A universal client-based identity management
tool

Haitham S Al-Sinani and Chris J Mitchell

Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
Haitham.Al-Sinani.2009@rhul.ac.uk me@chrismitchell.net

Abstract

A wide variety of identity management systems have been introduced to im-
prove the security and usability of user authentication; however, password-based
authentication remains the dominant technology despite its well known short-
comings. In this paper we describe a client-based identity management tool we
call IDSpace, designed to address this problem by providing a single user inter-
face and user experience for user authentication, whilst supporting a range of
existing identity management technologies. The goal is to simplify the use of the
wide range of existing technologies, helping to encourage their use, whilst im-
posing no additional burden on existing service providers and identity providers.
Operation of IDSpace with certain existing systems is described.

1 Introduction

1.1 The Need for Authentication

Authentication of human users is a fundamental security requirement; indeed, it
could be argued that it is the fundamental requirement. Despite its importance,
it is almost universally acknowledged that providing user authentication remains
a huge practical problem. In practice, as many observers have noted (see, for ex-
ample, Herley et al. [1]), we are still using passwords almost universally. Again
as widely acknowledged, the use of passwords has many shortcomings, not least
because users today have so many Internet relationships, all requiring authenti-
cation. In such a context, password re-use and use of weak passwords are almost
inevitable.

A common approach to addressing this problem is to propose yet another new
way of achieving user authentication, possibly involving a Public Key Infrastruc-
ture (PKI) [2]. However, there are already many good technological solutions.
Perhaps the real problem is the insufficiently broad adoption of the solutions we
already have. If so, this is partly a business and sociological issue, but perhaps
it is also a problem which requires new technical thinking.

It is easy for those of us providing technological solutions to claim that this
is not our problem. We provide the technology, and the business and commercial



world should just get on with adopting it. However, real life is not so simple.
We in the academic world should be thinking about how to devise technological
solutions which are easier to adopt. As always, key issues for easy adoption are
transparency, ease of use, and backward compatibility, and these factors have
played a large part in the design of the system we describe here.

1.2 Identity Management

Identity (ID) management systems [3—-6] have been designed to simplify user au-
thentication. An ID management system enables an Identity Provider (IdP) to
support authentication of a User (and assertion of user attributes) to a Service
Provider (SP). Recent years have seen the emergence of a wide range of such sys-
tems, including OpenlD [7, 8], Liberty! [9], Shibboleth [10, 11], CardSpace [12,
13] and OAuth [14]. Each system has its own set of protocols governing commu-
nications between the main parties. As well as its own protocols, each system
may also have a unique supporting infrastructure, including public key certifi-
cates, shared keys, passwords, etc. Some systems have gained a limited amount
of traction recently, e.g. the use of OpenID in some sectors and Facebook’s
adoption of OAuth (Facebook Connect). However, the systems that have been
most widely used also possess the most significant security issues (e.g. phishing
vulnerabilities), and no system has broad penetration into the user community.

Many ID management systems are susceptible to phishing attacks, in which
a malicious (or fake) SP redirects a user browser to a fake IdP. The user then
reveals to the fake IdP secrets that are shared with a genuine IdP. This arises
because, in the absence of a system-aware client agent, schemes rely on browser
redirects.

A further problem faced by an end user is that the user experience of every
ID management system is different. It is widely acknowledged that users fail
to make good security decisions, even when confronted with relatively simple
decisions [15]. The lack of consistency is likely to make the situation much worse,
with users simply not understanding the complex privacy- and security-relevant
decisions that they are being asked to make.

Finally, when using third party IdPs which provide assertions about user
attributes, there is a danger that a user will damage their privacy by revealing
attributes unintentionally to an SP. This is a particular threat when using sys-
tems like OAuth (e.g. as instantiated by Facebook Connect). In general, getting
privacy settings right is highly non-trivial.

1.3 A New Approach

It is tempting to try to devise another new scheme which has the practical
advantages of OAuth and OpenID, but yet provides robust protection against
phishing and privacy loss. That is, we might wish to devise a client-based scheme

! The Liberty Alliance specifications have been input to the Kantara Initiative (http:
//kantarainitiative.org/)



with the user convenience of other systems, but which somehow avoids the fate of
CardSpace?. However, it seems that a new solution is highly unlikely to succeed
when others have failed (especially given that systems such as CardSpace have
had the support of a large corporation and incorporate very attractive features).
Moreover, a new system is likely to create yet another different user experience,
increasing the likelihood of serious mistakes by end users. This suggests that
devising yet another new system may not be the right approach.

The goal of this paper is to propose a new approach to the user authentication
problem. It does not involve proposing any new protocols or infrastructures. The
goal is to try to make it easier to use existing systems, and also to make their use
more secure (including resistance to phishing) and privacy-enhancing (not least
through the provision of a consistent user interface and an explicit user consent
procedure).

The scheme we propose involves a client-based user agent. This is a single
tool which supports a wide range of ID management systems yet provides a
single interface to the user. The consistent user interface should maximise user
understanding of what is happening and thereby reduce the risk of errors and
increase user confidence. It also avoids the need for passive browser redirects,
hence mitigating phishing attacks.

1.4 CardSpace

One motivation for the novel scheme arises from consideration of CardSpace
(and related schemes such as Higgins (www.eclipse.org/higgins). Before pro-
ceeding we thus need to briefly describe CardSpace.

CardSpace acts as a client-based agent, and provides a consistent card-based
user interface known as the Identity Selector. That is, sets of user credentials (re-
lationships with IdPs) are represented to users as cards. CardSpace also defines a
set of protocols for interactions between IdPs, Clients (user machines) and SPs.
The user, interacting with a browser via the identity selector, may have iden-
tities issued by one or more IdPs. Each identity is represented by an InfoCard
held by the identity selector, and this InfoCard is the means by which the user
interacts with the identity selector to choose which identity to use. Each IdP
runs a Security Token Service (STS), to generate security tokens. A Self-issued
Identity Provider running on the client platform is also provided to allow use of
self-issued tokens.

Before issuing a token, an IdP will typically need to authenticate the user.
This user authentication takes place via the local CardSpace software. There are
two key advantages of such an approach: it provides a consistent user experience,
and it helps to limit the possibility of phishing attacks.

The user interface of CardSpace and the underlying communications pro-
tocols are not inherently tied together. It is thus possible in principle to keep

2 Despite its adoption as an OASIS standard [16], in early 2011 Microsoft made a
statement (http ://blogs.msdn.com/b/card/archive/2011/02/15/beyond-windows-cardspace. aspx)
implying that the project will not be pursued further.



the simple/intuitive user interface, and use it as the front end for a tool which
manages user credentials in a consistent way regardless of the underlying ID
management system. Credential sets can then identify with which ID manage-
ment system (or systems) they should be used. For example, each credential set
could be stored as a self-describing XML document. Indeed, these credential sets
could include username/password pairs. This series of observations provides the
basis for the IDSpace scheme, which we describe next.

2 IDSpace

We now describe IDSpace, the name of which pays homage to CardSpace.
IDSpace is an architecture for a client-based ID management tool that operates
in conjunction with a client web browser. A tool conforming to the architec-
ture provides a user-intuitive and consistent means of managing a wide range of
types of digital identities and credentials for user web activities. The IDSpace
architecture is designed to support all existing ID management protocols, and
can be used to replace existing ID management client software, including the
CardSpace [12,13], and Higgins® clients, Liberty-enabled client software [17],
and client-based password managers.

It is important to observe that IDSpace is not an ID management system,
at least in the normal sense of the term. Instead it is an architecture for a client
system which enables the use of a multiplicity of ID management protocols
with maximal transparency to the user (avoiding the need to install multiple ID
management clients). The IDSpace architecture is designed so that conformant
tools are able to work with all existing Internet SPs and IdPs without any
changes to their current operation. That is, the system is transparent to all
third parties.

The IDSpace architecture is designed to be platform-independent, and a pro-
totype implementation is being developed (a partial Windows-based prototype
is already operational). Implementations should be capable of being deployed on
Windows, Unix, Mac, and smart phone-based platforms with minimal changes.
Key parts of the system can be instantiated as browser add-ons, e.g. written in
C++ and/or JavaScript, thereby maximising portability.

As with any ID management tool, the primary purpose is to enable an end
user to access a protected resource. Once installed on a user device, IDSpace
will execute whenever a user wishes to access a protected service using a web
browser. It allows the user to select a particular ID management system from
amongst those supported by the SP. It also allows the user to choose which set
of credentials is to be used with this SP, where the network interactions with
the SP and IdP will conform to the chosen ID management system.

An IDSpace system interacts with the user via a key component known as
the Card Selector. This provides a visual representation of user credential sets
in the form of ‘virtual cards’, referred to here as credential cards (cCards). The

3 http://www.eclipse.org/higgins/



operation of this component is motivated by the CardSpace’s identity selector
(whose virtual cards are known as InfoCards or iCards). Higgins, which origi-
nated as an open source implementation of a CardSpace-like system, also uses
the term InfoCards.

A cCard can represent any of a wide range of types of user credential, in-
cluding:

— ready-to-use credential tokens including ‘password manager’ tokens contain-
ing a username/password pair, referred to as local ¢Cards; and

— a pointer to a remote, credential-issuing party (an IdP), referred to as remote
cCards.

Whilst IDSpace has a similar user interface to CardSpace and Higgins, it
is also important to note certain fundamental differences. Both CardSpace and
Higgins support just one set of protocols for web interactions between the user
platform and third party systems. If future versions of these systems support
additional protocols, then this will require corresponding modifications to SPs
and/or IdPs. IDSpace, by contrast, is designed to work with almost any con-
ceivable ID management protocol suite, and its adoption does not require any
changes to third party systems (including IdPs and SPs).

IDSpace is made up of a set of self-contained components interacting with
each other in a pre-defined way, thus enabling modular implementation. Such
an architectural design enables new ID management protocols to be supported
in a simple way by adding new software modules to an existing implementation.

3 High-level Architecture

3.1 Context of Use

As stated above, IDSpace provides a user-intuitive means for managing digital
identities and credentials for user web activities, consistent across underlying ID
management systems. The intended context of use is shown in Figure 1.

The parties involved, as shown in the figure, include the following.

1. The user interacts with a user platform or hardware platform (e.g. a PC
or mobile device) in order to access services provided across the Internet.
This user platform is equipped with an operating system (OS) on which
applications execute.

2. The IdP provides identity services to the user. This typically involves issuing
a user-specific identity token for consumption by an SP (where, although
the token is intended for use by a specific user, the user’s identity will not
necessarily be revealed to the SP). This token will provide the SP with
assurance regarding certain attributes of the user, e.g. the user identity. The
IdP is located either remotely or locally on the user platform; in the latter
case the IdP is referred to as a local identity provider (LIP). Examples of
possible IdPs include Facebook and Google.



User

IDSpace IDSpace client |

Useragent .
g extension soFtware

User platform

Fig. 1. IDSpace Context

. The SP provides services which the user wishes to access. In order to allow
the user to access a protected resource, the SP will wish to be provided
with verifiable statements regarding certain attributes of the user. This is
typically achieved by supplying the SP with a user-specific credential or
identity token issued by a local or remote IdP. (In some contexts the SP is
known as a relying party (RP)). Examples of possible SPs include YouTube,
Amazon, Facebook and Google (some parties may act as both IdPs and SPs).
. The user agent (UA) is a software component employed by a user to manage
interactions between the user/user platform and remote entities (IdPs and
SPs). This will typically be instantiated as a web browser, such as Internet
Explorer or Firefox; indeed, for the sake of simplicity, in some subsequent
discussions we refer to a web browser rather than a UA. The UA processes
protocol messages on behalf of the user, and prompts the user to make
decisions, provide secrets, etc.

. The IDSpace client software, implementing part of the IDSpace architecture,
interacts with the user via a graphical user interface (GUI). This GUIT allows
the user to select a particular credential set (represented as a cCard) for use
in a specific transaction with an SP. The application also interacts with a
web browser, and, where necessary, with remote entities.

. The IDSpace extension (or the IDSpace browser extension), implementing
part of the IDSpace architecture, supplements the functionality of the UA.
It is made up of a set of modules performing specific tasks, e.g. scanning
a webpage for a username-password login form. The IDSpace extension ex-



changes data with the client software via the browser, and, where necessary,
interacts with the user.

3.2 IDSpace Components

Figure 2 shows the relationships between the main components of IDSpace,
including the primary information flows. The dotted line shows the limits of the
browser extension. Note that, although shown as part of the browser extension,
the Activator could also be implemented as an independent component. This
is because, in certain ID management systems e.g. CardSpace, the SP webpage
must implement certain X/HTML tags to enable this component to perform its
task (see below). However, it is also possible for a browser extension to add such
tags.

The remaining components, apart from the ‘web browser’ and ‘remote IdP’,
represent the IDSpace client software. Note that the boxes marked ‘Other ...°
refer to other IDSpace components, which, although covered in the text, are not
shown in the figure.

I 1

Other ... User Interface cCard Store Lip IdP Auth
{—
Remote IdP

Credential
Store

Fig. 2. IDSpace Components

The two primary elements of the IDSpace architecture, i.e. the IDSpace client
software and the IDSpace extension (as introduced in section 3.1), are now dis-
cussed in greater detail.



Client Software The client software, a stand-alone application, is made up of
the following components.

cCards A cCard is a (relatively non-sensitive) XML document corresponding
to a set of user credentials (or, more generally, to a set of user private in-
formation). A cCard indicates the types of personal information in the set,
and also the type (or types) of ID management system with which the cCard
can be used. However, it does not contain the personal information itself.
cCards can be local, in which case they are generated by the LIP, or remote,
in which case they are generated by a remote IdP.

cCard Store This is a protected local store for ¢cCards. The nature of the pro-
tection provided for stored cCards will depend on the implementation en-
vironment. For example, protection could involve the use of cryptography,
physical protection and/or logical protection (as provided by the OS).

Credential Store This is a protected local store for sensitive data, such as
personal information, certificates, user passwords, etc., associated with local
cCards. It is used by the LIP. Note that, in practice, the Credential Store and
the c¢Card Store could be combined. As is the case for the cCard store, the
nature of the protection provided will be implementation-dependent, and
could involve the use of cryptography, physical protection and/or logical
protection.

Settings Store This is a local store for (relatively) non-sensitive data such as
system state, system/user settings, user preferences, etc.

IDSpace Kernel This is the central component of IDSpace. It runs locally on
the user platform, handling communications with and between other com-
ponents of IDSpace. In particular, it performs the following functions.

— It receives and processes the security policy provided by the Activator.

— It retrieves the cCards from the cCard Store, and checks which of them
meet the requirements of the SP’s security policy.

— It invokes the IDSpace User Interface in a private desktop window, and
displays the cCards that meet the SP’s policy requirements.

— If a remote cCard is chosen, it retrieves the security policy of the relevant
remote IdP by initiating a connection with it.

— It communicates with the user-selected IdP (either a remote IdP or the
LIP) to obtain an identity token, where necessary using the IdP Auth
component.

User Interface This component, which incorporates the IDSpace Card Se-
lector, is the main means by which an end user interacts with the IDSpace
client software. Its tasks include the following.

— It displays the identity of the SP website to the user, and indicates
whether the website has been visited previously. If the website is being
visited for the first time then it allows the user to either continue or
terminate.

— It displays the available cCards (it might display all the cards and high-
light those that meet the SP site policy, or it might only display those
meeting the policy). Note that the cCards are displayed in the Card
Selector.



— It allows the user to review the contents of a cCard.

— It allows the user to generate and modify ‘local’ cCards (as opposed to
‘remote’ cCards generated by remote IdPs) — in doing so it provides an
interface to some of the functions of the LIP.

— It allows the user to import a cCard provided by a remote IdP.

— It asks a user for explicit consent before providing potentially sensitive
information to an SP.

— It allows the user to set preferences for future operation of the system.
These preferences are stored in the Settings Store.

LIP This provides the functionality of an IdP, but is resident on the user plat-
form. Like any IdP, the LIP can generate identity tokens. These tokens can
be retrieved by the IDSpace Kernel. The LIP stores user-attribute values
and other sensitive user data in the Credential Store.

IdP Auth This authenticates the user to a remote IdP, if a remote cCard is
selected. It uses the User Interface to prompt the user to enter the required
credentials, e.g. username and password, and then submits them to the IdP.
By doing so it enables a consistent and simple user authentication interface
to be provided to the user, even when a range of different identity protocols
are being used. It also supports IdP-specific protocol interactions, e.g. to
create requests for specific types of token.

Networker This initiates a direct online connection between the client software
and a remote server (i.e. not involving the browser).

Browser Extension The IDSpace extension, typically implemented as a browser
add-on, includes the following modules.

Page Scanner This browser extension module scans the SP website login page
in order to discover the identity system(s) it supports. It passes the results
of the scan to the Identity System Selector.

Activator This is a (logical) bridge between the client browser and the IDSpace
Kernel. Tts tasks include the following.

— It informs the user that the IDSpace system can be used.
— It enables the user to activate the Card Selector.

Identity System Selector This browser extension module enables the user
to select the identity management system to be used from amongst those
supported by the SP website. The precise operation of this component will
depend on the implementation of the IDSpace architecture.

If more than one identity system is available, the Identity System Selector
could ask the user to either choose an identity system immediately or defer
the selection until the point at which a cCard is selected (using the IDSpace
Card Selector). It might also provide a means to store the user answer (in
the Settings Store) for future authentication attempts.

It passes the user response to the Data Transporter.

Data Transporter This browser extension module provides the means to ex-
change data between components of the IDSpace architecture, including the
following.



— Tt is responsible for the transfer of metadata regarding the SP page (e.g.
the discovered and selected identity system(s), the identity of the SP,
the SP website policy requirements, etc.), to the IDSpace Kernel. For
example, if the user indicates that IDSpace is to be used, it passes the
security policy of the SP website to the IDSpace Kernel.

— It transfers data from the IDSpace Kernel to the browser. For example, if
IDSpace obtains or generates an identity token during the authentication
process, it gives the token to the browser which dispatches it to the SP
website.

Token Displayer This browser extension module displays an indication of the
contents of an IdP-generated identity token to the user. This helps the user
to decide whether or not to allow the token to be passed to the SP. This
function can only be provided if the token is not:

— encrypted in such a way that only the SP can read it (e.g. using an SP’s
public key); and

— transmitted via a (direct) IdP-SP channel, i.e. the token must pass via
the client platform.

4 Supporting Functionality

We next discuss a number of key functions that an IDSpace-conformant system
must provide. For many of these functions we outline multiple approaches to
implementation.

4.1 Identity System Discovery

IDSpace must be able to determine which ID management systems are supported
by an SP website. This can be accomplished in a number of different ways,
including the following.

1. IDSpace could scan the visited page for HTML/XHTML tags that are asso-
ciated with specific ID management systems. For example, the string:

— ‘application/x-informationCard’ indicates support for CardSpace; and

— ‘openid_url” and/or ‘openid_identifier’ indicates support for OpenlID.
The benefits of such an approach include complete transparency, albeit at
the cost of performance (because IDSpace must scan every web page).

2. IDSpace could ask the user which ID management systems the page currently
supports. The benefits of such an approach include accuracy and higher
performance, at the cost of transparency and user convenience (although
the user’s choice could be stored in the Settings Store for future logins).

3. IDSpace could employ a hybrid approach based on a combination of the
above two options, e.g. so that if the first option fails then it resorts to the
second option.



4.2 Identity System Selection

Having learnt which ID management system(s) an SP supports, IDSpace must
allow the user to select which system to use for the current transaction. Such a
process could take place before or after invocation of the IDSpace Card Selector.
We next consider these options in greater detail.

1. Prior to selector invocation. IDSpace could allow the user to choose the
ID management system in one of the following ways.

— IDSpace could embed a descriptive icon (logo, image, link or button) in
the web page for each available system, and require the user to select one
(e.g. by clicking the selected icon). Whilst this approach is intuitive and
transparent, it could damage the appearance of the page, particularly if
there are many logos to embed.

— IDSpace could ask the user which system they wish to use by embedding
forms in the page or by triggering pop-up boxes. The benefits of such an
approach would include accuracy and higher performance, at the cost of
minor user convenience.

— IDSpace could add an ID management system selection option to the
in-page context menu (i.e. the menu that appears as a result of right-
clicking). Once such an option is selected, a list of ID management sys-
tems would be displayed, allowing the user to select one. Whilst this
might be transparent, it might not be so intuitive to end users.

— IDSpace could extend the browser frame?, e.g. by adding a browser icon,
bar or menu. Once the added icon (or bar or menu) has been selected,
the user could choose one of the systems currently supported by the SP.
Whilst this may be transparent, modifying the browser frame could be
somewhat intrusive to the end user.

2. After selector invocation. The IDSpace Card Selector could display the
currently supported ID management systems, allowing the user to select one.
This choice could be combined with a display of the available cCards (if any)
associated with each of the systems. In the latter case, the selector window
could be partitioned so that each section displays an ID management system
along with a previously used cCard for that system; a clickable option could
be used to request the display of other available cCards. This approach would
be transparent, convenient and would avoid making changes to web browsers
or web pages. However, it would require more processing, and hence could
adversely affect client platform performance.

4 Both the browser frame and the browser-displayed web page could be extended.
Browser extensions could, for example, create lightweight buttons, menu extensions,
and in-process browser helper objects. The browser frame could be extended us-
ing band objects, and the web page content could be enhanced with, for example,
ActiveX Controls or similar technologies [18].



4.3 Card Selector Invocation

In response to a user action, IDSpace must be able to invoke the IDSpace card
selector. This involves embedding IDSpace support in the SP web page using a
browser extension (see above).

4.4 1IdP Discovery

IDSpace must help the user discover an IdP from which the user can obtain a
suitable identity token. This process varies considerably depending on the ID
management system in use. Specific approaches must therefore be devised for
each supported system. The primary goal of the architecture is to allow this to
take place in a way that is both as user-transparent as possible and gives a view
of the process to the user that is consistent across ID management systems.

4.5 cCard Storage

The format of cCards must be sufficiently flexible and self-contained in order
to allow cCard storage in a variety of locations, and to support portability. We
assume that cCards will be protected while stored (where, as stated previously,
the nature of this protection will be implementation-dependent).

cCards could be stored on various media, including;:

— local file systems, which would give good performance and allow fast re-
trieval;

— remote web servers (‘the cloud’), which would give a roaming capability;

— portable user devices such as mobile phones or smart cards, which would
also provide a roaming capability.

4.6 cCard Format

Each cCard will contain an identifier indicating the ID management system with
which it can be used (in principle a cCard could have many such identifiers). We
suppose here that cCards are encoded using XML (as is the case for CardSpace
InfoCards). A single XML schema could be devised encompassing all supported
ID management systems. This would have the advantage that the identity system
identifier (discussed immediately above) could form part of the encoding of a
cCard. Other methods of encoding could also be used, such as JSON (http:
//www.json.org/).

4.7 cCard Content

The content of a cCard will vary depending on the ID management system with
which it is to be used. However, the types of content listed below are likely to
be contained in almost all cCards.



1. A list of supported attribute types, e.g. age, password, first name, last
name, the values of which are known by the IdP, and for which the IdP will
be prepared to generate an identity token. The actual claim values are not
stored by the Card Selector; they are either stored by the remote IdP or by
the LIP. The LIP will store the values in the protected Credential Store.
Protection could, for example, involve implementing the Credential Store on
a separate device such as a smart card, or using a Trusted Platform Module
(TPM) [19] to provide encrypted storage.

2. A list of supported token type(s), indicating which type(s) of identity
token (e.g. SAML, username-password) the IdP(s) associated with the card
are capable of issuing.

3. IdP location, including the URI/URL address(es) of the (remote or local)
IdP(s).

4. IdP authentication method(s), specifying the method(s) employed by
the IdP to authenticate the user.

5. Display information, e.g. an image and or a name for the cCard.

4.8 Process Isolation

Where possible, the IDSpace processes should be isolated from other processes
to maximise the security and privacy of data handled by IDSpace. For example,
on a Windows platform the IDSpace Card Selector could be invoked in a private
desktop session.

4.9 Authentication Methods

The IDSpace architecture allows the user to be authenticated to an IdP using a
wide range of different authentication methods. The ease with which additional
methods can be supported depends on precisely how user authentication to a
remote IdP is supported by IDSpace. We consider three main possibilities.

1. IDSpace could control all communications between the user and the remote

IdP. That is, all requests for authenticating information by the IdP could be
made to the user by IDSpace (specifically by the IdP Auth component, as
described in section 2), and the supplied information could then be forwarded
by IDSpace to the remote IdP. Adding a new authentication method would
require adding functionality to the implementation of IDSpace executing on
the user platform. This is the approach adopted by CardSpace, currently
deployed versions of which support four authentication methods.
New user authentication techniques could be added in a modular fashion,
as and when they are required. Whilst this would clearly add to the cost
of deploying and maintaining an IDSpace implementation, for a widely de-
ployed system this does not seem such an unreasonable approach (given that
the number of authentication methods seems unlikely to grow very rapidly).
Such an approach would have the advantage of user transparency and would
enable the provision of a consistent user interface for the authentication
process, and is hence the preferred option.



2. IDSpace could cause the task of user authentication to be performed at the
IdP rather than via the IDSpace User Interface (i.e. using the IdP Auth com-
ponent). That is, whenever a remote IdP requires user authentication (e.g.
prior to issuing an identity token), IDSpace would redirect the UA (web
browser) to the IdP, allowing the IdP to directly authenticate the user using
a method of the IdP’s choice. Although such a simple approach would min-
imise the maintenance cost for IDSpace, the user would lose the consistent
experience provided by the IDSpace User Interface.

3. IDSpace could employ a hybrid approach. The default would be the first ap-
proach outlined above. IDSpace could support a set of widely-adopted (pos-
sibly standardised) authentication methods; new methods could be added
as and when it is deemed appropriate. However, if an IdP wishes to use a
technique not supported by IDSpace, then IDSpace could redirect the UA
(web browser) to the IdP for ‘direct’ authentication.

5 IDSpace Operation

5.1 Initialisation
Prior to use of IDSpace, the following preparatory steps must be performed.

— The IDSpace components, including the browser extension and the client
software, must be installed on the user platform.

— The user must install cCards in the cCard Store on the user platform. As
noted above, these cCards can be created by either a local or a remote IdP.
We briefly consider the two cases.

e Local cCards are created using the LIP. Once it has created a cCard, the
LIP will insert it in the cCard Store, and the corresponding user data
will be added to the Credential Store. A user could also choose to create
a local cCard during use of IDSpace.

e Remote cCards are created by remote IdPs. Typically the creation of
such a cCard will occur via an ‘out of band’ process, i.e. a process com-
pletely independent of the operation of IDSpace, perhaps involving the
user completing a registration process using the IdP website. The result-
ing cCard will be provided to the user, and the user can then arrange
for it to be imported into IDSpace using the IDSpace User Interface.

— For ease of identification, the user can personalise a cCard, e.g. by giving the
card a meaningful name, and/or uploading an image representing the card
to be displayed by the User Interface.

5.2 Protocol Flows

We now describe the operation of IDSpace. It is important to note that some
parts of the operation of IDSpace will vary depending on the specific ID manage-
ment system in use. The operation of IDSpace in the case of two widely discussed
ID management systems is described in the next section.



1. UA — SP: HTTP/S GET Request. A user employs the UA to navigate to
an SP login page.

2. SP — UA: HTTP/S Response. A login page is returned to the UA.

3. IDSpace Browser Extension— UA: Page Processing. Certain IDSpace browser
extension modules (as described below) perform the following processes on
the login page provided by the SP.

(a) Page Scanner — UA: Page Scanning. The Page Scanner module scans
the login page to discover which ID management system(s) are supported
by the SP (from amongst those supported by IDSpace). It passes the
identifiers of the supported systems to the Identity System Selector. If
no ID management system is identified, the Page Scanner could embed an
icon in the browser frame to allow the user to inform IDSpace if there is
an SP-supported ID management system available that has been missed.

(b) Identity System Selector — UA. The Identity System Selector module

uses the results passed to it by the Page Scanner. If more than one ID
management system is discovered, then (depending on the implemen-
tation) the Selector could ask the user to select one. Alternatively, the
decision could be deferred and made using the IDSpace Card Selector.
The advantages and disadvantages of the two approaches are discussed
in section 4.2. A further alternative approach would involve the user
deciding at which stage to make a choice.
The module might also offer to store any choices made by the user (in
the Settings Store) for managing future authentication attempts. The
module finally reports all the results to the Data Transporter module
(see below).

(¢) Activator = UA: Card Selector Activation. The Activator module pro-
vides a means for the user to activate the IDSpace Card Selector. How
this is achieved is implementation specific (options are discussed in sec-
tions 4.2 and 4.3). This involves embedding IDSpace-enabling tags and
an IDSpace security policy in the login page. The embedded policy is
subsequently used by the IDSpace User Interface to help it decide which
cCards should be displayed for possible use.

4. User — UA: Card Selector Invocation. The user performs an action which
invokes the IDSpace Card Selector. The precise way in which this occurs is
implementation specific (options are discussed in section 4.2).

5. Data Transporter — IDSpace Kernel: Passing Metadata. The Data Trans-
porter module passes the necessary metadata (e.g. the identified and/or se-
lected identity system(s), the SP identity, the SP policy requirements, etc.)
to the IDSpace Kernel.

6. IDSpace Kernel &= Card Selector: SP Identity. The IDSpace Kernel exam-
ines the SP identity (as received from the Data Transporter module in the
previous step), including noting whether or not the SP uses HTTPS and
whether or not the user has visited this particular SP before. The IDSpace
Kernel uses the IDSpace Card Selector to:

(a) identify the SP to the user; and



(b) ask the user whether to continue or terminate the protocol.

Depending on the user answer, IDSpace either continues or terminates the

protocol. To assist in user decision-making, the Card Selector could indicate

key security-relevant features of the SP to the user, e.g. using visual cues. In
particular, it could indicate whether or not the SP:

— uses HTTPS;

— possesses an extended evaluation certificate;

— has been visited before; and/or

— requires a large number of, or particularly sensitive, user attributes.

The Card Selector could also offer the user a recommendation as to whether

or not to continue, based on user policy settings and the SP’s security prop-

erties.

. IDSpace Kernel = IDSpace Components. The IDSpace Kernel evaluates the

received metadata in order to learn which actions to take. If the user has

already chosen an ID management system, then the following processes take
place.

(a) IDSpace Kernel = cCard Store: cCards Retrieval. The IDSpace Kernel
retrieves the appropriate cCards (possibly none) by comparing the re-
ceived metadata with the available cards. Note that the retrieved cards
are specific to the user-selected ID management system.

(b) IDSpace Kernel — Selector: Displaying cCards. The IDSpace Kernel
passes the retrieved cCards to the Card Selector so that they can be
displayed to the user. cCards previously used with this SP (if any) could
be displayed more prominently than the others.

If the user has not yet chosen an ID management system, then the following

processes take place.

(a) IDSpace Kernel = cCard Store: cCard Retrieval. The IDSpace Kernel
retrieves the appropriate cCard(s) by comparing the received metadata
with the available cards. Note that cards will be retrieved for all the
SP-supported ID management systems.

(b) IDSpace Kernel — Card Selector: Displaying SP-supported ID Manage-

ment Systems 4+ cCards. The Kernel passes the SP-supported ID man-
agement systems, along with the matching cCards (if any), to the Card
Selector to be displayed to the user. The Card Selector displays the list of
supported ID management systems, together with the available cCards,
indicating which cards have been used previously with this SP (it could
also indicate which ID management systems have been previously used
with this SP).
Depending on the implementation and the number of systems and cards
to be displayed, the Card Selector might only display the cards previously
used. In such a case it would need to indicate that other cards are also
available, and would need to provide a means to retrieve them.

In both cases, the Card Selector should also allow the user to create a new

local cCard (if the relevant ID management system supports such cards).

. User — Card Selector: Selecting/Creating cCards. The user selects (or cre-

ates) a cCard.



9.

10.

11.

Card Selector — IDSpace Kernel: User Action Results. The Card Selector

reports the results of the user actions back to the IDSpace Kernel.

IDSpace Kernel = IDSpace Components. The IDSpace Kernel evaluates the

results received from the Card Selector, and takes the appropriate steps.

If the user has chosen to select an existing cCard, then the following processes

take place.

(a) The IDSpace Kernel determines whether an IdP (local or remote) needs
to be contacted. If not, control is passed to step 13. If so, the protocol
continues.

(b) The IDSpace Kernel determines the IdP (local or remote) that must be
contacted in order to enable the user to obtain the identity token required
by the SP. This also includes determining the nature of the information
regarding the user (e.g. login credentials) that must be supplied to this
IdP.

(c) IDSpace Kernel = Card Selector: Display IdP Identity. If this IdP has
not previously been used, or if it does not use HTTPS, the IDSpace
Kernel uses the Card Selector to obtain user consent before sending
the IdP any information. This step is designed to mitigate the risks
of phishing attacks. In such a case the Card Selector reports the user
response back to the Kernel.

(d) If user consent has been obtained, the Kernel now passes a token request
to the IdP. The token request may have been received from the SP, or,
if necessary, the IDSpace Kernel creates the request.

If the user has chosen to create a local cCard, the following processes take

place.

(a) IDSpace Kernel = Selector GUIL. The Kernel invokes a special Card
Selector window to allow the user to enter the necessary data. This
would typically include allowing the user to personalise the cCard, e.g.
uploading a card image, entering a card name, etc. Such steps would
enable the card to be readily recognisable.

(b) IDSpace Kernel = Card Creation Module (in the LIP): Card Creation.
The Kernel instructs the Card Creation module to create an XML-based
cCard using the user-inserted data. The Card Creation module returns
the newly-created card to the Kernel.

(c) IDSpace Kernel = cCard Storage Module: Card Storage. The Kernel
sends the cCard to the Card Storage module for permanent storage; the
Card Storage module reports back to the Kernel whether or not the
operation has been successful.

(d) IDSpace Kernel = Card Selector. The Kernel treats the newly-created
cCard as a user-selected cCard and step 10a repeats.

IDSpace Kernel = IdP. One of the following processes takes place, depending
on whether the selected IdP is local or remote.
— If a remote IdP is selected, and if such information is required by the
IdP (and is not already stored by IDSpace) then the IDSpace Kernel
prompts the user to enter the relevant IdP credentials using a special



credential screen. If this fails, e.g. if the Kernel does not support the IdP
authentication method, or if the user-selected ID management system
dictates that the UA must be redirected to the IdP, then the Kernel
redirects the UA (web browser) to the remote IdP along with an au-
thentication request. In the latter case the IdP can authenticate the user
directly using an authentication method of its choice.
If user authentication is successful, the IdP issues an identity token.

— If a local IdP is selected, then the Kernel constructs a token request
and sends it to the LIP. The LIP responds with an appropriate identity
token.

12. Token Displayer Module = User. If an ID management system other than
CardSpace is in use, then the Token Displayer module intercepts, analyses,
and displays information about the identity token before releasing it to the
SP, and seeks user consent for release. If consent is denied, then the proto-
col is terminated. Note that this assumes that the token is not end-to-end
encrypted to the SP and that it is not sent via a direct IdP-SP channel.

If CardSpace is in use, then the CardSpace IdP will send back a display token
along with the real token, which the Kernel can instruct the Card Selector
to display to the user, prior to obtaining user consent.

13. IDSpace Kernel — UA — SP: Passing Identity Token. The identity token is
passed to the UA, which forwards it to the SP.

14. SP — User: Grant/Deny Access. The SP validates the token, and, if satisfied,
grants access to the user.

6 Mapping Specific Protocol Architectures onto IDSpace

ID management systems can be classified according to how the SP communicates
via the client with the IdP. There are two main ways in which this can be
achieved, namely by using an HTTP redirect or involving an active client.

1. Redirect-based Systems. In such a scheme, the UA is redirected by an SP
to an IdP (and vice versa). In such a case the UA is essentially passive, and
does not need to be aware of the ID management system in use. One major
disadvantage is that a malicious SP can redirect the UA to a malicious IdP
impersonating an expected IdP (e.g. to fraudulently obtain user credentials).
Example systems of this type include OpenlD, Liberty (browser-post profile),
Shibboleth, and Facebook Connect.

2. Active Client-based Systems. In schemes of this type, the UA must in-
corporate an ‘active client’, which acts as an intermediary between SPs and
1dPs, and which must be aware of the ID management system in use. Typ-
ically all communications between an SP and an IdP occur via this active
client, and there is no need for direct SP-IdP communication. Depending
on the details of the system in use, the active client can prompt the user to
select a digital identity, choose an IdP, review (and perhaps modify) an iden-
tity token created by the IdP, and approve a transaction. Phishing attacks



are mitigated since an SP cannot redirect the UA to an IdP of its choosing.
The active client can also provide a consistent user experience, and its ex-
istence helps to give the user a greater degree of control. Examples include
CardSpace and Liberty (when using a Liberty-enabled client (LEC)).

We now describe how two specific examples of ID management systems can
be mapped onto the IDSpace architecture. We consider OpenlID (7, 8] and Lib-
erty (using a LEC) [20] since they are widely discussed examples of the above
two models. We also briefly look at CardSpace support. These descriptions are
intended as examples; this is not the only way in which the systems concerned
could be supported using IDSpace.

6.1 IDSpace and OpenlD

cCards Either prior to, or during, use of IDSpace, the user must create an
OpenlD-specific cCard. This cCard must contain one required field, and may
also contain one optional field, as follows.

1. The single required field must contain the user’s OpenlD.
2. The optional field contains the identifier of the user’s OpenID IdP.

The cCard contains a unique, OpenlD-specific identifier, and is stored in the
secure cCard store, possibly in an OpenlID-specific location (e.g. to allow faster
look-up/retrieval).

Protocol We now describe one way in which IDSpace could support OpenlD.
Steps 3b, 4-9, 10a—d (second series), 13 and 14 of the IDSpace-OpenID-specific
protocol are the same as steps 3b, 4-9, 10a—d (second series), 13 and 14, re-
spectively, of the generic IDSpace protocol given in section 5.2, and hence are
not described here. Whenever prompted to select/create/import a cCard, it is
assumed that the user will select/create/import an OpenID-specific cCard.

1. UA — SP: HTTP/S GET Request. A user navigates to an OpenID-enabled

SP.

2. SP — UA: HTTP/S Response. A login page is returned containing an

OpenlD form.

3. IDSpace Browser Extension— UA: Page Processing. The browser extension
performs the following processes on the login page provided by the SP.

(a) Page Scanner Module — UA: Page Scanning. The Page Scanner mod-
ule searches the login page for an OpenlD login form; such a form can
be identified by searching for an input field named ‘openid_url’ and/or
‘openid_identifier’. (The Page Scanner module also scans the page for
triggers for any other ID management systems supported by IDSpace.)
Finally, the module passes the search results to the Identity System Se-
lection module.

(¢) Activator = UA: Selector Activation. The Activator module performs
the following processes.



10.

11.

12.

i. It embeds IDSpace-enabling tags in the SP-provided login page, in-
cluding a security policy statement in the format required by IDSpace.
This policy statement must request OpenlD-specific cCards.

ii. It adds a special function to the SP-provided login page to intercept
the identity token that will later be returned by the IDSpace Kernel.

iii. It employs certain (implementation-dependent) means to enable the
user to activate the IDSpace Card Selector (see sections 4.2 and 4.3);
e.g. it might cause a special icon to appear above the submit button
with the property that clicking this icon invokes the selector.

IDSpace Kernel = IDSpace Components. The IDSpace Kernel evaluates

the results (as provided by the Card Selector) in order to take appropriate

actions. If the user has chosen to select an existing OpenlID-specific cCard,
then the following steps are performed.

(a) The IDSpace Kernel retrieves the cCard and passes it to the UA.

(b) The Browser Extension parses the received cCard, retrieving the value
of the user’s OpenlD and (if present) the OpenID IdP.

(¢) The Browser Extension temporarily stores the OpenID IdP value.

(d) The Browser Extension adds the user’s OpenID identifier to the OpenID
form, and submits the form back to the SP.

(e) The SP performs an IdP discovery process. Once the OpenID IdP has
been discovered, the SP generates an OpenID authentication request and
attempts to redirect the user’s browser to the IdP.

(f) The Browser Extension intercepts the SP-initiated OpenID authentica-
tion request, and compares the value of the OpenID IdP in this request
with the OpenID IdP value it stored in step 10c. If they match, the
process continues (with redirection of the UA to the IdP). If not, the
Browser Extension could either terminate or warn the user of a possible
phishing threat and ask whether or not to continue.

(g) From this point on, OpenID operates as it would do in the absence of
IDSpace, except for the final check in step 12 (see also the discussion
below). In particular the user experience is OpenlD-specific, and the
user will see the OpenID IdP’s authentication page.

OpenID IdP = User. If necessary (authentication may be unnecessary if an

IdP-user session already exists), the OpenID IdP authenticates the user. If

successful, the OpenID IdP requests permission from the user to send the

OpenlD assertion token to the SP.

Token Displayer = User. When the OpenlD IdP attempts to redirect the

UA back to the SP, the Token Displayer module intercepts, analyses, and

displays the OpenlD identity token to the user before releasing it to the

SP. If user consent is obtained, then the protocol continues; otherwise it

terminates. Note that this is possible since the OpenID token provided by

the IdP is not encrypted.

The above example describes only a partial integration of OpenID with

IDSpace. We believe it is possible to replace direct authentication of the user
by the OpenID IdP with a process mediated by IDSpace (specifically using the



IdP Auth module). This would enhance the user experience by making the user
authentication process consistent across different ID management systems. How-
ever, whilst the system described above has been successfully prototyped, the
latter enhancement has not been implemented, and hence its practicality remains
untested.

6.2 IDSpace and Liberty (LEC)

LECcards Either prior to, or during, use of IDSpace, the user must create a
Liberty-specific cCard. This cCard must contain one required field, and may also
contain one or more optional fields, as follows.

1. The single required field must contain the identifier of the user’s Liberty
1dP.

2. The optional field(s), could contain other alternative ‘backup’ Liberty
1dPs.

The cCard contains a unique, LEC-specific identifier, and is stored in the secure
cCard store, possibly in a Liberty (LEC)-specific location (e.g. to allow faster
look-up/retrieval).

IdP Auth Functionality The IdP Auth module is part of the client software.
When supporting Liberty (LEC profile) its functionality includes the ability to
handle token requests in Liberty format (received from Liberty SPs and sent to
Liberty IdPs) and also the means to parse and process token messages received
from a Liberty IdP. It makes use of the Networker module to communicate with
the IdP and SP.

Protocol We now describe one way in which IDSpace could act as a Liberty
client.

Steps 3(b,c), 4-9, 10a—d (second series), 13 and 14 of the IDSpace-LEC-
specific protocol are the same as steps 3(b,c), 4-9, 10a—d (second series), 13 and
14, respectively, of the generic IDSpace protocol given in section 5.2, and hence
are not described here. Whenever prompted to select/create/import a cCard, it
is assumed that the user will select/create/import a Liberty-specific cCard.

1. UA — SP: HTTP/S GET Request. A user navigates to a LEC-enabled SP.

2. SP — UA: HTTP/S Response. A login page is returned containing an option
(e.g. a button, link, or image) to use Liberty (we use Liberty here and below
to mean Liberty using the LEC profile).

3. IDSpace Browser Extension— UA: Page Processing. The Browser Extension
performs the following processes on the login page provided by the SP.

(a) Page Scanner Module — UA: Page Scanning. The Page Scanner module
searches the login page for a distinguishing feature that indicates support
for Liberty. (The Page Scanner module also scans the page for triggers



10.

11.

12.

for any other ID management systems currently supported by IDSpace.)
Finally, the module passes the search results to the Identity System
Selection module.

IDSpace Kernel = IDSpace Components. The IDSpace Kernel evaluates the

search results (as provided by the Card Selector) in order to take appropriate

actions. If the user has chosen to select an existing Liberty-specific cCard,
then the following steps are performed.

(a) The IDSpace Kernel retrieves the cCard, and passes it to the IdP Auth
module.

(b) The IdP Auth module parses the received cCard, retrieving the values
of the LEC IdP(s) and temporarily stores them.

(c) IDSpace IdP Auth — SP: HTTP Request. The IdP Auth module issues
an HTTP request to the SP containing a Liberty-enabled header (or
with a Liberty-enabled entry in the User-Agent header).

(d) SP — IdP Auth: HTTP Response + Authentication Request. The SP
generates a Liberty authentication request and sends it to the IdP Auth
module in the body of the HTTP response. The SP could choose to
include a list of IdPs it knows about in the request.

(e) The IdP Auth compares the received list of IdPs (if present) with the
LEC IdP(s) retrieved from the selected cCard. If there is a non-empty
intersection, then a cCard-specified IdP is contacted (this shall be the
‘primary’ IdP if possible); if not, then either the protocol terminates or
the user could be asked to choose an IdP from amongst those in the SP
list. The user could also be offered the choice to store the selected IdP
(in the Settings Store) for future authentication attempts. If the SP does
not specify a list of IdPs, then the cCard-associated IdP is contacted.

(f) IdP Auth — IdP: Authentication Request. The IdP Auth module issues
an HTTP POST to submit a SOAP-based [21] Liberty authentication
request message to the appropriate IdP. Note that this request must
contain the authentication request as received from the SP.

Liberty IdP = User. If necessary, the IdP authenticates the user. Ideally

this process would be mediated by the IDSpace system (using the IdP Auth

module), in order to provide a user experience that is consistent across ID

management systems. If successful, the IdP generates a SOAP-based, signed

Liberty authentication response message and sends it to the IdP Auth mod-

ule via an SSL/TLS channel.

Token Displayer = User. If the token is not end-to-end encrypted, the Token

Displayer module displays the token and requests user consent to proceed.

If consent is granted, the protocol continues; otherwise it terminates.

6.3 IDSpace and CardSpace

During or prior to use of IDSpace, the user must create a CardSpace-specific
cCard (using the LIP) and/or import a CardSpace-managed InfoCard. The
IDSpace generic protocol given in section 5.2, excluding step 12, could then
be used to provide the functionality of CardSpace [12,13].



7 Concluding remarks

We have described an architecture for a client-based, platform-independent,
protocol-agnostic ID management tool that operates in conjunction with a client
web browser. A tool conforming to the architecture provides a user-intuitive
means of managing digital identities and credentials for all user web activities.

7.1 Relationship to the Prior Art

CardSpace and Higgins The Microsoft CardSpace system shares certain fea-
tures in common with IDSpace. In particular, it too is client-based and operates
in conjunction with a web browser. However, CardSpace requires the IdPs and
SPs to implement a specific set of protocols for inter-communication (we refer
to these as the ‘CardSpace protocols’, although many are based on WS-* stan-
dards). Although CardSpace supports a wide range of security token formats,
these tokens must be sent using a very specific protocol suite.

This gives rise to a classic ‘chicken and egg problem’ — without an established
identity infrastructure of IdPs, there is no (or little) incentive for SPs to make the
changes necessary to support CardSpace. Similarly, without any customer SPs,
there is no (or little) incentive to set up a CardSpace-specific IdP infrastructure.

By contrast, IDSpace gives the convenience and intuitive user experience
of CardSpace, without requiring SPs and IdPs to change the way they work.
That is, IDSpace enables convenient and more secure operation by end users,
without any changes to the existing identity infrastructures or service providers.
Moreover, once deployed, IDSpace will enable much simpler deployment of more
sophisticated systems such as the CardSpace protocols (and the many other
systems currently emerging).

The Higgins system (which originated with the goal of providing CardSpace-
like functionality on non-Windows platforms) has somewhat similar objectives
to IDSpace.

Other Schemes In previous work [22,23] we have described how to build
browser extensions which enable CardSpace/Higgins selectors to support pass-
word management without requiring any changes to the SPs or to the identity
selector. Operational, open-source prototypes® have also been described. These
prototypes demonstrate the workability of certain aspects of the IDSpace system.

7.2 Novel Features

The main novel feature of IDSpace, as intimated above, is the proposal of an
architecture for a client-based system which supports multiple ID management
systems transparently to SPs and IdPs. That is, it combines the convenience and

® http://iescripts.org/view-scripts-808pl.htm and/or http://sourceforge.
net/projects/passcard/



intuitiveness of the CardSpace user interface with support for multiple systems,
without requiring any changes to existing SPs and IdPs. To our knowledge, the
only previous work permitting client-based support for multiple ID management
systems requires the SPs and IdPs to adopt new protocols.

The IDSpace architecture incorporates novel components, including the Page
Scanner, Activator, Identity System Selector and Token Displayer, which are not
found in the CardSpace or Higgins architectures. While much simpler versions
of some of these novel components (notably the Page Scanner and Activator)
have previously been described, [22-26], they have only been discussed in very
specific contexts, and not in the general way in which they are used in IDSpace.
Key elements of the architecture have been successfully prototyped.

7.3 Future Work

Our main initial goal is to complete an operational prototype of IDSpace, which
we plan to make available for public scrutiny and testing. We intend that the
initial version should support all the ID management systems discussed in this
paper.

A variety of future directions for this research present themselves, a few of
which we briefly mention.

— Apart from the ID management schemes mentioned previously, it would also
be desirable if IDSpace could provide support for protocols providing a high
degree of privacy protection for end users, notably U-Prove [27] and idemix
[28]. This remains a topic of ongoing research.

— In previous work [25,29], we have investigated using a client-based tool to
support interoperation between different ID management systems, and a se-
ries of prototypes have been developed. It would be attractive (and straight-
forward) to build this functionality into an IDSpace implementation.

— Finally, in future work we intend to study variants of the architecture pre-
sented here to further enhance the security and privacy of user authorisation,
whilst maintaining transparency to third parties.

References

1. Herley, C., van Oorschot, P.C., Patrick, A.S.: Passwords: If we're so smart, why are
we still using them? In Dingledine, R., Golle, P., eds.: Financial Cryptography and
Data Security, 13th International Conference, FC 2009, Accra Beach, Barbados,
February 23-26, 2009. Revised Selected Papers. Volume 5628 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin (2009) 230-237

2. Adams, C., Lloyd, S.: Understanding PKI: Concepts, Standards, and Deployment
Considerations. 2nd edn. Addison-Wesley (2002)

3. Alrodhan, W.: Privacy and Practicality of Identity Management Systems: Aca-
demic Overview. VDM Verlag Dr. Miiller GmbH, Germany (2011)

4. Bertino, E., Takahashi, K.: Identity Management: Concepts, Technologies, and
Systems. Artech House Publishers, Norwood, MA (2011)



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.

23.

24.

25.

26.

Williamson, G., Yip, D., Sharoni, 1., Spaulding, K.: Identity Management: A
Primer. MC Press, Big Sandy, TX (2009)

Windley, P.J.: Digital Identity. O’Reilly Media, Sebastopol, CA (2005)
Recordon, D., Rae, L., Messina, C.: OpenlD: The Definitive Guide. O’Reilly
Media, Sebastopol, CA (2010)

Surhone, L.M., Timpledon, M.T., Marseken, S.F., eds.: OpenlID: Authentication,
Login, Service, Digital Identity, Password, User, Software System, List of OpenlD
Providers, Yadis, Shared Secret. Betascript Publishing (2010)

Surhone, L.M., Timpledon, M.T., Marsaken, S.F.: Security Assertion Markup
Language: Security Domain, Single Sign-on, Identity Management, Access Control,
OASIS, Liberty Alliance, SAML 1.1, SAML 2.0. Betascript Publishing (2010)
Internet2: Shibboleth Architecture — Technical Overview. (2005)

Internet2: Shibboleth Architecture — Protocols and Profiles. (2005)

Bertocci, V., Serack, G., Baker, C.: Understanding Windows CardSpace: An In-
troduction to the Concepts and Challenges of Digital Identities. Addison-Wesley,
Reading, MA (2008)

Mercuri, M.: Beginning Information Cards and CardSpace: From Novice to Pro-
fessional. Apress, New York, NY (2007)

IETF: Internet draft-ietf-oauth-v2-20: The OAuth 2.0 Authorization Protocol.
(2011)

Leach, J.: Improving user security behaviour. Computers & Security 22 (2003)
685692

OASIS: Identity Metasystem Interoperability Version 1.0 (IMI 1.0). (2009)
Liberty Alliance Project: Liberty ID-FF protocols and schema specification. (2005)
Crowley, M.: Pro Internet Explorer 8 & 9 Development: Developing Powerful
Applications For The Next Generation Of IE. Apress, New York, NY (2010)
Gallery, E.: An overview of trusted computing technology. In Mitchell, C.J., ed.:
Trusted Computing. IEE Press, London (2005) 29-114

Liberty Alliance Project: Liberty ID-FF bindings and profiles specification. (2004)
W3C: W3C Recommendation: SOAP Version 1.2 Part 1: Messaging Framework.
(2007)

Al-Sinani, H.S., Mitchell, C.J.: Implementing PassCard — a CardSpace-based
password manager. Technical Report RHUL-MA-2010-15, Department of Mathe-
matics, Royal Holloway, University of London (2010)

Al-Sinani, H.S., Mitchell, C.J.: Using CardSpace as a password manager. In de
Leeuw, E., Fischer-Huebner, S., Fritsch, L., eds.: Policies and Research in Identity
Management: Second IFIP WG 11.6 Working Conference, IDMAN 2010, Oslo,
Norway, November 18-19, 2010, Proceedings. Volume 343 of IFIP Advances in
Information and Communication Technology, Springer, Boston, MA (2010) 18-30
Al-Sinani, H.S.: Browser extension-based interoperation between OAuth and in-
formation card-based systems. Technical Report RHUL-MA-2011-15, Department
of Mathematics, Royal Holloway, University of London (2011)

Al-Sinani, H.S., Mitchell, C.J.: Client-based CardSpace-Shibboleth interopera-
tion. Technical Report RHUL-MA-2011-13, Department of Mathematics, Royal
Holloway, University of London (2011)

Al-Sinani, H.S., Mitchell, C.J.: Client-based CardSpace-OpenlD interoperation.
In Gelenbe, E., Lent, R., Sakellari, G., eds.: Proceedings of ISCIS 11 — the 26th
International Symposium on Computer and Information Sciences, 26-28 September
2011, London, UK. Lecture Notes in Electrical Engineering (LNEE), Springer,
London (2011) 387-394 [Full version available at: http://www.ma.rhul.ac.uk/
techreports/2011/RHUL-MA-2011-12.pdf].



27.

28.

29.

Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge, MA (2000)

Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In Atluri, V., ed.: Proceedings of the 9th ACM
Conference on Computer and Communications Security, CCS 2002, Washington,
DC, USA, November 18-22, 2002, ACM, New York, NY (2002) 21-30

Al-Sinani, H.S., Alrodhan, W.A., Mitchell, C.J.: CardSpace-Liberty integration
for CardSpace users. In Klingenstein, K., Ellison, C.M., eds.: Proceedings of the
9th Symposium on Identity and Trust on the Internet, IDtrust 2010, Gaithersburg,
Maryland, USA, April 13-15, 2010, ACM, New York, NY (2010) 12-25



