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]̂ e shaVl not cease from exploration 
And the end of aid our exploring 
'Ni'Ll be to arrive where we started 
And know the place for the first time.

T.S. Eliot
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ABSTRACT

The generation of single CO^ laser pulses, having sub-nanosecond 
rise and fall time, is described. The duration of these pulses is con-r . 
trolled in the range 0.83 to 100ns and their peak power is of the order 
of 1 MW . For the generation of these pulses, a double-discharge TEA 00% 
laser has been used, in conjunction with an electro-optical shutter.

A telescopic COg laser amplifier has been employed to amplify the 
nanosecond pulses to 1 GW power levels. The design and operational charac­
teristics of this device are presented and the effective elimination of 
associated problems is discussed. The effect of organic vapour additives 
on the performance of this oscillator-amplifier system is investigated.

Experimental evidence is presented indicating an increased efficiency 
in the amplification of multi-line —  as opposed to single line —  nanosecond 
pulses. A novel method for single longitudinal mode operation of pulsed 
TEA CO2 lasers —  incorporating the use of two unstable coupled resonators —  
has been developed. The powers thereby achieved are in excess of 30MW.
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PREFACE

The possibility of achieving laser-induced fusion has stimulated
world-wide investigation and has motivated the development of high power
lasers capable of meeting the requirements imposed by this unconventional
approach to controlled thermonuclear energy. Although this approach had
been mooted soon after the advent of l a s e r s t h e  essential idea of
using laser radiation to compress as well as to heat the thermonuclear fuel,

. (3)was not declassified until 1972 . This has made the laser-fusion concept
highly attractive since the laser energy requirements are drastically 
reduced for strongly compressed pellets to well within the immediate future 
capabilities of the rapidly advancing laser technology.

Theoretical predictions indicate that multi-kilojoule pulses of nano­
second or shorter duration are implicit in the accomplishment of laser- 
fusion. The short pulse length is required for the sufficiently rapid 
heating of the thermonuclear fuel (a small pellet of deuterium and tritium) 
to fusion-ignition temperatures (10® K) before significant expansion and 
cooling take place. This process, known as *inertially confined laser 
fusion’, circumvents some of the magnetohydrodynamic instability and anoma­
lous diffusion problems of the conventional magnetic confinement systems.

A laser has yet to be developed which features the high efficiency, 
high repetition rate and short wavelength capable of emitting multi- 
kilojoule subnanosecond pulses which are appropriate to laser-fusion. 
Existing laser systems capable of meeting the energy and pulse duration 
requirements (i.e. the neodumium-glass, the iodine and the carbon dioxide) 
are handicapped by low efficiency, low repetition rate or long wavelength.

The neodumium-glass laser is currently regarded as the best system 
for gauging the feasibility of laser-fusion. The most recent experimental• 
results of the Los Alamos Scientific Laboratory, on the other hand, have 
given rise to increased optimism about the suitability of the CO g laser 
for commercially-viable fusion. These results indicate a much more effi­
cient coupling of the laser radiation and the thermonuclear pellets than

(4)had been anticipated . The COg laser offers the advantage of a replace­
able active medium —  which, in turn permits a high repetition rate —  a good 
optical quality and, at pressures of several atmospheres, is capable of a 
relatively high efficiency in amplifying multi-frequency short laser pulses.
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The purpose of the work reported in this thesis is to develop a 
TEA COg laser system capable of the reliable generation and efficient 
amplification of nanosecond pulses and to gain an understanding of the 
physical processes involved in the optimization of such a system.

With this latter objective in mind, the first chapter outlines some 
of the essential background —  with particular emphasis given to the excita­
tion and relaxation processes involved in achieving population inversion —  
and concludes with a resume of the principal recent research conducted in 
the field of nanosecond CO^ laser pulse generation.

The second chapter describes the design and performance of the two 
COg laser modules used throughout this work: the Double-Discharge and 
Double Rogowski modules. In particular, there are sections devoted to: 
the merits of stable and unstable resonators used in conjunction with these 
modules; the effect of single transverse mode operation on self-mode lock­
ing; energy and power measurements ; and the effect of organic additives 
on the laser-performance. The potentialities of one of the modules (Double 
Discharge) as a laser amplifier, have also been investigated by measuring 
the small signal gain —  and the effect upon it of the.gas composition and 
the electrical input energy —  and the saturation energy density for 70ns 
pulses.

Chapter III comprises a detailed analysis of the design and opera­
tion of an electro-optical shutter which, used together with a COg laser, 
generates pulses of variable duration and sub-nanosecond rise time. A full 
investigation is presented both of the effects of the crystal quality and 
of the variation of the spark-gap parameters (voltage, gap length and gas 
pressure) on the shutter’s performance. The choice of gas filling and 
electrode material is also discussed. In addition, this chapter includes 
a section on the formation of wedge-fringes by optical components.

The fourth chapter discusses the gain saturation measurements of 
nanosecond pulses and the resultant pulse broadening. The design and per­
formance of an efficient type of amplifier —  a telescopic amplifier —  are 
analysed. The problems, namely the elimination of parasitic and self- . 
oscillation, which had to be surmounted, before this amplifier could operate 
successfully, are also dealt with.

Chapter V concentrates upon the generation and amplification of multi- 
line nanosecond pulses. Experimental evidence is presented which confirms 
the theoretically-predicted increased efficiency, and reduced pulse-distortion
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resulting from the amplification of multi-line —  as opposed to single-line —  
pulses.

In Chapter VI, a novel method for single longitudinal mode operation 
of the COg laser is described, based on the coupling of two unstable resona­
tors which share the active medium. A simple interpretation of the single 
longitudinal mode operation of this three-mirror resonator is proposed. In 
addition to single-mode operation of the P(2 0) line in the 10.4 ym, band, 
some observations are also reported of the simultaneous generation of two 
or three adjacent rotational transitions, each on a. single longitudinal mode. 
The applications of this device, capable of generating peak powers in the 
range 30 to 100MW, are discussed.

The final chapter presents a resume and assessment of the results 
achieved in the course.of this research. The limitations of the system are 
outlined and possible improvements to it are suggested. The principal 
modifications, dictated by the findings of this research, which have been 
taken into consideration in the current construction at Culham Laboratory 
of an enlarged COg laser system, with a potential 200-400GW power output, 
are reviewed at the end of this chapter.
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CHAPTER I

COg LASER PHYSICS AND SHORT PULSE LASER TECHNOLOGY

1.1 INTRODUCTION

The astounding increase in power of the pulsed COg laser, from its
( 5 )first negligible output of a fraction of a watt in 1964 to its present

impressive capability of several hundred gigawatt^^\ is the result of massive

investigation, documented in a correspondingly remarkable proliferation of

published papers which defy enumeration here. A comprehensive account of

this published work can be found in a number of articles, e.g. references
(10) . .(7-10), among which the excellent review by WOOD , with its plethora of 

experimental and analytical information is pre-eminent.

Before attempting to review in brief the most recent research concern­

ing the generation of short COg laser pulses —  which is the principal theme 

of this thesis —  it would seem appropriate to summarize here the COg infra­

red spectra and molecular structure as well as the various excitation and 

relaxation processes involved in the production of population inversion, 

and the subsequent laser action in the 10 ym region. This general back­

ground will also help to elucidate some of the topics explored in the follow­

ing chapters.

1.2 COg INFRARED SPECTRA.AND MOLECULAR STRUCTURE

1,2,1 Vibrational Energy Levels of CO„

The COg molecule is a linear symmetric molecule (point group D^^) 

whose structure and vibrational-rotational spectrum have been thoroughly 

investigated^^^ As a result of its linearity, the COg molecule posses­

ses 3N-5=4 normal modes of vibration, (where N = 3 is the number of nuclei 

in the molecule) which are illustrated in Fig.1.1.

In the symmetric stretching mode = 1388.2 cm~^ the oxygen atoms 

vibrate along the molecular axis symmetrically with respect to the

- 12 -



= 1388.2cm^
Z g  • (  Sym m etric Mode)

C)--------[0) Vg = 667.4 cm^
„  T[(j (Bending Mode)

^ 5 * ^ 2 ) ----------------- ^ o V - >  V j = 2349 .zcm

Z jj  (Asym m etric Mode)

. Fig;1.1
Normal inodes o f v ib r a t io n  o f  th e  COg m olecule  

Stationary carbon. There is an infinite number of ways whereby the CO^ 

molecule can vibrate perpendicularly to the molecular axis with the same 

frequency Vg = 667.4 cm"^. In these vibrations all the atoms describe 

ellipses, in general, which are perpendicular to the molecular axis and 

which give rise to a vibrational angular momentum about the axis. However, 

any such vibration can be regarded as a superposition —  with an appropriate 

phase difference —  of the two mutually perpendicular degenerate bending 

modes Vgg , Vg^. In the asymmetric stretching mode V 3 = 2349.2 cm”  ̂ the 

oxygen atoms always move in the same direction along the axis and in oppo­

sition to the carbon. Both the asymmetric and the bending modes involve 

a change in the dipole movement of the molecule and consequently are strongly 

infrared-active by contrast with the symmetric mode which —  causing no such 

change —  appears only in the Raman spectrum (infrared-inactive).

Any arbitrary vibrational state of the molecule can be described by
£

the number of excited quanta in each normal mode using the notation (rî  rig rig) 

where are the quantum numbers of the symmetric stretching, the

double degenerate bending and the asymmetric stretching modes respectively. 

The superscript £ denotes the vibrational angular momentum of the molecule.

In the COg molecule, the vibrational levels 10°0 and 020 (which 

consists of the sublevels 0 2 °0 , 0 2 ^0 ) have nearly the same energy, result­

ing in the perturbation of both these levels, as first discussed by FERMI^^^^

- 13 -



and denoted by the term Fermi resonance. Perturbations of this type occur 

only between levels with the same value of £ p,216) as a result,

the two levels 10°0 and 02°0 repel each other and appear in positions dif­

ferent from those expected. In addition, a strong mixing of the eigen­

functions of the two levels occurs and the resulting levels are mixtures 

of the two states. Thus the designations 10°0 and 02°0 can no longer 

unambiguously represent these levels. A more accurate designation proposed 

by AMAT and PIMBERT^^^^ is [10°0, 02°0]]- and [10°0, 02°0]jj for the levels 

lying at 1388.2 cm“  ̂ and 1285.4 cm“V respectively. Contrary to the tradi­

tional assignment, the level at 1285.4 cm”  ̂ is associated with the symme­

tric stretching mode and that at 1388.2 cm“  ̂with the bending mode. A number

of investigators^  ̂ have confirmed the new assignments and the nomencla- 
(15)ture proposed in will be applied throughout this thesis.

1.2. 2 Rotational Energy Levels

A series of rotational sublevels —  designated by the rotational quantum 

number J= 0,1,2,... — is superimposed on each vibrational level. In a non­

degenerate vibrational level, the rotational energy of each sublevel is 
given P-'4). ^

= BJ(J+ 1) - D^J(J+ 1)^ + --- ... (1.1)nc

where ^B is the rotational constant (Bg^o] = 0.38714 cm“  ̂(^9)^ and
D = is the centrifugal distortion constant (Dq^o j -J .3303 x 1 0^^ cm“  ̂ (̂ 9)̂

The population Nj of a given rotational level in thermal equilibrium
j ■ ' (20, p.125)IS given, to a good approximation, by

2N(2J + 1) he B -BJ(J+1) hc/KT .. . (1.2)
. J k T ■ ^

where N is the population of the vibrational level as a whole, K is the

Boltzmann constant, and T the absolute temperature.

The quantum number of the rotational level with the maximum popula­

tion can be found from the above relation to be the nearest allowed integer

— 14 —



to the value

max = /
kT

2hcB ... (1.3)

1.2.2 V'ihrat-ionat-Rotat'ionaZ Spectra

An energy diagram of low-lying vibrational levels of the CO^ mole­

cule is shown in Fig.1.2. . Vibrational-rotational transitions between these
(21)levels are determined according to the following selection rules: 

A£ = 0 IA n „ I : even IA r]. I : odd AJ = ± 1
or

|A£| = 1 A ri I : odd IA Ti I : even AJ=0, ±1
.. (1.4)

2500
AE -  18cm'

j L  — _ . 
" T

00°1

2000

-20
- 1 6_  1500

' eu Rotational
S ublevels02^0>.cn

1000

OVO
500

V = 0

Carbon Dioxide 
F i g . 1 .2

Nitrogen

t io n a l  le v e ls  re le v a n t  to 10 ym CO  ̂ la s e r  em ission
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These transitions give rise to the vibration-rotation infrared bands,

defined as groups of all possible rotational transitions for a particular

vibrational transition. The strongest and one of the most significant CO^

laser bands is the 10.4ym band corresponding to the 00°I [10°0, 02°0]^

transition. Oscillation on 66 lines has been obtained in the wavelength
(2 2)range 10.026 - 11 .189 ym from both the P(AJ=-1) and R branches (AJ ̂  1 )

of this band, some of which are shown in Fig.1.2. . Individual lines are de­

noted P(J) or R(J) where J is the rotational quantum number of the 

lower laser level. Lines with only even J appear in the 10.4 ym band as a 

result of the absence of rotational levels with odd J in the lower laser 

level caused by the zero values of nuclear spin and the symmetry of the 

normal isotopic species p.382)^ -- .-

1.3 UPPER LASER LEVEL EXCITATION —

The 00°1 vibrational level of COg is excited mainly by two processes,
f23“25Ynamely: inelastic collisions with low-energy electrons ; and resonant

energy transfer from the first vibrationally-excited level of nitrogen (U= 1) 

to ground state COg molecules^^^

1. 2.1 D'ireot Vïbratïonàt Excïtatïon

The low-lying vibrational levels of CO can be excited (directly by 

inelastic collisions with low energy electrons. This process may be expressed

as :
e- + COg Z  CO* + e" , ...(1.5)

where CO* denotes a vibrational excited species. / .

The probability of excitation of the 00°1 level was found by BONESS 

and SCHULZ^^^^ to be substantially greater than that of 10°0 and 0 2 °0 , . 

ANDRICK et al^^^^ however, have shown that the 01^0 is also strongly excited. 

The cross section for excitation of the 00°1 and 01^0 levels is 1.5x 10”^®cm^ 

and 3x]0~^®cm^ r e s p e c t i v e l y .

— 16 —



Although the vibrational excitation by electron impact was attri­

buted originally to the formation of a negatively-charged compound state 

with an estimated lifetime of 10“ ^^s , it is now generally accepted

(see references 24,25,28,30,(9,p.143)) that for electrons with energy less 

than 3 eV the excitation proceeds directly without the COg formation.

The levels excited by this process are the 00°1 and 01^0, while the 10°0 

(as well as the 01 0) is excited by electrons in the range 3-5 eV through : 

the COg compound state formation.

The excitation of the vibrational levels of nitrogen by slow elec­

trons is also attributed to the formation of a short-lived negatively charged 
(28 29)compound * through the process:

N 2 + e-->N-^N* + e- ... (1.6)
(29)SCHULZ has measured the total, as well as the partial, cross section for 

the excitation of the first eight vibrational levels of N„. For electron 

energies near 2 eV . the cross section fori the level is 1.5x10 cm^ while 

the total cross section attains a maximum value of ~  3 x lQ~^®cm^ at elec­

tron energies of 2.3 eV . Radiative decay of the levels is precluded by

selection rules since is a homonuclear diatomic molecule with no perma­

nent dipole moment^^^^. Combined with the large cross sections, this enables 

the generation of a substantial population of N* .

The relative populations of the varrous vibrational levels of

and COg in a discharge are influenced by the ratio of the electric field

E to the total density of the neutrals N. Using the above cross sections,

NIGHAN^^^^ has calculated the fraction of the electron power transferred to

each of these levels as a function of E/N for COg - Ng - He mixtures

typical of steady-state laser discharges. These calculations are, however,

applicable also to high-pressure pulsed CO^ lasers since the electron-

neutral collision occurs on a time scale much faster than that of the 
(31 )discharge pulse . According to these calculations, the values of

- 17 -



^  = 2 X 10“ ®̂ V cm^ result in a maximum power transfer .in both the COg (00°1) 

and (U = 1-8) levels, while for E/N > 4 x 10"^^ V cm^ a considerable

fraction of the electrical energy is transferred to the COg (0 1 0̂ ) thus 

reducing the laser efficiency. It is therefore evident that COg laser 

systems such as the electron-beam controlled type in which the ratio E/N 

can be adjusted for maximum excitation of the coupled CO (00°1) - N. (U= 1) 

levels are potentially more efficient. Such systems are also most suitable 

for the amplification of ns pulses since —  as will be seen later —  in this 

time-scale the energy stored in the N^ is not available and therefore, the 

value of E/N needs to be adjusted, for the maximum direct electron excita­

tion of the upper laser level. The ratio of E/N for the two laser modules 

used in this research —  Double-Discharge and Double-Rogowski —  (see Chapter 

II), could attain values in the range 3.4-4.9x10 “ ®̂ V cm^ and 5.1 - 7 x 

10“ ®̂ V cm^ respectively.

1.2.2 Resonant Energy Transfer

The first vibrationally excited level of Ng (U = I) lying 2329,66 cm"^

above the ground state is in near coincidence with the 00°1 of COg (see

Fig.1.2). The consequence of this small energy difference between the two

levels (AE = 18 cm“^) is a very rapid and efficient selective excitation*

of the COg (0 0 °1) level involving vibrational energy transfer from Ng to

COg (00°0) by means of the process;
Kg

C0,(00°0) + N,(U= I) C0,(00°l) + N,(U=0) -18cm-‘ ... (1.7)
'

I

This reaction proceeds mainly in the forward direction since only the COg

molecule can decay radiatively. The forward and reverse rate constants for
/ - _ . (3the process are Kg = 1.9 x io“* torr  ̂s  ̂ and Kg = 106 torr ^ s  ̂ respectively
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1.4 RELAXATION PROCESSES

Tlie amplification of 10 ym radiation by the vibrationally excited 

COg molecules is significantly affected by the various processes which 

result in their de-excitation. The basic relaxation processes which —  in 

conjunction with the stimulated emission —  govern the population densities 

of the upper and lower laser levels are discussed in this section.

1.4.1, Rad-iative Ee'laxat'ion ■ . • '

The probability of the spontaneous relaxation of a COg molecule 

from an excited to a lower energy level is expressed by the Einstein coeffi­

cient Aq1 « a number of theoretically deduced and experimentally determined 

values of the Einstein coefficient have been reported for the transitions 

indicated in Fig.1.2 38)^ The 00°l->00°0 transition is radiatively

trapped and, as a result, the coefficient for the individual lines of this

transition was found to be of the order of 10 s"^ (33)  ̂ A _ coeffi-
!cient for all the other transitions, ranges between 0.2 and 2s . Even :

though the contribution of spontaneous emission in the relaxation'of the

COg molecules is not significant because of their very small radiative

relaxation rates, it is of great value to ascertain accurately the A^^

coefficient for the laser transitions since important laser parameters such

as small signal gain and saturatiorTintensity depend upon the value of A^^. 
(39)BIRYUKOV et al . after critically analysing the reported experimental data, 

recommend the value A^^ = 0.187 s"^ for thé P(20) line of the 00°1 - [ 10°0, 

0 2 °0 ]j transition. ,.

1.4.2 Upper Laser Level Relaxat'ton -

The relaxation of the upper laser level by collisions with various
u t. ' • . ,(32,40-42) (9,pp.156-9)molecules or atoms has been extensively investigated

The vibrational energy stored in this level can be transferred to a number 
£of (Uj Ug 0 ) levels by means of the process:

CO (00°1) + M COg(Tli TI2 0) +M+E. ... (1.8)
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where the collision partner M is any gas molecule or atom in the laser

discharge. The probability of such a vibration-vibration (v-v) energy
£ (32)transfer is higher for the (riĵ rig 0) . levels closest to 00° 1 . Conse­

quently, direct conversion of the entire vibrational energy of the upper 

laser level into translational energy is precluded.

The reported values of the relaxation rate constants for this pro­

cess are in fairly good agreement with each other. The mean values of the 

constants, relevant to a COg : Ng : He laser, reported in references (9, 

p.157)(32,43-49) at 300°K are :

\ ( M = C 0 p  =351 ±33, = '^2 ± 20 and K, = 80 ± 9

all in units of torr”  ̂s  ̂.

Thus the expected relaxation rate constant of the upper vibrational 

laser level for the gas mixture principally used throughout the subsequent 

experiments (COg : Ng : He, 1 : ^ : 2) is :

" 37TT (^l.(N\= COg) Ï Ï  ^l(M=Ng) ■^^^l(M = He))"
... (1.9)

CHEO^^^^ and REID et have shown that the rise and fall

times of the optical gain coefficient in a COg laser amplifier correspond 

to the effective lifetimes of the lower and upper vibrational laser levels 

respectively. As will be shown in section 2.5.2, analysis of the gain wave­

forms of the TEA CO^ laser amplifier employed in this research, indicates a

relaxation rate constant K, = — ^  = 160torr~^ s  ̂ for the 00°1 level which
1 T ,P

is in excellent agreement with the expected value.

2,4.2 Lower Laser Level ReZaxat'ton

(8 9 52)It is generally accepted * ’ that the relaxation of the lower 

vibrational laser level [10°0 , 0 2 °0 ]^ or [10°0 , 0 2°0 ]jj into the bending 

mode (0 1 ^0 ) is very rapid (~ 10®torr“  ̂s” )̂ and, as a result, it is effec­

tively controlled by the relaxation of the bending mode which can be written
K

COg (01  ^ 0 ) + M  — > C 0 g ( 0 0 ° 0 )  +  M + 667 cm“  ̂. ... ( 1 . 1 0 )
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This reaction has been widely studied and there is a plethora of 

experimental data for COg and He as collision partners, as opposed to 

the sparsity of recent data concerning the effect of Ng on this relaxation 

process. By averaging out the results reported in references (40,42,53-56) 

the following values and their deviation from the mean have been derived:
^  ■= 4-10  ̂  ̂ V  ■ —  I D A  —  1

and
'2(M=C0,) = 206±12torr-' s'?, = 100 torr'*. s'

"̂2 (M = He) " (3.86 + 0.4)%]0^torr-'s-\ ... (l.ll)

The relaxation rate constant expected from these values for the gas 

mixture COg : Ng : He, 1 : : 2 is = 2.3 x 10^ torr”  ̂s~^. Analysis of small

signal gain waveforms (section 2.5.2) —  based on the assumption that the 

effective lifetime of the lower laser level corresponds to the rise-time of 

the gain pulse —  indicated a value of _

Kg = = 1,1 X 10  ̂torr“  ̂s” ^
 ̂ -for this gas mixture. The agreement between these two values is satisfactory,

The exact value of the rate at which the two levels in Fermi resonance 

exchange energy as well as the rates at which they decay to the (0 1 0̂ ) level
/ C J C g\

is still the subject of some uncertainty * . Relaxation of the lower

vibrational laser level could enhance the amplification of laser pulses 

provided that its lifetime does not exceed their duration. However, this 

relaxation cannot affect the amplification of nanosecond laser pulses, at
(59)atmospheric pressure, since even the fastest reported rate constants

15 V '  _S ( M  = CO,) = = ' <3±l)xl0

and S ( M  = He) = (0.8 ± 0.3) x 10= torr'* s!
for the process:

Kg
C0g[10°0 , 02°0]^ + C0g[10°0 , 0 2 ° 0 ] j ^ + M +  102.8 cm"^ ... (1.12)

cannot credit a nanosecond lifetime of the lower laser levels. For this 

reason the amplification-efficiency of such pulses is substantially curtailed.
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1.4.4 Rotational B.eZoxat'ion

The efficiency with which the optical energy stored in a COg laser 

amplifier can be extracted by a nanosecond pulse is principally governed by 

the rotational relaxation within the vibrational laser levels. Since opti­

cal energy can be extracted only from COg molecules whose rotational quantum 

numbers correspond to the spectral content of the incoming laser pulse, the 

total energy stored in the 0 0 ° 1 level is extractable only after its transfer, 

via collision, into the rotational levels which interact directly with this 

pulse. Measurements of the rotational relaxation rate constant have

been reported by CRAFER et al^^°\ CHEO and A B R A M S a n d  JACOBS et 

Jacobs et al have determined the following rate constants Kĵ , for this 

process by monitoring the repopulation of the 00°1 (J = 19) rotational- 

vibrational level, perturbed-by a saturating 2 ns single line pulse:

^(COg-COg) " KR(C0g-Ng)"^'2-0'2, ^(COg-He) = ̂ .6 ± 0.1

all in units of lO^torr”  ̂s“ .̂ Thus the expected value of the rotational 

relaxation time t̂  ̂ for the mixture COg : : He, 1 : ^ : 2  at atmospheric

pressure is 0.154ns. It will become apparent in Chapter V that, as a 

result of this finite value of tĵ , à single line pulse of 1 ns duration 

can extract no more than 20% of the optical energy stored in the 00°1 

vibrational level. This situation can be improved, however, as was suggested 

by CRAFER et al^^°^ and later by F E L D M A N a n d  S C H A P P E R T b y  using 

multi-line pulses and/or by operating the laser amplifier at higher than 

atmospheric pressures. A more detailed discussion of this aspect as well 

as experimental evidence supporting the validity of this argument are pre­

sented in Chapter V.
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1.5 COg NANOSECOND PULSE LASER TECHNOLOGY

1.5.1 Mode-Lock-ing

The selection of a single pulse from the output pulse train of a 

mode-locked oscillator has been the most widely used method for generating

Active mode-locking of a TEA COg laser using an intracavity acousto- 

optic loss modulator was first reported by WOOD et al^^^^ and later by 

FICUEIRA et al^^^\ RICHARDSON^^^^ and SAKANE^^®.\

Passive mode-locking using hot COg (350°C) as a saturable absorber .

has been reported by CIBSON et while NURMIKKO et. al^^!^\ FORTIN

et al^^^^ and DYER and J A M E S h a v e  obtained mode-locking using SFg ,

diluted in He, as the saturable absorber. The suitability of p-type

Cermanium as a fast relaxing passive mode-locking element for COg lasers
(73)has been demonstrated by CIBSON et al . This material saturates at an

intensity of about 10 MW/cm^ (74) its use has resulted in 500 ps pulses

from an atmospheric pressure oscillator. Using this method, FELDMAN and 
(75)FICUEIRA have generated 400 ps pulses at 600 torr, while WALKER and 

ALCOCK^^^’^^^ have obtained pulses in the 75-150 ps range from a high pres^ 

sure (10-15 atm.) COg laser. .

Lastly, BELANCER and BOIVIN^^®^ and ALCOCK et have generated

trains of ns pulses.by injecting

(a) a single nanosecond COg laser pulse; /
(b) a low energy train of such pulses; and
(c) a short pulse switched out of a CW laser,

respectively, into a ’slave* oscillator. This injection mode-locking method 

has the advantage that it can be applied to large aperture TEA COg lasers.

Discussion of. the spontaneous self-mode-locking tendency, associated 

with TEA COg laser oscillators emitting a single transverse mode, will be 

found in the next chapter (section 2.5.4).
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1.5.2 Mode Sélection

The advantage of using a single longitudinal mode rather than a mode- 

locked oscillator for the generation of ns COg laser pulses is discussed 

in Chapter VI. Single longitudinal mode operation has been achieved by.

NURMIKKO et al^^^^ —  and subsequently by o t h e r s —  through the inser­

tion of an SFg cell in grating-tuned resonators.

Mode selection using interferometric techniques has been reported , 

by WEISS and COLDBERC^^^^ and HAMMOND et al^^^\

CONDHALEKAR et al^^^^ and CIRARD^^^^ have achieved single longitu­

dinal mode operation by inserting a CW, low-pressure COg discharge section 

into a TEA COg resonator in what has been designated the Hybrid COg laser.

The. CW section superimposes a narrow peak in the pressure-broadened gain

curve of the TEA laser. This extra gain causes . the'Taser oscillation to 

build up in a single longitudinal mode, lying in thé narrow frequé^hcy'’rangev’-«e 

of the CW gain curve. A variation of this method was recently reported by 

LOY and R O N A L D w h i c h  substituted a low pressure pulsed section for the 

CW section.

The injection of the output of an independent CW oscillator into
(on QQ\

the laser resonator has also allowed mode selection control ’ provided 

the two cavities are mode-matched.

(89)One final method for achieving single longitudinal mode opera­

tion of TEA COg lasers, based on the coupling of two unstable resonators 

sharing the active medium, is fully discussed in Chapter VI.

1.5.3 Generation of Single Nanosecond CO^ Laser Pulses

The most common approach to the generation of short laser pulses 

relies upon the use of a fast electro-optical switch. By means of this 

method the short pulse is generated either (a) by gating out a segment of 

the pulse emitted by a single longitudinal mode oscillator, or-(b) by
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selecting a single pulse from the train of pulses generated by a mode- 

locked oscillator.

HILL et al^^^^ have reported the generation of pulses, of variable

duration (2- 100 ns), 0.05 MW , by gating the single longitudinal mode out-
(90)put of a TEA CO2 laser. RICHARDSON has recorded ~600ps, 5 mJ multi-

line pulses using a U V  photo-preionized COg laser, while FIGUEIRÀ and
(91) . .SUTPHIN have obtained the generation of two-band 1 ns, 0.5mJ pulses.

The development of a full-wave CdTe electro-optical shutter at Los Alamos
(6)has enabled the production of a 400 ps multi-line pulse ,

■ C92)DAVIS et al have produced 1,3 ns, 1 MW pulses from an actively

mode-locked TEA CO2 laser, with extinction ratio of 900, using a GaAs

Pockels cell. RHEAULT et al^^^^ have generated 1.8ns, 2mJ pulses, with

extinction ratio of 300, which were amplified by four 1m -long, double-
(94)discharge modules to 3.5 J . LITTLE et al using a single-stage telescopic 

amplifier have achieved. 0.83ns, 1 J pulses with an extinction ratio of up

to 3400 (section 3.6). FIGUEIRA et al^^^\ using a Brewster angle acousto-

optic modulator, have generated 1.2ns, 1 mJ pulses with the high extinction 

ratio of 5.4%10^\ PAN et al^^^^ have amplified a multi-line 1.3ns, 2mJ .

pulse, with extinction ratio of 1.5% 10^, to 10 J by passing it three times

through a 1.8m long amplifier. STARK et al^^^^ reported pulse-energies of

20 J in 1.5ns, using three large-volume electron-beam controlled amplifiers.

VALKYRIE, the short pulse CO^’laser system at the Lawrence Livermore Labora-

tory^^^\ has delivered a multi-line 1.5ns, 25 J pulse. The extinction ratio

of the amplified pulse was found to be 2 % 10 ,̂ which was three orders of
(98) .magnitude smaller than that of the input pulse. CHAMPAGNE et al , using

a chain of eight laser modules, have amplified a multi-line 1.2 ns, 2 mJ
(99)pulse to 50 J. MATOBA et al have recorded a 3 ns, 200 J pulse using a 

nine-module chain of amplifiers. Lastly, the Single-Beam System at LASL^^^, 

comprised of a mode-locked, UV-ionized oscillator; a double electro-optical
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switch, with extinction ratio of 4.5x10^, and four Im-long, electron-beam 

controlled amplifiers has delivered 250 J in Ins.

Another - potentially important - method of generating nanosecond 

pulses has been reported by YABLONOVITCH and GOLDHAR^^^^^ by means of which 

pulses shorter than 50 ps have been r e c o r d e d ^ ^ ^ I n  this method, 

termed Free Induction Decay, a long single longitudinal, mode laser pulse 

is abruptly terminated by optical breakdown and is subsequently passed 

through a CO2 cell acting as a narrow band resonant absorber. The sharp 

termination of the input pulse causes the absorber to transmit a short pulse 

while the primary pulse is heavily attenuated.

Finally, ALCOCK et al^^^^^ have demonstrated a technique whereby 

~ 2 ns CO2 laser pulses were produced by reflection from free carriers 

induced in a polycrystalline Ge plate by a ~ 2 ns ruby laser.
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CHAPTER I I  

ANALYSIS AND OPTIMIZATION OF TEA 00% LASER PERFORMANCE

2.1 INTRODUCTION

Two different transversely-excited atmospheric pressure (TEA), CO2 

laser modules have been employed throughout the course of this study and, 

for that reason, they merit particular attention. The first module was a 

Double-Discharge type with electrode configuration similar to the one first 

described by DUMANCHIN et and with electrical driving circuit similar

to that reported by PAN et al^^^^^. This device was in existence at Culham 

prior to the undertaking of this work but was modified to improve its 
efficacy for the present study and it is the improved version which is shown

in Fig.2.I. The second module, similar to the one first developed by 

LAMBERTON and P E A R S O N ^ ^ w a s  constructed and assembled entirely in the 

course of this work (Fig,2.2). Although this is also a Double-Discharge 

system, in order to distinguish it from the first, it will be referred to as 

the Double-Rogowski —  on account of its electrode shape. A comprehensive 

analysis of. both modules as well as a discussion of their individual and 

comparative performances is presented here.

2.2 DESCRIPTION OF THE DOUBLE-DISCHARGE MODULE

2.2,1 Electrode Structure

The cathode comprised 158 parallel blades —  6̂ m m  apart, 70mm wide, 

0.6mm thick and 2.7mm deep —  milled from an aluminium base. In between 

the blades were glass-insulated, trigger electrodes (see Fig.2.3) consisting 

of 5.4mm in diameter capillary glass tubes containing 0.3mm in diameter 

nichrome central wires. These wires were so arranged as to lie on the same 

level as the edges of the aluminium blades. The glass tubes were sealed at 

one end and all the wires emerging from the open end were attached to a 

2 X 2 X 100 cm^ copper bar which in turn was connected to the anode through a
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Fig.2.3

Schematic diagram of the double-discharge laser 
and electrical pulsing circuit

1200 pF coupling capacitor C^. The anode was a 110 x 15 x 1̂ 5 cm^ flat 

aluminium plate with smooth edges to prohibit field concentrations. The 

electrodes were enclosed in an air-tight perspex box.

2.2.2 Gas Supply

The three gases —  helium, carbon dioxide and nitrogen —  were supplied 

in separate cylinders each of which was connected to its respective gas flow 

meter. Having passed through the flow meters, the individual gases were 

mixed before entering the laser box. Each flow-rate could be independently 

controlled and the flow-rate of the gas mixture as a whole could be varied 

from 1 to 8 litres per minute to meet the gas replacement requirement, depend­

ing on the frequency of firing which ranged from .1 to 6 pulses per minute.

This repetition rate was limited by the capability of the charging supply 

but since this was found to be adequate for the nature of the experiments 

undertaken, no attempt was made to improve the rate.

2.2.3 Etectr'icat Futse Circu-itry and Glow I>ischapge Mechanism

The electrical driving circuit is depicted schematically in Fig.2.3.

The low inductance storage capacitor Cg = G.2yF was charged by a high voltage 

d.c. power supply consisting mainly of a 5 kVA transformer which delivered a
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voltage of up to 60 kV via a rectifying assembly of 17 LC 180 HV diodes.

The circuit was switched with a nitrogen-filled spark gap of Culham design, 

operating at pressures between 2500 and 2800 torr.

The second low inductance capacitor Cp =0.1 yF together with the 

inductor L = 9  yH formed the pulse-shaping network. When the spark gap was 

triggered, the electrical energy stored in the capacitor Cg was fed into 

the pulse-shaping network. The voltage, developed across the capacitor and 

consequently across the inter-electrode spacing, is expressed as a function 

of time by C O S ' '09)=

••• <2 -1)

2 Vo Cg
This voltage attains its peak value = —— — ^ = 1.33V^ at the

/LCg Cp , ® P
time t = "rr / ——  ^  = 2.43 ys after the closing of the spark gap. DuringV Lg + Lp
this slowly-rising high voltage pulse, the electric field between the cathode 

and the trigger wires was sufficiently high - due to the proximity of the 

trigger wires to the cathode plates —  to initiate a corona discharge between 

these two electrodes. The electron layer, as well as the ultra-violet radia- 

tion/*^^'*^^^ produced by the corona discharge, created the necessary pre­

ionization in the inter-electrode gas for the initiation of the glow discharge 

between the anode and the cathode. Fig.2.4(a) shows a typical current pulse 

shape of the main discharge displayed on a 454 Tektronix oscilloscope using 

a Rogowski coil encircling the anode-to-earth leads. Glow discharges at 

atmospheric pressure were obtained for various gas-mixtures and electrical 

input energies between 185 and 370 Joules.

This module has been used for three purposes in the course of this 

research:

(a) as a 180 megawatt peak power CO^ laser using an unstable
resonator emitting a single-transverse but multi-longitudinal 
mode;
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(b) as a single-transverse, single-longitudinal mode CO^ 
laser with 30 megawatt peak power using two coupled, 
unstable r e s o n a t o r s w h i c h  is discussed in detail 
in Chapter VI; and .

(c) as a telescopic amplifier emitting 1 GW, 1 ns CO^ laser 
p u l s e s w h i c h  is described fully in Chapter IV.

2.3 PERFORMANCE OF THE DOUBLE-DISCHARGE OSCILLATOR 

2. 3.1 OpticaZ Cavity: Unstable Resonator

In many laser applications, a beam with divergence as near to the 

diffraction limit as possible is highly desirable. In stable resonators, 

however, the emitted beam has diffraction-limited divergence only when an 
intra-cavity aperture is used to suppress oscillation in all but the lowest

order transverse mode. The exact required diameter of such an aperture is
(113)

a function of the resonator parameters and the laser wave-length but

it is generally less than 1 cm^ in the case of a CO g laser. This implies

that for the Double-Discharge module which has a 25 cm^ cross-section, the 

volume of the lowest order transverse mode is less than 4% of the volume of 

the active medium, and consequently no more than 4% of the available optical 

energy can be extracted by a single transverse mode when a stable resonator 

is used. By contrast, the use of a telescopic resonator does ensure oscilla­

tion in the lowest order transverse mode filling the entire cross-section 

of the active medium. This significant advantage of unstable, over stable, 

resonators accounts for their increased recognition and use with CO^ 

lasers^^^'^^'^^^"^^^). DATSKEVICH et al^^^^\ using an unstable resonator, 

have obtained 7.5kJ single transverse mode COg laser pulses. The proper­
ties of unstable resonators are fully analysed and presented in two review 

papers by SIEGMAN^^^^^ and ANAN’EV^ ^.

Accordingly, an unstable confocal resonator belonging to the positive 

branch (telescopic resonator) was used in conjunction with this module was to 

extract the optical energy stored in the active medium. The radius of curva­

ture of the concave and convex mirrors was R^= 3.83m, Rg = - 1.33 m respectively.
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The cavity length was determined by the convocality condition '

R,- iRzlL = — ---- —  = 1.25 m  .2
The magnification of this unstable resonator, i.e. M = / |Rg| = 2.875,

determined the fractional output coupling, 6 = 1 -— ^ = 0 .8 8 , in the cavity. 

The cross-section of the output beam —  just after the exit window —  was an 

annulus with a central dark disc 17mm in diameter equal to the diameter of 

the convex mirror (Fig.2.5). The shadow of the 'spider* supporting the con­

vex mirror, as is shown in Figs.2.5(a), 2.5(b), can be easily eliminated by

using an annular coupling mirror in front of the convex mirror and at 45°
( 1 1 4 ) '  to the resonator axis, as was proposed by KRUPKE and SOOY .

2.2,2 Energy Measurements

The energy of the emitted pulse was measured using a pyro-electric

joule meter (Gen-Tee, Model ED-500). The pulse shape was recorded and the
(112)peak power was measured using a calibrated germanium photon drag detector 

In Fig.2.6 , the output pulse energy is plotted against the electrical excita­

tion energy. It can be seen that the laser energy continued to increase^ 

linearly with the electrical up to the limit of the power supply. . The 

CO2 : N 2 : He mixture was maintained at 1:1:6, and the flowing rate was 8 Z/min. 

The efficiency of this laser, defined as the ratio of the laser beam energy 

to the electrical energy stored in the capacitor Cg^ is also plotted in 

Fig.2.6 . The temporal profile of the laser pulse (see Fig.2.4(b)) comprises 

a 40ns (FMHW) spike followed by a 1 ys low power 'tail*. The first spike 

which was found to occur 500-600 ns after the peak of the discharge current 

is caused by the gain-switching process^^^^^. The long tail results from 

the re-establishment of the population inversion achieved by repumping the 

upper laser level by collisions with the vibrationally-excited molecules. 

The energy contained in. the first spike was estimated to be ~40% of the 

total.
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Fig.2.6
Optical energy output and efficiency of the Double-Discharge 

module as a function of the electrical input energy
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2.4 DESCRIPTION OF THE DOUBLE-ROGOWSKI MODULE

2,4.1 Electrode Structure and Etectricat Futse Civouitry

The second module used was a Double-Rogowski CO g l a s e r ^

Two identical Rogowski-profiled brass electrodes 70 cm long and 2.5 cm 

apart and two tungsten trigger wires running parallel to these electrodes, 

but laterally displaced, comprises the electrode configuration (Fig.2.7).

The tungsten wires were 0.3 mm in diameter and were connected to the cathode 

through two 250 pF coupling capacitors at one end of each wire. The storage 

capacitor was a 0.1 yF fast discharge low inductance capacitor charged via a 

current-limiting resistor by a 1 mA Brandenburg power supply (type 

MR50/RA). The pressurised spark-gap was again of Culham design. Low induc­

tance connection was ensured by using a parallel plate transmission line made 

of copper sheet 3 mm thick. The total length of the sheet was 70 cm an<^ the 

width at the ends connected to the capacitor and spark gap was 30 cm and at 

the ends connected to the electrodes 70 cm.

E.H.T.
6 NAAA-

50 MÎ?

0.1 IIF

Spark 
gap 

— o o-
Tungsten wire

5MQ 250
pF

% 250
pF

-— X —

Fig.2.7
Schematic diagram of the excitation circuit 

of the Double-Rogowski oscillator
I -

2,4.2 Glow Discharge Mechcovtsm

When the spark gap was triggered and an ~ 4 5 k V  voltage pulse was 

applied to the main electrodes, field emission from the tungsten wires resul­

ted in a sheet discharge along the entire length of the wires and between 

them and the anode^*^’ The energy dissipated in the discharge was 

limited by the small values of the coupling capacitors, A glow discharge 

was initiated between the main electrodes as a result of the ultra-violet
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radiation generated by the sheet discharge. This ultra-violet radiation 

is thought to result from the 584 A helium resonance line^^^^\

2.4.3 Gas Supply

The same gas supply serviced the Double-Rogowski as the Double- 

Discharge module, thus obviating the need for the provision of a second gas 

supply. Having traversed the Double-Discharge device, the gas was fed into 

the second module with no detrimental effect on its performance.

2.4.4 Stable Opticat Resonator  -  Single Transverse Mode

The Double-Rogowski module was constructed for use with an electro- 

optical shutter (which will be described in the next chapter) to generate 

nano-second pulses. Because the electro-optical crystal in this shutter 

had a 1 X 1 cm^ cross-section, any larger cross-section in the laser beam 

would be superfluous. Furthermore the low optical damage of the electro- 

optical material (< 1 J/cm^) prohibits the use of an inverted telescope to

reduce the beam cross-section. Therefore the advantage offered by an unsta­

ble resonator (discussed in section 2.3.1) i.e. of providing large volume 

single transverse mode, could not be exploited here. For these reasons, a 

stable resonator, consisting of an R = 10m radius of curvature gold-coated 

copper mirror (reflectivity 99%) and a germanium flat with an anti- 

reflection coating on one face (reflectivity 36%) were used. The length of 

the resonator was L =  1.35m. The waist of the lowest order transverse mode

for such a resonator is at the plane mirror and the beam radius (or
• \ .. . . . • • . (122)spot-size) at this point is given by

ü)q = j^L(R-L)j^ = 3.4mm . ... (2.2)

In order to restrict oscillation in the lowest order transverse mode 

an adjustable circular aperture was inserted in the cavity near the plane 

mirror. It is w e l l - k n o w n ^ ^ ^ ^ t h a t  oscillation in all but the lowest 

order transverse mode should be suppressed for aperture diameters of smaller
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than 3.5 Wq (i.e. d< 12ram in the present case). With a 12mm diameter 

aperture, however, the divergence of the emitted beam was found to be more 

than twice the theoretically predicted, thus indicating that the laser was 

oscillating in more than one transverse mode. By reducing the aperture 

diameter to 8 mm the far field half-angle divergence attained its minimum

value which was measured to be 1 mrad. This figure compares favourably with
A. ■ ' — -

6 = 1.27 =0.84 mrad which is the theoretical value for the lowest trans­

verse mode of the same c r o s s - s e c t i o n ^ ^ F i g . 2.5(c) shows a typical burn 

pattern of a single transverse mode taken on a developed polaroid film 30 cm 

away from the exit mirror.

2.4.5 SeIf-Mode^Locking

When the temporal profile of the emitted single transverse mode laser 

pulse is displayed on a fast oscilloscope, such as the Tektronix 7904 (rise 

time 0.8ns) using a Ge photon drag detector (rise time 0.6ns) a periodic 

amplitude modulation of up to 100% can be observed (Fig.2.8 (a)). The dura­

tion of the individual pulses in this self-mode— locked pulse train is typic­

ally 2ns (FWHM) (Fig.2.8 (b)), but their shape was not reproducible from 

shot to shot, reflecting the fact that no mode-locking element was present 

in the cavity. Similar self-mode-locking has also been observed by a number 

of other i n v e s t i g a t o r s ^ ^ 129)^ The theory of self-mode—locking has been 

the subject of numerous papers (^30 and cited references) and all that need 

be emphasized here is that unless oscillation in a single transverse mode 

is accomplished, the depth of modulation is decreased to less than 50% and, 

when the mode-limiting aperture is removed, the pulse shape is irregular 

with random mode beating (Fig.2.8 (c)). It was also found that the presence 

of a polarizing KCl plate in the cavity enhanced the depth of modulation 

which was, on average, between 90% and 100%. The 9ns spacing between the 

individual pulses equals the calculated 2L/c round trip cavity transit time.
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2.4.6 Degree of Polarization

As will become apparent in the next chapter, a linearly polarized 

beam with a high degree of polarization, P, is required for the generation 

of nanosecond pulses with low background. It will also be shown that a 

partially polarized output pulse of the double-Rogowski oscillator can be 

readily converted into a highly-polarized beam. In order to increase the 

conversion efficiency (defined as the ratio of the intensity of the linearly- 

polarized beam to the total intensity of the emitted pulse) a KCl plate was 

inserted into the resonator to polarize the output pulse. The degree of 

polarization of this pulse was measured using the arrangement shown in Fig..

2.9. It can be easily shown that ^
P E,+Rj_E,

where E},E2 are the energies measured by the two joule meters and is

the reflectivity of the Ge plate for radiation linearly polarized in a 

direction perpendicular to the plane of incidence. The measured value of 

P was P = §0%± 8 %. The energy of the emitted pulse was in no way adversely

affected by the presence of the KCl plate. As a result of introducing this

polarizing plate, the efficiency of the conversion was increased by 80% and 

this promoted an equivalent increase in the intensity of the generated nano­

second pulses.

Energy Meters

CO? Laser 4»
Beam

Brewster Angle 
Ge Plates

Fig.2.9
Experimental arrangement for measuring the 
degree of polarization of a .laser pulse
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2.4.7 Energy and Power Measurements. 
Effect of Gas Composition

The total pulse shape of this module —  typical of a gain-switched 

laser —  comprised a main spike followed by a ’tail’, which was also charac­

teristic of the Double-Discharge device. The duration of the tail following 

the initial 70 ns pulse was found to be dependent on the ratio of the par­

tial pressures and P^Q^ of the N 2 and CO2 in the gas mixture. For

a ratio Pjĵ ^/Pq q  ̂= 3 the duration of the tail was ~  3 ys (Fig.2.10(a) . 

Energy and power measurements of such a pulse revealed that the initial 

pulse contained no more than 12% of the energy of the total pulse. For a

ratio P]̂  /PçQ = the duration of the tail was reduced to 1 ys (Fig.
1

2.10(b)). The pulse had no tail at all for ratios Pn2^^C0 2~ "g (Fig.2.10(c), 

The peak power as well as the energy of the emitted pulse was found to be 

largely dependent on the gas mixture.

A series of simultaneous measurements of both the energy and the

peak power of the emitted pulse are plotted against the ratio —-- ------
^N2 ^CÛ2

in Fig.2.11. In the course of these measurements, the partial pressure of 

the helium was kept constant at P^^ = 456 torr. It can be seen from these 

graphs that the energy of the laser pulse increases monotonically with the 

nitrogen concentration up to P^^ = 230 torr where arc formation in the dis­

charge drastically reduces the energy output. The peak power of the pulse, 

on the other hand, originally increases with the values of —--- — 5̂—  and
PN, .attains a maximum value when —----— rr—  = 0.14 (i.e. Pĵ  = 43 torr, ^cOo ~

^C# 2  ^N2  ̂ ^
260 torr). Further increase in P^ results in an almost linear decrease

of the peak power.

For the generation of nanosecond pulses, it is desirable that the 

oscillator should emit pulses with the maximum obtainable peak power while 

the energy of the pulse should be kept as low as possible to avoid optical 

damage (see section 3.7). Furthermore, as. will be seen later, the small
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F ig .2.11
Effect of g a s ' composition on the energy 

and peak power of the emitted pulse

signal gain in the Double-Discharge module was maximised for gas mixtures

having the same composition. For these three reasons the ratio of 

will be, in general, maintained throughout this study.

•N

CO
2 I 

6

The mean peak power of the emitted pulse in ten consecutive shots 

was found to be (9.8±0.5)MW/cm^, while the energy was (290 ± 10) mJ/cm^.

The shape of these graphs was not affected by the amount of helium in the 

discharge (which varied within the range 315 - 700 torr) although —  as might 

be expected —  both the peak power and the energy were reduced at higher 

helium concentrations.
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^•4*8 Effect of Ovgan'to Addi-t'ives on

the CO ̂ Laser Performance

It has been so far ascertained that in order to maximise the peak 

power output of the pulse emitted from the Double-Rogowski module, a laser 

gas mixture should be used with:

(a) an appropriately chosen ratio in the molar fractions of 
the two molecular gases (i.e._ = 0.14); and

(b) a low helium concentration.

However, when the helium concentration is reduced, at any given 

excitation energy input, formation of localized bright arcs drastically 

reduces the intensity of the emitted pulse. The minimum helium concentra­

tion for which reliable and arc-free glow discharges could be readily 

obtained was 60% for the Double-Rogowski module and 72% for the Double- 

Discharge module for excitation energies of 88 J and 290 J respectively.

This arc formation is attributable to insufficient pre-ionization density^^^^^
(132)which occurs as a result of the reduction in the helium concentration

Cl 33)“LEVINE and JAVAN demonstrated that the ultra-violet radiation

emitted from xenon, flashlamps could produce sufficient ionization to sus­

tain a glow discharge when the laser gas mixture was seeded with an organic 

vapour of low ionization-potential (~ 7.5 eV). Consequently an enhancement 

in the pre-ionization density would be expected to follow the introduction 

of such a substance in the gas mixture of the two laser modules under dis­

cussion, as a result of,a more efficient use of the ultra-violet radiation 

produced by the auxiliary discharges. This expectation was substantiated 

when small quantities (0.2 torr) of organic vapour such as triethylamine, 

(C2Hs)3N or tripropylamine, (C3H^)3N, having an ionization-potential of

7.5 eV and 7.23 eV respectively, allowed lower helium concentrations to be 

used in arc—free glow discharges. The new lower limits in the helium con­

tent were 45% and 60% for the Double-Rogowski and Double-Discharge modules 

respectively. As a result of this increase in the concentration of the
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molecular gas (N^+ CO^) an ~ 30% increase in both the peak power and the 

energy of the two modules was established.

A further beneficial effect was observed on the Double-Discharge 

module which normally suffers from a spatially non-uniform laser output.

The 'hot spots' in the lower part of the output beam shown in the 'burn- 

pattern' (Fig.2.5(a)) taken on a developed polaroid film, are eliminated 

when 0.5 torr of the seedant is introduced to the laser gas (Fig.2.5(b)).

This indicates a gain uniformity in the whole volume of the active medium.

The effect of the ultra-violet radiation created by the corona discharge 

on the preionization density has been overlooked in many publications con­

cerning this type of laser^^^'^^^"^^^). MAZURENKO and RUBIN0V^^^®\ 

however, have recently shown that a significant amount of soft ultra-violet 

radiation is created and is particularly instrumental in establishing the 

pre-ionization of the laser gas. It is therefore reasonable to interpret 

the observed uniformity as the results of the photo-ionization of the 

seedant gas which is distributed evenly in the laser gas.

The amount of seedant which was introduced in the laser gas was con­

trolled by bubbling a variable fraction of nitrogen through a vessel contain­

ing liquid triethylamine or tripropylamine. The partial pressure, Pg (in _ 

torr) of the seedant was accurately calculated by measuring the volume V 

(in cm^) of the liquid which was vapourized in a time t (in min). It can -

be shown that Pg =  ̂ where p is the density of the seedant in the liquid68Vp 
t FM

phase (gr/cm^), M is its molecular weight and F is the total flow rate

(il/min) of the laser gas.

The beneficial effect of various organic vapours has also been 

experienced in the laser performance of Double-Rogowski modules as has been 

reported by REITS and OLBERTZ^ *  ̂ and NAKATSUKA and KUBO . Simi­

larly, BYCHKOV et al^^^^^ have reported an improvement in the output para­

meters and the discharge homogeneity of a Double—Discharge module.
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2.5 CHARACTERISTICS OF THE DOUBLE-DISCHARGE
MODULE AS A CO^ LASER AMPLIFIER

The potential of the Double-Discharge module, as a COg laser ampli­

fier was investigated and the subsequent findings are presented in this 

section. The effects of the gas mixture composition and of the density of 

the electrical input energy upon the value of the small signal gain coeffi­

cient were examined. The saturation energy parameter for a 70 ns pulse 

was also determined.

2.5.1 Smalt Signât Gain Measurements

The small signal gain is an important parameter of the COg laser 

amplifier for, apart from being a measure of the stored optical energy, 

its distribution over the various rotational-vibrational lines indirectly 

discloses information about the values of such quantities as: the rota­

tional temperature: the ratio of the population of the two laser levels:

and the absolute densities of these p o p u l a t i o n s ^ ^ 146)^ in addition, 

its rise and fall times can be implemented to assess the lifetimes of the 

lower and upper laser levels.

Figure 2.12 schematically depicts an experimental arrangement used 

to measure the small signal gain which does not rely upon the use of a CW 

COg laser normally required for such measurements. The intensity of radia­

tion entering the amplifier was controlled by varying the d.c. voltage 

applied on a GaAs electro-optical crystal inserted between two crossed 

polarizers. The first polarizer consisted of a single Ge plate placed at 

the Brewster angle while the second contained six similarly positioned 

plates.

With a lOkV voltage applied to the crystal, the intensity of the 

radiation entering the amplifier was attenuated by thin polyethylene absor­

bers to the lowest level J mJ) measurable by the energy meter Eg. The 

reading of the Ej , found to be 18 times greater, provided an accurate
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Experimental arrangement for measuring small signal gain

measure of the input energy when this was further reduced by decreasing the 

applied voltage. The input energy measured in this way was sufficiently 

low (~ 50 yJ) to preclude gain saturation. The small signal gain is thus 

given by:
1 / I 8 E, \

- £n ^ ) .... (2.3)a.
-a ' El / _

where is the length of the amplifying medium and and E^ are the

energies measured by the two meters when both oscillator and amplifier were

activated. A CO g spectrum analyser (Optical Engin. Model 16 - A) was used

to monitor the wavelength of the emitted pulse.

The time dependence of the small signal gain was examined by varying 

the delay time between the firing of the amplifier and the oscillator. The 

measured values of the small signal gain for the P (20) line at the 10.4 ym 

band were plotted against this delay time in Fig.2.13. As can be seen, the 

temporal gain profile obtained by this method was found to be in good agree­

ment with the profile achieved using the technique illustrated in Fig.2.14. 

Adopting this t e c h n i q u e ^ ^ a  commercial CW CO^ laser (Apollo-XB) was 

used to probe the gain of the amplifier. Spectral examination of the output 

of this laser, using a CO^ spectrum analyser revealed that the wavelength 

of the emitted radiation was changing erratically and almost all the
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Experimental arrangement for small signal gain 
measurement, using a CW CO^ laser

- 49 -



rotational-vibrational lines of the 9.4 ym and 10.4 ym bands could be 

emitted singly or in pairs. This was apparently due to cavity length varia­

tion resulting from temperature fluctuations in the laser tube. However, 

oscillation in any one specific line could be maintained for a period of a 

few minutes by adjusting the current in the CW laser and the thermostat 

of its cooling system. The power of the CW beam traversing the amplifier 

was 0.5W and its diameter was 3 mm .

A remotely-operated mechanical shutter (M.S.) was arranged to remain 

open for a period of only 2ms thus minimizing the detector heating. On 

opening, this shutter triggered the amplifier discharge circuit.

A typical gain pulse for the P (20) line of the 10.4 ym band, recorded 

by a liquid-Ng-cooled Eg : Cd : Te detector in conjunction with a Tektronix 

7633 oscilloscope, is shown in Fig.2.4(c). The small signal gain, in this 

case, is simply given by:

where I is the amplitude of the amplified signal and Iq is the d.c. 

signal level preceding the gain pulse. Although this last technique has 

the advantage of being direct and simple, the first described method was 

found to be a useful alternative in the early stages of this study when 

the CW COg laser was not available. Moreover, it permitted —  unlike the 

CW method —  the investigation of the gain saturation.

2,5.2 Upper and Lower Laser Level L'tfe-T'imes

The rise and fall times of the small signal gain pulse, as has been 

shown by CHEO^^^^ and REID et correspond to the effective life­

times of the lower and upper vibrational laser levels respectively. The 

temporal profile of the gain coefficient can be described by the expres—

where and Tg are the life-times of the upper and lower laser levels.
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Although the gain waveform shown in Fig.2.6(c) gives the time depen-
a(t)Lodence of the gain per pass through the amplifier, g(t) = e it can be

readily converted to give the time-dependence of the gain coefficient it­

self, a(t). A very close fit was obtained between this experimentally- 

determined gain coefficient and that described by equation (2.4) when

= 8.2 ys and = 1.2ys. These values are in good agreement with the 

expected life-times

(?! = = 7.8ys, and ^  = 0.57 ys^

discussed in Chapter I.

2.5.2 The Effect of the Gas Compositïon and 
EleotT'ical Energy on the Gaïn

It was found that the small signal gain was linearly proportional to 

the electrical excitation energy as shown in Fig.2.15(a). The gas composi­

tion was kept constant (CO^ : : He 1 : ^ : 2 ) .

Figure 2.15(b) illustrates the variation of the small signal gain as

a function of the ratio —-- — ---- . It is evident that the same gas com-
^COg

position which maximized the output power of the Double-Rogowski module 

(Fig.2.11) also maximises the small signal gain of this laser amplifier.

The electrical energy density in this case was fixed at 96 J/£ and the 

He concentration was 65%.

2.5.4 Gœin Saturation

For reliable gain saturation measurements, the small signal gain 

must be maintained at a constant level. It can be assumed that this require­

ment is adequately fulfilled if both gas composition and electrical energy 

density are kept constant. When the polyethylene attenuators were removed, 

the intensity of the input pulse could be varied in the region 0-50 mJ/cm^ 

by adjusting the voltage applied to the crystal from zero to 10 kV. The 

intensity of the amplified pulse is plotted as a functiori of the inten­

sity of the input pulse E^ in Fig.2.16.
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Fig.2.16
Comparison between the experimental and calculated 

energy extracted by a 70 ns pulse

The solid line represents a theoretical curve calculated from the 

two-level amplifier equation (equation (5 .2 )).

In the case of a 70 ns pulse, the COg amplifier can in no way be 

classified as a two-level system (due to rotational and vibrational repopu­

lation and relaxation of the upper and lower laser levels). However, very 

good agreement between theory and experiment can still be obtained provided 

that the appropriate value for the saturation energy density. Eg, is chosen, 

as is illustrated in Fig.2.16, and has been supported by other investiga- 

tors^^^^ 152)^ This saturation energy parameter is —  in the case of a 00% 

amplifier —  a function of the pulse duration as well as of the laser gas 

pressure and composition.

The optimum fit to the experimental points is obtained when the 
saturation energy density takes the value Eg = 182mJ/cm^. It is important 

to ascertain the Eg because it determines —  together with the small signal 

gain —  the potentialities of the laser amplifier; for example, the product: 

Eg ag = 6 j/jl gave the maximum optical energy which could be extracted per 

unit volume by a 70ns CO^ laser pulse from the amplifier hitherto investi­

gated.
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CHAPTER I I I  

GENERATION OF NANOSECOND PULSES: 

ELECTRO-OPTICAL SHUTTER

3.1 INTRODUCTION

Nanosecond CO g laser pulses were generated using the output of the 

Double-Rogowski module, described in the previous chapter, in conjunction 

with an electro-optical shutter. This device comprises an electro-optical 

crystal, a system of crossed polarizers, a laser-triggered spark gap (LTSG) 

and a high voltage pulse generator. The time variation of the electric 

field applied on the crystal is imposed on the laser radiation passing 

through it, thus enabling the duration of the laser pulse transmitted through 

the electro-optical shutter to be controlled. The obvious requirements of •

(a) a high degree of synchronization between the laser and 
the electrical pulse, and

(b) subnanosecond rise time and jitter, are satisfied by the 
use of the LTSG.

In this chapter all the design considerations for an electro-optical 

shutter are analysed and the subsequent results presented. These results 

concern particularly:

(a) the performance of an electro-optical shutter using single 
crystals of high-resistivity GaAs, suitable for CO g laser 
radiation of 10 ym wavelength;

(b) the experimental assessment of four GaAs crystals, based 
upon their ability to discriminate against unwanted radia­
tion (extinction ratio); and

(c) the operational characteristics of a pressurised LTSG.

Although this shutter was specially constructed to suit 10 ym radia­

tion, the same design considerations can apply to any electro-optical 

shutter using crystals which belong (as does GaAs) to the 43m crystallo- 

graphic point group of the cubic system.
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3.2 LIGHT TRANSMISSION THROUGH AN
ELECTRO-OPTICAL SHUTTER

An electro-optical shutter requires the optical components to be 

so arranged that no light can be transmitted through the shutter unless an 

electric field is present. In one such arrangement an electro-optical 

isotropic crystal is placed between two crossed polarizers (Fig.3.1). This 

crystal, under the influence of an electric field, becomes anisotropic and 

the transmission of the system is no longer zero but controlled by the 

applied electric field.

The transmission of radiation is then given by (see, for example,-

reference 153, p.696) ^
T = Tg sin^2(f)sin^ Y  ... (3.1)

where (}) is the angle between the transmission axis of the first polarizer

and one of the privileged directions (see Appendix A), and Ô is the phase

difference that has been developed between the two linearly polarized waves

emerging from the electro-optical crystal. The factor T q includes the

effects of any reflection, diffraction or absorption loss in the crystal

and the polarizers. From equation (3.1) it can be seen that, for a given

6 , the maximum transmittance of the electro-optical shutter occurs when

<j)=45°. The value of T increases as sin^ > reaching its maximum value

T = Tg when 6=180°.

The performance of an electro-optical switch is often limited because 

the value of the electric field required for inducing 6 = 180° exceeds that 

which could be applied to the crystal without the risk of dielectric break­

down. The value of 6 , per unit length of the crystal, depends on the ampli­

tude and direction of the electric field as well as on the direction of 

propagation. It will be shown later, that 6 takes a maximum value (for a 

given field strength) when.the field is applied along one particular (h^ k^ £^) 

axis of the crystal and, at the same time, light is propagated along another 

specific (hzkgüg) axis. It is therefore essential to ascertain which two
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Top right oscillogram shows the generated ns laser pulse (1 ns/div)
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crystallographic axes fulfil this criterion so that an appropriately grown, 

cut and polished crystal can be used. It is also important to find the 

corresponding privileged directions so that the crystal can be so located 

between the two crossed polarizers that ({) = 4 5 °,

3.3 INDEX ELLIPSOID

The propagation of light through an anisotropic medium can be illus­

trated using an ellipsoid. This can be applied to describe any crystal 

property given by a symmetrical second-rank tensor such as the dielectric 

tensor The symmetry of which is a consequence of Maxwell's

e q u a t i o n s ^ ^ p . 6 6 6)^ reduces the number of components of the tensor from 

nine to six (since ij

The most general form of the equation of the ellipsoid in Cartesian 

coordinates is:

I  1 ... (3.2) -
i,j = l ^1 ^2 ^3 ^12 ^13 ^23

However, there is always a system of Cartesian coordinates —  the system of 

principal dielectric axes —  in which the above equation takes its simplest 

form:
% 2  = 3—  + —  + —  = 1 . ... (3.3)

Cl =2 C,
The quantities (i= 1,2,3) are the principal dielectric constants.

Replacing the dielectric constants with the corresponding refractive 

indices (for a non-magnetic medium = /e^), equation (3.3) becomes:

+ 1 ... (3.4)
^ 2  ^3

are the principal refractive indices and henceforth it will be assumed 

r)j>ri2 - D 3 . This equation represents the index ellipsoid or optical 

indicatrix. The three mutually perpendicular semi-axes of this ellipsoid 

are Dj » Dg » N 3. It should be noted that is the refractive index for

light linearly polarized —  not propagated —  along the corresponding semi—axis
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With the aid of the index ellipsoid, the orientation of the privileged 

directions, as well as the phase velocities of the two linearly polarized 

electro-magnetic waves permitted to propagate unchanged through the aniso­

tropic medium, can be found. They are determined by the intersection of the 

index ellipsoid with the plane perpendicular to the direction of propagation 

passing through its centre. This intersection is, in general, an ellipse. 

The privileged directions coincide with the principle semi-axes rî  , of 

this ellipse, and the two phase velocities are

U, = , Ü, = . ... (3.5)

The phase difference, per unit length of the anisotropic medium, is

G - (ria-nt) . ...(3.6)

where V, A are the frequency and the free space wavelength of the radiation. 

For any arbitrary direction of propagation, and therefore 6

takes its maximum value when = D 2 » This condition is obviously

only satisfied when light is propagated along the Tig semi-axis of the index 

ellipsoid.

3.4 ELECTRO-OPTICAL EFFECT

The values of the six independent components of the dielectric

tensor of certain crystals, and consequently the shape of their index 

ellipsoid, can change under the influence of an applied electric field 

E = [E^ , E^ , Eg] through the electro-optical effect. When this is directly 

proportional to the applied field, it is known as the linear electro-optical 

or Pockels effect. This change is given by ;

1
I “ ''2'3 ••• <3.7)^ij "-ij ' E = 0

The 27 coefficients r. are constants of the crystal and constitute theijk
electro-optical tensor. Since = it follows that " ̂ jik *

therefore the symmetry of the dielectric tensor reduces the number of compo­

nents in the electro-optical tensor from 27 to 18. Furthermore, the presence
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of certain symmetry elements in the crystal restricts some of the r^j^ 

components to zero values. This is the result of a general principle of 

invariance in crystal physics according to which: 'all expressions involv­

ing any physical constant of a crystal should be invariant when any symmetry 

operation of the crystal is applied^^^^^.

Using equation (3.7), equation (3.2) becomes:

° ’ ... (3.8)

which is the general form of the equation of the distorted ellipsoid. 

Equation (3.8) takes a simpler form if the original ellipsoid is referred to 

the system of its principal dielectric axes (after the substitution = 

has been made):
x= x=i'4

For crystals which belong to the 43 m point group of the cubic system (with

n = n = n = n ) the only non-zero electro-optical coefficients are:1 2  3 0
= r2 3 1 321
E r132 3 1 2

1 2 3 - ^ 2 1 3 '

> = r

The equation of the resulting index ellipsoid (which in the absence of an 

electric field is a sphere) takes the form:

x ^ + x ^ +  x^
+ 2 rî  J (E^XgXg + E^XgXj + EgXjX^) = 1 . ... (3.10)

Taking the axes (x^ , x̂ , , x^) of the original co-ordinate system, parallel 

with the three crystallographic axes (lOO), (010> , (OOl) respectively, the

orientation of a new coordinate system whose axes are parallel with the

directions of the principal refractive indices of the distorted index ellip­

soid can be found. Equation (3.10) in this new system takes the form :
4  x:
— ^ + — 2" — T — 1 ...(3.11)
’ll ^2 ^3 .

The values of Oj > O 2 » O 3 are = /F/k^ where the k^ are the three roots
_ , 1 • n • (155)of the cubic secular equation :
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3.5 OPTIMUM CRYSTAL ORIENTATION

" 41^ ’'41^2

=  0 ... (3.12)

Using the secular equation, it can be shown that a given electric 

field induces maximum birefringence. Art = rij-ris, when it is applied per­

pendicularly to any of the (110) (Oil), (101) planes of the crystal. The 

components of the electric field E in this case are:

El = E, = JL , E, = 0 .

Substituting these values in equation (3.12) it is found that:

= On +1 r,., n» E41 '0

-1
Uo = k /  = n, ... (3.13)

rig = kg

Using the above relations, in a method described by the semi­

axes rî and r|g of the index ellipsoid are found to lie on the same plane (110) 

as the electric field, and to form angles ±45° with it (see Fig.3.1). The 

direction of Tig along which the light should be propagated is consequently 

perpendicular to the direction of the electric field. This is the great 

advantage of the cubic over the uniaxial crystals (i.e. the widely-known 

K D P  crystals where the light has to propagate along the directions of the 

applied field). Firstly, the design of the electro-optical shutter is greatly 

simplified (with no need for transparent or specially-shaped electrodes) and, 

secondly, the required field can be reduced by using crystals whose length L 

is large compared with the dimension along which the field is applied. It 

is apparent, that in any electro-optical shutter employing a cubic crystal
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of the 43m point group (i.e. GaAs, CdTe, ZnSe, etc.) the best performance 

is achieved when the following conditions are satisfied:

(a) The crystal has its faces parallel with the (iTo), (110),
(0 0 1) crystallographic planes.

(b) The field is applied perpendicularly to the (110) plane.

(c) The laser beam is propagated along the (110) axis with its
direction of polarization parallel with (or normal to) the 
direction of the applied field.

The phase difference which is developed between the two components of

the linearly polarized light is then given by:

(3.i4)

where V = Ed is the amplitude of the applied voltage. When

V , -----— — r ... (3.15)

6 = 180° and the transmittance of the electro-optical shutter reaches its 

upper limit T = T^. This value of V, is the half-wave retardation voltage.

Figure 3.2 shows the Pockels cell used throughout this investigation. 

The 10 X 10 X 50 mm GaAs crystal is mounted in a way that satisfies the above

conditions for optimum orientation. Indium foil inserted between the crystal

and the two electrodes ensured that the crystal was firmly held without being 

stressed; otherwise, in the absence of an electric field,strain birefrin­

gence could be induced.

Using equations (3.15) and the values of A=10.6ym, r^^ = 1.4 x 10 

cmV”  ̂ Uq = 3.3, the half-wave retardation voltage of this Pockels cell is 

determined as:
V, = 21.06kV ,
2

3.6 EXTINCTION RATIO

Although in theory there should be no transmission of light through 

an electro—optical shutter in the absence of an electrical field, in prac­

tice there is always a small transmittance arising from optical imperfections
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Fig.3.2 
GaAs Pockels Cell
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Fig.3.3
Experimental arrangement for measuring the residual 

birefringence of the GaAs crystal

in the system of polarizers and the electro-optical crystal (residual strain- 

induced birefringence).

The ratio of the intensity of the radiation incident on the second 

polarizer (see Fig.3.3) to the transmitted intensity I when no field is 

applied, is the extinction ratio of the electro-optical shutter (Eg=1^/1).

The value of Eg is an important parameter of the electro-optical shutter 

employed in a laser system since it determines the signal-to-noise (back­

ground) ratio of the transmitted pulse. The presence of this low intensity 

background creates a serious problem for the amplification of nanosecond 

pulses because it experiences a high initial gain, with the result that the 

signal-to-noise ratio continuously decreases as the pulse travels through the 

amplifying medium. Furthermore, in the case of a chain of amplifiers, that 

part of the background which is ahead of the short pulse will significantly 

reduce the energy that the pulse would otherwise extract.

Two factors determine the value of Eg : (a) the extinction ratio, E^, 

of the crossed polarizer system itself, (defined as the ratio of the inten­

sity 1 |̂ of the radiation incident on the second polarizer to the transmitted 

intensity with the crystal removed from the system), and (b) the residual 

strain-induced birefringence in the crystal which reduces the degree of 

polarization of the laser pulse, thereby increasing the leakage of the 

unwanted radiation (background). The quantity:
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m
Ep = ) ••• (3.17)

= ( ^ - ^ )  ••• (3.16)

represents the extinction ratio of the crystal and gives the upper limit of 

the extinction ratio of the system as a whole.

Using the Fresnel formulae, the theoretical value of Ep, for the 

system of polarizers shown in Fig.3.3 is:

where m is the number of plates which comprise the second polarizer. An 

experimental arrangement for measuring the values of Ep and Eg is also 

shown in the same figure.

When the second polarizer and the GaAs crystal were removed, the 

intensity was measured. After the polarizer had been replaced, the 

very low intensity, I', of the transmitted radiation was amplified by the 

laser amplifier to bring to a measurable level. Taking into account the 

known gain of the amplifier, the extinction ratio in the case of three, four 

and five Ge plates, comprising the second polarizer, was found to be:

E „ = 560 , E / =  4,600 and E  ̂ > 10^. p3 ' p4 p5

These values closely agree with the theoretical values deduced from equa­

tion (3.17), indicating a very high degree of polarization of the radiation 

reflected from the first polarizer, and also allowing a value of E ^ ^ > 1 0  ̂

to be estimated when six plates are used.

Replacing the crystal, the extinction ratio Eg of the electro-optical 

shutter as a whole was similarly measured and, using equation (3.16), the 

value of Ej, was deduced.

Four GaAs crystals were tested and the values of their E ^ , with 

the full cross-section of the crystals exposed to the radiation, were found 

to be 100, 400, 600, and 3,400 respectively. When the exposed area of the
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crystal was reduced by placing an iris symmetrically in front of it, the 

values of were found to increase. This clearly shows that the quality 

of the crystal is poorer near the edges and according to F I G U E I R A ^ ^ t h i s  

is due to strains introduced during the cutting and polishing processes.

The same study also noted this large sample-to-sample variation in the 

quality of the GaAs crystals.

3.7 FORMATION OF WEDGE FRINGES BY OPTICAL 
COMPONENTS. OPTICAL DAMAGE

The use of optical components made of material with a high refractive 

index - like Ge or GaAs - as beam splitters, windows, polarizers and 

electro-optical modulators of the laser beam, often results in the formation 

of undesirable sharp fringes^^^^^. Usually these fringes are of equal thick­

ness (straight line wedge fringes) which occur when the two surfaces of the 

component are inclined. Generally in such components the locus of the points 

of equal thickness, which represents the edge of the wedge, forms an angle 

with the geometrical edge of the component, i.e. a rectangular plate. As a 

result of this, the fringes which are produced on transmission or reflec­

tion appear to rotate when the angle of incidence is changed, i.e. the angle 

between the plane of incidence and the straight line fringes appears to 

change (Fig.3.4(a)).

In the course of operating the electro-optical shutter under discus­

sion, surface damage occurred to the GaAs crystal. The damage pattern 

resembled the fringe pattern of the beam reflected by the Ge polarizing 

plate (Fig.3.4(a), far right). The absence of any damage on the Ge plate 

is clearly attributable to its higher damage threshold. A feature of 

interest is that although the incident beam was parallel, only the exit 

surface of the crystal was damaged, whilst the entrance surface suffered 

no damage. It has been proposed that this asymmetry between entrance and 

exit damage thresholds, can be explained by considering FRESNEL reflections
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Fig.3.4

Wedge fringes on CO2 laser components
(a) Rotation of fringes with varying angle of incidence
(b) Effect of back surface finish of Ge plate on fringe

visibility; from left to right, incident beam, 
reflected fringes (both faces polished), and smooth 
reflected beam with matt back surface;

(c) Effect of applied voltage on fringes produced in GaAs
electro-optic crystal-voltage increasing left to right
from zero to quarter wave value. Incident beam on 
far left.
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at the surfaces  ̂ In the case of GaAs, which has refraction index

T) = 3.3, the light intensity inside the crystal at the exit surface is 

4ri^/(n+l)^ = 2.35 times greater than the intensity inside the crystal at 

the entrance surface.

As can be seen from Fig.3.4(c), the wedge fringes formed by the GaAs 

crystal can be excluded by applying a bias d.c. voltage equal to the quarter 

wave value. Although this is an impractical solution in the present case 

since it will induce continuous birefringence, the disappearance of the 

fringes can be used to measure the quarter wave voltage and the electro- 

optical coefficient r^j of the GaAs. Antireflection coatings on both 

surfaces of the crystal would seem to be the obvious solution to avoid the 

fringes although new problems might arise, such as current flow through the 

coating or an overall lower damage threshold, depending on the coating • 

material. However, the fringes produced by the polarizing Ge plate can be 

easily excluded by grinding its back surface with a wet emery cloth (Fig. 

3.4(b)).

The angle of inclination ^ of the two faces of the GaAs crystal 

can be calculated by measuring the fringe spacing d. For normal incidence

$ = —  . ... (3.18)

The angle (j) = 8 x 10 rad, thus ascertained, agreed within 4% with the 

values deduced from the displacement of the reflected and transmitted beams 

caused by refraction in the wedge. This is a useful method of measuring 

small wedge angles on infrared components over relatively long path differ­

ences - 50mm in the present case.

An interesting fine structure in the wedge fringes, formed by the Ge 

plate at angles of incidence greater than 45°, can be seen in Fig.3.5. The 

high reflectivity of the Ge plate at such angles of incidence accounts for 

the appearance of the fine structure. A discussion of these secondary maxima
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which have been theoretically p r e d i c t e d ^ ^ c a n  be found in reference 

(153, pp 351-4).

3.8 LASER-TRIGGERED SPARK-GAP

The advantage of the laser-triggered spark-gap over the conventional 

electrically-triggered switch were widely recognised soon after the first 

experiments initiating a spark discharge by focussing a laser beam into a 

d.c. charged spark gap, were r e p o r t e d ^ ^ \  These advantages can be item­

ised as:

(a) the absence of electrical coupling between the triggering 
device (i.e. the laser) and the high voltage assembly;

(b) the very short delay time (a few nanoseconds) and its sub­
nanosecond variation (jitter) from shot-to-shot;

(c) the capability of simultaneously triggering several L T S G ' s  ; 
and

(d) the very simple, robust and compact structure of the L T S G.

The L T S G  is ideal for the generation of short laser pulses. In such 

an application, the laser pulse itself provides the triggering of the spark 

gap via a beam-splitter, thus achieving the necessary high degree of syn­

chronisation without the need for a separate triggering device.

Gas-filled spark gaps appear to be preferable to liquid or solid 

dielectric-filled gaps and have been much more thoroughly investigated^^^

The main disadvantage of the liquid dielectric-filled spark gap is that 

it has a delay time of several microseconds, compared with the nanosecond 

response of the gas-filled pressurized gap.

Gaps insulated with solid dielectric have the drawback that the dielec­

tric must be replaced after each gap closure since it lacks self-healing 

properties.

For the gas-filled spark gap, a pressurized gap is preferable to a low 

or atmospheric pressure spark gap for two reasons: -
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(a) the time taken for the development of the conduction path 
is reduced by increasing the pressure for a given value of 
V/Vgb (where V is the charging voltage and the self 
breakdown voltage of the gap);

(b) by increasing the gap pressure, the gap spacing required
to hold off a certain voltage decreases (PaschenVs Law)
resulting in a faster rise-time of the electrical pulse 
generated by the gap closure (as will be shown later).

The coaxial structure of the L T S G  used (see Fig. 3.6) is shown in 

cross-section in Fig.3.7. The laser beam is directed on the cathode disc 

via a 2 mm central hole in the anode, using a plane-convex Ge lens as 

combined window and focusing element. The lens was so chosen that its 

focal point would lie ~ 2 m m  behind the target electrode. This arrangement, 

according to BETTIS et al^^^^\ results in the minimum delay time and 

jitter. The gap spacing is adjusted by means of a 6.67 turns per centi-/

metre thread on the main body of the L T S G ,  and is effected by rotating

the main ring bearing the cathode assembly. Nitrogen, at pressures of up 

to 7000 torr was used as the insulating gas.

3.9 PULSE GENERATION

A pressurised spark-gap similar to that reported by ALCOCK et al^^^^^ 

was employed as the switch in a transmission-line pulse generator "(Fig.3.8 ) 

of a type first described by F L E T C H E R ^ ^ , who used it, as here, to produce 

multi-kilovolt pulses with a sub-nanosecond risetime.

The distributed capacitance of the high frequency coaxial cable L^ 

is charged from a high voltage d.c. power supply through a resistor Rj =

The other end of the cable is connected, at point A, to one of the electrodes 

of a pressurised L T S G .  The electrode spacing and gap pressure are such that 

the self-breakdown voltage Vĝ  ̂ of the gap is higher than the potential V^ = Vq 

to which the cable is charged. The potential on the second electrode of the 

gap is Vg = 0. When the gap is triggered by the laser beam at the time tj=0

the potentials 3 t̂ the points A and B are equalised: ^A~^B '
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Fig.3.6
High-pressure Laser-triggered Spark Gap
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Cross-section of the L T S G
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Fig.3 .8
Multi-kilovolt transmission-line type

nanosecond pulse generator
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Since the potential Vg at the point B was originally zero, the gap 

closure is equivalent to a short circuit appearing at one end of a charged 

line^^^^) and therefore V^^V^/2 = Vp/2. Consequently, two similar ramp 

functions of opposite sign are generated at the switching point. These 

propagate out in opposite directions along the lines and with ampli­

tudes

- Vo =- IT V, = - Vo = IT '

Both waves travel with the group velocity U of the line which is:

U = c / Æ

where c is the velocity of electromagnetic waves in free space, and e is 

the relative dielectric constant of the insulating medium between the two 

conductors of the line. The dielectric in the cables used here was poly­

ethylene, for which E = 2.3 and therefore U = 0.66c - 1.98x10® m/s.

The positive amplitude of the wave on the line Lg imposes a step

voltage Vq/2 as it travels along it, whereas the negative wave discharges

the voltage on the line to half of its original value as it travels

towards the charging resistor where it arrives at time =

Because of the impedance mis-match, it is reflected at this point, and

travels back along L^. The reflection coefficient is given by:
R - Z

p = ... (3.19)

where = 50 is the characteristic impedance of the transmission line.

With Rj=10^fi»ZQ, the reflection coefficient p = l  and the reflected 

wave remain negative with the same amplitude (-V^/2) . Thus the reflected 
wave completes the discharge of the line as it returns to the L T S G ,  

where it arrives at the time t^ = 2L^/U and cancels the positive potential 

V^/2 at B.

Since the positive wave has already been travelling for a similar time 

2Lj/U before being cancelled by the negative wave, the net result is clearly.
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the generation of a rectangular pulse of height Vq/2 and width t = 2L ^ U  

on the line Lg * leading to the Pockels cell. A rigorous mathematical treat­

ment of this type of pulse generator can be found in reference (166).

This electrical pulse, having propagated along the line , over the 

electro-optical crystal and through , arrives at the terminating resistor 

R^. With the values of R^ and R 3 chosen such that R^+R^ = Z^j the pulse 

will be absorbed because reflectivity p = 0  for an impedance match (equation 

(3.19)). Thus there can be no reflection of the pulse to activate the 

electro-optical crystal further.

The two resistors R^ and R 3 (R3 c  R^) form a voltage divider to 

attenuate the multi-kilovolt pulse to an amplitude suitable for oscilloscope 

display. By varying the length of the line from 0.15 to 10 metres, 

electrical pulses of duration ~1.5 to 100 nanoseconds are readily achieved. 

A Tektronix 519 Oscilloscope with a deflection sensitivity of 9.8V/div and 

a rise time of 0.29ns was used to display these pulses (Fig.3.9). Because 

the duration of the voltage pulse depends solely on the length and the 

dielectric material of the transmission line L^, this pulse generator has 

a remarkable stability usually lacking in generators using active elements.

3.10 MECHANISM OF THE LASER-INDUCED GAP BREAKDOWN '

The breakdown mechanism proposed by GUENTHER et al^^^^^ seems more 

likely to apply to the present case than those suggested by other investiga- 

tors^^  ̂ and will be described first. In this mechanism, it is assumed 

that the electrons generated by focusing the laser on to the target electrode, 

drift across the gap under the influence of the applied electric field 

and gain sufficient energy to ionize the gas molecules or atoms by collision. 

The growth of ionization conforms to the Townsend classical avalanche pro­

cess according to which the number of electrons N produced after a distance 

X is :
N = N. exp (a x) . ... (3.20)
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Fig.3.9
Typical examples of the generated CO^ laser pulses - on the 
right - (10 ns/div; 5 ns/div; 1 ns/div, from top to bottom) 
together with the corresponding electrical pulses which acti­
vate the Pockels cell - on the left - (2 ns/div; 5 ns/div;

2 ns/div, from top to bottom)
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Here, is the number of electrons emitted from the electrode and a is

the first Townsend ionization coefficient (i.e. the number of ionizing 

collisions per centimetre made by one electron travelling in the electric 

field direction). This process continues until the entire gap is bridged 

with an ionized conducting path. The velocity of the avalanche v^ is 

considered as equal to the electron drift velocity (v^ ~  10^ cm/sec). This 

mechanism, however, fails when the measured delay time is shorter than the 

time required for the avalanche to travel a distance equal to the gap length 

d. In such a situation the more rapid 'streamer’ mechanism is required to 

account for the temporal behaviour of the breakdown. . In this process accord­

ing to RAETHER^^^^\ the electron multiplication follows the avalanche process 

until the number of electrons reaches a critical value - 1 0® after a 

distance of travel x^. At this stage the avalanche is transformed into a 

plasma streamer advancing rapidly with a velocity v^^IO® to 1 0® cm/sec.

The total formative time, which can be defined as the period of time that 

elapses between the creation of the electrons on the target electrode and the 

appearance of the high voltage on the opposite electrode, may therefore be 

expressed as: Xp d - Xpt = _£. +  E
f  Va

or using equation (3.20)
. ’- W  . IZ i . ... o . „ ,

3.11 DELAY TIME AND JITTER

Although the self-mode-locked pulse of the Double-Rogowski module was 

normally used to trigger the gap, it was necessary to use the 70ns single 

longitudinal pulse from the laser described in Chapter VI in order to mea­

sure accurately the delay time, jitter and threshold power for breakdown of 

the gap. The peak power of the pulse transmitted through the Ge lens; 

ranging from 0 - 2  MW, was indirectly measured with the aid of a beam-splitter 

located in front of the lens and a calibrated photon drag detector. The
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spontaneous mode-beating that normally occurs in a T E A  CO^ laser, and the

difficulty of its removal, might account for the paucity of data on delay

time and jitter measurements in the literature, by contrast with the numer­

ous measurements pertaining to ruby, dye, YAG and Nd glass lasers.

The delay time, t o f  a L T  S G - defined as the period of time 

between the arrival of the laser pulse on the target electrode and the 

appearance of the electrical pulse on the opposite electrode - may be 

considered as the sum of two smaller periods of time:

(a) the time, tg, needed for the laser to heat the target 
material to its melting point T^ (i.e. the time needed
for the emission of the N q electrons); and

(b) the formative time, t^, which has already been defined.

In the present case where the CO^ laser pulse has a slow rise time 

(~70ns) the value of t^ can be readily shown to be comparable with - or

even greater than - the value of and cannot therefore be overlooked as
. , , , ^  ̂,(171) . . ,(165)It can with laser pulses of a few picoseconds or a few nanoseconds

duration.

As shown later,
K

where
T ^ tt p  c k  

K = ■
4A^

is a thermal constant of the target material, and is the incident laser

power density. Thus, using equation (3.21), the delay time t^ = t^ + t^ is;
T̂ tt p ck 1 £n Np - £,n Nq d - Xp

Equation (3.22) theoretically predicts the effect on the delay time 

of the laser pulse, voltage, gap spacing and pressure, and the experimental 

behaviour qualitatively agreed with its predictions.

As a result of an increase in laser power, shorter values of t^ were 

recorded, presumably because of the smaller value of tg. Fig.3.10 indicates

- 77 -



the effect of the charging 

voltage of the gap, V, on 

the delay time. The ob­

served increase in the 

delay time with decreasing 

V is clearly due to the 

fact that both a and v^ 

decrease with the decreas­

ing field.

When the pressure P 

was increased simultan­

eously with a decrease in 

the gap spacing, keeping 

the ratio E/P constant.

d = 0.6mm 
p= 6,970 Torr 

15 kV
P= 250kW

240

200

160
V)

%  120E .

001o

0.8 10.60.20
Fig.3.10

Delay time as a function of the applied voltage

a decrease in the value of tj was observed. This result is in agreement 

with equation (3.22) since the Townsend coefficient a is proportional to 

the pressure P for constant E/P .

It thus follows that in order to minimise the delay time of a COg 

L T S G ,  the highest permissible values of laser power and pressure should 

be used in conjunction with a charging voltage as near to the self-breakdown 

value as possible.

The error bars in Fig.3.10 indicate the maximum jitter of the delay 

time. Subnanosecond jitter is observed for V s; 0 .8 . It should be

noted here however, that the jitter remains low only if the power of the 

incident laser pulse does not change from shot-to-shot. Any variation of 

the laser power results in a considerable increase of the jitter even when 

V ̂  0 .8 Vgy. This is apparently caused by changes in the value of t^ , which 

is dependent on laser power. The peak power of the laser beam which entered
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the gap when the measurements in Fig.3.10 were taken was 250 kW. The 

minimum power required to trigger the gap when the charging voltage 

V-0.95Vg^ was found to be ~20kW, corresponding to a threshold energy 

of 1 . 5 m J .

3.12 ELECTRODE MATERIAL

Since the electron emission from the target electrode is regarded as

t h e r m i o n i c ^ ^ 174,177)^ attention must be given to the choice of target

material to achieve the lowest possible delay time, tj. When the target

electrode is irradiated by a 'triangular' laser pulse of duration T, the

temperature T at the surface, as a function of time t(t<T) is given by 
(175):the relation

2 AP. 1
T = ----- —  t" ... (3.23)

/ ' tt p c k‘
where A is the absorbed fraction of the incident radiation, P^ the laser

power density and p, c, k, the density, specific heat and thermal conduc­

tivity of the electrode material respectively.

Tungsten has been claimed as the best material for spark gaps triggered 

by laser radiation of up to 1 ym w a v e l e n g t h ^ ^ w i t h  aluminium, brass 

and stainless steel in descending order of desirability. However, the longer 

wavelength of the CO^ laser (10 ym) requires the resistivity of the material 

to be taken into account, for this determines the value of the absorption 

A i.e.
A = 3.65X 10-3 (r/x)2 ... (3.24)

where X is the wavelength in ym and R is the resistivity in . ym. Using

the relations (3.23) and (3.24) to ascertain the comparative rates of laser 

heating, the different electrode materials can be listed in order of desira­

bility for X ~ 1 0 ym as: stainless steel, tungsten, brass, aluminium and

copper.

Although brass electrodes were used in the present case, they were 

found to be quite satisfactory for the generation of nanosecond pulses
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because for any value of the charging voltage V > 0.7 the electrical 

pulse appears on the output of the L T S G  before the laser pulse reaches 

its peak (see Fig.3.10). By suitably delaying the electrical pulse, its 

arrival on the Pockels cell can be arranged to coincide with the peak of 

the laser pulse.

3.13 RISE TIME DEPENDENCE ON GAS TYPE, PRESSURE
GAP SPACING AND CHARGING VOLTAGE

While there has been thorough investigation of the delay time and 

jitter in L T S G  operation - notably the articles by GUENTHER et 

proposing how these parameters can be optimized - there is very limited 

experimental data^^^^^ on the effect of spark gap parameters - such as gas 

pressure and operating voltage - upon the rise time of the electrical 

pulse.

Since the rise time of the transmitted laser pulse is determined by 

that of the electrical pulse, it is essential to ascertain the operating 

conditions for the minimum rise time.

Figures 3.11 and 3.12 illustrate the effect of the gap spacing and the 

gas pressure respectively, on the rise time of the electrical pulse. The 

gas pressure was held constant for the former and the gap spacing for the 

latter. The ratio V/Vg^ was maintained at a constant value in both cases.

p = 6900 torr
V/Vs5= constant 
• • Experim. points 
—  Theoret. curve

(ns)

0.6

0.6
0.2

Umm)0606
Fig.3.11

d = 0.6 m m  
V/Vsb = constant 
• • Experim. points 
—  Theoret. curve

26

20

.6

2

.8

0.6

Effect of the gap spacing on the rise 
time of the electrical pulse

Fig.3.12 •
Effect of the nitrogen pressure on the 

rise time of the electrical pulse
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The solid lines are theoretical curves based on the relation^^

t^ = 3 . 5 P d V s v ^  ... (3.25)

which gives the rise time as a function of the gap spacing d, the gas pres­

sure P and the applied voltage V. The best fit to the experimental points 

gives a value for the constant S of 440 torr cm^ V~^s~^. The close agree­

ment (a) between this value of S and those of 450 torr cm^ V~^ s“  ̂(^77)

41 8 ± 10% torr cm^ V“  ̂s~^ (178) obtained in other investigations, and (b) 

between the measured and the predicted values of the rise time, full endorses 

the validity of equation (3.25).

Nitrogen was chosen as the insulating gas because of its high dielec­

tric strength. It has often been s u g g e s t e d ^ ^ ^ t h a t  a mixture of 

nitrogen and argon (which has a lower dielectric strength) should be used in 

order to achieve shorter delay times. However the addition of argon was 

avoided, in the present case, for two reasons;

(a) because there is no need for any further reduction in the 
delay time while the maintenance of as short a rise time 
as possible is essential.

(b) because this will necessitate longer gap spacings to hold 
off the same voltage, which, in turn, will increase the 
rise time of the electrical pulse.

Should the need arise in future applications of the COg L T S G  for 

even shorter delay time, this could be achieved - without any adverse effect 

on the rise time of the electrical pulse - by replacing the brass electrodes 

with those of stainless steel, rather than by adding argon to the nitrogen.

Equation (3.25) indicates how any change in the voltage applied across 

the gap affects the rise time of the electrical pulse (i.e. for constant 

pressure and gap spacing: t^ oc-y ). Thus, operation,as near self-breakdown

as possible, is essential not only to obtain shorter delay time but, more 

importantly, to achieve faster-rising electrical pulses.
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3.14 CONCLUDING REMARKS

The electro-optical shutter, whose operational characteristics have 

been fully analysed here, has been used to generate single subnanosecond 

COg laser pulses from the output of the Double-Rogowski oscillator

Figure 3.9 shows three laser pulses (on the right) of duration 100,

20 and ~1.5nsec transmitted by the shutter, together with the correspond­

ing electrical pulses (on the left) that activated the GaAs crystal. The 

performance of the device has shown no signs of deterioration after two 

years of use. However, there are some improvements which could be made in 

the existing arrangement:

(1) The main limitation on its performance is the finite contrast ratio 

(signal/background noise) of the switched-out laser pulses due to 

the intrinsic birefringence of the GaAs crystal. The upper limit 

of this ratio (i.e. the extinction ratio of the crystal) is attained 

when the voltage of the electrical pulse is made equal to the half­

wave retardation voltage (in the present case V , =21 kV). Up to
2 2

now the voltage used has been V =^V,, and therefore increasing this
2

would significantly improve the present contrast ratio. However, this 

should be followed by an appropriate increase in the pressure of the 

nitrogen in the spark gap in order to maintain the fast rise time of 

the electrical pulse (see equation (3.25)).

(2) As a further step to improve the contrast ratio, a second GaAs crystal
( 180)could be used together with an additional polarizer . This should

greatly improve the contrast ratio because the upper limit in this case 

will be determined by the product of the extinction ratio of the two 

crystals: Ê , = E^^ ̂ x E^^^ ~  1 0 .̂
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CHAPTER IV 

AMPLIFICATION OF NANOSECOND PULSES: TELESCOPIC AMPLIFIER

4.1 INTRODUCTION

The low optical damage threshold inherent in GaAs (0.2J/cm^) and 

CdTe (0.13J/cm^) which are the two electro-optical materials most

widely used with CO^ lasers restricted the energy of the generated ns 

pulses, in the present investigation, to 1 mJ. Comparably low energies 

(l-2mJ) have also been noted elsewhere^^^*^^*^^\ An attempt to generate 

more powerful pulses resulted in the damage of the GaAs crystal (section 

3.7). The detection of such low intensity pulses is difficult in the pre­

sence of the large radio frequency noise usually associated with pulsed 

lasers and the application of such pulses to any laser plasma experiment is 

impractical. The Double-Discharge module was used to amplify these pulses 

and to examine their capability for extracting the optical energy stored in 

the active medium.

The attachment to this module of a specially-designed optical cavity 

converted it into a telescopic amplifier by means of which the innate ineffi­

ciency of the pre-amplification stages of the ns pulses was effectively 

eliminated. The design and performance of this telescopic amplifier are 

analysed and the obtained results compared with those which were achieved 

when more conventional means of amplification were used.

4.2 GAIN SATURATION MEASUREMENTS OF ns PULSES

Gain saturation measurements in the Double-Discharge module for pulses 
of 70ns duration were presented in section 2.5.4. In this section, the

gain saturation properties of this module are examined under I. Ins (FWHM) 

pulse-illumination. The experimental arrangement is schematically shown in 

Fig.4.1. The low energy of the switched-out pulse accounted for the double­

pass amplification illustrated in this figure. Gain measurements were taken 

by monitoring the energy of the ns pulse before and after its second
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Fig.4.1
Experimental arrangement for gain saturation measurements of ns pulses

traverse of the amplifier. The intensity of the pulse entering the ampli­

fier was adjusted - by rotating the germanium beam splitter - so as to equal 

the intensity of the pulse incident on the first energy meter. Thus the 

input energy was given directly by this meter while the output energy
Eg

Eg was given by: E^ = rj, •, E^ being the energy measured by the second

meter and T = 0.92, T, = 0.86 being the transmission coefficients of the 
f  ICL^G

KCl/beam splitter respectively. The value of E^ was varied by positioning 

thin polyethylene attenuators after the second polarizer. The ns pulse 

shape, monitored by a photon drag detector, was displayed_on a fast oscillo­

scope (Tek. 7904).

The measured values of E^ , E^ are shown in Fig.4.2, where the solid 

line theoretical curve is plotted using the two-level amplifier equation 

(5.2). The optimum fit to the experimental points was obtained when the 

saturation energy intensity took the value of 30mJ/cm^.

Gain measurements for the 70ns pulse are replotted from Fig.2.16 for 

purposes of comparison. The spectral content (P20 line of the 10.4 ym band)
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Fig.4.2
Comparison between the experimental and calculated ^energy extracted 

by laser pulses of 1.1, 20 and 70ns duration

and the small signal gain (a = 0.031 cm“ )̂ were the same in both cases.

These measurements indicate that the maximum optical energy that 

could be extracted from this amplifier by a 1.I ns single line pulse is:

Egxt" ^s * ^0 “ 0*93 J/Ü 
and this is only one sixth of the energy

Bext= Gs '  Go = 5.64 J/& 

available to a 70ns pulse. Similar measurements using a 20 ns pulse also 

shown in Fig.4.2, indicate that a 20ns pulse is three and a half times more 

efficient in extracting the optical stored energy than the 1.1 ns pulse 

(Eg = 1 02 mJ/cm^) .

This pulse duration dependence of the value of Eg and the subsequent 

limitation on the efficiency of the ns pulse amplification are due to the 

finite relaxation rate of the rotational sub-levels within the upper laser 

level 00°1. Discussion of these aspects is presented in the next chapter 

(section 5.1).
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The maximum energy extracted by the 1.1ns pulse in its double pass 

was 92 mJ. To increase this output the KCl beam splitter in Fig.4.1 was 

replaced by a fully reflecting plane mirror and the pulse was directed for 

a third time through the amplifier. The extracted energy in this case was 

almost doubled at ISOmJ. The cross-section of the output beam was 1.5 cm^ 

which accounted for the poor efficiency in extracting the energy potentially 

available to ns pulses from this module which has an effective circular 

cross-section of A = 19.6 cm^ . This constitutes only 10% of the energy,

^ext " ' 0̂ 0 = 1.82 J (where = 1 00 cm is the length of the amplifier),

extractable by a 1 ns pulse having such a cross-section.

4.3 PULSE BROADENING

The finite rate of the rotational energy transfer between the numerous 

sublevels within the 0 0 ° 1 vibrational level, as well as accounting for the 

low efficiency of the ns pulse amplification, is also responsible for an

undesirable effect upon the temporal profile of such pulses. Theoretical
 ̂ (63,64,182,183) , . ..  ̂  ̂ ^  ̂  ̂ .studies have indicated pulse-broadening for a saturated ampli­

fication by contrast with the pulse-narrowing associated with a two-level 

amplifying system without rotational energy transfer (as, for example, a -, 

ruby laser). The leading edge of an intense ns pulse rapidly extracts the 

optical energy stored in the active rotational level, as well as all the 

energy transferred into this level via collisions during the rise-time of 

the pulse. The trailing edge of the pulse, on the other hand, experiences 

a gain which increases with time, as the rate at which the energy is trans­

ferred into the active level gradually exceeds the rate at which the energy 

is extracted - the latter being proportional to the intensity of the pulse 

which, in this case, decreases with time. The result is an increase in the 

pulse-width as the pulse propagates through the amplifier.

F E L D M A N h a s  theoretically shown that this pulse-broadening can be 

minimized by using a multiline input pulse. The theoretically predicted
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pulse-broadening and its elimination were experimentally investigated using 

triple-pass amplification to achieve gain saturation. The pulse shape was 

monitored after the first and third pass, using two identical photon drag 

detectors and was displayed on the same oscilloscope (Tektronix 7904) using 

cables of equal length. Fig.4.3(a) shows the recorded shapes of the input 

pulse (on the left) and output pulse (on the right); the resultant pulse- 

broadening is clearly evident. When the laser oscillator was forced to emit 

the P(16), P(18) and P(20) lines simultaneously (see next chapter) the pulse 

broadening was considerably reduced as Fig.4.3(b) illustrates.

It is believed that this is the only experimental evidence reported 

to date of the elimination of pulse-broadening using a multi-line ns input 

pulse.

4.4 TELESCOPIC AMPLIFIER

The development, in the course of this research, of the telescopic 

CO^ laser a m p l i f i e r p r o v i d e d  a much more efficient method for extract­

ing the stored energy. By this means, the weak input pulse was simultaneously 

expanded and amplified while preserving its transverse mode structure. With 

a reflecting telescope arrangement, full use of the amplifying medium could 

be made because the design combines adequate beam expansion with high over­

all gain (triple-pass). The system is ideal for raising weak signals to 

higher power in a single stage and can be adapted for use in large amplifier 

systems to match a wide range of weak sources.

The optical cavity of the telescopic amplifier, shown in Fig.4.4, is 

effectively an unstable confocal resonator belonging to the positive branch, 

with a central hole on the concave mirror. The confocality of the resonator 

ensured a collimated output with diffraction-limited divergence. The common 

focal point of the two mirrors comprising the resonator lies outside the 

latter, thereby precluding the risk of optical breakdown associated with the
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negative branch of confocal resonators. Parallel light entering from the 

left through the hole in the concave mirror traverses the central part of 

the amplifying medium to strike the convex mirror. After reflection, the 

light returns as a diverging beam to the concave mirror, where it is reflec­

ted as an expanded parallel beam for its third and final traverse of the 

amplifying medium. This arrangement also achieves optical matching of the 

output to subsequent amplifying stages of larger aperture than the input 

beam, without the severe loss of intensity normally associated with a pas­

sive beam expander: '

Particular care was taken to ensure that parallel beams in the ampli­

fier were restricted to only three passes of the amplifying medium in order 

to diminish the possibility of self-oscillation occurring from resonant 

feedback in the cavity. Although this restriction was observed, strong self­

oscillation initiated by optical feed-back, was detected as a result of light 

diffraction at the mirror apertures.
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4.4.1 AmpVif'iev Design

Two main sets of criteria have to be fulfilled in order to achieve a 

stable three-pass amplifier. First, self-oscillation must be prevented and 

in a normally-adjusted system, this means that diffraction losses have to 

be controlled by a suitable choice of cavity apertures and optical magnifi­

cation. Secondly, the efficient extraction of energy depends upon the 

entrance aperture 2x being greater than or equal to the diameter of the 

convex mirror 2a^. If D is the electrode spacing and M the linear magni­

fication of the system, we have the following relations: 2x>2a^, and
D . DM = —  for normal adjustment; hence x > -7̂  .2aj , 2M

A further factor must be taken into account as a result of the geometry.

The output beam has an annular cross-section with an inner diameter controlled

by 2x: hence, the smaller the value of x, the greater the percentage of

stored energy that can be extracted. For x < y  it can be easily shown 

that a sufficiently high fraction of the stored energy (> 90%) could - in 

principle - be extracted. The aboveconsiderations impose the following 

limits on the design:
-^  < X < y  . ... (4. 1)

Finally, a practical limit to the magnification is set by the ratio 

of the electrode spacing to the diameter of the input beam: M <  10.

4.4.2 Diffraction Loss versus Self-Oscillation

According to ANAN'EV and S H E R S T O B I T O V ^ ^ t h e  quantity |y| which

determines the double-pass diffraction loss 6 in an unstable resonator

with a central hole is given by:

£n M £n ^2ïï N (m 2 - 1)
£n|y| = --------- —    ... (4.2)

’■ ' k

where 6= 1 - |y|^ and N^q and N°^ are the equivalent Fresnel numbers of
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the resonator and of the entrance aperture respectively. For a telescopic 

resonator, according to SIEGMAN^^^^^ is given by
a:

^eq = 2ÀL **• (4.3)
where X is the wavelength of the cavity radiation and L the length of the

cavity. ANAN'EV and S H E R S T O B I T O v ( ^ g i v e :

- - ( 4 . 4 )

Using equations (4.3) and (4.4), equation (4.2) becomes:

£ n M £ n  ------
„ , , TTaf (M%- 1)(M - 1)
£n|Y| = ---------------------------  . ... (4.5)

0£n — —  M
X

The quantity y at which no self-oscillation occurred was first deter­

mined experimentally for an existing telescopic resonator with M =  2.875,

L =  1.25m and a^ = 8.35 mm for a discharge region with dimensions Im x 49 mm x 

49 ram.

The input aperture radius x for which self-oscillation ceased was 

determined by placing a non-reflecting carbon disk cover on the pole of the 

concave mirror, to simulate a circular aperture the diameter of which could 

be readily adjusted. The diameter was increased until the system reached a 

point where oscillation ceased with the amplifier fully energized. The . 

effective value of x was thus found to be 16mm.

In Fig.4.5, the normalized oscillator output energy is shown as a 

function of the ratio — , where a is the radius of the concave mirror. 

Such an optical cavity, however, although below the self-oscillation thres­

hold, would have been inappropriate since it does not satisfy the condition 

given by the relation (4.1). Using equation (4.5) and the confocal condi­

tion ; ag = M a^ , substitution of the appropriate values of L, a^, x and M 

for A=  10.6 ym gives £n|y| =-3.78. On the basis that the double pass gain 

should be equal to the double pass diffraction loss when the value of x is
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such that the oscillation 

ceases, the expected value 

of &n|Y| is:

£ii|y| = - (%Q Lg = - 3.1 

where 0^ =  0.031 cm“  ̂ is the 

small signal gain in the

amplifier and = 1 00 cm is

the length of the active 

medium. Although this agrees 

only approximately with the 

value given by equation (4.5), 

the practical significance of 

this equation lies in the fact

06

02

05
X

0-802 10

02
Fig.4.5

Graph of relative self-oscillation 
energy vs hole size

that it enables the parameters of a number of other similar cavities - having 

the same diffraction loss - to be calculated, thereby allowing more conve­

nient values of M and x to be determined. When the approximate values of 

the diffraction loss of two cavities are equal, it is reasonable to assume 

that the exact values should also be equal and therefore no cavity for which 

£n|Y| = -  3.78 should oscillate.

A combination of M and x that satisfied both the condition M <  10 

and the inequality < x < y, and at the same time gave a value for 

£n|Y| = “ 3.78, was found to be M = 7 and x = 5.4mm. For optimum power 

output, 2 a^ = D =  49 mm, determined by the electrode separation in TEA 

geometry. Thus, a^= = 3.5mm. The radius of curvature of the concave

mirror was ascertained from simple telescope theory to be 2917mm and that 

of the convex mirror was 417 mm, requiring a cavity length L =  1.25 m. As 

was expected, a cavity constructed with the above parameters showed no 

signs of self-oscillation.
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4.4.2 Parasitic Oscillation

Although self-oscillation in the amplifier had been eliminated, persis­

tent parasitic oscillation was observed - independent of the cavity mirrors - 

and continued even when the mirrors were removed. The effect of this para­

sitic radiation was particularly severe when the switching system which 

isolated the oscillator from the amplifier was removed and the subsequent

parasitic radiation from the ampli­
fier caused a reduction of up to 
six times in the peak power of the 
oscillator according to measurements 

taken from a photon-drag detector. 

It was found that this reduction 

in power was approximately propor­

tional to the intensity of the 

parasitic oscillation in the ampli­

fier, measured when only the ampli­

fier was energized.

Figure 4.6 shows the norma­

lized peak power of the oscillator

Fig.4.6
Reduction in oscillator power vs delay time 
for different intensities of parasitic radia­
tion from the amplifier. Curve \, no feedback; 

Curves 2 - 4  increasing feedback

plotted against t, the delay time between the firing of the amplifier and 

the oscillator, for four different intensities of parasitic oscillation, 

effectd by the introduction of thin attenuators. It was realized that this 

parasitic oscillation was due to the reflection caused by the mirror mounts 

and once the mounts had been covered with carbon paper the oscillation ceased. 

With the elimination of the parasitic oscillation, the amplifier's presence 

did not affect the oscillator's performance in any way. An energy meter 

capable of measuring integrated energy densities down to 0.05mJ/cm^ was 

used to confirm that the parasitic and self-oscillâtions of the amplifier 

had been completely eliminated and the operation of this device as a 'true' 

amplifier was thereby accomplished.
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4. 4. 4 PeTfomanQe of the Tetescopic Amplifier

The fast electro-optic shutter described in Chapter III was used to 

switch-out a nanosecond pulse from the self-mode-locked output (Fig.4.7(a)) 

of the oscillator described in Chapter II. The generated pulse was directed 

into the amplifier where three passes were made in the active medium via the 

Cassegrain telescope system. A photograph of the complete laser system for 

the generation and amplification of ns pulses is shown in Fig.4.8. The 

output of the amplifier was monitored with a calibrated photon drag detec­

tor (Rofin model 7415) and the pulse intensity profile displayed on a 7904 

oscilloscope (Fig.4.7(c). The recorded width of 1.3ns F W H M  included the 

rise times of the detector (0.6 ns) and of the oscilloscope (0.8 ns). Assum­

ing a Gaussian temporal profile, the actual pulse width calculated from these 

values was 830 ps F W H M .  Pulses of this duration were the shortest recorded 

using this system. The pulse energy was measured using a Gen-Tec pyroelec­

tric energy meter. Because of the finite extinction ratio (signal/background 

noise), the measured energy contained two components: the energy in the

short pulse and the amplified noise. The latter was measured by disconnect­

ing the trigger of the electro-optical shutter, thereby making it inactive, 

and firing both oscillator and amplifier. This energy was then subtracted 

from the total to give an output pulse energy of 1 J. Similarly, the energy 

of the input pulse was found to be 1 mJ. Thus the telescopic amplifier had 

an energy gain of 1000. This is more than five times greater than the energy 

gain of 180 for the conventional triple-pass amplification described earlier 

in this chapter and sixty-five times greater than the, single-pass energy 

gain of '^15. The peak power of the amplified pulse was estimated from the 

response of the photon drag detector and was found to be~l GW. Comparison 

with the input of ~ 1 MW shows the close agreement between the energy and 

power measurements of the gain for a ns pulse.
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Using this telescopic amplifier, ~55% of the energy available to an 

infinitely strong pulse (E^^t =1*82J, section 4.2) was extracted by a very 

weak pulse (1 mJ) . This offers a major advantage over the methods employed
(95_98)

at other laboratories where the gigawatt level is obtained by using

two to four laser modules having an active medium of 2-2.5 metres long.

Although telescopic amplification benefits weak input pulses in 

particular, it can even be used to advantage with fully saturating ns 

pulses. This is because 40% of the active medium is twice traversed by 

the pulse (which cannot - as has been shown - normally extract all the 

energy stored in the (00°1) vibrational level, regardless of its intensity). 

Consequently, extra energy is extracted due to the rotational repopulation 

which takes place before the pulse makes its final pass through the ampli­

fier.

It should be noted, however, that unless care is taken to ensure that 

the input beam is travelling sufficiently parallel to the laser axis, and 

the two mirrors are adequately aligned, the output will contain subsidiary 

pulses (Fig.4.3(c)). These apparently result from a feed-back into the 

amplifier - by the convex mirror - of part of the annular beam in its third 

pass.

Telescopic amplification of the kind described in this chapter could 

be used to advantage in larger high-power laser systems. In particular, 

electron-beam-controlled CO^ and glass disc amplifiers - might well profit 

from exploiting this technique.
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CHAPTER V 

MULTI-LINE PULSE AMPLIFICATION

5.1 INTRODUCTION

It has been shown in the previous chapter (section 4.2) that the 

saturation energy parameter Eg of a TEA CO^ laser amplifier - and, as a 

result, the maximum extractable energy - is greatly reduced when the dura­

tion of the input pulse is shortened. In particular it was found that a 

l.Ins single line pulse was capable of extracting no more than ^ of the 

optical energy extractable by a 70ns pulse. This substantial limitation on 

the efficiency of nanosecond pulse amplification originates from the fact 

that the optical energy stored in the upper laser level, i.e. the (00°I) 

vibrational level, is distributed over a large number of rotational sub- 

levels. These sublevels are coupled via collisions with a relatively slow 

rotational relaxation time t^ = 0.154 ns atm. in a CO^ : N : H e , 1 : -g- : 2 

mixture (section 1.4.4).

A single line laser pulse - e.g. the P(20) of the 10.4 ym band - 

traversing a CO^ amplifier extracts energy from only one of the rotational 

sublevels (J= 19) having a partition fraction K(19)= 0.064 at 400°K (equa­

tion (1.2). Therefore a pulse with duration shorter than the rotational
K( 1 9 )relaxation time can extract, at most, only — ^ ~  3.2% of the optical 

energy stored in the 00°1 vibrational level since neither repopulation of 

this sublevel nor relaxation of the corresponding lower level can take place 

during the pulse. Clearly, the longer the pulse the greater the extractable 

energy.

The influence of intramode vibrational-vibrational energy transfer can 

be ignored for pulses of duration tp < 100 tĵ  (187)^ On this assumption the

amplification of a single line laser pulse is determined by the following
(63,64) rate equations :
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3n Bn .•^ + c = a cn 0 o t oz

|̂ =_2ccn«_AzJÿJ)A_ ...(5.0
= - 2 a c n 6

where n=n(z,t) is the photon number density at position z and time t;

6  , A are the inversion densities between the upper and lower rotational 

and vibrational levels respectively; and O is the stimulated emission 

cross section.

The/solution^of these equations results in the well-known two-level 

amplifier equation derived by FRANTZ and NODVIK^^^^^:

W  = GgJWj] +exp (a^L) exp(E. /Eg) - 1in .. (5.2)

where-the value of the saturation energy parameter Eg ranges from to 

2~K(J)~a depending on pulse duration. This equation is also applicable to the 

amplification of a multi-line/multi-band pulse provided that an effective 

value (Eg)^^ of the saturation parameter is used to correspond to the spec­

tral content and pulse duration. This value is given approximately by^^^^^:

(Es)gf = f • [l - (1 -K) exp (- Ktp/t^)] ... (5.3)

where f equals % or § for a single or double band pulse respectively and 

K = Z K(J) is the sum of the partition fractions of all the non-common upper 

levels of the rotational lines contained in the spectrum of the amplified 

pulse.

The stimulated emission cross section:

o =

where A^^ = 0.187s~^ (see section 1.4.1) and the homogeneous line width

A V g  = 7.58 + 0.73 l|<ĝ  + 0.64 > l ' H e ) P - ( ^ ) '  ••• (5-4)

was calculated to be AVjj = 4.37 GHz for the pressure and gas mixture used.
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Three methods have been proposed by means of which the energy extrac­

tion efficiency of nanosecond pulses can be i m p r o v e d I n  one of 

these methods, currently under investigation at Les Laboratoires de 

Marcoussis in France^^^^^, the laser pulse traverses the amplifying medium 

eight times with an appropriately selected time delay between the consecutive 

passes so that not only rotational but also vibrational repumping and relaxa­

tion can take place. Another way to improve the efficiency is to reduce the 

value of the rotational relaxation time t^ by operating the amplifier at 

higher than atmospheric pressures. Finally the use of multiline pulses will 

increase the value of K and thus the extracted energy. The potentialities 

of this last approach were investigated experimentally and the results ob­

tained are presented later in this chapter, following a description of the 

multi-line oscillator developed for the purpose.

5.2 THE MULTI-LINE OSCILLATOR

For multi-line operation, equalization of the net gain of several

lines is required to prevent any single line from being dominant. The use
 ̂  ̂  ̂ T (191) ^ (192,193)of intracavity étalons , gaseous absorption cells , or ammonia

mixed with the laser gas^^^^^ have all resulted in multi-line oscillation.

The wavelength-dependence of the transmission - in the case of the étalon -

and of the absorption - in the other two cases - accounted for the gain

equalization.

The normalized gain coefficients of the six strongest CO^ laser

transitions, measured by adopting the same procedure as in section 2.5.1, 
are shown in Fig.5.1. The anomalously high gain (~ 10%) of the P(20) line

is attributed to stimulated emision from the so-called ’hot band’ (01^1 -> 

11^0) The wave-number difference between the P(20) and one of the

hot band transitions, R(23), is less than a line-width^^^^^ and this results 

in an increase in the gain coefficient of the P(20) line by an amount deter­

mined by the population inversion of the hot band.
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The small signal gain of 

the P(20) line in the laser 

module used could be adjusted 

in the range of 0.015 cm“  ̂ to 

0.025 cm”  ̂ approximately by 

changing the gas mixture and 

the electrical input energy.

Thus, in order to equalize the 

gain per pass (active medium:

70 cm) of this line with one 

(or more) of the other five 

lines, a loss ranging from 10% 

to 23% had to be introduced on 

the P(20) line.

An intracavity étalon in the form of a plane-parallel KCl plate pro­

vided the wavelength-dependent loss. The plate was mounted in such a way 

that it could be finely rotated around an axis perpendicular to the laser 

axis (Fig.5.2). For small angles of incidence 0 , the transmittance of 

this étalon is given pp.323-9),

0-8

f  E x p e rim en ta l points  

—  T h eo re tica l curve  w ith  Tr = 4 0 8  K
0 6

0-4

02

12 16 18 20 22 24 26

P -  tra n s it io n s  (J)
Fig.5.I

■Relative gain coefficient of the six strongest 
transitions of the 10.4 ym band

T = 1 + 2 TT n d COS (0/ri) - 1
... (5.5)

where r] = 1.454 is the refractive index of KCl and d is the thickness of _ 

the plate. Equation (5.5) represents an approximate sine-squared modulation 

of the transmission function with amplitude 13%.

Tuning of a single étalon resulted in reliable two-line operation.

It was found however, that in order to obtain three-line emission using 

one étalon it was necessary to reduce the small signal gain. Nevertheless, 

reliable three-line emission at full pumping was obtained by combining two 

uncoupled intracavity étalons.

- 101 -



GaAs 
Pockels cell

Brewsier angle 
Ge plate

Brewster angle 
Ge plates OscilloscopeA

A m p lif ie r
KCl étalons

oscillator
m irror LTSG

Plane mirrorR=99‘/«
Gen -Tec

IA Brewster jangle kcl plate
Concave mirror 

R = 997o
Fie.5.2

Experimental arrangement for multi-line pulse amplification

The equalization of the intensities of the emitted lines was also 

possible - unlike in the case of a single étalon - with careful tuning. 

Reproducible operation on any three of the P(16)-P(22), as well as any two 

of the P(14)-P(22), lines was readily achieved.

The importance of the parallelism of the KCl étalons should be empha­

sized. Plates with wedge angles (j) > 1.4 x 10"*̂  rad had no effect on the 

spectral properties of the oscillator because, as can be easily shown, in 

order to introduce the minimum required 10% loss in the P(20) line, the 

wedge angle must be (f) < 10 ** rad where D, in cm, is the diameter of

the laser beam.

The spectral characteristics of this oscillator were examined using 

a COg laser spectrum analyser (Optical Engin. Model 16 - A). The various 

lines of the laser beam were spatially separated by the diffraction grating 

of this device, and displayed on a calibrated graphite screen. The relative 

intensity of the different lines was ascertained by observing the intensity 

of the incandescence induced by each line on the graphite.

The total energy output measured by a Gen-Tee calorimeter was constant 

for either single or multiline operation. This represents an advantage
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offered by the use of KCL étalons - as opposed to gaseous absorbers - for 

multiline oscillation where the output energy suffers a 50-75% reduction^^

5.3 MULTI-LINE NANOSECOND PULSE GENERATION

The same procedure as that adopted for the generation of single-line 

nano-second pulses was also applied to the generation of multiline pulses. 

However, a simultaneous spectral analysis of both the long and the nano­

second pulse (see Fig.5.2) revealed that, in most cases, not all the lines 

contained in the long pulse were present in the spectrum of the nanosecond 

pulse. The recording of the fine structure of the long pulse shape bn a 

fast oscilloscope using a photon drag detector offered a possible explana­

tion of this discrepancy.

It was observed that when the long pulse shape was similar to the 

one shown in Fig.5.3(a), the spectrum of both pulses contained three lines. 

Conversely, the nanosecond pulse contained two or - more often - only one 

line when the pulse shape was similar to the one shown in Fig.5.3(b). On 

the basis of this observation, it could be reasonably argued that the 

recorded output pulse is the superposition of three independently oscillat­

ing pulses, each one emitting only one line. Because the oscillation is 

restricted to the fundamental transverse mode, the output pulse of each line 

is nearly 100% self-mode-locked with a shape similar to the one shown in 

Fig.5.3(a), i.e. a train of ~  2 ns pulses at intervals of ~ 9 ns .

Therefore, a three-line nanosecond pulse should be expected only when 

the individual pulses of the three independent oscillations coincide. The 

small probability (~ 5%) for such a coincidence necessitates multi-transverse 

mode operation in which the self-modulation is ~ 20% (Fig.5.3(c)). This 

operation, achieved by the removal of the mode-limiting aperture (iris), 

resulted in reliable three-line nanosecond pulse generation.

Finally, as will be seen in the next chapter, the approximately equal 

intensity of each line must be ensured by careful étalon tuning because - in
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the case of unequal intensities - the long pulses, as a whole, could be 

considerably displaced in time and this again will result in a nanosecond 

pulse of fewer than three lines.

5.4 AMPLIFICATION OF MULTI-LINE NANOSECOND PULSES

In order to amplify the low power nanosecond pulses emitted from the 

multiline oscillator - electro-optical shutter system - and, at the same 

time, to measure the input energy,'the experimental arrangement shown in 

Fig.5.2 was used.

The generated multiline nanosecond pulse was monitored after its first 

pass through the amplifier, using the photon drag detector PDl. The reflec­

ted beam from the polished plane surface of this detector traversed the , 

amplifier where - after its second pass - it was directed by a fully reflec­

ting plane mirror for its third and final pass through the active medium.

The fraction of the output reflected by the beam splitter, BS2, was directed 

to the spectrum analyser, SA2, while the fraction transmitted by the beam 

splitter and a calibrated attenuator, A, was monitored on a second photon 

drag detector, PD2. The output of the two detectors was displayed on,a 

Tektronix 7904 oscilloscope.

Figures 5.4(a) and 5.4(b) show the oscilloscope records of the input 

pulse (on the left) and the output pulse (on the right) for one and three 

lines respectively. It can be clearly seen that an approximately equal input 

power results in a different output for the two cases.

The known degree of attenuation of A , as well as the known reflecti­

vities of; the PDl; the KCl output window of the amplifier: and the 

BS2, allowed the calculation of the input and output intensities for a series 

of single-, double- and triple-line pulses to be made. The results of these 

energy extraction measurements are shown in Fig.5.5 where the output energy 

density is plotted against the input. The theoretical curves in this figure
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were calculated using equation (5.2). The optimum fit to the experimental 

points is obtained when the saturation energy takes the values

= 48 mJ/cm^ , = 70 mJ/cm^ and E^^^ = 85 mJ/cm^

for one, two and three lines respectively.

These results indicate that the energy extractable by a 1.7ns

pulse from a TEA CO^ amplifier can be increased by ~  46% or by 77% when a 

two or three line pulse is amplified instead of a single-line pulse. Using 

tp = 1.7ns and t^ = 0.154 ns the increase in the extractable energy pre­

dicted by equation (5.3) is found to be 44% in the case of two lines (K= 

0.127) and 64% for three lines (K=0.189). The agreement between the theo­

retical and experimental results is highly acceptable. This advantageous 

use of multi-line nanosecond pulses has also been supported by experiments

carried out at Los Alamos Scientific L a b o r a t o r y ^ ^ a n d  by the Marcoussis
. -r, (190)group in France • .

5.5 CONCLUSIONS

The theoretically predicted improvement in energy extraction in nano­

second pulse amplification using multi-line pulses was experimentally veri­

fied. Although the use of KCl étalons could not provide double-band multi- 

line operation, it has the advantage of simplicity and does not adversely 

affect the oscillator output.

The amplification of multi-line pulses remains the only proven method 

to date - for obtaining higher amplifier efficiency,for the efficacy of the 

multi-pass method has yet to be validated. Judging from the problems asso­

ciated with the suppression of parasitic and self-oscillation, already 

experienced with the three-pass telescopic amplifier described in the pre­

vious chapter, it can be assumed that the same problems will present some 

difficulty in the realization of this - otherwise - excellent approach.
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The more distant prospect of large-volume, high-pressure (> 5 atm) 

amplifiers will eventually diminish the importance of multi-line amplifica­

tion as far as efficient extraction of the stored energy is concerned. 

However, as has been shown in the previous chapter (section 4.3), multi- 

line input pulses eliminate the pulse-broadening associated with the single- 

line CO2 amplifier which might otherwise distort the shape of the input 

pulse to a degree unacceptable for laser fusion experiments.

Finally, a different - though less serious - pulse distortion effect, 

detected by SCRAPPERT and HERBST^^^^^ deserves mention here. They have 

shown that the velocity of a short pulse is reduced when it is propagated 

through a CO2 laser amplifier rather than through a zero gain medium. This 

delay, which is proportional to the gain coefficient, is particularly impor­

tant for the amplification of multi-line pulses. In such a case, the pulse 

is broadened as a result of the gain coefficient difference between its 

spectral components effecting an unequal delay during amplification. If 

A«o is the gain coefficient difference of two lines, an active medium of

length will produce a separation of the two components by^^^^^:
L Aao

At = — — -—  . ... (5.6)2 TT A Vjj

In a typical chain of CO^ laser amplifiers - such as that presently 

under construction at Culham (OPALS - TROJAN) - L^ - 20 and, as equation 

(5.6) implies, the P(20) line, at atmospheric pressure, will be delayed by 

~  100 ps more than the adjacent lines over which it has a 10% higher gain, 

and by an even wider margin over the.more distant lines where the gain dif­

ference is still greater. This undesirable pulse broadening can, however, 

be minimized by operating the amplifiers at higher than atmospheric pressure

since (a) At cc oc 2  ̂ and (b) at pressures P > 2 atm all P-branch lines
^ . ( 197)in the 10.4 ym band are overlapped by the hot band lines thereby reduc­

ing the gain difference Aa^ between the P(20) and other P-lines of this 

band.
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CHAPTER VI  

LONGITUDINAL MODE SELECTION : THREE MIRROR RESONATOR

6.1 INTRODUCTION

To generate nanosecond CO^ laser pulses by gating the output of a 

single longitudinal mode oscillator, rather than by switching out a single 

pulse from the pulse train of a mode-locked laser, is more advantageous • 

since it allows resonant gaseous absorbers to be used to improve the signal- 

to-background noise ratio^^^^*^^^^. Hot CO^ (r' 725°K) at a pressure of 

~  30 torr could act as a narrow-band absorber to selectively absorb the 

background pulse which has an equally narrow spectral width while the broad­

band pulse is transmitted with negligible attenuation.

A novel method for single longitudinal mode operation was devised 

during the present r e s e a r c h w h e r e b y  a three-mirror resonator (TMR) was 

used in a coupled unstable resonator arrangement as shown in Fig.6.1. The - 

active medium of the Double-Discharge module described in Chapter II was 

utilized resulting in the attainment of peak powers in the range 30-100 MW.

TEA CO2 Laser

1 R  ■

|<j-------- 6  L-------**1
I

A c tiv e  M e d iu m

F i g . 6.1
Schematic Diagram o f  the  T M R

The optical system consisted of two unstable resonators coupled by 

the common convex mirror Ml and sharing the active medium. The basic 

principle of the operation of this single frequency oscillator can be
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outlined as follows. Each resonator has been designed to have a diffrac­

tion loss slightly exceeding the maximum available gain (i.e. the net round 

trip gain g < I) and therefore neither can oscillate independently.

However, modes which are resonant in both cavities will experience a 

smaller diffraction loss and therefore could, in principle, oscillate. The 

frequency spacing between these modes - which will henceforth be referred 

to as T M R  modes - is:
A V = 2^l ••• (6"1)

where AL is the difference in length of the two cavities. Therefore, for 

a sufficiently small AL the value of Av can be made approximately equal 

to the frequency range over which the gain exceeds the loss of the three- 

mirror resonator. In this way, oscillation on a single longitudinal mode 

in the P(20) line of the 10.4 ym band can be ensured.

6.2 MECHANISM OF THE SINGLE FREQUENCY OPERATION 
OF THE THREE-MIRROR RESONATOR

A possible interpretation of the single longitudinal mode operation 

will be offered here, based on SOOY's^^^^^ analysis where the mode selec­

tion is attributed to the different build-up time of the various modes on 

which oscillation is possible. A pre-requisite of such an analysis is the 

estimation of the diffraction loss of the three-mirror resonator and of the 

number of round trips required for the build-up of the emitted power.

6, 2.1 D'Cffract'Con Loss and Threshold Condïtïon of the T M R

If it is assumed tht the two resonators formed by the mirrors M^M^ 

and MjMg, when separately considered, have equal diffraction loss per round 

trip, 6, and are both just below the oscillation level, the following rela­

tion applies:
|y |2 = = e  ... (6.2)

where M“  ̂= |y|^ = 1 -<S is the fractional power feed-back per round trip in 

each resonator, M is the magnification of the M^ M^ resonator, is the
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small signal gain and is the length of the active medium. Thus, the 

power feed-back for a T M R  mode is approximately:

M-2 + |y|2 = 2e ... (6.3)

and the oscillation threshold condition for such a mode becomes:

2 exp [2 (a - Qq) ] > 1  ... (6.4)

where a is the small signal gain which corresponds to the frequency of this

mode.

In the present case, Lg, ~ 100 cm and = 0.031 cm“  ̂ and so the above 

relation is equivalent to:
a > 0.888 ttg . ... (6.5)

This relation indicates that oscillation is possible on the frequency range 

over which the gain is greater than 88.8% of that at the line centre. For 

TEA COg lasers the line is pressure-broadened and the small signal gain is

given as a function of frequency V by^^^^^:

a(v) = «od A Vjj)^ [ ( v - + (I A  ̂ . . .  (6.6)

where is the frequency at the line centre and Av^ is the line width

(FWHM). For the mixture used (CO^ : : He , 1 : : 2) the value of A \)g

can be c a l c u l a t e d ^ t o  be A Vjj= 4.37 GHz. Thus using the relations (6.5)

and (6.6), it can be ascertained that oscillation is possible on a range 

which extends only 765 MHz either side of the line centre. Therefore, by

making the difference in length of the two resonators AL <9.8 cm, the inter­

mode frequency spacing given by equation (6.1) becomes greater than the

frequency over which oscillation is permitted.

6,2.2 Expervriental ObseTVatïons

For values of AL < 25 cm however, it was found that the T M R  had a 

multi-mode output similar to that of the two-mirror resonator with the 

familiar mode beating, despite keeping both resonators below the oscillation 

threshold. Pulse shape records taken using a photon drag d e t e c t o r ^ ^ ^ a n d
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a fast oscilloscope (Tektronix 7904) revealed that the frequency spacing of 

the emitted modes was, to a high approximation, given by Av = -— ^ —L 1 + L 2
where Lj , are the lengths of the and resonators respec­

tively. When AL >25 cm, pulses with a smooth temporal profile - with peak 

power ~ 3 0 M W  - were obtained, a typical example of which is shown in Fig, 

6.2(a). .

Such pulse shapes could be conclusive evidence of single longitudinal, 

mode operation if it could be shown that the detection system had a suffi­

ciently fast response to resolve the '--’600MHz modulation which would result 

when more than one mode was emitted. The only other case in which smooth 

pulse shapes could occur is the emission of a large number of modes, and 

this condition can be safely ruled out here on account of the narrow fre­

quency range over which oscillation can occur.

When the frequencies of the T M R  modes are symmetrically placed about

the line centre ( a condition which can be achieved by a fine adjustment of

AL) the two modes on either side of the line-ceritre experience the same gain

and should, therefore, both be emitted. Interaction of these two modes

should result in a sinusoidal waveform - such as that shown in Fig.6.3(c) -
cwith frequency equal to Av = 2^  •

The 580 MHz recorded modulation frequency closely corresponds to the 

calculated value when AL = 26 cm as was the present case.

Thus the waveform of Fig.6.3 not only strongly supports the single 

longitudinal mode nature of the pulses in Figs.6.2, 6.4, 6.5, but also sub­

stantiates the assumption made earlier that the intermode frequency spacing 

in the T M R  is given by equation (6.1).
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6. 2, 3 T M R  Mode Seleotion: Pulse Monochpomat'Ccïty

Using the equations (6.3) and (6.6), it can be shown that the peak 

net round trip gain g(v) experienced by a T M R  mode having frequency v 

is given by:

g(v) = 2ex p | - 2 a o L ^ ( v -  [(v-Vg)^ + (|AVjj)^] | ... (6.7)

The maximum value of g(Vp) = 2  is experienced by the T M R  mode 

lying at the line centre. In this case the gain of the two adjacent modes 

having the frequency \) = Vg ± 580 MHz is g(v) = 1.315. As a result of this 

difference in the round trip gain, these modes will develop a progressively 

increasing difference in their intensities as they grow independently away 

from the same level of spontaneous emission (10“ ^^ W  ^ .

To build up to the observed peak powers of the order of 10^W a signal 

augmentation of G - 10^^ is required. The number of round trips, q, through 

the active medium necessary for such an augmentation cannot be easily esti­

mated because the value of g(Vg) varies with time in the range 1 < g(VQ) < 2  

during the intensity build-up. Nevertheless the lower limit in the value 

of q can be estimated as: q = = 63. On this basis, the lower limit

in the ratio of the intensities of the central to the adjacent T M R  mode - 

referred to as the monochromaticity factor - is given by:

“F = [-g-(^J =2.9>=,0".

Therefore, it has been shown that the single longitudinal mode opera­

tion can be explained as the result of the relatively large number of round 

trips required for the build-up of the emitted powers, in conjunction with 

the substantial gain difference between the central and adjacent T M R  modes.

It should be noted, however, that no attempt was made to measure the 

monochromaticity of the emitted pulse. Such measurements have been under­

taken for the hybrid CO^ l a s e r w h e r e  the expected values of Mp = 10® 

have been confirmed.
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The above analysis can also justify the multi-mode nature of a 

TEA CO2 laser using a two mirror resonator (e.g. those described in 

Chapter II). Here, the small net gain difference (1 to 2%) between the 

closely-spaced modes (Av= 120MHz) as well as the smaller number of round 

trips required for the intensity build-up (due to the smaller loss) result 

in the emission of 7 to 9 modes with intensities of the same order of 

magnitude.

6.3 DESIGN OF THE T M R

The design of the M ^ , M 2 resonator has already been described in 

section 4.4.2, and it only remains to ensure that the Mj Mg resonator is 

incapable of oscillating to complete the design of the TMR. This non­

oscillation condition is satisfied when:

M-z e < 1  ... (6.8)
. .. . (185)Using the expression

M = 2 g ^ g g  + 2 /  -  1)' -  1 . . .  ( 6 . 9 )

(where g^ = l - —  , g^= 1 ~ ^ )  and the known values of Lg , R^ and , it
T  *■ " '3

can be easily shown that the condition in point is satisfied when Mg is a

convex mirror with radius of curvature | R g |  < 3m.

6.4 POWER MEASUREMENTS: PULSE WIDTH.

When an existing convex mirror of 1.3m radius of curvature was used

as the Mg mirror, the power of the emitted pulse was measured to be of the

order of 30MW. The energy of the pulse (~ 2J) measured using a Gen-Tee-

joule-meter confirmed the power measurements made with the aid of a cali­
brated photon drag detector.

The high reproducibility of the single longitudinal mode operation 

at these power levels can be gauged from the results of 100 consecutive ; 

shots in one run, where no more than 10% showed detectable modulation. A 

typical example of the reproducibility is shown in Fig.6.2(c) where two out
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of twelve Consecutive shots showed mode beating. The laser pulse width 

was determined by the ratio of partial pressures of nitrogen and carbon 

dioxide in the gas mixture. It could be adjusted in the range 60-200 ns 

by varying the ratio from ^ for the lower value (Fig.6.2(a))

to § for the longer pulse (Fig.6.4(b)). The absence of any pulse tail 

(Fig.6.4(c)) for all the gas mixtures used - by contrast with the findings 

in the case of the stable resonator described in section 2.4.7-should be 

noted. When the Mg was replaced by a flat fully reflecting mirror, the 

emitted power increased three-fold ('̂  100 MW) but at the expense of a slight 

modulation (Fig.6.2(b)) indicating a decrease in the pulse monochromaticity.

6.5 MULTI-LINE SINGLE LONGITUDINAL MODE PULSES

The previous chapter indicated that for increased efficiency in the 

amplification of nanosecond COg laser pulses, multi-line emission is 

required. In order to assess the possibility of achieving single longitu­

dinal mode multi-line pulses, a 5 mm thick KCl étalon was inserted between 

the Mg and Mg mirrors. It was found that by tuning the KCl étalon, 

double- or, occasionally, triple- rotational line emission could be obtained,

while the T M R  maintained oscillation on a single longitudinal mode on
(203)each line. A similar arrangement has been used by ANAN'EV et al to

restrict the number of oscillating modes on a neodymium-glass laser.

Using this arrangement, oscillation was found to be possible on only 

the three strongest lines of the 10.4ym band - the P(20), P(18) and P(16). 

This, however, was to be expected since the small signal gain of only these 

three lines (see Fig.5.1) satisfied the oscillation condition (equation (6.5)) 

due to the very high loss of the T M R  .

A CO2 laser spectrum analyser (Optical Engin. Model 16-A) was used to 

resolve the spectral content of the emitted pulses. It was observed that 

when the intensities of the emitted lines were unequal (a situation indicated
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by the relative intensities of the incandescence induced by each line on 

the graphite screen) the temporal profile of the laser pulse showed two - 

and occasionally three - distinct peaks separated by as much as 900ns 

(Fig.6.5(d) upper trace). In order to confirm that the observed pulse was 

the superposition of two - or three - independent pulses, each one corres­

ponding to a different line, the spectrum analyser was converted into a 

monochromator. This was effected by allowing the radiation of only one 

line - P(18) - to be transmitted through a slit made on the appropriate 

position on the calibrated screen . The photon drag detector, PDl, moni­

tored the total pulse; the PD2 only the P(18) line. The outputs of both 

detectors were displayed on a double beam oscilloscope ( Tektronix 7884).

It can be seen that, depending on the extra loss introduced by the 

étalon on the P(20) line, it can be made to appear simultaneously with 

Fig.6.5(a), before Figs.6.5(b), 6.5(c) or after Fig.6.5(d), the P(18) line; 

in every case, the more powerful line was the first to be emitted.

Therefore, it is clear that in order to achieve any beneficial effect 

from multi-line single longitudinal mode operation in the amplification of 

nanosecond CO^ laser pulses, it is essential that equalisation of the inten­

sities of the emitted lines be ensured since this entails their temporal 

overlapping.

Although, for the present arrangement of the T M R ,  oscillation was 

confined to only the three strongest lines, it could - in principle - b e  

extended to other lines of this band, or even the 9.4 ym band, by substitut­

ing a diffraction grating for the Mg mirror and the étalon.

6.6 SMOOTHING THE TEMPORAL PROFILE OF THE
DOUBLE-ROGOWSKI MODULE OUTPUT

It has been r e p o r t e d ^ ^ t h a t  the modulation of the emitted pulse can 

be minimized by injecting radiation from a CW CO^ laser into a TEA laser
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using a stable resonator. An attempt was made to apply this technique to 

the Double-Rogowski module described in section 2.4. For this purpose, a 

fraction (~0.2W) of the radiation emitted from a commercial CW CO^ laser 

(Apollo-XB) was injected into this module and the emitted TEA pulse - the 

time profile of which is shown in Fig.6.4(a) - was monitored using a Ge 

photon drag detector.

It can be seen that the strong modulation normally observed in the 

output of this module (see Fig.2.8) has been significantly reduced at the 

expense, however, of a substantial decrease in the emitted power. The 

reason for this reduction is that it was found necessary to reduce the 

electrical input energy in this module if the CW laser was to have any 

significant effect upon the temporal profile of the TEA pulse. It was also 

found that unless the CW laser emitted the P(20) line, the injected radia­

tion had no effect whatsoever on the Double-Rogowski module. Overall, 

therefore, this technique clearly lacks most of the advantages inherent in 

the TMR.

6.7 FURTHER APPLICATIONS OF THE T M R

A single longitudinal mode operation is essential for the generation

of nanosecond COg laser pulses in the so-called optical free-induction decay 
( 100)method . The large cross-section and the high power emitted from the

T M R  would be found highly desirable in this method.

An application requiring smooth temporal profile is the generation of 

nanosecond CO^ pulses using a method reported by ALCOCK et which

fast switching can be obtained by reflection of the COg laser radiation 

from optically-induced carriers in a polycrystalline Ge plate. The COg 

laser pulses used in this method had been smoothed by the earlier-mentioned 

CW injection technique. It is believed that the advantage offered by the 

T M R  single longitudinal mode laser over the CW injection technique could
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benefit the application. The required plane polarized pulses can be easily 

obtained through the introduction of intra-cavity Brewster angle windows.

As has been seen in section 3.11, the smoothness of the laser pulse 

emitted by this oscillator was crucial to the accurate measurement of the 

delay time, the jitter and the threshold energy for gap breakdown in the 

L T  SG .

This device may also be applied to laser-plasma interaction studies, 

where the smooth temporal envelope of the incident pulse provides a reference 

for interpreting amplitude modulations imposed on the reflected pulse^^^^^.

In fact, the single longitudinal mode laser, described in this chapter, has 

already been used in such an application at Culham L a b o r a t o r y .

6.8 CONCLUDING REMARKS

In conclusion, it has been shown experimentally that by the addition 

of a third reflector, a TEA CO^ telescopic laser amplifier can be converted 

into a high power oscillator operating on a single longitudinal mode. The 

output power was found to be more than one order of magnitude higher than 

that obtained from laser oscillators employing a stable resonator 

This considerable improvement is accounted for by the fact that the funda­

mental transverse mode can be arranged to occupy the whole volume of active 

medium in an unstable resonator, whereas the mode volume of a stable resona- . 

tor - used in the other methods - is strictly limited, resulting in a sub­

stantial reduction of output power.

Temporally smooth pulses with peak powers of 14 MW have been observed
(72)using an unstable resonator with an SFg cell in a grating-tuned cavity

A further important feature of the three-mirror resonator is the low
j _ ■ .

divergence ~  5x 10“  ̂rad of the output beam, which equals the diffraction- 

limited divergence of the conventional telescopic resonator. As has also
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( 2 0 3 ^been noted by ANAN'EV the angular divergence remained close to the

diffraction limit whether the Mg was a convex, plane or concave mirror.

The simplicity of the described method as well as the anticipated 

high spectral purity and reproducibility of the emitted pulse should also 

be recognized as advantages of this method over others currently in exis­

tence.
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CHAPTER V I I  

GENERAL CONCLUSIONS

7.1 INTRODUCTION

The principal findings of the research undertaken are collectively 

summarised in this chapter, although they have already been separately 

discussed in more detail in the relevant sections.

The application of these findings to a larger system —  TROJAN —

OPALS —  is also discussed and a brief outline of the system's design and

assessment of the main problems which need to be resolved in order to 

achieve the intended performance are presented.

7.2 SYNOPSIS OF MAIN RESULTS

Experimental investigation of the operational characteristics of 

the laser modules used has shown that both the emitted power of the TEA 

CO2 oscillator and the small signal gain of the amplifier are optimised 

when two conditions are fulfilled:

(a) a 6 : 1, CO2 : N2 mixture is used; and

(b) the helium concentration is kept as low as possible
while still sustaining an arc-free discharge.

The introduction of organic vapours (triethylamine, tripropylamine) 

into the discharge permitted smaller concentrations of helium to be used,

as a result of which greater peak power and gain were recorded. Further­

more, the introduction of the seedant substantially improved the normally 

poor spatial uniformity of the active medium of the Double-Discharge module 

(sections 2.4.7, 2.4.8, 2.5.3).

A single longitudinal mode oscillator was developed with an output

power in the range of 30 - 100 MW. The single longitudinal mode operation

is the result of coupling two unstable resonators sharing the active medium
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whose individual diffraction loss exceeds the available gain preventing 

them from oscillating independently.

CO2 laser pulses of sub-nanosecond duration were achieved using the 

self-mode-locked output of the Double-Rogowski module and an electro-optical 

shutter. In order to attain sub-nanosecond rise time the laser-triggered 

spark gap had to be pressurized to 9 atm. and to be charged to a voltage 

as near the self-breakdown as possible. The signal-background, noise ratio 

of these pulses was limited by the residual birefringence of the electro- 

optical crystal. Although extinction ratios of the order of 3x10® were . 

obtained, pulses with higher extinction ratio (>I0®) are required for 

amplification in the enlarged system (OPALS - TROJAN) currently under con­

struction. This requirement necessitated the introduction of an additional 

crystal and polarizer in the electro-optical shutter of this system. An . 

improved version of the laser-triggered spark gap has also been developed 

which is capable of operating at higher voltage (30 kV) and pressure (15 

atm.) while its stainless steel target electrode should contribute to a 

shorter delay time (section 3.13).

The saturation energy density for single-line pulses of duration 

1.1, 20 and 70 ns was measured to be 30mJ/cm^, l OOmJ/cm^ and 180 mJ/cm^ . 

Using a telescopic amplifier, 0.5 J/litre v^re extracted by 1 mJ, 1 ns 

single line input pulses. This represents more than 50% of the energy 

available to an infinitely strong pulse = Eg . = 0.93 J/litre. The

electrical input energy density was 100 J/litre and therefore the amplifi­

cation efficiency of nanosecond single-line pulses was y =0.5%.

Multi-line input pulses resulted in improved amplification efficiency. 

The output of the telescopic amplifier was increased by ~  30% and ~  50% for 

input pulses containing two and three lines respectively. It is therefore 

evident, that, even with multi-line input pulses, the nanosecond pulse
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amplification efficiency using double-discharge, TEA CO^ lasers is less 

that 1%. However, higher efficiency (~ 2%) is expected in the OPALS- 

TROJAN system (see section 7.3). Finally, it was shown that the use of 

multi-line input pulses minimized the pulse-broadening experienced by 

single-line pulses.

7.3 FUTURE WORK

The central concern of the work reported in this thesis has been 

the reliable generation of nanosecond COg laser pulses and their efficient 

amplification to gigawatt power levels. The further amplification of these 

pulses to intensities appropriate for laser-induced fusion studies, suggests 

itself as the logical progression of this work. Although the findings of 

this research can be directly applied to the larger system, the question 

of optical isolation, which could easily be circumvented in the original 

system, will demand solution before satisfactory operation can proceed.

THE OPALS - TROJAN system whose construction is almost complete at 

Culham Laboratory, has been designed to register an output of 200-400 GW 

and consists of:

(a) a single longitudinal mode U.V. preionized oscillator;

(b) a double electro-optical shutter;

(c) two U.V. preionized atmospheric pressure pre-amplifiers, 
each with an active medium of 5 x 5 x 100 cm® and one of 
which takes the telescopic form described in Chapter IV;

(d) a 20 X 25 X 200 cm® e-beam sustained amplifier capable of 
operating at a pressure of two atmospheres.

The expectation of higher efficiency in this medtrbe is based upon 

the following premises:

(a) in the U.V. preionized (OPALS) and e-beam sustained (TROJAN)
CO^ laser modules, a higher percentage of excitation energy 
is stored in the upper vibrational level (section 1.3);
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(b) the main laser amplifier (TROJAN) operating at 2 atm.
reduces the rotational-relaxation time, tĵ ; and

(c) a helium-free mixture which has been found to be compatible
(207)with this module further reduces the value of tĵ  (see

section 1.4.4).

Simple calculations using equations (5.2), (5.3) and (5.4), which 

were found to be in good agreement with the experimental results (see 

section 5.4), and the typical value of = 0.04 cm"^ indicate that a 1 ns, 

lOmJ/cm^, three-line pulse can extract 6.6 J/litre from TROJAN operating 

at 2 atm. and filled with a 4 : 1, CO^ : N^ mixture. The typical electrical 

excitation energy for this device is ~  150 J/litre-atm. and, therefore, 

a ~  2% ns -pulse amplification efficiency is possible, provided the optical 

isolation problems —  discussed in the next section —  are overcome without 

a significant reduction in the energy output of the OPALS - TROJAN system. 

The input beam in this amplifier will extract from 60 litres of its active 

medium, thus indicating a potential output of up to 400 J in pulses of 1 ns 

duration.

7.4 OPTICAL ISOLATION

The incorporation of an effective saturable optical isolator into a 

high-gain oscillator-amplifier CO^ laser system is essential to overcome 

the problems of pre-pulse amplification and parasitic oscillations which 

can result in premature target-disintegration and partial depletion of the 

population-inversion before the arrival of the nanosecond pulse. Further­

more, an optical isolator is required to minimize the amplification of 

target reflections. Approximately 5% of the energy of the pulse incident 

on the target is returned by the focusing optics into the laser system^^^^^ 

and can be amplified —  due to the collisional re-population of the upper 

laser level —  to intensities far beyond the damage threshold of the optical 

components.
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In the OPALS - TROJAN system, nanosecond pulses will traverse the 

6m —  long active medium which has an overall small signal gain of 5 x 10®.

It can be easily shown that in order to avoid target damage (damage thres- 

hold 50 y J ) by the prepulse radiation, the signal-to-background ratio

of the unamplified nanosecond pulse (with typical energy of ~  1 mJ) must be 

of the order of 10^^. However, it has been indicated in Chapter III, that 

the extinction ratio of the double electro-optical shutter can be, at best,

~  10^. Clearly a 4 orders of magnitude suppression in the small signal gain 

is required to avoid destruction of the target by the background radiation 

prior to the main pulse, which can attain energy of the order of 1 J, by 

undergoing exponential amplification .

A variety of saturable absorbers —  including p-type germanium^^^*
(209) (210)deuterated ammonia ; a mixture of and C^ OH —  have been

used with CO^ laser systems in an attempt to eliminate the above-mentioned

problems. Additionally hot CO^ , acting as a narrow-band gaseous absorber

has been employed to reduce the prepulse t r a n s m i s s i o n ^ ^ ^ w h i l e

electrically-driven plasmas, triggered after the passage of the main pulse,

have been shown to provide a considerable attenuation of target reflec-
(2 11) tions .

The ideal saturable absorber would be a gas added to the laser dis­

charge which was capable of suppressing the small signal gain without 

appreciably reducing the energy otherwise extractable by the main laser 

pulse. A preliminary investigation of the effect of 2,5 torr triethylamine 

added to the laser gas had the result of reducing the gain coefficient of 

the Double-Discharge module by 25%, although, when it was operated as an 

oscillator, the laser output energy was reduced by no more than 5% .

The .'Spectral content of the emitted pulse, was the same —  P(20) —  in both 

cases. The reasons for the small signal gain suppression are not as yet 

understood, since absorption of the 10.6 ym radiation by the triethylamine
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itself is negligible; the possibility of new compounds forming during the 

discharge cannot be excluded however.

Assuming that the triethylamine will have a similar effect on the 

OPALS —  TROJAN system, its small signal gain will be reduced by a factor of 

more than 200, although the effectiveness of this additive will depend 

upon whether a comparably low (5%) reduction in the energy of the output 

pulse can be sustained.

In order to further suppress the small signal gain, it is suggested 

that the convex metal mirror of the telescopic amplifier could be replaced 

by an equivalent mirror made of an appropriately thick p-type Ge disc, the 

front and back surfaces of which have anti-reflection and high-reflectivity 

coatings respectively.

In conclusion, it is hoped that the present work may have made some 

contribution to short pulse laser technology, and may have gone some way 

towards elucidating those physical processes which determine the efficient 

amplification of nanosecond CO^ laser pulses.
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APPENDIX ' A '

LIGHT PROPAGATION IN CRYSTALS

An understanding of the operation of the electro-optical shutter can 

be facilitated by a brief summary of the main features of light propagation 

in both (a) isotropic and (b) anisotropic media.

(a) Isotrop'Cc Media

The optical isotropy of a medium is the result of its dielectric 

properties which could be described in a linear relation between an electric 

field E (e.g. the Ë field of the electro-magnetic radiation incident on 

the crystal) and the resultant electric displacement D;

D = E Eg Ë . ... (A. I)

The scalar quantity e is the dielectric constant, or the relative 

permittivity of the medium, while Eg is the permittivity of the free space. 

Using Maxwell's equations, it can be shown that electro-magnetic radiation 

of any state of polarization is propagated unchanged through media for which 

equation (A. 1 ) applies with phase velocity U = c / Æ  = c/r), irrespective of 

the direction of propagation.

(b) Anisotropic Media

Equation (A.1) cannot describe the dielectric properties of either an 

isotropic electro-optic material, when an electric field is present, or any 

natural anisotropic medium. To describe the dielectric properties in either 

case, a new relation between D and E is required in which each component 

of 5 = [Dj , Dg , Dg] is linearly related to all three components of 

Ë = [ E l , Eg , E,]

 ̂1 2^2 ^1 3^ 3^

°2 = CggEg + EggEg) ... (A.2)

^ 3  “ ^ 32^2 ^ ^ 33^ 3^
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The nine quantities are constants of the medium. In order to

describe the dielectric properties of an anisotropic medium, it is necessary 

to specify the nine coefficients  ̂ ,..., which can be conveniently

written in the form:

'11 ^12 ^13

[Eij] ^ 2 1 ^ 2 2 ^ 2 3

^31 ^32 ^33

The quantity [^£j] is the dielectric tensor of the medium.

When equation (A.2) instead of (A.1) is used in conjunction with 

Maxwell's equations, it can be shown (reference (153) p.671) that the struc­

ture of the anisotropic medium permits two linearly polarized plane electro­

magnetic waves, with their directions of vibration mutually perpendicular, 

to travel with two different phase velocities in any given direction of 

propagation. The directions of the two permitted linear polarizations are 

determined by (a) the structure of the medium, (b) the direction of propaga­

tion, and (c) the direction of the external electric field. Plane electro­

magnetic waves, linearly polarized along either of these directions, will 

emerge from the medium unchanged - just as if they had traversed an isotropic 

medium - and, for this reason, they are often termed the privileged directions. 

If X and y denote the privileged directions for propagation along an axis z , 

then, X , y , z form a Cartesian system of coordinates.

Plane electro-magnetic waves linearly polarized along an arbitrary 

direction in the x , y plane, will, in general, emerge from the medium ellip- 

tically polarized. This could be visualized if it were assumed that the 

electro-magnetic wave was resolved into two linearly-polarized components 

with their directions of vibration along x and y . The two components which 

travel with velocities Uj and Ug , being in phase initially, will develop 

a continuously growing phase difference as they traverse the medium. These
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components emerging from the anisotropic medium, will retain their phase 

difference as they propagate in the surrounding isotropic medium and, there­

fore, the electro-magnetic wave that results from the recombining of the 

two out-of-phase components is elliptically polarized.
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APPENDIX 'B

LIST OF SYMBOLS

Einstein coefficient for spontaneous emission
absorbed fraction of incident radiation; also laser beam 
cross section

aj a^ mirror radius '
B rotational constant
C capacitance
c velocity of light; also specific heat of target electrode
D centrifugal distortion constant; also electrode spacing

in the telescopic amplifier; and diameter of laser beam
D electric displacement
Dooh ^ point group
d fringe spacing; also spark gap spacing; and étalon thickness
E laser energy; also electric field
Ej, extinction ratio of Pockels cell
Ep extinction ratio of electro-optical shutter; also saturation

energy parameter
Egxt extractable optical energy from amplifier
Ej. rotational energy
(Eg)^^^ effective saturation energy parameter
F total flow rate (£/min) of the laser gas
g(v) net round trip gain
g resonator g-parameter
h Planck's constant
I, Ig intensity of CW laser
J rotational quantum number
k thermal conductivity of target electrode
k^ roots of the secular equation
K thermal constant of the target electrode
Kg , Kg resonant exchange rate constant
K^ vibrational relaxation-rate constant
K(J) Boltzmann partition fraction
Kĵ  rotational relaxation-rate constant
L laser cavity length; also length of electro-optical crystal;

also inductance
Lg length of active medium

- 134 -



£ angular momentum quantum number
M collisional partner M; also magnification of the unstable

resonator; also molecular weight
Mp monochromaticity factor
m number of plates comprising the polarizer
N vibrational population
Nj rotational population ;
N , Njj number of electrons in the L T S G
N equivalent Fresnel numbereq
n photon number density
P gas pressure; also degree of polarisation
Pĵ  laser power
P(J) P-branch vibrational-rotational transition '
Pg . partial pressure of additive
q number of round trips for oscillation build-up
R resistivity of target electrode -

mirror radius of curvature 
R(J) R-branch vibrational-rotational transition
Rĵ  , R|| reflectivities of linearly polarized radiation
r^j GaAs electro-optical coefficient
[rijk^ electro-optical tensor
S L T  SG  constant
T translational temperature of gas; also transmittance of

an electro-optical shutter or étalon
Tjjj melting point of target electrode
Tĵ  rotational temperature

time,
^ delay time

time required for heating target electrode to its melting, 
point
formative time 
laser pulse duration 
rise time of electrical pulse 
rotational relaxation time 

U phase velocity
V voltage
Vg^ self-breakdown voltage
V i half-wave retardation voltage■ 2
V vibrational quantum number of Ng
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avalanche velocity 
Vg streamer velocity
Z q characteristic impedance of transmission line

a Townsend first coefficient .
Œg small signal gain coefficient
y Eigenvalue determining the power loss, 6, per round trip

(5= 1 -  |y|2)

A vibrational inversion population density
AVjj pulse-broadened line width
Ô rotational inversion population density; also round trip

output coupling; and phase difference between two ortho­
gonally polarized waves

e dielectric constant
principal dielectric constants

rî  quantum number of the three CO^ normal modes of vibration;
also principal refractive indices

n laser efficiency, also refractive index
0 angle of divergence; also angle of incidence

, K Boltzmann constant
X wavelength . •
V , Vg optical frequency

frequency of the three fundamental modes of vibration
p density; also reflection coefficient in a transmission-line
a stimulated emission cross— section
Tj , Tg lifetimes of upper and lower vibrational laser levels
(j) . angle between the transmission axis and one of the privileged

directions; also wedge angle
\{j mole fraction of component in a gas mixture
(A) angular frequency
03 lowest transverse mode spot size
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CO2 LASER WITH 30 MW SINGLE MODE OUTPUT

T. STAMATAKIS *  and A.C. SELDEN 
Culham Laboratory, Abingdon, Oxon, 0X14 3DB, UK 

(Euratom!UKAEA Fusion Association)
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The operating principles and performance of a simple three mirror telescopic resonator for generating temporally 
smooth laser pulses of at least 30 MW peak power and controlled duration in the range 60 to 200 ns are discussed.

We describe the reliable generation in a single lon­
gitudinal mode of smooth CO2  laser pulses with 
>  30 MW peak power, which is believed to be the 
highest reported output for a single mode oscillator to 
date. A simple three-mirror system is used in a coupled 
unstable cavity arrangement (see fig. 1); this has the 
advantage of a large aperture for potential scaling to 
higher powers and is of very simple construction [1]. 
One application of this device is to laser-plasma inter­
action studies, where the smooth temporal envelope 
of the incident pulse provides a reference for interpret­
ing amplitude modulations imposed on the reflected 
pulse [2].

The optical system is shown in fig. 1, and consists 
of two unstable cavities coupled by the small convex 
mirror M j and sharing the same active medium. Each 
cavity has a loss which slightly exceeds the available 
gain and therefore neither can oscillate independently. 
The design of the cavity defined by the mirrors M j ,
M 2  has already been described in a telescopic amph- 
fier application [3]. The radius of curvature of the 
third mirror Mg was so chosen that the cavities M j ,

* On attachment from Royal Holloway College (University of 
London), Egham, Surrey, TW20 OEX, UK.

Fig. 1. Optical configuration for generating a single longitudi­
nal mode (not to scale).

M 2  and M j , Mg have the same diffraction losses. Some 
of the radiation leaving M j , M 2  is returned by Mg, 
and vice versa, so that the nett loss for a resonant 
mode of the combined cavities is less than that of the 
independent modes (resonant feedback) and oscilla­
tion can take place. The frequencies of the longitudi­
nal modes differ by

Av = cj2A L

where A L  is the difference in length of the two cavi­
ties, determined by the position of Mg. By adjusting 
AL to make Av  equal to the frequency range over 
which the gain exceeds the loss of the three-mirror 
cavity, we can ensure oscillation on a single mode 
within a given rotational line of the 10.4 jim  band.
The optimum setting for reliable single mode opera­
tion of our system was found to be AL % 25 cm, giv­
ing a mode spacing Av % 600 MHz in a cavity o f maxi­
mum length 1.5 m.

Examples of generated pulse shapes are given in 
fig. 2, recorded with a Rofin 7415 photon drag detec­
tor and Tektronix 7904 oscilloscope combination, 
whose frequency response was checked with Mg re­
positioned to give beating between two adjacent 
modes, for which a maximum modulation depth of 
~  60% was observed at 600 MHz. Operation on a sin­
gle rotational line was confirmed using a laser spec­
trum analyzer (Optical Engineering Model 16-A). The 
figures shows: (i) a smooth pulse of 30 MW peak 
power and 70 ns FWHM with a measured energy of 
2 joules, and (ii) a 100 MW pulse with slight modula­
tion, reflecting the generation of two or more modes 
at the higher pump energies involved. The high repro­
ducibility of smooth pulse generation at 30 MW can 
be judged from the results of 100 consecutive shots in
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power unstable cavity oscillator operating on a single
longitudinal mode. The output power was found to be 
more than an order of magnitude higher than that ob-
tained from laser oscillators employing a stable reso­
nator [4 -6 ] .  This considerable improvement reflects 
the fact that the fundamental transverse mode can be 
arranged to occupy the whole volume of active me-
dium in an unstable cavity, whereas the mode volume 
of a stable resonator is strictly limited, resulting in a 
large reduction of output power. A further important 
feature of the three-mirror cavity is the low divergence 
~  5 X 10"4 rad of the output beam, which equals 
the diffraction limited divergence of the conventional 
telescopic resonator [ I j .

Temporally smooth pulses with peak powers of 
14 MW have been observed using an unstable resonator 
with SFg cell in a grating-tuned cavity [7] ; however, 
no information was given on the reproducibility of 
smooth pulse generation in this case.

We wish to record our appreciation of the keen 
interest taken in this work by Dr. V .I. Little, especial­
ly the many fruitful discussions we had about it; our 
thanks to Drs. T.K. Allen and I.J. Spalding for their 
support.

Fig. 2. Output pulses from the telescopic resonator: (i) 30 MW 
with smooth envelope (20 ns/div); (ii) 100 MW pulse with 
some modulation (50 ns/div).

one run, of which no more than 10% showed detecta­
ble modulation.

The laser pulse width is determined by the ratio of 
the partial pressures of nitrogen and carbon dioxide in 
the gas mixture, and can be adjusted in the range 60 
to 200 ns by varying the ratio : Pq q  ̂ from 1 : 6 
for the lower value to 4 : 3 for the longer pulse.

In conclusion it has been shown experimentally 
that by addition of a third reflector, a TEA CO] tele­
scopic laser amplifier can be converted to a high
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A gigawatt COg laser with telescopic amplifier
V. I. Little,* A. C. Selden, and T. Stamatakis^
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The first production of gigawatt pulses from a 1-m COg telescopic amplifier with megawatt input is 
reported. This device has been used to generate 1-J pulses of 830 ps FWHM from a suitably gated source.

PACS numbers; 42.60.Lh, 42.60.Cz

I. INTRODUCTION

The power output of a gated CO2 las e r o sc illa to r fo r  
generating pulses 1 ns in  duration is  typ ically about 1 
MW . To increase this to the gigawatt region fo r pulse 
in jection to a typ ical a m p lifie r chain, a p rea m p lifie r  
with a power gain of ~ 10^ is  requ ired . Th is , in  turn, 
needs up to 3 m of active path in  COg, using e ith er a 
one-pass m ultistage system or else arranging 2—3 
passes w ith p a rtia lly  overlapping beams in  a single- 
stage a m p lifie r . In  each case the re su lt is  ine ffic ient 
extraction of the to tal stored energy, and attendant 
problem s of beam divergence and mode control. These 
lim ita tions on the p ream plifica tion  of nanosecond 
pulses to gigawatt powers can be overcom e, in p rin c i­
ple, by the telescopic a m p lifie r , ® in  which the weak 
input beam is sim ultaneously expanded and am plified  
while preserving  its  mode structure. W ith  a reflecting 
telescope arrangem ent fu ll use of the stored energy 
can be achieved, because the design combines adequate 
beam expansion (m agnification M ~ 1 0 ) w ith high o ver­
all gain (tr ip le  pass). The system is  ideal fo r ra is ing  
weak signals to high power in  a single stage, and can 
be adapted to match a wide range of weak sources (os­
c illa to rs ) to la rg e  las e r a m p lifie r  systems. I t  has p re ­
viously been employed on neodymium las ers  fo r  gen­
erating m illisecond pulses w ith  energies of several 
hundred joules.  ̂ In  this paper the design and p e rfo rm ­
ance of a 1 -m  T E A  CO2 la s e r  telescopic a m p lifie r  fo r  
producing gigawatt pulses of nanosecond duration is  
described.

The use of unstable resonators in  high-power o sc il­
la to rs  was f i r s t  described by Siegman. ® Of the various  
possible configurations, a confocal system , i . e . ,  
telescopic resonator, has the advantage that i t  provides  
a co llim ated  output. F u rth erm o re , in  h igh-power sys­
tem s i t  is  c le a rly  good design to arrange fo r the com­
mon focal point to lie  outside the cavity so that the r is k  
of optical breakdown is  m in im ized. F o r this reason  
an unstable configuration on the positive branch of the 
stab ility  d iagram  was chosen fo r the present w ork. The  
optical cavity (see F ig . 1) is  effectively a Cassegrain  
telescope in norm al adjustm ent. P a ra lle l light, en ter­
ing fro m  the le ft through a hole in  the concave m ir ro r ,  
traverses  the cen tra l p a rt of the active medium to 
strike  the convex m ir r o r .  A fte r re flectio n  the ligh t re ­
turns as a diverging beam to the concave m ir ro r , w here  
i t  is  re flected  as an expanded p a ra lle l beam fo r its  th ird  
and fin a l tra ve rse  of the active medium. Th is  arrang e­
ment also achieves optical matching of the output to sub­
sequent am plifying stages of la rg e r  aperture  than the 
input beam, without the severe loss of intensity n o rm al­
ly  associated w ith a passive beam expander.

In  the present w ork, care  was taken to ensure that 
only three passes of the active medium w ere possible  
fo r p a ra lle l beams in the a m p lifie r, in  o rder to prevent 
the onset of se lf-o sc illa tio n  by resonant feedback in  the 
m odified cavity. Even w ith this re s tr ic tio n  i t  was possi­
b le fo r  se lf-o sc illa tio n  to be in itia ted  by optical feed­
back aris ing  fro m  ligh t d iffraction  at the various  
apertures. ®

Ga As Pockels cell Concave mirror with a central hole ConvexmirrorBrewster angle Ge platesBrewster angle Ge plate
3- pass amplifier

Oscillator

ns
Ge mirror 
R=36%

Brewster angle 
KCI plate Laser triggered spark gap

Gold mirror 
Rz 990/0

FIG . 1. Experimental 
arrangement
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II. AMPLIFIER DESIGN

A. Preliminary considerations

To achieve a stable three-pass a m p lifie r , two m ain  
sets of c r ite r ia  have to be satisfied . F irs t ,  s e lf-o s c il­
lation  must be prevented, and in  a norm ally  adjusted  
system this means that d iffraction  losses have to be 
contro lled  by a suitable choice of cavity apertures and 
optical m agnification. Second, the e ffic ient extraction  
of energy imposes the condition that the entrance ap er­
ture 2x should be g rea te r than or equal to the d iam eter 
of the convex m ir ro r , 2aj. I f  D is  the electrode spacing 
and M  is  the lin e a r m agnification of the system , we 
have the following re la tions: 2x >  and M=D/2a^ fo r  
norm al adjustment, hence

A  fu rth e r fac to r enters as a resu lt of the geom etry. 
The output beam has an annular cross section w ith an 
inner d iam eter controlled by 2x. Hence, the sm a lle r  
X, the g rea te r the av a ilab ility  of the stored energy. I f  
90% of the stored energy is  to be usefu lly employed, 
the above considerations impose the following lim its  on 
the design:

D/2M^x^\D.

F in a lly , a p ra c tic a l l im it  to the m agnification is  set 
by the ra tio  of the electrode spacing to the d iam eter of 
the input beam: M  10.

B. Diffraction loss vs self-oscillation

According to Anan’ ev et al,̂  the quantity ly  I which 
determ ines the d iffraction  loss Ô, w here 6 =  1 -  ly P ,  
is  given by

ln (M ) \n[M/2TiN̂ {̂M'̂  - 1 ) ]
In  y  = (1)

w here and a re  the equivalent F resn e l num bers of 
the resonator and of the entrance aperture , respectively .

F o r a telescopic resonator, according to 
Siegman^® is  given by

i^eq=(«i/2AX)(M-l), (2)
w here X is  the wavelength of the cavity rad ia tion  and L 
is  the length of the cavity. Anan’ ev et at. ® gives

M-1
—

2X1 M  '

Using Eqs. (2) and (3), Eq. (1) becomes

M

(3)

In  y

(4)

The quantity y was f i r s t  determ ined experim entally  
fo r an existing telescopic resonator w ith  M=2.875,
2  =  1 .25  m, and â  =  8 .3 5  m m , fo r a discharge region  
w ith  dimensions 1 m X 49 m m X 49 m m .

The input aperture  radius x fo r which s e lf-o s c illa ­
tion ceased was determ ined by placing a nonreflecting  
carbon disk cover the pole of the concave m ir r o r  to 
sim ulate a c irc u la r aperture  whose d iam eter could 
re ad ily  be adjusted. The d iam eter was increased until

X

FIG. 2, Graph of re la tiv e  self-oscilla tion  energy vs hole size.

the system jus t stopped oscilla ting  w ith the a m p lifie r  
fu lly  energized. The effective value of x was thus found 
to be 16 mm.

In  F ig . 2, the norm alized  o sc illa to r output energy is  
shown as a function of the ra tio  x/gg, w here ag is  the 
radius of the concave m ir r o r .  Using Eq. (4) and the 
confocal condition â  = Ma.̂, substitution of the appropri­
ate values of L, â, x, and M  fo r  X =  10. 6 pm  gives 
In ly  I =  -  3. 78. Th is  fig u re  specified the d iffractio n  loss 
of the cavity used and enabled the p aram eters  of any 
other s im ila r  cavity having the same d iffraction  loss to 
be calculated, thus allowing m ore convenient values of 
M  and x to be determ ined. A  combination of M  and x 
that satisfied both the condition M <  10 and the inequality  
D/2M^x ^ jD, and at the same tim e gave a value fo r  
In ly  I = -  3. 78, was found to be M=1  and x  =  5 . 4 mm. 
F o r optimum power output, 2(Zg = 2  =  49 m m , d e ter­
m ined by the electrode separation in  T E A  geom etry. 
Thus, « 2  =  24. 5 mm and aj =  «2 / ^ =  3. 5 m m . Simple  
telescope theory then gave 2917 m m  fo r the radius of 
curvature  of the concave m ir r o r  and 417 m m  fo r that of 
the convex m ir ro r , requ iring  a cavity length 2  =  1 .25  m.

C. Parasitic oscillation

Having elim inated se lf-o sc illa tio n  in  the a m p lifie r , 
a p aras itic  oscilla tion  was observed which was inde­
pendent of the cavity m ir ro rs  [F ig s . 4(a)]; in  fac t, i t  
persisted  when the la tte r  w ere rem oved. Th is  o sc illa ­
tion was traced  to the re flec tio n  introduced by the m ir ­
ro r  mounts. A  covering of carbon paper over the mounts 
effective ly elim inated it .  When the switching system  
iso lating the o sc illa to r fro m  the a m p lifie r was rem oved, 
the p aras itic  rad iation  fro m  the a m p lifie r  section r e ­
sulted in  a reduction of up to six  tim es in  the peak power 
of the o sc illa to r, as m easured using a photon-drag de­
tector. Th is  reduction in  power was found to be roughly  
proportional to the intensity of the p a ras itic  o sc illa -
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FIG . 3. Reduction in oscillator power vs delay tim e for 
different intensities of pai'asitic radiation from  the am plifier. 
Curve 1 , no feedback; curves 2 - 4  increasing feedback.

tion in the a m p lifie r , m easured when the a m p lifie r alone 
was energized. However, when this p aras itic  o sc illa ­
tion was com pletely suppressed, as described above, 
the presence of the a m p lifie r had no effect upon the p e r­
form ance of the o sc illa to r. In  F ig . 3, the norm alized  
peak power of the o sc illa to r is plotted against T , the 
delay tim e between the fir in g  of the a m p lifie r  and the 
o scilla to r, fo r fo ur a rb it i 'a r ily  chosen values of the in ­
tensity of the p aras itic  oscilla tion.

The fin a l e lim ination  of both the p aras itic  and se lf­
oscillations of the a m p lifie r  was checked using a 
G eneral Technology ca lo rim ete r capable of measuring  
integrated energy densities down to 0. 05 m j/c m ^ .

I I I .  E X P E R IM E N T

The experim ental arrangem ent fo r generating and 
am plifying a nanosecond la s e r pulse is  shown schema­
tica lly  in F ig . 1. A  fas t e lectro -op tic  switch was used 
to select a single pulse fro m  the o sc illa to r output and 
tran sm it i t  to the a m p lifie r, w here three passes w ere  
made in  the active medium v ia  the Cassegrain telescope  
system. The o sc illa to r was of the Lam berton -P earson  
type^^ w ith  two Rogowski p ro f ile  e lectrodes of length 
700 m m  and spacing 25 mm. The optical cavity was 
fo rm ed by a 99% re fle c tin g  concave m ir ro r  w ith  a 
rad ius of cu rva tu re  of 10 m mid a Ge f la t  antireflection  
coated on one face. These w ere arranged to give a 
cavity length of 1. 35 m . A  K C I p late set at the B rew ster  
angle was placed inside the cavity of p o la rize  the output 
and increase the power re flected  fro m  the f i r s t  Ge 
p o la r ize r. An in tracav ity  diaphragm  of d iam eter 9 mm  
re s tr ic ted  oscilla tion  to a single transverse mode. U s­
ing this arrangem ent a self-m ode locked pulse tra in  
was generated, w ith individual pulses of 2 ns duration  
[F ig . 4(b)]. The m odulation depth ranged fro m  85 to 
100%, and the shape of individual pulses was not re p ro -  
ducible fro m  shot to shot, re fle c tin g  the fa c t that no

m ode-locking elem ent was present in  the cav ity . The 
GaAs e le c tro -o p t|c  c ry s ta l fo r  selecting a single pulse 
was energized by a ~ 2 -n s  h igh-vo ltage pulse derived 
fro m  a pressurized  la s e r- tr ig g e re d  spark gap. By 
adjusting the gas pressu re  and the length of the delay 
line  the a r r iv a l of the e le c tr ic a l pulse in  the GaAs c ry s ­
ta l was synchronized w ith  the a r r iv a l of one of the 
strongest la se r pulses in  the tra in , thereby reducing 
the noise leve l (in te rpu lse  energy) of the transm itted  
signal. The selected pulse then entered the tr ip le -p a s s  
a m p lifie r, whose output beam was m onito red  w ith  a

FIG. 4. (a) Parasitic  oscillation: tim e scale, 20 ns/div.
(b) Output pulse from  the self-mode-locked oscillator : tim e  
scale, 10 ns/d iv . (c) 1-GW amplified pulse with instrument- 
lim ited width: 1 .3  ns FWHM; tim e scale, 500 ps/div.
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photon-drag detector (Rofin, model 7415) and the pulse 
intensity p ro file  displayed on a T ektro n ix  7904 o sc il­
loscope [F ig . 4(c)]. The recorded width of 1 .3  ns 
FW H M  included the r is e  tim e of tlie detector (0 .6  ns) 
and of the oscilloscope (0 .8  ns). Assum ing a Gaussian  
p ro file , the actual pulse width calculated fro m  these 
values was # =  830 ps F W H M . The pulse energy was 
m easured using a G eneral Technology p yro e lec tric  
ca lo rim ete r. Because of the f in ite  contrast ra tio  (sig­
nal/background noise), the m easured energy contained 
two components: the energy in  tlie short pulse and that 
of the am plified  noise. The la tte r  was m easured by 
disconnecting the tr ig g e r of the e lectro -op tic  switch, 
thereby making i t  inactive, and f ir in g  both o sc illa to r  
and a m p lifie r . Th is  energy was then subtracted fro m  
the to tal to give an output pulse energy of 1 J . S im ila r­
ly , the energy of the input pulse was found to be 1 mJ. 
Thus, the trip le -p a ss  am p lifie r had an energy gain of 
1000. The peak power of the am plified  pulse was es ti­
mated fro m  the response of the photon-drag detector 
and found to be ~ 1  GW. Com parison w ith the input of 
~ 1 M W  (1 mJ, 1 ns) shows the close agreem ent between 
the energy and power m easurem ents of the gain fo r  a 
nanosecond pulse.

IV. CONCLUSIONS

A  trip le -p a ss  T E A  CO2 telescopic la s e r a m p lifie r  
has been developed w ith an energy gain of 1000 fo r  
m illijo u le  laser pulses of ~ 1  ns in  duration, compared  
w ith  a gain of 20 fo r the same device operated as a 
single-pass a m p lifie r . Pulses w ith  >  0. 8 ns width and 
1 GW peak power (total energy 1 J) w ere  obtained 
fro m  an active length of only 1 m fo r  an input power 
of 1 M W .

The design of the a m p lifie r both ensured optimum  
energy extraction and elim inated the problem  of se lf­
oscilla tion  caused by optical feedback fro m  d iffractio n

at tlie edges of the telescope ap ertures . The problem  
of p aras itic  oscilla tion  in  the a m p lifie r , which in itia lly  
caused a la rg e  reduction of the o sc illa to r output, was 
overcom e by m in im iz ing  the specular and diffuse r e ­
flection  fro m  the window and m ir r o r  mounts.

T rip le -p a s s  am plification  of the kind described in  
this paper could w e ll be used to advantage in  la rg e r  
high-power la s e r systems; in  p a rtic u la r , e lectron - 
beam—controlled COg and glass disk am p lifie rs , 
which have active m edia w ith respective ly  h igher and 
low er gain than that of the medium used in  the present 
w ork.
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Abstract D uring  the operation  of a high power pulsed 
C O 2 laser system, dam age was observed to a G aA s 
m odulator crystal. The cause o f the damage was possibly 
the creation o f wedge fringes w ithin the crystal. Wedge 
fringes were also formed in the system by a G e polarizing 
plate. This note describes how the formation o f such fringes 
can be avoided and also how they can be used to measure 
small wedge angles over long path differences.

Since damaged com ponents in a laser system limit the per­
form ance o f high power lasers, it is o f critical concern to  m ake 
the optical element of the laser less susceptible to such damage.

The use o f optical com ponents made of material w ith a high 
refractive index—like G e or G aA s—as beam splitters, win­
dows, polarizers and electro-optical m odulators of the laser 
beam  usually results in the form ation of undesirable sharp 
fringes.

Usually these fringes are o f equal thickness (straight line 
wedge fringes) which occur when the two surfaces o f the 
com ponent are inclined. Generally in such com ponents the 
locus o f the points o f equal thickness, which represents the 
edge of the wedge, forms an angle with the geometrical edge 
o f the com ponent i.e. a rectangular plate. As a  result o f this, 
the fringes which are produced on transm ission o r reflection 
appear to ro ta te  when the angle o f incidence is changed, that 
is the angle between the plane o f incidence and the straight 
line fringes appears to  change (figure 1(a)).

Using these fringes the generally very small angle <f) o f the 
inclined surfaces can be calculated by m easuring the fringe 
spacing d. F o r norm al incidence ^  is given by:

(f> =  Xl2nd (1)
where A is the wavelength and n the refractive index.

Recently this m ethod was used (M cLeod 1974) to  check the 
parallelism o f glass blocks w ith a H e-N e laser.

(c)
Figure 1 Wedge fringes on C O 2 laser com ponents
(a) R otation  o f fringes with varying angle o f incidence;
(b) Effect o f back surface finish o f G erm anium  plate on 
fringe visibility: from left to right, incident beam, reflected 
fringes (both  faces polished), and sm ooth reflected beam 
with matt back surface; (c) Effect o f applied voltage on 
fringes produced in G aA s electro-optic crystal— voltage 
increasing left to  right from  zero to quarter wave value 
(12 kV cm ^i). Incident beam on far left

In a T E A  (transversely excited atm ospheric pressure) C O 2 
10 6 fxm laser system for producing short laser pulses by 
electro-optical means, a germ anium  plate was used to  produce 
linearly polarized light by reflection. This light was then 
incident upon a gallium arsenide crystal.

However, both the G e plate and the G aA s crystal produced 
wedge fringes and surface dam age occurred to  the 50 m m  long 
crystal. The exit surface o f the crystal was dam aged whilst the 
entrance surface suffered no damage. It has been proposed tha t 
this is due to the effect of Fresnel reflection (Crisp et al. 1972). 
In  the case o f G aAs, which has refractive index n =  3 3, the 
light intensity inside the G aA s a t the exit surface is 4»% 
(«+1)2 =  2-35 times greater than  the intensity inside the G aA s 
a t the entrance surface.

Since the fringes arise as a consequence o f m ultiple reflec­
tion, the transm itted fringe m axim a have intensity /max equal 
to  tha t of the incident light h .  O n the o ther hand when these 
fringes do no t occur, the intensity a t the exit surface equals
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/ =  Th  (where T  =  Injin^ +  l ) = l / l - 8 i s  the transmissivity of the 
whole GaAs crystal).

Therefore when the incident radiation has intensity h  
within the range / th< /o< l -8  /m, (/tn being the damage- 
threshold intensity for the exit surface) the formation of the 
fringes causes the damage to the crystal and this is what is 
likely to have happened in the present case. Thus it is impor­
tant to avoid forming fringes in systems operating near the 
damage threshold, for example where the maximum signal is 
required.

In  order to avoid the fringes produced by the Ge plate, its 
back surface was given a matt finish using wet emery cloth. 
Consequently, the fringes disappeared as is shown in figure 
1(6) and a uniform beam of linearly polarized light was 
reflected from the plate.

The fringes which are produced by the crystal can be ex­
cluded by applying a bias d c  voltage. With increasing voltage 
the fringes gradually diminish. When the applied d c  voltage 
equals the quarter wave value the fringes almost disappear 
(figure 1(c)). Consequently the disappearance of the fringes can 
be used to measure the quarter wave voltage and the electro­
optic coefficient m  of the GaAs.

The inclination of the two faces of the GaAs crystal was 
found from equation (1) using the observed fringe spacing d, 
and the known values of refractive index n and wavelength A. 
This agreed within 4%  with the values deduced from the dis­
placement of the reflected and transmitted beams caused by 
refraction in the wedge. This is a valuable method of measur­
ing small wedge angles on infrared components over relatively 
long path differences— 50 mm in the present case.
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ABSTRACT

A multikilojoule CO^ laser ('TROJAN’) has been used to heat
J-1 mm polyethylene cubes at incident intensities ~  4 x 
12 —210 Wcm" , in preliminary assessments for a laser plasma 

stellarator-filling experiment. Measurements of transmission 
through the resulting laser-plasma, and of refraction and 
back-reflection, indicate energy losses of ~  1, 10 and 5% 
respectively. These and other measurements will be discussed,
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Fusion and Plasma Physics, Prague, September 1977.
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X. INTRODUCTION

Ohmic-heating typically generates a plasma having an energy content of
~  300J in CLEO Stellaratori^^ This paper examines the efficiency with which
multikilojoule C0„ lasers may be used to create laser-plasmas, as an alter-

(2)native means of filling CLEO and other toroidal traps. Earlier measurements
(3)

of reflection from plane carbon targets have indicated that back-reflection 
can be small, since absorption is significantly stronger than that attributable 
to inverse-bremmstrahlung alone;^'^^ the present work extends such observations 
by investigating transmission and refraction losses when finite targets are ̂g \
irradiated. It is hoped to use free-falling cryogenic deuterium targets for 
this cooperative Euratom programme, but for these preliminary assessments the 
targets were (suspended) polythene cubes.

2. EXPERIMENTAL TECHNIQUE

The experimental arrangement is illustrated in Fig.l. The electrical
characteristics of the electron beam preionized laser ('TROJAN') have been

(5)described previously. For the present experiments the system was filled 
with gas at one standard atmosphere, with a HezN^zCOg ratio of 0zlz2; its 
active volume was ~  180 cm x 20 cm x 25 cm. An unstable confocal optical 
resonator having a magnification of 2.8 was used to ensure low-order transverse 
mode, gain-switched, output pulses. The initial spike typically had a peak 
power of ~  30 GW and exhibited mode beating; its envelope had a duration of 
50 ns (FWHM) and a tail lasting some 2 M-s. The energy contained in this tail 
could be conveniently controlled by adjusting the duration of the electron- 
gun pulse; Fig.2 illustrates typical pulse shapes generated for the present 
experiments. The incident power and energy were monitored by the photon-drag 
(Pl) and large area pyroelectric (El) detectors illustrated in Fig.l; simi­
larly P2 and E2 measured the power and energy back-reflected from the target.

2The effective (17 x 20 cm ) cross section of the laser beam was focused by a 
4.5m focal length spherical mirror on to the target ; the focal spot size.
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(7)determined by a grating technique, was 750 |̂ m (FWHM). The polythene targets 
were hand cut from sheet, and stuck with a minimum of epoxy resin to 10 M-m 
diameter glass fibres supported on a micromanipulator within the target 
chamber at a vacuum pressure of 10 ^-10 ^ torr.

3. EXPERIMENTAL RESULTS

Energy balance measurements have been made in which 0.6 - 1.6 kJ laser 
pulses, of duration 50 ns to 2 p,s respectively (cf Fig.2), have been focused 
centrally on to both 1 mm and ^ mm polythene cubes. These have given repro­
ducible results showing, for all cases, high coupling of the laser energy 
into the pellet plasma.

Detector E2, sampling light directed back through the focusing optics with 
an effective aperture of f/17, indicated ~  5% direct energy reflection. A 
cone calorimeter, E3, placed behind the target and matched in size to the beam 
diameter gave a response typically < 8% of that recorded with no pellet in 
position. Such a device, however, considerably underestimates the magnitude 
of high energy (unattenuated) pulses, because of plasma formation at its 
entrance aperture. To investigate further, calibrated film was placed behind 
the pellet to give a spatial measure of the energy density of both transmitted 
and refracted CO^ laser radiation. (The calibration was obtained by directing 
various known intensities of 10 pm radiation on to the film, in vacuum, and 
observing the colour of the resulting burn.) Fig.3 illustrates typical 
energy density contours, derived in this way, for CO^ radiation transmitted and
refracted through the plasma. It indicates that the direct transmission is 
< 1% of the incident energy, but that refraction, confined to a cone of (full) 
angle ^  60° contributes the major energy loss, of ~  10%. Film placed at 
other positions within the target chamber gave no detectable response except 
when close to the laser beam direction, indicating that additional back- 
scattered light not reaching the focusing optics amounted to no more than 
1% of the incident energy.

Detector P2, sampling the reflected intensity, showed enhanced back- 
reflection of the long ps tail of the pulse, relative to the intense (50 ns) 
initial spike (Fig.4).

4. CONCLUSION

These energy balance measurements demonstrate that small, submillimetre,
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(CH^)^ targets can be efficiently heated using (relatively slow) kilojoule CO^ 
laser pulses. Measurements of total charge, using ion probes, etc., are in 
hand to establish whether pre-pulses of the type discussed in ~  lOOJ Nd laser 
heating e x p e r i m e n t s w i l l  be necessary to ensure full ionization in the 
present higher energy, microsecond duration experiments, (A highly simplified 
model suggests that this practical complication may be a v o i d e d ^ o r  perhaps 
restricted to the use of only a 10,6 p,m prepulse^^^)
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FIGURE 1 Plan-view of experimental arrangement

FIGURE 2 Time variation of ’TROJAN' output power, using an electron beam 
of (a) 0.8, (b) 1-6 and (c) 2 |is duration. (Vertical: ~  3 GW/div., 
horizontal: 200 ns/div.)
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FIGURE 3 Distribution of transmitted
and refracted laser radiation on a
plane 7.5 cm behind a ^ mm polythene
cube irradiated by a 1.5 kj (2 ps)
pulse. Numbers indicate average energy2density in joules/cm between contours. 
Circles show cone (full) angles relative 
to pellet position.

(b)

i o)

FIGURE 4 Incident (a) and back-reflected 
(b) pulse shapes for experiment of Fig.3 
(500 ns/div).
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