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ABSTRACT

The close-coupling approximation has been used to compute 
cross sections for a wide range of processes (electron impact, 
photodetachment and photoionization). Errors in previous 
formulations have been pointed out and corrected. The results 
are compared with previous calculations and experiments and are 
correlated to recent work on the effects of configuration inter
action.

A description of the computer code used is also given.
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(3p̂  Ŝ) above all thresholds
Parameterization of the resonance series
in the photoionization of
CA(^P)
(a) L=0
(b) L=1
(c) L=2

2Photoionization cross sections for CZ( P) 
above all thresholds

_ 4Photodetachment cross sections for S. ( S) 
and CA"(^S)

—  2Photodetachment cross sections for S ( P)

Page
133

135
136 
138

140

142

143

144

146

147

149



s

List of Figures

Figure 1 

Figure 2

Figure 3 

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11 

Figure 12

Scattering potentials for electrons 
incident of carbon and silicon.

partial wave contribution^to the ^S-^D 
excitation cross section of S showing re
sonance effects.
Photoionization cross section of N(^S) and 
comparison with experiment.

partial wave contribution to the photo
ionization cross section of N { P) showing 
resonance series.
2 eP partial wave contribution to the photo
ionization cross section of N( P) showing 
resonance series.
2 pD partial wave contribution to the photo
ionization cross section of N( P) showing 
resonance series.
2 oP partial wave contribution to the photo
ionization cross section of N ( D) showing 
resonance series.

partial wave contribution to the photo
ionization cross section of N ( D) showing 
resonance series.
^F® partial wave contribution to the photo
ionization cross section of N ( D) showing 
resonance series.
+ 3N ( P) photoionization cross section and 
comparison with Dalgarno et.al. and Armstrong 
et.al.

Page
50

51

79

80

81

82

83

84

85

86

Photoionization cross sections of P( S) and 88 
N( S) .
2 oS partial wave contribution to the photo- 90 
ionization cross section of P( P) showing 
resonance series.



List of Figures (continued)

Figure 13 

Figure 14 

Figure 15 

Figure 16 

Figure 17 

Figure 18 

Figure 19 

Figure 20 

Figure 21 

Figure 22 

Figure 23 

Figure 24

P partial wave 
ionization cross 
resonance series
2 eD partial wave 
ionization cross 
resonance series
2 eP partial wave 
ionization cross 
resonance series,

partial wave 
ionization cross 
resonance series,
^F® partial wave 
ionization cross 
resonance series,

contribution to the photo
section of P ( f) showing

contribution to the photo
section of P( P) showing

contribution to the photo
section of P( D) showing

contribution to the photo
section of P ( D) showing

contribution to the photo- 
section of P ( D) showing

Comparison of the present results on the 
photoionization eross section of S. with 
the experimental observations of Rich.

partial wave contribution to the photo 
ionization cross section of S( P) showing 
resonance series.
^P° partial wave contribution to the photo 
ionization cross section of S ( P) showing 
resonance series.

partial wave contribution to the photo 
ionization cross section of S( P) showing 
resonance series.
^P° partial wave contribution to the photo 
ionization cross section of S( D) showing 
resonance series.

partial wave contribution to the photo 
ionization cross section of S( D) showing 
resonance series.

Page
91

92

93

94

95

Comparison of three computed values (in the 97
dipole length approximation) of the photo
ionization cross section of A&.'

99

-  101

-  102

- 103

- 104

- 105



;o

List of Figures (continued)

Figure 25

Figure 26

Figure 27 
Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

F partial wave contribution to the photo
ionization cross section of S( D) showing 
resonance series.
Total photoionization cross section of S(^S) 
showing a single resonant series.
3S( P) total photoionization cross section.

2 eP partial wave contribution to the photo
ionization cross section of Cl( P) showing 
resonance series.
^P® partial wave contribution to the photo
ionization cross section of Cl { P) showing 
resonance series.
2 eDa partial wave contribution to the photo- 
ionization cross section of CJt ( P) showing 
resonance series.
Comparison of Robinson and Geltman's cal
culation with the present calculation of 
the photodetachment cross section.of S^—
Comparison of Robinson and Geltman's pre
diction with the present calculation of the 
photodetachment cross section of S .
Comparison of Robinson and Geltman*s results 
with the present results for photodetachment 
of CA".

Page
106

107

108 
110

111

112

114

115

116



n

THE IMPORTANCE OF CONTINUUM ATOMIC PROCESSES IN 
ASTROPHYSICAL PROBLEMS

The interaction of electrons and photons with matter in 
astrophysical sources covers a very wide range of conditions 
from that of interstellar clouds, where the atomic concentra
tions are very low (~8 atoms/cm^), to that of the interior

25 3of stars where the density is very high (~10 atoms/cm ). The 
need for photoionization and electron excitation cross-sectional 
values is apparent whenever these processes are significant 
for the energy balance of a particular system and situation.
In this introduction instances where the need for photoionization 
and electron excitation arises, will be indicated.
Planetary Atmospheres

The nonsphere of the Earth is produced mainly by the 
ionization of the neutral particle constitients of the atmo
sphere by solar ultraviolet radiation, leading to the production 
of free electrons and positive ions. The electrons initially 
possess a broad range of kinetic energies. As they slow down 
by collisions, the electrons cause excitation of the neutral 
particles and the resulting luminosity is an important component 
of the dayglow. The excitation processes

e + O C’ p> — » e + o  I'D )
e %  o e n  e  +  O C ’s:) .

which lead to emission of the oxygen red and green lines, 
together with the fine-structure transition.^

e + O  — 9 Ç + O C * / j 0  — (1 .2)
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are amongst the most efficient energy loss mechanisms in the 
neutral atmosphere.

At high altitudes the electron gas cools more efficiently 
in collisions with positive ions than with neutral particles 
and the ,ion gas temperature also uses above the neutral particle 
temperature.

The rate at which the electron gas loses heat to a positive 
ion mixture of 0^ He^ and is given approximately by ^
JP = S y f  n(Ô )

4 I'l w (H^) ....(1.3)
where T,̂ is the positive ion temperature.

The thermal electron gas is removed by recombination process, 
and the recombination of electrons and positive ions is an 
important source of heating of the neutral particle atmosphere.

Electrons can also be removed by attachment processes 
leading to the formation of negative ions at low altitudes.
The Planetary Nebulae

Planetary nebulae are clouds of ionized gas surrounding 
certain very hot stars. The emitted light gives the nebulae 
a pale green disk like appearance resembling that of the 
planets Uranus and Neptune, hence the name planetary.

The model usually employed in the analogous of such stellar 
objects is one of a thin spherical shell surrounding a black 
body radiating at a high temperature T. The intensity of 
the radiation reaching the inner surface of the shell can be 
expressed by

h  - IhJf' — 1
4 r ’- C*- ....(1.4)



where is the radius of the central star and y  the inner 
shell radius of the nebula.

The black body intensity is thus diluted by thé geometrical 
factor of Rg^/4r^ and since this is very small (̂ 10 the
nebula is exposed and radiation whose density is 10^ times
that for thermal equilibrium at temperature T.

The primary physical process that occurs in the nebula 
itself is photoionization due to the absorption of stellar 
ultraviolet radiation i.e.

4* A — A 4 ^
and occurs in atoms in the ground state. The electrons are 
then recaptured leaving the atoms in highly excited levels 
from which they cascade to lower levels emitting lines of allows 
ed transitions. While this recombination occurs primarily in 
hydrogen and helium, it also has been observed in heavier 
elements such as oxygen, carbon, and nitrogen.

Collisional excitations are responsible for the strongest 
lines in most planetary nebulae. These lines are due to the

3forbidden transitions which arise from the collisional excitation 
of the metastable levels that lie a few electron volts above 
the ground level. After the electrons have been excited to 
the metastable levels by inelastic collisions they cascade 
back to a lower level with the emmission of a forbidden quarter 
of the magnetic dipole or magnetic quadrupole type, or by a 
collision of the second kind,

3The number of collisional excitations /cm / sec. from
1a lower level n ' to an upper level n , F^^l depends on the
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ion density in level n, the electron density Ne, the 
electron temperature Te, the excitation potential X^^l, of the 
upper level, the statistical weight of the lower level and 
the collision strength Q (nn̂ ) of the particular ion and the 
transition involved i.e.

"4. D/ n  ^ /kTc.

v^n-------------- --- (1.5)

where Î2 (n n ), or the collision strength^ is defined by

a(»->') . TT
IA)„ Krt --

where Q (n n^) is the cross-section and K ^ = w h e r e  V  
is the velocity of the incident electron. Equating the number 
of collisional excitations to the number of radiative de-excita
tions enables one to derive an expression, which involves Te
and Ne, for the intensity of a forbidden line. F̂ rom the intensity

5 6 -lines Te and Ne may be determined ' .
Interstellar Gas Clouds

To obtain information about the abundance of elements in 
the interstellar medium, it is necessary to study their degree 
of ionization. The steady state requires that the ionization

I II
rate equal the recombination rate. Denote by N and N the 
number densities of some ion in two necessive stages of ioniza
tion. The radiative recombination rate n (rec) per unit volume 
is given by

(/itc ■) z oi
 (1.7)
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where the recombination rate a is a function of electron 
temperature Te and is given by

«6 = a s  T  3/ g

Iwhere g. denotes the statistical weight X. the ionization J 1
potential,Aj (v) the absorption cross section of the jth 
excited state of the atom in the lower stage of ionization and
IIg ̂ the statistical weight of the ground state in the next state 

of ionization. If it is assumed that ionization is produced 
only by radiation of intensity I (v) the photoionization rate 
is

= A-ir I k )I h
5 ts/' r  ---(1.9)

where A^(v) is the absorption co-efficient for the ground state 
of the lower state of ionization and is the ionization limit, 
Thus the ionization equation can be written in the form

N" Ne = _P
N ' ot  (1.10)

The ionization rate T may be significantly altered by phenomena 
of auto-ionization.

Its influence on f has been discussed by Burgess et al
in their investigation of the lines of neutral aluminum.

pStromgen , who developed the interstellar ionization 
in its modern form, has shown that the abundance ratio of
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could be deduced from the ratio Call/^^^ by

Nc« /N Htt - C N.l'i
-A I [ +f^) +(£) NalJ^ . . (1.11)

which leads to the curious results that the abundance ratio
is about 0.03 compared to its value of 0.7 in the sun and
other stars. It is possible that the photoionization rates 

9are in error because transitions in Na and Call from their 
ground states to auto-ionizing states have not been taken 
into account. Possible transitions of this sort are shown 
in the diagram

ip* 3S

2 p % S - ’ P**

zp̂  'S 
xP^3S * 5

3 ? ^  3 d

3 p % d V 5 ‘P

3/ 's
sp^4-s *5

N Ca II
Golgberg and Goldberg and Dupre^^iave drawn attention to several
astrophysical consequences of auto-ionization. The inverse 
process called delectronic recombination has been shown by 
Burgess^^to play an important role in solar corona.

Other atomic processes of importance in the cooling inter- 
sellar gas
(a) atom molecule collisions11

H + H2(J=0)->H + (J=0 )
(b) molecule-molecula collisions

(1.12a)

H2(J=0) + + H2(J=2) (1.12b)
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(c) Excitation of the fine structure levels of Si"*" and c ’*’ . 

Stellar Atmopsheres
The stellar atmosphere problem may be defined in terms

12of the transfer equation
^  d. %  / = - K/ [ I k - Cr)] (1 13) 

d r
the equation of radiative equilibrium.

y  (1.14)
and the equation of hydrostatic equilibrium

j. - C ....(1.15)
where B is the Planck function, J^the mean intensity

- 4TT J* ̂  ^ and being the flux,

Pg is the gas pressure, Pg=NKT where
VN is the total number of particles per unit volume and N=̂ N̂̂ .

For a given value of Pg and T one may calculate using 
the Boltzmann and Saha equations and calculate the absorption 
coefficient.

(PgT)=^N^A^(v)   (1.16)
assuming all the absorption cross section A. to be known. For 
principle one may solve the foregoing equations and hence obtain 
a complete model for the atmosphere. The unknowns Te and g 
and chemical composition have to be adjusted so as to obtain 
agreement between the calculated and observed star spectrum.

To explain the observed absorption in the solar atmosphere 
13 suggested that th 

negative hydrogen ion H .

13Wildt suggested that the excess could be attributed to the
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Vardya^^ has compiled bound-free absorption co-efficients of 
CA and other negative ions which are an important source of 
opacity in the atmospheres of cool stars.

hi/ + A” — » A  €
Also significant contributions might arise from the bound-free 
absoprtion of ions

4* ^

In order to explain absorption further in the red one 
must include the absorption due to the free-free transitions.

14 4- e 4r Vll/ --=7 H  4- e
The absorption co-efficients due to free-free transitions 

in H were evaluated by T. Ohiiora and H. Ohmura^^. Similiar 
work has been done recently for nitrogen and oxygen by Mjols- 
ness and Euffel.^^
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The Close-Coupling Approximation
In order to calculate the scattering cross section, within

the framework of non-relativistic wave mechanics it is necessary
to approximate the Schrodinger equation. One of the most
useful approximation schemes is to expand the overall wave
function of the projectile plus target in terms of the complete
set of eigenstates of the target Hamiltonian. The method,

17called the close coupling approximation , was first introduced
18 19 20 21by Massey and Mohr , and has been since shown by Fesbach ' '

to give rise naturally to resonance of the closed channel type.
In order to make the method numerically tractable only a few
of the lower stationary states are retained in the expansion.
Apart from approximations inherent in the choice of eigenstates
for complex atoms this is the only approximation made in the
method.

The Hamiltonian for an electron colliding with an atomic 
system having N electrons and nuclear charge Z, neglecting 
magnetic and relativistic effects is

^ N  . . . . a . ™

H.iii = - icv;- *  ....(1.17b,
where

fîj - 1 1; ' I  (1.17c)

Since spin orbit coupling is neglected the total orbital angular 
momentum and total spin are separately conserved, the calculation
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may be simplified by using a representation which is diagonal
in L, S and Jf, The unsymmetrized wave function for the N+1

2 2electron system may be written

....(1.18)
where X  ̂denote the co-ordinates %  * » » » %î+l
i.e. the space and spin variables of the Kth electron. We now 
expand the continuum wave functions f̂ ĵ w*)in terms of a central 
fold type function.

y ® " ’’ "tf-r ■ '‘-«I
Hence

 (1.20)

The angular and spin parts of are now coupled to
those of 2S***) to give a new basis function
where F denotes the complete set of quantum numbers.

r ; f L SH^ 7r ]
Since

» 4 « T  L M,
y (  S r i  I s «s) '/'(p.- 5 ,«h3 • • • • (1-21)

we have ^

^W4|) (̂ î h ) ____ (1.22)
r̂*-!where

F ( r „ v , )  -  l
r «I.MT . ' ' '

%  4 -
Sj *MT
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In the asymptotic region we require

F / "  ~  ....,1.74,
The S-matrix is defined by the relationship

= Z  S p  p* A p i  .... (1.25)

Hence

F.C) -  r  A l V b ' ê * S r .  é " " )
(1.26)

9p X kpT -  J ^,*ir -  4- ÜAQ [  -   ̂ J 3
Kp 0 3 *• '  (1.27)

We define a new radial function by the transformation
Vr,.-

a  . J r 1
where •'k/J “ ( T  + S  J ....(1.29)

28)

With this definition the F^g will be real everywhere and 
will have the asymptotic form

 ̂~  C Sw|j F)W(%( + >0  (1.30a)

K y  <  O
Consequently

- I
  (1.31)-- Z "  G,.,— • viv ^ r. r. «I

*Ci ̂  V* 4- Tm. ̂  ü-«« V r<« 4-* "aT T^T *îv̂  4- a A  T* +-Vi 3aFor the systenf initially in state thh wave function is

r XNfD = ^ • ' w * .  — d. 32)
Finally we construct a properly antisymmetrized wave function

W4I-K . ^ ̂

 (1.33)
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Where X  - 25 ' “Ï  ^ * *  * '2f^K-i î i c n  * 2T #Vfi

The S-Matrix
The elements of the S-matrix are defined in equation (i,25) 

in terms of the amplitudes of the ingoing and out going waves. 
It also may be obtained from the R-matrix

S  = ^  —   (1.34)
3  -  i  R,

The fact that it is unitary and symmetric means that it can be 
diagonalized by a real orthogonal matrix U

U S U - G .... (1.35)
where the eigenphase shifts Ija are real. The same matrix 0 
will also diagonalize the R-matrix

\J flu r i r ^  ___ (1.36)
The transition matrix is defined by

T  = S - T  ___ (1.37)
The total cross section for the transition L£-S£^LjSj 
is defined by i ,

crC*-:̂ ; . . . . d . 3 8 )

The Radial Equations ^
We consider the integral

lii = j J(n«')cIXv.,
 ̂ ^  (1.39)

where N |  ̂ — (1.40)
Equation (1.39) can be written in terms of the unsymmetrized 
functions as

l i i  - icM*o Xh *»*o  L E 1
K  ^ j x  • • • • ( 1 . 4 1 )
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using the symmetry with respect to interchange of variable. 
The atomic eigen functions satisfyJ x„,) V'(V,' X w )  = O  ____(1.42)

Thus equation (1141) becomes using eq. (1.42)

I,j . { " z  F , f  yJ r ̂  r
, +  ]  F ( j  ' r
F ^ o C f A r  ....(1.43)-Io (r )where the potential involves direct and exchange inter

action.
We now consider variation of the function F about the 

exact solution which satisfy the boundary conditions,
%F,.j ....(1.44)
%  K ' b Cos©4 , r ®o

The corresponding jvariatlou in I is
%  I =. J / [ & F V F  4 F V S F ] c r  ^

* 2 ^J^.... (1.45)
using the boundary conditions (1.30) and (1.44) we obtain

hi-- a J ^ F V r W f  4 i S k
>0 *•  (1.46)

Thus the variational principle
 (1.47)

for arbritary variations of F subject to the appropriate 
boundary conditions, leads to the c<^pled equations

48)
for the radial function F. These equations will be discussed 
further in Chapter 2.



Thé Fesbach Formalism

The formal properties of the solution to equations (1.48)
can be conveniently discussed using the projection operator

20 21ofrmalism introduced by Fesbach ' . We write our coupled
equations formally as

(1.49a)
(1.49b)

P [ H - E ](P+GL) = 0

where P projects onto the open channel subspace 
and Q projects onto the closed channel subspace.
The operators P and Q satisfy the relations

? + 6L = » , ?■*■=?, gO- = gi. Pet=o
We now formally solve e-q. (2 7b) for Q y

s - a. H P y  — (1.50)
Equation (1.49a) then gives

P [ H - P H C c - - ^ _-̂ q^ ” '' - 6 ] P V = 0  ....(1.51)
The term P(H-E)P in equation (1.51) is just the close coupling 
operator obtained by retaining only the open channels in the 
expansion. The remaining term is just an optical potential. 
Denoting the eigenfunctions of the operator QHQ by we have

....U.52,
The operator QHQ has in general a discreet spectrum plus 

a continuum starting from the lowest threshold in the closed 
channel subspace. It is the discreet spectrum which corresponds 
physically to an electron bound in the field of an excited atom



or ion, that gives use to closed channel resonance solutions 
of equation (1.51).

The optical potential is now expanded using the and
consequently equation (1.51) becomes
p r n - 2  ....a.53)

n f w  — ^
We wish to consider the behaviour of the solution in the 

neighbourhood of an eigenvalue of QHQ. Equation (1.53) is 
written as

B-
 (1.54)

"here , _ y  p w a l i n X ^ j R H P

Equation (1.54) can be formally solved to yield

where G and \jĵ are the Greens function and regular solution
of the operator H^-E. Multiplying eq. (1.55) on the left by^^^GlHP
we obtain
< S  q H T Y Z  C ^  3»«Q.HTVt>_________

* I - -1- G(.HP6- ....(1.56)
^  -Cjj »

and substituting in eq. (1.55) gives

PJg +
C  "" — ^5

where
A .  =

(1.57)

 (1.58)
is the shift in energy caused by the interaction with the 
continuum.

24O'Malley and Geltman have shown that for a two electron
system, that asymptotically equation (1.57) becomes

lo

;ysrem, max: asyiupuuujL̂ a.-i.j._y



= U It.' v /p .) (4 r i -  4.+ du/)

® -p /, ,
 ̂r k % <  ' • • • •

i «PSPJ^
where _p ,

. .. (1.60)
£- ̂ S'^S

In equation (1.59) the resonance position Ef can be seen to be 
£f- “ ^5 *** . The background phase shift is denoted

by i<|̂ and the resonant part by .
The partial wave cross section can be expressed in terms 

of the phase shift ~ by

*̂1 .... (1.61)

In the neighborhood of an isolated resonance this gives

CTj, e ^  /9t*l »ĵ  (1.62)

where ^ r "* » û - — Cot Y! , The Breit-
25Wigner one level formula follows immediately by putting?^^=0

Configuration Interaction
We now consider an alternative model for describing resonant 

or autoionizing states proposed by Fano?^'^^ A review of theore
tical models which predict and interpret resonance phenomena has

17been given by Smith
We consider a discreet state (|) interacting with one continuum 
and assume the normalization

= I  (1.63)
The expectation value of the Hamiltonian is

^ 4  Hl<t> > r
<C = Vg ....(1.64)

^  VV-.IM\\Pg-> = e ‘ S C e '-e ')
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where it is assumed for simplicity that the sub matrix in the 
continuum states has been prediagonalized. Each energy value 
E within the range considered is an eigenvalue of the matrix 
and its corresponding eigenvector we write as

- a ̂  J d B  bg' Ÿ f  '----------- ----(1.65)
Then pre-multiplying the Schroedinger equation — G ) IPg® Û
by (|) and ̂  and integrating yields, having used equations .... (1.62)

Bp a. bg' = B  CL____________ ____(1.66)
I/,/ a •+ £ bt' - E  be>® 28 The second of equations (1.66) can be solved formally to give

 (1.67)

where 0(E) depends on the contour of integration round the
Isingularity at E=E and P means that the principle value of the 

integral is taken.
If the states are represented by a wave function with 

the asymptotic form
"Vf f  ^ r  + %/E ) J  (1.68)

where is a slowly varying potential phase shift, then
the total wave function has the asymptotic form

bg' "'t'g'----------------- ----(1.69)

where ••••d-’O)
Now upon substitution of equation (1.69) into the first of equa
tions (1.66) one obtains

I 1/  (1.71)t.a -4- P + 7(E)Kfqf J £ - 6 '
E o
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Thus
Z ( « )  -  C -

IVj/’-where the shift of the level due to interaction with the

  (1.70)

... (1.71)

continuum is defined
a l e )  *  p  r  ^ '

J  E -  E '
The resonance with is

P = 2TÎ |V e |\-  2T îK 'l't|H /f>  I
The normalization condition ^  | ^
gives

a '  ....(1.72,
Use of equation (1.67) yields

be' = P ^CÊ -  E'-) ___(1.73)
TTV̂ É £ ' E 'The transition matrix element from source initial state z to 

a resonant final state is

where ^  - ^ 4. ?  J  ’
Hence we obtain that the ratio of the absorption cross section
to the modified continuum to that of the unperturbed continuum 

(T* . , .... (1.75a)

d e  m o u i t J L e u  e u i i t - x i i u u i u  u u  u i i c i l . u j . u h c j

J- . --
3 L  " K Ÿ g / T / i ? ! ' -

where £ e “ Cot " f —f/" .... (1.75b)
X I -  ly*.

’  '  l R ÿ l T f ? * > v Ç 7 T 7 7 >  -

In the case of more than one continuum say 
it is possible to find linear combinations of these states such 
that the discreet state (|) only interacts with one of these
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combinations say . The form of the photoionization cross
section in this case is

(T = cr« l l L i ÿ  +  cr* ....(i.76)
where the smooth background is due to the states orthogonal 
to TPi

The Rydberg Series Lines
The case of several discreet lines superimposed upon a 

continuum and converging to a series limit at some excited 
state of the atomic ion is one which is frequently encountered 
in absorption studies in the far ultraviolet. In terms of auto
ionization effects the Rydberg series of lines can be treated 
as a set of discrete states which experience configuration inter
action with the continuum. This case has been treated in detail

37 28by Fano and Fano and Cooper . Because of the second order
interaction among the discrete states arising from their coupling
with the continuum, the discreet states ^  and their energies

will be perturbed by a matrix analogous to g  (5 )

J —  ....11.//)
The states ̂  are replaced by new states ^  which in turn 

are modified by an admixture of states from the continuum 
$  = * p y   (1.78a)*  e - e '
9^ = <  I ....(1.78b)

IT Vg ,, < Ir I i >   (1.78c)

= z v  I
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27Fano and Cooper showed that in the interval between successive
resonances the same line shapes occur for the single discrete

, level and a single continuum. In particular the matrix element
vanishes once in each successive interval. The shape

parameter^ is approximately constant along a series and the
width decreases in proportion to the spacing between the
resonances.

29Mies has extented Fano's resonance theory to include
the interaction of many resonances with many continua, as well 
as overlaping resonances, 
from a different approach.
as overlaping resonances. Shore^^ has also treated this problem
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Chapter 2

Wave Functions for the (hp)*̂  system
We wish to construct from the one-electron wave functions 
( f.) *^.1 the wave function of the

2-electron system.^  CP« We have
tJ 'S

■‘LSrVHs - /- ‘̂....(2.1)

and .. /. ft )
^  z  u  M ('« | i /" I " isMj
iLSn..H, - p  ....12.2)

These two functions differ in the fact that in the first
case the first electron is in a state with angular momentum 
il and in the second case it is in a state with angular momentum
Iil . The wave function for the two electron system,

can be obtained by composing an antisymmetric combination
of the above functions.

W  . ? f Ÿ  ....(2.3)
Noting the fact

€ ♦ € - L
M  i V  lu r (_l)

Li/* i / * ' z  (-,)  ̂y* I s Ms ̂ --- (̂'4)
We see that

^  ceiEl) - ( <  (J— ^ ^  L Hg, S
Therefore we obtain
^  , _i (ip u , K )  + (E/ ( J
“ uMtSrtj Vx I -WiSft» ‘•'*‘-*'**....(2.5)

where
■4* r gU’ii«lt-HtVi f I (2.6)
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IIn the case of two equivalent electrons and noting that

....,2.7,

we obtain

"îuH.SH^ = O L+S oJot (2.8)

and the normalization factor is equal to h and not ^//2~,
We now wish to write the wave function i ' 

of a group of n equivalent electrons in terms of a linear 
combination of the functions srt  ̂̂  (S C ) £  L S )

** IIcorresponding to different initial terms L S of the configuration 
^. Amongst the . states j" £. 1*̂  | obtained

according to the rules of addition of angular momenta will 
be some which are forbidden by the Pauli exclusion principle.
Only a linear combination of these functions will satisfy the 
Pauli principle. We write

  (2.9)
The co-efficients S ) are called the fract

ional parentage co-efficients : In the case of two equivalent
electrons we have from the previous discussion that all the 
c.f.p.’s are equal to unity.

In the case of three equivalent electrons we will add a
2third it electron to the configuration % and construct the 

function ^  ̂*^5 ) according to the rules
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of addition of angular momenta. The function is anti symmetric 
in electrons 1 and 2 but not with respect to the third electron. 
We now couple electrons 2 and 3 and obtain

^  ^  (6QLC%')6.Sl I £,t£lL"s")L^y
' * v W  (g,.

where the transformation co-efficient ....(2.10)

(jHlLCi')JtLi\i, H ( l“s“)LS)

T* (is+') W(^, i S £ > s' s " J  (2.11)
The function C^i ■ C b  ̂ is also built according
to the rules of addition of angular momenta from the functions

s" 4 " % " '  ̂ - Only
* II II

those functions for which L + S is even are antisymmetric 
with respect to transposition of electrons, 2 and 3. Consequent
ly we require combinations of the functions ^^3^

which do not contain functions %. . C S* t ) )
with odd values of L + S , This condition is fulfilled pro
vided

S i.: = odel
 (2.12)

2 3Consider the P term of the p configuration. The forbidden
2 3 1 1terms of the P configuration are P, D, S. Putting L=l, S=^

II II

L =0 S =1 in the previous equation we get
£(p'*p|?f‘ 's) - i  (p**piir'*p) + ÿ  (p'*PU P'‘D)- o

 (2.13)
II IISimiliarly putting L =1 and S =0

I(r’'p|ip'‘s)*i(p'*rn'*‘’p) -  ÜS (p *p« p'*i>) = o
*> ^  (2.14)
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We also must have Cnormaltzattohl

Z = /
A's'  (2.15)

These equations determine the c.f.p.'s up to a phase
factor of -1. The procedure may be. repeated for the add 
4S terms. The results are in the following table.

D
0

'D -1 1
/2~

y-2

The sign of each row in the table was chosen following 
Racah^^. Although the sign of each row is at bur disposal 
the relative signs of the entries in each row is hot.

The same method may also be applied to the configuration 
of the c.f.p.'s of the  ̂configuration are known. In

 (2.16)
Recoupling & and we see that the c.f.p.*s must

satisfy the equations
V fsV SL| i SL)C^"sLii«" sV)
6  ' V = o   (2.17)
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n II
for L + s =odd where
(s"i." S L |  s " t” i S I . )  r  / (zC*0(ZCU)&̂ '*<)(Z&"'*0

*  W (L " iL ^ : l - ’O W ( s ’Vs£ :S'S’"J  ...(2 .18 )
As before this system of equations do hot fix the phases

of the eigehfunctions of the different terms.
We apply the foregoing euqtions to the term of the p"̂ 

configuration. We chose L =l,s''*=0, L =2 S =0, L=2,S=0
1 1 4 2 2and L S = S, D, and P. Consequently

fp‘"D|}p''^5Xp'‘'SllP‘ ‘0)  2\/3 W(ziai -Oi) WCo i oi = M.®) + 

(p** 'DH p' *®)Cp'*D W p' 'b) V30 W(2« 2« ' 2‘) W (0 t  0i  = i  o) +  

fr" 'Dll p’ ‘PXp'^PI) p'̂ 'd) w C 2 >  2" '0  WC« i  01 •• i  ®) = o

 (2.19)
Osing the previously obtained values for ( p 'ts j  J p ' t  S*J

and evaluating-the Racah co-efficients W(abed:ef) equation 
(2.19) yields.

,  / 3
( Y  'Ol] P  (2.20)

Using equation (2.15) we obtain.
(p‘"p/ip’*p)--f ÿ , (p"' w y o

 (2.21)
Similarly we obtain the rest of the c.f.p.'s for the 

p^ configuration

■ ̂s : ' .̂D ■ ; v
__ 1 ■ =7 5 ' 1

2/T~ 2. ' ; / 3"'.' ■ ■ . 1 .
D  • • • 2 ' '2'-'.'

1
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Note: we have chosen (P̂  Ŝ| }p^ ^P)“ ,tl to agree with Smith^^
33et al, where as Saraph et al, choses the value -1.

Ill, Sobelman^^ has published c.f.p.'s at variance with
31the above. He has used the relation given by Racah between 

the fractional parentages of the terms of an almost closed 
shell ^ and those of i.e.

However for i.e. p^ in the case we are considering,
the above equation leads to difficulty and a change of sign

31may be necessary which obviously was not taken into account.
5However we may use it for the configuration P . and we obtain

3 1 1P D S
1/ 1/

/~375 /T~ /I5
which agrees with ref. (33). For (P̂  ^P|}P^ Ŝ) Smith^^ et al. 
used the value which is incorrect.

If we denote the antisymmetric wave function for ($fl) 
electrons by L*. and introduce the vector coupled
function

Y  \ " - ' X S j  t .«I "k )

V Y C p ’ijS,- x o  y \ , V M

 (2.23)
then

 (2,24)
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p.."’For our one-electron orbital* . we use the
analytic SCF functions of Roothan and Kelly^^ or Clementi^^.

?r '
where M is the number of terms taken to represent an orbital. 
The functions are normalized such that
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Reduction of the integrals 
Considerable simplicfication of equation (1,39) is 

achieved if we impose the condition

= 0  fn <•= I  (, 27)
However, without this constraint F would contain a component
of the bound p9 orbital. The unconstrained continuum orbital 
could then be written

p = F +  oC?  ̂ (F \ P) r o
 (2.28)

Consequently we write
"'P (Q. "f’*'LS)

Substituting this into equation Cl.39) yields upon
using equation (1.42) and the symmetry properties of the wave 
function we may write

^  4  if;: +  L': 4  if
H  * L;-

32where we employ the notation of Smith Henry and Burke except 
that we omit the subscripts which label the particular solution 
vector we are refering to since the equation®are independent 
of the boundary conditions imposed upon them. We find

Ci- = <  *"") I HN„-E I >

* = p u  ['£ c4. - H
^  (2.29)

where , % c
V p ’= ^  3; fC3*;*0C^L;+0

L; >i-j -Li^) <•)  (2.30)
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We have used the fact that

KJ
Hw+i = + +  Z  r .cX otZ%

I-Y  = J'P«. >; W,^ f| = - H < T . f ,  i«!r..l|H„-Ejÿjr“ s'i„-)>

- [cÏ0-Voczt.;+OC2 S.+ocifij+1 yai-j - K ^ z s j p ’l/S.-/?p’^A')

C ?* 1} p'-'ij Sj ) wc%- ̂ 4 S; : s r  f I Pj- 001 A.) IO 01 AO)

Equations (2.30) and (2.32) are exactly the same as equations
(19) and (22) of Smith ejk al.

We now wish to evaluate the terms linear' in C. This has
32been incorrectly done by Smith et . These authors separated

off a p-electron from $  using the co-efficients
of fractional parentage, which of course is only valid for 
equivalent electron. Consequently, the exchange interactions 
with the core electrons were not accounted for. We write
if = Cj < • w f * ' L O >

4  Cj (2.33)

We take q̂iLS) a I LS >
 ;.‘!*:.VA4)

2# 2* Cx+'M !
where is a antisymmetrization operator. This function
is normalized. We note that if is a function anti
symmetric in m variable and is already normalized, then

^ M ! w !
is completely antisymmetric and normalized. Furthermore
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< A „ 4 1 ^ | A h 'K> =
 (2.35)

provided that C ^  ~ O
We also write

X„«) 5 I n «p" C S.L; ) i; SL >
- Ÿ6] -‘2-3Sa)

where  ̂ ^
y  CO A • *».- ■*« *» ES.t.) SL)
% 2(1; '‘v 4 mslS H,) , ?('*’ «‘Otjpfz*
Y Cpc*(^|s~‘ M f ^  t; ) %  ft I %/Qr, 1  (2.36b)

We obtain, for the first matrix element in equation (2.33) 
since the right hand side is antisymmetric, upon interchanging t

-  N*. y?M- < A .. <p(if W <P6^h y f 0 zp'f A )fA ;... I
•J7U, ' rZ'

Using equation (2.31) we see that the integral over By and E 
will give integrals J  F| which we set equal to zero

Isince we require the F s to be orthogonal to all bound orbitals.
Consider the matrix element of the 1-electron operator 

H  Since
[ A ^  , = 0

we can take it through the operator and operta on the function 
in the right hand side of the matrix element, which is already 
antisymmetric, so consequently it gives us a factor MI
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Therefore the matrix element of the one-electron operator 
in equation (2.36) becomes

X c4„cp64*i'Oc^(j'/*«')cpCzp’̂ 'iff-N.i i-^yy
^  (2.37)

We cannot mix the p-electrons on the R.H.S. with Is or 2s 
electrons, or the Is with the 2s electrons as the orbitals are 
orthogonal. The y s are already antisymmetric so operating
on the R.H.S. give a factor of 2 \ * . Using
equation (2.24) we obtain

< TfCT; &W..) $  t «s’«'V'hs) >

We consider now the matrix element of the 2-electron operator

I ^  “  I Cp(24* !■>«•) cp(2p* \i--- Ntl LS )^
• W+i* I

 (2.39)
We have <► M

oC-* .... (2. 40)
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y  —
We next consider the contribution of ^  < to the

oC-S ^
matrix element. As before we get

I . - r  .2 4'in !>...•> I J, t... I ̂
* A H♦ 1 (p!zr If " '

Since both sides of the matrix element are ̂ antisymmetric in 
co-ordinates 5 to N we can replace r by

Fq <,4., As before

A N

Aw+, — 7 A (,,.3 • A ( , » -  A is
  y 2\ • • (*'*')!

Consequently equation (2,37) becomes
(<|+| ) ^ c  Tj i f '  1 Ç lîV i}  I r 1 CpCzf I 5 • t s )  ^

= 1 1 * ,)^  3 ?  Z  \ ' s ; ( p h s / f p V s ' ; p 3 C 2 p . + , ; C 2 t V i J c ^ t ; . f i n î

* 2^ (- n * Y  r' p' s. )C f f ji*, c "  op j X=)
K-0 g,oo/hoW6i-*g|’L; •LX)WCit'ri'i (2.38)

We now investigate the contribution of *7^™
0 ^ «  I W + l  j

to the matrix element. As before we obtain 2. l I i i

X (p f3*) CjP̂ Zf IS — WW LS)^
As before when we let A^ operate on the R.H.S. of the matrix
element we obtain a factor of NÎ. Also if we try to anti-
symmetrize the R.H.S. with respect to particles 3 and 4 and 5
through N+1 we get a factor of 21*(qtl)Î Since both sides
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of the matrix element are antisymmetric in particles 1 and 
2 the summation can be replaced by a factor of 2. Thus 
equation (2.39) becomes

= (1")' %,,! ff ’'VslîA,s,j^ af„CP,.F. R.P.f)

- Z  (o),.".!',.) R/P.;,P.pRO
^  *

There will also be a similiar contribution from the 2s electrons 
and in general the contribution from the core will be

Z  f 7 > C « ' * O j 5 , C P . ' r F , W  -  Z  # $ ,
ŷJt c C-̂oo*«t Pv

Therefore the term linear in C becomesIf. 2T C,. J F. rfr
* where

V , ( 0  .  (TO -' f ( n i l l L r S O [ ( - £  J

Wt’.cÆwJ ® / A  '
- ÿ / p . ' / P . / . J .  3?.ftt'.Ofei,•■0]I X  L.s,»>\s,|i,!.3

^ f 11 oO I ^ o ) C I ̂ J Ô0 1 Xo) \A/ Cl ̂  •̂ 1 ̂ * * L ̂ 3 W (I L I LJ ' X3
y  y  ( K p  K o

' .... (2.41)
37This is the expression given by Smith, Conneely and Morgan

32and differs from equation (24) of Smith et al in as much as
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the above includes terms which arise from exchange with the 
core. These terms are absent in reference (32) since ̂  
was not properly antisymmetrized. We now have to evaluate 
the term guadratic in C

 (2.43)
, I cwhere is the energy of the rtf L^

configuration evaluated with the wave functions of the np^ 
conf iguration.

The Hamiltonian may be broken up into single particle 
operators and 2-particle operators since

H.., = X  H w  - X  T:
»

The single particle operators give a contribution

M̂ l * ~ »J  (2.44)

 (2,45)
The matrix element of the®l®ctrostatic interaction between 

groups of inequivalent electrons may be evaluated by the methods
q oof de Shalit and Thalmi

(a) The elctrons in each closed subshell will give a 
contribution

(2.46a)
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Cb) From each pair of closed subshells there will be a 
contribution ,

(c) From the n&^^^ open shell there will be a contribution
(q + , f 0  [;2 m'<' h( V (ggûû|**’̂ /̂{’M « 7 W n 0 3

. ... (2.46C)II
for each n I closed subshell. This is independent of the
total angular momenta of the open shell.

(d) From the np*^^ open subshell we will have the con
tribution

^ = <K) r"*'LS I J  fTj 1 hp"LS>  
J- 
1 fn

since

*  I •'P* '(l-{ S, ) P p(L*S&) L S  >
where we use the é“*J. symbols^^ instead of Racah W-co-ef f icients 
since they are more symmetrical.
Consequently

» ) V A f  [' i l  t i l

” L pp(« 'V-s  I i^^,lp'ivi-'rp(‘U .u‘>
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We note that
\ Ip#^  r ? Ls| T '(«■! s/) p p (L,S,) L S >

where A   ̂ 0 ïTv ^  .

Therefore
g -  iC iü.) 2  CC*'isl!r\;̂ !)cr*7sljp\-̂ p)CrU;iyi;h'J

7- t.tjE/
> I I . ,

■E ( A s d l i '  V ; ; ; )  VA « . * ' X 2 i - i * o  { t ' /  k i f  i'̂' L i l l

-11 ; i , K  B . î r  i t  J )  i f ;  B -  ’ ‘  O '."  ) ( " p ' ' ) .

We now use the Biedehharn-Elliott sum rule

= S LjL'i I ) / L; q A >
o c • n  . .  I I A L; 1 1 I I L. ISo finally we obtain '

S= ’ ¥ ’ . 2 1
LîLjL'S;SA

.  ( r 'l ,; ,It r ' l 's  X rh jS .Iff 'T s 'l V c iw c il^ )  [ t ' ^  f

4 1 ' i O i t X U )  IP^Cnr'-J
l+L;4L:-*U

C2.46d)

Equations (2,46 a,b,c,d) qiye us E^^^ The above ex
pressions are equivalent to that given by reference (37), but

32differs substantially form that given by Smith et al . Further
more the expression
E  r  1  J E ^ S  " E '> i^ (2 .4 7 )
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2is calculated using the same methods, where K1 is the energy 
of the incident electron in Rydbergs and are the quantum
numbers of the lowest term of the target ion.

In order to obtain better agreement with experiment for 
the positions of the levels of a Rydberg series converging on 
one of the excited terms we use the experimentally determined 

E ,or theoretical values given by
references (35) and (36).

However these value should not be used in equation (2.47) 
since they are inconsistent with bur method of calculating

®N+1.

Derivation of the Radial Equations 
Application of the Kohn variational principle (equation 

(1.47) yields, after analysis equivalent to that of reference 
(32), the equations satisfied by the radial equations F. • 
where the subscript ^ refers to the ^ solution of the 
vector function F.

j à  C2.48)

"■“Z j  - • i l l * . -  - 4 #
The direct potential Vij 6 defined by equation (2.30) and 
the integral operator W,** by equation (2.32) . The x



are unknown Lagrange multipliers as we require the radial 
functions FjJ for s?waves to be orthogonal to the Is
2s and 3s subshells, and for r. I to be orthogonal to
the and np subshells. The numerical solution of these 
equation^is discussed in Chapter 4.

Results
The results for the cross sections for electron scatter

ing by carbon, nitrogen and oxygen have been discussed by 
Smith, Conneely and Morgan^^. Henry et al^^ have pointed out 
that the peaks in elastic cross sections in the results for 
carbon and nitrogen are due to a low energy shape resonance 
which is supported essentailly by the angular momentum barrier 
term which corresponds to i#l. This feature is absent for the 
corresponding (3p)^ cases iae. for silicon and phosphorus.
The reason for this is that the effective potential that our 
electron with angular momentum equal to unity incident on 
phosphorus sees, cannot support ànbound state. In Figure 1 
we plot the effective potential Y,* against f for carbon 
and phosphrous.

y/ = ^ ,?.v„
r

where ^\\ is given by equation (2.30).

In Table I we present the partial wave contributions to
I ++the excitation cross sections Q(n,n ) for 0+, N and O . We

35have used the theoretical values for the energy differences 
between the terms. Henry et al^^ have used experimental energy 
differences for the terms and furhtermore have used the Hartree- 
Fock energy for the lowest term (i.e. equation 2.47) which we



have pointed out to be inconsistent. We note that the dominant 
contributions to the cross sections come from the p-waves.
This is not the case for (3p)^ ions.

We have tabulated the partial wave contributions to the
excitation cross sections for p’*’, and as well as the
total collision strengths in Tables 2,3, and 4. In this case
the mbst important contributions to the cross sections come
from the d-waves. For these ions we have used the experimental
energy differences between the terms. Table 5 gives a compar-
sion of collision strengths for various ions between the present
results and tther calculations. We see that the agreement
between the various calculations is poorer for the C3p)^ system
than for the (2p)^ system where excellent agreement was ob~

37tained . This may be due to the large number exchange-terms, 
which we have treated exactly, i.e. for a particular set of 
coupled equations there may be as many as 33 distinct exchange 
terms, all of which we have taken into account. We have cal
culated the collision strength well above all thresholds as 
near threshold our method of fitting our solutions to the 
asymptotic form of Burke and Schey breaksdown. Below the high
est term of course our model will predict an infinite number

3 0of resonances. In figure 2 we present the D partial wave 
contribution to the transition in s'*" which shows a number
of thses resonance profiles.
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TABLE I
Partial wave contribution to th.e 

excitation cross sections for O"*"̂ and o"*"

çz

Ion K

N+
3
.2

LStt
2pC

2pO

2d®

2d°
2j,e

Total

2pO

2d®
2go

Total

2 s®
2pô

2dS

2p®
Total

QC^P, D̂)

.01735

.16525

.00322

.32403

.10370

.00043

.61398
0(3p^lg)

.06617

.01358

.00002 

.07977 
0 (̂ D, Ig)

.04074

.04076

.08325

.03210 

.196 85
D̂)

QC^Df 3p)

.04285

.40782

.00795

.80086

.25591

.00106
1.51563 

Q C^S-^P)

1.77379

.36440

.00058 
2.13877 

Q C^S-^D)

.44254

.44276

.90431

.34867 
2.13826 

Q (̂ D> F̂)



TABLE I
(continued)

S3

0++ .2 2p®
2pO

2d®

2d°

2p®
2p0

Total

2d§

Total

2ge

2pO

2d®

2p°
Total

3pO

.02061

.08902

.00312

.16582

.12068

.00039

.39964
3 1

Q(^Pf SI

,03443

.02346

.00005

.05794
QC^Dflsl

.02269

.01647

.04969

.02813

.11698

,00090

.56721

.05230

.22594

.00792

.42090

.30632

.00100
1.01438

1.09661

.74729

.00167
1.84557
QC^S.^D)

.28468

.20667

.62348

.35295
1.46778
OC^D/^S)

.00062

.34830



TABLE I 
(continued)

54

3pe

Total

3pO

3j,e

Total

Ipe

3pG

3pO

lD°

IpO

IpO

3po

Total

.07185

.00060

.58056 
Q(*S, 2p)

.17406

.02518

.00002

.19928
Q(^D,2p)

.03507

.03564

.03135

.08057

.09199

.03211

.06041

.03711

.00328

.00401

.00925

.07723

.49386

.04967

.00042

.39901
Q(^P,*S)

.38354

.05550

.00005

.43910
Q(^P,^D)

.11179

.11359

.09993

.25684

.29323

.10836

.19286

.11829

.10147

.01280

.02946

.24618
1.57421



TABLE I 
(continued)

1Collision Strengths, Q(n,n )

n "̂ 0++ 0+
0 (1 ,2) 3.29286 2.54556 1.53510
0 (2,1) 3.29285 2.54553 1.53623
0(1,3) .42768 .36906 .52692
0(3,1) .42775 .36911 .52692
0(2,3) .42767 .29355 1.90538
0(3,2) .42765 229555 1.90540
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TABLE II
Partial wave contributions to the 
excitation cross sections of P^

Q Cn, n^ ) 
^P-^D

^P-^S

^D-^S

LSvr/k .3 .4 .6 .8 1.0
.979 .406 .209 .112 .063

2pO .272 . 195 .117 .077 .053

2d® .125 .089 .054 .035 .023

2d° .468 .332 ,195 .127 .088

2p® 2.192 1.594 .950 .588 .358

2p° .002 ,002 .002 .001 .001
2gO .mm4 .018 .025 .028 .030

Total 4.052 2.636 1.552 .969 .616
2p? .092 .065 .038 ,824 .016

.650 .501 .302 .181 .105
2pO .001 .002 .  003. .00.4 .004

Total . 743 .568 .343 .209 .125
.162 .018 . 021 .005 ,001

2pO .229 .154 .093 .066 ,051
2ĵ e .423 .227 .107 .073 .059

2pO .374 .301 ,218 .168 .134

.130 . 117 .101 .090 .081
Total 1.318 ,877 ,5i0 , 402 ,326
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TABLE II 
Cconti.nued>

üil,2l 10.940 9,49.0 8.381 6.977 5.544
0(1,31 2.006 2.045 1.852 1.505 1.125
0(2,3) 1.444 1.399 1,401 1.445 1.498



s s

TABLE XIX.
Partial waye contrlbutiona to 

the excitation cross section for

Q(n,n^) LSïï/k̂  ,3 ,4 .6 ,8 1,0
,035 *022 ,007 .001 ,000

.934 ,690 .434 ,300 .218

3.986 2.805 1.694 1.154 ,807

,00.8 .012 ,019 ,025 .031
Total 4.96.3 3,529 2.154 1.480 1,056

G" P 3pe 286 .212 .133 ,091 .065

1.557 1.384 1.025 .733 .506

^F® ,001 ,003 .005 .008 .010
Total 1.844 1.599 1.163 .832 ,581

^D-Zp IpO ,320 .172 ,079 . .051 .038

^P® .189 .113 ,061 ,040 .030

^P° .456 .201 .056 .019 .010

Ĝ P̂  ̂ .119 ,073 .041 ,029 . .022

,983 ,583 ,299 ,187 .125

,201 ,139 .088 .063 ,049

,604 .376 .182 .096 .051

S512 .345 .216 .157 1122
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TABLE III 
Ccontxnued)

IpO .153 .189 .197 .163 .120

.045 .039 .032 .029 .026

4 ° 2.144 1.029 .406 ,232 .160

V .119 .093 .072 .059 .050
Total 5.854 3.325 1.729 1.125 .802
0 (1 ,2) 5.956 5.646 5.169 4.736 4.224
0(1,3) 2.213 2.558 2.791 2.662 2.324
0(2,3) 9.623 8.861 8.031 7.474 6.932



TABLE IV
Partial wave contributiona to the excitation 

cross sections for Ci

60

Q (n n )

^P-^S

LSTT/k .3 .4 .6 .8 1.0

2pe 1.015 .771 .507 .359 .257
2pO .468 .350 .225 .359 .117
2dB 1.097 .814 .529 .384 .289

.008 .007 .007 .008 .009

.002 .002. .003 .004 .004
Total 2.590 1.945 1.271 .912 .675

2pO .022 .013 .00.5 .003 .002
2d0 .345 .276 .186 .134 .099
2pO .000 .000 .00.1 .001 .00.1

Total .367 .289 .192 . .138 .102

.173 .113 ,064 .045 ,039

2pO .458 .280 .145 .092 .064

1.156 .703 .316 .167 .096
2ÿO .157 .134 .107 .092 .080

.015 .019 .019 .018 .017
Total 2.005 1.295 .693 .453 .332

0 (1 ,2) 6,993 7,002 6.863 6.566 6.075
0 Cl,3) .991 1.040 1.03.6 9994 ,918

0(2,3) 1.94,2 1,902 1.711 1.571 1,484
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TABLE y
Comparison of collision strengths

Cn,n̂ ) for C3P)3 ions

ION n nl *Present Ref 1431 Ref C44i** Re# 14!
P+ 1 2 10.94 6.31

1 3 2.01 1.12
2 3 1.44 1.11

s"*" 1 2 5.96 3.06 2.02
1 3 2.21 1.28 0.38
2 3 9.62 6.22 12.7

CA++ 1 2 3.372 3.189
1 3 1.847 1.967
2 3 5.743 6.63

Ar++"̂ 2 1.008 1.432
1 3 0.326 0.645
2 3 3.651 4.920

.3 except for Ci 
respectively

and A^^^ where it equals ,5 and 1.0

• .0005 in these calculations.



Photo ioni z a t i on

We now wish to use the continuum wave functions 
defined by equation (2.48) to calculate photoionization cross 
sections. The derivation we give is essentially that of Henry 
and Lipsky

We consider a photon of energy hv impinging on 
a target system of N electrons and Z nuclear charge with quantum 
number L ^ , M ^ , S ^ , a n d  energy described by the wave function 

m  ( * N ̂  . If hv is greater than the lowest
ionization potential of the target, ionization can take place 
and the final states can be described by wave functions 

Ms where
P ’S. ,̂1 ^ ^

stands for the channel of the emitted electron. The cross section
42in the dipole velocity form is

....U.49)
where

CÜ 2 O  is the statiscal
weight since we assume the target is unpolarized.

-  ' A C B c ; '

"^S/1 M ̂ represents an outgoing spherical wave in
channel F plus incoming spherical waves in all channels, normal
ized per unit energy range. This condition will be met if we 
take X, c H H to be of the form
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r. T .  -i . . . J  &.
= h'i*’ (#(7 5*., J N ) 2

l~N

T  . r é  , ~ ‘' ^ n

r' Q
where

6  (r %N_, î„ ) = Z'p^'' ^ ^ 1̂"*̂
* $ a r 5 p

Here Kp is the wave number of the electron ejected in the Fth 
channel and is related to the incident frequency and the Tth 
ionization potential Ip by the Einstein relation

■*'p = ....(2.51)
Application of the commutation relation

r r Hi - i t pL -  • j " -   (2.52)
to equation (2.49) yields the dipole length form of the cross 
section

\  '  l è - ' ‘  £ K  4  j  r  r: "^ 1 '
 (2.53)

The total cross section will be

^  “ Z "
n p   (2-54)

Consequently we are interested in evaluating the matrix 
element

%  “ ClLo+'XXSo+b ! V s ' r i n ^ ^
Where _ :

^  * r  = z  ^  yr.,*,
js,  (2.55>
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. Z , 0 - » R V r ' ' ' 4 u

P i
If T M  ti% denotes the close coupling wave functions
with the boundary conditions given by equations ( 1,30) then

\
will have the asymptotic behaviour of equation (2.50). Thus

' C%L.+')C?s.+i) V r "

> ....C2.56)
Since

(I 3  ' O l p "  = (ifR^) r r  *  ’ 

*  ( k O  ' )rr' ( R  (i - ) f n "  » i jjf'*'? ^,ip

 (2.57)
Since we have ——  . , , -Iv'l
Z L 0 » R ’V ; p . ( R f i * R ' 5 " ) p p " + p V  = i"-
P* P** Y •*P' M tand since ^ P  P

ipY- - Tr”p' ,
then the two imaginary sums over F and F cancel each other.
So we define the 3-script matrix

A p y - ^ X v *  = C ^ r r ' ̂  n '

>*■ * ) P fr" ____(2.57)

S j C W ' O
..A-'l.I'p"
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where M M,

LS = fFT p'

 (2.59)

P,-; -f (.’i j ) = 4-(j, i)and I
v]

P (f%) , p. ■K)/ris the 'j of the previous section and

\V‘- £ C/'—))(/:'
X (Sp t /"r MyT"rl S 4 s )  

.... (2.60)
The radial functions used in are different from those used
in ^ ̂  and will be designated by primes when a
distinction must be made, We may note

c p = A k... g ( i s M
V ?  2'

V. (p (  ‘'c If I i ' -  '^‘-rV
= A ^ _ _ > 0 sMu)Cp'f,s'hO

Thusr, Hrte y  CP6 ̂  I'O cpas' I-s o
(p r / —  2*. (IS/-O Î CG-0 \

r H|i 'y/W p  » ^ _ rt,-,« ~I'’ /—  (

X ' I ̂  ’ X i  C«9 1 7 ' n  ^

X CLr' (/ ̂ r' - V I L M ) D r  i /"r' ^ ,

where we again have the antisymmetrization operator of 
equation C2.35).
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We want to evaluate matrix elements of the forms = < I »r I \T‘ y
X  ('p-' I ;  " )  I  £  ' I A p ,  T("'I") I»;

This is a sum over permutations of products of one electron 
integrals of the form

<n 'i'x  **e' i *"4 M ;) t<h'£'I n« > ‘à 4 1'
. . . (2. 64a)

and one of the type

I *<»'«■ t m / i f t " '  1 "X

X (^'l M , ' / W |  100 !•< o)
 (2.64b)

where
f . = T  t
li

the gradient operator and
Û % f ± y ^  r  
T >1 -s

for the dipole operator. The Clebsh-Gordon coefficient,(f 10 01 4 0 ) 
is zero unless

l ± \

which is the usual one electron selection rule for dipole 
radiation. This means that an S-electron can only couple to a
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p-electron and a p-electron can only couple to an s- or a
d-electron. If an s-electron from the L.H.S. of equation
(2.63) couples to a p-electron on the R.H.S. there will only
be three s- electrons remaining on the L.H.S., whereas there
will be at least four s- electrons on the R.H.S. Such terms

w  Iwill vanish because they contain inner products between /q S 
and ̂  s . Only a p-electron from the L.H.S. can couple to the 
R.H.S. through the dipole operator. It can be coupled to the 
outgoing electron provided that

= 0 Orv 2
and it can be coupled to one of the s-electrons if  ̂O
for them there will be four uncoupled s- électrons on each side 
of equation (2.63). Using the facts and the properties of the 
antisymmetrization operator and also noting that both sides 
are completely antisymmetric in co-ordinates S through N we

5 2 \ z \  p ' r t f , ' M r '

X CV i A '  I  ̂Ms) C I rtp- H.".)

I S. fis.)

 d. 65) ^
But

Aç = 0 " P '«  "
- A  ̂  ( I - P,sr - p4s")

X

and

4 # O
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The integral in equation (2.65) juay be written

< ^ 4  cp'cis'Mt) ) I

X <^(iiM',2) cp(2^|5,(t) fp'p^^

-  ( r „  + PtOqpo^'iv^ 1 3 »  y^^'(?r

- (?3, -t ?4 < ) I »  cfCzŝ  13 »  >

.... (2.66)
using equation (2.64) and the fact that ^

Cp(n>ll.2) = C i  i  ^
we see that equation (2.66) may be written as

fl-C ii.'is’ lisas ’) H,-« + C o o o l ^ p ' o )

 ̂ 0< rt-rtol V  rt-Hr') (<2p'/ f*, Pp.l ,

Therefore

I , <,>■»■ |.s.x>'<Sr'lxr>‘'"

X fp.' £  ( I I »,-"r l!^o)Clr f.'M ,„.M qin)
Mp'Alp'

« (Lp. I rtp. |LoM,)(S^ J, /,/ ”s.->“r|S."«ô)CSr'|:f'r'Â ,-/-/|Srts)
• « • • \,z # u y / /

where

i v '  ('f'‘xS.lif’" ‘-.'V'Yl l o o U r  i»)^^ jp'l (;,^.lF^.p>

- \  4 5 4 4 X 1 ^ ^  I f,. I ' >> - % % W < z p  ; c. / joj Î2S hs 2S> O s  zs |lV2V> I (2,68)
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But

^  C>5p' (  Mr' I \ Mr' "/^r'l^ ^
A '  - ^
and also Ŝ,»

21 C\  ̂ M.-Hp' M-Mg \ ép. M-rtp )CLp- (p> Mp' M- M,v | L M )

Mp’ X ( L p -  I hç' H ,-M p '|  L, Mg)

*■ I L̂ L.fW(,4
3

X C l  Lo ~ M  M o )  I M,-M )  C2.69)

= i- o'*” [ 1 I ; fp' L, }

so ^  ̂ j
^ -- V T  <riSZS I'S 2 0  (^p l^ r )  ^ S .s \ ,M jJ ^ ^ L 4 l) (E tg - t0 3 ï

>C-i F ‘''‘T 2. 2-tf-M Mg |i 0 )2 1 # ,.,  W(LLp. n f p » . .  (2.70)
Substituting back into equation 2.58 we obtain

f '* = c z & 'ô (2 s .*o  [ c i s 2 V |  .s 2 0 ^ a p '|v p y ' 'J ^

% CzLH) Z  3',-.',-,̂ r'r” ̂ r"n
r'r" ' '

'' '^M . rtc C *-*-0 "'M M, I I n , - M ) ^
*  (2.71)H My

where 3f'p ‘ ( l Y "  ’ V > - o
, ' C <r c

' - / Iand ^
Lg “ H  Hp |; I M . - M )  = 3  A  ( L  I L ^ )

nPo
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where
A ( L |  L-Û ) - ^LLô ^ ^  L t-|

= o
unless

[l - 1 i _F L g <  ( L f l  )
rso the final expression for P is

9-1-1 z
P*’ " 3 ACLILp) ll<'i»'«'lis2s>Vzp’ l2p> ’ J  

K (2 L - H )  ^  ^  , Ap'pi. 3  r "7p- '* r ' ' --- (2.72a)
with.

2 : Z ( C n  ool^p'D)

X < 2 p ’ I f,o 1 'S> -4-iiilihl5:I><Zp I f,.| 2S?3\ .... (2 . 73a)
We now make some approximations to equation (2.73a). Since

{IS z V  h S 2 V >  -<is’ |i5)><2s' U O  ~<lb'UsX2i'|'S>
we can neglect the second term in the above expansion since

\ \  \the overlap of the IS and 2S radial functions of the atom I
■with the 2S and IS of the ion will be negligible. Also noting that ' 

the first term inside the square brackets in equation (2.73a) 
will have a similar factor we may write

A -- ^  c A U S o l ] f '% 'S r O O 'O o l^ ’p'0) iA/(lLp'll -.VLg) -
' p'
^  [<^P‘ f P, fp'l ^'p'> .... (2.73b)

1 f,„ 1 ZS> j



7/

The effect of the last term in equation (2.73b), called the s-
wave core relaxation term by Henry and Lipsky^^ is very small.
For example we find thât the photoionization cross section of 

2nitrogen at K ^=.3 Rydberg equals 11.98 and 12.18 megabarn when 
we exclude and include the s^wave term. In view of this we have 
not antisymmetrized with respect to the Is,2s, and subshells 
in our treatment of the C3p)^ configuration. For this case we 
write the s-wave core relaxation term as

‘b o  .0 ! * > > > < 3p 1 f . o h s )r'U \ * P n ' > I MO I " /  12. 73c)
The factor containing overlap integrals of the atomic wave functions 
and those of the residual ion in equation (2.72) become in the 
(3p)9 case

Pf)'' 3   (2.72b)
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Chapter 3

In this chapter we present calculations of photoionization 
cross sections using equations (2.27) and (2.73) for various 
atoms and ions of the (2p)^ and (3p)^ configuration. In all 
previous calculations of these systems, except that of Henry^^ 
for atomic nitrogen, it has been assumed that the coupling 
between final state channels is negligible. As we have seen 
in Chapter I it is this coupling that give use to structures in 
the photoionization cross sections. Since these line shapes 
have been the subject of considerable theoretical and experimental 
investigation in recent years it is interesting to compare the 
line shapes predicted from perturbation theory, c.f. equation 
(1.76), with our ab initio calculations. We notice from the 
tables and graphs in this chapter that the photoionization cross 
sections in the dipole length and dipole velocity approximations 
do not agree and that the agreement is worse for the (3p)^ system 
than the (2p)^. The two approximations should agree exactly if 
our wave functions for the initial and final state were eigen
functions of the same Hamiltonian-which they are not. The wave 
function for the initial state is obtained from a Hartree-Fock 
calculation and the final state wave function of course is obtained 
from Kohn's variational principle i.e. equation (1.47).
HI

4 2There are three terms in this configuration i.e. S, D and
2 4P. For N ( S) we consider only the transitions

^ Kv + -— ■» 4 6.43 (...(3.1)
■ We note that üotk channels are open so we do hot get any
structure in the cross section



73

In Figure 3 our results are compared to the experimental results
of Comes and Elzer^^'^^. Our present calculations do not reflect
the resonant structure that is evident in the experimental results
because we have not coupled together the and states of
the ion. A Rydberg series of levels has been observed by Car-
rol^^ in the region 694-612°A and the have attributed the series
to transitions from the ground state of the nitrogen atom
to the Rydberg terms US M p P

We now consider photoionization of the ^P° term. In order
to obtain the total cross section for this term we need the

2 e 2 e 2 econtributions from three partial waves C S , P , D ).
In Figure 4 we show the contribution of the partial

wave.

k v  4 N C r )  ' 3  N X ' D )  * ^ « 1
ixl"* ( ' S )  t e s  • • • ■

If we decoupled these two channels we would get the usual 
Rydberg series converging on the threshold. With coupling 
these states show up as resonances corresponding to excited 
states of the atom *̂S S . These
states have a very short life time as they decay into the ad
jacent continuum. From eguation (1.75) wo see that at the 
resonant energy the cross section takes the form

The cross section has a zero ininimum at as is evident
from the graph. Of course experimehters measure photo transmiss
ion and do not see this zero as they only see the total cross
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section.
The excess transition probability due to the discreet

state is simply 
•o

f -
•O

' i  I f .  ‘

"  %  I  4 ^ . ' "  '

where we subtract of the background contribution and neglect 
îîj|S as it is an odd function.

We now discuss the case

kv + M(^P) — 7^ / + fe d.

 (3.5)
For sufficiently low energy the third channel is closed and we 
have two continuum states and one discreet state. This gives 
rise to a series of resonances converging on the n '̂ Ĉ D) thres
hold, The cross section now takes the form (c.f. equation(1.76))

%  '-'a I — rl )

This is because we can form linear combinations of the open
channels such that the discreet state interacts with only one
of them. The other then gives the background which
is cpniinupus. We pee from Figure 5 that ihere is a big jump

1in the cross section at threshold where the D channel opens up.
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However If we average tiie oscillator strength of these transitions
2f/

i.e. add the quantity ^n+l'^^n^ to the background cross sect
ion for each pair of resonances, we see that the total oscillator 
strength is a continuous function of energy. The dashed line 
in Figure 5 shows the 'smoothed out' cross section. The above
remarks merely imply that our calculations are self-consistent.

2 eThe remaining partial wave we have to consider is D 
(Figure 6) .

U  + ^ N T p I f e d

4* é d-+ fe I- 
NX'S)

.... (3.7)

We see that we have three Rydberg series of resonances converg-
1 + 1 ing on the D state of N and one series converging on the S

state. At energies below the threshold there are four series
of discreet states superimposed on one continuum. Equation

29C3.6> does not apply in this case. Mies gives the formula

0 -. Z ^ / 6 - o
where thessummation is over the number of interacting resonances. 
However we have used equation (3.6) in curve fitting our results 
to extract the quantities
We expect this formula to hold if the résonances are well
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separated. The results are tabulated in Tables 6. We also
27have calculated the correlation co-efficient

f ' - i t e r . » ---(3,9)
where is the continuum state generated by. autoionization
and is the continuum state generated by direct photon ab
sorption from the ground state. Since the infinite sequences 
of resonances are due to the residual Boulcomb interactions in 
the final state their positions can be predicted to fit a 
Rydberg series

-X
E oo-r  (3.10)

where is the series limit, d the quantum defect, and n the
'principle quantum number' of the autoionizing state, d is a 
slowly varying function of energy as can be seen from the tables 

The resonant phase shift can be parameterized in terms of 
E^,fand the background phase shift (c.f. equation 16%).The
^  and r that are extract from parameterizing the phase shift 
agree very well with those obtained by curve fitting our cross 
sections to equation (3.6). This provides another check on the 
consistency of our calculations.

Curve Fitting Frooedure 
. We wish to minimize the quantity

■ W )
I + f ]  (3.11)
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where is the cross section we calculate and E. is the 
energy at which it is calculated. N is the number of points 
to which we wish to fit our formula for the cross section. We 
normally take N to be about 15 and we chose the E^ such that 
they well define the profile. We let

+
the equation

o-,- = o; r/̂
becomes upon multiplying across by the denominator

cr ^  <sr d E ;  -  a ;

—  y  — ^  ' 4" ^  0^ E . k

/...C3XI2)
We now make a further change of variables

3:, = -ar 2< r^ Q ^ ~  £ f

c + (1%.

+  ....C3U3)
In terms of these variables equation (.3.11) becomes

A  = ^  C^; - OJ X/ - *̂ 2. ■^5 ““
The extremum conditions 

gives us the following matrix equ&tion' V» "v ^  ÊV" "A [6V]EÔ-*' É‘<J“‘Eo- EV E*cr = êV^? ËÔ- N E Ë* .Xjj ivËRr Ê̂ô- E Ê» £VH U v j  (3.14)



78

N—  ^ ^  ^  2.
where ^   ̂̂ . Equation (3.14)
together with equation [3.13) gives us the parameters we require. 
We may improve on these first approximation parameters ^  by 
making use of differentials.

We let

'  13.15)

where q _  ̂ 9i' ? , . 9 *= ^
and where the are obtained from equation (3.14). We now
solve for the We have

= ZfT, - [ f j ̂*✓ W

7 0st <f .... C3,16)
which gives us a system of linear equations for the .

This method works very well in most cases i.e. we can 
obtain three pààce agreement between the calculated cross section 
and our parameterized cross section. The position E^, and width 
r, of the resonance is also bbtained by parameterizing the phase 
shift according to equation (1.60), and they agree very well with 
those ^iven by the above method.

In figures 7, 8 and 9 we present the and partial
wave contributions to the photoionization cross section of the 
2D state of nitrogen. The parameters for the resonances shown 
in these graphs are tabulated in Table 7. We note from figure 9
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that the series ( O) F  is missing or is too

narrow to show up in our calculation. The partial wave con
tributions to the photoionization cross section of nitrogen
above all thresholds are tabulated in Table 8.
+N

No experimental results have been reported for photoioniza
tion cross sections for N^, so it is not possible to evaluate
the accuracy of our results as we have done in for NC^S) in
figure 3. However in figure 10 we compare our results to a

51similiar calculation by Dalgarno et al and to a calculation 
52by Armstrong et al who used a modified Burgess-Seation approx

imation .
The cross sections in tabular form are given in table 9.

P
Atomic phosphorus has the same configuration as atomic 

nitrogen so it is intersting toccompare our results for the 
two systems. In figure 11 we compare the results for NC^S) 
and P(^S). We note the phosphorus cross sections are approx
imately four times larger than those for nitrogen. This is 
because the atoms are larger. Using hydrogenic functions we see

f --x* --

where f' dénote the average distance from the nucleus. Further
more we note that the slop^of nitrogen in figure 11 is more 
gentle than that of phosphorus. This can be explained qualita-
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tively in the ^ollowin# , The cross section apart from 
geometrical factors will depend on matrix elements of the type 

^  P». p I r I 6 cl and ^  ^ ̂  ̂  . We draw the
functions in the following diagram

As the energy of Fed increases i.e, the wave length decreases, 
we see that the Bp wave function cancels out faster thar Pip.
This explains the difference in the graph,

2 e 2 e 2 eThe S , P , and D partial wave contribution to photo--
2ionization cross sections of P C P) are given in figures 12, 13 

and 14, and the parameters for the resonances shown in these 
graphs are given in table 10. The corresponding figures and 
graphs for nitrogen are figures 4, 5 and 6 and table 6. The 
various quantum numbers involved in a photoionization process

3for an atomic system with initial configuration P have been 
tabulated by Smith^^, The results for photoionization of PC^D) 
are given in figures 15, 16 and 17 and table 11. We note
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that the widths, qf the resonances in phosphorus are greater 
than those in nitrogen. This is because the coupling between 
the channels is greater in the (3#)^ case. In table 12 we 
give the partial wave contributions to the photoionization 
cross sections of phosphorus above all thresholds.

Total absorption cross sections have been measured by 
53Kozlov et ai. , while calculations have been carried out by

54 55 56Vainshtein and Norman , Burgess et ai. , Peach and Manson
57and Cooper , According to Peach, the absorption of radiation 

by aluminum in the ground state ep ^P° may be the cause of the 
abrupt change in the solar continuum radiation at 2085 °A. In 
figure 18 we compare our computation of the photoionization 
cross sections for the 3p ^P° level with the results of Peach 
and Burgess et We recall that whereas our model is the
full Hartree-Fock treatment for a single configuration, the other 
models involve extrapolating measured quantum defects into the 
energy region of interest in the collision problem, as well as 
employing the Coulombic asymptotic form of the free electron 
orbital in the matrix element for all T. Within our model the 
^P° state of aluminum can phdtoionize into two final states 

and^D® with the ejected electron having angular momentum 
0 and 2 respectively, with the residual ion having the config
uration of magnesium.

At energies just above the photbionization threshold the 
algorithirî  ̂used to compute the asymptotic solution to the close 
coupling equations breas ^own. From figure 18 we see that the
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maximum predicted by the quantum defect method ̂ if it existed 
at all In the close^couplinq approach. In the neighborhood of 
0.05 Ryd, the three c&lcuations are in reasonable agreement.
At higher energies, one would expect the quantum defect method 
to become unreliable due to it being an extrapolation procedure 
and therefore the long tail of the close-coupling approximation 
at about twice the previous calculated values should be the 
better values. The Peach minimum at 0.125 Ryd. is probably due 
to severe cancellation of the matrix elements as previously 
discussed. In table 13 we present the cross sections in tab
ular form.

Si
Photionization cross sections for the ^P® and the excited
terms of the ground state configuration have been measured 

by Rich. In figure 19 we compare the measured photoionization 
cross sectionsof the ^  level of Si with our calculations. 
Previous càlculations have been performed in either a hydrogenic 
approximation or using the quantum defect method of Burgess and 
Seaton^^ (who calculated p̂-)-es and 3p-̂ ed amplitudes in Si"*") .
As remarked by Rich one would expect the quantum defect method 
to be inaccurate since it requires extrapolation of poorly 
behaved experimentally observedcquantum defects of bound levels, 
the extrapolation naturally getting worse the further one goes 
beyond the ionization threshold.

From figure 19 we see that there is excellent agreement 
between the observations of Rich and the calculations from first
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principles, as carried out in the close^coupling approximation
for photoionization from the ground state of silicon. Just
above threshold as previously mentioned, we have also plotted
Rich's single energy point for photoionization from the first 

1 eexcited state D , which is about 10% below the value predicted
by our calculations. Finally we present the cross section for

l ephotoionization from the S excited term of Si ground config
uration for which we have nothing to compare with. The import
ance of figure 19 must be stressed! in view of the very few 
laboratory experiments carried out on these reasonably complex 
structures. It is clear evidence of the quantitative correct
ness of the close-coupling results presented in this paper. In 
table 14 we have tabulated the partial wave contribution to 
the photoionization cross sections above all thresholds.
S

In order to compute the photoionization cross section of 
3 ethe P state of sulphur we need three partial wave contributions 

Ĉ S°, and . The residual ion having configuration
has three states that give rise to structures in the photoioniza
tion cross sections. In figures 20 to 22 where we present the
individual partial wave contributions to the photoionization

3cross section of S( P) we demonstrate the profound influence 
the excited states of the residual ion have on the cross sections 
by comparing with the results obtained when those states are 
neglected Crepresented by dashed lines on the graphs). In 
figure 27 we have attempted to sum the three partial wave con
tributing to photoionization from the ground state. The para
meters fE>® the various series of resonances in each partial
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wave are tabulated in table 15.
1Tbe results for the D state of sulphur are similar and 

are presented in figures 23 to 25, and in table 16, Weenote 
that the partial wave which also contributes to the photo-

Iionization of S ( S) has only one series of resonances whereas
+ 2we expect two series converging on the S C P) threshold sincehi/ + S(’o) 'P S*Cap)’ ^D -+ &&

4 t CL
The results for S(^S) are presented in figure 26 and 

table 17. The partial wave contributions to the photoionization 
cross sections above all thresholds for the three terms of 
sulphur are given in table 18.

Recently new Rydberg series of Chlorine have been observed
in absorption in the 600-1500 °A region by Huffman ^  al^^.
The series are due to transitions from the ^P° ground state to
(3p)^ ns and t^P)^ nd and converge to the C^P)^ states P̂,
and ^S. In figures 28 to 30 and in table 19 we present graphs

1and tables of resonance series converging on the excited D
and states of €£"*'. Unfortunately ref, C61) was a preliminary
report so we cannùt compare the observed positions of these
resonances with our calculated values, as we have done for 

37oxygen . Line shape parameters, namely on q-values, have
been determined theoretically and experimentally only for simple

2 7systems such as Helium . It is hoped that the values presented
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hexe should sexye aa a ûi,de to experimenters on what to
expect in more complicated systems such as the ones we have
considered. In table 19 we present the partial wave contribut-

2ions to the photoionization cross sections of CZ P above all 
thresholds.
The Negative ions

The photodetachment cross sections of electrons from the 
negative ions of silicon, sulphur and chlorine have been cal
culated by Robinson and Geltman whose tabulated values we com-' 
pare with the present calculations in figures 31  ̂ 32 and 33.
These authors use a central-field model i.e. a single radial 
equation, in which a parameter is adjusted in the potential 
to yield the observed binding energies of the negative ions.
In other words the method is somewhat empirical, like the quantum 
defect method, in which experimental observations are used to 
impose constraints on the model. On the other hand the close- 
coupiing approach is strictly an ab initio calculation. Con
sequently it is remarkable that the two techniques are in close 
agreement for photodetachment from the ground state of 
silicon (figure 31).

We have also computed photodetachmentccross sections for 
S and a  ,and we compare them with those given by Robinson and 
Geltman in figures 32 and 33. Calculations on C£ have also 
been reported by Moskvin^^ and Cooper^^. We note that our 
agreement with reference C62) is poor for C&^. Berry et al 
gives a value of 15 "5 x lo'^^̂ cm  ̂for the photodetachment cross
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2section et K =;,QQ64 ed we see from figure 33 that our values are 
outside the error limits of this experiment.

In the photodetachmerit calculations we have used the bind
ing energies tabulated in reference (62) and we have represented 
our initial states by analytic Hartree-Fock wave function given 
by Clementi^^. It is possible that our results could be improved 
by using wave functions other than the Hartree-Fock type to 
represent our initial states, since for negative ions these 
wave functions are overdamped asymptotically.
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TABLE yLII
Partial wave contributions to the photo ion i z a ti on 

cross sections of N (^S/ ^D, P̂)
Dipole Velocity Dipole Length

L So f

.025 9.799 10.318

.05 9.967 10.631

.1 10.205 11.142

.15 10.330 11.512

.2 10.365 11.914

.25 10.332 11.914

.3 10.243 11.982

.35 10.112 11.982

.4 9.949 11.924

.5 9.553 11.676

.6 9.103 11.304

.8 38.148 10.360
1.0 7.221 9.327
1.5 5.269 6.959
2.0 3.865 5.163

2pe ^D® 2^e V 2d ^ 2p,e

.15 1.030 0.000 5,291 1.063 0.000 6.264

.20 1.019 0.000 5,468 1.078 0.000 6.645

.25 .996 0.000 5.534 1.075 0.000 6.878

.30 .971 4.159 5.550 1.1.067 3.313 7.038

.35 .944 2.963 5.528 1.053 3.436 7.138



TABLE y m .
(continued!

2p* V V V

.40 .916 2.910 5.479 1.034 3.409 7.189

.50 .857 2.780 5.322 .989 3.312 7.179

.60 .799 2.632 5.120 .936 3.177 7.068

.80 .687 2.324 .664 .822 2.856 6.668
1.0 .589 2.032 4.208 .712 2.525 6.173
1.5 .403 1.442 3.227 .490 1.818 4.938
2,0 .284 1.039 2.489 .343 1.318 3.916

2g0 2pe ZoG 2g0 2p0
.15 0.000 2.948 0.000 0.000 3.012 0.000
.20 0.000 2.976 0.000 0.000 3.137 0.000
.25 0.000 2.958 0.000 0.000 3.200 0.000
.30 .784 2.921 6.086 .973 3.233 7.761
.35 .765 2.871 6.088 .950 3.241 7.835
.40 .696 2.811 6.057 .921 3.229 7.923
.50 .696 2.675 5.899 /863 3.161 7.918
.60 .651 25527 5.666 .808 3.053 7,753
.80 .566 2.231 5.116 .705 2.779 7.187

1.0 .492 1.957 3.402 .435 1.829 4.985
2.0 .250 1.031 2.568 .315 1.347 3.829



f 2.6

TABLE IX
Partial wave contributions to the photoionization

cross sections of N+ t"pf Ŝ)
.Dipole Velocity Dipole Length

; ; . 3pO . V

.025 1.923 4.537 2.146 5.443

.05 1.928 4.557 2.157 5.478

.10 1.862 4.453 2.082 5.326

.15 1.797 4.276 2.023 5.174

.20 1.733 4.139 1.956 5.002

.30 1.612 . 3.875 1.829 4.726

.40 1.499 3.625 1.707 4.440

.50 1.394 3.389 1.591 4.167

.60 1.296 3.169 1.483 3.909

.80 1.123 2.773 1.289 3.438

.0 .976 2.432 1.123 3.025

.5 .700 1.774 .805 2.218

.0 .516 1.321 .592 1.655

IpO IpO 1D° ^F°

.025 .397 1.088 4.482 .442 1.088 5.827

.05 .396 1.085 4.519 .442 1.086 5.892

.10 .378 1.039 4.402 .443 1.041 5.769
,15 .362 .994 4.285 . 406 997 5.643

.20 .347 .952 4.169 .389 954 5.515

.30 .319 .872 3.943 .358 875 5.259
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TABLE IX
(continued)

,40 .294 .799 2.725 ,331 .803 5.005
,50 .271 .734 3.516 ,305 .736 4.756
.60 .251 .675 3.319 .283 .676 4.516
.80 ,217 .573 2,956 .243 .573 4.063

1,0 .188 .489 2.635 .211 .488 3.653
1.5 .137 .340 1.992 ,151 .336 2.807
2.0 .103

IpO
.245 1.527 .112 .241 2.177

.025 6.459 7.812

.05 6.489 7.859

.10 6.274 7.619 .

.15 6.063 7.381
,20 5.858 7.146
.30 5.467 6.692
.40 5.101 6.259
.50 4.759 5.852
,60 4.443 5.471
,80 3.879 4.784

1.0 3.398 4.192
1,5 2.480 3.055
2.0 1,852 2.275
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TABLE .XII
Partial. wave contributiona to the photoibnization

cross section of P t‘̂5, ^D,

Dipole Velocity Dipole Length
2

Kf 4p

.015 32.019 54.352

.1 29.114 50.462

.15 25.994 45.874

.2 22.875 41.016

.3 17.149 31.546

.4 12.439 23.457

.6 6.204 12.198

.8 2.996 6.122
1.0 1.451 3.047
2.0 .284 .289

> 9 ? 9 9 9 9D P F P D F

.3 1.488 5.226 11.161 2.721 9,136 24.960

.4 1.167 3.816 9.702 2.176 6v@65 22.788

.6 .733 2.011 6.822 1.345 3.802 17.524

.8 .476 1.082 4.281 .825 2.129 12.085
1.0 .326 .603 2.357 .528 1:209 7.477
2.0 .113 .121 . .007 .169 __159 ... .213 . . .

,2(2 2q .2,g . 2 p . . . .
.... " 

D

.3 1.574 5.632 12.828 2.701 10.895 26.937

.4 1.193 4.558 10.817 2.109 9.182 24.047



TABLE XII 
(continued)

2s 2p 2d 2s 2p 2d
.6 .650 2.700 7.333 1.193 5.711 17.946
.8 .359 1.467 4.563 .664 3.174 12.164

1.0 .211 .770 2.541 .381 1.677 7.444
2.0 .049 .112 .066 .059 .200 .235



/3S"

2pO

TABLE XIII
Partial wave contribution to the photoionization

2cross sections of AiC P)

Dipole Velocity Dipole Length

K / 2ge ,2pe 2ge 2^e
I. -

.01 .849 14.373 1.805 21.992

.02 .609 14.236 2.159 21.833

.03 .582 13.301 2.065 20.439

.04 .557 12.427 1.978 19.132

.05 .534 11.669 1.892 18.216

.075 .482 9.808 1.717 15.183

.10 .438 8.295 1.565 12.891

.15 .370 5.959 1.324 9.353

.20 .318 4.307 1.142 6.847

.30 .246 2.280 .879 3.734

.40 .197 1.215 .691 2,038

.50 .163 .643 .548 1.099

.60 .137 .332 .442 .586

.70 .117 .163 .365 .312

.80 .102 .073 .311 .164

.90 .089 .027 .272 .082



I3Ù

3pe

Id®

TABLE JCIV
Partial wave contributions to the photoionizatipn 

cross sections of  ̂ Ŝ)

Dipole Veiocity Dipole Length
2Kg 3„o ' 3_o..... 3 o 3^0 ■ 'P D P D

.01 8.989 18.867 13,035 29.587

.02 9.193 19.636 13.404 30.964

.03 8.841 19.124 12.936 30.315

.04 8.495 18.335 12.469 29.212

.05 8.156 17.698 12,006 28.334

.06 7.826 17.072 11,551 27.460

.08 7.195 15,858 10.667 26.734

.10 6,604 14.697 9.829 24.053

.15 5.313 12.056 7.965 20.125

.20 4.373 9.808 6.454 . 16.779

.30 2.805 6.342 4.258 11.245

.60 .939 1.523 1.381 3.075

.80 .530 .522 .753 1.225
1.0 .339 .145 .464 .444

1 Ô P lyO IpO V lp.0

.01 2.020 3.756 14.701 3.327 3.882 27.185

.02 2.133 3.850 16.419 3.553 3.966 30.609

.03 2.070 3.641 16.139 3.460 3.740 30.315

.04 2.010 3.348 15.855 3.369 3.424 29.995



/?7

Ige

TABLE XIV 

(continued)

IpO V Ipb IpO IpO IpO,

.05 1.952 2.803 15.566 3.280 3.182 29.651

.075 1.818 2.637 14.836 3.071 2.685 28.705

.10 1.699 2.233 14.106 2.876 2.223 27.676

.15 1.492 1.618 12.676 2.529 1.575 25.505

.2 1.324 1.193 11.335 2.292 1.161 23.567

.3 1.062 .659 8.890 1.793 .617 19.455

.6 .570 .119 3.617 .871 .103 9.395

.8 .403 .034 1.690 .579 .029 5.095
1.0 .300 .006 .684 .422 .005 2.579

IpO IpO
.01 25.653 38 .353
.02 26.713 40 .726
.03 26.227 40 .749
.04 25.761 40 .864
,05 25.243 40 .747
.075 23.912 40 .214
.10 22.556 39 .336
.15 19.864 36 .904
.2 17.301 34 .866
.3 12.775 27 .278
.6 4.309 10 .275
.8 1.912 3 .659

1.0 .819 1.918
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TABLE XyiII
Partial wave contributions to the photoionization

3 1 1cross sections of SC P, D, S)

Dipole Velocity Dipole Length

L ^S° . ^P° ^D° . ; ̂.s:° : , ^D°O O t

D

1S

.3 2.907 8.616 14.049 5.053 13.314 26.242

.4 2.637 7.029 13.170 4.739 11.154 25.895

.6 1.928 4.226 10.949 3.618 7.004 23.493

.8 1.264 2.335 8.495 2.414 4.022 19.751
1.0 .781 1.237 6.052 1.491 2.216 15.262
2.0 .121 .099 .286 .191 .141 1.248

IpO IpO IpO IpO IpO 4 °
.3 2.822 8.064. 11.894 3.695 14.129 22.638
.4 2.158 7.628 11.376 3.016 14.129 22.638
.6 1.249 6.329 9.813 1.967 12.856 21.684
.8 .763 4.800 8.021 1:325 10.385 19.334

1.0 .495 3.336 6.144 .919 7.554 10.080
2.0 .103 .328 .272 .151 .698 1.681

IpPO IpO

.3 23.807 37.182

.4 22.378 38.588

.6 18.858 37.774

.8 15.138 33.748
1.0 11.415 27.635
2.0 .832 2.805
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TABLE XX - 
Partial wave contributions to the

2photoionization cross sections of CJl C P)

Dipole Velocity Dipole Length
L S ^D^o o f

2p .3 2.612 7.474 12.397 3.791 13.424 23.339
.4 2.225 7.248 12.151 3.303 13.612 23.942
.6 1.422 6.499 11.159 2.194 13.169 23.782
.8 .826 5.461 9.801 1.315 11.710 22.404

1.0 .460 4.253 8.131 .754 9.598 19.913
2.0 .039 .476 .805 .055 1.235 3.288
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TABLE 21
Photodetachiïient cross sections of Cal S and

1 L
CbJ Ci"C S®)

ta) S. 4 e LSn= P

Kf2 ^L % *L
.005 10.986 7.151 .15 31,461 41.028
.01 14.745 9.867 .17 31.611 43.036
.015 18.996 13.378 .19 31.555 44.578
.02 22.987 17.667 .21 31.332 45.706
.025 24.071 20.541 .23 30.978 46.477
.03 24.871 20.541 .25 30.519 46,950
,035 25.499 21.734 .3 29.053 47.137
.04 26.021 22.836 .4 25.373 44.651
.045 26.476 23.876 .5 21.280 39.609
.05 26.887 24.875 .6 17.163 33,278
.07 28.299 28.661 .7 13.337 26.973
.09 29.476 32.248 .8 9.701 20.848
.11 30.409 35.581 .9 7.289 16.501
.13 31.069 38.535
(b) C&" LSI

*L % ^L
.01 5.468 4.494 .40 17.518 27.750
.02 7.294 6.204 .50 17.675 30.322
.03 8.741 7.436 .60 17.535 32.027
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TABLE 21
(continued)

%
.05 10.010 9.294 .70 17.244 33.146
.07 11.074 10.801 .80 16.921 33.962
.09 11.927 12.162 .90 16.544 34.510
.11 12.663 13.454 1.10 15.770 35.230
.13 13.321 14.708 1.30 14.908 35.510
.15 13.918 15.936 1.50 13.822 35.230
.17 14.460 17.139 1.70 12.346 33.488
.19 14.951 18.314 1.90 10.373 30.181
.21 15.392 19.449 2.10 8.005 25.112
.23 15.784 , 20.545 2.30 5.573 19.013
.25 16.129 21.591 2.50 3.506 13.109
.30 16.804 23.982
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TABLE 22
Partial wave contributions to the Photodetachment 

cross sections of S Ĉ P°)
Dipole Velocity Dipole Length

K / V 2pe V 2gO 2pe 2d"

.01 .000 4.462 .031 .000 2,478 .013

.02 .000 5.645 .109 .000 3.395 .068

.03 .000 6.289 .360 .000 4.024 .177

.05 .000 6.267 .916 .000 4.867 .721

.07 .000 6.811 1.778 .000 5.401 1.131

.09 .001 6.682 4.217 .001 5.753 3.782

.11 .034 6.527 6.221 .030 6.037 6.243

.13 .112 6.422 7.325 .106 6.337 7.762

.15 .222 6.371 8.118 .219 6.674 8.981

.17 .344 6.361 8.738 .351 7.046 10.047

.19 .452 6.378 9.238 .462 7.444 11.011

.21 .621 6.412 9.645 .942 7.857 11.895

.23 .867 6.426 10.007 1.493 8.486 12.759

.25 1.058 61494 10.356 1.868 8.685 13.649

.30 1.430 6.579 11.206 2.549 9.643 15.974

.40 1.890 6.623 12.701 3.379 11.097 20.414

.50 2.103 6.519 13.739 3.755 11.923 23.729

.60 2.159 6.337 14.171 3.830 12.298 25.530

.70 2.106 6.093 13.941 3.706 12.373 25.867

.80 1.973 5.833 13.168 3.447 12.309 25.068



1 ^ 0

TABLE 22 
(continued!

V 2d"

.90 1.782 5.506 11.983 3.100 12.168 23.482
1.10 1.302 5.001 9.3861 2.268 11.679 19.866
1.30 .888 4.336 7.226 1.484 10,797 16.922
1.50 .491 3.534 5.562 .895 9.377 14.558
2.00 .104 1.438 2.296 .212 4.447 7,967
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Chapter 4

The code can be logically divided into four sections 
and the transfer of control within the program may be described 
by the following diagram

MAIN

SECTION 1
Sets up the 
system of eq
uations (2.48) 
Computes rele
vant parameters 
and co-efficients

SECTION 2
Generates lin
early indepen
dent solutions 
of this system 
and integrates 
them to the 2 
match points

ô' ■

SECTION 3
Solves eg. (39) 
of Ref. (32). 
Evaluates eigen 
phases and cross 
sections

SECTION 4
Evaluates eq
uations (2.49) 
and (2.53) using 
the continuum 
wave functions of 
the previous sec
tion.

We now describe the function of each routine in the code 
and the COMMON variables read in or computed there.

MAIN Reads in IREAD, IWRITE the logical input and
output tape numbers and calls the sectiors in turn,

SECTION 1
SUBROUTINE MAINl

The remainder of the data which we now describe is read 
in this subroutine.

IPH -ve { 0 
1

call EXIT
implies more data cards to be read 
implies no more data cards to be read



LRGL Total orbital angular momentum of system
SPN Total spin angular momentum of system
NPTY Parity of system
W1 Energy of incident particle (in Rydbergs)
H Basic mesh size

isa

IDEBUG(8) { 0 no print out in intermediary steps in the 
calculation.

1 Prints out result of intermediary calculation
IDEBU6 (8)= -1 if we require the 4th section to 

be entered
IPH { o Read in more data

1 No more data to be inputed.
10 Value of the nuclear charge
NST Number of states to be included in the expansion
NELT No. of radial equations allowed (maximum=5)
IQ No. of electrons in np subshell of target
IPl No. of closed subshells

The code assumes that the orbitals of the atomic electrons 
are accurately represented by analytic SCF functions i.e.T.(D -

We need IP=IP1 + 1 of these for the Ls, ^S...np orbitals 
of the target and also 2 more such orbitals for the (np)^^^ 
system, namely and or tor the 4th
section since the photoionization cross section is proportional 
to I ̂  Ÿ; I f I . The is merely the (np)^+l system
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and tke ^  is, described by the continuum wave functions that 
are computed in sections 1 to 3.

Total number of orbitals - IP + 2 + IP2

 ̂ EN (NST) Energies of the target states in atomic units
PTL Ionization potential of the (np)^^^ ^o^o system

IRl Number of mesh steps in the first change in mesh
size. IR1*H is also one of our matchiig points 
for the functions. The integration from the 
origin outwards is terminated at this point. 

IR2,IR3,IR4 Number of steps from the origin to regions where
the mesh size is doubled i.e. the interval size 
between IRl and IR2 is 2*H etc.

IRA Number of steps from the origin to RA.
1RS First match points^IR5*H: The IRI's satisfy

the inequalities
IR5<IR1<IR2<IR3<IR4<IRA 

where each IRl is at least 2 larger than the 
previous.

The functions are integrated from the origin as far as 
IR1*H. The values of the functions at IR5 and IRl are stoed 
in the matrix Bl. The solutions generated in the asymptotic 
region are integrated inwards as far as IR5*H. The values of 
these functions at IRl and IR5 are also stored in Bl.



fS4

ITAPE

LO
SO 1
CNORM

Logical output tape number of temporary storage 
of the independent solutions until they are re
called in MAIN4.
The orbital and spin angular momentum of the 
(np)^^^ system under consideration in photoionization 
calculations. x-i 2.

l^p) 0  ̂ (IS J  where ^ denotes the radial
wave functions of the (np)^^^ L^S^ system. For 
the (3p)^^^ system we neglect the contribution
from the IS and only include [  (3p* I as'ss'fîs 3s f ]

R2SD
R2SE !»p i  L”  dr

(kr r

The following variables are also computed in MAINl
IRAI
N
NA
NB
IFA
IFB
NMU

NMÜSOL(NMU)

NFEQN(NMU)

IRA + 1
Number of channels 
Number of open channels 
Number of closed channels
Number of distinct wave numbers in open channels 
Number of distinct wave numbers in closed channels 
Number of Lagrange multipliers needed to make F^'s 
orthogonal to atomic orbitals.
Number of the atomic orbitals involved in the NMUth 
Lagrange multiplier.
Number of the radial equation involved in the 
NMUth Lagrange multiplier.
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L2P(N) Angular momentum of the outgoing electron in
IL2CN) }
AL2 (N) a particular channel
ILl(N) Orbital quantum number of the target in a part

icular channel
SPNl(N) Spin quantum number of the target in a particular 

channel
WP(N) Wave number squared for each chnnel
KABOVE(N) Number of the channel above threshold
KBELOW(N) Number of the channel below threshold
ABOVE(N) Distinct particle energies above threshold
BELOW(N) Distinct particle energies below threshold
R(IRAl) Values of the independent variable *r' at which

the functions are computed. Note: R(1)=E and
R (2)=H.

RA Value of 'r' beyond which exponential potentials
are neglected.

RB Value of 'r' at which asymptotic expansion is used.
HX(IRA) Mesh sizes over the range of integration:

IRT(N,N) Used to locate the potentials V.. (IRA). Since
NfhHOV^j is symmetric only ^  of them are stored.

EXCQ Excess nuclear charge (=g-number of atomic electrons)
ETAAB(NST) excess nuclear charge

}
ETABIW(NST) divided by distinct wave numbers

TAU(30) Needed in subroutine CLEBSH
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HF Final mesh size (= 16*H)
NT0T=N + NE Total number of second order differential

equations.
NT0TNA=NT0T+NA
NANA=N + NA 
N2T0T=2*NT0T

NIN Number of independent solutions in the inside
region

N00T Number of independent solutions in the outer region.
CALLS SETLSF, VIJOFR, SUBEX, GENPl.
SUBROUTINE VIJOFR

The following arrays are calculated in this subroutine.
N(N-fl) , /A ^

A( 2 , IRAI) Direct potentials - If.
r'- r * J

when is defined by equation (2.30).
,^^,N(N+T) I V/

2 , 2) Co-efficient of of a s f o r  A - 2
if such a term occurs in the direct potential,zero otherwise.

V(N,IRAI) Eq nation (2.41)
NV {=0 If no. terms are in the equations

=1 If the equations contain a term.
NVJ(N) {=0 If no. terms are in a particular equation

=1 If equation has a V. term.
CALLS YSUB, CLEBSH, RACAH.
SUBROUTINE CLEBSH

Calculates the Clebsh-Gordon co-efficient D=(ABOO/CO) 
SUBROUTINE RACAH (A,B,C,D,E,F,G)

Calculates Racah co-efficient 
G=W(ABCD;EF)
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SUBROUTINE YSUB ;
Numerical evaluation of Y^ (R̂ .P̂ r)
The function is stored in the array B (IRAI) 

FUNCTION FG03B(A,B,C,P#Q,R,X,Y,Z)
Evaluates r ABQ 1

i CPX V i.e. t 
( RYZ J in Ref.

the Wigner 9-j symbol as defined 
(39).

SUBROUTINE RSUB( I,J> K,L,X)
L=1 calculates X=R|<(P.P .P;. P . )% 1 1 ]
L=2 calculates X=Ry.(P.P.P.P.)K 1 3 3 1
CALLS YSUB 

SUBROUTINE SETLSP
Tabulated LS term values for the (np)^ configuration and 

stored in the arrays AL(3) and ASPN(3).
SUBROUTINE CFP (q,L^,S^,L^,S^,C)

Tabulated values of C= CP  ̂ ^4^4^ i.e. fractional
parentage co-efficients for the (np)^ configuration.
SUBROUTINE SUBEX,

Determines the number of distinct exchangeterms and computes 
the following variables:

NE Used to count the exchange terms, its final value
being the number of distinct exchange terms NE. 

IXl(NE) Temporary array used in subroutine.
1X2(NE) Value of for the NEth exchange term
1X3(NE) The particular involved in the NEth exchange term
1X4 (NE) The particular Fĵ involved in the NEth exchange term.
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AX1(N,NE) Th.e co-efficients: of the exchange terms
AX2 (NE) A C ^ + 0
AX3 (NE,N) f Z A  + O

CALLS CFP, RACAH, CLEBSH, FG03B.
SUBROUTINE GENP l

   —  " ^ *1

Calculates ENPl ® E[C  ̂ where E= ^
•f fc  ̂where L^S^ are the quantum numbers of the lowest

term and the actual expressions for the E's are obtained from 
equation (2.46). The wave functions of the (np)^ system are 
used in evaluating b f L S | .
CALLS CLEBSH, RACAH, CFP, RSUB.

SECTION 2
SUBROUTINE MAIN2

CALLS INTEGRT
SUBROUTINE INTGRT

Generates NT0T independent solutions of the system of homo
geneous equations Z  " B  Z  where Z= is a column
vector which has NT0T elements. A further (NV+NMV) independent

II
solutions of the inhomogeneous system Z =BZ + G where G involves 
the terms and the Lagrange multipliers are generated by setting 
the co-efficients C a n d e q u a l  to unity in turn and the re
mainder equal to zero. These solutions are integrated from E 
to H using the Runge-Kutta method. This involves subroutines 
STRSLl RUNGKTl RUNGE and SUBG and the array, Z(N2T0T), ZPRIME 
(N2T0T). Knowing Z(o) and Z(H) we now can use the Numerov method
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to integrate IRl steps and we store the solutions at the points 
corresponding to ÏR5 and IRl in the matching matrix Bl.

dr>- ^  'J d '  (4.1)

This gives us

+  6 ; (NZ(r) +  G.(r) + j
^  (4.3)

V -  _ 1F 3 (NT0T, NT0T) \Z 'j
r s . .  L 6; (0 1  )F6(NT0T,NIN) L^'4 1% J -* J

r i  —  %  (r ")F7(NT0T,NIN) l2 *J J  J

F8(NT0T,NIN) y^T B; ̂  ̂  ̂V 6 .(f ̂ j ) - 4 <̂ -̂Hj|̂
^ d c)

F1(NT0T,NIN) Z.(r) J - I, . . • N i N
F2 (NT0T/NIN) j - ~ N %  N.

F4(NT0T,NIN) = R.H.S. of Numerov formula

2  F 6  - F7 4- F &

F1(NT0T,NIN)= F3[{NT@T,NT0t 3~^4(NT0T,NIN)



/éo

The integration from the asymptotic region r=rg is now 
begun by calling STRSL2 in this re^on potentials which involve 
exponential terms are negligible so the equations take the form

N
^  U{( F. i  « I, ••• N

df-L j.i J J
 (4.4)

where

- L  —  r

46The asymptotic form of Burke and Shey for the functions 
is assumed

. i X r  'P

K "  ?i: iic - p ,

-V c o . C i , r M K V V > 4  '  ]y rv

^  r J ^  i T  _ p  ,

••••(4«6)
Substituting these F^'s into the asymptotic form of the diff
erential equations gives us a recurrence relation for the 

i K :K
olp > rp and Op . In order to solve these

• 5 * a
recurrence relations o(̂   ̂p and must Be specified, i.e.
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2*NA + NB constants are unknown. Consequently 2*NA+NB linearly 
independent solutions can be generated by setting

M C  NC

AlC NC

_ I „ 3.uA*\  ̂ Nc

and solving the recurrence relations 2.NA+NB times (NC counts the 
number of solutions).

Substitution of the co-efficients0 ^ back into equation 
(4.6) enables us to calculate the F^*s at r_ and (r_-HF) . These

Z i5 c
solutions of the homogeneous system of N coupled equations are
integrated in wards using the Numervov method and the asymptotic
form (4.5) of the potentials to the point EL where the exchange
potentials might be expected to begin contributing

At this point the exchange potentials are explicitly taken
into account. We define a further NE linearly independent solutions
of the homogeneous system of NT^T coupled equations by setting

—X
the co-efficients of f  in the exchange terms each equal to unity 
in turn and the rest equal to zero. A further NV+NMU independent 
sclutions- of the inhomogeneous system are generated by setting 
C and theJiJL *s equal to unity in turn as in the inner region.
These NOUT=0NA+NB+NE+NV+MMV solutions are integrated inwards to 
the point corresponding to IR5. The values of the functions at 
the points corresponding to IR5 and IRl are stored in the matrix Bl.
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Since the mesh size is halted at the points corresponding 
to ÏR4 IR3 IR2 IRl the following arrays are required for inter
polation of F6 F7 and F8 in these regions 
F9(NT0T,N2UT),F10(NTOT,NOUT),F11CNT0T,NOUT)
Subroutines called by INTGRT.
STRSLl,RNGKTl, MATINV, UFLSPR, SETF3 SETCAE, SETF8, STRSL2, 

SETF3A, SETDA 
SUBROUTINE UFLSPR

Machine language subroutine written to supress programe 
interupt messages caused by underflows oh the IBM 360-65. 
SUBROUTINE RSTSUP

Machine language subroutine which terminates the under
flow supressor programe.
SUBROUTINE STRSLl  ̂ ,

Computes F. (é) ;  ̂̂  • The results
are stored in Z(N2T0T). Use is made of the fact that

r  r^’"' y  ^  r
1 r -9 o A r o

The NIN linearly independent solutions in the inner region 
are generated by setting the co-efficients of the powers of 
equal unity in turn and setting the remainder equal to zero. 
SUBROUTINE SUBG

Computes the right hand side of the differential equation 
at 2 . Result is stored in G(NT0Ty
FUNCTION RUNGE

RUNGE-KUTTA formula.



SUBROUTINE RNGKTl
Converts the system of NT0T coupled second order differential 

equations to a system of N2T0T first order differential equations 
in preparation for the Runge-Kutta formula by making the trans
formation

z  = ẑ  I +z: 2  +  G,  (4.7)
1The are stored in the array ZPRIME(N2^0T)

The above system may be written as

z '  = f  (r z , . i<=
K k
is known from STRSLl 

.'. From the Runge-Kutta formula

z  ( H )  -  z k )  -  - " D
» ' D  (4.8)

where

t., = ---- )
t., . « " ■  • f . ( f " J ' , 2 *'*,^*..

■àil = (f -"V", ............ i K n l r ^

•iii -- •••• '
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where HM=H-6
CALLS SUBG, RUNGE 

SUBROUTINE SETP3(IA,HA)
Computes the NT0T X NT0T array F3 at the point RÇEA+1) 

with H=HA .
SUBROUTINE SETF8 (lA, HI, JA, K)

Computes the array F3 at the point R(IA+1) with H=Hi.
K=0 implies that the integration is in the 'inner'

region i.e. number of solutions = NIN 
K=1 implies that the integration is being performed in

the outer region i.e. number of solutiors = N0UT
JA=0 implies that the mesh size is uniform in the region

of integration
1

JA=2} means that we are preparing to decrease the step size
by a factor of 2.

SUBROUTINE MATINV (A,N,B,M,DETERM)
M=0 inverts the NXN matrix A

-1M=1 computes A B
DETERM= dt/k 

SUBROUTINE SETF3A
Computes the NXN matrix F3 in the asymptotic region. 

SUBROUTINE STRSL2
Fits the F^'s to the asymptotic form of Burke and Shey^^.

If a good fit is not obtained it automatically increases r and 
tires the expansion again. Computes F.(̂ 3 ) , .

CALLS STRSL9.
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NC NC

SUBROUTINE STRSL9 (ALPHA, BETA, GAMMA)
iK

Solves a difference equation for the co-efficients
and Op of the asymptotic expansion using oC ̂

NC communicated to it by STRSL2.
The results are stored in the arrays ALPHA, BETA, and GAMMA, 
Computes lAASE i.e. the number of terms in our multipole expansion 
SUBROUTINE SETCAE (II)

Evaluates the orthogonality integral in the 'inner' region 
using the trapozbdial rule at each step of integration.

S(i« 0

£  (NMU, nim) = j J, J
J r I, 1, - -

where
IU=NMVSOL (NMV)
IV=NFEQN (NMV)
It also evaluates the integral involved in equation (2.48).

^  fC (NIN) r ^  ( V; F. c(f ,,1 .. . MIN
 ̂c I ^

SUBROUTINE SETDA (II)
Evaluates the same integrals as SETCAE for the 'outer' 

region. The results are stored in the arrays I(NMU,N0UT) 
and D(N0UT) .

SECTION 3
SUBROUTINE MAIN3

CALLS SOLVE
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SUBROUTINE SOLVE. .
Completes setting up the Matching matrix Bl which in

corporates the requirement that the solutions be continuous
over the entire range 0 ̂  ^ B and also the conditions
expressed by (33) and (41) of Ref.(32), The orthogonality 
requirements are also expressed in the Bl matrix. The re
sultant set of linear equations may be expressed in matrix
form

|4---  NV-»[̂ KinU

r— V-lA 'Q.
oc

t>2
JL
t
iz

Î«
Zi

F,, .... 
F%%

' ' J,

1 *

F,-( p - V

c
C40

D

E EtP F

0 0 0 . ■* 
*

C

/̂ uno
W,
Wn

0

i I
%
I

0
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These equations are solved NA times to give the unknown 
co-efficients Vx, j ^ i=l, NA which are stored
in the array W(M,NA). The R-matrix is then computed using 
equation (42) of SHB. The R-matrix is daigonalized and the 
eigenphase shifts computed.
CALLS MATIN 3,HDIAG,GAMMAR, RMSIE 
SUBROUTINE MATIN3

Inverts the Bl matrix 
SUBROUTINE GAMMAR(ARGl,ARG2,ARG3,ARG4)

Computes the argument of the complex gamma function 
Qra rCaRCI * iAHOZ) s. OACte^ ^

SUBROUTINE HDIAG(H,N,lEGEN,U,NR)
Diagonzlies the NXN symmetric matrix H.

SUBROUTINE RMSIG
Calculates S and T matrixes aid partial wave cross sections 

for the transitions L^S.^L.S.. Also computes the normalizationp  ̂1 ] ]
matrix Ap*p**of Equation (2.57) and stores it in the array 
AB(NA,NA,NA)

SECTION 4
SUBROUTINE MAIN4

Rewinds ITAPE and reads in the solutions F which were 
computed at each point of the integration. Linear combinations 
of these solution vectors are now formed using the co-efficients 
computed in SOLVE and which are stored in W(M, NA). The
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result is stored in the array F2 (N/NA,IRAI)
CALLS PHOTO 
SUBROUTINE PHOTO

This subroutine evaluates equations (20) of Ref. (4) 
to give the photoionization cross sections in the dipole length 
and dipole velocity approximations. We note that the function 
gp(E) (equation 2.43a) is approximated by the following express
ion (equation 2.43b)

I C O  .
V V pi

„ (if t'n)  4- ( z / 1

-  f(ipI
r  '

where we use the same notation as Ref. (41)
CALLS INTRAP
SUBROUTINE. ŒNTRAP (A,I,J,UK,RHO,IND)

Evaluates the integral f.
K » o  = ( A

Jq Jusing the Trapezoidal rule.
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Trial Wave Functions in the Close-Coupling Approximation*

Kenneth Smith, M. J. Conneely, and L. A. Morgan 
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(R eceived 13 M ay 1968)

The th e o re tic a l and n u m erica l consequences of choosing d iffe ren t t r ia l  w ave functions 
in  the c lo se-co u p lin g  ap prox im ation  a re  c o n sid e red . In  p a r tic u la r ,  ca lcu la tio n s a re  
c a r r ie d  out on the  s c a tte r in g  o f e le c tro n s  by a tom ic  sy s te m s  w ith  configu ra tions 1 ^ 2 ^ 2 p ^ ,  
g = 2 ,3 ,4 , w h ere  p ro p e rly  an tissm am etrized  bound configu ra tions ls^ 2 s* 2 p ? + l a r e  m ixed  
w ith  th e  t r ia l  continuum  wave function. An a lte rn a tiv e  tre a tm e n t, w hich e lim in a te s  the  
need fo r  such  bound con fig u ra tio n s i s  p re se n te d .

I. INTRODUCTION

In order to calculate the cross section for a 
scattering process within the framework of non- 
relativistic wave mechanics, it is  necessary to 
approximate the Schrodinger equation. One of 
the most successful approximation schem es is  to 
ejq)and the over-all wave function of the projectile 
plus target in term s of the complete set of (as
sumed known) eigenstates of the target Hamilton
ian, see  Burke and Smith J  This method has 
come to be known as the “close-coupling approxi
mation” because only a few of those atomic term s 
close to initial and final states are retained in 
the eigenfunction expansion. The unknown coef
ficients, , in such ah expansion are Hie 
solutions of coupled second-order integro-diffef- 
ential equations with prescribed boundary condi
tions, and are interpreted as describing the radial 
motion of the projectile relative to the target.

If there are N  such coefficients, then the 
Schrodinger partial differential equation has been 
replaced by an N-channel problem in one dimen
sion, r .  Those channels in which %  oscil
lates as r — are said to be “open”, and corres
pond to continuum orbitals; the remaining (N-iV^) 
channels are said to be ‘‘closed” since the asso
ciated f  (g will vanish exponentially as

The theory of the. scattering of electrons by hydro

gen atoms, within this approximation, was carried 
out by Per cival and Seaton^ and extended to hydr ogèn- 
like ions by Burke, Me Vicar, and Sm ith / Two 
points of these papers are of interest to us here. 
Firstly, the eigenstates of the target Hamiltonian 
are known exactly; and secondly, the e^ansion  
coefficients were not orthogonalized with 
respect to the boimd target orbital. The fact that 
the target eigenstate is a single exactly known 
orbital means that antisymmetrization of the 
target is a non-existent problem and no errors 
are introduced into the cross sections because of 
the bound orbital. However, since only a few 
slates can be taken in the expansion, only a part 
of the full effective polarizabilities are included.
A technique for improving the calculations has 
been suggested by Damburg and Geltman.'* These 
authors recommend replacing the three degener
ate n= 3 hydrogenic target orbitals with an alter
native non-degenerate trio, which results in the 
full effective polar izabilities being accounted for. 
lu other words, even in the sim plest coUision 
problem, me one-electron orbitals of the target 
are a source of discussion.

Extensive calculations for electron collisions 
With positive ions with configurations is  ls®2s??p* 
have been carried out by Saraph ef uf.® They 
imposed the condition that the radial functions 
should be ortho^nal to the bound one-electron

196



197 C L O S E - C O U P L I N G  A P P R O X I M A T I O N

orbitals with the same orbital angular momentum 
Physically, this can be interpreted as exclu

ding the projectile from being captured, virtually, 
into incomplete subshells. This restriction on 
their total wave function was removed by super
imposing a second configuration, 0 , constructed 
entirely from bound orbitals. Their trial wave 
function in the close-coupling approximation was 
taken to be

P..
J J J J

+ Of. (1)

problem. The same approximation was made 
with r e j e c t  to the orbitals of the two configura
tions I s 2 ^ 9 eZ +1s22s 22̂ ^+ 1; however, the 
analytic self-consistent-field  (SCF) functions of 
Roothaan and Kelly® were used in the numerical 
calculations of Smith et al.^° and of Rudd and 
Smith.“  This method involves the evaluation of 
matrix elements

(4)

using the notation of Ref. 5, where F is the 
complete set of quantum numbers for the system  
and is a vector-coupled antisymmetrized 
function constructed from one-electron orbitals. 
This same method was used by Czyzak and 
Krueger.® Equation (1) can be interpreted as 
configuration interaction: In the first term one of 
the electrons is in a continuum orbital, while all 
electrons are in bound orbitals in the (j> term. 
Saraph e t al. use the same orbitals for the term s 
Sjl^- as well as in the 0 configuration; these 
orbitals were calculated using a computer code 
written by Froese.^

The underlying reason behind choosing 0 to be 
constructed from the same orbitals as 0' is  that 
the F 's  are constrained to be orthogonal to these 
orbitals, yet without the constraint F  would con
tain a component of the bound orbitals. The 
unconstrained continuum orbital could be written

F  =F+a^P, {FP) = 0. (2)
However, permitting the projectile to be captured 
into the 2p subshell means that there are now 
{q +1) equivalent electrons, not q . in the 0 term  
of E q.(l).

Seaton’s method, described above, for choosing 
the trial wave function in the close-coupling 
approximation in the scattering of electrons by 
atomic system s with incomplete p  subshells has 
also been used by Smith e t oZ.® (SHB) for the same

in the notation of Ref. 8, who used C for the 
variational parameter denoted by ot here. In 
their evaluation of these matrix elements. Smith 
e t aZ.® used the orthogonality, Eq. (2), between 
P  and F, which would not be possible if the bound 
orbitals of the actual + l  configuration were 
used in 0 . Furthermore, they chose to anti- 
symmetrize the additional p  electron in 0 as 
being inequivalent to the other q electrons. That 
is  to say, the {q f l) th  p  electron in 0 was treated 
on the same footing as the F  electron in 0 .  This 
results in 0 not being fully antisymmetrized under 
the interchange of any pair of electrons. The 
purpose of this paper is to present the fully anti
symmetrized function and to examine its effect 
on the results of Ref. 10 and 11, as well as to 
compare with the results of Ref. 5.

In Sec. 2 we evaluate the matrix elements (3) 
and (4) by specializing the general results of 
Smith and Morgan, referred to henceforth as 
SM, to the single incomplete 0 - configuration 
problem. The results obtained are verified in 
Sec. 3 using the methods of deShalit and Talmi.^® 
In Sec. 4 we re-examine the problem of choosing 
the trial function by discarding the restriction  
that the close-coupling functions F  must be 
orthogonal to the bound-state orbitals P. Finally, 
in Sec. 5 we discuss the numerical effects of 
various 0 symmetrizations on the scattering of 
electrons by atomic system s with configurations

n .  RECOUPLING COEFFICIENT METHOD

The theory of the scatterir^ of electrons by atomic system s with any number of incomplete subshells 
has been developed within the Hartree-Fock, or close-coupling, approximation by Smith and Moi^an.^^ 
These authors assumed that the bound-electron orbitals are independent of the configuration. They 
impose the orthogonality condition, Eq. (2), with the result that the term s linear in a. (see Eq. (54) of 
SM) reduce to

k,= + (ZZ|l/r|M>) (5)

which is  the many- configuration generalization of Eq. (3), and where the two term s are defined in Eqs. 
(56) and (60), respectively, of Smith and Morgan. The sum p runs over all the incomplete subshells 
included in the eigenfunction expansion. We now restrict consideration to a sii^ le  incomplete p  Subshell, 
as in Saraph e t ah, ® so that Only the p=wp term appears in Eq. (5) .

The matrix element of w ill be nonzero only when the interactii% electron is  in the incomplete wp 
subshell. In the notation of Smith and Morgan^ p =np =b^,N p =q +1, Spl^ -S , LplJ--L, Sp^ =S{, and ip* ~ L i,
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s in c e  a l l  o th e r  s u b s h e l l s  a r e  c lo s e d .  C o n se q u e n tly ,  th e  f i r s t  t e r m  o f  E q . (5), r e d u c e s  to

~Ŵ t) ] " ,5| (S.i)s> (L.l.,L I iL.p)L). (6)x_
Î

Since there is  no recoupUng of the ai^ular momenta, both recoupling coefficients are unity. Equation (6) 
leads to a different leading term in Eq. (24) of Smith e t  oZ.» in that (g +1)^replaces (N+l)% where N  
is  the total number of target electrons.

In the evaluation of the second term of Eq. (5), we note that =N\I^ for all subshells except X=2p.
In the notation of Smith and Morgan, the outermost interacting subshell in #  i s o  =«/>^and we must have 
Pi =Pp=P, which is  summed over all the subshells. Furthermore, we have AP = 0, 5^= 8, L (j= Li,So  and 
Lçf̂  = L. For € = 0, we have v =p and t = np, which gives the spin and orbital re coupling coefficients to be

<s,. I s^> ”= < (Sp-i)Sp.. .  S i , is |  (Sp4)Sp.. .  (S.4)S> = i

<©̂  I e^> . .  l< ïp*p)ip.. .  .

which is  precisely the same form as the direct recoupling coefficient [se e  SM Eq. (49)]. The dots in  
Eq. (7) represent the quantum numbers, either spin or orbital, of the spectator subshells lying between 
the two interacting subshells X =Zp and X=Z%.

If € = 1, then 77=wp and £ =p, resulting in the recoupling coefficients

<SjS^>^ = ( [^ i(N ) ]S ^ ., . , i (N + l) ;S l[y (N + l) ] .^ .. . , i (N ) ;S >  " (g)

<© J ê > '=< [Ip, (ẑî)ẑ] i-p... ![ » (ï'V y  V  ‘  ̂'
These re coupling coefficients are precisely those which appear in the exchange term [see  SM Eq. (40)], 
since the order of coupling is  the same in both sets of coefficients.

Substituting Eqs. (6), (7), and (8) into Eq- (5) gives the fimction ’Vi {r), defined in Eq- (53a) [printed 
following Eq. (59)] of Smith and Morgan, as

r /r )  = ( « - D" |ô ^ ^ j{{ÿ ^ * i£ S |} /.% s,^ ) [  ( - | | t ) - P ^ W

2(2îp+ -5 S ,(2 < +  D - '  (/plGOM^r-

+ 3 , S e ,  ,( /* l£ S |J ÿ « X 'S ^ )[  (2£ '-H )(2£jt 1 ) ] ! ? ,  / -
L '8 ' i ---J. : ,;ri; ;

X ( ^ ^ 2 , ^  ̂  ̂(11001ZO) W( 12,'Z ̂  2^ ; I,Z ) ; Z,gZ )

X (iz^ 001ZO) [(2Ẑ  + 1)3]^ Y fr p  np;r)P^p{r) |  . 0 )

■ ' ' ' ii ' iz ■
This differs from Eq. (24) of Smith e t  al.^ in the over-all {q +1) factor replacing (N+1) and in the sum  
over t  in the sqimre brackets, which was missing in Ref. 8. Equation (9) does agree with the results o f  
Shemniihg,^ which presumably were used in Refs. 5 and 6. . v v ,j r .

The incomplète: antisymmetrization # f # used in Ref. 8 a lso ,affects the matrixjelpments defined in Eq.
(4). This ihaitrix ëlhnîWt is'eYal^atCd in Wo parts, ^  Aitn) hn^ fhther tlW  cbniputing Eghq in

n = l - '
SM. Starting With Eq. (61) of SM, the first part can be shown to be

np Ç / Z (Z +1) \ #
p  = I s  p  = I s
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np

p > a(s subshell)

L p  ̂subshell VA^p'^OO W ' b ”'p)
â p

_ _S_ ,(P«"^£sfp%s J.)(p?"i£sjp»i V) 
L X .L 'S S ' * *

 ̂  ̂̂ PAi^ 1/1» Jb
XIF(L.1L 1;L'2)TF(L.1L 1;L2)R Of/»"), (lo)

X l ) ( 2f. +1)]:

while the second part is  s t ill given by Eqs. (62) and (62a) of SM. It is  the first part which is  different 
from the corresponding first two term s of Eq. (25) of Ref. 8, which are simply

np

One of the principal advantages of working with Eq. (10) rather than SM Eq. (72) is the fact that it becomes 
unnecessary to know the energies of highly excited configurations. A detailed proof that the work of 
Saraph e t al. and Smith e t al. when the above antisymmetrization is taken into account, are proper 
subsets of the formulation of Smith and Morgan is given in Morgan.^® That is to say. Refs. 5 and 8 are 
special cases of Ref. 12, which permits any number of configurations to be included in the trial wave 
function.

111. OPERATOR METHOD

Although the work of Smith and Moigan had brought to light the incomplete antisymmetrization of Ref. 8, 
it was thought necessary to verify the expressions for the matrix elements, Eqs. (3) and (4), given in the 
previous section by using an alternative method. The method chosen was the antisymmetrization opera
tors Ajv of deShalit and Talmi.^^ In this method the (iST+l)-electron wave function for the bound term in 
Eq. (1) is

\ l s h s h p ^ ^ ^ ; L S )  = -----------— -------------   0 (ls^ l2 )0 (2 s^ 3 4 )0 (2 /'"  ̂ 5 ,. . . ,N+ 1;XS), (11)[2!2!(N+l)!(q + l)!]̂

where the g ' s  are properly antisymmetrized for the electrons in that subshell, but effects the
antisymmetrization between the su tehells. Using the commutators

[Ay, I» = 0, and 1] = 0. (12)

gives the same matrix element as Eq. (6). In order to evaluate the matrix elements of the two-electron
operator r  we consider closed and open subshells separately, leading to the term s in the

a  = l  ^+^2® 
p sum of Eq. (9).

Finally, to compute the term s quadratic in or, we consider matrix elements between closed subshells, 
between open subshells, and then the cross term s between open and closed. For the interaction of open,
I jj with closed, Zg, we find that the matrix element of the two-electron operator is  independent of the 
total L  and is  given by

7(1,1,£) (13)

where and are the usual Slater integrals, and/^ and are geometric factors e ^ r e ss ib le  in  
Racah algebra. For the matmx elements between a pair of closed subshells we find that the contribution
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to Eq. (3) is

(2Z+1)(2Z'+1) r 2 F ° (« /w r ) -S ( -  +  ̂ (14)
L \0  0 0 /  J

N+1
The matrix elements of Hi(j%̂ ) were determined as in the previous section, and the over-all results

Û!— 1
confirmed the correctness of Eqs. (9) and (10).

IV. VIRTUAL CAPTURE

In the Introduction it was emphasized that when the close-coupling functions were orthogonalized, Eq.
(2), with respect to the bound orbitals, it was equivalent to neglecting virtual electron capture into open 
subshells. For this reason, configuration mixing via the # term s was introduced in Eq. (1).

In this section, we shaU discuss briefly the elimination of the orthogonalization constraint on the F ' s  
relative to the bound oribitals of the incomplete subshells; a complete discussion w ill be given e lse 
where.^® This discussion w ill be within the framework of the techniques of Fano,^® and leads to the 
elimination of the so-called  #- dependent term s of Refs. 5, 6, 8, and 12. Consequently, virtual capture 
is  now implicit in the close-coupling functions F.

The principal advantage of the orthogonalization procedure was the elimination of factors in the ex
change term as a result of the vanishing of the overlap integral of F  with a P. (It is  clear that such an 
overlap does not occur in the direct terms, since both F ' s  are found in the same integral. ) We now have 
to derive an alternative expression for SM Eq. (25), with the orthogonality constraint expressed in the 
form

J  d r  F _  (r)P^ (r) = A Uj;X)ô^ . , (15)

for the incomplete subshells P \ ,  but the A still vanish for the closed subshells.
N + Î

We begin by evaluating the matrix elements of the one-electron operators (a) and note that
a  = l

only those for N -  1 contributeequaUy. If we let and M j be the subshells containing the labels Nand 
N + l in the distributions and q j,  respectively, then using the methods of SM we can show that

t  J

W , (16)

with one less  integral for H^{N) and ^^(N+l) on account of F  and i l  being interchanged. The C factors 
are defined in  Ref. 15. ^

A sim ilar separation of the two-electron operator can be effected
N + 1 1 N —\  jy~ 1

Uj ' w  ^ i - ‘>- O’)
The final matrix element is  given in SM Eq. (41), and the remaining three matrix elements can be readily 
evaluated by the same method after using symmetry properties.

The variational principle of SM Eq. (73) is  now replaced by

where 3Rx are the Lagrange xmdetermined multipliers chosen to ensure the orthogonality of the con
tinuum with # e  closed subshellSj and (r) is  an integral operator on F  with term s from Eqs. (16) 
and (17). The associated Euler equations are

S  x . .F . ,+  S  jL /(r )+  E  W = 0, (19)
j  % j  ^  X, closed ^ ^

where each of the factors of the inhomogeneous X  term is  of the form

x̂ ir)=9ĵ >riAy, (20)
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where S (r) are known functions^® and A ^j are unknown numbers dependent on F. If there are N V  
such inhomogeneous term s, then we can generate NFparticular solutions of the inhomogeneous system  
by setting the A 's in turn equal to unity, the remainder zero. This is  a variation of the numerical 
method developed in Ref. 8 and is equivalent to that used by Burke and McVicar^’’’ for the electron- 
hydrogen-like-ion problem.

V. NUMERICAL RESULTS
In the preceding sections two changes have 

been proposed in the formalism. Firstly, there 
is  the problem of antisymmetrization, which is  
now properly handled in Secs. 2 and 3; and 
secondly, there is  the alternative approach to 
virtual capture described in Sec. 4. Here we 
shall report conipütâtions carried out on the 
effects of antisymmetrization.

In Table I we present results for the collision  
strengths of electrons Incident on a variety of 
ions, as computed with both the partly and fully 
antisymmetrized ^ functions, and we compare 
with the results of Saraiih eZ al . We emphasise 
tla t the boUnd orbitals for the electron problem  
have' bëen used in both #  and of Eq: (1). Fur
thermore, in the computation of the matrix e le 
ment, given in Eq. (4), we have written

(21)
where are the quantum numbers of the lowest 
term, andLhe actual expression for %  is obtained 
from Eq. (10) . Two conclusions can be drawn 
from Table I. Firstly, the results do depend 
markedly on the S3rmmetry of (j> ; and secondly, 
the quite different numerical procedures and 'i ;, 
bound orbitals of Refs. 5 and 8 lead to the same 
collision strengths to within a few percent. When 
the theoretical 'values of Roothaan and Kelly are 
used in Eq. (21), the results are hardly affected 
at all.

The large change in the collision strengths 
méntiOHéd above, brOughh about by the # l F  ahti- 
symmetrization of 4> ra ises the question of its

TABLE I. C ollision  S treng ths, S2(«nO.

r  ION n n ' <f) (SHB) : \  ' Ref., 6

9f W 6.342 3.292 3.203
'  =; Is-*-I -  0 ,677 ' 0 ^ 2 8 0.424 ' 33p 0.931 0.428 -

0++ 3p 5.016 2.545 2.398^ '
0.438 0.294 0.319®p ‘s 0.796 0 :369 , ; 0;84S 1

TABLE II. ,4ZaluéB of■ conserve!d qimntmnrn
h^uehced b y  the virtual # terin.

(Zj) R ef. Target (2S+1)jT
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UŜO-MUSéoC-UÎoO?a c s o o J - ^ o o o o o u s
D O M < S I i- I O O O O ' 1 * Md2 2"® 2®2':.
o  o  e- o
IN PS P- TM 
O  PS M 00 .

aT'- ÆS-:r‘v'

''̂--4-'- ̂  a," i Q ’
e'i; >o sdj hi :--srnr



S M I T H ,  C O N N E E L Y ,  AND M O R G A N 202

TABLE IV. P a r tia l-w a v e  co n tribu tions to the e la s tic  c ro s s  sec tio n s . N um bers in  p a re n th e se s  a r e  from  R ef. 10.

T arg e t P ro c e s s SLtt K/= 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1.0
c 3p_,3p 450 1.989 2.246 2.263 2.182 2.063 1.804 1.570 1.373 1.078 0.877

(2.462) (3.005) (3.096) (2.950) (2.735) (2.215) (1.754) (1.392) (0.914) (0.658)
2pO 10.623 6.429 4.157 3.001 2.429 1.829 1.496 1.275 0.996 0.829

(3.898) (3.747) (3.344) (2.804) (2.364) (1.681) (1.208) (0.884) (0.516) (0.344)
ZjD» 8.564 5.257 4.258 3.703 3.317 2.779 2.407 2.129 1.744 1.493

(4.163) (4.169) (3.970) (3.629) (3.240) (2.501) (1.916) (1.488) (0.965) (0.703)
‘D - 2p0 0.644 2.413 2.883 2.939 2.854 2.626 2.406 2.212 1.896 1.658

(0.893) (2.215) (2.858) (3.060) (2.994) (2.598) (2.192) (1.854) (1.397) (1.132)
2pO 0.350 1.831 3.100 3.619 3.788 3.722 3.492 3.244 2.814 2.448

(0.404) (1.393) (3.194) (4.064) (4.297) (3.907) (3.253) (2.642) (0.803) (1.355)
is-Is 2p0 0.026 3.143 5.852 8.684 9.727 9.972 9.540 8.754

(0.028) (3.321) (6.364) (9.124) (9.693) (9.367) (8.197) (7.146)

O 3p_3p 2p0 9.209 4.463 2.727 2.103 1.778 1.336 1.108 0.962 0.774 0.655
(1.017) (1.372) (1.485) (1.530) (1.523) (1.407) (1.254) (1.096) (1.830) (0.619)

'D-'D 2p0 0.104 0.298 0.566 0.696 0.732 0.746 0.736 0.693 0.653(O.llQ (0.050) (0.23^ (0.431) (0.697) (0.800) (0.808) (0.725) (0.640)
Ŝ- ‘S 2p0 2.928 5.119 6.045 6.405 6.143

(0.692) (1.643) (2.393) (3.244) (3.663)

N Ŝ- zpe 25.696 8.279 5.119 4.110 3.576 3.206 2.693 2.344
(5.349) (6.648) (5.373) (4.319) (3.540) (2.956) (2.146) (1.654)

2D- 3p« 1.250 1.513 1.526 1.464 1.293 1.136
(0.965) (1.607) (1.696) (1.581) (1.237) (0.956)

ijf 1.529 1.790 1.739 1.596 1.285 1.033
(1.596) (2.248) (2.174) (1.899) (1.316) (0.893)

2JP 3pg 0.244 1.073 1.536 1.760 1.874 1.812
( . . . ) (0.421) a.2S8) (1.675) (1.835) (1.708)
0.131 0.644 0.949 1.094 1.155 1.101

( . . . ) (0.261) (0.786) (1.035) (1.100) (0.998)

influence on the positions of the autoionized levels  
of oxygen, as reported in Rudd and Smith, " and 
on the cross sections presented in Ref. 8. In 
Table n, we lis t  those values of the conserved 
quantum numbers which are affected by the 4> 
problem.

In Tables IH and IV we present the partial-wave 
contributions to the excitation and elastic cross 
sections, respectively, as computed with the fully 
antisymmetrized <p, and compare them with the 
results of Ref. 10, which are given in parentheses. 
The general feature of these results is  that at 
lower impact energies the new #> produces larger 
cross sections than the partly antisymmetric 
while at the higher energies the new results are 
lower. In this regard the new results are in no 
better agreement with the experimental total cross 
sections for electrons on either oxygen or nitrogen. 
Of course the effects of excited configurations 
which have been neglected here, may well have a 
significant influence. We note that tiie relative 
phases of some of the coefficients of fractional 
parentage used in Refs. (10), (14) and SobeT mai?® 
are incorrect due to incorrect use of Eq. (19) in 
Racah“ .

In Table V we present the results of the two 
partial waves in electron-0 ’̂  scattering which are 
affected by the antisymmetrization problem. For 
autoionized 3pe states we see that the new #> r e 
sults are consistently higher than those of Rudd 
and Smith by about 0 .1  ev. However, one notable 
feature of the new results is  that we have been 
able to locate the low-lying resonances 
found by experiment, as well as to identiftr the

very narrow / ser ies. For autoionized states 
we see that the new p  has very little affect at all. 
Indeed, since the theoretical results of Rudd and 
Smith were obtained on a GDC-6600, while the 
present results were computed on an IBM %stem  
360/65, the difference due to (j> is  indeed slight.
A new feature of the results presented here is

TABLE V. P o s itio n s  of au to ion ized  s ta te s  in 
a tom ic  oxygen.

L S r
A ssign
m en t n old # #

E x p e ri
m en t

1 ,1 , even ^Pnp 3 15.768 16.0174 15.77
4 17.305 17.4069 17.31
5 17.849 17.9103
6 18.121 18.2167
7 18.278 18.401

^Dnp 3 14.461 14.16
4 15.729 15.62
5 16.121 16.204 16.22
6 16.312 16.4818
7 16.507
4 16.087
5

2 ,0 ,even ^Pnp 4 17.387 17.403
5 17.908 17.903
6 18.135 18.159
7 18.285
8 18.366

^Pnf 4 17.786
5 18.094
6 18.255
7 18.380
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that we have been able to isolate several members 
of the ser ies.

In conclusion we note that the numerical results 
presented in this paper are based on a formalism  
which largely neglects polarization of the target 
by the impinging electron. To account for such 
polarization, we could include excited configura
tions shch as 1s^2s2p^ +1 and ls^2s^2tA  -  Isd, 
etc. as in SM, or we could take the dipole distor
tion of the atom produced by the incident electron  
into account by using the method of polarized 
orbitals as used by H en ry .C a lcu la tio n s based 
on the SM formalism are under way, and compari
son w ill be made against the results of the polar
ized orbital method. Since no rigorous criteria  
exist for complex targets for selecting one ap
proximation scheme over another, one can only

compare theoretical predictions with known 
experimental results to determine which features 
of the model are important before computing 
physical processes which have not been investi
gated experimentally.

Note added in proof: Henry et al. (unpublished) 
have carried out the calculations in Table IV to 
lower energies and have analyzed the low-energy 
peaks predicted here as “ shape” resonances.
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: PnOTOIONlZATION OF ATOMS WITH CONFIGURATIONS

M. Conneely, L. Lipsky, K. Smiih

(Royal Holloway College, Englofield Green, Egliam, Surrey, England).

The abundance of some atoms in the second row of the periodic table 
(Al, Si, P, S) in the sun is comparatively large, being approximately 
one tenth that of C, N, or 0  but ton times that of Fe [1]. Therefore, it is 
expected that their contributions to the solar spectrum will be significant. 
In particular, the photoabsorption cross sections for Al and Si are large

0.1

Fig. 1. Photoionization cross section cf of (3j>)  ̂ silicon.
1 —  experimental; 2 —  this work; 3 —  quantum defect.

enough to virtually obliterate light originating in the photosphere for cer
tain parts of the spectrum. Recently, shock-tube experiments have been 
performed to determine these cross sections [2]. General interest in the inert 
gases has caused several experimental groups to measure the photoabsorp
tion of argon [3, 41. I t is therefore useful to have theoretical results avai-

0.10. 0.2 0.3 U  E,Ry

Pig. 2. PEotoionization cross section ff of silicon.
• 1 —  this work; 2 —  quantum defect.

lable for the (3p)^ elements. The quantum defect method [5] has been used 
extensively to calculate cross sections, but it  becomes unreliable, when ap
plied to the 3p-shell. This is due to the fact that the quantum defects of 
the singly excited states of these (and heavier) atoms are not smooth func
tions of R, the principle quantum number, and therefore it  is difficult to 
extrapolate to above threshold.

The procedure followed here, in calculating the'photoionization cross 
sections, is described in Henry and Lipsky [6J. Briefly, we calculate the 
wave functions for an electron scattering of a particular ion, assuming L —S

■ 619

\



coupling» using the close coupling code of Smith, Henry and Burke 17], 
These functions are then used to calculate the dipole matrix elements between 
states of an outgoing electron in a particular channel and a state of the ini-

Fig. 3. Photoionization cross section a of (3p)® silicon.
1 —  experimental; 2 —  this work; 3 — . guantum defect.

tial atom. The analytic Hartree—Fock functions of Clementi [8] are used 
to represent the wave functions of the atoms and residual ions.

Some calculations have already been completed, and the results for 
>. silicon and argon are reproduced in fig. 1—4, together with available experi-

10 -

0 0.331

■ Fig. 4. Photoionization cross section G of argon, 
tt I —  experimcat; 2 —  tills work; 3— 3s3p* edge.

mental data. The e,xperimental data as well as the quantum defect curves 
for silicon aré taken from Rich [2]. The argon data was given to the 
authors by Ederer et al. [4], in  advance of publication. The dipole length 
calculations agree-fairly well with experiment for energies below the 
excited state thresholds, whereas the dipole velocity approximation gives 
values Vg to /̂g that of exjperiment. .
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