 0 . There are no governing factors on
the value of 0 beyond the constraint that it must be
small. A satisfactory choice of value for this angle
would be since then the displacement in

position of the particle is proportional to the position
of the particle relative to the centre. We must however
stress that at this point we have introduced a completely

arbitrary quantity into the theory; we could just as



well take 0 % , Or . Hence from nmf on

the time can only be an oxyder of magnitude estimate only.

With this value for 0 equations (13), (14) and' (15)

for the time become

_A3 /7 (17)

We now have to apply these equations to physical
situations, with numerical values. We shall do this
for two situations. We %fill take a cloud similar to
the one already discussed with a mass f03t>9’\1and a
density of JO * A/&C * We shall find the dispersal
time for various distances from the sun, or varying®"”"
We shall also take a cloud with the given mass of "0
at a fixed distance from the sun and compute the
dispersal time for various densities (or various

since )e

3 '
Let us initially take the first case

; J io A
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The condition is oatisfiea for

7? < or about 6

Hence the inequality is satisfied for any cloud within
the orbit of Jupiter, and as this is the only region of

interest to us we can use the simplified equation (1?)

triToughout, giving

3ro”HO .

Introducing all the necessary parameters, this

or A ANcors . "9)

The results of the numerical calculations for different
values of are most easily expressed in tabular form.
The actual values for we have taken are fairly close
to the mean orbital radii of the terrestrial planets,
plus one or two other convenient points. In the second
column we indicate which planet the value of taken

corresponds to.
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DISTANCE PLANET DISPERSAL TIME

6 X10"" cm MERCURY .027 years

10™M cm VENUS .058 years

1.5 X lo'"*cm EARTH 11 years

2.5 X MRS .23 years

4 \ 10"cem ASTEROIDS 84  years

5 X 10" em — 5.1 years
5.25 X 10" c¢m o0

TABitE 1. 5:h® variation of dispersal time with

orbital radius ~

We shall leave any discussion of the above
results until after vie have completed the second
investigation»

In this case vie take a cloud of fixed mass
1030 to be at a constant distance from the sun, the
dispersal time is then found for various densities.
Since most of us are moXe attached to the earth than any
other planet we shall take the constant distance to be
that of the earth's orbit, thus

Now, the period of rotation of the earth about

the sun is, by definition, one year. Hence the angular

velocity of any body rotating along the sun's orbit must
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be A i raciians/year. Hence,

or j= (20)
a7l

Thus we can introduce this into any of the expressions
for the time, and the units will then be years. For

the case under consideration

Hence h oT-TiMo" for all o > xla'" ctr

Now, for any density that is of any interest to us,
must be greater than the above value, and so once again
the dispersal time is given by equation (17)» now

sim plified further by the introduction of
c /r/" /2.5
giving
r, C

Introducing the numerical values chosen by us for the

quantities into this expression, we obtain

A —iilA d i-—- . 3"  years.

The results of this numerical calculation are



given in Table 2. In columns 2 and 5 we show the value
of the density and number density of a cloud corres-
ponding to the ladius to given in column 1. The
variation in time with becomes rather rapid as

tends to the solution of
3 AN —0
For this reason values for more frequent intervals in

have been considered near this solution than in a

rangts further away.

Radius Density Mo.Density time
To ¢ CM") i/ d'"Micen fl ( rtollcc) C(years)
2 A IOE 5 X 3.0 9 X10 A1
10 2.4 410" 7.2 X IOE A1
9 lo" 5.5 X10'” 10" .46
8.5 Y10¢ 5.9 X10'A 1.17 X 10'3 1.28
8.4 %10" 4.05 Vle’® 1.23 10 2.07
8.3 X10" 4.17 X10'* 1.265 X 10 6.3
8.26 ~ lo" 4.24 X100 1.285 X lo'* 54 .4
8.257 > 10« 4.242 XI10"” 1.29 X 10'3 150
8.255 Xlo" 4.244 X 10" 1.29 X 10'3 00

TABLE 2. Showing the variation of the dispersal time

with cloud density.
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Ke observe that the first two values given for the
dispersal time in the above table are exactly the same*
From consideration of the formula we are using, the

reason for this is obvious*

We have
N
3N~ Tl — 720 A
For small densities * and so this

expression reduces to

- T A

which is independent of the parameter , hence the
constant time*®

Physically the reason is even more obvious*
When the density of the cloud is small the gravitational
field of the cloud is too weak to have cmy effect on the
dispersal time. The dispersal time in this case is just
the time taken by a collection of particles, with no
interaction, orbiting about the sun to separate out*

In both the above tables, the last row with a
dispersal time of aF is obviously the conditions when
the critical density or distance has been reached, and

this corresponds to a solution of
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in the first table being the unlcnovim while in the
second case /'Q is the unknown¥*

From the two tables given we can clearly draw
some general conclusions* If the condition connecting
the density and position of a condensation is violated
then the time taken by such a condensation to disperse
is extremely small and is smaller than the orbital
period of the condensation, even if we only violate the
given condition by a small amount. We can thus in
general say that a condensation will either hold
together, not dispersing at all, or disperse in a very
short period of time*

What we have actually found above is the time
required for one particle at a distance from the
centre of a condensation to be left belxind by a further
distance FQ , What we require is the time taken for
a significant amount of material to be displaced. From

the formula for the dispersal time, (1?)
L . \% A

37/(5 -

on uGing 1/ = ~ ! .
Y%

We see that the dispersal time is independent

of the value of "o taken and hence, once the outer
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particle has been removed a small amount, the next one
in will also bo removed* Hence in the given time we
actually have a stream of particles being removed and
thus it can be taken as an estimate of the time required

for some of the material to be removed.

Thus if a condensation was considered to move
in a circular orbit, violating the given density-
distance condition, a significant amount of material
would be removed in the times indicated in the tables.
These are all less than one year for a density in the
region of /OHAA/I;C and so for a circular orbit
dispersal takes place in a relatively short time.

Clearly the problem of a condensation moving
in a circular orbit has no real physical significance
as, if any tendency towards dispersal existed then the
condensation could not be formed in such a position in
the first place. What we have to consider is a
condensation orbiting about the sun on some orbit, with
this orbit dipping inside the critical distance from
time to time. Now the dispersal is rather more complex.
The tendency to disperse must still be present when the
condensation is inside the critical distance, but now

when the condensation returns outside®any dispei'sal
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effects may be repaired before the condensation dips
inside the critical distance again.

We are unable to give a rigorous proof that
this is not so, but will endeavour to show this
qualitatively. Let us, again for the sake of choosing
some value, consider a condensation moving in such a
way that when it is inside the critical distance its
mean separation from the sun is roughly similar to the
earth's orbital distance. Then from the tabl;As we see
that if its density is roughly similar to K I
dispersal of amount equivalent to the condensation
radius will be set up in about 1/10 year. Hence the
furthest particle is now farther away ITom the centre
by a factor v/I- with a corresponding weakening of the
gravitational field of the condensation. Hence
repairing this damage could only tike place where the
sun's tidal action was weakened by more than the
corresponding amount, or if the orbit went outside the
critical distance by a distance times this distance
Hence part of this orbit must lie outside Jupiter's
orbit before.any repair can talce place. Such an orbit
is likely to spend a time greater than 1/10 year inside
the critical distance, say about year (Jupiter's
orbital period is 10 years). But in this time five

times the damage we have allowed for would be caused and
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hence to repair it, by the same argument as above, we
need an orbit with a part outside times the
critical distance, which now takes us outside Uranus'
orbit, which has an orbital period of 84 years.

Hence, though complete dispersal might not t*ike
place after the condensation has dipped inside the
critical distance once, we appear to have reasons for
concluding that any dispersal so caused will not be
repaired while the condensation is outside the critical
distance, and so more dispersal takes place when the
condensation is next inside the critical distance, with
complete dispersion being the final result.

From a common sense point of view, total
dispersion mifecht be said to have taken place when the
outermost particle has been displaced by about 10
condensation radii. QOur equations for the dispersal
cleaily do not hold for such conditions as the shape
differs significantly from a sphere, but clearly the
time will be less than 10 times the time required for
one radii dispersal as the gravitational field of the
condensation gets weaker and weaker. From what we have
already said, dispersal would thus come about in about
10 orbits and hence the total time required would be
ten times the orbital period which will not exceed about

I" years.
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It thus seems reasonable to conclude that the
outer layers of hydrogen surrounding the heavy core we
have formed at the centre of the condensation will be
swept away in a time not exceeding years $ the actual
time being more like one year. Viliatever the actual
value is, we can be certain that it is a short time
astronomically speaking. The heavy core is not dispersed
because of its higher density.

AS the reader will no doubt be familiar, Jeans
has spent considerable time investigating the effects of
the smi*s tidal action on various bodies (e.g. Jeans [20]
and [23], *Astronomy & Cosmogony’ and ’The motions of
tidally distorted masses’). His investigations however
only appear to cover the equilibrium and stability, or
othervrise, of bodies acted upon by a tidal force. He
does not give any estimates of the time taken by the
tidal force to cause appreciable effectse He only
concludes, as we have done, that if the density-“distance
conditions are violated, instability leading to dispersal
sets in. Jeans* investigations into these matters are
much more detailed and rigorous than ours, but there
does not appear to be any way of applying his results
so as to give an estimate of the dispersal time. It

might be added that this dispersal time was of no real



interest to Jeans, all he required was that the tidal
action of a passing star could cause the ejection of a
small amount of matter from the sun, this material then
being used as the origin of the planets. . The problem
investigated by Jeans and the one investigated by us

are related closely enough to each other for Jeans*®
rigorous results to add further weight to the conclusions
we have drawn from less rigorous methods, that dispersal
does actually take place in a short time.

In *Astronomy and Cosmogony* [20] Jeans shows
tliat the effect of a resisting medium on a planet’s
orbit is to reduce the eccentricity and bring the orbit
closer to the sun. Hence, if some resisting material
existed, we have no difficulty at all in reducing the
initially eccentric orbit of the condensation, and
possibly of the heavy core, to the nearly circular,
orbits we have today for the terrestrial planets, and
indeed for the major planets. Indeed it seems very
likely that the material actually removed from the
condensation could act as this resisting; medium.

There is also the possibility that the actual
act of dispersing a condensation might have the effect
of reducing the eccentricity of the remainder. This

possibility is one that needs investigating in the
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future, but whether this action does reduce eccentricity
or not does not alter or affect our conclusions about
the dispersal.

These are that a condensation dipping inside
the critical distance as defined by the density-distance
relation id-11 be dispersed in a short time, astronomically
speaking. If the orbit is circular, with the conden-
sation continually inside the critical distance, the
same dispersal takes place in a time slightly shorter
than the orbital period, while total dispersal occurs in
a time one order of magnitude greater. Thus no grave
difficulty exists in connection with the removal of
the excess outer layers of hydrogen which surround the

heavy core that is going to form a terrestrial planet.
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Conclusions about the origin of

the terrestrial planets

Professor McCrea [3j has given reasons for
concluding that Interstellar material in which stars
are about to be formed consists of fragments, or
flocculeSjmolding at random amongst themselves and
probably composed mainly of molecular hydrogen, the
tempezrature being about s 0K and the random speed
of the floccules about / . Many stars wouldthen
be formed simultaneously, each by aggregation of
portions of the material that happen to be moving towards
each other. The process producing condensations that
grot/ into stars would also produce minor condensations
in material that became trapped in the growing gravita-
tional field of these stars. These minor condensations
could obviously form a planetary system. Each of these
minor condensations would initially be basically similar
to any other minor condensation, consisting mainly of
molecular hydrogen and weighing about /oM MKS A We
have demonstrated in the proceeding work some methods
by which the heavy material in these condensations,

about 1% of the total material by mass, could fall to
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the centre of a condensation in the very short time,
astronomically speaking, of about one year. AIll of
these methods depend on the formation of very large
grains, or clmps as we have called them, with a
radius of roughly 7100on ~ 1In two of these methods
the growth of the clumps is caused by accretion during
the actual falling process, while the third method
requires the clumps to be formed before the falling to
the centre of the condensation begins. We have shown
that such clumps could be formed during the period
when the initial floccules are colliding together,
forming minor condensations and settling into the
invariable plane defined by the angular momentum of
the system. In these methods we have assumed that the
heavy material con adhere to the grains upon collision
with them. This is the only basic postulate in the
whole theory and no real investigation has been carried
out into a mechanism by which this could come about,
though reasons have been given to shox-/ that the
postulate is not impossible to satisfy.

We have thus concluded that formation of a
heavy core (that is a core consisting of the heavier
elements) at the centre of a condensation can take

place in about one year simply by allov/ing the clumps
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to fall under the gravitational attraction of the
condensation. The speed with wiiich each clump arrives
at the condensation centre has been estimated and found
to be of the order of a kilometre a second. It is thus
not so high as to cause any anxiety about the effect of
the energy released in the resulting collision at the
centre of the condensation® It has also been shown
that if the condensations are Involved in collisions
before the core is formed, the clumps will not be lost
from the condensations, but will be carried along with
them. Hence we conclude that the formation of the
heavy core can trxke place wtlthout any difficulty.

If any such condensation,with a given density”"
approaches,within a certain critical distance from the
sun then it cannot hold together for long, due to the
effect of the tidal action of the sun. We have
estimated the time that must ellapse before a noticeable
amount of dispersal occurs, and found this to be less
than one year. Further, if the condensation approaches
too close to the sun and then receeds again, we have
indicated that the damage caused by the approach will
not be repaired and thus, under such conditions,
dispersal occurs in an astronomically short time. Due

to the sim plifications we have used in investigating



this dispersal time, we cannot be too certain of the
exact numerical values obtained. We would appear to be
safe however in concluding that dispersal can occur in
an astronomically short time and is likely to be of the
same order as the time required for the formation of
the heavy core. We note that this tendency for
dispersing will not be present in the heavy core as it
has a much higher density. Hence the net result of
this tidal action is to remove the outer layers of
hydrogen and leave us with a smaller body composed of
the heavy elements. As the h;o times (core formation
and dispersal) are roughly of the same oi*der, it is
possible for the core to be formed even if dispersal
begins before the formation is conq)leted.

This remaining core of heavy material is
exactly what is required for the formation of a
terrestrial planet. It vAll have a mass of approxi-
mately 19p of the initial mass and hence a Taass
comparable with the terrestrial planets. It also
consists mainly of the heavier elements, again what is
required. Hence this is in effect a diffuse planet.
This material must now condense under its own
gravitational attraction and a terrestrial planet, as

we know it, has been foimed. It is to be noted that we
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do not state that the heavy core is the terrestrial
planet, this core is only the planetso® material, which
must condense further before a planet is formed,

V/ie have also suggested that other objects in
the solax- system could be formed as a bi-product of
some of the above events. This requires that one of
the Glump-fcubing mechanisms forms clmaps %&th a
radius in excess of /o* ctf . These clumps would now
escape from the surrounding:: condensations, but not
from the solar system. These clumps would thus have
rather eccentric orbite and could thus form meteorites
and com ets.

As the reader will tmve realized by now, this
theory is in many ways similar to tho group of theories
that are commonly known as *Tbe Planoteslmal Theories’;
’planatesimnl' because the planets are assumed to be
formed from an agglomeration of small bodies, pianotes—
imals. Such theories were first proposed by Professors
Chamberlin [24] and Moulton [ 251 around 1900. Theirs
was a simple theory, where material was ejected from
the sun and condensed into planctasimsls, and so by
agglomeration to planets. This was of course during the
period when the sun was thought to be composed of heavy

m aterial and so no separation from the hydrogen was



necessary. Since then many variations of this general
theory have been proposed} the material could be
ejected from a compan”ion star to the sun as this
exploded as a super novae, or it could be material left
over from the formation of the sun. The more recent
theories, proposed by Hoyle £2~ also involves
ejection from the sun, the material now forming a disc
about the sun, ejection being caused by too rapid
rotation of the sun. This disc is assumed to be
magnetically coupled to the sun, alloiflng for a transfer
of momentum between the two bodies. As the sun
contracts angular momentum is transferred to the disc
causing it to move outwards, Hoyle has shovm that
planetesimals, having condensed in the cooling disc,
with a radius greater than /dOcY will be left behind
by this moving disc. These planetesimals will, of
course, consist of the non-volatWlj elements, which
are essentially the same as our heavy elements, and
so separation of these from the hydrogen has been
accomplished. This theory now required some means by
which the planetesimals can collect together and form
a planet.

The clumps formed in our theoi-y are very

similar in many ways to Hoyle's planetesimals. The
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planetesimals consist of the non-volatile material while
the clumps are made of heavy material. Qur knowledge of
the early composition of the clouds and of planetary
composition is too restricted for us to he able to draw
any conclusions about the validity of either theory from
a comparison of these two facts. Both theories give
better agreement than most previous theories.

There exists however one fundamental difference
between our theory and the planetesimal theories. A fter
separation of the hydrogen from the planetesimals has
taken place the planetesimals are scattered in a disc
about the vicinity of the sun, and before any planet
can be formed these must all be brought together and
fused into one body. In our theory on the other hand,
once separation takes place our clumps are virtually
all in the same spot, forming the heavy core. It must
be a much simpler task to form a planet out of the
clumps under such conditions.

Hence, though in many ways our theory is
similar to the planetesimal theories, it presents a
great advancement on most of them in that no juggling
is required to bring the clumps together to form a

planet.

Thus, in brief conclusion, the picture we



present for the formation of the terrestrial planets is
as follows. Floccules are captured by the young sun.
These collide and form condensations with a mass of
about 10 A which is roughly equivalent to a major
planet mass. By one of the methods described a core
consisting of the heavy material is formed at the centre
of each condensation in a comparatively short time.
This condensation, by now orbiting in sons fashion in
the invariable plane defined by the angular momentum,
approaches within the critical distance defined for the
particular condensation density and the outer layer of
hydrogen will probably be swept away by the tidal
action of the sun in a short time. We are thus left
with a smaller object composed mainly of the heavy
elements which can now condense further to form a
terrestrial planet. .If the initial condensation does
not approach too close to the sun tten the sweeping
away of the hydrogen does not take place and conden-
sation of the whole body occurs, resulting in a major
planet.

One of the major attractions of this theory is
that initial conditions can be the same for all the
planets. They all originate from similar condensations

consisting of the same materials. The difference in
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the final planets coaes about only because some approach
closer to the sun than others. The one disadvantageris
that we have to postulate the mechanism for the growth
of the clumps rather than being able to offer a

definite proof that such a process of grain adhering

to grain can take place.

We can however conclude that a satisfactory
theory for the formation of the terrestrial planets has

been outlined.
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PART II
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GIAPTSH 1

Introduction

Throughout this part we shall be interested
in stellar clusters, or to be more precise in the
evolution and appearance of clusters of stars. We do
not wish to enter into any discussion as to what con-
stitutes a stellar cluster, we just take the words to
have the usual meaning attached to them in astronomy
and astrophysics, namely a collection of stars occupying
essentially the same region in space and moving together
through the remaining star field as one complete unit.

As is well known, a diagram, named after them,
was constmeted by Rertzsprung and Russell. This
plotted some measure of the luminosity of given stars
against their colour. Later it was realized that the
colour of a star was an indication of its effective, or
black body, temperature. As, for theoretical purposes,
the temperature is much more useful a tool than the
colour, the diagram now became a plot of some measure
of the luminosity against some measure of the tempera-
ture. Unfortunately, due to the way Hertzsprung; and
Russell had chosen their colour axis with the blue on

the left ima red towards the right it turns out that



the temperature increanee from the right to the left
instead of the mor-o usual arrangement. This axis has
been kept on as the diagram had become veil knoiim before
tho temperature connection became Icnenfm.

When large-scale observations of stars
started, it was found more convenient to measure the
star's magnltudo rather than its luminosity. This
magnitude in simply some constant minus the logarithm

of its luminosity,

Olearly we could also write

whore L Q0 denotes the sun's luminosity.

It was also found that the apparent magnitude
of a star's blue light minus the apparent magnitude in
the violet region gave a good indication of the
temperature, and so nowadays the observational data are
given in terms of the magnitude and fJ-\/ where Q0>-l/
is the quantity just defined.

We will describe the conversion from one set
of axis to the other to ANMATvdth

some detail in a later chapter.
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If a star is in equilibrium then its luminosity
and temperature are constant and so it occupies one
well defined point in the Hertzsprung—Russell diagram,
independent of the epoch at which it is observed. If
all stars of a cluster were similar, apart from their
mass, and each one in equilibrium, then this distribution
of stars v/ould have a well defined pattern, independent
of epoch. Furthermore, any collection of stars with a
similar mass range should give a similar pattern. Such
a unique pattern has been found in the Hertzsprung-
Russell diagram of most clusters, and has been called
the main sequence.

Gomon-sense tells us that stars cannot be in
oquilibrium for all time, as some evolution must take
place to provide the energy required to give the
observed luminosity. Hence some stars ivill not confer
to the above pattern. The theory of stellar interior
and stellar evolution informs us that this stage is
reached when a given proportion of hydrogen is converted
into helium. When this point is passed rapid expansion
talces place, accompanied by cooling down of the star.

In tho Hertzsprung-Russell diagram this corresponds to
a rapid motion to the right. As stars that would
occupy this region are much larger in radii than the

main sequence stars, this branch is sometimes called



the giant branch.

The evolution of one star can then be described
as follows. For most of its life it vdll be a star on
the main sequence, occupying one defined point in this
sequence. It then moves off to the right after a given
proportion of its hydrogen has been consumed. Hence,
the brighter the star, the quicker it moves o ff.

If we have a random distribution of stars,
both in mass and age, then we could possibly still
detect the main sequence, but stars would be evolving
away at all points as both young bright stai's and old
not so bright ones would move off. This is not what is
found when we observe stellar clusters which suggests
that the stars in a cluster are not completely at
random in both mass and age.

If we have a random distribution in mass, but
not in age, then stars would leave the main sequence
in an orderly fashion, the bright ones leaving first.
The pattern would thus be a main sequence with stars
that are just burning the required proportion on the
point of moving off, brighter stars being to the right
of this point. This is what is observed in clusters
which suggests strongly that stars in a stellar cluster

are all of the same age. The point at which the stars
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turn away from the main sequence onto the giant branch
has been called Hie main sequence turn-off point, or
sometimes just the turn-off point.

If all the stars of a stellar cluster were
indeed formed at the same epoch, then very useful
information concerning stellar ages, luminosity and
distances can be obtained just by comparing the
Hertssprung-Hussell diagrams of various clusters. It
is thus of paramount importance that we make sure that
tho assumption about stellar ages is correct.

In this part we shall investigate two points
that at first sight appear to contradict the hypothesis
that al.l stars in a cluster were formed at one and the
same epoch.

The first of these points, which we deal with
in chapter 2, is concerned with very youog stars. Ifwe
have a very young star contracting from some initial
state then it will not have had enough time to reach a
state of equilibrium on the main sequence. Calculations
about the position of such a star at any given time
seem to be in conflict with the obseinred position. In
this chapter 2 we give calculations showing the great
importance of what initial conditions we assume.

In chapter 5 we discuss another point that does
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not appear to agree with the assumption of a unique age
for a stellai* cluster. 1In a few clusters, stars are
found lying in a region beyond the turn-off point from
the main sequence, forming a rough continuation to the
main sequence. Clearly if everything is strictly as we
have assumed it, these stars should not be present. We
ha.ve constructed a diagram in which stars are assumed to
have non-unique ages to see if such conditions give a
better agreement with observations or not.

By means of these two investigations we hope
either to disprove the assumption that all stars in a
cluster are of the same age, or give additional evidence

for assuming it to be true.

At the risk of some repetition we have
attempted to make each chapter intelligible in its own

right so we might have to describe some methods twice.
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CHAmSR 2

On the contraction of pre-main sequence stare

Some astronomers, especially Walker [1,2,3]
and Whiteoali [4] have observed what, to judge by their
tux-n-off point from the main sequence, must be very
young clusters. These, being observational results,
are given in terms of the apparent visual magnitude V
and , v/tiich is an inaication of the colour of
the star. From the point of view of any theoretical
woz'k that is to be done, these units are not very
usoful. The usual units for theoretical work are the
logarithm of tho luminosity and tlio logarithm of the
effective or black body temperature, or . fog against

with obvious meanings for L and I . Thus
before we proceed with any thooretical discussion it
would be helpful if wo could convert the observational
data to the more useful L , I system.

Before ahy progress can be made, the apparent
visual magnitude, V , must be given in terms of the
absolute magnitude *|J , These are connected by the

following xelation
hv v -D . tl (1)

f/ denotes the distance modulus of the cluster. The
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value of this v/ill he given when the results of work
on any cluster is published. Now before we can convert
to luminosities account of emission in all frequency
ranges must be taken, so we require the bolometric

magnitude rather than the visual magnitude J"/ . Now

"ho/ - [fv A (2)

where [“hol is the bolometric magnitude and B C
stands for the bolometric correction. This bolometric
correction depends on the colour of the star and tables
are published connecting the ti'fo quantities.

Finally

“bol U -2 7 )

where L is the luminosity of the star and L@ that
of the sun. We shall use to denote the quantity

A() » or the luminosity in solar units. By means ,
of equations (1), (2) and (3) above we are thus able to
convert from the apparent visual magnitude to the
luminosity of a star.

In his book "Structure and evolution of the

stars" [51 Schwarzschild gives a table of the relation
between the colour, I™>'VY , and the bolometric correction

ft>-C and also the variation in temperature ifith

colour.



Hence we can convert from the observational
against 0-V diagram to the theoretical L
Ilertssprung-Russell diagram.

By using this method we have converted the
outline of the region occupied by stars from the
observed data to a theoretical diagram in L.
against7 , for txfo clusters KGG 26M" and SGC 6530.
The results are given as figures 1 and 2. These are
two of the clusters, mentioned at the beginning of the
chapter, that have been observed by Walker. Tho third,
IC 5146 is very similar to the others but contains very
few stars. For this reason no conversion was carried
out. The cluster IC 2602 observed by Whiteoak is also
rather sparsely populated and so was not converted.

The unconverted diagrams in \Y against (5-'"* ,
wtixch are very similar apart from size, to the
diagram, can of course be seen for all four of these
clusters in references [1] , [2], " and £4], the
original publications on the subject.

These diagrams show that below a certain
luminosity LC, all the stars lie to the right of the
main sequence. As they lie to the right, their
luminosity must be greater than that of a main sequence

star of equivalent temperature and as these stars
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behave roughly like black bodies,
\%

being the radius of the star. Thus the radii of
these stars under coneideration must be greater than a
main sequence star. This, together with the information
from the turn-off point from the main sequence that the
cluster is very young, leads to the natural interpreta-
tion tloa.t these stars are still in the process of
gravitational contraction, not having as yet had enough
time to reach the main sequence. Indeed estimates of
the time taken fni* this gravitational contraction from
vanishingly small densities are in fair agreement with
the age estimates derived by other methods.

Had all members of a stellar cluster started at
one and the same epoch to condense from vanishingly
small density, then those noiv having a luminosity
fainter than LcC would be expected to lie upon a
certain calculable locus in the Hex'tzsprung-KuBsell
diagram. However, in cases where age determination
can be carried out fairly accurately, it is found that
the stars concerned lie, not on this locus, but much
nearer to the main sequence. That is to say, the

gravitational contraction of the fainter stars in the
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cluster appears to have progressed much further than
is possible within the lifetime of the cluster.

All who have written on the subject regard
this as presenting a very serious problem and some very
drastic solutions have been proposed. We wish to point
out hc«-7ever that it is not possible to say whether
there is a real difficulty without knowing more than we
do about the early stages of the process of formation
of the stars concerned. We have to contrast the present
problem of stars condensing onto the main sequence at e
its loiter end with that of stars evolving off the main
sequence at its upper end. In the latter the problem
is well defined. In the case of the condensing stars
on the other hand we do not as yet know what has to be
treated as initial conditions.

We hope to illustrate this conclusion by the
example we are about to give. This is intended to
support the conclusions to be stated; it is not
intended, or even suggested, that it arises from any
particular theory of star formation. In working this
example we follow Su-Shu Huang in his paper "Distribu-
tion of pre-4nain-sequence stars in the Hertzsprung-
Russell diagram" [6] and merely for the sake of

argument we shall exhibit the consequences of supposing



ISS

that at some epoch all the stars concerned have the
same mean density.

Assume that a star of mass M wundergoing
homologous gravitational contraction towards the main

sequence has luminosity [. when its radius is , where

(4)

A, 0 and are all constants.

For this tyjie of star, undergoing contraction,
the only source of energy present is assumed to he the.
gravitational Onergj” of the star itself, and the change
in this as the st;ar contracts by an amount 4'R. is

clearly proportional to

If this collapse takes place in a time d,7r , then
L Jtr - C G if'} (6)

where C. is a constant taking account of the amount
of energy actually being released as luminosity rather
than just released. (r is obviously the gravitational

constant.Combining equations (4) and (6) gives us

0 ab = -C tr (7)



Now, if no gain or loss of mass takes place
during this contraction stage in any star, M of
equation (?) can be considered a constant and so the

equation can be integrated to give

Now the time taken by this star to contract
from vanishingly small density (infinitely large radius)

is clearly

1

In this form the expression is not very
useful as it consists of both the constants C and
amongst other quantities. A great sim plification can
be brought about if we use solar units as we will show.

The Helmholtz-Xelvin time scale for the sun
(hereafter denoted by HK wunits) is defined by
Chandrasekiiar in *An introduction to the study of

stellar structure'

to be the length of time for
which the suncould go on emitting radiation at its
present rate, if the only sources of energy it had
available was the gravitational potential energy

released as the sun contracted from infinity. This is
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clearly

I - C

where again d gives the proportion actually released
as radiation.

Chandrasekhar has a value 3 . for the

S'a SCMNi*

constant C. where fZ is the power at which the density
decreases with radius inside the star and 'jd ic the
usual ratio of specific heats.

With d =3 and T> "3 and the usual
numerical values for the other ntiantiti.es G
and , Chandrasekhar obtains a value of years
for one Helmholtz-Kelvin unit.

We have assumad homologous contraction, and
so equation (4) applies to the cun as well as any other

star, so

(As usual we use O to denote any quantity belonging

to the sun.)

Substituting this into equation (9) gives

Now, if we express the time in expression (8) in units



of the Helmholtz-Kelvin scale, using ~ to denote this
f C6, tlo” . C «rp’ts
mVvV - T? !
If we now use solar units to measure the mass
and radius of a star, using script notation for this

units i’ etc. then

Y - "A(2-/3
(/“/3) A

Hence if the units are taken to be solar units, the
time of contraction, given in the Helmholtz-Kelvin
scale is given by the simple expression (11).

In these units equation (4) reduces to

U

If we define the density and temperature to be * /

in solar units then we have the following relations

Ji =
and , 2 (12)
(1% - -f

The first being the equation of black body
radiation while the second is the fundamental definition
of mean density. By making full use of equations (4),
(11) and (12) substituting where necessary we can quite

simply obtain the follov/ing relations.



Coi-flY) -+ H f

AA (14

3
{ii 0 jh » x  fA Muii)-{ (~ -0~ 6 rz (16)
u-r”? HA) N lA )
f 0q"T - ST-/£2-AA) A ()N (17)
4U-p) A7 -p) i-fS J

1) iM-KiX-lfiyig £ -o(-"0"t ~oi » 673) (18)

Su-Shu Huang in his paper has written dovm
only this last equation (18) which clearly is
sufficient for one to be able to construct the
HertzBprung-tossell diagram for a distribution of
stars with any given age, # The actual method used
by us in deriving these equations is also different
from Bu-Bhu Huang’s, though the principle and the
treatment are the same, since we have started working

in conventional units and introduced solar units at a
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later stage only because they obviously bring about a
great sim plification, while Su-Shu Huang uses solar
units throughout his derivation.

By makiftg a study of the transfer of energy
through a star, taking account of the equilibrium
(relative, as changes take place slowly) of the star,
Henyey Lelevier and 1&Avee £&) have computed a series of
evolutionary tracks for stars in the gravitationally
contracting stage. From their results, it appears that
for each star the relation between luminosity and

effective temperature may be represented as
x" I (19)

But we already have

which leads to

Y

and so by using equation (19) we have that

A= 0 72 (20)

If the opacity of the outer areas of the
collapsing star is assumed to be given by modified
Kramer*s law as done by Schwarzschild in his book

then the value of corresponding to this value of”*
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given in (20) is S ,

If instead of relying on this law of opacity
vie use the results of direct calculation by Henyey,
Lelevier and Levee L8] the value of X* turns out to
be 5-4- , provided that the relation between the radii
and masses of main sequence stars given by Russell and
Moore £91 is assumed.

On the other hand if we calibrate by the
aid of the empirical mass-lumlnosity relation and the
temperature-luminosity relation of the main sequence

stars, we obtain

From now on we shall use the same values as
Su-ShuHuang adoptedin his paper, a value which is

about the mean of the three given above, so we take

¢/ ~ b-U. and (21)

Actually it is very simple to show that the
above equations are very insensitive to the value of »<
With the values of and fS given by

expression (21), equations (13) to (18) can be

expressed in numerical fora as the following
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(22)

/(gT = N2 £ bh 7% £ (23)

“ogX - -I>a” feglPlio'0J 0'ér™  (24)
6g ~ - 3% 7-i8-2 “IKS' (**)
"Mog T - '33] -Z S (106)
ALA S 4Q. -1-0/ A0'69  (27)

In equations (13) to (18) the logarithm could
be taken to any base we preferred, but in these
equations it has been fixed as base /O

In the resulting diagram, a line
of fixed density, a line of fixed age, "X ® line
of constant mass 7* , which is the evolutionary track
of the star with this mass, are all straight lines.
Such lines have been plotted by Su-Shu Huang in Viis
paper and some are shoi'm in figure 3»

For the purpose of this diagram we have taken
the relevant part of the main sequence to be a straight

line given by
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(28)

with as given by Su-Shu Huang. The position
of this line in the diagram is fixed by assuming that
the sun is a main sequence star, thus lying on this
line, and so if the units are solar the main sequence
passes through the origin in the A /  diagram.

For the purpose of our illustration we con-
sider a set of pro-main-aequence stars of the type under
consideration that at some epoch #¢r'"o have the
property that all the stars have the same mean density

n*'vO Ol , or one percent of the solar mean density.

This value of y? has been chosen simply because we
had to choose some value before we could proceed with
the illustration and 00 I is a fairly convenient
value, numerically speaking, while at the same time
not being an impossible value for a star to possess.
There are, as far as we are aware, no physical
peculiarities attached to this value of #* which gives
it preference over any other value.

In figure 5 we exhibit the loci on which these
stars would lie at epoch , tv , tj “nd tq. ,

where we have taken
=A>(5", é-y-to * O U-
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Tho units in all cases being the Helmholtz-
Kelvin contraction time for the sun, and the value of
such an unit we have already stated is about yoars #

However, for our discussion it is more
instructive to note that the locus for meets the
main sequence at a point which has the rough properties,
*AQAA f3 i S0 2038
and <2 O e while the corresponding point on the
locus for "o (that is point of intersection with
the main sequence) with the same value of ""0o"PZ has

A>0 .

The homologous family is meant to consist of
stars in which the luminosity is produced by the release
of gravitational potential energy due to contraction
alone* Were account taken of the release of nuclear
energy in the final stages of contraction we should have
the evolutionary tracks joining the main sequence in a
somewhat different way, similar to the final stages
computed by Henyey, Lelevier and Levee 8”7, but this is
of no importance for the present discussion.

It is to be noted that our locus for, say,fr-tv
is roughly like those plotted from observations of
young clusters, for example NGC 2264 and HGC 6530 which

are our figures 1 and 2, taken from observational
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results by Walker £1,2]. The value ~C? o f just
mentioned above is of the order of the age usually
ascribed to such young clusters. Thus we, in our
exanq>le, are actually dealing with the sort of situation
that is of interest in practice, even though we are not
advocating any particular theory of evolution.

The loci X * constant have, of course, the
property that if a set of stars of the present type are
represented at some epoch by points on one of these
loci then at any later epoch they must be represented
by points on another of the loci, unless they move on
to the main sequence in which case their locus clearly
becomes the main sequence. Loci of this type are the
only ones normally considered hitheirto.

The loci ttr « constant also however have by
construction the property that if the stars lie on one
of them at one epoch then they lie on another of them
at any other epoch.

There are three features about those loci

which are immediately noticeable from a study of figure 3,

namely,
(a) The loci of 6) , 6~ , and are all
quite different from the usual -loci.

(b) These loci are all qualitatively similar to each

Other*



(¢c) They span a time interval comparable with the
estimated ages of the known young stellar clusters,
namely something of the order of /£>7 years, or 0 §

Helmholtz-Kelvin units*

The physical reasons for these features are
evidente

The age of the cluster within the meaning we
have in mind, (contraction time) is the time required
for a star at the lower end of the main sequence just
to reach the main sequence from whatever has to be
treated as the initial state* Now the rate of contrac-
tion is highly sensitive to mass, as can be seen from

equation (24)
AN L —3-47 A NOTtTS AN 0-6

which shoivs that the time required is proportional to
6 6 power of the mass*

Thus stars of mass much less than the one just
reaching the main sequence cannot have moved far from
the initial state in the available time. Therefore if

the initial conditions are such that at any epoch the

pre-main-sequence stars lie on a locus appreciably
different from that representing gravitational contrac-

tion starting at the same epoch from vanishingly small
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denaities, thsn this will remain the case throughout
the time Interval of interest.

On finding a distribution of pre—main-eequence
stars such as those already .mentioned by us, it con-
sequently seems natural to look for an explanation in
terms of initial conditions (e.g. the observed effect
v/ould be produced were there a tendency for stars of a
smaller mass to be formed before stars of a greater
mass), rather than postulate new phenomena such as
large scale mass loss during the gravitational contrac-
tion of a star.

As has already been pointed out, we can see
from equations (22) to (27) that the result is insensi-
tive to the value of . Clearly no substantial
changes in the diagram will occur if we change the
slope of the main sequence slightly and hence the result
is not sensitive to the value of " either.

The calculations given above were carried out
before a veiy important paper on the subject by
C. Hayashi [iCQ came to our notice. Taking account of
the presence of a hydrogen convective zone in stars of
late spectral type, Hayashi concludes that the early
part of the evolutionary track of a star of given mass

is very different from the straight line tracks shown
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in figure 5» This affects the age calculations and on
making allowances for this Hayashi gets good agreement
with the observational results for RGC 2264 on mnMpg
the usual assumption that all the member stars of the
cluster originated with an arbitrary low density at
the same epoch.

Hayashi‘s explanation will probably be accepted
in this case, and because of its importance a section
at the end of this chapter has been devoted to a
discussion of Hayashi's work.

These-results do however give another exangjle
of what we have been drawing attention to in the
preceding discussion; they show that by altering the
initial condition of a star (in Hayashi*s case, the
presence of a hydrogen convection zone is taken) we
obtain a Hertzsprung-Russell diagram that need not be
similar to the straight lines found by Su-Shu Huang
(and also shovm by us in figure 5). Hence, as regards
homologous contraction, Hayashi:r work substantiates
the general conclusions about the importance of the
initial conditions to which we seek to call attention.

If we assume any one of the initial conditions
mentioned above we see that the predicted Hertzsprung-

Russell diagram for any young stellar cluster would be



/et

a single track. This track could be curved or straight
depending on which model for this contraction stage we
are using, but in all cases it would be a single track.
The loci » constant, L * constant and

t = constant are all single line tracks and hence
any theoretical model will always give us the loci of
these young stars as a single track.

From our figures 1 and 2, or from any of the
diagrams given by Walker j*1,2,3j and Whiteoak £4], it
is clear that the stars observed do not lie upon a
single line in the Hertzsprung-Hussell diagram, but
rather occupy a region between two curves, this band
being much wider than the region occupied by the main
sequence stars (which also should be a single line
theoretically). Some divergence from a single track
due to the uncertainties involved in measuring stellar
luminosities and effective temperature and the effects
of interstellar absorption, but these effects would be
the same for all cluster members, main sequence or
pre-main sequence, and so we would not expect the pre-
main sequence band to be wider than the main sequence
band and so apparently we have a discrepancy here
between theory (any model) and observation.

Varsavsky [11* has observed a group of stars
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in Taurus, presumably in the gravitational contracting
stage, photoelectrically and has compared hie results
with earlier observations of the spectrum of the same
group of star's conducted by Joy £12].

Comparison of the two results can only have a
meaning if we have the two following assumptions:
1) The spectral types, as deduced from the absorption
lines give the correct values for the effective
temperature. That is, Joy's results enable us to
find the correct value for the effective temperature.
2) These effective tenc¢>eratures have not altered
significantly during the years that have elapsed
between Joy's spectroscopic observations in 1949 and
Varsavsky'a photoelectric observations of 1960.

Clearly these assumptions are quite general
and are very likely to be satisfied. On comparing the
two sets of results Varsavsky finds that the photo-
electric colour observations do not give a
unique definition of the effective temperature. 'He
shows that for any given effective temperature, >>
measured spectroscopically, the colour (73-V) varies
within a range of approximately O+ magnitude from
this and always (with the exception of 6re stars)

towards the blue side of the normal relation.
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There is no reason for doubting Varsavsky’s
work or for rejecting the two general assumptions used
above. No conceivable reason exists either for these
results applying only to the ©tars in the Taurus cloud,
and so it seams natural to conclude that all the pre-
main sequence stars in the clusters mentioned by us
should have this coirsotion of up to 0-8 magnitude
applied to them. We note here that the %Jtidth of the
pre-main sequence band, measured parallel to the
effective temperature axis, is just about 0 & magnitude.
Thus if this correction were applied when we transform
to the temperature results from the colour
measurement, the wide area which the stars appear to
occupy would be reduced to a single track.

This correction has been applied by Varsavsky
to MOC 2264; we have done the same, to NSC 6530.
(Actually we have only corrected the stars with the
ANoatest displacement from the red border of the band.
If these stars can be corrected onto a single track,
clearly any star requiring less correction can be
corrected). The tracks obtained for both of the above
clusters are shown in figures 1 and 2, superimposed on
the diagram obtained by assuming the normal relation

between 6 W and the effective temperature.



Hence we can conclude that the above mentioned
discrepancy between observation and theory concerning
the width of the region containing stars in the
Hertzsprung-RuSBell diagram can be resolved, but the
solution raises the problem of determining the cause of
t>iis irregular relation between the colour /ft'V') and
the effective temperature. Varsavsky suggests that
this may be due .to emission lines in the star's spectrum
together with the presence of a blue continuum, the
strength of these being the factors chiefly determining
the colour of the star. If these are week the star
would have normal colours, otherwise the star would be

too blue for its spectral type.

The distribution of pre-main-seguence stars

in the Hertasprung-Russell diagram

We now turn to a completely different aspect
of the diagram for these pre-main sequence stars. This
is the relative distribution of these stars in
comparison with the main sequence distribution. In
his paper on this type of star, 8u-Shu Huang | has
found the distribution of these stars assuming that

stars are formed at a constant rate, but has not found



172-

tiiis distribution for stars in a cluster, all formed

at the same epoch.' As this distribution can be a very
important tool in testing the validity of a theory, since
the theoretical and observational distribution must
(qgree, and as v/e have already obtained most of the
equations necessary to determine this distribution we
shall nov; include a determination of this distribution
despite the fact that it has no real connection with

the conclusions given above.

We can clearly obtain this distribution in
either of tn-'o ways, graphically or theoretically.
Graphically the- position of a pr-a-iaain sequence stai* is m
given by the point of intersection of the straight line
locus = constant with the evolutionary track
of the star ivith the given mass.

Theoretically we have to take a distribution
of masses such as one finds in a stellar cluster and
calculate by means of equations (22) to (28) the
position of these masses at any given epoch in the
Hertzsprung-Hussell diagram.

Let us take the masses of the stars concerned
as If, Oif , by increments 0i*0 § to

“Jol o

The two eqxwvtions out of the six mentioned

above that are applicable to the problem under discussion



are

(25)
and
- 332 ANzZ' oy -0,7MN
The values of A and can now be found
for all the values of A Riven above if we
determine a value for N
If the value of ZT we choose is too

large, then all the stars in the above mass range will
have evolved onto the main-seouence and so the required
distribution will not be given. On the other hand if
we choose too small a value for the stars might
still have, in effect, an infinite radius and so would
be of no use for any sensible diagram. A value for
that avoids both these difficulties while at

the same time being a convenient number, numerically

speaking, is . The age of the distribution

is thus one tenth of the Helmholtz-Kelvin time scale or
l

about 3 years. This time is thus close to the

estimated age of young clusters and so we are in fact
dealing with a case that is likely to exist in practice.

For the puipose of this discussion the main—
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sequence is again taken to be given by

0 j 7 (7/»»/

the units again being solar.

If, as a result of our computation, we find
that a star has luminosity and effective temperature
such as to place it below (to the left) of the main
sequence, then clearly this star has reached the main
sequence and its position should be given by solving
the equation of the main sequence withthe locus of a
star of given massf0 * , namely the equation obtained

by eliminating * from equations (15) and (14) above

On eliminating; we obtain

A £ Ar + A 7
Introducing the values we have adopted for the constants
(/and p , namely , 3- 0'79 into the above
equation gives

R -£3-77
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Solution Ox this equation with the equation of
the main sequence for each value of the mass 9%2 gives
the position of a star with mass 92 on the main sequence
and hence giving us the disti'ihution of the stars as
welle

These points we Obtain theoretically using the
described method should clo/?0?ly be the same as those
given by the intersections of the locusofthe given
masses™” vith either the loous or the
main sequence depending on which of the two intersections
occur nearest vo the right of the diagram*

The distribution we obtained using the chosen
values of A and is drawn as figure 4.
We note immediately that this diagram shows a much more
dense population of the main sequence region than the
pre-main sequence region* -ith the mess distribution
we havo taken, namely = constant interval, we
have introduced a very strong tendency towards the
lighter masses being present in greater numbers in the
cluster™ With a stellar distribution in which the
masses were more evenly spread out the population of
the main sequence would be even thicker while the pre-
main sequence region became even more thickly populated

Clearly no change in the distribution
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w ill take place if we change the value of A

Indeed, all this does is to change the position of the
locus 6 = constant, not its direction and so the
pattern of intersections with a set of parallel lines,
which are the loci for the different masses, is
unaltered.

We can thus conclude that, irrespective of the
particular values of A and ZT we choose,
the number of stars in the pre-main sequence shage is
ve3?y much smaller than the number on the main sequence
if we assume that the model for contraction described
by Su-Shu Huang is correct.

The actual range of masses in the pre-main
sequence contraction stage must also be very small.
With the values we have chosen we see that from
30 - 'X-A" (a range of seven magnitudes in stellar
brightness) the mass increases from * solar masses
to | solar masses in the pre-main sequence
region, while an increase from Z to A solar
masses is observed for a range of seven magnitudes in
bi'ightness along the main sequence. Hence, if we were
to assume a one-to-one correspondence between mass and
number, the ratio of the number of stars in main

sequence and pre—main sequence stages over an equivalent



brightness interval (7 magnitudes say) is about 6 : 1.

In a normal cluster the main sequence would,
cover about three times as large a brightness range as
the pre-main sequence section, hence the ratio of main
sequence stars to pre-main sequence stars becomes 18 : 1.

Hence if we had about sixty stars in the pre-
main sequence stage in a cluster, this would mean that
the total cluster membership was about 1000 stars if the
found distribution is correct»

Now in all cases of young clusters observed
the pre-main sequence branch is as thickly populated as
the main sequence branch and certainly more than about
one star in twenty are observed to be in this contracting
stage. Hence we can say that over this point of the
stellar distribution a serious discrepancy exists
between the observed facts and the predictions of the
simple theory, which assumes creation at very low
density at a unique epoch for all stars, the stars then
evolving along a path found by Henyey and others, as
described by Su-Shu Huang.

Hence, quite apart from any differences that
exist between the predicted and observed tracks or
between the estimates of the age of these clusters

using different methods for measuring it, we can
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conclude that the actual number of stars in the con- ’
tractins stage is in serious disagreement with the
predictions of the simple theory described (but not
advocated) by Su-Shu Huang and so it appears that this
theory must be abandoned in favour of some theory wtiich
takes more account of the initial stages of the stars

as suggested by us.

An account of tlayashi’s theory

Hayashi has obtained very different results
from the straight line tracks shoivh by Su-8hu Huang in
his paper and by us in figure 5 by taking account of a
hydrogen convection zone in stars of late spectral type.

In a previous paper, Hayashi , together
with Hoshi, has investigated the outer envelopes of
late type giant stars and calculated the locus t »
constant in the Hertzeprung-Russell diagram. t bbe
characteristic value which determines the degree of
central condensation of the solution with polytropic

index , and is given by

For the meaning of the symbols the reader
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should consult Hayashi and Hoshi [1)]; the exact meaning
of fc is not important for an understanding; of this
paper by Hayashi. The maximum value which this function
can take is A-5, beyond which no quasi-state solutions
exist. In figure 5, which is reproduced from Hayashi's
paper *"1(*, fI'PG denotes this curve b~L 5 for a
given mass and chemical composition. (Hayashi does not
state what they are and again this is not important for
a general understanding.) Wo quasi-state solutions can
exist to the right of this curve. is the usual
evolutionary track for a star of the given mass found
by Henyey, Lelevier and Levee £82. when a star is
formed in the forbidden region to the right of A7G
Hayashi states that it will adjust its internal
structure in a relatively short period of time in such
a way that it takes up a position on the curve

A quasi-state solution is now possible and so the star
will stay on this track until it reaches a
point where it can follow the normal evolution found
by Henyey, Lelevier and Levee, that is the point ,
and then evolves along . This new track would
only be useful in giving a new Hertzsprung-Russell
diagram if the time taken by the star to reach

along the new track is appreciably shorter than the

time the stsj? v/otald need to evolve along the conven-
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tional track fo”” along C'*"l> . Hayashi assumes that
the time taken by a star to evolve from whatever state
it was formed in to some point on 0'PQ is small
compared with the time taken to evolve to" " and can
thus be ignored. T7io apparent way exists of estimating
this and so we can only accept Hayashi's assumption.

The time of evolution when the only source of
energy available is the gravitational potential energy
of the star is given by a solution of the equations

c. 7. and ir — aCG-n
C /b

which are essentially the same as those already used by

us in the previous work as equation (6), namely

Ldh - - AA clK

As HayasM is interested only in the evolution
of one particular star at any instant, the variation

of any quantity with mass is not important and so he talces

L AN

which is again essentially the same as what we have

assumed in equation (4)

T (.)



(It B to be noted that in his paper Hayashi uses some-
what different notation to what we have used above, but
we have converted bis notation to the one already defined
by us to avoid confusion.)

Using: the above equations Hayashi obtains a
value for the contraction time of a star starting from

an arbitrary large radius as

where and denote the mass, radius and
luminosity of the star in solar units. The expression

found by us as equation ( U) was

A =0-"V

Hayashi assimes that , the power of the
radius with which the density varies, is two while the
value used hy ua to give one H#K, unit as 3 ' years
is three* Using this new value of nds* A. , one H*K*
unit becomes y years or iO years* S?hus
Hayashi*s results are exactly what we have already
found, and so no new theory has been inserted so far.

However, for the stellar model proposed by

Hayasi'ii evolving along the track the value of

the constant * is —3*, § thus giving a contraction



time to the point * as where

Along the conventional evolutionary track found initially
by Henyey and others, the value of this constant is
(Hayashi has used the very approximate value of
0 , but we sliall use this value already given of
079 .) The contraction time using this value foryS

becomes €P -i 5%7) «”1) being the same as defined above

Thus the time required by a star contracting
in the manner postulated by Hayashi to reach the point
is very much shorter than the time required by a star
of equal mass evolving along the more conventional track
given by Henyey, Su-Bhu Huang and us.

In his paper Hayashi gives the Hertzsprung-
Russell diagram he obtained after allowances had been
made for this shorter evolutionary time and obtains
good agreement with the diagram drawn from observations
of BGC 2264.

Hayashi however does not give details of how
he constructed his diagram and so we shall now attempt
to construct one employing similar methods to what we
have already used in the previous example. So as to

reproduce results with the same condition as Hayashi



we shall use A (already defined) and thus a new
value for the Helmholtz Kelvin time scale oth”"Vo'” years.

The equations Hayashi obtains in his paper are
exactly the same as those we have already obtained in

the first part of the chapter. The only differences

are in the value of the constants and . Along/9P
Hayashi takes jZ to be — while along the
value is 0 7Y » while for the conventionalmodel the
value is 7Y all the time.

We have already found the equation connecting
AON A and 'Toy' / at any given epoch, this was

equation (19),namely,

2-/37

Tbe locus in the Hert%prung-Russell diagram
of stars that have not jet reached the point on
their evolutionarj track is thus given just bj
substituting the values of # and ” into equation (19)*%
The value of ¢ we knov; in -"4-. Unfortunately, as we
have already mentioned, Hajashi is interested primarily
1b one star at a time and so no relation is given between
luminosity and mass, that is, no value for OC . From
the paper by Hayashi and Hoshi , however, we can
deduce that and thus the value of OC is /[

1-hue the locus of stars evolving in themanner



ostulated by Hayashi up to the joint is given by

Cl)

This equation only holds up to the point 7 whioh fes
a Iroady been defined ss the point where the conven-
tional track of a star, d.T> , crosses the Hayashi track
fNV[Z . he have already found the ratio of the time
of evolution to the point along these two tracks
as i.,s.* £t i / y . Thus a star with any given mass
would reach along >3 in a time 't while it
would take a time -l 'Qr along C.'TT) , and hence in
144 DN

the Hart$ssprung«”KuB<561I diagram the x>olnt >» can be

given bj the Intersection of locus 01)
T =-"Ce™"T — v

vith the locus of star evolvinp; along with a

time /171 , that is equation (27) vith Cz./ZNC/
"to™t " NL-0 (itZr -toéf (32)

For stars that hive evolved far b e y o n d $§ the mode
of evolution up to the point is immaterial as the
time along both tracks and are short
compared with the time taken by the star to evolve
from to its present position, hence for these

stars the locus is equation (27?)
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A +0UY (27)

The time to reach V* is short compared v/ith
the age of the star vihen it is about of its age
T/hen travelling along O'? , thus about '/?2 of its
age travelling a 1 o n g < The point 6" vrhere the
locus becomes equation (27) is thus given by the
intersection of this (2?) with equation (31) with

-C/T1 1,

The locus of the stars will thus be the two
lines given by (21) and (31) beyond. * and 6) and
the smooth cuinre that has these linesas itstangents
at and * Dbetween and 6"

These lines, curves and points have been
dravm as figure 6. The age we have taken for the
distribution is [-2ai-(i" years " 6 6'f) or
using Helmholtz Kelvin units. This diagram we see
¢ ompares very favourably with the diagram obtained
from observation of BEGG 2264 or KUG 6330, and the
track is also very similar to the one given "y Hayashi
in his diagram.

We have already stated the importance of
obtaining the correct stellar distribution from any
theory concerning the gravitationally contracting

stars. We shall thus now find the distribution working
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on the Hayashi hypothesis for the evolution. The
method we shall use is the graphical one described in
an earlier discussion in this chapter on distribution,
ie have taken the stellar distribution to be given by
the interception points of the locus of the stars at
any given epoch with the evolutionary tracks for given
masses. The evolutiomiry tracks for sriasses, O y
/FOll(p , , XZi*"Q and we have taken
from figure 2 of Hayashi's paper, while the locus has
been taxen at from figure 3 of the same
paper (or our figure 6). These interception points
are exhibited in figure ?.

We can again see, by comparison with the
observational results of Talker and Whiteoak, that
this distribution agrees better with the observational
one ttmn the distribution we obtained by assuming the
simple evolutionary pattern described by Su-Shu Huang,

and is indeed very similar to the observational
distribution.

Hence we can conclude that Hayashi's theory
agrees very well with the observed data anu so his
theory is a great advancement on all previous woik on

this phase of stellar evolution.



hio7 U!l<d-lbaCGon OV ito™3 Csdad

142.") J I*11 ¢.,2)K.6/:/c'/r/e
Y R0A0 &MT%

1 o 1« i t-f

Ac u.v~ i - n i, E*3Ui-.t  j .



4/

in this chapter we have shown the importance
of choosing proper initial conditions for a stellar
cluster by means of an illustrative exanple. Hayashi’s
theory bears this out, ho having alterod the initial
evolutionary path of a star, and indeed it appears that
Hayashi’s results give a fairly good approximation to
the actual observed evolution* We have also found the
distribution of these pre-main sequence stars working
on both Hayashi’s theory and on the older theories
described by 8u-Shu Huang. It appears that Hayashi's
gives a fair aipproximation to what is observed while

the other does not.

References

[1"  Walker H.F., Ap.J* Suppl.2, p.pGS, 1956.

[2} Walker H.F#, Ap.J. 125, 656, 1957.

[*3] Walker M.P. Ap.J. 150, 57, 1959.

4~ W hiteoak J.B., W.A.S» 125, 245, 1961.

[5] SchwarzsGhild M., 'Stn”cture and evolution of the
stars*, Princeton U.F., 1956.

Huang b.D., Ap.l * 13", 17, 1361.

Cbandrasekliar S., 'An introduction, to the stiw’y of

stellar structure', Ciiicago 1.a., 1959.



[8]
isl

[10]
LIX
[12]
[13]

Henyey, Lelevier and Levee, Pub.A.S.P,6%, 154, 1955.

Russell H.N. and Moore G.E., 'The masses of thestars',
Chicago U.P., 1940.

Hayashi C., P.A.S.Japan. 3%, 450, 1961.

Varsavsky C.M., Ap.J. 152. 354, 1960.

Joy A.H., Ap.J. 110, 424, 1949.

Hayashi C. and HosM R., P.A.S.Japan. 17, 346, 1961.



CHAPTER 5
The blue stars beyond the main sequence turn-off

point in the Hertzsprung-Russell dlaftram

Many astrcaaosere and writers of literature on
the Hertzsprung-Russell diagram (one of the most commonly
presented forms for this diagram being the colour-
magnitude diagram) as related to stellar clusters have
commented on the presence of stars in a region of this
diagram where, according to present-day beliefs, there
should be none. This is the region to the left, or
blue aids, of the turn-off point from the main sequence,
the actual stars forming a pattern corresponding roughly
to a continuation of the main sequence in this region,
though not so thickly populated as the actual main
sequence. The presence of these stars are very easily
detected in the globular cluster MB and in the galactic
clusters MG? and KGC 7789. The first two of these
clusters were observed by Johnson and Bandage £1,2 j
while NGC 7769 has been observed by Burbidge and
Bandage [ 3], Stare such as those under discussion have
also been observed in the following galactic clusters,
though not as clearly as in three clusters mentioned
initially. Coma Berenices [4,3] * Praesepe [G,7j and

possibly in k end Persoi Ls]



Viurf-ous suggestions have been proposed from
time to time as to the cause of this phenomena but, as
far as we can find out, none of these suggestions have
been Investigated with any detail. Consequently nothiig
definite is known about the extent of the agreement
between theoretical predictions based on these sugges-
tions and the observed facts. As things stand at the
moment we are not in a position either to accept or
reject any of the proposed theories.

One of these suggestions is that the formation
of stars in a stellar cluster is a continuous process
and not confined to any particular epoch in the
tiistory of the cluster. As a result, stars in such a
cluster have a range of different ages. A direct
consequence of this is that stars of similar mass and
composition have consumed varying amounts of hydrogen
and are thus in varying stages of evolution. Hence
some stars with a given mass can occupy a position on
the main sequence while others with a similar mass
have evolved to the right of this main sequence. There
could thus be a turn—eff point defined by the evolution
of the older stars together with a less heavily
populated continuation to the main sequence beyond

this point consisting only of the younger stars. It
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is the purpose of this chapter to investigate whether

a cluster formed in a continuous process as suggested
above vail have a Hertzsprung-Iiussell diagram similar
to what is observed in the above mentioned clusters, or
not.

Clearly what we have to do is to produce a
theoretical Hertzsprung-Russell diagram for a stellar
cluster in which the stars were foimied at various
epochs, and hence now possess a v/ide range of ages.
This diagram must then be compared with the one we can
draw from observations of one of the clusters under
discussion. We shall assume that v;hile the formation
of stars in a cluster is taking place, stars are fonned
regularly. That ie, a new star will appear regularly
after a fixed period of time has elapsed. The problem
of constructing a theoretical Hertzsprung-Russell
diagram is now much simpler than if formation of the
stars was a random process in time. We now have to
find the position in the Hertzsprung-Russell diagram
of stars, v/ithin a given range of masses, whose ages
are determined by the regularity of their formation.
Our problem is thus to calculate the luminosity and
effective temperature of any star with a given mass,

its age also being known as we have fixed the epoch

of its formation.
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Professor Hpyle has recently published two
papers "The ages of type I and type II sub-giants" [9]
and "On the main sequence band and the Hertzsprung gap"
(IQI. Both of these papers contain valuable infoz"mation
abolit the variation of the luminosity and effective
temperature of stars with given masses as they evolve.
We shall make use of the information contained in both
of these papers when we calculate the position of stars
in the Hertzsprung-Russell diagram at different epochs.
Ko attenc¢)ts have been made by us to recalculate or
modify any of these results; they have been taken as
published by Hoyle.

In tables 1,2 and 3» which show the evolution
of three different types of stars, the values of the
luminosity and effective temperature at any given time
are taken from Hoyle's papers while the other quantities
involved have been calculated by us, making use of
Hoyle's results if necessary. According to Hoyle the
first row in each of these tables gives the value of
the quantity concerned when helium burning begins in
the stellar interior. 1In the second column we give '
the age of the star at any stage using the stated time
for helium burning to begin as a unit. All logarithms

in these tables have been taken to base 10.
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Using these tables we can clearly plot the
logarithm of the luminosity against the logarithm of
the temperature for all the values given in these
tables. The resulting diagram would be the evolutionary
track in the Hertzsprung-Russell diagram of the
particular star concerned. FEach point plotted on this
track will have associated with it the time (whose
value can be found from the tables) that must elapse
before a star with the given properties can evolve to
this point. These evolutionary tracks have been drawn
and the points associated with the times given in the
tables have been indicated. They are exhibited as
figures 1, 2 and 5. For convenience, in all of these
diagrams we have taken the luminosity of the sun as a
scale factor and have thus plotted against

(with obvious notation), hence reducing the
luminosity scale to more convenient numerical values.
The main sequence and a continuation of the evolution-
ary track beyond the helium burning stage are also
included in these diagrams. More will be said about
these later.

We see immediately from these three diagrams
that the evolutionary track in figure 1 is very

different fix>m the tracks in figures 2 and 3* 20r
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this reason we shall now divide the investigation into
two parts, one for tracks such as shorn in figure 1
which is for masses greater than one solar mass, and
ono foi’ the combined fignros 2 and 3 which apply for
masses in the neighbourhood of one solar mass.

In the second of the two paper's mentioned
above, Irofessor Hoyle has comparod, by means of a
diagram, the evolutionary tracks of stars vdth various
different masses. Hoyle has used the bolometric
magnitude as ordinate instead of the logarithm of the
luminosity as used by us. The connection betv/een the

two quantities is

Mw = -2 - 0)

as can be seen in Allan's 'Astrophysical Quantities'
[11" for example, where Mfeol is the bolometric
magnitude and L ¢ is the solar luminosity.

Hence the bolometric magnitude used by Hoyle
is essentially the same, apart from added constants,
as the logarithm of the luminosity.

80 as to be able to uso the same scale for
all the tracks to be compared, Hoyle has taken the
luminosity at zero age and effective temperature at

zero age of the stars in question as a scale factor



for the tracks. For tills reason all the tracks originate
from the same point (the origin) in the diagram.

This diagram has been reproduced by us and is
included as figure 4. It underlines the differences,
mentioned above, between the track of stars comparable
in mass viith the sun and the track of stars heavier
than this. It also shovrs that the evolutionary tracks
for all masses greater than the solar mass are
exceedingly similar to each other, irrespective of mass,
and differ only in their zero age position on the main
sequence. This suggests .that for this type of star all
we have to do to move from one track to the track of
another star is to slide the initial track along the
main sequence until the starting point is in the proper
place.

In a paper entitled '"The transition from
hydrogen burning to helium burning in a star of mass
Emil ,1. Polak [I12% has calculated the values of the
luminosity and effective temperature of a star of five
solar masses for given ages as evolution progresses.
The evolutionary track so obtained compares favourably
with the track for a mass calculated by Hoyle
and exhibited as figure 1 by us.

There thus appears to exist strong evidence

for assuming that the evolutionary tracks for any mass
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significantly greater than one solar mass will be
qualitatively similar to the evolutionary track for any
other mass in this range, but differing appreciably
from the evolutionary tracks for a star with a mass
similar to the sun.

As already mentioned we shaJ.l now consider
these two mass ranges separately and attempt to construct
a theoretical Hertasprung-Russell diagram for each of

them in turn.

Masses significantly greater than one solar mass.

In order to constract a theoretical Hertzsprung-
Hussell diagram we require information about the
luminosity and effective temperature of stars for a
range of different masses. ' So far, we are only in
possession of this information for one mass, 3 89 solar
masses as given in table 1. We thus require some means
of generalizing this information so th t we have
loiow'ledge about other masses as well.

We have already pointed out that, to the best
of our knowledge, the evolutionary tracks for all
masses in the range nov? under consideration are
qualitatively similar to each other. Thus for any

smaller mass range completely included in this mass

range (such as we would have for the stars in the



region of the main sequence tnm -off point) the
evolutionary tracks are hound to be similar to each
other, the only difference between them being their
actual position in the diagfam, the greater the mass,
the further along the main sequence the track would
join the main sequence. The time required by a star
to evolve along any given part of the track would also
obviously depend on the mass (aason*: other things
possibly). Thus, before we can obtain the information
about the luminosity and effective temperature, we have
to find the variation in the time scale and also the
position at which the track leaves the main sequence
for all the masses concerned.

In a paper entitled '"Main sequence stars'" by
Hazelgrove and Hoyle [ 1?] values are given for the
mass, luminosity and effective teiqperature of main
sequence stars. For the mass range we are interested
in, namely masses in the region of 3 89 IIgo (which is
the mass for which the evolutionary'track is known)

wo find the following quantities given.
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Mass ( /0"gms) luminosity (/o”"”"rg/sec) Effective temperature

5.7407 5.8565 15090
5.8542 7.4701 15960
7.7584 1.2027 X 10 18410
11.841 4,4020 X 10 21850
17.751 1.6594 X 10" 26950

This infozaiation allows us to find two of the
facts we require foi’ the construction of a Hertasprung-
Russell diagram. The two columns relating luminosity md
effective temperature obviously allov; us to plot the
main sequence into any diagram we wish to construct
for this range of masses. As we expect, we find that
the relation between luminosity and effective temperature
is fairly close to the rough relation usually used for

this pax’t of the main sequence of

L L t 7 7 4t CotsiMirt

From the above information we can also find
a relation between mass and luminosity in the region of
4 solar masses, that Is in the region of .

We can write
_{01' L - VAN n A VAN



for this small region, where A and 6 do not depend
on tto luminosity or the mass and can thus be treated
as constants for this purpose. Using the Information
given above we can clearly evaluate these constants for

the required range. These turn out to be

Hence in the region of 4 solar masses, which is the
region we are interested in, the relation between

luminosity and mass for stars on the main sequence is

i-o”r/. = 30~ <A <A (2)

We note that this a'tcees very well with the rough
relation given by Allen [ill for this part of the main

sequence with masses greater than the solar mass of

L

As vre have already concluded that the
evolutionary tracks for all the stars in this mass
range are similar to each other in shape, differing
only in position, a relation similar to the above
equation (2) must hold for any sat of equivalent points
on all the tracks, the only difference being in the

constant Q ¢ This is so because on moving along a

track wo keep the mass fixed and to move to any
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equivalent paint on any track we just add the appropriate
amount of luminosity and effective temperature, tliis
amount being the same for all.tracks as all the tracks
are similar.

Thus for any set of equivalent points (for
example the helium burning points or the main sequence

turn-off point) a relation of the type
Le" L - A'A5 n J-Q (5)

exists. For the special case of the join with themain
sequence the value of fi becomes -d7- Zi"”

By the use of equation (2) we can clearly
obtain the point at which the evolutionary track of any
given mass leaves the main sequence (since the equation
gives the star luminosity and the main sequence is known,
thus giving a unique point). Hence the shape and position
of the evolutionary track for any given mass in the
range now under consideration is nwr known to us.There
only remains for us to determine the position of astar
on one of those fixed evolutionary tracks after a given
period of time has elapsed since the formation of the
star.

In the evolutionary track already determined by

us for a star with a mass 379 ~0 ¢ points have been
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inserted indicating where a star has advanced after the
passing of the period of time shown, the unit for this
measurement of the time being taken as the time required
before helium burning begins. In view of our assumption
about the similarity of all the evolutionary tracks
concerned it follotfs that the ratio of the time taken

to reach any specific point on a track to the time taken
to reach any other specified point will be the same for
all tracks. In particular, the time taken to reach a
given point on one track, using the time for helium
burning as a unit, must be the same as that required to
reach a corresponding point on another track (now using
the time for helium burning on this track as a unit of
course). In other words, if we take the time for

helium burning as an unit of time for a track, the
relative position of astar on any track (in particular
the track for the mass 379%)) would be the same after
any interval of time oc , where X. is expressed in

the units of time defined above. Hence the position

of a star on a given evolutionary track after a given
Interval of time can be determined if we can obtain the
unit of time we have defined, that is the time required
before helium burning begins, for this particular track.

Clearly the time required by a star to reach



any given
means the
a certain
tional to

its mass,

point on its evolutionary track, which really
time required by a star to bum, or transform,
part of its interior, is inversely propor-
the amount of material to be burnt, that is

and directly proportional to the rate at which

burning takes place, that is its luminosity, hence

fc = c. U («)

where obviously is the time required, M is the

stellar mass and L its luminosity, C being a

proportionality constant.

connects

its mass,

We have already obtained equation (5) which
the luminosity of a star at any point with

which was

/[. = B i7 -t /3

which can clearly be written as

where *

L = Ti1 W

13
is another constant whose value is O

Substituting this into equation (4)

where *

nr>/7

is another constant with the value ANIN .



Ww; for the mass tio the time taken by
a star to reach the helium burning point is given in
table 1 as h2”%iil/o years. Inserting this information
into equation (5) gives us the value of the constant A’

as

h (6)

and thus equation (5) may be written as

h - / fTol A2 07N0N . (7
[ X-0» z"r'
vs;here denotes the mass of the star in solar units

as in the previous chapter, the time now being given
in years.

Thus, to find the position of a star with a
given mass in the liertzaprung-Russell diagram at any
given epoch after its formation we proceed as follov/s.

By means of equation (2) we determine the
point on the main sequence from which the evolutionary
track of the star originates. The shape of this
evolutionary track is the same as the shape of the
track for a particular mass given as figure 1 and so
the evolutionary track of a star is completely
determined. The actual position of the star is scmie—

where along this track. Using equation (7) the unit



of time as defined by us for this particular track,
which is the time required by a star to evolve to the
helium burning stage, can be found, The age of the
star in question can now be expressed as a fraction of
tills unit of time, The position of this star will now
correspond exactly to the position of a star of mass

3 S9 /io on its ovm track after the same fraction of
the unit time has elapsed (the position of a star with
mass 3'S9 being known from figure 1 and table !)e
Hence we can plot the position of any star vdth a given
mass at any epoch after its formation. We are thus in
a position to construct a theoretical Hertzsprung-
Russell diagram if we can choose suitable masses and
ages for the stars.

What we require is the Hertssprung-Russell
diagram for a stellar cluster in which the stars are
formed at regular intervals of time. We must choose
some value for this set interval if we are to
construct a diagram. We have chosen an interval of

years which appears to be a reasonable time,
about the same length of time as is estimated a star
of mass comparable to what we arc now considering
requires to condense from a very low density to its

position on the main sequence. Hence we have a new



star forraed directly after the already foiiaed star has
attained stability on the main sequence. We have
coiifsidered ten stars to be formed in this manner, the
total period of time during which formation was talcing
place, that is the spread in age of the cluster, is
thus 36 years (there being 9 periods in between
10 stars).

We have more information about the mass
than any other stellar mass and so it is reasonable to

take the mass distribution for the etai-s in the

neighbourhood of . We have taken a set of twelve
masses, 377" , Z-~Zo , U
41 » Lt-a/’YQ « and

The time required before a star of mass
evolves to the helium burning stage is about
years and the time required by all the above masses to
evolve to the same stage must be of the same order.
As the region we are interested in is near the main
sequence turn-off point, just before the helium burning
stage is reached we take the ages of the ten sets of
stars formed to be [/ A j

hooifo"j — - - 72
By calculating the luminosity and effective

temperature of each star under the above conditions we



obtain a set of 120 points for the construction of the
Hertzsprung-Hussell diagram.

Table 4 gives the results of the calculation
for tte unit of tiraa, as defined by us, for each
individual laass. The equation used for this purpose is
equation (7)

Jjz 7 077109

Table 5 gives the value of the main sequence
luminosity for all the values for the mass of the stars
listed above. The equation required for this is

equation (2),

- mOS' "6/

Finally table 6 gives all the stellar ages
mentioned above as fractions of the unit of tine defined
by us for each individual massand given in table 4.

With this information ife should be able to
construct the Hertzsprung-Russell diagram along the
lines already mentioned (that is by plotting each star
individually using the described methods).

When we attempt to do this however we find,
as is reasonable to expect, that some ofthe above

stars have evolved beyond the helium burning point and
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thus have an age, expressed in the units described,
greater than unity. No information has been given
about this stage in the evolution of a star and we
were unable to find any results about this part of the
evolutionary track. This region is not the one we are
primarily interested in during this discussion as we
are mainly concerned with the observed 'continuation¥®
to the main sequence. It would however give the
constructed diagram a more 'completed®* look if we could
include a few stars in this region past the helium
burning stage. Consequently crude efforts have been
made by us to evaluate some of these points. This
method depends on knowing what the Hertasprung-Russell
diagram for stars all of the same age in this region
looks like.

Arguing from very general grounds it is
obvious that no violent changes will occur as helium
burning begins as this burning will be very slow at
first. Consequently we would not expect any discon-
tinuities or sudden changes in direction in the
evolutionary track. We shall thus assume-that the
track after helium burning is a smooth continuation of
the pre-helium burning stage. (This is not too

improbable an assumption as no reason exists for



supposing G decrease in luminosity when helium burning
begins and as this evolutionary track must clearly
intersect the observed locus of stars having a constant
age it cannot move upwards too rapidlyj thus broadly
speaking the track must be a continuation of the pre-
helium burning part.)

What we now have to do is to determine hov; far
along tills track a star has evolved in a given time.

Now the locus of stars of a given unique age
but different masses is well known from observations of
steller clusters. As the age changes so does the
position of this locus, but not its shape. The
position of a star on the evolutionary track is clearly
given by the intersection of its own evolutionary track
with the constant age locus mentioned above.

Thus if we can determine the position of this
constant age locus, wo have solved the problem. But
the position of stars for ancy age up to the helium
burning is given, and the lower end of the locus is
thus fixed by just joining the position of the masses
at the required time. So we obtain the position of
the stars beyond helium burning point.

Vie have included figure 5 in order to clarify

this method. A is the locus of stars with a unique
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age. The three other curves ai*e the evolutionary tracks
for three stellar masses. and @ are the positions
of tvro of these stars at a given epoch, A8 must pass
through these points. The interception of with
the third curve, , gives the position of a star of
this moss at the given epoch. Repeated application of
this method gives us the position of any star beyond
the helium burning point at any epoch.

We can now plot the theoretical Hertzsprung-
Russell diagram for all the stars. The evolutionary
track for each individual mass is plotted using table 5
to give its position and its similarity with figure 1 to
give its shape. The position of a star with the above
mentioned ages are plotted making use of the corres-
pondence between their position and age using the helium
burning age as a unit.

The Hertzsprung-Russell diagram so obtained is
given as figure 6. We leave any discussion of this
diagram until a later part, when we shall be able to
compare it with the diagrams constructed from observa-

tional facts about the stellar clusters in question.

Masses in the neiishbourhood of one solar mass

We have noted that the evolutionary tracks for
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etars in this wasti ran, o are cliffex'snt from the tracks
in the other ness range just discuBsed. We see however
that fitures 2 and 5 are fairly similar to each other
and we shall thus only consider stars evolving along
ono of these tracks, ficnre 2. The results obtained if
we v'ers to use figure S would evidently bo very similar
to those we nhall now obtain.

As before wo can assume that the evolutionary
tracks are homologous to each other for a small mass
range on either side of the mass of I1-*"9 t*Q (whose
evolutionary track is given ae figure 2). Hence we can
employ the eama methods to obtain the theoretical
Hertzsprung-Kussell diagram for this mass range as was
described in detail for the last mass range.

From the paper by Haselgrove and Hoyle dU j
the inforrsation about the main sequence for stare in
this mass range in as follows

. . . E ffective
Mass ( to”KS) Luminosity ( /b*V«y</jéc) temperature (”)

2.5592 9.8696 7030
2.35*5 6.3535 6565
2.1699 5.1202 6390

1.9963 2.6958 5680
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As the whole time scale is now changed, the
time that elapses before each generation of new stars
is formed (the interval hetifeen the ages of the stars)
must also he cliangea.» If we were to use the same interval
of time as we hadbefore, the whole time span of the
formation of twelve stars would now only be about 1/500
of the time required by any one of the stars to evolve
to the main sequence turn-off point. Per this type of
star we have thus taken the interval of time between
each generation of stars in the cluster to be 3</0”
years, and their actual ages in the region of interest
now becomes -g 9/ A
and S-9"r y/0* years. The total span in time while
generation of stars is taking place in the cluster is
now about 1/5 of the age of the eldest stars in the

sets we have taken.

For tliis case we have taken thestellar masses
to be 0 %, 09 0 , ;09 , i, I[I- and | 3
solar masses.

Table ? gives the information connecting mass,
luminosity and the unit of time. It is similar to a
combination of tables 4 and 5 for the previous mass
range and its derivation was completely analogous to

the derivation of tables 4 and 5 of the previous case.
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Table 8 was obtained in a similar manner to
table 6 and contains information about the ages of the
84 stars mentioned above, the unit of time in each case
being the time required before helium burning begins,
as given in table ?e

Proceeding in a similar manner to what has
already been described in connection with the previous
case, we can now construct a theoretical Hertzsprung-
Russell diagram for the sat of stars given above. This
diagram is given as figure 7. A discussion of this
diagram is also left until after we have given the
observational data, when comparison with these becomes
possible.

In both this case and the previous one, if we
had constructed the diagram around any other masses but
the ones we have taken, the diagrams we would have
obtained would clearly be similar in appearance to the
ones we have actually obtained, the only difference
would be in the absolute position of t"e stars, not in

their position relative to each other. Hence we are

justified in concaring the diagrams we have obtained
with diagrams constructed from observational data if we

take no account of any positional differences that miglt

exist.
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The observational data

Eoferenoes have already been given to some
stellan clustens in which the phenoraena under discussion
can be ODserved. Ue have reproduced the colour-magnitude
diagrara of ti? of these clusters that show the stai’ under
consideration very clearly. These are, the globular
cluster H3 [2] and the galactic cluster M67 £|J and
the reproduced diagrams are figures 8 and 9. However,
as is the ease with all observational data, these
observations are of tho apparent visual magnitude, ,
against an estimate of the colour index, S~J , and not
of the luminosity against effective temperature as the
plot theoretically produced by us is.

In another chapter (chapter 2) we have iescribed
the method employed to convert the apparent magnitude
( \/ ) and the measurement of the colour index { &~V )
results into the theoretical logarithm of the luminosity
( ) and logaritlm of effective temperature ( T)
results, be will however “Ive a brief account of the
method here as this vriil be more convenient to the
reader than having to refer back constantly to a

previous set of independent work.

The conversion from the measurement of the

colour index, 0~\/ , to the effective temperature is
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carried out by means of tables given in Gchwarzschild's
book "The structure and evolution of the stars" [14] .
These taolos also give us the boloaetric correction,ft-C

at any effective temperature.

The bolometric magnitude is then given by
~ \% A C (8)

where " hoi is the apparent bolometric magnitude

and |/ the apparent visual magnitude.

The absolute bolometric magnitude is now given

li koi = Nhoi M

where denotes the distance modulus.

This distance modulus will be given as part
of the data with every set of published results on
observations of stellar clusters.

The relation

M b o | - Ava g - (10)

whore i-fi) denotes the solar luminosity, clearly
enables us to determine the logarithm of the star
luminosity.

As we are not actually interested in the

absolute position in the Hertzsprung-Russell diagram

of the observed stars, only in the shape of the pattern
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they fom ,vieneed not, forthe present purpose, reduce
the values ofthe stellar magnitude that havebeen

observed to the absolute magnitude scale, we can just

take

tl - "bol " Cons™"'t (11)

choosing the value of the constant in such a way ttot
the numerical values of fit on a suitable and
convenient numerical scale when we plot the Hertzsprung-
Russell diagram. The logarithm of the luminosity

(again non-absolute) is given by

tl ~ (12)

In converting the observed diagram into the
diagram using and /' we have not actually
carried out the above conversion for all the stars in
the cluster, ive have taken selected points on the
boundary of the region occupied by stars, plus any
star that appears to be of interest and converted them
in the described mannex’ to the A >'""Qc”™ diagram.
This we have done for both the above mentioned stellar
clusters, MS and M6?. The results are given as
figux'68 10 and 11. borne of the more interesting
points have also been inserted into figure 7»

Actually in these figures we have not
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converted the apparent visual magnitude, to L
only to the quantity M defined in equation (11) above.
¥e have then chosen the scale for this quantity M to
bo 2my times the scale wo have used in constructing the
theoretical diagram in -"0" . By doing this we
have avoided the necessity of dividing each value for

the stars by 2.5 while at the same time producing a
diagram that has the same ordinate scale as the theoreti-

cal one.

Comments on the diagrams and comparison

of results.

The Hertzsprung-Eussell diagrams constructed
from observational data about the stars in the tifo
stellar clusters M5 and M 67 (figures 10, 11) show a
distinct turn-off point from the main sequence. There
is no indication of the existence of a Hertzsprung gap
and the width of the star bands in all the regions of
the diagram are roughly the same. That is, the main
sequence, giant branch and the main sequence
'continuation', (which we are interested in) all have
roughly the same spread. On the other hand we note
that the main sequence and giant branch are both very

thickly populated in comparison with the main sequence
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'continuation'. iliese are the main points that are
evident in the diagram constnicted from obseivationai
data and these are thus the points which any theoretic,ally
constructed diagram should possess if it is to give a
good representation of the facts.

The diagram we have constructed for stars with
a mass greater than one solar mass, figqire 6, does
exhibit a continuation to the main sequence similar to
what is re<iuired. This continuation is not as extended
as the one found in the obeoxvational diagram, but this
could be because we have allowed creation to continue
for too short an interval of time. On this count we
must conclude that our theoretical diagram is in fair
agreement with the diagram constx-ucted from observations.

In this theoretical diagram however there
exists a very distinct Bertzspming gap, extending
roughly from to f . This is in
complete disagreement with the observed facts.

The width of the stellar band along the
main sequence appears to be fairly uniform and compares
well with the observed main sequence, but there is much
more spread in the giant branch and so this again is in
disagreement with the diagram produced from observatioial

data. The *continuation' to the main sequence is



comparable in width to the observed continuation.

In the theoretical ditigram eil three branches
nentioned above are roughly equally populated while in
the observational diagram the 'continuation' is very
sparsely populated compared with the other two branches.
Thus on yet another point the theoretical is in complete
disagreement with the observational data.

Hence the only sensible conclusion we can come
to is that the theoretical Hertzsprung-Russell diagram
constructed by us for stars with a mass greater tlian
the solar mass, and exhibited as figure 6, does not
agree with the observed facts.

We now turn to the second theoretical diagram
constructed by ue, the one for stars with a mass in
the neighbourhood of one solar mass; this was exhibited
as figure 7* No Hertzsprung gap appears to exist in
this diagram, so on this point we appear to have
agreement ifith the observational diagram.

Again the spread of the star along the giant
branch is much vider than spread along the main sequence
and 80 we have a disagreement here between observations
and theory.

The most impoiiant failing in this second

theoretical diagram hcn/ever is that the 'continuation'



to the main sequence wliich is the phenomena v/e have
been trying to explain, does not exist. Indeed, there
is no trace of even a tendency in the diagram for the
formation of such a continuation.

There can thus be no doubt at all about our
conclusions regarding this diagram for masses in the
neighbourhood of one solar mass. The theoretical
diagram does not meet with the requirements of the
diagram constructed from observational data and so the
observed facts could not be caused in the way proposed
by the theory.

Thus neither of the two possible theoretical
Hertzsprung-Sussell diagrams appear to agree with the
diagram produced from the observed facts and hence it
is true to conclude that the 'continuation* to the
main sequence observed in some clusters is not formed
by the existence of a spread in the creation epoch of

the stars in the cluster.

The allowable spread in the ages

of the stars

We have concluded above that the Hertzsprung-
Russell diagrams we obtain by allowing a spread in th(Ie

formation epoch of the stars in a cluster do not agree
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I''ith the observed dtagrams of such clusters. Hwever
it is clearly ridiculous to suggest that ell the stars
in any particular cluster were foxwed at exactly the
ceme instant and hence, inany normal cluster, there
Euet be some sijrestd in the ages of the stars. It will
thus be interesting to investigate how large a spread
con be allowed before discreparicios appear between the
obseived cluster diagram and the one obtained allowing
for the spread in ages.

Clearly we can deduce this information from
the diagrams we have already constructed. All we have
to do is to find which of the stai*s lie outside the
boundary of the regions occupied by stars in the
observational diagram and find which of these stars is
the closest in age to the oldest starsmin the set. The
'allowable time spread' would then be the difference in
ages between these stars. In fi{piras 6 and 7 we have
nu.mbered one set of staxNS to show which one is the
first to leave the region occupied by the,observed
stars.

for figure 6 this turns out to be the fifth
star, and as the time interval between each star is

U< years, the 'allowable tiro® spread' is thus

or
[ é>'i/i years. The age of the eldest star la this
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set is about /5% to‘g years and so tho 'allowable
spread' is about 12% of the age of the eldest cluster
members.

For figure ?» (stars with mass in the region
of one solar mass) again the star closest to the
boundary of tho region occupied by observed stars turns
out to be the fifth star foiwed. 1In this case the
Interval of time that elapses before each star is
formed is Sk/o years and so we now have an 'allowable
time' of l-i-iioa years. The age of the eldest star
noT” however is years and so in tills case the
greatest spread that can be allowed is I3% of the age
of the eldest stars, a vezyr similar number to that
obtained for the previous case.

We can thus conclude that a spread in the
epoch of creation of the stars in a stellar cluster of
about 10 of the age of the eldest stars in this
cluster can be allowed before any discrepancies from

tho usual diagrams observed for clusters become

apparent.

Conclusions

From the comparison between the theoretical

Hertzsprung-Russell diagrams we have produced and the
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diagram obtainad from obaorvational data we have
concluded that it im not possible to produce the
observed continuation to the main ooquence by allov/ing
a spread in the .formation epoch of the stars, and hence
the presence of thin continuation does not indicate the
bre-aking dora of the hypothesis that all stars in a
cluster are “proxlmately of the sane age, a far more
satisfactory state of affairs than If we had been able
to solve the origin of those blue stars at the eirpense
of dropping the hypothesis.

We have also sho’Am that a spread in age of
about 10f; of the age of the eldest stars can be allowed
in any cluster before any discrepancies with the normal
observed cluster diagrams become evident.

As for the cause of the blue stars forming the
continuation we have been discussing, we note that our
conclusions do not exclude the possibility that the
great majority of stars in a cluster are all of the
same age while a few stars of a much lesser age could
form the continuation. Other suggestions that have
been offered as the cause of these stars are that much
more mixing than normal takes place in their interior
and so the hydrogen that is being consumed at the

centre keeps on being replenished by supplies carried



2-3 7

in from the outer region. This allows the star to stay
on the raain sequence for a much longer period than
usual. It might also he possible that these stare, in
some manner, are accreting material and are tins
Increasing in mass. They have not consimod the required
amount of hydrogen to evolve off the main sequence
because the major part of the star is a comparatively
late arrival, as it was accreted.

This still allows an uncertainty about the
cause of these stars that cause the continuation to the
madn sequence in the Ilertgsprtmg-Russell diagram but by
means of this work we hope at least to have disposed
of one possibility, while at the same time strengthening
the belief that every stellar cluster possesses a
unique age tliat can be determined by studying the turn-

off point from the main sequence.
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The relation between mass and time for helium burning for

masses in the region of 4 solar masses®

Maas

(solar units)

3.0
3.5
3.7
3.8
3.89
4.0

Time X 10® Mass
(years) (solar units)
4.1

2.22 4.2

1.59 4.3

1.42 4.4

1.34 4.5

1.28 4.6

1.21

TABLE 5

Time x 10®

(years)

1.15

1.09

1.04
992
95
91

The relation between mass and lui(iinosity in the region of

4 solar masses.

Mass

(solar units]

3.0
3.5
3.7
3.8
3.89
4.0

2.14
2.34
2.42
2.45
2.48
2.52

Mass

(solar units];

4.1
4.2
4.3
4.4
4.5
4.6

2.56
2.59
2.62
2.65
2.69
2.71
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TAHE -
Relation between the mass, Ivunlnoeity cn main sequenoe,
and time for helium burning for a star in the neighbour-
hood of : aolai* mass.

ISaes (solar unite ) Log (% ") Time (years x 10®)
0.8 —«548 31.8
0.9 -.293 19.9
1.0 — 064 13.0
1.09 0.123 9.23
1.1 0.143 8.91
1.2 0.332 6.29
1.3 0.505 4.57
TAHE s

Specified ages of attirs as proportion of nelium burning time
7
AME PHOPORIKH PCE STATED 1As s (SOLJIR UNTTS)
1o®yrs j o.s 0.9 1.0 1.09 11 1.2 1.3

9.24 1 290  «464 711 I 1.04 1.47

8.94 281 449  .688 967  1.00 1.42 —
8.6 4 272 434 665 935 970 1.37 -
8.34 262 419 641 903 936 1.33 —
8.04 253 .404 618 870 902  1.28 —
7.74 243 389 595 838 869  1.23 —
7.44 233 374 572 805 835 1.18 vt
7.14 224 359 549 773 801 1.13 —
6.8 4 215 344 526 740 768  1.09 1.47
6.54 206 329  .503 708 734 1.04 1.43
6.24 196 314 480 675 700 992 1.37

5.94 .187 .298 457 .643 667 1 .944 1.30
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Reprinted from The Observatory, Vol. 82, No. 931, pp. 247-250

PRE-MAIN-SEQUENCE STARS

By W. H. McCrea and I. P. Williams
Royal Hollozuay College, Englejield Green, Surrey

Various observers have discovered some apparently very young galactic
clusters. In many of these, stars fainter than some particular luminosity Lc,
say, lie to the right of the main sequence in the HR diagram. Naturally, this
is interpreted as showing that these stars have not yet had time to condense
on to the main sequence. Indeed, if 7gcis the calculated time for gravitational
contraction of a star from vanishingly small density to luminosity Lc on the
main sequence, the value of 7gc is found to be in fair agreement with other
estimates of the age of the cluster concerned.

Had all members of a cluster started, at one and the same epoch, to condense
from vanishingly small density, then those now having luminosity fainter
than Lc would be expected to lie upon a certain calculable locus in the HR
diagram. However, in the cases studied, the stars concerned are found to
lie, not on this locus, but much nearer to the main sequence. That is to say,
the gravitational contraction of the fainter stars in the cluster appears to have
progressed much further than is possible within the lifetime of the cluster.
All who have written on the subject regard this as presenting a very serious
problem, and some very drastic solutions have been proposed. Su-Shu
Huang (S.S.H.)* has usefully reviewed the situation; he gives references to
the literature of the subject.

We wish to point out that it is not possible to say whether there is a real
difficulty without knowing more than we do about the early stages of the
process of formation of the stars concerned. We have to contrast the present
problem of stars condensing on to the main sequence at its lower end with
that of stars evolving off the main sequence at its upper end. In the latter
problem the initial state is well-defined. 1In the case of condensing stars, on
the other hand, we do not yet know what have to be treated as initial conditions.

The situation may be illustrated by the example we are about to give. This
is intended to support the conclusions to be stated below; it is not suggested
that it arises from any particular theory of star-formation. In fact, we adopt
the treatment given by S.S.H. and, merely for the sake of argument, we shall
exhibit the consequences of supposing that at some epoch all the stars
concerned have the same mean density.

Following S.S.EL, we assume that a star of mass./&A undergoing homologous
gravitational contraction towards the main sequence has luminosity L when
its radius is R, where

(i)
Here a, p are constants; y//, L, R, as well as the effective temperature 7 and
the mean density p are all measured in solar units. It then follows from (i)
that the time ¢ required for the star to contract from infinite radius to

radius R is

T= (0<j8<i). (9))
This measure of r is in the unit of the Elelmholtz-Kelvin (HK) time-scale
for the Sun. The definitions of p, 7 in the present units are given by

7,=7"274 A~=~TA3
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5.5.H. adopts the values
a=5"'4, /3=079. C))

Using (4) in (i)-(3) we derive

log L=5"'I4 log”* + 0263 log p,
log r= I-121ogy/+0%233 logp; 5)

log T= —3*47 logy” + 0*%07 log p+ 0%678;

log L= 18*2 logy " + 3*76 log T—2*55,
log T= 12*6 logc ™ +3*32 log r —2%25. @)

These equations are not given by S.S.H. although, of course, he must have
used them in the construction of his diagram.

In the resulting log L-log 7 diagram, a line of fixed density, a line of
fixed T and aline of constant JI, which is the evolutionary trackfor the star
concerned, areall straight lines. Such lines are plotted by S.S.H. and some
are shown in Fig. i.

5.5.H. takes the relevant part of the main sequence to be given by

L=T-~ with y=17 8)

in the units used here, it being assumed that the Sun lies on the main sequence.

For the purpose of our illustration, we consider a set of pre-main-sequence
stars of the present sort that, at epoch 7= #}) all have mean density p= o*oi,
or one per cent of the solar mean density. In Fig. i we exhibit the loci on
which these stars lie at epochs /q, , .., 4 where, in HK units,

[i—  0%05» AU M) ~@" 4 *

One HK unit is about 3 x 10* years. @ However, for our discussion it is
more instructive to note that the locus for meets the main sequence at a
point forwhich  roughly logy = 0*28,log L= 1*3, log T=0%i8,T= 0%48,
P= 0*28 whilethe corresponding point in the locus for for the same
y*-value has t= 0*33.

The homologous family is meant to consist of stars of which the luminosity
is produced by gravitational contraction alone. Were account to be taken
of the release of nuclear energy in the final approach to the main sequence,
we should have evolutionary tracks joining on to the main sequence in a
somewhat different way. But this is of no importance for present purposes.

It is now to be noted that our locus for, say, "= "3 is roughly like those
plotted from observations of young clusters ; the value r= 0*5 just mentioned
is of order of the age usually ascribed to such clusters. Thus we are dealing
with the sort of situation that is of interest in practice (even though we are
not advocating any particular theory of evolution).

The loci r= constant have, of course, the property that if a set of stars of
the present type are represented at some epoch by points on one of these loci,
then at any epoch they are represented by points of such a locus (unless they
move on to the main sequence). Loci of this type are the only ones normally
considered hitherto.

The loci /= constant also, however, have by construction the property
that if stars lie on one of them at one epoch then they lie on another of them
at any other epoch. The features to notice are: {a) The loci for %, ..., ™
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are all quite different from the r-loci; {b) the loci are qualitatively similar to
each other; {c) they span a time-interval comparable with the estimated ages
of the known young clusters.

The physical reasons for these features are evident. The age of a cluster
is the time for a star at the lower end of the main sequence just to reach the
main sequence from whatever has to be treated as the initial state. Now the
rate of contraction is highly sensitive to the mass. Thus, stars of mass much
less than the one just mentioned cannot have moved far from the initial state
in the time available.

log L
-Jog .
log T—0°5
-1
MS
-2
0-2 -02 04 —06 logT —O
FiGg. 1
According to the hypotheses of this paper, MS is the main sequence, the
broken lines = constant are the evolutionary tracks of stars having the

indicated masses, the dotted lines ¢« = constant are the loci of stars at epoch ¢
after starting to condense from vanishingly small density at epoch ¢« =o.

If stars start at epoch tg to condense from mean density po then the loci at
epochs tj, ... ,4 are as shown, the loci being drawn for pq=o0-o0i, tj-tg=o0-05,
tg-tg = 0-2, td~tg= 0'4.

jftyL, T, pg are measured in solar units, and ¢,  in the Helmholtz-Kelvin
time-scale for the Sun.

Therefore, if initial conditions are such that at any epoch the pre-main-
sequence stars lie on a locus appreciably different from that representing
gravitational contraction starting at the same epoch from vanishingly small
initial density, then this will remain the case throughout the time intervals
of interest.

On finding a distribution of pre-main-sequence stars as in NGC 2264, it
consequently seems natural to look for an explanation in terms of initial
conditions {e.g., the observed effect would be produced if there were a
tendency for stars of smaller mass to be formed before stars of greater mass),
rather than to postulate new phenomena such as large mass-loss during the
gravitational contraction of a star.
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It must be pointed out that the conclusion does not depend very sensitively
upon the values of a, /S y.

The calculations described above had been carried out before the authors
saw the very important paper on the same problem by C. Hayashi”.
Taking account of the hydrogen convection zone in stars of late spectral
type, Hayashi concludes that the early part of the evolutionary track of a
star of given mass is very different from the straight-line tracks shown in
Fig. 1. This affects the age-calculation. Allowing for this, Hayashi gets
good agreement for NGC 2264, if he makes the usual assumption that the
member-stars all originated at the same epoch at very low density.

Hayashi’s explanation will probably be accepted in this case. Nevertheless,
it seems useful to present our results as a demonstration of the vital importance
of initial conditions in such problems. Indeed, so far as the homologous
contraction is concerned, Hayashi discloses a mechanism by which fainter
stars get into the homologous series more quickly than had previously been
thought possible. As regards the homologous contraction, his work
substantiates the general conclusion to which we seek to call attention.

(I.P.W. acknowledges the award by D.S.I.R. of a research studentship
during the tenure of which this work was done.)

1962 October 3.
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