Scattering of Electrons by Atomic Systems with Configuratiots (1S) (2S) (2P) (3S) (3P) 9

 (by

Michael Joseph Conneely

Submitted to the University of London
in partial fulfilment of the requirements for the degree of Doctor of Philosophy

R. H. O. LIBRARY	
CLASS	AYZ. BFJ
RO.	COn
AOC.	90,715
	FCb. 70

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10107270
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

2

Abstract

The close-coupling approximation has been used to compute cross sections for a wide range of processes (electron impact, photodetachment and photoionization). Errors in previous formulations have been pointed out and corrected. The results are compared with previous calculations and experiments and are correlated to recent work on the effects of configuration interaction.

A description of the computer code used is also given.

166^{8}

ACKNOWLEDGEMENTS

I would like to record my gratitude to my supervisor Professor Kenneth Smith for suggesting the topic of this thesis and for his invaluable guidance throughout the work.

I am indebted to Royal Holloway College for financial support and to the Atlas Computer Laboratory, Chilton, Berkshire and to the University of Nebraska Computer Centre, Lincoln, Nebraska, U.S.A. for use of their facilities.

In addition, I would like to acknowledge the hospitality of the Institute of Computational Sciences, The University of Nebraska where the latter part of this work was carried out. I am also grateful to Dr. L. Lipsky for helpful conversations.

Contents

Chapter I (Introduction)

a) Continuum atomic processes in astrophysical problems
b) The Close-coupling Method
c) The Fesbach Formalism
d) Configuration Interaction

Chapter II

a) Wave functions for the ($n p)^{q}$ system
b) Antisymmetrization of the wave function
c) Electron impact cross sections
d) Photoionization

Chapter III
a) Photoionization of N and N^{+}
b) Photoionization of P
c) Photoionization of $\mathrm{Al}, \mathrm{Si}_{\perp} \mathrm{S}, \mathrm{Cl}$
d) Photodetachment of $\mathrm{Si}, \mathrm{S}, \mathrm{Cl}{ }^{-}$

Chapter IV
A description of the code and the numerical methods used
References
Bound Papers
Trial Wave Functions in the Close-Coupling Approximatign Photoionization of Atoms with Configurations (1S) ${ }^{2}$ (2S)

$$
(2 p)^{6}(3 S)^{2}(3 P)^{q}
$$

Table I	Partial wave contributions to the excitation cross sections for O^{+} $\mathrm{N}^{+}, \mathrm{O}^{++}$

Table II	Partial wave contributions to the excitation cross sections for P^{+}

Table III Partial wave contributions to the58 excitation cross sections for s^{+}

Table IV Partial wave contributions to the60 excitation cross sections for cl+

Table V Comparison of collision strengths for previous calculations

Table VI Parameterization of the resonance series
in the photoionization of N (${ }^{2} P$)
(a) $L=0$
(b) $\mathrm{L}=1$
(c) $L=2$

Table VII Parameterization of the resonance series
in the photoionization of N (${ }^{2}$)
(a) $L=1$
(b) $I=2$
(c) $\mathrm{L}=3$

Table VIII Photoionization cross sections for $N \quad 124$ (${ }^{4} S,{ }^{2} D,{ }^{2} P$) above all thresholds
Table IX Photoionization cnoss sections for N^{+} 126 $\left({ }^{3} \mathrm{P},{ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}\right)$

Table X Parameterization of the resonance series 128
in the photoionization of $P\left({ }^{2} P\right)$
(a) $L=0$
(b) $L=1$
(c) $\mathrm{L}=2$
$\begin{array}{lll}\text { Table XI } & \text { Parameterization of the resonance series } & 130 \\ & \text { in the photoionization of } P\left({ }^{2} D\right) & \end{array}$
(a) $L=1$
(b) $\mathrm{L}=2$
(c) $\mathrm{L}=3$

List of Tables (continued)

		e
Table XII	Photoionization cross sections for P (${ }^{4}$ S) ${ }^{2}$ D, ${ }^{2}$ P) above all thresholds	133
Table XIII	Photoionization cross sections for Al	135
Table XIV	Photoionization cross sections for Si	136
Table XV	Parameterization of the resoņance series in the photoionization of $S\left({ }^{3} P\right)$ (a) $\mathrm{L}=0$ (b) $\mathrm{L}=1$ (c) $\mathrm{L}=2$	138
Table XVI	Parameterization of the resonance series in the photoionization of $S\left({ }^{1} D\right)$	140
Table XVII	Parameterization of the resonance series in the photoionization of $S\left({ }^{1} S\right)$	142
Table XVIII	Photoionization cross sections for S $\left({ }^{3} \mathrm{P},{ }^{l_{D}},{ }^{1} \mathrm{~S}\right)$ above all thresholds	143
Table XIX	Parameterization of the resonance series in the photoionization of $\mathrm{C} \ell\left({ }^{2} \mathrm{P}\right)$ (a) $\mathrm{L}=0$ (b) $\mathrm{L}=1$ (c) $\mathrm{L}=2$	144
Table XX	Photoionization cross sections for $C \ell\left({ }^{2} P\right)$ above all thresholds	146
Table XXI	Photodetachment cross sections for $S_{i}{ }^{-}\left({ }^{4} S\right)$ and $C \ell^{-}\left({ }^{1} S\right)$	147
Table XXII	Photodetachment cross sections for $\mathrm{S}^{-}\left({ }^{2} \mathrm{P}\right)$	149

List of Figures

		Page
Figure 1	Scattering potentials for electrons incident of carbon and silicon.	50
Figure 2	${ }^{3} D^{\circ}$ partial wave contribution + to the ${ }^{4} S_{-}{ }^{2} D$ excitation cross section of S^{+}showing resonance effects.	51
Figure 3	Photoionization cross section of $N\left({ }^{4} \mathrm{~S}\right)$ and comparison with experiment.	79
Figure 4	${ }^{2} S^{e}$ partial wave contribution $\ddagger \circ$ the photoionization cross section of $N\left({ }^{2} P\right)$ showing resonance series.	80
Figure 5	${ }^{2} \mathrm{p}^{\mathrm{e}}$ partial wave contribution $\frac{50}{}$ the photoionization cross section of $N\left({ }^{2} P\right)$ showing resonance series.	81
Figure 6	2^{2} e partial wave contribution to the photoionization cross section of $N\left({ }^{2} P\right)$ showing resonance series.	82
Figure 7	$2_{\mathrm{P}}{ }^{\mathrm{e}}$ partial wave contribution to the photoionization cross section of $N\left({ }^{2}\right.$ D) showing resonance series.	83
Figure 8	2_{D} e partial wave contribution to the photoionization cross section of $N\left({ }^{2} D\right)$ showing resonance series.	84
Figure 9	${ }^{2} \mathrm{~F}^{\mathrm{e}}$ partial wave contribution $\frac{5}{}$ o the photoionization cross section of $N\left({ }^{2} D\right)$ showing resonance series.	85
Figure 10	$\mathrm{N}^{+}\left({ }^{3} \mathrm{P}\right)$ photoionization cross section and comparison with Dalgarno et.al. and Armstrong et.al.	86
Figure 11	Phqtoionization cross sections of $P\left({ }^{4} S\right)$ and $N\left({ }^{4} \mathrm{~S}\right)$.	88
Figure 12	${ }^{2} S^{e}$ partial wave contribution to the photoionization cross section of $P\left({ }^{2} P\right)$ showing resonance series.	90

List of Figures (continued)

Figure 13	${ }^{2} \mathrm{P}^{\mathrm{e}}$ partial wave contribution to the photoionization cross section of $P\left({ }^{2} \mathbb{P}\right)$ showing resonance series.	91
Figure 14	${ }^{2}{ }^{\text {e }}$ partial wave contribution to the photoionization cross section of $P\left({ }^{2} P\right)$ showing resonance series.	92
Figure 15	${ }^{2} \mathrm{P}^{\mathrm{e}}$ partial wave contribution to the photoionization cross section of $P\left({ }^{2} D\right)$ showing resonance series.	93
Figure 16	${ }^{2}$ D partial wave contribution to the photoionization cross section of $P\left({ }^{2} D\right)$ showing resonance series.	94
Figure 17	${ }_{2} \mathrm{~F}^{\mathrm{e}}$ partial wave contribution to the photoionization cross section of $P\left({ }^{2} D\right)$ showing resonance series.	95
Figure 18	Comparison of three computed values (in the dipole length approximation) of the photoionization cross section of Al:	97
Figure 19	Comparison of the present results on the photoionization eross section of S_{i} with the experimental observations of $\mathrm{RI}^{\frac{1}{2}} \mathrm{Ch}$.	99
Figure 20	${ }^{3} S^{\circ}$ partial wave contribution to the photoionization cross section of $S\left({ }^{3} \mathrm{P}\right)$ showing resonance series.	101
Figure 21	$3_{\mathrm{P}}{ }^{\circ}$ partial wave contribution to the photoionization cross section of $S\left({ }^{3} P\right)$ showing resonance series.	102
Figure 22	$3_{D}{ }^{\circ}$ partial wave contribution the photoionization cross section of $S\left({ }^{3} \mathrm{P}\right)$ showing resonance series.	103
Figure 23	$l_{\mathrm{P}}{ }^{\circ}$ partial wave contribution $\ddagger 0$ the photoionization cross section of $S\left({ }^{\prime} D\right)$ showing resonance series.	104
Figure 24	$I_{D}{ }^{\circ}$ partial wave contribution $\ddagger \circ$ the photoionization cuoss section of $S\left({ }^{(} D\right)$ showing resonance series.	105

List of Figures (continued)

Figure 25	${ }^{1}{ }_{F}$. partial wave contribution to the photoionization cross section of $S\left({ }^{(} D\right)$ showing resonance series.	Page 106
Figure 26	Total photoionization cross section of $S\left({ }^{1} S\right)$ showing a single resonant series.	107
Figure 27	$\mathrm{S}\left({ }^{3} \mathrm{p}\right)$ total photoionization cross section.	108
Figure 28	${ }_{2}{ }^{\mathrm{e}}$ partial wave contribution th the photoionization cross section of $\mathrm{Cl}\left({ }^{2} \mathrm{P}\right)$ showing resonance series.	110
Figure 29	$2_{\mathrm{p}} \mathrm{e}$ partial wave contribution th the photoionization cross section of Cl (${ }^{2}$ P) showing resonance series.	111
Figure 30	${ }^{2}$ De partial wave contribution to the photoionization cross section of $\mathrm{C} \ell\left({ }^{2} \mathrm{P}\right)$ showing resonance series.	112
Figure 31	Comparison of Robinson and Geltman's calculation with the present calculation of the photodetachment cross section of S_{i} -	114
Figure 32	Comparison of Robinson and Geltman's prediction with the present calculation of the photodetachment cross section of S^{-}.	115
Figure 33	Comparison of Robinson and Geltman's results with the present results for photodetachment of Cl^{-}.	116

THE IMPORTANCE OF CONTINUUM ATOMIC PROCESSES IN

ASTROPHYSICAL PROBLEMS

The interaction of electrons and photons with matter in astrophysical sources covers a very wide range of conditions from that of interstellar clouds, where the atomic concentretions are very low (~ 8 atoms $/ \mathrm{cm}^{3}$), to that of the interior of stars where the density is very high ($\sim 10^{25}$ atoms/ cm ${ }^{3}$). The need for photoionization and electron excitation cross-sectional values is apparent whenever these processes are significant for the energy balance of a particular system and situation. In this introduction instances where the need for photoionization and electron excitation arises, will be indicated.

Planetary Atmospheres
The nonsphere of the Earth is produced mainly by the ionization of the neutral particle constitients of the atmosphere by solar ultraviolet radiation, leading to the production of free electrons and positive ions. The electrons initially possess a broad range of kinetic energies. As they slow down by collisions, the electrons cause excitation of the neutral particles and the resulting luminosity is an important component of the dayglow. The excitation processes

$$
\begin{align*}
& e+O{ }^{(3 P)} \longrightarrow e+O\left({ }^{\prime} D\right) \\
& e+O{ }^{(3 P)} \longrightarrow e+O\left(^{\prime} S\right) \tag{1.1}
\end{align*}
$$

which lead to emission of the oxygen red and green lines, together with the fine-structure transition. ${ }^{1}$

$$
e+O\left({ }^{3} P_{J}\right) \rightarrow e+O\left({ }^{3} P_{J}\right) \ldots(1.2)
$$

are amongst the most efficient energy loss mechanisms in the neutral atmosphere.

At high altitudes the electron gas cools more efficiently in collisions with positive ions than with neutral particles and the, ion gas temperature also uses above the neutral particle temperature.

The rate at which the electron gas loses heat to a positive ion mixture of $\mathrm{O}^{+} \mathrm{He}^{+}$and H^{+}is given approximately by ${ }^{2}$

$$
\begin{equation*}
\mathcal{L}_{e}=5 \times 10^{-7}\left(T_{e}-T_{i}\right) n_{e}\left\{n\left(O^{+}\right)+4 n\left(H e^{+}\right)\right. \tag{1.3}
\end{equation*}
$$

$\left.+16 n\left(H^{+}\right)\right\}$ev $\operatorname{cm}^{-3} \sec ^{-1}$
where T_{i} is the positive ion temperature.
The thermal electron gas is removed by recombination process, and the recombination of electrons and positive ions is an important source of heating of the neutral particle atmosphere.

Electrons can also be removed by attachment processes leading to the formation of negative ions at low altitudes. The Planetary Nebulae

Planetary nebulae are clouds of ionized gas surrounding certain very hot stars. The emitted light gives the nebulae a pale green disk like appearance resembling that of the planets Uranus and Neptune, hence the name planetary.

The model usually employed in the analogous of such stellar objects is one of a thin spherical shell surrounding a black body radiating at a high temperature T. The intensity I_{ν} of the radiation reaching the inner surface of the shell can be expressed by

$$
\begin{equation*}
I_{\nu}=\frac{R_{s}^{2}}{4 r^{2}} \frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h / / k T}-1} \tag{1.4}
\end{equation*}
$$

where R_{S} is the radius of the central star and \boldsymbol{r} the inner shell radius of the nebula.

The black body intensity is thus diluted by the geometrical factor of $\mathrm{R}_{\mathrm{s}}{ }^{2} / 4 \mathrm{r}^{2}$ and since this is very small ($\sim 10^{-13}$), the nebula is exposed and radiation whose density is 10^{-13} times that for thermal equilibrium at temperature T.

The primary physical process that occurs in the nebula itself is photoionization due to the absorption of stellar ultraviolet radiation i.e.

$$
h v+A \rightarrow A^{+}+e
$$

and occurs in atoms in the ground state. The electrons are then recaptured leaving the atoms in highly excited levels from which they cascade to lower levels emitting lines of allowed transitions. While this recombination occurs primarily in hydrogen and helium, it also has been observed in heavier elements such as oxygen, carbon, and nitrogen.

Collisional excitations are responsible for the strongest lines in most planetary nebulae. These lines are due to the forbidden transitions ${ }^{3}$ which arise from the collisional excitation of the metastable levels that lie a few electron volts above the ground level. After the electrons have been excited to the metastable levels by inelastic collisions they cascade back to a lower level with the emmission of a forbidden quarter of the magnetic dipole or magnetic quadrupole type, or by a collision of the second kind.

The number of collisional excitations $/ \mathrm{cm}^{3} / \mathrm{sec}$. from a lower level n to an upper level $n^{1}, F_{n n^{1}}$ depends on the
ion density N_{n} in level n, the electron density $N e$, the electron temperature $T e$, the excitation potential $X_{n n}{ }^{1}$, of the upper level, the statistical weight W_{n} of the lower level and the collision strength $\Omega\left(n n^{1}\right)$ of the particular ion and the transition involved i.e.

$$
F_{n n^{\prime}}=8.63 \times 10^{-6} N_{n} N_{e} T_{e}^{-\frac{1}{2}} \frac{\Omega\left(n n^{\prime}\right)}{W_{n}} e^{-x_{n n^{\prime}} / k T_{e}}
$$

where $\Omega\left(\mathrm{n}^{\mathrm{n}}{ }^{1}\right)$, or the collision strength ${ }^{4}$ is defined by

$$
\begin{equation*}
Q\left(n n^{\prime}\right)=\frac{\Pi \Omega\left(n n^{\prime}\right)}{w_{n} K_{n}^{2}} \tag{1.6}
\end{equation*}
$$

where $Q\left(n n^{1}\right)$ is the cross-section and $K_{n}=m V_{n} / \hbar$ where V_{n} is the velocity of the incident electron. Equating the number of collisional excitations to the number of radiative de-excitations enables one to derive an expression, which involves Te and Ne , for the intensity of a forbidden line. From the intensity lines te and Ne may be determined ${ }^{5,6}$.

Interstellar Gas Clouds
To obtain information about the abundance of elements in the interstellar medium, it is necessary to study their degree of ionization. The steady state requires that the ionization rate equal the recombination rate. Denote by N^{\prime} and $N^{\prime \prime}$ the number densities of some ion in two necessive stages of ionization. The radiative recombination rate n (rec) per unit volume is given by

$$
\begin{equation*}
n(\text { rec })=\alpha N^{\prime \prime N e} \tag{1.7}
\end{equation*}
$$

where the recombination rate α is a function of electron temperature Te and is given by

$$
\begin{align*}
\alpha=\frac{8 \pi}{c^{2}} & \left(2 \pi m k T_{e}\right)^{-3 / 2} \sum \frac{g_{j}^{\prime}}{2 g_{1}^{\prime \prime}} e^{x_{j} / k T_{e}} \\
& \times \int(h \nu)^{2} A_{j}(\nu) e^{-h \nu / k T e} . \tag{1.8}
\end{align*}
$$

where g_{j}^{\prime} denotes the statistical weight, X_{j} the ionization potential, $A_{j}(\nu)$ the absorption cross section of the j th excited state of the atom in the lower stage of ionization and $g_{\text {I }}$ the statistical weight of the ground state in the next state of ionization. If it is assumed that ionization is produced only by radiation of intensity $I(v)$ the photoionization rate is

$$
\begin{aligned}
n(\text { ion }) & =4 \pi N^{\prime} \int_{\nu_{1}}^{\infty} A_{1}(\nu) \frac{I(\nu)}{h \nu} d \nu \\
& =N^{\prime} \Gamma
\end{aligned}
$$

where $A_{1}(\nu)$ is the absorption coefficient for the ground state of the lower state of ionization and ν_{1} is the ionization limit. Thus the ionization equation can be written in the form

$$
\begin{equation*}
\frac{N^{\prime \prime} N_{e}}{N^{\prime}}=\frac{\Gamma}{\alpha} \tag{1.10}
\end{equation*}
$$

The ionization rate Γ may be significantly altered by phenomena of auto-ionization.

Its influence on T has been discussed by Burgess ${ }^{7}$ et al in their investigation of the lines of neutral aluminum.

Stromgen ${ }^{8}$, who developed the interstellar ionization theory in its modern form, has shown that the abundance ratio of

$N_{C a} / N_{N_{a}}=\left(N C_{a I I} / N_{N a I}\right)$

$$
x\left\{\left[N_{e}+\left(\frac{\Gamma}{\alpha}\right) C_{a} \Pi\right] /\left[N_{e}+\left(\frac{\Gamma}{\alpha}\right) N_{e} I\right]\right\} \ldots(1.11)
$$

which leads to the curious results that the abundance ratio is about 0.03 compared to its value of 0.7 in the sun and other stars. It is possible that the photoionization rates are in error ${ }^{9}$ because transitions in Na and CaII from their ground states to auto-ionizing states have not been taken into account. Possible transitions of this sort are shown in the diagram

Golgberg ${ }^{9}$ and Goldberg and Dupree ${ }^{9}$ have drawn attention to several astrophysical consequences of auto-ionization. The inverse process called delectronic recombination has been shown by Burgess ${ }^{10}$ to play an important role in solar corona.

Other atomic processes of importance in the cooling intersellar gas
(a) atom molecule collisions ${ }^{11}$

$$
\begin{equation*}
\mathrm{H}+\mathrm{H}_{2}(\mathrm{~J}=0) \rightarrow \mathrm{H}+\mathrm{H}_{2}(\mathrm{~J}=0) \tag{1.12a}
\end{equation*}
$$

(b) molecule-molecula collisions

$$
H_{2}(J=0)+H_{2}(J=0) \rightarrow H_{2}(J=0)+H_{2}(J=2) \quad \ldots(1.12 b)
$$

(c) Excitation of the fine structure levels of Si^{+}and C^{+}. Stellar Atmopsheres

The stellar atmosphere problem may be defined in terms of the transfer equation ${ }^{12}$

$$
\begin{equation*}
\mu \frac{d}{d r} I_{v}=-K_{v}\left[I_{v}-B_{v}(r)\right] \tag{1.13}
\end{equation*}
$$

the equation of radiative equilibrium.

$$
\begin{equation*}
\int K_{\nu} J_{\nu} d \nu=\int K_{\nu} B_{\nu} d \nu \tag{1.14}
\end{equation*}
$$

and the equation of hydrostatic equilibrium

$$
\begin{equation*}
\frac{d}{d r} P_{g}=-\rho g+\frac{1}{c} \int k_{\nu} F_{\nu} d \nu \tag{1.15}
\end{equation*}
$$

where B_{ν} is the Planck function, J_{ν} the mean intensity

$$
\begin{aligned}
& J_{\nu}=\frac{1}{4 \pi} \int I_{\nu} d \omega \text { and } F_{\nu} \text { being the flux, } \\
& F_{\nu}=\int I_{\nu} \mu d \omega \quad \text { Pg is the gas pressure, } P g=N K T \text { where }
\end{aligned}
$$ N is the total number of particles per unit volume and $N={ }_{i} N_{i}$. For a given value of Pg and T one may calculate N_{i} using the Boltzmann and Saha equations and calculate the absorption coefficient.

$$
\begin{equation*}
K_{v}(\operatorname{Pg} T)={ }_{i}^{\sum_{i} N_{i} A_{i}}(v) \tag{1.16}
\end{equation*}
$$

assuming all the absorption cross section A_{i} to be known. For principle one may solve the foregoing equations and hence obtain a complete model for the atmosphere. The unknowns $T e$ and g and chemical composition have to be adjusted so as to obtain agreement between the calculated and observed star spectrum. To explain the observed absorption in the solar atmosphere Wild ${ }^{13}$ suggested that the excess could be attributed to the negative hydrogen ion H^{-}.

Vardya ${ }^{14}$ has compiled bound-free absorption co-efficients of $C l^{-}$and other negative ions which are an important source of opacity in the atmospheres of cool stars.

$$
h v+A^{-} \rightarrow A+e
$$

Also significant contributions might arise from the bound-free absoprtion of $\mathrm{H}_{2}+$ ions

$$
h v+H_{2}^{+}(\text {is } \sigma) \rightarrow H+H^{+}
$$

In order to explain absorption further in the red one must include the absorption due to the free-free transitions.

$$
H+e+h v \rightarrow H+e
$$

The absorption coefficients due to free-free transitions in H^{-}were evaluated by "T1. Ohmura and H. Ohmura ${ }^{15}$. Similar work has been done recently for nitrogen and oxygen by Molsness and Ruffed. ${ }^{16}$

The Close-Coupling Approximation

In order to calculate the scattering cross section, within the framework of non-relativistic wave mechanics it is necessary to approximate the Schrodinger equation. One of the most useful approximation schemes is to expand the overall wave function of the projectile plus target in terms of the complete set of eigenstates of the target Hamiltonian. The method, called the close coupling approximation ${ }^{17}$, was first introduced by Massey and Mohr ${ }^{18}$, and has been since shown by Fesbach ${ }^{19,20,21}$ to give rise naturally to resonance of the closed channel type. In order to make the method numerically tractable only a few of the lower stationary states are retained in the expansion. Apart from approximations inherent in the choice of eigenstates for complex atoms this is the only approximation made in the method.

The Hamiltonian for an electron colliding with an atomic system having N electrons and nuclear charge Z, neglecting magnetic and relativistic effects is

$$
\begin{equation*}
H=\sum_{i=1}^{N+i} H_{1}(i)+\sum_{i<j}^{N+1} \frac{1}{r_{i j}} \tag{1.17a}
\end{equation*}
$$

where

$$
\begin{align*}
H_{1}(i) & =-\frac{1}{2}\left(\nabla_{i}^{2}+\frac{2 z}{r_{i}}\right) \tag{1.17b}\\
r_{i j} & =\left|r_{i}-r_{j}\right| \tag{1.17c}
\end{align*}
$$

Since spin orbit coupling is neglected the total orbital angular momentum and total spin are separately conserved, the calculation
may be simplified by using a representation which is diagonal in L, S and T. The unsymmetrized wave function for the $N+I$ electron system may be written ${ }^{22}$

$$
\begin{equation*}
\Psi_{u}=\sum_{\gamma_{T}} \psi\left(\gamma_{T} \underline{x}_{N}\right) \bar{F}_{\gamma_{T}}\left(\underline{x}_{N+1}\right) \tag{1.18}
\end{equation*}
$$

where \underline{x}_{N+1} denote the coordinates $\underline{x}_{1} \cdots x_{N+1}$ and $x_{k}=r_{k} \sigma_{k}$ ie. the space and spin variables of the Nth electron. We now expand the continuum wave functions $\bar{F}_{\gamma}\left(\underline{x}_{N+}\right)$ in terms of a central fold type function.

$$
\bar{F}_{\gamma_{T}}\left(\underline{x}_{N+1}\right)=\sum_{\ell_{T}^{m} m_{S}} f_{\gamma_{T} l_{T} m_{T} m_{n}}\left(r_{N+1}\right) y_{l_{T} m_{T}}\left(\hat{r}_{N+1}\right) \chi_{\frac{1}{2}}^{m_{n} \sigma_{N+1}} \sigma_{N+1}^{-1} \quad \ldots .(1.19)
$$

$$
\begin{gathered}
\Psi_{u}\left(X_{N n}\right)=\sum_{\substack{\gamma_{T} l_{T} \\
m_{T} m_{S}}} \Psi\left(\gamma_{T} X_{N}\right) Y_{l_{T} m_{T}}\left(\hat{r}_{N+1}\right) X_{\frac{1}{2}}^{m_{1}}\left(\sigma_{N+1}\right) f_{\gamma_{T}}\left(r_{T+1}{r_{T} m_{A}}^{r_{N+1}} \ldots(1.20)\right. \\
=
\end{gathered}
$$

The angular and spin parts of $\bar{F}_{\gamma}\left(x_{\omega+1}\right)$ are now coupled to those of $\psi\left(\gamma_{T} \underline{X} N\right)$ to give a new basis function $\psi\left(\boldsymbol{r}: \underline{X}_{N} \hat{x}_{N+1}\right)$ where Γ denotes the complete set of quantum numbers.

$$
\Gamma \equiv\left\{\gamma_{T} e_{T} L M_{L} S M_{S} \pi\right\}
$$

Since

$$
\begin{aligned}
& \psi\left(\gamma_{T} X_{N}\right) X_{\frac{1}{2}}^{m_{\Delta}}\left(\sigma_{N+1}\right) Y_{\ell_{T} m_{T}}\left(\hat{r}_{N+1}\right)=\sum_{L M_{L}}\left(L_{T} \ell_{T} M_{L T} m_{T} \mid L M_{L}\right) \\
& \quad \times\left(\left.S_{T} \frac{1}{2} M_{S T} m_{S} \right\rvert\, S M_{S}\right) \psi\left(\Gamma: \underline{X}_{N} \quad \hat{x}_{N+1}\right) \ldots \ldots(1.21)
\end{aligned}
$$

we have

$$
\underline{\Psi}_{u}\left(\underline{x}_{N+1}\right)=\sum \psi\left(\Gamma: \underline{x}_{N} \hat{x}_{N+1}\right) \frac{\tilde{F}_{\Gamma}\left(r_{N+1}\right) \ldots .(1.22)}{\Gamma_{N+1}}
$$

where

$$
\begin{gathered}
\tilde{F}_{\Gamma}\left(r_{N+1}\right)=\sum_{m_{B} m_{T}}\left(L_{T} l_{T} H_{L} m_{T} \mid L M_{L}\right)\left(\left.S_{T} \frac{1}{2} M_{S T} m_{S} \right\rvert\, S M_{S}\right) \ldots(1.23) \\
\times f_{\gamma_{T} l_{T} m_{T} m_{N}}\left(r_{N+1}\right)
\end{gathered}
$$

In the asymptotic region we require

$$
\begin{equation*}
\tilde{F}_{r}(r) \sim A_{r} e^{-i \theta_{r}}-B_{r} e^{i \theta_{n}} \tag{1.24}
\end{equation*}
$$

The S-matrix is defined by the relationship

$$
B_{\Gamma}=\sum_{\Gamma} S_{\Gamma \Gamma} A_{\Gamma \prime} \ldots(1.25)
$$

Hence

$$
\begin{gathered}
F_{p}(r) \sim \sum A_{p}\left(\delta_{p r^{\prime}} e^{-i \theta_{r}} S_{r r^{\prime}} e^{i \theta_{r}}\right) \ldots(1.26) \\
\theta_{r}=k_{r} r-\frac{1}{2} e_{r} \pi-\frac{Z-N}{k_{r}} \log \left(2 k_{r} r\right)+a_{r g}\left[\Gamma\left(e_{r+1}-i \neq(1-N)\right]\right.
\end{gathered}
$$

We define a new radial function $F_{\alpha \beta}$ by the transformation

$$
\begin{aligned}
& \tilde{F}_{\beta}(r)=i \sum(I-i R)_{\alpha \beta}^{-1} F_{\alpha \beta}^{(r)}, K_{\beta}^{2}>0 \ldots(1.28) \\
& \text { where } \quad R_{\alpha \beta}=i\left[\frac{I-S}{I+S}\right]_{\alpha \beta} \ldots(1.29)
\end{aligned}
$$

With this definition the $F_{\alpha \beta}$ will be real everywhere and will have the asymptotic form

$$
\begin{gathered}
F_{\alpha \beta}^{(r)} \sim \frac{1}{k_{\alpha}^{\frac{1}{2}}}\left(\delta_{\alpha \beta} \sin \theta_{\alpha}+R_{\alpha \beta} \cos \theta_{\alpha}\right), k_{\alpha}^{2}>0 \ldots(1.30 a) \\
F_{\gamma}(r) \sim N_{\gamma} \exp \left[-\left|k_{\gamma}\right| r+g_{m}\left(\frac{Z-N}{k_{\gamma}}\right) \log \left(2\left|k_{\gamma}\right| r\right) \ldots(1.30 b)\right. \\
k_{\gamma}^{2}<0
\end{gathered}
$$

Consequently

$$
\bar{\Psi}_{u}\left(\underline{X}_{N+1}\right)=\sum_{\Gamma_{i} r_{j}} \Psi\left(\Gamma_{i}: \underline{X}_{N} \hat{x}_{N+1}\right) F_{\Gamma_{j} \Gamma_{j}}^{\left(r_{N+1}\right) r_{N+1}^{-1}} \ldots \ldots \text { (1.31) }
$$

For the system initially in state Γ_{j} the wave function is

$$
\underline{\Psi}_{N}\left(\Gamma_{j} \underline{X}_{N+1}\right)=\sum_{\Gamma_{i}} \psi\left(\Gamma_{i} \underline{X}_{N} \hat{x}_{N+1}\right) F_{i j}\left(r_{N+1}\right) r_{N+1}^{-1} \ldots .(1.32)
$$

Finally we construct a properly antisymmetrized wave function

$$
\underline{\Psi}\left(\Gamma_{j} \underline{X}_{N+1}\right)=\frac{1}{(N+1)^{\frac{1}{2}}} \sum_{k=1}^{N+1}(-1)^{N+1-k} \underline{\Psi}_{n}\left(r_{j}: \underline{x}^{-k} \underline{x}_{k}\right) \ldots \ldots(1.33)
$$

where $\underline{X}^{-k}=\underline{x}_{1} \underline{x}_{2} \cdots \underline{x}_{k-1} \underline{x}_{k+1} \cdots \underline{x}_{N+1}$

The S-Matrix

The elements of the S-matrix are defined in equation (1.25) in terms of the amplitudes of the ingoing and out going waves. It also may be obtained from the R-matrix

$$
\begin{equation*}
S=\frac{I+i R}{I-i R} \tag{1.34}
\end{equation*}
$$

The fact that it is unitary and symmetric means that it can be diagonalized by a real orthogonal matrix U

$$
\begin{equation*}
\tilde{U} S U=e^{2 i \eta_{\alpha}} \tag{1.35}
\end{equation*}
$$

where the eigenphase shifts $\eta \alpha$ are real. The same matrix U will also diagonalize the R-matrix

$$
\begin{equation*}
\widetilde{U} R U=\tan n_{\alpha} \delta_{\alpha \beta} \tag{1.36}
\end{equation*}
$$

The transition matrix is defined by

$$
\begin{equation*}
T=S-I \tag{1.37}
\end{equation*}
$$

The total cross section for the transition $L_{i}-S_{i} \rightarrow L_{j} S_{j}$ is defined by 23

$$
\begin{equation*}
\sigma\left(L_{i} s_{i} \rightarrow L_{j} s_{j}\right)=\sum_{\substack{S_{L_{i}} \ell_{j}}} \frac{(2 L+1)(2 S+1)}{2 k_{i}^{2}\left(2 L_{i}+1\right)\left(2 S_{i}+1\right)}\left|T_{i j}\right|^{2} \tag{1.38}
\end{equation*}
$$

The Radial Equations
We consider the integral

$$
\begin{equation*}
I_{i j}=\int \Psi^{*}\left(\Gamma_{i} \underline{X}_{N+1}\right)\left[H_{N+1}-E\right] \Psi\left(\Gamma_{j} x_{N+1}\right) d \underset{\cdots \cdots(1}{x_{N+1}} \tag{1.39}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{N+1}=-\frac{1}{2} \nabla_{N+1}^{2}-\frac{z}{\Gamma_{N+1}}+\sum_{\alpha=1}^{N} \frac{1}{r_{N+1}, \alpha}+H_{N} \tag{1.40}
\end{equation*}
$$

Equation (1.39) can be written in terms of the unsymmetrized

$$
\begin{align*}
& \text { functions as } \\
& \begin{array}{l}
\bar{I}_{i j}=\int(N+1)^{\frac{1}{2}} \Psi_{u}\left(\Gamma_{i} x_{N} x_{N+1}\right)\left[H_{N+1}-E\right] \\
x \sum_{k=1}^{N+1}(-1)^{N+1-k}(N+1)^{-\frac{1}{2}} \Psi\left(\Gamma_{j} \underline{x}^{-k} \underline{x}_{k}\right) d x
\end{array} \tag{1.41}
\end{align*}
$$

using the symmetry with respect to interchange of variable.
The atomic eigen functions satisfy

$$
\int \psi\left(\gamma_{T} x_{N}\right)\left[H_{N}-E_{\psi}\right] \psi\left(\gamma_{T}^{\prime} x_{N}\right) d x_{N}=0 \ldots(1.42)
$$

Thus equation (1.41) becomes using eq. (1.42)

$$
\begin{aligned}
I_{i j} & =\int_{0}^{\infty} \sum_{k e} F_{k e}(r)\left[-\frac{1}{2}\left(\frac{d^{2}}{d r} 2-\frac{e_{k}\left(\ell_{k}+1\right)}{r^{2}}+\frac{2 z}{r}+k_{k}^{2}\right) \delta_{k e}\right. \\
& \left.\equiv \int_{0}^{\infty} F^{T} \mathcal{L} F V_{k}(r)\right] F_{e_{j}} d r d r
\end{aligned}
$$

where the potential $\mathrm{V}_{\mathrm{k} \ell}(\mathrm{r})$ involves direct and exchange interaction.

We now consider variation of the function F about the exact solution which satisfy the boundary conditions.

$$
\begin{aligned}
& \delta F_{i j} \sim a_{i} r e_{i+1}, r \rightarrow 0 \\
& \delta F_{i j} \sim k^{-\frac{1}{2}} \delta R_{i j} \cos \theta_{i}, r \rightarrow \infty \\
& \text { The corresponding variation in } I \text { is }
\end{aligned}
$$

$$
\begin{aligned}
\delta I & =\int_{0}^{\infty}\left[\delta F^{\top} \mathcal{L} F+F^{\top} \mathcal{L} \delta F\right] d r \\
& =2 \int_{0}^{\infty} \delta F^{\top} \mathcal{L} F d r-\frac{1}{2}\left[F^{\top} \frac{d}{d r} \delta F_{-} \delta F^{\top} \frac{d}{d r} F\right]_{0}^{\infty} \ldots(1.45)
\end{aligned}
$$

using the boundary conditions (1.30) and (1.44) we obtain

$$
\begin{equation*}
\delta I=2 \int_{0}^{\infty} \delta F^{\top} \mathscr{L} F d r+\frac{1}{2} \delta R \tag{1.46}
\end{equation*}
$$

Thus the variational principle

$$
\begin{equation*}
\delta\left(I-\frac{1}{2} R\right)=0 \tag{1.47}
\end{equation*}
$$

for arbritary variations of F subject to the appropriate boundary conditions, leads to the coupled equations

$$
\mathcal{L} F \equiv\left(\frac{d^{2}}{d r^{2}}-\frac{e_{i}\left(e_{i}+1\right)}{r^{2}}+\frac{2 z}{r}+k_{i}^{2}\right) F_{i k}^{(r)}-2 \sum_{j=1}^{m} V_{i j} F_{j k}^{(r)}=0
$$

for the radial function F. These equations will be discussed further in Chapter 2.

The formal properties of the solution to equations (1.48) can be conveniently discussed using the projection operator ofrmalism introduced by Fesbach 20,21 . We write our coupled equations formally as

$$
\begin{align*}
& P[H-E](P+Q) \psi=0 \\
& Q[H-E](P+Q) \psi=0 \tag{1.49a}
\end{align*}
$$

where P projects onto the open channel subspace and Q projects onto the closed channel subspace. The operators P and Q satisfy the relations

$$
P+Q=1, \quad P^{2}=P, \quad Q^{2}=Q, \quad P Q=0
$$

We now formally solve eq, (27b) for $Q \psi$

$$
\begin{equation*}
Q \psi=-Q \frac{1}{Q(H-E) Q} Q H P \psi \tag{1.50}
\end{equation*}
$$

Equation (1.49a) then gives

$$
\begin{equation*}
P\left[H-P H Q \frac{1}{Q(H-E) Q} Q H P-E\right] P \psi=0 \tag{1.51}
\end{equation*}
$$

The term $P(H-E) P$ in equation (1.51) is just the close coupling operator obtained by retaining only the open channels in the expansion. The remaining term is just an optical potential. Denoting the eigenfunction of the operator $Q H Q$ by Φ_{n} we have

$$
\begin{equation*}
Q H Q \Phi_{n}=\varepsilon_{n} \Phi_{n} \tag{1.52}
\end{equation*}
$$

The operator $Q H Q$ has in general a discreet spectrum plus a continuum starting from the lowest threshold in the closed channel subspace. It is the discreet spectrum which corresponds physically to an electron bound in the field of an excited atom
or ion, that gives use to closed channel resonance solutions of equation (1.51).

The optical potential is now expanded using the Φ_{n} and consequently equation (1.51) becomes

$$
P\left[H-\sum_{n} \frac{P H Q\left|\Phi_{n}\right\rangle\left\langle\Phi_{n}\right| Q H P}{\varepsilon_{n}-E}-E\right] \Psi=0 \ldots(1.53)
$$

We wish to consider the behaviour of the solution in the neighbourhood of an eigenvalue E_{S} of QHQ . Equation (1.53) is written as

$$
\begin{equation*}
\left(H^{\prime}-E\right) P \Psi=-\frac{P H Q\left|\Phi_{s}\right\rangle\left\langle\Phi_{s} \mid Q H P \Psi\right\rangle}{E-\varepsilon_{s}} \tag{1.54}
\end{equation*}
$$

where

$$
H^{\prime}=P H P+\sum_{n \neq s} \frac{P H Q\left|\Phi_{n}\right\rangle\left\langle\Phi_{n}\right| Q H P}{E-\Sigma_{s}}
$$

Equation (1.54) can be formally solved to yield

$$
\left.P \psi=P \psi_{0}+\frac{1}{E-\varepsilon_{s}} G P H Q \Phi_{s}\right\rangle\left\langle\Phi_{s} Q H P \psi\right\rangle \ldots(1.55)
$$

where G and ψ_{o} are the Greens function and regular solution of the operator $H^{l}-E$. Multiplying eq. (1.55) on the left by $\left\langle\Phi_{5} Q H P\right.$ we obtain

$$
\begin{equation*}
\left.\left\langle\Phi_{s} Q H P \Psi\right\rangle=\frac{\left\langle\Phi_{s} Q H P \Psi_{0}\right\rangle}{1-\frac{1}{E-\varepsilon_{s}}\left\langle\Phi_{s} Q H P G P H Q\right.} \Phi_{s}\right\rangle \tag{1.56}
\end{equation*}
$$

and substituting in eq. (1.55) gives

$$
\begin{equation*}
P \psi=P \psi_{0}+\frac{\left.G P H Q \Phi_{s}\right\rangle\left\langle\Phi_{s} Q H P \psi_{0}\right\rangle}{E-\varepsilon_{s}-\Delta_{s}} \tag{1.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{s}=\left\langle\Phi_{s} Q H P G P H Q \Phi_{s}\right\rangle \tag{1.58}
\end{equation*}
$$

is the shift in energy caused by the interaction with the continuum.

O'Malley and Geltman ${ }^{24}$ have shown that for a two electron system, that asymptotically equation (1.57) becomes

$$
\begin{aligned}
P \psi \underset{r_{2} \rightarrow \infty}{ } & \sqrt{\frac{2}{\pi k}} \frac{u_{1 s}\left(r_{1}\right) y_{e}^{m} e^{\left(r_{2}\right)}}{r_{2}} \sin \left[k r_{2}-\frac{e_{1} \pi}{2}+\eta_{0}\right. \\
& \left.-\pi \frac{1\left\langle\psi_{0} P H Q \Phi_{s}>1^{2}\right.}{E-\varepsilon_{s}-\Delta s} \cos \left(k r_{2}-\frac{e_{\pi}}{2}+\eta_{0}\right)\right]
\end{aligned}
$$

$$
=\sqrt{\frac{2}{\pi k}} u_{1 s}\left(r_{1}\right) Y_{l}^{m}\left(r_{2}\right) \frac{\operatorname{sm}\left(k r_{2}-\frac{l \pi}{2}+n_{0}+n_{r}\right)}{r_{2} \cos \eta_{r}}
$$

where

$$
\tan \eta_{r}=\frac{-\Gamma_{s} / 2}{E-\varepsilon_{s}-\Delta_{s}}, \Gamma_{s}=2 \pi\left|\left\langle\psi_{0} P H Q \Phi_{s}\right\rangle\right|^{2} \ldots(1.60)
$$

In equation (1.59) the resonance position E_{r} can be seen to be
$E_{r}=\varepsilon_{s}+\Delta_{s}$. The background phase shift is denoted by η_{0} and the resonant part by η_{r}.

The partial wave cross section can be expressed in terms of the phase shift $\eta=\eta_{0}+\eta_{r}$ by

$$
\begin{equation*}
\sigma_{e}=\frac{4 \pi}{k^{2}} \sin ^{2} \eta \tag{1.61}
\end{equation*}
$$

In the neighborhood of an isolated resonance this gives

$$
\begin{equation*}
\sigma_{l}=\frac{4 \pi}{k^{2}} \sin ^{2} \eta_{0} \frac{(q+\epsilon)^{2}}{1+\epsilon^{2}} \tag{1.62}
\end{equation*}
$$

where $\epsilon=\left(E-E_{r}\right) / \frac{1}{2} \Gamma, q=-\cot \eta_{0}$. The Breitwigner one level formula ${ }^{25}$ follows immediately by putting $\boldsymbol{\eta}_{\mathrm{o}}=0$.

Configuration Interaction

We now consider an alternative model for describing resonant or autoionizing states proposed by Fino. ${ }^{26,27}$ A review of theoretical models which predict and interpret resonance phenomena has been given by Smith ${ }^{17}$.

We consider a discreet state ϕ interacting with one continuum $\boldsymbol{\psi}_{E}$, and assume the normalization

$$
\begin{equation*}
\langle\phi \mid \phi\rangle=1 \quad,\left\langle\phi \mid \Psi_{E}\right\rangle=0 \tag{1.63}
\end{equation*}
$$

The expectation value of the Hamiltonian is
$\langle\phi| H|\phi\rangle=E_{\phi}$
$\left\langle\psi_{E}\right| H|\phi\rangle=V_{E}$
$\left\langle\psi_{E^{\prime \prime}}\right| H\left|\psi_{E^{\prime}}\right\rangle=E^{\prime} \delta\left(E^{\prime \prime}-E^{\prime}\right)$
where it is assumed for simplicity that the sub matrix in the continuum states has been prediagonalized. Each energy value E within the range considered is an eigenvalue of the matrix and its corresponding eigenvector we write as

$$
\begin{equation*}
\Psi_{E}=a \phi+\int d E^{\prime} b_{E}^{\prime} \psi_{E^{\prime}} \tag{1.65}
\end{equation*}
$$

Then pre-multiplying the Schroedinger equation $(H-E) \Psi_{E}=0$ by ϕ and \mathcal{X}_{E} and integrating yields, having used equations (1.62)

$$
\begin{align*}
E_{\phi} a+\int d E^{\prime} V_{E^{\prime}} b_{E^{\prime}} & =E a \tag{1.66}\\
V_{E^{\prime}} a+E^{\prime} b_{E^{\prime}} & =E b_{E^{\prime}}
\end{align*}
$$

The second of equations (1.66) can be solved formally ${ }^{28}$ to give

$$
\begin{equation*}
b_{E^{\prime}}=\left[\frac{P}{E-E^{\prime}}+Z(E) \delta\left(E-E^{\prime}\right)\right] V_{E^{\prime}} a \tag{1.67}
\end{equation*}
$$

where $Z(E)$ depends on the contour of integration round the singularity at $E=E^{\prime}$ and P means that the principle value of the integral is taken.

If the states ψ_{E} are represented by a wave function with the asymptotic form

$$
\begin{equation*}
\psi_{E} \sim \sin \left[k r+\delta_{0}(E)\right] \tag{1.68}
\end{equation*}
$$

where $\delta_{0}(E)$ is a slowly varying potential phase shift, then the total wave function has the asymptotic form

$$
\begin{aligned}
& \Psi_{E} \sim \int d E^{\prime} b_{E}^{\prime} \Psi_{E}^{\prime} \\
& \sim V_{E} a\left[-\pi \cos \left(k r+\delta_{0}(E)\right)+Z(E) \sin \left(k r+\delta_{0}(E)\right)\right] \\
& \sim V_{E} a \sqrt{\pi^{2}+z^{2}} \sin \left(k r+\delta_{0}+\delta_{r}\right) \\
& \text { where } V_{r}=-\tan ^{-1}\left(\frac{\pi}{2(E)}\right)
\end{aligned}
$$

Now upon substitution of equation (1.69) into the first of equa-

$$
\begin{aligned}
& \text { trons (1.66) one obtains } \\
& \begin{aligned}
E_{\phi} a & +P \int \frac{d E^{\prime}\left|V_{E^{\prime}}\right|^{2} a}{E-E^{\prime}}+Z(E)\left|\cdot V_{E}\right|^{2} a \\
& =E a
\end{aligned}
\end{aligned}
$$

Thus

$$
\begin{equation*}
Z(E)=\frac{E-E_{\phi}-\Delta E}{\left|V_{E}\right|^{2}} \tag{1,72}
\end{equation*}
$$

where the shift of the level due to interaction with the continuum is defined

$$
\begin{equation*}
\Delta(E)=P \int \frac{\left|V_{E}\right|^{2}}{E-E} d E^{\prime} \tag{1.70}
\end{equation*}
$$

The resonance with is

$$
\begin{equation*}
\left.\Gamma=2 \pi\left|V_{E}\right|^{2}=2 \pi\left|\left\langle\Psi_{E}\right| H\right| \phi\right\rangle \mid \tag{1.71}
\end{equation*}
$$

The normalization condition $\left\langle\Psi_{E} \mid \Psi_{E^{\prime}}\right\rangle=\delta\left(E-E^{\prime}\right)$ gives

$$
\begin{equation*}
a=\frac{\sin }{\pi V_{E}} \delta_{r} \tag{1.72}
\end{equation*}
$$

Use of equation (1.67) yields

$$
\begin{equation*}
b_{E^{\prime}}^{\prime}=P \frac{V_{E}^{\prime}}{\pi V_{E}} \frac{\sin \delta_{r}}{E-E}-\cos \delta_{r} \delta\left(E-E^{\prime}\right) \tag{1.73}
\end{equation*}
$$

The transition matrix element from source initial state i to a resonant final state is

$$
\begin{aligned}
\left\langle\psi_{E}\right| T|i\rangle & =\frac{1}{\pi V_{E}^{*}}\langle\Phi| T|i\rangle n m_{\delta_{r}}-\left\langle\psi_{E}\right| T|i\rangle \cos \delta \delta_{E} . \\
\text { where } \Phi & =\phi+P \int \frac{E^{\prime} V_{E^{\prime}} \psi_{E^{\prime}}}{E-E^{\prime}}
\end{aligned}
$$

Hence we obtain that the ratio of the absorption cross section to the modified continuum to that of the unperturbed continuum is $\frac{\sigma}{\sigma_{a}}=\frac{\left.\left|\left\langle\Psi_{E}\right| T\right| i\right\rangle\left.\right|^{2}}{\left.1\left\langle\psi_{E}\right| T|i\rangle\right|^{2}}=\frac{(9+\epsilon)^{2}}{1+\epsilon^{2}}$
where $\epsilon=-\cot \delta_{r}=\frac{E-E_{r}}{\Gamma / 2}$

$$
q=\frac{\langle\Phi| T|i\rangle}{T\langle\phi| H\left|\psi_{E}\right\rangle\left\langle\psi_{E} \mid T / i\right\rangle}
$$

In the case of more than one continuum say $\mathcal{Y}_{E}, \mathcal{X}_{E} \cdots$ it is possible to find linear combinations of these states such that the discreet state ϕ only interacts with one of these
combinations say $\boldsymbol{\psi}_{E}^{\prime}$. The form of the photoionization cross section in this case is

$$
\begin{equation*}
\sigma=\sigma_{a} \frac{(q+\epsilon)^{2}}{1+\epsilon^{2}}+\sigma_{b} \tag{1.76}
\end{equation*}
$$

where the smooth background σ_{l} is due to the states orthogonal to $\boldsymbol{\psi}_{\boldsymbol{E}}^{\prime}$

The Rydberg Series Lines

The case of several discreet lines superimposed upon a continuum and converging to a series limit at some excited state of the atomic ion is one which is frequently encountered in absorption studies in the far ultraviolet. In terms of autoionization effects the Rydberg series of lines can be treated as a set of discrete states which experience configuration interaction with the continuum. This case has been treated in detail by Fino ${ }^{37}$ and Fano and Cooper ${ }^{28}$. Because of the second order interaction among the discrete states arising from their coupling with the continuum, the discreet states $\boldsymbol{\phi}_{n}$ and their energies $E_{\phi}(n)$ will be perturbed by a matrix $Z_{n m}^{(E)}$ analogous to $Z(E)$ of equation (1.72)

$$
Z_{n m}(E)=P \int \frac{V_{n}, E^{\prime} V_{E^{\prime}, m} d E^{\prime}}{E-E^{\prime}}
$$

The states ϕ_{n} are replaced by new states $\bar{\phi}_{\nu}$ which in turn are modified by an admixture of states from the continuum

$$
\begin{align*}
& \bar{\Phi}_{\nu}=\bar{\phi}_{\nu}+P \int \frac{\psi_{E^{\prime}} V_{E^{\prime}, \nu}^{E}}{E-E^{\prime}} d E^{\prime} \tag{1.78a}\\
& q_{\nu}=\frac{\left\langle\bar{\Phi}_{\nu}\right| T|i\rangle}{\pi V_{E, v}\left\langle\psi_{E}\right| T|i\rangle} \tag{1.78b}\\
& \Gamma_{\nu}=2 \pi\left|V_{E, \nu}\right|^{2} \tag{1.78c}
\end{align*}
$$

Fano and Cooper ${ }^{27}$ showed that in the interyal between successive resonances the same line shapes occur for the single discrete level and a single continuum. In particular the matrix element $\left\langle\Psi_{E}\right| T|i\rangle$ vanishes once in each successive interval. The shape parameter q is approximately constant along a series and the width $\Gamma_{\boldsymbol{\nu}}$ decreases in proportion to the spacing between the resonances.

Mies ${ }^{29}$ has extented Fano's resonance theory to include the interaction of many resonances with many continua, as well as overlaping resonances. Shore ${ }^{30}$ has also treated this problem from a different approach.

Chapter 2

Wave Functions for the (np) ${ }^{\text {q }}$ system
We wish to construct from the one-electron wave functions
 2-electron system. $\left.\Psi_{L}\left(R_{1} \mathcal{R}_{2}\right)_{s}\right)_{s}$, We have
and

These two functions differ in the fact that in the first
case the first electron is in a state with angular momentum
l and in the second case it is in a state with angular momentum ℓ^{\prime}. The wave function for the two electron system, can be obtained by composing an antisymmetric combination of the above functions.

$$
\begin{equation*}
\Psi_{L S H_{L} H_{S}}=\frac{1}{\sqrt{2}}\left\{\Psi_{L H_{L} S H_{S}}\left(l_{1} e_{2}^{\prime}\right)-\Psi_{L H_{L} S H_{S}}\left(l_{2} e_{1}^{\prime}\right)\right\} \tag{2.3}
\end{equation*}
$$

Noting the fact

$$
\begin{aligned}
& \left(l m l^{\prime} m^{\prime} \mid L M_{L}\right)=(-1)^{l+l^{\prime}-L}\left(l^{\prime} m^{\prime} l m \mid L M_{L}\right) \\
& \left(\left.\frac{1}{2} \mu \frac{1}{2} \mu^{\prime} \right\rvert\, S M_{S}\right)=(-1)^{1-S}\left(\left.\frac{1}{2} \mu^{\prime} \frac{1}{2} \mu \right\rvert\, S M_{S}\right) \cdots(2.4)
\end{aligned}
$$

We see that

$$
\Psi_{L M_{L} S M_{S}}\left(l_{2} l_{1}^{\prime}\right)=(-1)^{l+l^{\prime}-1-L-S} \Psi_{L M_{L} S M_{S}}\left(e_{1}^{\prime} l_{2}\right)
$$

Therefore we obtain

$$
\begin{equation*}
\underline{\Psi}_{L H_{L} S H_{S}}=\frac{1}{\sqrt{2}}\left\{\Psi_{L H_{L} S H_{S}}\left(l_{1} e_{2}^{\prime}\right)+(-1)^{l+e^{\prime}-L-S} \Psi_{L H_{L} S H_{S} \ldots}^{\left(l_{1}^{\prime} l_{2}\right)}\right. \tag{2.5}
\end{equation*}
$$

where

In the case of two equivalent electrons $\ell=\ell^{\prime}$ and noting that

$$
\begin{equation*}
\bar{\Psi}_{L H_{L} S H_{S}}\left(l_{1} l_{2}^{\prime}\right)=\Psi_{L H_{L} S H_{S}}\left(e_{1}^{\prime} l_{2}\right)=\Psi_{L M_{L} S H_{S}}\left(l_{1} l_{2}\right) \tag{2.7}
\end{equation*}
$$

we obtain

$$
\begin{array}{ll}
\Psi_{L M_{L} S M_{S}}=\Psi_{L M_{L} S M_{S}}\left(e_{L} l_{2}\right) & L+S \text { even } \\
\Psi_{L H_{L} S M_{S}}=0 & L+S \text { odd(2.8) }
\end{array}
$$

and the normalization factor is equal to $\frac{1}{2}$ and not ${ }^{1} / \sqrt{2}$. We now wish to write the wave function $\Psi_{L H_{L} S H_{3}}\left(e^{n}\right)$ of a group of n equivalent electrons in terms of a linear combination of the functions $\Psi_{L_{L} S H_{S}}\left(\ell^{n-1}\left(S^{\prime} L^{\prime}\right) \ell L S\right)$ corresponding to different initial terms L ' S ' of the configuration ℓ^{n-1}. Amongst the states $\left\{\ell^{n-1}\left(L^{\prime} s^{\prime}\right) \ell l_{n} S M_{L} M_{s}\right\} \quad$ obtained according to the rules of addition of angular momenta will be some which are forbidden by the Pauli exclusion principle. Only a linear combination of these functions will satisfy the Pauli principle. We write

$$
\left.\Psi_{L H_{L} S H_{S}}\left(l^{n}\right)=\sum_{L^{\prime} S^{\prime}}\left(l^{n} L S \|\right\} \ell^{n-1} L^{\prime} s^{\prime}\right) \Psi_{L S M_{L} M_{S}}\left(\ell^{n-1}\left(L^{\prime} s^{\prime}\right) \ell L S\right)
$$

The coefficients ($\left.\ell^{n} L S \mid\right\} \ell^{n-1} L^{\prime} S^{\prime}$) are called the frackional parentage co-efficients : In the case of two equivalent electrons we have from the previous discussion that all the c.f.p.'s are equal to unity.

In the case of three equivalent electrons we will add a third ℓ electron to the configuration ℓ^{2} and construct the function $\Psi_{L M_{2} s H_{S}}\left(l_{2}\left(l^{\prime} s^{\prime}\right) \ell_{3}\right)$ according to the rules
of addition of angular momenta. The function is antisymmetric in electrons 1 and 2 but not with respect to the third electron. We now couple electrons 2 and 3 and obtain

$$
\left(l l\left(L^{\prime} s^{\prime}\right) l L S \mid l, l l\left(L^{\prime \prime} s^{\prime \prime}\right) L S\right)=\left(2 L^{\prime}+1\right)\left(2 L^{\prime \prime}+1\right)\left(2 s^{\prime}+1\right)
$$

$$
\times\left(2 s^{\prime \prime}+1\right) W\left(l_{1} l_{2} L l_{3}: L^{\prime} L^{\prime \prime}\right) W\left(\frac{1}{2} \frac{1}{2} S_{\frac{1}{2}}: S^{\prime} s^{\prime \prime}\right) \ldots(2.11)
$$

The function $\Psi_{L}\left(\ell_{1} S_{S} \boldsymbol{M}_{5} \ell_{2} l_{3}\left(L^{\prime \prime} s^{\prime \prime}\right)\right) \quad$ is also built according to the rules of addition of angular momenta from the functions

$$
\psi_{l_{1} m_{1} s_{1} \mu_{1}}^{\left(l_{1}\right)} \quad \text { and } \Psi_{L^{\prime \prime} s^{\prime \prime} M_{c^{\prime \prime}} M_{s}^{\prime \prime \prime}}^{\left(l_{2} l_{3}\right)} \quad \quad \therefore \text { only }
$$

those functions for which $L+S$ is even are antisymmetric with respect to transposition of electrons, 2 and 3. Consequentl_{y} we require combinations of the functions $\Psi_{L H_{L} S H_{3}}\left(l_{1} \ell_{2}\left(L^{\prime} s^{\prime}\right) \ell_{3}\right)$ which do not contain functions $\Psi_{L} M_{L}\left(\boldsymbol{l}_{M_{s}} \boldsymbol{l}_{2} \boldsymbol{l}_{3}\left(s^{\prime \prime} L^{\prime \prime}\right)\right)$ with odd values of $L^{\prime \prime}+S^{\prime \prime}$. This condition is fulfilled provided
$\left.\sum_{L^{\prime} S^{\prime}}\left(l^{3} L S /\right\} l^{2} L^{\prime} S^{\prime}\right)\left(2 L^{\prime}+1\right)\left(2 L^{\prime \prime}+1\right)\left(2 s^{\prime}+1\right)\left(2 s^{\prime \prime}+1\right) W\left(l l L l: L^{\prime} L^{\prime \prime}\right)$
$L^{\prime} s^{\prime} \quad \times W\left(\frac{1}{2} \frac{1}{2} S \frac{1}{2}: s^{\prime} S^{\prime \prime}\right)=0 \quad s^{\prime \prime}+L^{\prime \prime}=$ odd

$$
\ldots(2.12)
$$

Consider the ${ }^{2} p$ term of the p^{3} configuration. The forbidden terms of the P^{2} configuration are ${ }^{3} \mathrm{P},{ }^{1} \mathrm{D}^{1}{ }^{1} \mathrm{~S}$. Putting $\mathrm{L}=1, \mathrm{~S}=\frac{1}{2}$ $L^{\prime \prime}=0 \quad S "=1$ in the previous equation we get $\left.\left.\left.\frac{1}{6}\left(p^{3} 2 p \mid\right\} p^{2} 1 s\right)-\frac{1}{6}\left(p^{3} 2 p \mid\right\} p^{2}{ }^{3} p\right)+\frac{\sqrt{5}}{6}\left(p^{3} 2 p \mid\right\} p^{2} \cdot D\right)=0$

Similiarly putting $L "=1$ and $S^{\prime \prime}=0$.
$\frac{1}{6}\left(p^{3} p \left\lvert\,\left\{p^{2} s\right)+\frac{1}{4}\left(p^{3} p \mid\right\} p^{2} p\right.\right)-\frac{\sqrt{5}}{12}\left(p^{3} p p \| p^{2} D\right)=0$

$$
\begin{align*}
& \Psi_{L H_{L} S H_{3}}\left(l, l_{2}\left(s^{\prime} L^{\prime}\right) l_{3}\right)=\sum\left(l l\left(L^{\prime} s^{\prime}\right) l S L \mid l, l l\left(L^{\prime \prime} s^{\prime \prime}\right) L S\right) \\
& * \Psi_{L H_{L} s m_{s}}\left(l_{1}: l_{2} l_{3}\left(L^{\prime \prime} s^{\prime \prime}\right)\right) \\
& \text { where the transformation coefficient } \tag{2.10}
\end{align*}
$$

We also must have (normalization)

$$
\begin{equation*}
\left.\sum_{L^{\prime} s^{\prime}}\left(p^{3} 2 p /\right\} p^{2} L^{\prime} s^{\prime}\right)^{2}=1 \tag{2.15}
\end{equation*}
$$

These equations determine the c.f.p.'s up to a phase factor of \pm_{1}. The procedure may be repeated for the ${ }^{2} D$ and ${ }^{4}$ S terms. The results are in the following table.

The sign of each row in the table was chosen following Racah ${ }^{31}$. Although the sign of each row is at our disposal the relative signs of the entries in each row is not.

The same method may also be applied to the configuration ℓ^{n} of the c.f.p.'s of the ℓ^{n-1} configuration are known. In

$$
\begin{aligned}
& \text { this case we have } \\
& \left.\Psi_{L H_{L} s n_{s}}\left(e^{n}\right)=\sum_{s^{\prime} L^{\prime}}\left(e^{n} s L \mid\right\} e^{n-1} s^{\prime} L^{\prime}\right) \Psi_{L n_{L} s H_{s}}\left(e^{n-1}\left(L^{\prime} s^{\prime}\right) \ell\right) \\
& \begin{array}{c}
\left.=\sum_{s^{\prime} L^{\prime} s^{\prime \prime \prime} L^{\prime \prime}}\left(\ell^{n} S L \| \ell^{n-1} s^{\prime} L^{\prime}\right)\left(\ell^{n-1} s^{\prime} L^{\prime} \mid\right\} \ell^{n-2} s^{\prime \prime} L^{\prime \prime}\right) \Psi_{L}\left(H_{L} s H_{s}^{n-2}\left(s^{n \prime \prime} L^{\prime \prime}\right) \ell\left(s^{\prime} L^{\prime}\right) \ell\right) \\
\ldots(2.16)
\end{array}
\end{aligned}
$$

Recouping ℓ_{n} and ℓ_{n-1} we see that the c.f.p.'s must satisfy the equations
$\left.\sum_{S^{\prime} L^{\prime}}\left(S^{\prime \prime \prime} L^{\prime \prime}, \ell l\left(S^{\prime \prime \prime} L^{\prime \prime \prime}\right) S L \mid S^{\prime \prime \prime} L^{\prime \prime} \ell\left(S^{\prime} L^{\prime}\right) \ell S L\right)\left(\ell^{n} S L \mid\right\} \ell^{n-1} S^{\prime} L^{\prime}\right)$
$\left.s^{\prime} L^{\prime} \quad x\left(\ell^{n-1} s^{\prime} L^{\prime} \mid\right\} \ell^{n-2} s^{\prime \prime} L^{\prime \prime}\right)=0$
for $L^{\prime \prime}+S^{\prime \prime}=$ odd where
$\left(S^{\prime \prime} L^{\prime \prime}, \ell \ell\left(s^{\prime \prime \prime} L^{\prime \prime \prime}\right) S L \mid s^{\prime \prime} L^{\prime \prime} \ell\left(S^{\prime} L^{\prime}\right) \ell S L\right)=\sqrt{\left(2 L^{\prime}+1\right)\left(2 L^{\prime \prime \prime}+1\right)\left(2 s^{\prime}+1\right)\left(2 s^{\prime \prime \prime}+1\right)}$
$\times W\left(L^{\prime \prime} \ell L \ell: L^{\prime} L^{\prime \prime}\right) W\left(s^{\prime \prime} \frac{1}{2} s_{\frac{1}{2}}^{2}: s^{\prime} \mathbf{s}^{\prime \prime \prime}\right) \quad \ldots . .(2.18)$
As before this system of equations do not fix the phases of the eigenfunction of the different terms.

We apply the foregoing euqtions to the ${ }^{I_{D}}$ term of the p^{4} configuration. We chose $L^{\prime " '}=1, S^{\prime \prime \prime}=0, L "=2 S "=0, L=2, S=0$ and $L^{\prime} S^{\prime}={ }^{4} S,{ }^{2} D$, and ${ }^{2} P$. Consequently

$$
\begin{align*}
& \left.\left(p^{4}|D|\right\} p^{3} 4 S\right)\left(p^{3} 4 s| | p^{2} 1 D\right) 2 \sqrt{3} W(2121: 01) W\left(0 \frac{1}{1} 0 \frac{1}{2}: 3 / 20\right)+ \\
& \left.\left(p^{4}|D| \mid p^{3} 2 D\right)\left(p^{3}=D \mid\right\} p^{21} D\right) \sqrt{30} W(2121: 21) W\left(0 \frac{1}{2} 0 \frac{1}{2}: \frac{1}{2} 0\right)+ \\
& \left.\left(p^{4}|D| 1 p^{3} 2 p\right)\left(p^{3} 2 p \mid\right\} p^{2} D\right) 3 \sqrt{2} W(2121: 11) W\left(0 \frac{1}{2} 0 \frac{1}{2}: \frac{1}{2} 0\right)=0 \tag{2.19}
\end{align*}
$$

Using the previously obtained values for ($\left.\left.P^{3} L S \mid\right\} P^{2} L^{\prime} S^{\prime}\right)$ and evaluating the Racah coefficients $W(a b c d: e f)$ equation (2.19) yields.

$$
\begin{equation*}
\frac{\left(p^{4} D / 3 p^{32} D\right)}{\left.\left(p^{4} D /\right\} p^{32} P\right)}=\sqrt{3} \tag{2.20}
\end{equation*}
$$

Using equation (2.15) we obtain.

$$
\begin{array}{r}
\left.\left.\left.\left(p^{4} \cdot D \mid\right\} p^{3} 2 p\right)=\frac{1}{2},\left(p^{4} D /\right\} p^{2} 2\right)=\frac{\sqrt{3}}{2},\left(p^{4} D \mid\right\} p^{3} 4\right)=0 \\
\ldots(2.21)
\end{array}
$$

Similarly we obtain the rest of the c.f.p.'s for the p^{4} configuration

Note: we have chosen $\left.\left(P^{4} 1_{S} \mid\right\} P^{3} \quad{ }^{2} P\right)=+1$ to agree with Smith ${ }^{32}$ et al, where as Saraph ${ }^{33}$ et al. chose the value -1 .
I.I. Sobelman ${ }^{34}$ has published c.f.p.'s at variance with the above. He has used the relation given by Racah ${ }^{31}$ between the fractional parentage of the terms of an almost closed shell $\ell^{4 \ell+2-n}$ and those of ℓ^{n+1} i.e.

However for $\ell^{2 \ell+2}$ i.e. p^{4} in the case we are considering, the above equation leads to difficulty and a change of sign may be necessary ${ }^{31}$ which obviously was not taken into account. However we may use it for the configuration P^{5} and we obtain

| | 3_{P} | 1_{D} | 1_{S} |
| :--- | :--- | :--- | :--- | :--- |
| ${ }^{2}$ | $\sqrt{3 / 5}$ | ${ }_{\mathrm{P}}^{3}$ | ${ }_{\sqrt{15}}$ |

which agrees with ref. (33). For ($\left.\left.P^{5}{ }^{2} p \mid\right\} P^{4}{ }^{1} S\right) S m i t h^{32}$ et al. used the value ${ }^{-1} / \sqrt{15}$ which is incorrect.

If we denote the antisymmetric wave function for ($\mathcal{Q}+1$) electrons by $\Psi\left(P^{q+1} L_{i} S_{1}\right)$ and introduce the vector coupled function

$$
\begin{aligned}
& \psi\left(P^{q} L_{j} S_{j} p L_{i} S_{i} \underline{X}_{q} \underline{x}_{\eta_{1+1}}\right)=\sum\left(L_{j}\left|H_{L_{j}} m_{l}\right| L_{i} H_{L_{i}}\right)\left(\left.S_{j \frac{1}{2}} H_{s_{j}} m_{f} \right\rvert\, S_{i} H_{s_{i}}\right)
\end{aligned}
$$

then

$$
\begin{equation*}
\Psi\left(p^{q+1} L_{i} S_{i}\right)=\sum_{j}\left(P^{++1} L_{i} S_{i} \mid \not P^{q} L_{j} s_{j}\right) \Psi\left(P^{q} L_{j} S_{j} P L_{i} s_{i}\right) \tag{2.23}
\end{equation*}
$$

For our one-electron orbitals $P_{n}(r) \quad$ we use the analytic SCF functions of Roothan and Kelly ${ }^{35}$ or Clement ${ }^{36}$.

$$
\begin{equation*}
P_{n l}(r)=\sum_{i=1}^{M} c_{i} r^{I_{i}} e^{-z_{i} r} \tag{2.25}
\end{equation*}
$$

where M is the number of terms taken to represent an orbital. The functions are normalized such that

$$
\begin{equation*}
\int_{0}^{\infty} P_{i}(r) P_{j}(r) d r=\delta_{i j} \tag{2.26}
\end{equation*}
$$

Reduction of the integrals

Considerable simplification of equation (1,39) is
achieved if we impose the condition

$$
\begin{equation*}
\left\langle P_{n p} \mid F_{i j}\right\rangle=0 \text { for } \ell_{i}=1 \tag{2.27}
\end{equation*}
$$

However, without this constraint F would contain a component of the bound $p q$ orbital. The unconstrained continuum orbital could then be written

$$
\begin{equation*}
\tilde{F}=F+\alpha P,\langle F \mid P\rangle=0 \tag{2.28}
\end{equation*}
$$

Consequently we write

$$
\Psi^{\prime}\left(\Gamma_{j} \underline{X}_{N+1}\right)=\Psi\left(\Gamma_{j} \underline{X}_{N+1}\right)+c_{j} \Phi\left(\text { is } \cdots n p^{q+1} L S\right)
$$

Substituting this Ψ^{\prime} into equation (1.39) yields upon using equation (1.42) and the symmetry properties of the wave function we may write

$$
I_{i j}=L_{i j}^{D}+L_{i j}^{E}+L^{C}+L^{c^{2}}
$$

where we employ the notation of Smith Henry and Burke ${ }^{32}$ except that we omit the subscripts which label the particular solution vector we are refering to since the equationsare independent of the boundary conditions imposed upon them. We find

$$
\begin{aligned}
& L_{i j}^{D}=\left\langle\Psi_{u}\left(\Gamma_{i} \underline{X}_{N} \underline{x}_{N+1}\right)\right| H_{N+1}-E\left|\Psi_{u}\left(\Gamma_{j} \underline{X}_{N} \underline{x}_{N+1}\right)\right\rangle \\
& =\int d r_{N+1} F_{i}\left(r_{N+1}\right)\left[-\frac{1}{2}\left(\frac{d^{2}}{d r_{N+1}^{2}}-\frac{e_{i}\left(\ell_{i}+1\right)}{r_{N+1}^{2}}+\frac{2 z}{r_{N+1}}+k_{i}^{2}\right) \delta_{i j}+V_{i j}\left(r_{m+1} 1\right] F_{j}\left(r_{N+1}\right)\right.
\end{aligned}
$$

where

$$
\begin{align*}
& V_{i j}^{(r)}=\sum_{n^{\prime} \ell^{\prime}} 2\left(2 \ell^{\prime}+1\right) y_{0}\left(P_{n, \ell^{\prime}} P_{n^{\prime} \ell^{\prime} r}+\delta_{s_{i}, 5 j} 3 q\left[\left(2 l_{i}+1\right)\left(2 L_{i}+1\right)\right.\right. \\
& \left.x\left(2 l_{j+1}\right)\left(2 L_{j}+1\right)\right]^{\frac{1}{2}} \sum_{\lambda} \frac{1}{2 \lambda+1}\left(l_{i} \ell_{j} \circ 0 \mid \lambda 0\right)(1 ; 00 \mid \lambda 0) \\
& \left.\times W\left(l_{i} L_{i} l_{j} L_{j}: L \lambda\right) \sum_{L_{2} S_{2}}^{\lambda}(-1)^{L+L_{i}+L_{j}+L_{2}}\left(\rho^{q} L_{i} S_{i} \mid\right\} L_{2} S_{2}\right) \\
& \left.x\left(p^{q} L_{j} S_{j} \mid\right\} L_{z} S_{2}\right) W\left(1 L_{i} \mid L_{j}^{L_{2} S_{2}}: L_{2} \lambda\right) y_{\lambda}\left(P_{n p} P_{n \rho}+\right) \tag{2.30}
\end{align*}
$$

We have used the fact that

$$
\text { (19) and (22) of Smith et al. }{ }^{32}
$$

We now wish to evaluate the terms linear in C. This has been incorrectly done by Smith et al ${ }^{32}$. These authors separated off a p-electron from $\Phi\left(1 s^{2} \cdots n p^{q+1}(S)\right.$ using the coefficients of fractional parentage, which of course is only valid for equivalent electron. Consequently, the exchange interactions with the core electrons were not accounted for. We write

$$
\begin{aligned}
L^{c}= & C_{i}\left\langle\Psi\left(T_{i} \underline{X}_{N+n}\right)\right| H_{N+1}-E\left|\Phi\left(1 s^{2} \cdot n p^{q+1} L S\right)\right\rangle \\
& +C_{j}\left\langle\Phi\left(1 s^{2} \ldots n p^{4+1} S H\right)\right| H_{N+i}-E \mid \Psi\left(r_{j} \underline{X}_{N+1}\right) \ldots(2.33)
\end{aligned}
$$

We take

$$
\begin{aligned}
& \Phi\left(1 s^{2} 2 s^{2} 2 p^{q+1} L S\right) \equiv \mid 1 s^{2} 2 s^{2} 2 p^{9+1} L S> \\
& =\frac{A_{N+1}}{\sqrt{2!2!(N+1)!(9+1)!}} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \varphi\left(2 p^{9+1} \mid 5 \cdots N+1 L S\right)
\end{aligned}
$$

where A_{N+1} is a antisymmetrization operator. This function is normalized. We note that if $\phi(1 \rightarrow M)$ is a function antisymmetric in m variable and ϕ is already normalized, then

$$
\frac{1}{\sqrt{M!m!}} A_{M} \phi(1 \rightarrow M)
$$

is completely antisymmetric and normalized. Furthermore

$$
\begin{aligned}
& H_{N+1}=H_{N}+H\left(x_{N+1}\right)+\sum_{\alpha=1}^{N} \frac{1}{r_{N+1}, \alpha} \\
& H\left(x_{N+1}\right)=-\frac{1}{2} \nabla_{N+1}^{2}-\frac{Z}{r_{N+1}} \\
& L_{i j}^{E}=\int d r_{N+1} F_{i} W_{i j} F_{j}=-N\left\langle\Psi_{u}\left(r_{i} \underline{x}_{N} \underline{x}_{N+1}\right)\right| H_{N+1}-E\left|\tilde{\Psi}_{u}\left(r_{j} \underline{x}^{-31} \underline{x}_{N}\right)\right\rangle \\
& =-\delta_{i j} \sum_{\substack{n^{\prime} e^{\prime} \\
\left(e^{\prime}\right)}} \sum_{\lambda} R_{\lambda}\left(P_{n^{\prime} \ell^{\prime}} F_{i} F_{j} P_{n} l^{\prime}\right) \frac{\left(2 e^{\prime}+1\right)}{\left(2 l_{i}+1\right)}\left(e^{\prime} \lambda \text { col } e_{i} o\right)^{2} \\
& \left.-3 q\left[\left(2 e_{i}^{(c i o p}+1\right)\left(2 L_{i}+1\right)\left(2 s_{i}+1\right)\left(2 e_{j}+1\right)\left(2 L_{j}+1\right)\left(2 s_{j+1}\right)\right]^{\frac{1}{2}} \sum_{L_{2} S_{2}}\left(p^{q} L_{i} s_{i} \mid\right\} p^{q-1} L_{2} s_{2}\right) \\
& \left.\left(p^{G} L_{j} S_{j} \mid\right\} p^{q-1} L_{j} S_{j}\right) W\left(S_{j} \frac{1}{2} \frac{1}{2} S_{j}: S S_{2}\right) \sum_{\lambda}\left(1 \theta_{j 00 \mid \lambda 0)}^{\frac{1}{2 \lambda+1}}\left(e_{j} 100 \mid \lambda 0\right)\right. \\
& {\left[\begin{array}{ccc}
L_{2} & L_{j}^{j} \\
1 & L_{\lambda}^{j} \\
L_{j} & e_{i} & L_{j}
\end{array}\right] R_{\lambda}\left(P_{n p} F_{i} F_{j} P_{n p}\right)} \\
& \text { Equations (2.30) and (2.32) are exactly the same as equations }
\end{aligned}
$$

$\left\langle A_{M} \phi\right| \theta\left|A_{M} \psi\right\rangle=M!\left(\phi|\theta| A_{M} \psi\right\rangle$
provided that $\left[\theta, A_{m}\right]=0$
We also write

$$
\begin{aligned}
& \qquad \begin{aligned}
\Psi\left(r_{i} x_{N+1}\right) & =\left|\Gamma_{i} 1 s^{2} 2 s^{2} 2 p^{9}\left(s_{i} L_{i}\right) d_{i} s L\right\rangle \\
= & \frac{1}{N+1} \sum_{t}(-1)^{N+1-t} Y\left(r_{i} s^{2} 2 s^{2} 2 p^{9}\left(s_{i} L_{i}\right) f_{i} s L\right) \frac{F_{i}(t)}{r_{t}} \ldots(2.36 a)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \psi\left(\Gamma_{j} 1 s^{2} 2 s^{2} 2 p^{9} \underline{x}, \ldots x_{m, 1}-x_{m} \hat{x}_{t}\left(S_{i} L_{i}\right) e_{i} S L\right) \\
& =\sum\left(L_{i} H_{L}, H_{i} m_{i} \mid L M_{L}\right)\left(S_{i} M_{S} ; \left.\frac{1}{2} M_{S} \right\rvert\, S M_{s}\right) \frac{A_{N}}{\sqrt{2!2!N!g!}} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right)
\end{aligned}
$$

We obtain, for the first matrix element in equation (2.33)
since the right hand side is antisymmetric, upon interchanging t

$$
\begin{align*}
&\left\langle\Psi\left(r_{i} X_{N+1}\right)\right| H_{N+1}-E\left|\Phi\left(1 s^{2} 2 s^{2} 2 p^{9+1} L S\right)\right\rangle \\
&= \frac{N+1 \sqrt{9+1}}{\sqrt{N+1} 2!2!\sqrt{N+1} N!(9+1)!}<A_{N} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \psi\left(\Gamma_{i} 2 p^{9} s \cdots+N+1\right) F_{i}\left(r_{N+0}\right) \\
& r_{N+1} \tag{2.36}\\
& H_{N+1}-E\left|A_{N+1} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \varphi\left(2 p^{9+1} \mid 5 \cdots N+1 S\right)\right\rangle
\end{align*}
$$

Using equation (2.31) we see that the integral over H_{N} and E will give integrals $\int F_{i} P_{n e} d r$ which we set equal to zero since we require the F 's to be orthogonal to all bound orbitals.

Consider the matrix element of the l-electron operator $H\left(x_{w+1}\right)$ since

$$
\left[A_{N}, H\left(x_{N+1}\right)\right]=0
$$

we can take it through the operator and opera on the function in the right hand side of the matrix element, which is already antisymmetric, so consequently it gives us a factor \mathbb{N} !

Therefore the matrix element of the one-electron operator in equation (2.36) becomes

$$
\begin{aligned}
& \frac{(9+1)^{\frac{1}{2}}}{2!2!(9+1)!}\left\langle\varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \psi\left(\Gamma_{;} 2 p^{9} \mid 5 \ldots N \hat{N+1}\right) \frac{F\left(r_{N+1}\right)\left|H\left(x_{N+1}\right)\right|}{r_{N+1}}\right. \\
&\left.\times \mathcal{A}_{N} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(23^{2} / 34\right) \varphi\left(2 p^{9+1} \mid 5 \ldots N+1 L s\right)\right\rangle
\end{aligned}
$$

We cannot mix the p-electrons on the R.H.S. with ls or 2 s electrons, or the 1 s with the 2 s electrons as the orbitals are orthogonal. The $\boldsymbol{\varphi}^{\prime}$ s are already antisymmetric so A_{N+1} operating on the R.H.S. give a factor of $2!2!(q+1)!$. Using equation (2.24) we obtain

$$
\begin{align*}
& \left\langle\Psi\left(r_{i} x_{N+1}\right)\right| H\left(x_{N+1}\right)\left|\Phi\left(1 s^{2} 2 s^{2} 2 p^{9+1} L S\right)\right\rangle \\
= & \left.\delta_{l_{i} \mid}\left(2 p^{9+1} L S \mid\right\} 2 p^{4} L_{i} s_{i}\right)\langle F|-\frac{1}{2}\left(\frac{d^{2}}{d r^{2}}+\frac{\ell(l+1)}{r_{i}^{2}}-\frac{2 z}{r}\right)\left|P_{2 p}\right\rangle \tag{2.38}
\end{align*}
$$

We consider now the matrix element of the 2-electron operator

$$
\begin{aligned}
&\left\langle\Psi\left(r_{i} x_{N+1}\right)\right| \sum_{\alpha} \frac{1}{r_{N+1}, \alpha}\left|\Phi\left(1 s^{2} 2 s^{2} 2 p^{q+1} L S\right)\right\rangle \\
&=\frac{(9+1)^{\frac{1}{2}}}{2!2!N!(9+1)!}\left\langle A_{N} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \Psi\left(\Gamma_{;} 2 P^{q} / s \cdots N N_{N+1}\right) \frac{F\left(r_{N+1}\right)}{r_{N+1}}\right. \\
&\left.\left|\sum_{\alpha=1}^{N} \frac{1}{r_{N+1}}\right| A_{N+1} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \varphi\left(2 p^{q+1} \mid 5 \cdots N+1 L S\right)\right\rangle
\end{aligned}
$$

$$
\sum_{\alpha=1}^{N} \frac{1}{r_{N+1}, \alpha}=\sum_{\alpha=1}^{2} \frac{1}{r_{N+1, \alpha}}+\sum_{\alpha=3}^{4} \frac{1}{r_{N+1}, \alpha}+\sum_{\alpha=5}^{N} \frac{1}{r_{N+1}, \alpha}
$$

We next consider the contribution of $\sum_{\alpha=S}^{N} \Gamma_{N+1, \alpha}$ to the matrix element. As before we get

$$
\begin{aligned}
& \left\langle\Psi\left(r_{i} \underline{x}_{N+1}\right)\right| \sum_{\alpha=5}^{N} \frac{1}{r_{N+1}, \alpha}\left|\Phi\left(1 s^{2} 2 s^{2} 2 p^{q+1} L s\right)\right\rangle \\
& \left.=\frac{(q+1)^{\frac{1}{2}}}{2!2!N!(9+1)!}\left\langle A_{N} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \psi\left(r_{;} 2 p_{s \cdot N}^{q} \hat{N+1}\right) F\left(r_{N+1}\right)\right| \sum_{\alpha=5}^{N} \frac{1}{r_{N+1, \alpha}} \right\rvert\,
\end{aligned}
$$

$$
\left.\times A_{N+1} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \varphi\left(2 p^{9} \mid 5 \cdots N+1 L s\right)\right\rangle(2.37)
$$

Since both sides of the matrix element are antisymmetric in $\frac{9}{r_{q, 9+1}} 5$ to N we can replay
As before

$$
A_{N} \rightarrow N!
$$

also

$$
A_{N+1} \longrightarrow A_{(1,2)} \cdot A_{(3,4)} \cdot A_{(5,9+1)}
$$

$$
\longrightarrow \quad 2!\quad 2!\quad(9+1)!
$$

Consequently equation (2.37) becomes to the matrix element. As before we obtain $\frac{(q+1)^{\frac{1}{2}}}{2!2!N!(q+1)!}<A_{N} \Phi\left(1 s^{2} \mid 12\right) \Phi\left(2 s^{2} \mid 34\right) \psi\left(\Gamma_{i} 2 p^{9} \mid 5 \cdots N \hat{N+1}\right) \frac{F_{i}(r)}{r}\left|\sum_{N=1}^{2} \frac{1}{r_{N+1}+1}\right| A_{N+1} \phi\left(1 s^{2} \mid 12\right)$ $\left.x \varphi\left(2 s^{2} / 34\right) \varphi\left(2 p^{4+1} / 5 \cdots n+1 L S\right)\right\rangle$
As before when we let A_{N} operate on the R.H.S. of the matrix element we obtain a factor of N!. Also if we try to antisymmetrize the R.H.S. with respect to particles 3 and 4 and 5 through $N+1$ we get a factor of $2!^{\cdot}\left(q^{+1}\right)!$ Since both sides

$$
\begin{aligned}
& \left.(q+1)^{\frac{1}{2}} q<\psi\left(\Gamma_{;} 2 p^{q} 15 \ldots N \hat{N+1}\right) \frac{F_{(}\left(r_{N+1}\right)}{r_{N+1}}\left|\frac{1}{r_{q}, q+1}\right| \varphi\left(2 p^{q+1} \mid s \cdot N+1 L s\right)\right\rangle \\
& \left.=(9+1)^{\frac{1}{2}} 3 q \sum_{L^{\prime} s^{\prime}} \delta_{s^{\prime}} s_{i}\left(p^{\prime+1} L s \mid\right\} p^{9} l^{\prime} s^{\prime}\right)\left[3\left(2 l_{i}+1\right)\left(2 L^{\prime}+1\right)\left(2 L L_{i}+1\right)\right]^{\frac{1}{2}} \\
& \left.\times \sum_{\lambda L_{2} s_{2}}\left(-1 L^{L_{2}+L+L L^{\prime}+L i}\left(p^{9} L^{\prime} s^{\prime} \mid\right\} p^{9-1} L_{2} S_{2}\right)\left(-L_{i} S_{i} \mid\right\} p^{9-1} L_{2} \sum_{2}\right) \frac{1}{2 \lambda+1}(1100 \mid \lambda 0) \\
& \times\left(1 e_{i} 001 \lambda 0\right) W\left(1 L^{\prime} l_{i} L_{i}: L \lambda\right) W\left(1 L^{\prime} i L_{i}: L_{2} \lambda\right) R_{\lambda}\left(P_{2 p} P_{2 p} S_{i p}\right) \cdot(2.38) \\
& \text { We now investigate the contribution of } \\
& \sum_{\alpha=1}^{2} \frac{1}{r_{N+1, \alpha}}
\end{aligned}
$$

of the matrix element are antisymmetric in particles 1 and 2 the summation can be replaced by a factor of 2 . Thus equation (2.39) becomes

$$
\begin{aligned}
& \left.(q+1)^{\frac{1}{2}}\left\langle\varphi\left(1 s^{2} \mid 12\right) \psi\left(r_{i} 2 p^{9} / s \ldots N N+1\right)\right| \frac{1}{r_{N+1,2}} \right\rvert\, A_{2, N+1} \varphi\left(1 s^{2} \mid 12\right) \\
& \left.\quad \times \varphi\left(2 p^{q+1} \mid 5 \cdots N+1 L s\right)\right\rangle \\
& \left.=(q+1)^{\frac{1}{2}} \delta_{l_{1} 1}\left(p^{q+1} L s \mid\right\} p^{9} L_{i} S_{i}\right)\left\{2 R_{0}\left(P_{1 s} F_{i} P_{1 s} P_{2 p}\right)\right. \\
& \quad-\sum_{\lambda} \frac{1}{2 l_{i}+1}\left(0 \lambda 00 \mid l_{i} 0\right) R_{\lambda}\left(P_{1 s} F_{i} P_{2 p} P_{1 s}\right) \ldots \ldots(2.40)
\end{aligned}
$$

There will also be a similar contribution from the 2 s electrons
and in general the contribution from the core will be

$$
\begin{aligned}
& \sum_{n^{\prime} \ell^{\prime}=c l o s e d}\left\{2\left(2 \ell^{\prime}+1\right) Y_{0}\left(P_{n \cdot l^{\prime}} F_{i} P_{n l^{\prime}} P_{n p}\right)-\sum_{\lambda} \frac{2 e^{\prime}+1}{2 l_{i}+1}\right. \\
&\left.\times R_{\lambda}\left(P_{n} \ell^{\prime} F_{i} P_{n p} P_{n^{\prime} \ell^{\prime}}\right)\right\}
\end{aligned}
$$

Therefore the term linear in C becomes

$$
\begin{aligned}
& L^{c}=\sum_{i} C_{i} \int V_{i} F_{i} d r \\
& V_{i}(r)=(q+1)^{\frac{1}{2}}\left\{\delta_{Q_{i} 1}\left(P^{\text {where }} L S \mid\right] L_{i} S_{i}\right)\left[\left(-\frac{1}{2} \frac{d^{2}}{d r^{2}}+\frac{1}{r}-\frac{Z}{r}\right) \operatorname{Prp}^{(1)}\right. \\
& +\sum_{n^{\prime} l^{\prime}=c l o s e d} 2\left(2 l^{\prime}+1\right) y_{0}\left(P_{n^{\prime} l^{\prime}} P_{n^{\prime} l^{\prime}} r\right) P_{n p}(n)-\sum_{\lambda} \frac{2 l^{\prime}+1}{2 l_{i}+1}\left(l^{\prime} \lambda 00 \mid l_{i} 0\right)
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\times\left(2 L^{\prime}+1\right)\left(2 L_{i}+1\right)\right]^{\frac{1}{2}} \sum_{\lambda L_{2} s_{2}}(-1)^{L_{2}+L+L^{\prime}+L_{i}}\left(p^{a} L^{\prime} s^{\prime} \mid\right\} L_{2} S_{2}\right)\left(p^{a} L_{i} S_{i} \mid L_{2} s_{2}\right) \\
& \times \frac{1}{2 \lambda+1}(1100 \mid \lambda 0)\left(1 \ell_{i} 00 \mid \lambda 0\right) W\left(1 L^{\prime} \ell_{i} L_{i}: L \lambda\right) W\left(1 L^{\prime} \mid L_{i}: L_{2} \lambda\right) \\
& \times y_{\lambda}\left(P_{n p} P_{n p} r\right) P_{n}(r) \tag{2.41}
\end{align*}
$$

This is the expression given by Smith, Conneely and Morgan ${ }^{37}$ and differs from equation (24) of Smith et al ${ }^{32}$ in as much as
the above includes terms which arise from exchange with the core. These terms are absent in reference (32) since $\Phi(1 . . N+1 L S)$ was not properly antisymmetrized. We now have to evaluate the term quadratic in C

$$
\begin{align*}
L^{c^{2}} & =c_{i} c_{j}\left\langle\Phi\left(1 s^{2} \cdots n p^{q+1} L S\left|H_{N+1}-E\right| \Phi\left(1 s^{2}-n p^{q+1} L S\right)\right\rangle\right. \\
& =c_{i} c_{j}\left(E_{N+1}-E\right) \tag{2.43}
\end{align*}
$$

where E_{N+1} is the energy of the $1 s^{2} \cdots n p^{9+1} L S$ configuration evaluated with the wave functions of the $n p^{q}$ configuration.

The Hamiltonian may be broken up into single particle operators and 2-particle operators since

$$
\begin{equation*}
H_{N+1}=\sum_{i=1}^{N+1} H(i)+\sum_{i<j}^{N+1} \frac{1}{r_{i j}} \tag{2.44}
\end{equation*}
$$

The single particle operators give a contribution

$$
\begin{align*}
& -\frac{1}{2} \sum_{n_{\lambda} \ell_{\lambda}}=\operatorname{closed} 2\left(2 l_{\lambda}+1\right) \int_{0}^{\infty} P_{n_{\lambda} l_{\lambda}}\left(\frac{d^{2}}{d r^{2}}-\frac{l_{\lambda}\left(l_{\lambda}+1\right)}{r^{2}}+\frac{2 z}{r}\right) P_{n_{\lambda} l_{\lambda}} d r \\
& \quad-\frac{1}{2}(q+1) \int P_{n_{l}}\left(\frac{d^{2}}{d r^{2}}-\frac{2}{r^{2}}+\frac{2 z}{r}\right) P_{n l} d r \tag{2,45}
\end{align*}
$$

The matrix element of the ${ }^{e l e} e_{\text {ctrostatic }}$ interaction between groups of inequivalent electrons may be evaluated by the methods of de Shalit and Thalmi ${ }^{38}$.
(a) The elctrons in each closed subshell will give a

$$
\begin{align*}
& \text { contribution }\left(2 l^{\prime}+1\right)^{2}\left[2 R_{0}\left(n^{\prime} l^{\prime 4}\right)-\sum_{\lambda}(-1)^{\lambda} \frac{1}{2 \lambda+1}\left(l^{\prime} l^{\prime} 00 \mid \lambda 0\right)^{2} R\left(n^{\prime} l^{\prime} 4\right),\right. \tag{2.46a}
\end{align*}
$$

(b) From each pair of closed subshells there will be a contribution

$$
\begin{align*}
2(2 l+1)\left(2 l^{\prime}+1\right) & {\left[2 R_{0}\left(n l n^{\prime} l^{\prime} n l n^{\prime} l^{\prime}\right)-\sum_{\lambda}(-1)^{l+l^{\prime}+\lambda} \frac{1}{\frac{1}{2 \lambda+1}}\left(\ell l^{\prime} 00 \mid \lambda 0\right)^{2}\right.} \\
\times & \left.R_{\lambda}\left(n l n^{\prime} l^{\prime} n^{\prime} l^{\prime} n l\right)\right] \quad \ldots(2.46 \mathrm{~b}) \tag{2.46b}
\end{align*}
$$

(c) From the $n \ell^{+1}$ open shell there will be a contribution

$$
(q+1)\left(2 l^{\prime}+1\right)\left[2 R_{0}\left(n \ell n^{\prime} l^{\prime} n \ell n^{\prime} l^{\prime}\right)-\sum_{\lambda}(-1)^{l+l^{\prime}+\lambda} \frac{1}{2 \lambda+1}\left(l l^{\prime} 00 \mid \lambda 0\right)^{2} R_{\lambda}\left(n l_{n}^{\prime} l^{\prime} n^{\prime} l^{\prime} n l\right)\right]
$$

for each $n^{\prime} \ell^{\prime}$ closed subshell. This is independent of the
total angular momenta of the open shell.
(d) From the $n p^{+1}$ open subshell we will have the contribution

$$
\begin{aligned}
\xi & =\left\langle n p^{q+1} L S\right| \sum \frac{1}{r_{i j}}\left|n p^{q+1} L S\right\rangle \\
& =\frac{q(q+1)}{2}\left\langle n p^{q+1} L S\right| \frac{1}{r_{q q+1}}\left|n p^{q+1} L S\right\rangle
\end{aligned}
$$

since

$$
\left.\left|n p^{q+1} L S\right\rangle=\sum\left\langle p^{q+1} L S\right|\left\langle P^{q} L_{i} S_{i}\right)\left(p^{q} L_{i} \cdot S_{i} \mid\right\} P^{q-1} L_{i}^{q} s_{i}^{\prime}\right)\left|n p^{q-1}\left(L_{i}^{\prime} S_{i}^{\prime}\right) p\left(L_{i} S_{i}\right) p L S\right\rangle
$$

and

$$
\left.\begin{array}{rl}
\left|n p^{q-1}\left(L_{i}^{\prime} S_{i}^{\prime}\right) p\left(L_{i} S_{i}\right) p L S\right\rangle= & \sum_{L_{2}}(-1)^{L+L_{i}^{\prime}} \sqrt{\left(2 L_{i}+1\right)\left(2 L_{2}+1\right)}\left\{\begin{array}{l}
L_{i} L_{i} L_{i} \\
1 \\
L
\end{array} L_{2}\right.
\end{array}\right\}
$$

where we use the $6-j$ symbols ${ }^{39}$ instead of Racah W-co-efficients since they are more symmetrical.

Consequently

$$
\begin{aligned}
& L_{i}^{\prime} S_{i}^{\prime}, L_{j}^{\prime} S_{j}^{\prime} \\
& L_{2} L_{2}^{\prime} \\
& x\left(p^{a} L_{j} S_{j} \left\lvert\,\left\{p^{a-1} L_{j}^{\prime} S_{j}^{\prime}\right) \sqrt{\left(2 L_{i}+1\right)\left(2 L_{z}+1\right)\left(2 L_{j}+1\right)\left(2 L_{2}^{\prime}+1\right)}\left\{\begin{array}{l}
L_{i}^{\prime} \mid L_{i} \\
1 L_{2} L_{z}
\end{array}\right\}\right.\right. \\
& \left.\times\left\{\begin{array}{lll}
L_{j}^{\prime} & 1 & L_{j} \\
1 & L & L_{2}^{\prime}
\end{array}\right\}(-1)^{L_{i}^{+}+L_{j}}<p^{q-1}\left(L_{i}^{\prime} S_{i}^{\prime}\right) p p\left(L_{2} s_{2}\right) L S\left|\frac{1}{r_{q, q+1}}\right| p^{q-1}\left(L_{j}^{\prime} s_{j}^{\prime}\right)_{p} p\left(L_{2}^{\prime} s_{2}^{\prime}\right) L S\right\rangle
\end{aligned}
$$

We note that

$$
\begin{aligned}
& \left\langle p^{q-1}\left(L_{i}^{\prime} s_{i}^{\prime}\right) p p\left(L_{2} s_{2}\right) L S\right| \frac{1}{r_{q_{1}+4}}\left|p^{q-1}\left(L_{i}^{\prime} s_{i}^{\prime}\right) p p\left(L_{2} s_{2}\right) L S\right\rangle \\
& =\sum_{\lambda}(-1)^{L_{2}}\left(\begin{array}{lll}
11 & \lambda \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
11 & \lambda \\
0 & 0 & 0
\end{array}\right) \frac{q}{2 \lambda+1}\left\{\begin{array}{lll}
1 & 1 & \lambda \\
1 & 1 & L_{2}
\end{array}\right\} R_{\lambda}\left(n P^{4}\right)
\end{aligned}
$$

where $\lambda=0$ or 2 .

$$
\begin{aligned}
& \text { Therefore }
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(p^{q} L_{j} s_{i} \| P^{4-1} L_{i}^{\prime} s_{i}^{\prime}\right) \sqrt{\left(2 L_{j}+1\right)\left(2 L_{j}+1\right)}\left\{\begin{array}{lll}
L_{i}^{\prime} & 1 L_{i} \\
1 & L & L_{2}^{\prime}
\end{array}\right\}\left\{\begin{array}{lll}
L_{j}^{\prime} & 1 & L_{j} \\
1 & L & L_{2}
\end{array}\right\} \\
& \times\left\{\begin{array}{lll}
1 & 1 & \lambda \\
1 & 1 & L_{2}
\end{array}\right\}\left(\begin{array}{ccc}
1 & 1 & \lambda \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & \lambda \\
0 & 0
\end{array}\right) \frac{9}{2 \lambda+1}(-1)^{L_{2}}\left(2 L_{2}+1\right) R_{\lambda}\left(n p^{4}\right) \text {. }
\end{aligned}
$$

We now use the Biedenharn-E1liott sum rule

$$
\begin{aligned}
& \sum_{L_{2}}\left(2 L_{2}+1\right)(-1)^{L_{2}}\left\{\begin{array}{llll}
L_{1}^{\prime} & L L_{i} \\
1 & L_{2} \\
L
\end{array}\right\}\left\{\begin{array}{lll}
L_{i}^{\prime} & L L_{j} \\
1 & L_{2}
\end{array}\right\}\left\{\begin{array}{ll}
1 & \lambda \\
1 & L_{2} \\
L_{2}
\end{array}\right\} \\
& =(-1)^{L+L_{i}+L_{j}+L_{i}^{\prime}}\left\{\begin{array}{l}
L_{j}^{\prime} L_{i}^{\prime} L_{1} \\
1 \\
\lambda
\end{array} L_{i}\right\}\left\{\begin{array}{lll}
L_{i} & L_{j} \lambda \\
1 & 1 & L
\end{array}\right\}
\end{aligned}
$$

So finally we obtain

$$
\begin{aligned}
& \xi=\frac{q(q+1)}{2} \sum_{L_{i} L_{j} L^{\prime} S_{i} S^{\prime} \lambda}\left(P^{q+1} L S \| P^{q} L_{i} S_{i}\right)\left(P^{q+1} L S \| P^{q} L_{d} s_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\begin{array}{lll}
L_{j}^{\prime} L^{\prime} \\
1 & \lambda & L_{i}
\end{array}\right\} \frac{q}{2 \lambda+1}(-1)^{L+L_{i}+L_{j}+L L}\left(\begin{array}{lll}
1 & 1 & \lambda \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & \lambda \\
0 & 1 & \lambda
\end{array}\right) R_{\lambda}\left(n p^{4}\right) \ldots(2.46 \mathrm{~d})
\end{aligned}
$$

Equations (2.46 a,b,c,d) give us E_{N+1}. The above expressions are equivalent to that given by reference (37), but differs substantially form that given by Smith et al ${ }^{32}$. Furthermore the expression

$$
E=\frac{1}{2} k_{1}^{2}+E_{N}\left(S_{1} L_{1}\right), E_{N}=\left\langle 13^{2} \cdots n p_{1}^{4} L_{1}\right| H_{N}\left|13^{2} \cdots n p^{4} L_{S}^{4}\right\rangle_{(2.47)}
$$

is calculated using the same methods, where Kl^{2} is the energy of the incident electron in Rydbergs and $S_{1} L_{1}$ are the quantum numbers of the lowest term of the target ion.

In order to obtain better agreement with experiment for the positions of the levels of a Rydberg series converging on one of the excited terms we use the experimentally determined
$E_{N}\left(S_{i} L_{i}\right) \quad$,or theoretical values given by references (35) and (36).

However these value should not be used in equation (2.47) since they are inconsistent with our method of calculating $\mathrm{E}_{\mathrm{N}+1}$.

Derivation of the Radial Equations

Application of the John variational principle (equation (1.47) yields, after analysis equivalent to that of reference (32), the equations satisfied by the radial equations $F_{i j}$ where the subscript j refers to the $j^{\boldsymbol{t}}$ solution of the vector function F.

$$
\sum_{j} \mathscr{L}_{i j} F_{j k}^{(r)}+\frac{V_{i}}{E-E_{N+1}} \sum_{j} \int_{j} V_{j}\left(r^{\prime}\right) F_{j}^{\left(r^{\prime}\right)} d r^{\prime}+\sum_{\lambda} m_{\lambda}^{i} P_{n_{\lambda} l_{\lambda}}
$$

where

$$
\mathcal{L}_{i j}=-\frac{1}{2}\left[\frac{d^{2}}{d r^{2}}-\frac{e_{i}\left(l_{i+1}\right)}{r^{2}}+\frac{2 z}{r}+k_{i}^{2}\right] \delta_{i j}+V_{i j}+W_{i j}
$$

The direct potential $V_{i j}$ i defined by equation (2.30) and the integral operator $W_{i j}$ by equation (2.32). The m_{λ}^{i}
are unknown Lagrange multipliers as we require the radial functions $F_{i j}$ for s-waves to be orthogonal to the $1 s$ $2 s$ and 3 subshells, and for $\ell_{i}=1$ to be orthogonal to the ${ }^{2} p$ and np subshells. The numerical solution of these equationsis discussed in Chapter 4.

Results
The results for the cross sections for electron scattering by carbon, nitrogen and oxygen have been discussed by Smith, Conneely and Morgan ${ }^{37}$. Henry et al ${ }^{40}$ have pointed out that the peaks in elastic cross sections in the results for carbon and nitrogen are due to a low energy shape resonance which is supported essentailly by the angular momentum barrier term which corresponds to $\ell \div 1$. This feature is absent for the corresponding (3p) ${ }^{q}$ cases iee. for silicon and phosphorus. The reason for this is that the effective potential that our electron with angular momentum equal to unity incident on phosphorus sees, cannot support ánbound state. In Figure 1 we plot the effective potential Y_{11}^{\prime} against' f^{\prime} for carbon and phosphrous.

$$
V_{11}^{\prime}=\frac{(l+1)}{r^{2}}-\frac{2 z}{r}+2 . V_{11}
$$

where V_{11} is given by equation (2.30).
In Table I we present the partial wave contributions to the excitation cross sections $Q\left(n, n^{\prime}\right)$ for $\left(\mathbb{1}+N^{+}\right.$and 0^{++}. We have used the theoretical values ${ }^{35}$ for the energy differences between the terms. Henry et ai ${ }^{40}$ have used experimental energy differences for the terms and furhtermore have used the HartreeFock energy for the lowest term (i.e. equation 2.47) which we
have pointed out to be inconsistent. We note that the dominant contributions to the cross sections come from the p-waves. This is not the case for (3p) ${ }^{q}$ ions.

We have tabulated the partial wave contributions to the excitation cross sections for $\mathrm{P}^{+}, \mathrm{S}^{+}$and Cl^{+}as well as the total collision strengtis in Tables 2,3, and 4. In this case the most important contributions to the cross sections come from the d-waves. For these ions we have used the experimental energy differences between the terms. Table 5 gives a comparsion of collision strengths for various ions between the present results and other calculations, We see that the agreement between the various calculations is poorer for the (3p) ${ }^{\text {q }}$ system than for the $(2 p)^{q}$ system where excellent agreement was obtained ${ }^{37}$. This may be due to the large number exchange terms, which we have treated exactly, i.e. for a particular set of coupled equations there may be as many as 33 distinct exchange terms, all of which we have taken into account. We have calculated the collision strength well above all thresholds as near threshold our method of fitting our solutions to the asymptotic form of Burke and Schey breaksdown. Below the highest term of course our model will predict an infinite number of resonances. In figure 2 we present the ${ }^{3} D^{0}$ partial wave contribution to the ${ }^{4} \mathrm{~S}-{ }^{2} \mathrm{D}$ transition in S^{+}which shows a number of thses resonance profiles.

TABLE I
Partial wave contribution to the excitation cross sections for $\mathrm{N}^{+},{\phi^{++}}^{+}$and O^{+}

¢ Ion	$\mathrm{K}_{3}{ }^{2}$	LST	$Q\left({ }^{3} \mathrm{p},{ }^{1} \mathrm{D}\right)$	$Q\left({ }^{1} \mathrm{D},{ }^{3} \mathrm{P}\right)$
N^{+}	. 2	$2^{p}{ }^{\text {e }}$. 01735	. 04285
		${ }^{2} \mathrm{P}$. 16525	. 40782
		$2^{2} \mathrm{e}$. 00322	. 00795
		${ }^{2} \mathrm{D}^{\circ}$. 32403	. 80006
		${ }^{2} \mathrm{~F}$. 10370	. 25591
		$2_{\mathrm{F}} \mathrm{O}$. 00043	. 00106
		Total	. 61398	1.51563
			$Q\left({ }^{3} \mathrm{P}-{ }^{1} \mathrm{~S}\right.$)	$Q\left({ }^{1} S-{ }^{3} p\right)$
		${ }^{2} \mathrm{P}$. 06617	1.77379
		$2_{\mathrm{D}}{ }^{\text {e }}$. 01358	. 36440
		${ }^{2} \mathrm{~F}^{\circ}$. 00002	. 00058
		Total	. 07977	2.13877
			$Q\left({ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}\right)$	$Q\left({ }^{1} \mathrm{~S}-{ }^{1} \mathrm{D}\right)$
		${ }_{2} \mathrm{~S}^{e}$. 04074	. 44254
		${ }^{2} \mathrm{P}^{\circ}$. 04076	. 44276
		$2_{\mathrm{D}}{ }^{\text {e }}$. 08325	. 90431
		${ }^{2} \mathrm{~F}$ O	. 03210	. 34867
		Total	. 19685	2.13826
			Q $\left({ }^{3} \mathrm{P},{ }^{1} \mathrm{D}\right)$	$Q\left({ }^{1} \mathrm{D},{ }^{3} \mathrm{p}\right)$

TABLE I
(continued)

O^{++}	. 2	${ }^{2} \mathrm{P}$. 02061	. 05230
		${ }^{2} \mathrm{P}$ O	. 08902	. 22594
		$2_{\mathrm{D}}{ }^{\text {e }}$. 00312	. 00792
		$2^{2} 0$. 16582	. 42090
		$2_{\mathrm{F}} \mathrm{e}$. 12068	. 30632
		$2_{\mathrm{F}} 0$. 00039	. 00100
		Total	$\begin{gathered} .39964 \\ Q\left({ }^{3} p,{ }^{1} S\right) \end{gathered}$	$\begin{aligned} & 1.01438 \\ & Q\left({ }^{1} S,{ }^{3} \mathrm{P}\right) \end{aligned}$
		${ }^{2} \mathrm{P}$. 03443	1.09661
		${ }^{2} \mathrm{D}$ e	. 023.46	. 74729
		${ }^{2} \mathrm{~F}$ O	. 00005	. 00167
		Total	. 05794	1.84557
			$Q\left({ }^{1} D_{1}{ }^{1} S\right.$)	$Q\left({ }^{1} S^{1}{ }^{1}\right)$
		${ }^{2} \mathrm{~S}$ e	. 02269	. 28468
		${ }^{2} \mathrm{p} 0$. 01647	. 20667
		$2_{\text {D }}{ }^{\text {e }}$. 04969	. 62348
		$2_{\mathrm{F}} \mathrm{O}$. 02813	. 35295
		Total	. 11698	1.46778
0^{+}	. 2		$Q\left(4{ }^{4},{ }^{2} \mathrm{D}\right)$	$Q\left({ }^{2},{ }^{4} \mathrm{~S}\right)$
		3 S	. 00090	. 00062
		$3_{p}{ }^{\text {e }}$. 50721	. 34830

TABLE I
(continued)

TABLE I
(continued)

Collision Strengths, $\Omega\left(\mathrm{n}, \mathrm{n}^{1}\right)$

	N^{+}	O^{++}	O^{+}
$\Omega(1,2)$	3.29286	2.54556	1.53510
$\Omega(2,1)$	3.29285	2.54553	1.53623
$\Omega(1,3)$.42768	.36906	.52692
$\Omega(3,1)$.42775	.36911	.52692
$\Omega(2,3)$.42767	.29355	1.90538
$\Omega(3,2)$.42765	229355	1.90540

TABLE II
Partial wave contributions to the excitation cross sections of P^{+}

$Q\left(n, n^{1}\right)$	$L S \pi / k^{2}$. 3	. 4	. 6	. 8	1.0
$3_{\mathrm{P}-1}{ }_{\mathrm{D}}$	$2_{\mathrm{P}}{ }^{\mathrm{e}}$. 979	. 406	. 209	. 112	. 063
	${ }^{2} \mathrm{P}^{0}$. 272	. 195	. 117	. 077	. 053
	$2_{\text {D }} \mathrm{e}$. 125	. 089	. 054	. 035	. 023
	$2_{\text {D }} 0$. 468	. 332	. 195	. 127	. 088
	$2_{F} \mathrm{e}$	2.192	1.594	. 950	. 588	. 358
	${ }^{2} \mathrm{~F}$. 002	. 002	. 002	. 00.1	. 001
	$2_{G} \mathrm{O}$. 014	. 018	. 025	. 028	. 030
$3_{\mathrm{P}-{ }^{1} \mathrm{~S}}$	Total	4.052	2.636	1.552	. 96.9	. 616
	${ }^{2} \mathrm{P}$ O	. 092	. 065	. 038	. 024	. 016
	${ }^{2}{ }^{\text {e }}$. 650	. 501	. 302	.181	. 105
	$2_{\mathrm{F}} \mathrm{O}$. 001	. 002	. 003.	. 00.4	. 004
$1_{D-1}{ }^{1}$	Total	. 743	. 568	. 343	. 209	.125
	$2_{S}{ }^{e}$. 162	. 078	. 021	. 005	. 001
	${ }^{2} \mathrm{P}^{0}$. 229	. 154	. 093	.066	. 051
	$2_{\text {D }}{ }^{\text {e }}$. 423	. 227	. 107	. 073	. 059
	${ }^{2} \mathrm{~F} 0$.374	. 301	. 218	.168	.134
	$2_{G}{ }^{\text {e }}$. 130	. 117	. 101	. 090	. 081
	Total	1.318	. 877	. 540	. 402	. 326

TABLE II

(continued)

$\Omega(1,2)$	10.940	9.490	8.381	6.97 .7	5.544
$\Omega(1,3)$	2.006	2.045	1.852	1.505	1.125
$\Omega(2,3)$	1.444	1.399	1.401	1.445	1.498

TABLE III

Partial wave contributions to the excitation cross section for s^{+}

$\mathrm{Q}\left(\mathrm{n}, \mathrm{n}^{1}\right)$	$\mathrm{LS} \pi / \mathrm{k}^{2}$.3	.4	.6	.8	1.0
${ }^{4} \mathrm{~S}^{2}{ }^{2} \mathrm{D}$	$3_{\mathrm{S}}{ }^{\circ}$.035	.022	.007	.001	.000
	$3_{\mathrm{P}^{\mathrm{e}}}$.934	.690	.434	.300	.218
	$3_{\mathrm{D}^{\circ}}$	3.986	2.805	1.694	1.154	.807
	$3_{\mathrm{F}^{\mathrm{e}}}$.008	.012	.019	.025	.031
	Total	4.963	3.529	2.154	1.480	1.056

TABLE III

(continued)

$1_{F} 0$. 153	. 189	. 197	. 163	. 120
$1_{F} \mathrm{e}$. 045	. 03.9	. 032	. 029	. 026
$3_{F} 0$	2.144	1.029	. 406	. 232	. 160
$3_{F} \mathrm{e}$. 119	. 093	. 072	. 05.9	. 050
Total	5.854	3.325	1.729	1.125	. 802
$\Omega(1,2)$	5.956	5.646	5.169	4.736	4. 224
$\Omega(1,3)$	2.213	2.558	2.791	2.662	2.324
$\Omega(2,3)$	9.623	8.861	8.031	7.474	6.932

TABLE IV
Partial wave contributions to the excitation cross sections for $C \ell^{+}$

$Q\left(n n^{1}\right)$	$L S \pi / \mathrm{k}^{2}$. 3	. 4	. 6	. 8	1.0
$3_{\mathrm{P}}{ }^{1}{ }^{\text {D }}$	$2_{P}{ }^{e}$	1.015	. 771	. 507	. 359	. 257
	${ }^{2} \mathrm{P}^{0}$. 468	. 350	. 225	. 359	.117
	$2_{D} \mathrm{e}$	1.097	. 814	. 529	. 384	. 289
	$2^{2} 0$. 008	. 007	.007	. 008	.009
	$2_{\mathrm{F}} \mathrm{O}$. 002	. 002 ,	. 003	. 00.4	. 004
	Total	2.590	1. 945	1.271	. 912	. 675
$3^{3}-{ }^{1}{ }_{S}$	${ }^{2} \mathrm{P}^{0}$. 022	. 013	. 005	. 003	. 002
	$2_{\text {D }} \mathrm{e}$. 345	. 276	.186	. 134	. 099.
	${ }^{2} \mathrm{~F}^{\circ}$. 000	. 000	.001	. 00.1	. 00.1
	Total	.367	.289	. 192	. 138	. 102
${ }^{1} \mathrm{D}-{ }^{1}{ }_{S}$	$2_{S}{ }^{e}$. 173	. 113	. 064	. 045	. 039
	${ }^{2} \mathrm{P}^{0}$. 458	. 280	. 145	. 092	. 064
	$2_{D}{ }^{\text {e }}$	1.156	. 703	. 316	. 167	. 096
	2 Fo	.157	. 134	.107	. 092	. 080
	$2^{\text {H }}$. 015	. 019	. 019	. 018	. 017
	Total	2.005	1. 295	. 693	. 453	. 332
	$\Omega(1,2)$	6.993	7.002	6.863	6.566.	6.075
	$\Omega(1,3)$. 991	1.040	1.036	899.4	. 918
	$\Omega(2,3)$	1.942	1,902	1.711	1,571	1.484

TABLE V
Comparison of collision strengths

$$
\left(n, n^{1}\right) \text { for }(3 P)^{q} \text { ions }
$$

ION	n	n^{1}	Present	Ref (43)	$\operatorname{Ref}(44) * *$	Reff (45)
P^{+}	1	2	10.94	6.31		
	1	3	2.01	1.12		
	2	3	1.44	1.11		
s^{+}	1	2	5.96		3.06	2.02
	1	3	2.21		1.28	0.38
	2	3	9.62		6.22	12.7
$\mathrm{C} \ell^{++}$	1	2	3.372		3.189	
	1	3	1.847		1.967	
	2	3	5.743		6.63	
$A r^{+++}$	1	2	1.008		1.432	
	1	3	0.326		0.645	
	2	3	3.651		4.920	

${ }^{*} k_{1}^{2}=\underset{\text { respectively }}{.3} \mathrm{except}$ for ℓ^{++}and A^{+++}where it equals .5 and 1.0
$* * \mathrm{k}_{3}{ }^{2}+.0005$ in these calculations.

Photo-ionization

We now wish to use the continuum wave functions defined by equation (2.48) to calculate photoionization cross sections. The derivation we give is essentially that of Henry and Lipsky ${ }^{41}$.

We consider a photon of energy hov impinging on
a target system of N electrons and Z nuclear charge with quantum number $L_{0}, M_{0}, S_{O}, \mu_{0}$ and energy E_{o} described by the wave function

$$
\left.\Phi_{L_{0} S_{0} M_{L_{0}} M_{s_{0}}} N\right) \quad \text { If } h v \text { is greater than the lowest }
$$ ionization potential of the target, ionization can take place and the final states can be described by wave functions

$$
\Gamma \Psi_{L S M_{L} M_{S}} c M_{\text {where }}
$$

$$
\Gamma=\left\{L_{p} S_{\Gamma} \ell_{i} \frac{1}{2}\right\}
$$

stands for the channel of the emitted electron. The cross section in the dipole velocity form is ${ }^{42}$

$$
\left.\sigma_{V}=\frac{2 \Pi e^{2} \hbar^{2}}{m^{2} c \nu \omega} \sum_{M_{M_{S}} M_{L_{0}} M_{S_{0}}} \right\rvert\,\left.\left.\left\langle\Phi_{L_{0} S_{0} M_{L_{0}} M_{S_{0}}}\right| \sum_{i=1}^{N} \nabla_{i}^{m}\right|^{\Gamma} \Psi_{L S H_{L} M_{S}}(1 \cdots(2.49)\rangle\right|^{2}
$$

where

$$
\omega=2\left(2 L_{0}+1\right)\left(2 S_{0}+1\right)
$$

is the statiscal
weight since we assume the target is unpolarized.

$$
\begin{aligned}
& \nabla_{i}^{ \pm 1}=-\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x_{i}} \pm i \frac{\theta}{\partial y_{i}}\right), \nabla_{i}^{0}=\frac{\partial}{\partial 3_{i}} \\
& \Gamma \Psi_{\text {LS M M }} \quad \text { represents an outgoing spherical wave in }
\end{aligned}
$$

channel Γ plus incoming spherical waves in all channels, normalized per unit energy range. This condition will be met if we take ${ }^{\Gamma} \mathcal{Y}_{L S M} M_{S}$ to be of the form

$$
\begin{aligned}
\lim ^{\Gamma} \Psi_{L S M M_{S}}= & \left(2 \pi k_{P}\right)^{-\frac{1}{2}} \phi\left(\Gamma x_{N-1} \hat{x}_{N}\right) \frac{e^{i \theta_{N}}}{r_{N}} \\
& -\sum_{\Gamma^{\prime}} S_{\Gamma} \Gamma^{\prime}\left(2 \pi k_{\Gamma^{\prime}}\right)^{-\frac{1}{2}} \phi\left(r^{\prime} \underline{x}_{N, 1} \hat{x}_{N}\right) \frac{e^{-i \theta_{N}}}{\Gamma_{N}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi\left(\Gamma \underline{X}_{N-1} \hat{X}_{N}\right)=\sum\left(\left(_{r} R_{r} M_{L_{r}} m \mid L M_{L}\right)\left(\left.S_{r} \frac{1}{2} M_{S} m_{r} \right\rvert\, S M_{S}\right)\right.
\end{aligned}
$$

Here k_{r} is the wave number of the electron ejected in the Γ th channel and is related to the incident frequency and the Γ th ionization potential I_{Γ} by the Einstein relation

$$
\begin{equation*}
\frac{1}{2 m} \hbar^{2} k_{\Gamma}^{2}=h v-I \tag{2.51}
\end{equation*}
$$

Application of the commutation relation

$$
\begin{equation*}
[r . H]=\frac{i \hbar}{m} \underline{P} \tag{2.52}
\end{equation*}
$$

to equation (2.49) yields the dipole length form of the cross section

$$
\begin{aligned}
& \Gamma
\end{aligned}
$$

The total cross section will be

$$
\begin{equation*}
\sigma_{t_{0}}=\sum_{\Gamma}^{\text {open }} r_{\Gamma} \sigma_{V}=\sum_{\Gamma}^{\text {open }} \nabla_{L} \tag{1}
\end{equation*}
$$

Consequently we are interested in evaluating the matrix element

$$
\left.\sum_{\Gamma} \frac{1}{\left(2 L_{0}+1\right)\left(2 S_{0}+1\right)} \sum_{N}\left|\left\langle\Phi_{L_{0} s_{0} M_{0} M_{S_{0}}}\right| \theta_{1}^{m}\right| \Psi_{L S M M_{s}}(\ldots \ldots n)\right\rangle\left.\right|^{2}
$$

$$
\begin{equation*}
\theta_{1}^{m}=\sum_{i=1}^{N} \nabla_{i}^{m} \quad \sigma_{i} \theta_{i}^{m}=\sum_{i=1}^{N} r_{i} Y_{1}^{m}\left(\theta_{i} \phi_{i}\right) \tag{2.55}
\end{equation*}
$$

If ${ }^{\Gamma} \oint_{\text {SM MS }}$ denotes the close coupling wave functions with the boundary conditions given by equations (1.30) then

$$
\Gamma \Psi_{L S}=\sum_{\Gamma^{\prime}}(1+i R)_{\Gamma \Gamma^{\prime}}{ }^{\Gamma} \phi_{L S}
$$

will have the asymptotic behaviour of equation (2.50). Thus

$$
\begin{align*}
& \left.P^{\Gamma}=\left.\frac{1}{\left(2 L_{0}+1\right)\left(2 S_{0}+1\right)} \sum_{m_{m}^{m} \Gamma^{\prime} \Gamma^{\prime \prime}}\left\langle\Phi_{0}\right| \theta_{1}^{m}\right|^{r^{\prime \prime}} \phi\right\rangle(1-i R)_{\Gamma \Gamma^{\prime \prime}}^{-1} \\
& \times(1+i R)_{\Gamma \Gamma^{\prime}}^{-1}\left\langle\dot{\beta}^{\prime} \phi\right| \theta_{1}^{m}\left|\bar{\Phi}_{0}^{m}\right\rangle \tag{2.56}
\end{align*}
$$

Since

$$
(1 \pm i R)_{n \Gamma "}^{-1}=\left(1+R^{2}\right)_{r \Gamma^{\prime \prime}}^{-1} \neq i\left(R /\left(1+R^{2}\right)\right)_{\Gamma r^{\prime \prime}}
$$

and

$$
\begin{align*}
& (1-i R)_{\Gamma r^{\prime \prime}}^{-1}(1+i R)_{\Gamma r^{\prime}}=\left(1+R^{2}\right)_{\Gamma \Gamma^{\prime \prime}}^{-1}\left(1+R^{2}\right)_{\Gamma \Gamma^{\prime}}^{-1} \\
& +\left(R\left(1+R^{2}\right)^{-1}\right)_{\Gamma \Gamma^{\prime}}\left(R\left(1+R^{2}\right)^{-1}\right)_{\Gamma \Gamma^{\prime \prime}}+i\left[\left(1+R^{2}\right)_{\Gamma \Gamma^{\prime \prime}}^{-1}\right. \\
& \left.\times\left(R\left(1+R^{2}\right)^{-1}\right)_{\Gamma \Gamma^{\prime}}-\left(1+R^{2}\right)_{r r^{\prime}} R\left(1+R^{2}\right)_{\Gamma \Gamma^{\prime \prime}}^{-1}\right] \tag{2.57}
\end{align*}
$$

Since we have

$$
\sum_{\Gamma^{\prime} \Gamma_{\text {since }}^{\prime \prime}}^{\text {Since we have }}\left(1+R^{2}\right)_{r \Gamma^{\prime}}^{-1}\left(R\left(1+R^{2}\right)^{-1}\right)_{\Gamma \Gamma^{\prime \prime}} f_{r^{\prime} \Gamma^{\prime \prime}}=\sum_{r^{\prime \prime \prime} r^{\prime}}\left(1+R^{2}\right)_{r \Gamma^{\prime \prime}}^{-1}\left(R\left(1+R^{2}\right)^{-1}\right)_{\mu^{\prime \prime}}
$$

$$
f_{\Gamma^{\prime} \Gamma^{\prime \prime}}=f_{\Gamma^{\prime \prime} \Gamma^{\prime}}
$$

then the two imaginary sums over Γ^{\prime} and $\Gamma "$ cancel each other.
So we define the 3 -script matrix

$$
\begin{array}{r}
A_{\Gamma^{\prime} \Gamma^{\prime \prime}}^{\Gamma}=A_{\Gamma^{\prime \prime} \Gamma^{\prime}}^{r^{\prime}}=\left(1+R^{2}\right)_{\Gamma \Gamma^{\prime \prime}}^{-1}\left(1+R^{2}\right)^{-1} \Gamma^{\prime}+\left(R\left(1+R^{2}\right)^{-1}\right)_{\Gamma \Gamma^{\prime}} \\
\times\left(R\left(1+R^{2}\right)^{-1}\right) \Gamma \Gamma^{\prime \prime} \ldots \ldots(2.57)
\end{array}
$$

$$
\begin{aligned}
& \text { Therefore }
\end{aligned}
$$

$$
\begin{align*}
& x\left\langle\stackrel{\Gamma}{L S}_{\dagger_{L}^{\prime \prime} M_{S} M_{S} M_{S_{0}} r^{\prime} \Gamma^{\prime \prime}}\right| \theta_{1}^{m}\left|\Phi_{L_{0} S_{0}}^{M_{0} H_{S_{0}}}\right\rangle \tag{2.58}
\end{align*}
$$

where

$$
\Gamma_{L S}^{M M_{S}}=\frac{1}{\sqrt{N}}\left(1-P_{I, N} \cdots P_{N-1, N}\right) \sum_{\Gamma^{\prime}} C_{L S}^{M M_{S}}(1 \cdots N-1 \mid \hat{N}) F_{\Gamma_{\Gamma}^{\prime}}\left(N_{N}\right)
$$

and

$$
\begin{equation*}
P_{i j} f(i, j)=f(j, i) \tag{2.59}
\end{equation*}
$$

$F_{r^{\prime} \Gamma}\left(r_{N}\right)$ is the $F_{i j}\left(r_{N}\right) / r_{N}$ of the previous section and

$$
\begin{aligned}
& \begin{array}{r}
\Gamma Q_{L S}^{M_{S}}=\sum_{M_{\Gamma} \mu_{\Gamma}} P_{L_{\Gamma} S_{\Gamma}}^{M_{\Gamma}}{ }^{\mu_{\Gamma}}(1 \cdots N-1) Y_{\ell_{\Gamma}(N)}^{M-\mu_{r}} \chi_{\frac{1}{2}(N)}^{M_{S}-\mu_{r}}\left(L_{\Gamma} \ell_{\Gamma} H_{\Gamma} M_{\ell_{\Gamma}} \mid L M\right) \\
\times\left(\left.S_{\Gamma} \frac{1}{2} \mu_{\Gamma} M_{S}-\mu_{\Gamma} \right\rvert\, S M_{S}\right)
\end{array} \\
& \text {.... (2.60) }
\end{aligned}
$$

The radial functions used in Φ_{0} are different from those used in $\varphi_{L_{i}} S_{\Gamma}$ and will be designated by primes when a distinction must be made. We may note

$$
\begin{aligned}
& \varphi_{L_{r} S_{\rho}}^{M_{r} \mu_{r}}(1 \ldots N-1)=\frac{A_{N-1}}{\sqrt{2!\cdot 2!(N-1)!(q-1)!}} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} / 34\right) \\
& * \varphi_{L_{r}}^{M_{p}} S_{r}^{M_{n}}\left(2 p^{a} \mid s-\cdots N-1\right) \\
& \Phi_{L_{0} S_{0}}^{M_{0} M_{50}}\left(15^{2} 2 s^{2} 2 p^{9}\right)=\frac{A}{\sqrt{2!2!N!9!}} \varphi^{\prime}\left(1 s^{2} \mid 12\right) \varphi^{\prime}\left(25^{2} / 34\right) \\
& \times \varphi_{L_{0} S_{0}}^{M_{0} N_{S_{0}}}\left(2 P^{q} \mid 5 \ldots(2.61)\right. \\
& \text { Thus }
\end{aligned}
$$

where we again have the antisymmetrization operator $A_{N_{N}}$ of equation (2.35).

We want to evaluate matrix elements of the form

$$
\begin{aligned}
& \xi=\left\langle\Phi_{L_{0} S_{0}}^{M_{0} M_{S_{0}}}\right| \theta_{1}^{m}\left|{ }^{\Gamma} \phi_{L S}^{M M_{S}}\right\rangle \\
& =\sum_{r^{\prime} M_{r^{\prime}} \mu_{p^{\prime}}} \frac{\sqrt{q}}{2!2!N!9!}\left(L_{r^{\prime}} \ell_{p^{\prime}} M_{r^{\prime}} M-M_{r^{\prime}} \mid L M\right) \\
& \times\left(\left.S_{r^{\prime}} \frac{1}{2} \mu_{i^{\prime}} \cdot M_{s}-\mu_{i^{\prime}} \right\rvert\, S M_{s}\right) A_{N} \Phi^{\prime}\left(1 s^{2} / 12\right) \varphi^{\prime}\left(2 s^{\prime} \mid 3,4\right) \\
& \times \varphi_{L 0 S_{0}}^{M_{0} M_{s_{0}}}\left(2 p^{q} \mid s \cdots N\right)\left|\sum_{i=1}^{N} \theta_{1}^{m}(i)\right| A_{N} \varphi\left(1 s^{2} \mid 12\right) \varphi\left(2 s^{2} \mid 34\right) \\
& \times \varphi_{L_{\Gamma^{\prime}} s_{\Gamma^{\prime}}}^{M_{\Gamma^{\prime}} \mu_{\Gamma^{\prime}}}\left(2 P^{q-1} \mid 5 \ldots N\right) Y_{\ell_{\Gamma^{\prime}}}^{M-\mu_{P^{\prime}}(N)} \chi_{\frac{1}{2}(N)}^{M_{S}-\mu_{\Gamma^{\prime}}} F_{\Gamma_{i}^{\prime}}(N) \ldots(2,63)
\end{aligned}
$$

This is a sum over permutations of products of one electron
integrals of the form

$$
\left\langle\left. n^{\prime} l^{\prime} \frac{1}{2} m_{l} l^{\prime} m_{s^{\prime}} \right\rvert\, n \ell \frac{1}{2} m_{\ell} m_{s}\right\rangle=\left\langle n^{\prime} \ell^{\prime} \mid n \ell\right\rangle \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \partial_{m_{s} m_{s}}
$$

and one of the type

$$
\begin{aligned}
& \left\langle n^{\prime} \ell^{\prime} \frac{1}{2} m_{l} m_{s}^{\prime}\right| \theta_{1}^{m}\left|n \ell \frac{1}{2} m_{l} m_{s}\right\rangle=\delta_{m_{s} m_{s}^{\prime}} \delta_{m_{l}} m+m_{l}\left(\frac{2 \ell^{\prime}+1}{2 \ell+1}\right)^{\frac{1}{2}} \\
& \times\left(\ell^{\prime}\left|m_{l} m_{l}-m_{l^{\prime}}\right| \ell m_{l}\right)\left(\ell^{\prime} 100 \mid \ell 0\right)\left\langle n^{\prime} \ell^{\prime}\right| \rho_{l^{\prime} \ell}|n \ell\rangle \\
& \ldots . .(2.64 b)
\end{aligned}
$$

where

$$
f_{l^{\prime} l}=\frac{d}{d r}+\frac{1-\left(l^{\prime}-l\right)(2 \ell+1)}{2 r}
$$

for
the gradient operator and

$$
\rho=\sqrt{\frac{4 \pi}{3}} r
$$

for the dipole operator. The Clebsh-Gordon coefficient, ($\left.\ell^{\prime} 100 \mid \ell 0\right)$
is zero unless

$$
l^{\prime}=l \pm 1
$$

which is the usual one electron selection rule for dipole radiation. This means that an S-electron can only couple to a
p-electron and a p-electron can only couple to an s - or a daelectron. If an s-electron from the L.H.S. of equation (2.63) couples to a p-electron on the R.H.S. there will only be three s-electrons remaining on the I.H.S., whereas there will be at least four s-electrons on the R.H.S. Such terms will vanish because they contain inner products between Y_{0} 's and Y_{1} 's. Only a p-electron from the I.H.S. can couple to the R.H.S. through the dipole operator. It can be coupled to the outgoing electron provided that

$$
\ell_{p^{\prime}}=0 \quad \text { or } 2
$$

and it can be coupled to one of the s-electrons if $\ell_{p^{\prime}}=0$ for them there will be four uncoupled s-electrons on each side of equation (2.63). Using the facts and the properties of the antisymmetrization operator A_{N} and also noting that both sides are completely antisymmetric in coordinates S through N we

$$
\begin{aligned}
& \text { obtain } \\
& \xi=\frac{\sqrt{g}}{2!2!}\left\langle 2 p^{\prime} \mid 2 p\right\rangle^{q-1} \sum_{r^{\prime} M_{r^{\prime}}}\left(\mu_{r^{\prime}}{ }^{\prime} \ell_{\rho^{\prime}}, M_{p^{\prime}}, M_{-}-M_{r} \mid L M\right) \\
& \left.\times\left(\left.S_{P^{\prime}} \frac{1}{2} \mu_{P} \cdot M_{S}-\mu_{r^{\prime}} \right\rvert\, S M_{S}\right)\left(P^{q} L_{0} S_{0} \mid\right\} P^{q-1} L_{r^{\prime}} S_{r^{\prime}}\right)\left(L_{r^{\prime}}\left|M_{r^{\prime}} M_{0}-M_{r^{\prime}}\right| L_{0} H_{0}\right)
\end{aligned}
$$

But
and

$$
\begin{aligned}
A_{5} & =\left(1-P_{15} \cdots-P_{45}\right) A_{4} \\
& =A_{4}\left(1-P_{15} \cdots-P_{45}\right)
\end{aligned}
$$

$$
\left[A_{4}, t_{1}^{m}(s)\right]=0
$$

The integral in equation (2.65) may be written

$$
\begin{aligned}
& \left.\left\langle A_{4} \varphi^{\prime}\left(1 s^{2} \mid 1,2\right) \varphi^{\prime}\left(2 s^{2} \mid 3,4\right) Y_{1}^{M_{0}-r^{\prime} r^{\prime}} \chi_{\frac{1}{2}(5)}^{M_{s s^{\prime}}-\mu_{p^{\prime}}} R_{2 p}^{\prime}(s)\right| \theta_{1}^{m}(5) \right\rvert\, \\
& \times \varphi\left(1 s^{2} \mid 1,2\right) \varphi\left(2 s^{2} \mid 3,4\right) Y_{l_{\Gamma^{\prime}}(s)}^{M-\mu_{\Gamma^{\prime}}} X_{\frac{1}{2}(s)^{M_{s}}\left(\mu_{\Gamma^{\prime}}\right.}^{M_{\Gamma^{\prime}}{ }^{\prime}(s)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(P_{35}+P_{45}\right) \varphi\left(15^{2} \mid, 2\right) \varphi\left(25^{2} \mid 3,4\right) Y_{l_{\Gamma}}^{\left.\mu-\mu_{1}\right)^{\prime}} X_{\frac{1}{2}}^{\mu_{5}-\mu^{\prime}} \mu_{r^{\prime}} F_{\Gamma^{\prime} r^{\prime}}(5)\right\rangle \\
& \text {....(2.66) }
\end{aligned}
$$

using equation (2.64) and the fact that

$$
\varphi\left(1 s^{2} \mid 1,2\right)=R_{1 s}(1) R_{1 s}(2)\left(\left.\frac{1}{2} \frac{1}{2} \mu-\mu \right\rvert\, 00\right) \chi_{i}^{(1)} \chi_{\frac{1}{2}}^{-\mu}, Y_{0}^{0}(1) Y_{0}^{0}(2)
$$

we see that equation (2.66) may be written as

$$
\begin{aligned}
& 4\left(1 s^{\prime} 2 s^{\prime} \mid 1 s 2 s\right)^{2} \delta_{m H_{0}-m} \delta_{M_{s} M_{s}}\left(\frac{3}{2 \ell_{i}+1}\right)^{\frac{1}{2}} \text { (} 1100 \mid \rho_{1} \cdot 0 \text {) } \\
& \times\left(11 M_{0}-M_{r^{\prime}} M-M_{0} \mid \ell_{r^{\prime}} M-M_{r^{\prime}}\right)\left\{\left\langle 2 P^{\prime}\right| P_{1} \rho_{r^{\prime}}\left|F_{r^{\prime} r}\right\rangle-\delta_{0 e_{r^{\prime}}}\right. \\
& \left.\times\left[\frac{C 1 s 2 s\left|F_{F^{\prime}} n 2 s\right\rangle}{\left\langle 1 s^{\prime} 2 s^{\prime}\right| 1|2 s\rangle}\left\langle 2 p^{\prime}\right| P_{10}|1 s\rangle+\frac{\left\langle 1 s^{\prime} 2 s^{\prime} \mid 1 s F_{P^{\prime} n}\right\rangle}{\left\langle 1 s^{\prime} 2 s^{\prime}\right||s 2 s\rangle}\langle 2 p| P_{10}|2 s\rangle\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \xi=\sqrt{q}\left\langle 1 s^{\prime} 2 s^{\prime} \mid 1 s 2 s\right\rangle^{2}\left\langle 2 p^{\prime} \mid 2 p\right\rangle^{q-1} \delta_{m H_{0}-m} \delta_{\mu_{s_{0}} M_{s}} \sum_{\Gamma^{\prime}}\left(\frac{3}{2 \ell_{\rho^{\prime}+1}}\right)^{\frac{1}{2}} \\
& \times f_{r r^{\prime}} \sum_{M_{r^{\prime}} \mu_{r^{\prime}}}\left(1\left|M_{0}-H_{r} M-M_{0}\right| \ell_{r^{\prime}} O\right)\left(L_{r^{\prime}} \ell_{r^{\prime}} M_{r^{\prime}} H-M_{r^{\prime}} \mid L M\right) \\
& \times\left(L_{r},\left|M_{r} M_{0}-M_{r^{\prime}}\right| L_{0} M_{0}\right)\left(\left.S_{r^{\prime}} \frac{1}{2} \mu_{r^{\prime}} H_{S_{0}}-\mu_{r^{\prime}} \right\rvert\, S_{0} \Pi_{S_{0}}\right)\left(\left.S_{r^{\prime}} \frac{1}{2} \mu_{r^{\prime}} \mu_{s}-\mu_{r} \right\rvert\, S M_{s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{r^{\prime} r}=\left(p^{9} L_{0} s_{0}| | p^{9-1} L_{i} s_{r^{\prime}}\right)\left(1100 \mid \ell_{r^{\prime}} 0\right)\left\{\left\langle 2 p^{\prime}\right| P_{1} \ell_{r^{\prime}}\left|F_{r^{\prime} r}\right\rangle\right. \\
& -S_{0 e_{r}}\left[\frac{\left\langle 1 s^{\prime} 2 s^{\prime} \mid F_{r^{\prime}} 2 s\right\rangle}{\left\langle 1 s^{\prime} 2 s^{\prime} \mid 152 s\right\rangle}\left\langle 2 p^{\prime}\right| P_{10}|1 s\rangle+\frac{\left.\left.\left\langle 1 s^{\prime} 2 s^{\prime} \mid 15 F_{r^{\prime} \cdot n}\right\rangle\left\langle 2 p^{\prime}\right| P_{10}|2 s\rangle\right]\right\}}{\left\langle 1 s^{\prime} 2 s^{\prime} \mid 1 s 2 s\right\rangle} \ldots(2.68)\right.
\end{aligned}
$$

But

$$
\begin{aligned}
& \sum_{\substack{r^{\prime} \\
\text { and also }}}\left(\left.S_{r^{\prime}} \frac{1}{2} \mu_{r^{\prime}} \cdot M_{s_{0}}-\mu_{r} \right\rvert\, S_{0} M_{s_{0}}\right)\left(\left.S_{r^{\prime}} \frac{1}{2} \mu_{r^{\prime}} M_{s}-\mu_{r^{\prime}} \right\rvert\, S M_{s}\right) \delta_{M_{s} M_{S}} \\
&=\delta_{m_{s} M_{S}} \delta_{S} S_{0}
\end{aligned}
$$

$$
\begin{align*}
& \sum_{M_{r^{\prime}}}\left(1\left|M_{0}-M_{r^{\prime}} M-M_{0}\right| \ell_{r^{\prime}} M-M_{r}\right)\left(L_{r^{\prime}} \ell_{r^{\prime}}, M_{r^{\prime}} M-M_{r^{\prime}} \mid L M\right) \\
& =(-1)^{M_{0}-L}\left[\frac{(2 L+1)\left(2 \ell_{r^{\prime}+1}\right)\left(2 L_{0}+1\right)}{3}\right]^{\frac{1}{2}} W\left(L L_{r^{\prime}}| |: \ell_{r^{\prime}} L_{0}\right) \\
& \quad \times\left(L L_{0}-M M_{0}| | M_{0}-M\right) \quad \ldots(2.69) .
\end{align*}
$$

$$
\begin{aligned}
& \text { so } \left.=\sqrt{9}\left\langle 1 s^{\prime} 2 S^{\prime}\right| 1 s 2 s\right)^{2}\left(2 p^{\prime} \mid 2 p\right)^{9-1} \delta_{S_{0} S} \delta_{M_{s} M_{s_{0}}}\left[(2 L+1)\left(2 L_{0}+1\right)\right]^{\frac{1}{2}} \\
& x=(-1)^{M_{0} L L}\left(L L_{0}-M M_{0} \mid 10\right) \sum_{\Gamma^{1}} f_{r^{\prime}, r} W\left(L L_{r^{\prime}} 11 l_{r} L_{0}\right) \ldots(2.70)
\end{aligned}
$$

Substituting back into equation 2.58 we obtain

$$
\begin{align*}
& P^{n}=\frac{1}{\left(2 L_{0}+1\right)\left(2 s_{0}+1\right)} 9 \delta_{S s_{0}}\left[\left(1 s^{2} 2 s^{\prime} \mid 1 s 2 s\right)^{2}\left\langle 2 p^{\prime} \mid 2 p\right\rangle^{9-1}\right]^{2} \\
& \times(2 L+1)\left(2 L_{0}+1\right) \sum_{\Gamma^{\prime} \Gamma^{\prime \prime}} g_{r^{\prime} r} A_{\Gamma^{\prime} \Gamma^{\prime \prime}}^{n} \delta_{\Gamma^{\prime \prime} r r} \\
& \times \sum_{\substack{M_{S} M_{S_{0}} \\
M M_{0}}} \delta_{M_{s} M_{S_{0}}}\left(L L_{0}-M M_{0} \mid 1 M_{0}-M\right)^{2} \tag{2.71}\\
& \ldots \ldots(2.71)
\end{align*}
$$

where

$$
g_{\Gamma^{\prime} \Gamma}=f_{\Gamma^{\prime} \Gamma} W\left(L_{r^{\prime}} \|: \ell_{r^{\prime}} L_{0}\right)
$$

But

$$
\sum \delta_{M_{s} M_{s_{0}}} \delta_{s s_{0}}=\left(2 s_{0}+1\right) \delta_{s s_{s}} \sum_{m} \delta_{m, M_{0}-M}=1
$$

and

$$
\sum_{M M_{0}}\left(L L_{0}-M M_{0}| | M_{0}-M\right)^{2}=3 \Delta\left(L \mid L_{0}\right)
$$

where

$$
\begin{aligned}
\Delta\left(L_{L} L_{0}\right) & =\delta_{L L_{0}}+\delta_{L L_{0}+1}+\delta_{L L-1} \\
& =0
\end{aligned}
$$

unless

$$
|L-1| \leq L_{0} \leq(L+1)
$$

so the final expression for P^{F} is

$$
\begin{aligned}
P^{r}= & 3 \delta_{S s_{0}} \Delta\left(L 1 L_{0}\right) 9\left[\left\langle 1 s^{\prime} 2 s^{\prime}\right||s 2 s\rangle^{2}\left\langle 2 p^{\prime} \mid 2 p\right\rangle^{q-1}\right]^{2} \\
& \times(2 L+1) \sum_{\Gamma^{\prime} r^{\prime \prime}} g_{r^{\prime}} A_{r^{\prime} r^{\prime \prime}} g_{\Gamma^{\prime \prime}} \ldots .(2.72 a)
\end{aligned}
$$

with

$$
\begin{aligned}
& q_{\Gamma}=\sum_{\Gamma}\left(p^{9} L_{0} S_{0} \mid p^{p-1} L_{p^{\prime}} S_{p^{\prime}}\right)\left(1100 \mid l_{p^{\prime}} 0\right) W\left(L_{1} L_{1}^{\prime} 11: l_{p}^{\prime} L_{0}\right\rangle \\
& \Gamma^{\prime} \times\left\{\left\langle 2 p^{\prime}\right| p_{1 e_{p^{\prime}}}\left|F_{r_{i}}\right\rangle-\delta_{\rho_{p^{\prime}} 0}\left[\frac{\left\langle 1 s^{\prime} 2 s^{\prime} \mid F_{r^{\prime} n^{\prime}} 2 s\right\rangle}{\left\langle 1 s^{\prime} 2 s^{\prime} \mid 1 s 2 s\right\rangle}\right.\right.
\end{aligned}
$$

We now make some approximations to equation (2.73a). Since

$$
\left\langle 1 s^{\prime} 2 s^{\prime} \mid 1525\right\rangle=\left\langle 1 s^{\prime} \mid 15\right\rangle\left\langle 2 s^{\prime} \mid 25\right\rangle-\left\langle 1 s^{\prime} \mid 25\right\rangle\left\langle 2 s^{\prime} \mid 15\right\rangle
$$

we can neglect the second term in the above expansion since the overlap of the $1 S^{\prime}$ and $2 S^{\prime}$ radial functions of the atom with the 2 S and 1 S of the ion will be negligible. Also noting that the first term inside the square brackets in equation (2.73a) will have a similar factor we may write

$$
\begin{gathered}
\left.g_{p}=\sum_{p^{\prime}}\left(p^{9} L_{0} S_{0} \mid\right\} p^{9-1} L_{p^{\prime}} S_{p^{\prime}}\right)\left(1100 \mid \ell_{r^{\prime}} 0\right) W\left(L L_{p^{\prime}}| |: \ell_{p^{\prime}} L_{0}\right) \\
\times\left\{\left\langle 2 p^{\prime}\right| \rho_{1 \ell_{r^{\prime}}}\left|F_{r^{\prime} \Gamma}\right\rangle-\delta_{\ell_{r^{\prime}}}\left\langle 2 s^{\prime} \mid F_{r^{\prime}}\right\rangle \ldots(2.73 \mathrm{~b})\right. \\
\left.\times\left\langle 2 p^{\prime}\right| P_{10}|2 S\rangle\right\}
\end{gathered}
$$

The effect of the last term in equation (2.73b), called the swave core relaxation term by Henry and Lipsky ${ }^{4 l}$ is very small. For example we find that the photoionization cross section of nitrogen at $\mathrm{K}_{\mathrm{f}}^{2}=.3$ Rydberg equals 11.98 and 12.18 megabarn when we exclude and include the s-wave term. In view of this we have not antisymmetrized with respect to the $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 P subshells in our treatment of the (3p) ${ }^{q}$ configuration. For this case we write the s-wave core relaxation term as

$$
\delta e_{\Gamma^{\prime} 0}\left\langle 3 s^{\prime} \mid F_{\Gamma^{\prime} \Gamma}\right\rangle\left\langle 3 p^{\prime}\right| P_{10}|3 s\rangle \quad \ldots(2.73 c)
$$

The factor containing overlap integrals of the atomic wave functions and those of the residual ion in equation (2.72) become in the $(3 p)^{q}$ case

$$
\begin{equation*}
\left[\left\langle 3 s^{\prime} \mid 3 s\right\rangle^{2}\left\langle 3 p^{\prime} \mid 3 p\right\rangle^{9-1}\right]^{2} \tag{2.72b}
\end{equation*}
$$

Chapter 3

In this chapter we present calculations of photoionization cross sections using equations (2.27) and (2.73) for various atoms and ions of the $(2 p)^{q}$ and (3p) ${ }^{q}$ configuration. In all previous calculations of these systems, except that of Henry ${ }^{47}$ for atomic nitrogen, it has been assumed that the coupling between final state channels is negligible. As we have seen in Chapter I it is this coupling that give use to structures in the photoionization cross sections. Since these line shapes have been the subject of considerable theoretical and experimental investigation in recent years it is interesting to compare the line shapes predicted from perturbation theory, c.f. equation (1.76), with our ab initio calculations. We notice from the tables and graphs in this chapter that the photoionization cross sections in the dipole length and dipole velocity approximations do not agree and that the agreement is worse for the (3p) ${ }^{\text {q }}$ system than the $(2 p)^{q}$. The two approximations should agree exactly if our wave functions for the initial and final state were eigenfunctions of the same Hamiltonian which they are not. The wave function for the initial state is obtained from a Hartree-Fock calculation and the final state wave function of course is obtained from Kohn's variational principle i.e, equation (1.47). NI

There are three terms in this configuration i.e. ${ }^{4} \mathrm{~S},{ }^{2} \mathrm{D}$ and
${ }^{2}$ P. For $N\left({ }^{4} S\right)$ we consider only the transitions
$h v+N\left({ }^{4} s\right) \rightarrow\left[N^{+}\left({ }^{3} p\right)+\epsilon s\right]{ }^{4} P$
$h v+N\left({ }^{4} S\right) \rightarrow\left[N^{+}\left({ }^{3} P\right)+\epsilon d\right]{ }^{4} P$
We note that both channelis are open so we do not get any structure in the cross section

In Figure 3 our results are compared to the experimental results of Comes and Elzer 48,49 . Our present calculations do not reflect the resonant structure that is evident in the experimental results because we have not coupled together the ${ }^{3} P$ and ${ }^{4} S$ states of the ion. A Rydberg series of levels has been observed by Carroil ${ }^{50}$ in the region $694-612^{\circ} A$ and the have attributed the series to transitions from the ground ${ }^{4} S^{0}$ state of the nitrogen atom to the Rydberg terms $25(2 p)^{3}\left(5 S^{0}\right) n p{ }^{4} p$

We now consider photoionization of the ${ }^{2} \mathrm{P}^{0}$ term. In order to obtain the total cross section for this term we need the contributions from three partial waves (${ }^{2}{ }^{e}{ }^{e},{ }^{2} P^{e},{ }^{2} D^{e}$).

In Figure 4 we show the contribution of the ${ }^{2} S^{e}$ partial wave.

$$
h_{v}+N\left({ }^{2} P\right) \rightarrow{ }^{2} S \rightarrow N^{+}(D D)+e d
$$

$$
\mathrm{N}^{+}(\text {'S })+\text { ts } \cdots(3.2)
$$

If we decoupled these two channels we would get the usual Rydberg series converging on the ${ }^{l_{S}}$ threshold. With coupling these states show up as resonances corresponding to excited states of the atom $(1)^{\circ}(2)^{2}(2 p)^{2}(15) n s^{2} S$. These states have a very short life time as they decay into the adjacent continuum. From equation (1.75) we see that at the resonant energy the cross section takes the form

$$
\begin{equation*}
\sigma=\sigma_{a} \frac{(q+\epsilon)^{2}}{1+\epsilon^{2}} \quad \epsilon=\frac{E-E_{r}}{\Gamma / 2} \tag{3.3}
\end{equation*}
$$

The cross section has a zero minimum at $q \in$ as is evident from the graph. Of course experimenters measure photo transmission and do not see this zero as they only see the total cross
section.
The excess transition probability due to the discreet state is simply

$$
\begin{align*}
f & =\int_{-\infty}^{\infty} \sigma_{a}\left[\frac{(q+\epsilon)^{2}}{1+\epsilon^{2}}-1\right] d E \\
& =\frac{\Gamma}{2} \int_{-\infty}^{\infty} \sigma_{a}\left[\frac{q^{2}+2 q \epsilon-1}{1+\epsilon^{2}}\right] d \epsilon \\
& =\frac{\Gamma}{2} \int_{-\infty}^{\infty} \frac{q^{2}-1}{1+\epsilon^{2}} d \epsilon=\frac{\Gamma \pi}{2} \pi \sigma_{a}\left(q^{2}-1\right) \tag{3.4}
\end{align*}
$$

where we subtract of the background contribution and neglect 2 26 as it is an odd function.

We now discuss the case

$$
\left.\left.\begin{array}{rl}
h v+N\left({ }^{2} p\right) \rightarrow{ }^{2} P \rightarrow N^{+}\left({ }^{3} p\right) & +\epsilon s \\
& +\in d \tag{3.5}
\end{array}\right]+{ }^{1} D\right)+\epsilon d
$$

For sufficiently low energy the third channel is closed and we have two continuum states and one discreet state. This gives rise to a series of resonances converging on the $N^{+}\left({ }^{1} D\right)$ theeshold. The cross section now takes the form (c.f. equation (1.76))

$$
\begin{equation*}
\sigma=\sigma_{b}+\sigma_{a}\left(\frac{(q+\epsilon)^{2}}{1+\epsilon^{2}}\right) \tag{3.6}
\end{equation*}
$$

This is because we can form linear combinations of the open channels such that the discreet state interacts with only one of them. The other then gives the background σ_{ℓ} which is continuous. We see from Figure 5 that there is a big jump in the cross section at threshold where the ${ }^{l}{ }_{D}$ channel opens up.

However if we average the oscillator strength of these transitions af/
i.e. add the quantity ($E_{n+1}-E_{n}$) to the background cross section for each pair of resonances, we see that the total oscillator strength is a continuous function of energy. The dashed line in Figure 5 shows the 'smoothed out' cross section. The above remarks merely imply that our calculations are self-consistent. The remaining partial wave we have to consider is ${ }^{2} \mathrm{D}{ }^{e}$ (Figure 6).

$$
\begin{align*}
& h \nu+N\left({ }^{2} P\right) \longrightarrow{ }^{2} D^{e} \longrightarrow N^{+}(3 P)+\epsilon d \\
& N^{+}(D)+\in S \\
&+\in d \\
&+\in g \tag{3.7}\\
& N^{+}(' S)+\in d
\end{align*}
$$

We see that we have three Rydberg series of resonances converging on the ${ }^{I_{D}}$ state of N^{+}and one series converging on the ${ }^{l_{S}}$ state. At energies below the ${ }^{1}$ D threshold there are four series of discreet states superimposed on one continuum. Equation (3.6) does not apply in this case. Hies ${ }^{29}$ gives the formula

$$
\sigma=\sigma_{b}+\sigma_{a}\left(\sum \frac{\Gamma_{n} q_{n}}{2} /\left(E-E_{n}+g\right), g=\sum \frac{\Gamma_{n}}{2\left(E-E_{n}\right)}\right.
$$

where thessummation is over the number of interacting resonances. However we have used equation (3.6) in curve fitting our results to extract the quantities

We expect this formula to hold if the resonances are well
separated. The results are tabulated in Tables 6. We also have calculated the correlation coefficient ${ }^{27}$

$$
\begin{equation*}
\rho^{2}=\frac{\sigma_{a}}{\sigma_{a}+\sigma_{b}} \quad \rho=\left\langle\psi_{a} \mid \psi_{d}\right\rangle \tag{3.9}
\end{equation*}
$$

where ψ_{a} is the continuum state generated by autoionization and ψ_{d} is the continuum state generated by direct photon absorption from the ground state. Since the infinite sequences of resonances are due to the residual coulcomb interactions in the final state their positions can be predicted to fit a Rydberg series

$$
\begin{equation*}
E_{r}=E_{\infty}-(n-d)^{-2} \tag{3.10}
\end{equation*}
$$

where E_{∞} is the series limit, d the quantum defect, and n the 'principle quantum number' of the autoionizing state. d is a slowly varying function of energy as can be seen from the tables.

The resonant phase shift can be parameterized in terms of E_{r}, T and the background phase shift δ_{0} (c.f. equation 1662). The语 and Γ that are extract from parameterizing the phase shift agree very well with those obtained by curve fitting our cross sections to equation (3.6). This provides another check on the consistency of our calculations.

Curve Fitting Procedure

$$
\begin{equation*}
\Delta=\sum_{i=1}^{N}\left\{\sigma_{i}-\left[\frac{\sigma_{a}}{\text { We }} \frac{\left(q+\frac{E_{i}-E_{r}}{r / 2}\right)^{2}}{1+\left(\frac{E_{i}-E_{r}}{r / 2}\right)^{2}}+\sigma_{l}\right]\right\}^{2} \tag{3.11}
\end{equation*}
$$

where σ_{i} is the cross section we calculate and E_{i} is the energy at which it is calculated. N is the number of points to which we wish to fit our formula for the cross section. We normally take N to be about 15 and we chose the E_{i} such that they well define the profile. We let
the equation

$$
\begin{aligned}
& \gamma=(\Gamma / 2)^{2}+E_{r} \\
& Q=9 \Gamma / 2-E_{r}
\end{aligned}
$$

$$
\sigma_{i}=\sigma_{a}\left(9+\frac{E_{i}-E_{r}}{\Gamma / 2}\right)^{2} /\left(1+\left(\frac{E_{i}-E_{r}}{r_{2}}\right)^{2}\right\}+\sigma_{b}
$$

becomes upon multiplying across by the denominator

$$
\begin{align*}
\sigma_{i} E_{i}^{2} & +\sigma_{i} \gamma-2 E_{i} E_{r}-\sigma_{a} Q^{2}-2 \sigma_{a} Q E_{i}-\sigma_{a} E_{i}^{2} \\
& -\sigma_{l} \gamma-\sigma_{l} E_{i}^{2}+2 \sigma_{l} E_{i} E_{r} \tag{3112}
\end{align*}
$$

We now make a further change of variables

$$
\begin{array}{ll}
x_{1}=-\gamma & x_{4}=2 \sigma_{a} Q-2 \sigma_{l} E_{r} \\
x_{2}=2 E_{r} & x_{5}=\sigma_{a}+\sigma_{l} \\
x_{3}=\sigma_{a} Q^{2}+\sigma_{l} \gamma & \ldots \ldots(3
\end{array}
$$

In terms of these variables equation (3.11) becomes

$$
\Delta=\sum\left(\sigma_{i} E_{i}^{2}-\sigma_{i} x_{1}-E_{i} x_{2}-x_{3}-E_{i} x_{4}-E_{i}^{2} x_{5}\right)^{2}
$$

The extremum conditions

$$
\frac{\partial \Delta}{\partial x_{i}}=0 \quad i=1,5
$$

gives us the following matrix equation
$\left[\begin{array}{llll}\bar{\sigma}^{2} & \overline{E \sigma^{2}} & \bar{\sigma} & \overline{E \sigma} \\ \overline{E \sigma^{2}} & \overline{E^{2}} \sigma^{2} & \bar{E} \sigma & \overline{E^{2}} \sigma \\ \overline{E^{3} \sigma} \\ \bar{\sigma} & \overline{E \sigma} & N & \bar{E} \\ \overline{E \sigma} & \overline{E^{2}} \\ \overline{E^{2}} \sigma & \bar{E} & \overline{E^{2}} & \overline{E^{3}} \\ \bar{E}^{3} \sigma & \overline{E^{2}} & \overline{E^{3}} & \overline{E_{4}}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}\overline{E^{2} \sigma^{2}} \\ \overline{E^{3} \sigma^{2}} \\ \overline{E^{2} \sigma} \\ \overline{E^{3} \sigma} \\ \overline{E^{4} \sigma}\end{array}\right]$
where $\bar{\sigma}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}$.. etc. . Equation (3.14) together with equation (3.13) gives us the parameters we require. We may improve on these first approximation parameters $\boldsymbol{\varphi}_{\boldsymbol{i}}^{0}$ by making use of differentials.

We let

$$
\begin{equation*}
\sigma_{i}=\sigma\left(q_{1}^{0} \cdots q_{s}^{0}\right)+\sum_{j} \frac{\partial \sigma}{\partial q_{i}} \Delta q_{i} \tag{3.15}
\end{equation*}
$$

where

$$
q_{1}=\sigma_{a}, q_{2}=q, q_{3}=E_{r}, q_{4}=\Gamma, q_{5}=\sigma_{b}
$$

and where the \mathcal{Q}_{i}^{0} are obtained from equation (3.14). We now solve for the Δ_{i}. We have

$$
\begin{gather*}
\Delta=\sum_{j}\left\{\sigma_{i}-\left[\sigma\left(q_{i}^{0}\right)+\sum_{j=1}^{5} \frac{\partial \sigma}{\partial q_{j}} \Delta q_{j}\right]\right\}^{2} \\
\frac{\partial \Delta}{\partial \Delta q_{k}}=\sum_{i}\left(\sigma_{i}-\sigma\left(q_{i}^{0}\right)-\sum_{j=1}^{5} \frac{\partial \sigma}{\partial q_{j}} \Delta q_{j}\right) \frac{\partial \sigma}{\partial q_{k}} \tag{3.16}
\end{gather*}
$$

which gives us a system of linear equations for the Δq_{i}.
This method works very well in most cases ie. we can obtain three place agreement between the calculated cross section and our parameterized cross section. The position E_{Γ}, and width Γ, of the resonance is also obtained by parameterizing the phase shift according to equation (1.60), and they agree very well with those given by the above method.

In figures 7,8 and 9 we present the ${ }^{2} \mathrm{P}$, ${ }^{2} D_{D}$ and ${ }^{2} F^{e}$ partial wave contributions to the photoionization cross section of the ${ }^{2}{ }^{D}$ state of nitrogen. The parameters for the resonances shown in these graphs are tabulated in Table 7. We note from figure 9

that the series $(2 p)^{2}(1 D) n g{ }^{2} F \quad$ is missing or is too narrow to show up in our calculation. The partial wave contributions to the photoionization cross section of nitrogen above all thresholds are tabulated in Table 8.

No experimental results have been reported for photoionizaLion cross sections for N^{+}, so it is not possible to evaluate the accuracy of our results as we have done in for $N\left({ }^{4} S\right)$ in figure 3. However in figure 10 we compare our results to a similiar calculation by Dalgarno ${ }^{51}$ et al and to a calculation by Armstrong ${ }^{52}$ et al who used a modified Burgess-Seation approximation.

The cross sections in tabular form are given in table 9.

P

Atomic phosphorus has the same configuration as atomic nitrogen so it is intersting toccompare our results for the two systems. In figure 11 we compare the results for $N\left({ }^{4} S\right)$ and $P\left({ }^{4} S\right)$. We note the phosphorus cross sections are approximately four times larger than those for nitrogen. This is because the atoms are larger. Using hydrogenic functions we see

where \bar{r} denote the average distance from the nucleus. Furthermore we note that the slopeof nitrogen in figure 11 is more gentle than that of phosphorus. This can be explained qualita-

tively in the following way, The cross section apart from geometrical factors will depend on matrix elements of the type

$$
\left\langle P_{2 p}\right| r|\in d\rangle \text { and }\left\langle P_{3 p}\right| r|\in d\rangle \text {. We draw the }
$$

functions in the following diagram

As the energy of $F_{\varepsilon d}$ increases i.e, the wave length decreases, we see that the $P_{3 p}$ wave function cancels out faster than $P_{2 p}$ This explains the difference in the graph.

The ${ }^{2} S^{e}$, ${ }^{2} P^{e}$, and ${ }^{2}{ }_{D}{ }^{e}$ partial wave contribution to photoionization cross sections of $P\left({ }^{2} P\right)$ are given in figures 12, 13 and 14, and the parameters for the resonances shown in these graphs are given in table 10. The corresponding figures and graphs for nitrogen are figures 4, 5 and 6 and table 6 . The various quantum numbers involved in a photoionization process for an atomic system with initial configuration P^{3} have been tabulated by smith ${ }^{60}$, The results for photoionization of $P\left({ }^{2} D\right)$ are given in figures 15, 16 and 17 and table ll. We note

that the widths of the resonances in phosphorus are greater than those in nitrogen. This is because the coupling between the channels is greater in the (38) ${ }^{q}$ case. In table 12 we give the partial wave contributions to the photoionization cross sections of phosphorus above all thresholds.

Al

Total absorption cross sections have been measured by Kozlov et al. ${ }^{53}$, while calculations have been carried out by Vainshtein and Norman ${ }^{54}$, Burgess et al. ${ }^{55}$, Peach ${ }^{56}$ and Manson and Cooper ${ }^{57}$. According to Peach, the absorption of radiation by aluminum in the ground state ep ${ }^{2} P^{\circ}$ may be the cause of the abrupt change in the solar continuum radiation at $2085{ }^{\circ}$ A. In figure 18 we compare our oomputation of the photoionization cross sections for the $3 p{ }^{2} P^{0}$ level with the results of Peach and Burgess et al. We recall that whereas our model is the full Hartree-Fock treatment for a single configuration, the other models involve extrapolating measured quantum defects into the energy region of interest in the collision problem, as well as employing the Coulombic asymptotic form of the free electron orbital in the matrix element for all Γ. Within our model the ${ }^{2}{ }^{0}{ }^{0}$ state of aluminum can photoionize into two final states ${ }^{2}{ }^{e}$ and ${ }^{2}{ }^{e}{ }^{e}$ with the ejected electron having angular momentum 0 and 2 respectively, with the residual ion having the configuration of magnesium.

At energies just above the photoionization threshold the algorithm ${ }^{46}$ used to compute the asymptotic solution to the close coupling equations breas down. From figure 18 we see that the

maximum predicted by the quantum defect method, if it existed at all in the close-coupling approach, In the neighborhood of 0.05 Ryd. the three callcuations are in reasonable agreement. At higher energies, one would expect the quantum defect method to become unreliable due to it being an extrapolation procedure and therefore the long tail of the close-coupling approximation at about twice the previous calculated values should be the better values. The Peach minimum at 0.125 Ryd. is probably due to severe cancellation of the matrix elements as previously discussed. In table 13 we present the cross sections in tabular form.
$\underline{\text { Si }}$
Photionization cross sections for the ${ }^{3} \mathrm{P}$ e and the excited l_{D} e terms of the ground state configuration have been measured by Rich. In figure 19 we compare the measured photoionization cross sectionsof the 解 level of si with our calculations. Previous calculations have been performed in either a hydrogenic approximation or using the quantum defect method of Burgess and Seaton ${ }^{59}$ (who calculated $3 p \rightarrow e s$ and $3 p \rightarrow e d$ amplitudes in Si^{+}). As remarked by Rich one would expect the quantum defect method to be inaccurate since it requires extrapolation of poorly behaved experimentally observedcquantum defects of bound levels, the extrapolation naturally getting worse the further one goes beyond the ionization threshold.

From figure 19 we see that there is excellent agreement between the observations of Rich and the calculations from first

principles as carried out in the close-coupling approximation for photoionization from the ${ }^{3} p$ ground state of silicon. Just above threshold as previously mentioned, we have also plotted Rich's single energy point for photoionization from the first excited state ${ }^{1}{ }_{D}$, which is about 10% below the value predicted by our calculations. Finally we present the cross section for photoionization from the ${ }^{1} S^{e}$ excited term of Si ground configuration for which we have nothing to compare with. The importance of figure 19 must be stressed in view of the very few laboratory experiments carried out on these reasonably complex structures. It is clear evidence of the quantiぁative correctness of the close-coupling results presented in this paper. In table 14 we have tabulated the partial wave contribution to the photoionization cross sections above all thresholds. S

In order to compute the photoionization cross section of the ${ }^{3} \mathrm{P}$ e state of sulphur we need three partial wave contributions $\left({ }^{3} S^{\circ},{ }^{3} P^{\circ}\right.$ and $\left.{ }^{3} D^{\circ}\right)$. The residual ion having configuration P^{3} has three states that give rise to structures in the photoionization cross sections. In figures 20 to 22 where we present the individual partial wave contributions to the photoionization cross section of $S\left({ }^{3} P\right)$ we demonstrate the profound influence the excited states of the residual ion have on the cross sections by comparing with the results obtained when those states are neglected (represented by dashed lines on the graphs). In figure 27 we have attempted to sum the three partial wave contributing to photoionization from the ground state. The parameters fow the various series of resonances in each partial

\square
\cdots

$2^{60} 81^{-01} \quad 10$

IIII

(1)

wave are tabulated in table 15.
The results for the l_{D} state of sulphur are similar and are presented in figures 23 to 25 , and in table 16 . Weenote that the ${ }^{l_{P}}{ }^{\circ}$ partial wave which also contributes to the photoionization of S ('S) has only one series of resonances whereas we expect two series converging on the $S^{+}\left({ }^{2} P\right)$ threshold since

$$
\begin{aligned}
h v+S\left({ }^{\prime} D\right) \longrightarrow{ }^{1} p \longrightarrow S^{+}(3 p)^{3}{ }^{2} D & +\in d \\
S^{+}(3 p)^{3}{ }^{2} P & +\in S \\
& +\in d
\end{aligned}
$$

The results for $S\left({ }^{1} S\right)$ are presented in figure 26 and table 17. The partial wave contributions to the photoionization cross sections above all thresholds for the three terms of sulphur are given in table 18.

C
Recently new Rydberg series of Chlorine have been observed in absorption in the $600-1500{ }^{\circ}$ A region by Huffman et al 61. The series are due to transitions from the ${ }^{2}{ }^{\circ}{ }^{\circ}$ ground state to $(3 \mathrm{p})^{4} \mathrm{~ns}$ and $\left({ }^{3} \mathrm{P}\right)^{4}$ nd and converge to the $\left({ }^{3} \mathrm{P}\right)^{4}$ states ${ }^{3} \mathrm{P},{ }^{1} \mathrm{D}$ and ${ }^{1}$ S. In figures 28 to 30 and in table 19 we present graphs and tables of resonance series converging on the excited ${ }^{l_{D}}$ and ${ }^{1}{ }_{S}$ states of $C \ell^{+}$. Unfortunately ref, (61) was a preliminary report so we cannot compare the observed positions of these resonances with our calculated values, as we have done for oxygen ${ }^{37}$. Line shape parameters, namely on q-values, have been determined theoretically and experimentally only for simple systems such as Helium ${ }^{27}$. It is hoped that the values presented

$+7)=0$ बToHSJyH1 O.
$L=1 S=\frac{1}{2} \quad \pi=1$
$K_{t}^{2}\left(R_{y} d\right)$

here should serye as a guide to experimenters on what to expect in more complicated systems such as the ones we have considered. In table 19 we present the partial wave contributions to the photoionization cross sections of $\mathrm{c} \ell{ }^{2} \mathrm{p}$ above all thresholds.

The Negative Ions

The photodetachment cross sections of electrons from the negative ions of silicon, sulphur and chlorine have been calculated by Robinson and Geltman whose tabulated values we compare with the present calculations in figures 31,32 and 33. These authors use a central-field model i.e. a single radial equation, in which a parameter is adjusted in the potential to yield the observed binding energies of the negative ions. In other words the method is somewhat empirical, like the quantum defect method, in which experimental observations are used to impose constraints on the model. On the other hand the closecoupling approach is strictly an ab initio calculation. Consequently it is remarkable that the two techniques are in close agreement for photodetachment from the ${ }^{4} S^{\circ}$ ground state of silicon (figure 31).

We have also computed photodetachmentccross sections for S^{-}and Cl^{-}, and we compare them with those given by Robinson and Geltman in figures 32 and 33. Calculations on $C l^{-}$have also been reported by Moskvin ${ }^{63}$ and Cooper ${ }^{64}$. We note that our agreement with reference (62) is poor for C ℓ^{\top}. Berry et al ${ }^{65}$ gives a value of $15 \times 5 \times 10^{-18} \mathrm{~cm}^{2}$ for the photodetachment cross

$z^{\text {wo }}{ }_{81}$ Oi SNOILOヨS SSO甘O LNJWHOVLヨOOLOHd

section at $K^{2}=, 0064$ ad we see from figure 33 that our values are outside the error limits of this experiment.

In the photodetachment calculations we have used the binding energies tabulated in reference (62) and we have represented our initial states by analytic Hartree-Fock wave function given by Clementi ${ }^{36}$. It is possible that our results could be improved by using wave functions other than the Hartree-Fock type to represent our initial states, since for negative ions these wave functions are overdamped asymptotically.

n	E_{r}	「	q	σ_{a}	σ_{b}	$\frac{\sigma_{\mathbf{a}} \frac{\pi}{2}}{} \Gamma\left(q^{2}-1\right)$	$\frac{a}{+\sigma_{b}}$	Quantu Defec	δ_{0}
3d	. 1784	1.281×10^{-3}	-7.42	. 495	0	5.395×10^{-2}	1	. 1064	-0.1066
4d	. 2320	5.022×10^{-4}	-7.03	. 498	0	1.901×10^{-2}	1	. 0906	-0.0803
5d	. 2562	2.531×10^{-4}	-7.05	. 467	0	9.055×10^{-3}	1	. 0993	-0.0987
6d	22691	1.445×10^{-4}	-6.70	. 498	0	4.960×10^{-3}	1	. 0977	-0.0974
7d	. 2768	9.001×10^{-5}	-6.51	. 510	0	2.988×10^{-3}	1	. 0978	-0.0942
8d	. 2818	6.024×10^{-5}	-6.47	. 510	0	1.974×10^{-3}	1	. 0970	-0.0932
9d	. 2852	4.005×10^{-5}	-6.80	. 509	0	1.449×10^{-3}	1	. 0979	-0.1007

n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma_{a} \frac{\pi}{2}\left(q^{2}-1\right)$	$\frac{\sigma_{a}}{\sigma_{a}+\sigma_{b}}$	Quantum Defect	δ_{0}
4da	. 0297	3.611×10^{-5}	23.60	1.727	. 104	5.445×10^{-2}	. 943	. 982	2.985
5d	. 0775	2.468×10^{-5}	21.27	1.748	. 112	3.059×10^{-2}	. 940	. 985	. 2944
6d	. 0997	1.440×10^{-5}	20.27	1.753	. 116	1.625×10^{-2}	. 938	. 986	. 2943
7d	. 11119	8.975×10^{-6}	19.78	1.755	. 119	9.656×10^{-3}	. 936	. 987	. 2933
8d	. 1192	5.901×10^{-6}	19.51	1.756	. 121	6.179×10^{-3}	. 935	. 987	. 2928
9d	. 1239	4.110×10^{-6}	19.31	1.756	. 122	4.216×10^{-3}	. 935	. 987	. 2927

			BLE VII	(a)	toion	tion of $N\left({ }^{2} \mathrm{D}\right)$			
					$+N$	$\rightarrow{ }^{2} \mathrm{P} \rightarrow \mathrm{~N}^{+}\left({ }^{3} \mathrm{~F}\right.$	$\begin{aligned} & +e \mathrm{e} \\ & +\mathrm{e} d \end{aligned}$		
n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma \cdot \frac{\pi}{2} \Gamma \cdot\left(q^{2}-1\right)$	$\frac{\sigma_{a}}{\sigma_{a}+\sigma_{b}}$	Quantum Defect	δ_{0}
4d	. 0297	3.611×10^{-5}	14.71	. 599	. 726	7.320×10^{-3}	. 452	. 982	. 2985
5d	. 0775	2.468×10^{-5}	15.01	. 589	. 693	5.121×10^{-3}	. 459	. 985	. 2944
6d	. 0997	1.440×10^{-5}	14.27	. 563	.675	2.580×10^{-3}	. 455	. 986	. 2943
7d	. 1119	8.975×10^{-6}	13.92	. 577	.668	1.568×10^{-3}	. 463	. 987	. 2933
8d	. 1192	5.901×10^{-6}	13.83	. 506	. 662	8.926×10^{-4}	. 433	. 987	. 2928
9d	. 1239	4.110×10^{-6}	13.69	. 488	. 641	6.046×10^{-4}	. 432	. 987	. 2927

$2.0162-0.06773$ $\begin{array}{ll}2.0094 & .2705 \\ 2.0132 & .2636 \\ 2.0151 & .2604 \\ 2.0164 & .2587 \\ 2.0174 & .2578\end{array}$

$$
\begin{aligned}
& .0201 \\
& .0274 \\
& .0737 \\
& .0765 \\
& .0979 \\
& .0993 \\
& .1108 \\
& .1116 \\
& .1185 \\
& .1190 \\
& .1859 \\
& .2349 \\
& .2575 \\
& .2773 \\
& .2773
\end{aligned}
$$

1.1063	-0.06936
2.0093	-0.06982
1.1017	-0.06791
2.0150	-0.06877
1.0999	-0.06710
2.0160	-0.06825
1.0987	-0.06663
2.0163	-0.06798
1.0953	-0.06629
2.0162	-0.06773

$$
1.371
$$

TABLE VII (c) Photoionization of Nitrogen (${ }^{2}$ D)

$+e d$
$+e g$
$+e d$
$+e g$
σ_{a}
$\sigma_{a}+\sigma_{b}$

Defect $h v+N\left({ }^{2} D\right) \rightarrow{ }^{2} \mathrm{~F}^{\mathrm{e}} \rightarrow \mathrm{N}^{+}\left({ }^{3} \mathrm{P}\right)$ $\mathrm{N}^{+}\left({ }^{1} \mathrm{D}\right.$ $\sigma_{a \frac{\pi}{2}} \Gamma\left(q^{2}-1\right)$
1.495×10^{-1}
7.355×10^{-2}
3.865×10^{-2}
2.498×10^{-2}
1.517×10^{-2}
1.024×10^{-2}

0.0
0.0
$\begin{array}{rrr}.980 & 1.0392 & .05215 \\ .999 & 1.0422 & .0576 \\ .999 & 1.0423 & .0585 \\ .998 & 1.0440 & .0617 \\ .999 & 1.0440 & .0628 \\ .999 & 1.0438 & .0633\end{array}$

TABLE VIII

Partial wave contributions to the photoionization cross sections of $N\left({ }^{4} S,{ }^{2} D,{ }^{2} P\right)$

Dipole Velocity
$L_{o} S_{o} \quad K_{f}^{2}$
${ }^{4} S^{\circ}$
.025
9.799
9.967
10.205
10.330
10.365
10.332
10.243
10.112
9.949
9.553
9.103
8.148
7.221
5.269
3.865
$2_{\mathrm{P}} \mathrm{e}^{2} \quad 2_{\mathrm{D}} \mathrm{e} \quad 2_{\mathrm{F}} \mathrm{e} \quad 2_{\mathrm{P}} \mathrm{e} \quad 2_{\mathrm{D}}{ }^{\mathrm{e}} \quad 2_{\mathrm{F}} \mathrm{e}$
${ }^{2}$ D

.15	1.030
.20	1.019
.25	.996
.30	.971
.35	.944

.35
.944
2.963
0.000
5.291
1.063
0.000
6.264
0.000
5.468
1.078
0.000
6.645
0.000
5.534
1.0750 .000
6.878
5.550 ․ 1.067
3.313
7.038
5.528
1.053
3.436
7.138
10.631
11.142
11.512
11.914
11.914
11.982
11.982
11.924
11.676
11.304
10.360
9.327
6.959
5.163

TABLE VIII
(continued)

TABLE IX

Partial wave contributions to the photoionization cross sections of $N^{+}\left({ }^{3} P,{ }^{1}{ }_{D},{ }^{1} S\right)$

$L_{0} S_{0}$	$\mathrm{K}_{\mathrm{f}}^{2}$	Dipole Velocity		Dipole Length	
		${ }^{3} \mathrm{P}$	${ }^{3} 0$	${ }^{3} \mathrm{P}{ }^{\circ}$	$3^{3}{ }^{\circ}$
3^{P}	. 025	1.923	4.537	2.146	5.443
	. 05	1.928	4.557	2.157	5.478
	. 10	1.862	4.453	2.082	5.326
	. 15	1.797	4.276	2.023	5.174
	. 20	1.733	4.139	1.956	5.002
	. 30	1.612	3.875	1.829	4.726
	. 40	1.499	3.625	1.707	4.440
	. 50	1.394	3.389	1.591	4.167
	. 60	1.296	3.169	1.483	3.909
	. 80	1.123	2.773	1.289	3.438
	1.0	. 976	2.432	1.123	3.025
	1.5	. 700	1.774	. 805	2.218
	2.0	. 516	1.321	. 592	1.655
		${ }^{1} \mathrm{P}$ O	-		$\mathrm{I}_{\mathrm{F}}{ }^{\circ}$

I_{D}	.025	.397	1.088	4.482	.442	1.088	5.827
	.05	.396	1.085	4.519	.442	1.086	5.892
	.10	.378	1.039	4.402	.443	1.041	5.769
	.15	.362	.994	4.285	.406	.997	5.643
	.20	.347	.952	4.169	.389	.954	5.515
	.30	.319	.872	3.943	.358	.875	5.259

TABLE IX
(continued)

	. 40	. 294	. 799	2.725	. 331	. 803	5.005
	. 50	. 271	. 734	3.516	. 305	. 736	4.756
	. 60	. 251	. 675	3.319	. 283	. 676	4.516
	. 80	. 217	. 573	2.956	. 243	. 573	4.063
	1.0	. 188	. 489	2.635	. 211	. 488	3.653
	1.5	. 137	. 340	1.992	. 151	. 336	2.807
	2.0	. 103	. 245	1.527	. 112	. 241	2.177
${ }^{1} \mathrm{~S}$		$1_{P} 0$			$1_{p} 0$		
	. 025	6.459			7.812		
	. 05	6.489			7.859		
	. 10	6.274			7.619		
	. 15	6.063			7.381		
	. 20	5.858			7.146		
	. 30	5.467			6.692		
	. 40	5.101			6.259		
	. 50	4.759			5.852		
	, 60	4.443			5.471		
	. 80	3.879			4.784		
	1.0	3.398			4.192		
	1,5	2.480			3.055		
	2.0	1.852			2.275		

n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma \frac{\pi}{2} \Gamma\left(q^{2}-1\right)$	$\frac{\sigma_{a}}{\sigma_{a}^{+} \sigma_{b}}$	Quantum Defect	δ_{0}
5	. 0352	4.38×10^{-2}	1.36	18.33	.79	1.07×10^{-1}	. 959	. 325	. 347
6	. 0507	2.94×10^{-3}	2.63	6.99	1.44	1.91×10^{-2}	. 829	. 246	. 337
7	. 0593	2.46×10^{-3}	3.23	5.53	1. 32	2.01×10^{-2}	. 807	. 218	. 620
8	. 0630	6.33×10^{-4}	1.46	10.54	1.29	1.19×10^{-2}	. 891	. 362	. 632
9	. 0676	5.87×10^{-4}	1.09	25.72	1.13	4.45×10^{-3}	. 958	. 342	. 372

TABLE XI (C) Photoionization of Phosphorus (${ }^{2} D$)

Defect	
.905	-0.071
.140	-0.023
.893	-0.027
.152	-0.004
.885	-0.032
.954	.040
.174	.133
.167	.098
.179	.096

TABLE XII

Partial wave contributions to the photoionization cross section of $P\left({ }^{4} S,{ }^{2} D,{ }^{2} P\right)$

TABLE XII
(continued)

	${ }^{2}$ S	${ }^{2} \mathrm{P}$	${ }^{2}$ D	${ }^{2}$ S	${ }^{2} \mathrm{P}$	${ }^{2}$ D
. 6	. 650	2.700	7.333	1.193	5.711	17.946
. 8	. 359	1.467	4.563	. 664	3.174	12.164
1.0	. 211	. 770	2.541	. 381	1.677	7.444
2.0	. 049	. 112	. 066	. 059	. 200	. 235

TABLE XIII

Partial wave contribution to the photoionization cross sections of Al ($\left.{ }^{2} P\right)$

${ }^{2} \mathrm{P}^{0}$. 01	. 849	14.373	1.805	21.992
	. 02	. 609	14.236	2. 159	21.833
	. 03	. 582	13.301	2.065	20.439
	. 04	. 557	12.427	1.978	19.132
	. 05	. 534	11.669	1.892	18.216
	. 075	. 482	9.808	1.717	15.183
	. 10	. 438	8.295	1.565	12.891
	. 15	. 370	5.959	1.324	9.353
	. 20	. 318	4.307	1.142	6.847
	. 30	. 246	2.280	. 879	3.734
	. 40	.197	1.215	. 691	2.038
	. 50	. 163	. 643	. 548	1.099
	. 60	.137	. 332	. 442	. 586
	. 70	.117	.163	. 365	. 312
	. 80	. 102	. 073	. 311	. 164
	. 90	. 089	. 027	. 272	. 082

TABLE XIV

Partial wave contributions to the photoionization cross sections of $S_{i}\left({ }^{3} P, l^{l_{D}},{ }^{l} S\right)$
Dipole Velocity \quad Dipole Length
$L_{0} S_{0}$
$K_{f}{ }^{2}{ }^{3}{ }^{0}{ }^{0}{ }^{0} D^{0}{ }^{3}{ }^{0}{ }^{0}{ }^{3}{ }_{D}{ }^{0}$
$3_{p} e$

. 01	8.989	18.867	13.035	29.587
. 02	9.193	19.636	13.40 .4	30.964
. 03	8.841	19.124	12.936	30.315
. 04	8.495	18.335	12.469	29.212
. 05	8.156	17.698	12.006	28.334
. 06	7.826	17.072	11,551	27.460
. 08	7.195	15,858	10.667	26.734
. 10	6.604	14.697.	9.829	24.053
. 15	5.313	12.056	7.965	20.125
. 20	4.373	9.808	6.454	16.779
. 30	2.805	6.342	4.258	11.245
. 60	. 939	1.523	1,381	3.075
. 80	. 530	. 522	. 753	1.225
. 0	. 339	. 145	. 464	. 444
		$\mathrm{I}_{\mathrm{F}} \mathrm{O}$	$\mathrm{I}_{\mathrm{p}} \mathrm{O}$	$\mathrm{I}_{\mathrm{F}} \mathrm{O}$

$l_{\mathrm{D}} \mathrm{e}$.01	2.020	3.756	14.701	3.327	3.882	27.185
	.02	2.133	3.850	16.419	3.553	3.966	30.609
	.03	2.070	3.641	16.139	3.460	3.740	30.315
	.04	2.010	3.348	15.855	3.369	3.424	29.995

TABLE XIV

(continued)
$\overline{I_{P^{0}} \cdot I_{D^{0}} \quad I_{F^{0}}: I_{P^{0}} \quad I_{D^{0}} \quad I_{F^{0}}}$

.05	1.952	2.803	15.566	3.280	3.182	29.651
.075	1.818	2.637	14.836	3.071	2.685	28.705
.10	1.699	2.233	14.106	2.876	2.223	27.676
.15	1.492	1.618	12.676	2.529	1.575	25.505
.2	1.324	1.193	11.335	2.292	1.161	23.567
.3	1.062	.659	8.890	1.793	.617	19.455
.6	.570	.119	3.617	.871	.103	9.395
.8	.403	.034	1.690	.579	.029	5.095
1.0	.300	.006	.684	.422	.005	2.579

$I_{S} \mathrm{e}$	$1_{\mathrm{P}} \mathrm{O}$	$1_{\mathrm{P} O}$
.01	25.653	38.353
.02	26.713	40.726
.03	26.227	40.749
.04	25.761	40.864
.05	25.243	40.747
.075	23.912	40.214
.10	22.556	39.336
.15	19.864	36.904
.2	17.301	34.866
.3	12.775	27.278
.6	4.309	10.275
.8	1.912	3.659
1.0	.819	1.918

TABLE XVI. Photoionization of Sulfur ($\left.{ }^{1} D\right)$

n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma_{a \frac{\pi}{2}}{ }^{\left(q^{2}-1\right)}$	$\frac{\sigma_{a}}{\sigma_{a+} \sigma_{b}}$	Quantum Defect	δ_{0}
4 s	. 1631	2.73×10^{-4}	-9.12	13.82	0.0	4.86×10^{-1}	1	-0.054	. 156
5 s	. 1848	1.49×10^{-4}	-7.21	14.78	0.0	1.75×10^{-1}	1	-0.058	. 186
6 s	. 1967	8.12×10^{-5}	-4.54	15.88	0.0	3.97×10^{-2}	1	-0.061	. 146
		hv	(3p) ${ }^{4}$	$\rightarrow \quad 1$	\rightarrow	(3) ${ }^{3}{ }^{2} D+e$ + e + e (3) ${ }^{3} \quad 2 p+e$			
5d	. 1803	2.48×10^{-3}	. 908	5.38	7.33	-3.68×10^{-3}	. 423	. 212	. 0127
6d	. 1939	1.68×10^{-3}	. 965	5.14	7.41	$-.30 \times 10^{-4}$. 409	. 248	. 0192

TABLE XVI (C). Photoionization of Sulfur (${ }^{1}$ D)
$h v+S(3 P)^{4}$

n	E_{r}	Γ	q	${ }^{\circ}$	σ_{b}	$\sigma_{a \frac{\pi}{2}\left(q^{2}-1\right)}$	$\frac{\sigma_{a}}{\sigma_{a}+\sigma_{b}}$	Quantum Defect	δ_{0}
5d	. 1827	4.87×10^{-5}	6.68	8.75	4.36	2.91×10^{-2}	. 667	. 075	. 019
6d	. 1954	2.31×10^{-5}	5.07	6.95	5.49	6.23×10^{-3}	. 558	. 079	. 022

TABLE XVII. PHOTOIONIZATION OF SỤ̣FUR $\left(^{1} S\right)$

$$
h v+s(3 p)^{4} 1_{S} \rightarrow 1_{p} \rightarrow s^{+}(3 p)^{3}{ }^{2} D+e d
$$

n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma_{a \frac{\pi}{2} \Gamma}\left(q^{2}-1\right)$	$\frac{\sigma_{a}}{\sigma_{a}+\sigma_{b}}$	Quantum Defect	σ_{0}
4s	. 1631	2.73×10^{-4}	-6.31	2.74	0.0	4.55×10^{-2}	1	-0.054	. 156
5is	.1848	1.49×10^{-4}	-6.51	2.43	0.0	2.34×10^{-2}	1	-0.058	. 186
65	. 1957	8.12×10^{-5}	-5.12	3.59	0.0	1.16×10^{-2}	1	-0.061	. 146

TABLE XVIII
Partial wave contributions to the photoionization cross sections of $S\left({ }^{3} P, 1_{D},{ }^{1} S\right)$

Dipole Velocity

Dipole Length

				XIX (C	nued)				
				L (${ }^{2} \mathrm{P}$)	${ }^{\text {D }}$	$\begin{array}{ll} \mathrm{CL}^{+}\left({ }^{3} \mathrm{P}\right) & + \\ \mathrm{CL}^{+}\left({ }^{1} \mathrm{D}\right) & + \\ & + \\ & + \\ \mathrm{CL}^{+}\left({ }^{1} \mathrm{~S}\right) & + \end{array}$	d S d g d		
n	E_{r}	Γ	q	σ_{a}	σ_{b}	$\sigma_{a} \frac{\pi}{2} \Gamma\left(q^{2}-1\right) p^{2}=$	$\frac{\sigma_{a}}{z^{\sigma}{ }^{\sigma}}$	Quantum Defect	δ_{0}
4 d	. 0387	3.10×10^{-3}	1.79	13.33	0	1.43×10^{-1}	1	. 152	. 262
4 s	. 0427	2.46×10^{-4}	5.31	13.06	0	1.37×10^{-1}	1	. 033	. 183
$5 d$. 0638	6.5×10^{-4}	3.50	10.53	0	1.22×10^{-1}	1	.146	. 335
6 d	. 0769	5.6×10^{-4}	2.99	10.38	0	7.26×10^{-2}	1	. 161	. 345
7 d	. 0848	2.5×10^{-4}	3.73	11.02	0	5.60×10^{-2}	1	. 170	. 344
4 d	. 1880	$.240 \times 10^{-3}$	25.61	. 045	18.48	1.11×10^{-1}	. 024	. 118	1.286
5 d	. 2119	1.740×10^{-3}	18.45	. 090	18.19	8.19×10^{-2}	. 0049	. 148	1.323

TABLE XX
Partial wave contributions to the photoionization cross sections of $\mathrm{C} \ell\left({ }^{2} \mathrm{P}\right)$

Dipole Velocity
$L_{0} S_{0}$
${ }^{2} \mathrm{P}$

.3	2.612	7.474	12.397	3.791	13.424	23.339
.4	2.225	7.248	12.151	3.303	13.612	23.942
.6	1.422	6.499	11.159	2.194	13.169	23.782
.8	.826	5.461	9.801	1.315	11.710	22.404
1.0	.460	4.253	8.131	.754	9.598	19.913
2.0	.039	$.4 \not 26$.805	.055	1.235	3.288

TABLE 21
Photodetachment cross sections of (a) $\mathrm{S}_{\mathrm{i}}^{-}\left(\mathrm{A}^{4} \mathrm{~s}^{0}\right)$ and (b) $\mathrm{C} \ell^{-}\left({ }^{1} s^{e}\right)$
(a) $S_{i}{ }^{-}\left({ }^{4} S^{\circ}\right), \quad L S \pi={ }^{4} P^{e}$

$\mathrm{K}_{\mathrm{f}}^{2}$	σ_{V}	σ_{L}	$\mathrm{K}_{\mathrm{f}}{ }^{2}$	σ_{V}	σ_{L}
.005	10.986	7.151	.15	31.461	41.028
.01	14.745	9.867	.17	31.611	43.036
.015	18.996	13.378	.19	31.555	44.578
.02	22.987	17.667	.21	31.332	45.706
.025	24.071	20.541	.23	30.978	46.477
.03	24.871	20.541	.25	30.519	46.950
.035	25.499	21.734	.3	29.053	47.137
.04	26.021	22.836	.4	25.373	44.651
.045	26.476	23.876	.5	21.280	39.609
.05	26.887	24.875	.6	17.163	33.278
.07	28.299	28.661	.7	13.337	26.973
.09	29.476	32.248	.8	9.701	20.848
.11	30.409	35.581	.9	7.289	16.501
.13	31.069	38.535			

(b) $\mathrm{Cl}^{-}\left({ }^{1} \mathrm{~S}^{\mathrm{e}}\right), \mathrm{LS} \overline{\mathrm{f}}={ }^{1} \mathrm{P}^{0}$

$\mathrm{K}_{\mathrm{f}}{ }^{2}$	σ_{V}	σ_{L}	$\mathrm{K}_{\mathrm{f}}{ }^{2}$	σ_{V}	σ_{L}
.01	5.468	4.494	.40	17.518	27.750
.02	7.294	6.204	.50	17.675	30.322
.03	8.741	7.436	.60	17.535	32.027

TABLE 21
(continued)

K_{f}^{2}	σ_{V}	σ_{L}	K_{f}^{2}	σ_{V}	σ_{L}
.05	10.010	9.294	.70	17.244	33.146
.07	11.074	10.801	.80	16.921	33.962
.09	11.927	12.162	.90	16.544	34.510
.11	12.663	13.454	1.10	15.770	35.230
.13	13.321	14.708	1.30	14.908	35.510
.15	13.918	15.936	1.50	13.822	35.230
.17	14.951	18.314	1.90	10.373	30.181
.19	15.392	19.449 .2 .10	8.005	25.112	
.21	15.784	20.545	2.30	5.573	19.013
.23	16.129	21.591	2.50	3.506	13.109

TABLE 22
Partial waye contributions to the Photodetachment crosis sections of $S^{-}\left({ }^{2} P^{\circ}\right)$

Dipole Velocity

$\mathrm{K}_{\mathrm{f}}{ }^{2}$	${ }^{2} S^{e}$	$2^{2} \mathrm{e}$	${ }^{2} \mathrm{D}$	$2_{S} \mathrm{e}$	${ }^{2} \mathrm{P}$ e	$2_{D}{ }^{\text {e }}$
. 01	.000	4.462	. 031	. 000	2.478	. 013
. 02	. 000	5.645	. 109	. 000	3.395	. 068
. 03	. 000	6.289	. 360	. 000	4.024	. 177
. 05	. 000	6.767	. 916	. 000	4.867	. 721
. 07	. 000	6.811	1.778	. 000	5.401	1.131
. 09	. 001	6.682	4.217	. 001	5.753	3.782
. 11	. 034	6.527	6.221	. 030	6.037	6.243
. 13	. 112	6.422	7.325	. 106	6.337	7.762
. 15	. 222	6.371	8.118	.219	6.674	8.981
. 17	. 344	6.361	8.738	. 351	7.046	10.047
. 19	. 452	6.378	9.238	. 462	7.444	11.011
. 21	. 621	6.412	9.645	. 942	7.857	11.895
. 23	. 867	6.426	10.007	1.493	8.486	12.759
. 25	1.058	$6: 494$	10.356	1.868	8.685	13.649
. 30	1.430	6.579	11.206	2.549	9.643	15.974
. 40	1.890	6.623	12.701	3.379	11.097	20.414
. 50	2.103	6.519	13.739	3.755	11.923	23.729
. 60	2.159	6.337	14.171	3.830	12.298	25.530
. 70	2.106	6.093	13.941	3.706	12.373	25.867
. 80	1.973	5.833	13.168	3.447	12.309	25.068

TABLE 22
(continued)

$K_{f}{ }^{2}$	$2_{S}{ }^{\text {e }}$	${ }^{2} \mathrm{p}$ e	$2_{\text {D }} \mathrm{e}$	$2 S^{e}$	$2_{p}{ }^{e}$	$2_{\text {D }} \mathrm{e}$
. 90	1.782	5.566	11.983	3.100	12.168	23.482
1.10	1.302	5.001	9.386	2.268	11.679	19.866
1.30	. 888	4.336	7.226	1.484	10.797	16.922
1.50	. 491	3.534	5.562	. 895	9.377	14.558
2.00	.104	1.438	2.296	. 212	4.447	7.967

Chapter 4

The code can be logically divided into four sections and the transfer of control within the program may be described by the following diagram

We now describe the function of each routine in the code and the COMMON variables read in or computed there.

MAIN Reads in IREAD, IWRITE the logical input and output tape numbers and calls the sections in turn.

SECTION 1

SUBROUTINE MAIN1
The remainder of the data which we now describe is read
in this subroutine.
IPH

-ve call EXIT	
0	implies more data cards to be read
1	implies no more data cards to be read

LRGL Total orbital angular momentum of system
SPN Total spin angular momentum of system
NPTY Parity of system
WI Energy of incident particle (in Rydbergs)
H Basic mesh size

IDEBUG(8) \{ O no print out in intermediary steps in the calculation.
1 Prints out result of intermediary calculation
$\operatorname{IDEBUG}(8)=-1$ if we require the 4 th section to be entered

IPH \{ o Read in more data
1 No more data to be imputed.
It Value of the nuclear charge
NST Number of states to be included in the expansion
NELT No. of radial equations allowed (maximum=5)
IQ. No. of electrons in $n p$ subshell of target
IP1 No. of closed subshells

The code assumes that the orbitals of the atomic electrons are accurately represented by analytic SCF functions i.e.

$$
P_{i}(r)=\sum_{J=1}^{N B A S I S} \operatorname{cWS}(J, I) r^{\operatorname{IPNS}(J, I)}-\operatorname{ZETWS}(J, I) * \Gamma
$$

We need IP=IPI +1 of these for the 1 , 2 S... np orbitals of the target and also 2 more such orbitals for the (np) ${ }^{q+1}$ system, namely $P_{n}^{\prime}(r)$ and $P_{2 s}^{\prime}(r)$ or $P_{3 s}^{\prime}(r)$ for the 4 th section since the photoionization cross section is proportional to $\left.\left|\left\langle\psi_{;}\right| I\right| \psi_{f}\right\rangle\left.\right|^{2}$. The ψ_{i} is merely the (np) ${ }^{q+1}$ system
and the \mathcal{Y}_{f} is described by the continuum wave function that are computed in sections 1 to 3 .
\therefore Total number of orbitals $=$ IP $+2+$ IP2
(EN (NST) Energies of the target states in atomic units
PTL Ionization potential of the $(n p)^{q+1} L_{o} S_{o}$ system
IR1 Number of mesh steps in the first change in mesh size. IRI*H is also one of our matching points for the functions. The integration from the origin outwards is terminated at this point.

IR2,IR3,IR4 Number of steps from the origin to regions where the mesh size is doubled i.e. the interval size between IR1 and IR2 is $2 * H$ etc.

IRA Number of steps from the origin to RA.
IR5 First match points=IR5*H: The IRI's satisfy the inequalities

IR5<IR1<IR2<IR3<IR4<IRA
where each IRI is at least 2 larger than the previous.

The functions are integrated from the origin as far as IRI*H. The values of the functions at IR5 and IRI are stoed in the matrix Bl. The solutions generated in the asymptotic region are integrated inwards as far as IR5*H. The values of these functions at IR1 and IR5 are also stored in Bl.

ITAPE Logical output tape number of temporary storage of the independent solutions until they are recalled in MAIN4.

LO The orbital and spin angular momentum of the (np) ${ }^{q+1}$ system under consideration in photoionization calculations.
CNORM $\quad\left[\left(2 p^{\prime} \mid 2 p\right)^{9-1}\left(1 s^{\prime} 2 s^{\prime} \mid 1525\right)^{2}\right]_{\text {where }}^{2} 1$ denotes the radial wave functions of the (np) ${ }^{q+1} I_{o} S_{O}$ system. For the $(3 p)^{q+1}$ system we neglect the contribution from the $1 s^{1}$ and only include $\left[\left(3 p^{\prime} \mid 3 p\right)^{q-1}\left(2 s^{\prime} 3 s^{\prime} \mid 2 s 3 s\right)^{2}\right]^{2}$

R2SD $\quad \int p_{2 p}^{\prime} r P_{25} d r$
R2 SE

$$
\int \frac{P_{2}^{\prime} p}{r} \frac{d}{d r} \frac{P_{2 s} r^{2}}{r} d r
$$

The following variables are also computed in MAIN1
IRA IRA +1
$\mathrm{N} \quad$ Number of channels
NA Number of open channels
NB Number of closed channels
IFA Number of distinct wave numbers in open channels
IFB Number of distinct wave numbers in closed channels
NMU Number of Lagrange multipliers needed to make $F_{i}{ }^{\prime}{ }_{s}$ orthogonal to atomic orbitals.

NMUSOL (NMU) Number of the atomic orbitals involved in the NMUth Lagrange multiplier.

NFEQN (NMU) Number of the radial equation involved in the NMUth Lagrange multiplier.

L2P (N)	Angular momentum of the outgoing electron in
IL2 (N) \}	
AL2 (N)	a particular channel
ILI (N)	Orbital quantum number of the target in a part-
	icular channel
SPNI (N)	Spin quantum number of the target in a particular channel
WP (N)	Wave number squared for each chnnel
KABOVE (N)	Number of the channel above threshold
KBELOW (N)	Number of the channel below threshold
ABOVE (N)	Distinct particle energies above threshold
BELOW (N)	Distinct particle energies below threshold
R(IRAI)	Values of the independent variable 'r' at which the functions are computed. Note: $R(I)=E$ and R (2) $=\mathrm{H}$.
RA	Value of 'r' beyond which exponential potentials are neglected.
RB	Value of 'r' at which asymptotic expansion is used.
HX (IRA)	Mesh sizes over the range of integration:
$\operatorname{IRT}(\mathrm{N}, \mathrm{N})$	Used to locate the potentials V_{ij} (IRA). Since V_{ij} is symmetric only $\frac{N(N+1)}{2}$ of them are stored.
EXCQ	Excess nuclear charge ($=8$ - number of atomic electrons)
ETAAB (NST)	excess nuclear charge
ETABEW (NST) ${ }^{\text {f }}$	divided by distinct wave numbers
TAU (30)	Needed in subroutine CLEBSH

HF	Final mesh size $(=16 * \mathrm{H})$
$\mathrm{NT} \varnothing \mathrm{T}=\mathrm{N}+\mathrm{NE}$	Total number of second order differential
	equations.

$N T \varnothing$ TNA $=N T \varnothing T+N A$
$N A N A=N+N A$

N2T $\mathbf{N T}=2 * N T \emptyset T$
NIN Number of independent solutions in the inside region

NØणTT Number of independent solutions in the outer region. CALLS SETLSP, VIJOFR, SUBEX, GENP1. SUBROUTINE VIJOFR

The following arrays are calculated in this subroutine. $A\left(\frac{N(N+l)}{2}\right.$, IRA1) Direct potentials $\frac{\ell_{i}\left(\ell_{i}+1\right)}{r^{2}}-\frac{2 z}{r}-k_{i}^{2}+2 n V_{i j}^{(r)}$
when $V_{i j}$ is defined by equation (2.30).
AAS $\left(\frac{N(N+1)}{2}\right.$, 2) Co-efficient of $\frac{1}{\Gamma^{3}}$ of y_{λ} as $r \rightarrow \infty$ for $\lambda=2$
if such a term occurs in the direct potential, zero otherwise.
V(N,IRAl) Equation(2.41)

NV | $\{=0$ | If no. V_{i} terms are in the equations |
| ---: | :--- |
| | $=1$ |\quad If the equations contain a V_{i} term.

NVJ (N) $\left\{=0 \quad\right.$ If no. V_{i} terms are in a particular equation If equation has $a V_{i}$ term.

CALLS YSUB, CLEBSH, RACAH.

SUBROUTINE CLEBSH

Calculates the Clebsh-Gordon co-efficient $D=(A B O O / C O)$
SUBROUTINE RACAH (A, B, C, D, E, F, G)
Calculates Racah co-efficient
$G=W(A B C D ; E F)$

Numerical evaluation of $Y_{K}\left(P_{i} P_{j} r\right)$
The function is stored in the array B (IRA1)
FUNCTION FGO 3B (A, B, C, P,Q $, R, X, Y, Z$)
Evaluates

```
{ll}\begin{array}{l}{ABQ}\\{CPX }\\{RYZ}\end{array}}\begin{array}{l}{\mathrm{ i.e. the Wigner 9-j symbol as defined}}\\{\mathrm{ in Ref.(39).}}
```

SUBROUTINE RSUB (I, J, K, L, X)
$L=1 \quad$ calculates $X=R_{k}\left(P_{i} P_{j} P_{i} P_{j}\right)$
$\mathrm{I}_{\mathrm{i}}=2 \quad$ calculates $\mathrm{X}=\mathrm{R}_{\mathbf{k}}\left(\mathrm{P}_{\mathrm{i}} \mathrm{P}_{j} \mathrm{P}_{\mathrm{j}} \mathrm{P}_{\mathrm{i}}\right)$
CALLS YSUB
SUBROUTINE SETLSP
Tabulated LS term values for the ($n p)^{q}$ configuration and stored in the arrays $A T(3)$ and ASPN (3). SUBROUTINE CFP ($\underset{\sim}{\prime}, I_{i}, S_{i}, I_{j}, S_{j}, C$)

Tabulated values of $\left.C=\left(P^{9} L_{i} S_{i} \|\right\} p^{9-1} L_{j} S_{j}\right)$ i.e. fractional parentage co-efficients for the (np) ${ }^{q}$ configuration. SUBROUTINE SUBEX:

Determines the number of distinct exchangeterms and computes the following variables:

NE Used to count the exchange terms, its final value being the number of distinct exchange terms NE.

IX1 (NE) Temporary array used in subroutine.
IX2 (NE) Value of for the NEth exchange term
IX3(NE) The particular involved in the NEth exchange term
IX4(NE) The particular F_{i} involved in the NEth exchange term.

```
\(\operatorname{AXI}(\mathrm{N}, \mathrm{NE}) \quad\) The coefficients of the exchange terms
\(\mathrm{AX} 2(\mathrm{NE}) \quad \lambda(\lambda+1)\)
AX (N EN) \(\quad(2 \lambda+1)\)
```

CALLS CP, RACAH, CLEBSH, FGO3B.
SUBROUTINE GENPI
Calculates ENP1 $=E\left\{(n p)^{q+1} L S\right\}-E \quad$ where $E=\frac{1}{2} K 1^{2}$
$+E\left\{(n p)^{q} L_{1} S_{1}\right\}$ where $L_{1} S_{i}$ are the quantum numbers of the lowest term and the actual expressions for the E's are obtained from equation (2.46). The wave functions of the (np) ${ }^{q}$ system are used in evaluating $E\left\{(n p)^{q+1} L S\right\}$.
CALLS CLEBSH, RACAH, CP, RUB.

SECTION 2

SUBROUTINE MAIN

CALLS INTEGRT

SUBROUTINE INTGRT

Generates NT $\boldsymbol{N} T$ independent solutions of the system of homogeneous equations $Z^{\prime \prime}=B Z \quad$ where $Z=\binom{F_{i}}{r y_{\lambda}}$ is a column vector which has $N T \not \subset T$ elements. A further (NV+NMV) independent solutions of the inhomogeneous system $Z^{\prime \prime}=B Z+G$ where G involves the V_{i} terms and the Lagrange multipliers are generated by setting the co-efficients C and μ_{i} equal to unity in turn and the remainder equal to zero. These solutions are integrated from E to H using the Runge-Kutta method. This involves subroutines STRSLI RUNGKT1 RUNGE and SUBG and the array, $Z(N 2 T O T)$, PRIME (N2TOT). Knowing $Z(O)$ and $Z(H)$ we now can use the Numerov method
to integrate IRI steps and we store the solutions at the points corresponding to IR5 and IRI in the matching matrix Bl.

We have

$$
\begin{aligned}
& \frac{d^{2} Z}{d r^{2}}=\sum_{d} B_{i j} Z_{j}+G_{i} \\
& \delta^{2} Z_{i}=H^{2}\left[\sum_{j} B_{i j} Z_{j}+G_{i}+\frac{1}{12} \delta^{2}\left\{\sum_{j} B_{i j} Z_{j}+G_{i}\right\}\right]_{(4.1)}
\end{aligned}
$$

This gives us

$$
\begin{aligned}
& \sum_{j}\left[\delta_{i j}-\frac{1}{12} H^{2} B_{i j}(r+H)\right] Z_{j}^{(r+H)} \\
&= 2 \sum_{j}\left[\delta_{i j}-\frac{1}{12} H^{2} B_{i j}(r)\right] Z_{j}(r) \\
& \quad \sum_{j}\left[\delta_{i j}-\frac{1}{12} H^{2} B_{i j}(r-H)\right] Z_{j}(r-H) \\
&+H^{2}\left[\quad B_{i j}(r) Z_{j}(r)+G_{i}(r)+\frac{1}{12}\left\{G_{i}(r+H)-2 G_{i}(r)+G_{i}(r-H)\right\}\right]
\end{aligned}
$$

F3 (N ToT, NT vT)
F6(NTDT,NIN)

F7 (NTøT,NIN)

$$
\begin{aligned}
& \partial_{i j}-\frac{1}{12} H^{2} B_{i j}(r+H) \\
& {\left[\delta_{i j}-\frac{1}{12} H^{2} B_{i j}(r)\right] Z(r)}
\end{aligned}
$$

$$
\left[\delta_{i j}-\frac{1}{12} H^{2} B_{i j}^{(r-H)}\right] Z_{j}(r-H)
$$

FR (NTめT,NIN)

Fl (NTØT,NIN)
F2 (NTDT,NIN)

$$
H^{2}\left[B_{i}(r) Z_{j}(r)+G_{i}(r)+\frac{1}{12}\left\{G_{i}(r+1)-2 G_{i}(r)+G_{i}((-+)\}\right]\right.
$$

$$
\begin{array}{ll}
Z_{i}^{(d)} & d=1, \cdots N I N \\
Z_{i}^{(j)}(r-H) & J=1, \cdots N I N
\end{array}
$$

FA (NTDT,NIN) $\quad=$ R.H.S. of Numerov formula

$$
=2 F 6-F 7+F 8
$$

$$
\text { . . } F I(N T \varnothing T, N I N)=F 3[(N T \varnothing T, N T \varnothing T)]^{-1} F 4(N T \varnothing T, N I N)
$$

The integration from the asymptotic region $r=r_{B}$ is now begun by calling STRSL2 in this region potentials which involve exponential terms are negligible so the equations take the form

$$
\begin{equation*}
\frac{d^{2} F_{i}}{d+^{2}}=\sum_{j=1}^{N} U_{i j} F_{j} \quad i=1, \cdots N \tag{4.4}
\end{equation*}
$$

where

$$
U_{i j}=\left[\frac{\ell_{i}\left(\ell_{i}+1\right)}{r^{2}}-k_{i}^{2}-\frac{2(z-n)}{r}+\sum_{\lambda} \frac{a_{i j}^{\lambda}}{r^{\lambda+1}}\right]
$$

The asymptotic form of Burke and They ${ }^{46}$ for the functions F_{i} is assumed

$$
\begin{align*}
F_{i} \sim & \sum_{k=1}^{I F A}\left\{\operatorname{sun}\left(k_{k} r+\eta_{k} \log 2 k_{k} r\right) \sum_{p=0}^{\infty} \alpha_{p}^{i k}-p\right. \\
& \left.+\cos \left(k_{k} r+\eta_{k} \log 2 k_{k} r\right) \sum_{p=0}^{\infty} \beta_{p}^{i k} r^{-P}\right\} \tag{4.6}\\
& +\sum_{T=1}^{I F B}\left\{e^{\left[-\left|k_{r}\right| r-\eta_{r} \log 2\left|k_{T}\right| r\right]} \sum_{p=u}^{\infty} \gamma_{p}^{i T} r^{-p}\right\}
\end{align*}
$$

Substituting these F_{i} 's into the asymptotic form of the differential equations gives us a recurrence relation for the $\alpha_{p}^{i k}, \beta_{p}^{i k}$ and $\gamma_{P_{i}}^{i T}$. In order to solve these recurrence relations $\alpha_{0}^{i i^{i}}, \beta_{0}^{i i}$ and $\gamma_{0}^{i i}$ must be specified, i.e.
$2 * N A+N B$ constants are unknown. Consequently $2 * N A+N B$ linearly independent solutions can be generated by setting

and solving the recurrence relations 2.NA+NB times (NC counts the number of solutions).

Substitution of the co-efficients $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ back into equation (4.6) enables us to calculate the $F_{2}^{\prime} s$ at r_{B} and ($\left.r_{B}-H F\right)$. These solutions of the homogeneous system of N coupled equations are integrated in wards using the Numervov method and the asymptotic form (4.5) of the potentials to the point R_{A} where the exchange potentials might be expected to begin contributing

At this point the exchange potentials are explicitly taken into account. We define a further NE linearly independent solutions of the homogeneous system of NT NT coupled equations by setting the co-efficients of $\boldsymbol{r}^{\boldsymbol{\lambda}}$ in the exchange terms each equal to unity in turn and the rest equal to zero. A further NV+NMU independent solutions of the inhomogeneous system are generated by setting C and the μ 's equal to unity in turn as in the inner region. These $N O U T=Q N A+N B+N E+N V+M M V$ solutions are intggrated inwards to the point corresponding to IR5. The values of the functions at the points corresponding to IR5 and IRI are stored in the matrix Bl.

Since the mesh size is halfed at the points corresponding to IR4 IR3 IR2 IR1 the following arrays are required for interpolation of $\mathrm{F} 6 \mathrm{F7}$ and F 8 in these regions F9 (NTOT,N2UT) ,Flo (NTOT,NOUT) , Fill (NT \varnothing (NT,NOUT)

Subroutines called by INTGRT.
STRSL1,RNGKT1, MATINV, UFLSPR, SETF3 SETCAE, SETE8, STRSL2, SERF BA, SETDA

SUBROUTINE UFISPR

Machine language subroutine written to suppress programed interupt messages caused by underflow on the IBM 360-65. SUBROUTINE RSTSUP

Machine language subroutine which terminates the underflow supressor programe.

SUBROUTINE STRSLI
Computes $F_{i}(\epsilon), F_{i}^{\prime}(\epsilon), Y_{\lambda}(\epsilon), Y_{\lambda}^{\prime}(\epsilon)$. The results are stored in $Z(N 2 T \varnothing T)$. Use is made of the fact that

The NIN linearly independent solutions in the inner region are generated by setting the co-efficients of the powers of equal unity in turn and setting the remainder equal to zero. SUBROUTINE SURG

Computes the right hand side of the differential equation $\frac{C+H}{2}$ Result is stored in $G(N T \not \subset T)$

FUNCTION RUNE

RUNGE-KUTTA formula.

SUBROUTINE RNGKT1
Converts the system of $N T \not \subset T$ coupled second order differential equations to a system of $N 2 T \not T T$ first order differential equations in preparation for the Runge-Kutta formula. by making the transformation

$$
\begin{aligned}
& Z_{i}^{\prime}=Z_{i+N T \phi T} \\
& Z_{i+N T \phi T}^{\prime}=\sum_{j} B_{i j} Z_{j}+G_{i} \ldots(4.7)
\end{aligned}
$$

The $Z_{i}{ }^{l}$ are stored in the array ZPRIME (N2耳 \varnothing IT)
The above system may be written as

$$
Z_{K}^{\prime}=f_{K}\left(r, Z_{1}, \cdot Z_{N 2 T \phi T}\right) \quad K=1, \cdots N 2 T \phi T
$$

$Z_{i}(\epsilon) \quad$ is known from STRSLl

- From the Runge-Kutta formula

$$
\begin{equation*}
Z_{i}(H)=Z_{i}(\epsilon)+\frac{1}{6}\left(k_{i 0}+2 k_{i 1}+2 k_{i 2}+k_{i 3}\right) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{i 0}=H M \cdot f_{i}\left(\epsilon, Z_{i}(t) \cdots Z_{N 2 T \phi T}\right) \\
& k_{i 1}=H M \cdot f_{i}\left(\epsilon+\frac{H M}{2}, Z(E)+\frac{1}{2} k_{10} \cdots \sum_{N 2 T \phi T}(E)+\frac{1}{2} k_{N 2 T i T O}\right) \\
& k_{i 2}=H M \cdot f_{i}\left(\epsilon+\frac{H M}{2}, Z_{1}(\epsilon)+\frac{1}{2} k_{11} \cdots, Z_{N(\epsilon)}+\frac{1}{2} k_{N 27 d \Gamma}\right)
\end{aligned}
$$

where $\mathrm{HM}=\mathrm{H}-\mathrm{C}$
CALLS SUBG, RUNGE
SUBROUTINE SETF3 (IA, HA)
Computes the NT ØT X NT ØT array F3 at the point $R(T A+1)$
with $\mathrm{H}=\mathrm{HA}$.
SUBROUTINE SETT (IA, HI, JA, K)
Computes the array F 8 at the point $\mathrm{R}(\mathrm{IA}+1)$ with $\mathrm{H}=\mathrm{Hi}$.
$\mathrm{K}=\varnothing$ implies that the integration is in the 'inner' region i.e. number of solutions $=$ NAN
$K=1$ implies that the integration is being performed in the outer region i.e. number of solutions $=$ NeUT
$J A=0$ implies that the mesh size is uniform in the region of integration
l
$J A=2\}$
means that we are preparing to decrease the step size - by a factor of 2.

SUBROUTINE MATING ($A, N, B, M, D E T E R M$)
M=0 inverts the NXN matrix A
$M=1 \quad$ computes $A^{-1} B$
Determ $=\operatorname{det}|A|$
SUBROUTINE SETF3A
Computes the NXN matrix F3 in the asymptotic region. SUBROUTINE STRSL2

Fits the F_{i} 's to the asymptotic form of Burke and Sher ${ }^{46}$. If a good fit is not obtained it automatically increases r_{B} and tires the expansion again. Computes $F_{i}\left(r_{B}\right), F_{i}\left(r_{B}-H F\right)$.

SUBROUTINE STRSL9 (ALPHA, BETA, GAMMA)
Solves a difference equation for the co-efficients α_{p}
$\beta_{p}^{j K}$ and $\gamma_{P}^{i T}$ of the asymptotic expansion using $\alpha_{0}^{N C N C}$
$\beta_{0}^{N C N C}$ and $\gamma_{0}^{N C N C} \quad$ communicated to it by STRSL2.
The results are stored in the arrays ALPHA, BETA, and GAMMA.
Computes IAASE i.e. the number of terms in our multipole expansion.
SUBROUTINE SETCAE (Il)
Evaluates the orthogonality integral in the 'inner' region using the trapozodial rule at each step of integration.
$E(N M U, N I N)=\int_{0}^{R(I R 1)} P_{I V}(r) F_{I V, J}(r) d r$ $d=1,2, \cdots \quad N I N$
where
IU=NMVSOL (MV) "
IV=NFEQN (MV)
It also evaluates the integral involved in equation (2.48).
$C(N I N)=\sum_{i=1}^{N} \int V_{i} F_{i j} d r \quad d=1,2 \ldots N I N$
SUBROUTINE SETA (II)
Evaluates the same integrals as SETCAE for the 'outer' region. The results are stored in the arrays I(NMU,NØUT) and $D(N \varnothing U T)$ -

SECTION 3
SUBROUTINE MAIN 3

Completes setting up the Matching matrix B1 which incorporates the requirement that the solutions be continuous over the entire range $0 \leqslant r \leqslant r_{B}$, and also the conditions expressed by (33) and (41) of Ref.(32). The orthogonality requirements are also expressed in the $B 1$ matrix. The resultant set of linear equations may be expressed in matrix form

These equations are solved NA times to give the unknown co-efficients $V_{\alpha}^{i}, c^{i}, \mu_{\gamma}^{i}, W_{\alpha}^{i} \quad i=1$, NA which are stored in the array $W(M, N A)$. The R-matrix is then computed using equation (42) of SHB. The R-matrix is daigonalized and the eigenphase shifts computed.

CALLS MATIN3,HDIAG,GAMMAR, RMSIE
SUBROUTINE MATIN 3
Inverts the Bl matrix
SUBROUTINE GAMMAR(ARG1,ARG2,ARG3,ARG4)
Computes the argument of the complex gamma function

$\arg \Gamma(A R G 1+i A R G 2)=\arctan (A R G 4 / A R G 3)$

SUBROUTINE HDIAG (H,N,IEGEN,U,NR)
Diagonzlies the NXN symmetric matrix H.

SUBROUTINE RMSIG

Calculates S and T matrices and partial wave cross sections for the transitions $L_{i} S_{i} \rightarrow L_{j} S_{j}$. Also computes the normalization matrix "Ar'r"of Equation (2.57) and stores it in the array AB (NA,NA,NA)

SECTION 4

SUBROUTINE MAIN

Rewinds ITAPE and reads in the solutions F which were computed at each point of the integration. Linear combinations of these solution vectors are now formed using the co-efficients computed in SOLVE and which are stored in $W(M, N A)$. The
result is stored in the array $F 2$ ($N, N A, I R A 1$)
CALLS PHOTO
SUBROUTINE PHOTO
This subroutine evaluates equations (20) of Ref. (4)
to give the photoionization cross sections in the dipole length and dipole velocity approximations. We note that the function $g_{\Gamma}(E)$ (equation $2.43 a$) is approximated by the following expression (equation 2.43 b)

$$
\begin{aligned}
& g_{\Gamma}(E)=\sum_{\Gamma^{\prime}} C_{\Gamma^{\prime}}\left\{\left(2 P^{\prime}\left|P_{\Gamma^{\prime}}\right| F_{\Gamma \Gamma^{\prime}}\right)-\delta_{e_{\Gamma} 0}\left[\frac{\left.c 1 s^{\prime} 2 s^{\prime} \mid F_{r r^{\prime}} 2 s\right)}{\left(1 s^{\prime} 2 s^{\prime} \mid 1 s 2 s\right)}\right.\right. \\
& \left.\left.\times\left(2 p^{\prime} P_{r^{\prime}} 1 s\right)+\frac{\left(1 s^{\prime} 2 s s^{\prime} / 1 s F_{r r^{\prime}}\right)}{\left(1 s^{\prime} 2 s^{\prime} / 1 s 2 s\right)}\left(2 p^{\prime} / P_{r^{\prime}} / 2 s\right)\right]\right\} \\
& \simeq \sum_{r^{\prime}} C_{r^{\prime}}\left\{\left(2 p^{\prime}\left|P_{r^{\prime}}\right| F_{r r^{\prime}}\right)-\delta_{e_{r} O}\left(2 s \mid F_{r r^{\prime}}\right)\left(2 P^{\prime}\left|P_{P^{\prime}}\right| 2 s\right)\right.
\end{aligned}
$$

where we use the same notation as Ref. (41)
CALLS ENTRAP
SUBROUTINE INTRAP (A,I,J,UK,RHO,IND)
Evaluates the integral

$$
\text { RHO }=\int_{0}^{r_{A}} A_{i}(r) U K(r) d r
$$

using the Trapezoidal rule.

REFERENCES

1. D. R. Bates, Proc. Phys. Soc. London B 64, 805 (1951).
2. A. Dalgarno, M. B. McElroy and J.C.G. Walker, Planetary and Space Science 15, 331, (1967a).
3. I.S. Bowen, Astrophys. J., 68, 257, (1928).
4. M.J. Seaton, Proc. Phys. Soc. A231, 37, (1955).
5. M.J. Seaton, Reports Prog. Phys. 23, (1960).
6. M.J. Seaton, Advances in Atomic and Molecular Physics,
Academic Press, New York, (1968).
7. Burgess A, Astrophys. J. 131, (1961).
8. B. Stromgen, Astrophys. J. 108, (1948).
9. L. Goldberg, Auto-ionization, edited by A. Temkin, Mono Book Corp., Baltimore (1966).

9a. Leo Goldberg, Andrea Dupree and John W. Allen, Annales D' Astrophysique, 28 No. 3 (1965).
10. A. Burgess, Astrophys. J. 139, (1964).
11. M.J. Seaton, Rev. Mod Physics, (1968).
12. M.J. Seaton, Lectures in Theoretical Physics IV, Boulder (1961).
13. R. Wildt, Astrophys. J. 89, (1939).
14. Vardya, Mon. N. Royal Ast. Soc. 71, (1967).
15. T. Ohmura and H. Ohmura Astrophys. J. 131, 8, (1960).
16. Mjosness and Ru el, Phys. Rev. 154, 98 (1967).
17. Smith, K. Reports on Prog. Phys. 29, 373 (1966).
18. Massey, H.S.W. and Mohr (C.B.O., (1932) Proc. Roy Soc (Eondon) Al36, 289.
19. Fesbach, H. Ann. Phys. 5, 357, (1958).
20. Fesbach, H. Ann. Phys. 19, 287, (1962).
21. Fesbach, H. Rev. Mod. Phys. 36, 1076, (1964).

REFERENCES

(continued)
22. K. Smith, Lecture Notes (unpublished).
23. A.M. Lane and R.G. Thomas, Rev. Mod, Phys. 30, 257 (1958).
24. O Malley, T.F. and S. Geltman, Phys. Rev. 137, Al344, (1965).
25. G. Brect and E. Wigner, Phys. Rev. 49, 519, (1936).
26. U. Fano, Phys. Rev., 124, 1866, (1961).
27. U. Fano and J.W. Cooper, Phys. Rev. 137, Al364, (1965).
28. P.A.M. Dirac, Physik 44, 585, (1927).
29. F.H. Mies, Phys. Rev. 175, 164, (1968).
30. B. W.Shore, Rev. Mod. Phys. 39, 439, (1967).
31. G. Racah, Phys. Rev. 63, 367, (1943).
32. K. Smith, R.J.W. Henry, and P.G. Burke, Phys. Rev 147, 21 (1966).
33. H. E. Saraph, M.J. 'Seaton and J. Shemming, (1968) preprint.
34. I.I. Sobelman, Introduction to the Theory of Atomic Spectra, Moscow translated by the U.S. Department of Commerce (1963).
35. C.C.J. Roothan and P.S. Kelly, Phys. Rev. 131, 1177, (1963).
36. E. Clementi, IBM, J. Res. Develop. 9, 2 (1965).
37. K. Smith, M.J. Conneely and L.A. Morgan, Phys. Rev 177, 196 (1969).
38. A. De Shalit and I. Thalmi, Nuclear Shell Theory (Academic Press, New York), 1963.
39. Rotenberg, M.R., N. Metropolis and J.K. Wooten, The $3-j$ and 6-j symbols. The Technology Press M.I.T., Cambridge, Mass.
40. R.J.W. Henry, P.G. Burke, and A-L Sinfailam, Phys. Rev. (in press).
41. R.J.W. Henry and Lester Lipsky, Phys. Rev. 153 51-56, (1967).

REFERENCES
 (continued)

42. H. Bethe and E. Salpeter, Quantum Mechanics of One and Two Electron Systems, Academic Press Inc., New YOrk (1957).
43. S.J. Czyzak, T.K. Kruegar, H.E. Saraph and J. Shemming, Proc. Phys. Soc. (London) 92, 1146, (1967).
44. S.J. Czyzak and t.K. Kreugar, Proc. Phys. Soc. London 90, 623, (1967).
45. M.J.Seaton, Rev. Mod. Phys. 30, (1958).
46. P.G. Burke and H.M. Shey, Phys. Rev. 126, 163 (1962).
47. R.J.W. Henry, J. Chem. Phys. 48, 3635, (1968).
48. F.J. Comes and H.Elzer, Phys. Letters 25A, 374, (1967).
49. F.J. Comes and H. Elzer, Z. Naturforsch, 23A, 133, (1968).
50. P.K. Carroll, R.E. Huffman, J.C. Larrabee and Y. Tanaka Astrophy. J. 146, 535, (1966).
51. Dalgarno Henry and Stewart, Planetary and Space Science, 12, 235, (1964).
52. B.H. Armstrong, R.R. Johnston and P.S. Kelly, Technical Report No. AFWL-TK 65-17, Lookheed Missiles and Space Company, (1965).
53. M.G.Kozlov, E.I. Nickonova and G. P. Startsev, Soviet Physics Opt. and Spect. 21, 298, (1966).
54. L. A. Vainshtein and G.E. Norman, Soviet Phys. Opt and Spect. 8, 79, (1960).
55. A. Burgess, G.B. Field and R.W. Michie, Astrophys. J. 131, 529 (1960).
56. G. Peach, Mont. Not. Roy. Astron. Soc., 124, 371, (1962).
57. S. T. Manson and J. W. Cooper, Phys. Rev., 165, 126 (1968).
58. J.C. Rich, Astrophys. J. 148, 275 (1967).
59. A. Burgess and M.J. Seaton, Mon. Not. Roy. Astron. Soc. 120, 121, (1960).
60. K. Smith, Sommerfeld Memorial Meeting, Munich, Sept. (1968), to be published.

REFERENCES

(continued)

61. R.E. Huffman, J.C. Larrabee and Y. Tanaka, J. Chem. Phys. 47, 856, (1967).
62. E. J. Robinson and S. Geltman, Phys. Rev. 153, 4, (1967).
63. Yu. V. Moskvin, Soviet Phys. High Temp. 3, 765 (1965).
64. J.W. Cooper and J.B. Martin, Phys. Rev. 126, 1482 (1962).
65. R.S. Berry, C.W. Reinmann and G.N. Spokes, J. Chem. Phys. 37, 2278 (1962).

Trial Wave Functions in the Close-Coupling Approximation*

Kenneth Smith, M. J. Conneely, and L. A. Morgan
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508

(Received 13 May 1968)

Abstract

The theoretical and numerical consequences of choosing different trial wave functions in the close-coupling approximation are considered. In particular, calculations are carried out on the scattering of electrons by atomic systems with configurations $1 s^{2} 2 s^{2} 2 p^{q}$, $q=2,3,4$, where properly antisymmetrized bound configurations $1 s^{2} 2 s^{2} 2 p q+1$ are mixed with the trial continuum wave function. An alternative treatment, which eliminates the need for such bound configurations is presented.

I. INTRODUCTION

In order to calculate the cross section for a scattering process within the framework of nonrelativistic wave mechanics, it is necessary to approximate the Schrödinger equation. One of the most successful approximation schemes is to expand the over-all wave function of the projectile plus target in terms of the complete set of (assumed known) eigenstates of the target Hamiltonian, see Burke and Smith. ${ }^{1}$ This method has come to be known as the "close-coupling approximation" because only a few of those atomic terms close to initial and final states are retained in the eigenfunction expansion. The unknown coefficients, $F_{\alpha}(r)$. in supch an expansion are the solutions of coupled second-order integro-differential equations with prescribed boundary conditions, and are interpreted as describing the radial motion of the projectile relative to the target.
If there are N such coefficients, then the Schrödinger partial differential equation has been replaced by an N-channel problem in one dimension, r. Those N_{A} channels in which F_{α} oscillates as $r \rightarrow \infty$ are-said to be "open", and correspond to continuum orbitals; the remaining ($N-N_{A}$) channels are said to be "closed" since the associated F_{α} will vanish exponentially as $r \rightarrow \infty$.
The theory of the scattering of electrons by hydro-
gen atoms, within this approximation, was carried out by Percival and Seaton ${ }^{2}$ and extended to hydrogenlike ions by Burke, McVicar, and Smith. ${ }^{3}$ Two points of these papers are of interest to us here. Firstly, the eigenstates of the target Hamiltonian are known exactly; and secondly, the expansion coefficients $F_{\alpha}(r)$ were not orthogonalized with respect to the bound target orbital. The fact that the target eigenstate is a single exactly known orbital means that antisymmetrization of the target is a non-existent problem and no errors are introduced into the cross sections because of the bound orbital. However, since only a few states can be taken in the expansion, only a part of the full effective polarizabilities are included. A technique for improving the calculations has been suggested by Damburg and Geltman. ${ }^{4}$ These authors recommend replacing the three degenerate $n=3$ hydrogenic target orbitals with an alternative non-degenerate trio, which results in the full effective polarizabilities being accounted for. In other words, even in the simplest collision problem, the one-electron orbitals of the target are a source of discussion.
Extensive calculations for electron collisions with positive ions with configurations is $1 s^{2} 2 s^{2} 2 p^{2}$ have been carried out by Saraph et al. ${ }^{5}$ They imposed the condition that the radial functions $\boldsymbol{F}_{\boldsymbol{\alpha}}$ should be orthogonal to the bound one-electron
orbitals with the same orbital angular momentum l_{α}. Physically, this can be interpreted as excluding the projectile from being captured, virtually, into incomplete subshells. This restriction on their total wave function was removed by superimposing a second configuration, ϕ, constructed entirely from bound orbitals. Their trial wave function in the close-coupling approximation was taken to be

$$
\begin{align*}
\Psi\left(\Gamma_{i}\right)= & \sum_{\Gamma_{j}} \psi_{i}\left(p^{q}\left(S_{j} L_{j}\right) k_{j} l_{j} S L \pi\right) \\
& +\alpha_{i} \phi\left(p^{q+1} S L \pi\right) \tag{1}
\end{align*}
$$

using the notation of Ref. 5 , where Γ is the complete set of quantum numbers for the system and ψ is a vector-coupled antisymmetrized function constructed from one-electron orbitals. This same method was used by Czyzak and Krueger. ${ }^{6}$ Equation (1) can be interpreted as configuration interaction: In the first term one of the electrons is in a continuum orbital, while all electrons are in bound orbitals in the ϕ term. Saraph et al. use the same orbitals for the terms $S_{j} L_{j}$ as well as in the ϕ configuration; these orbitals were calculated using a computer code written by Froese. ${ }^{7}$
The underlying reason behind choosing ϕ to be constructed from the same orbitals as ψ is that the $F \cdot$ sare constrained to be orthogonal to these orbitals, yet without the constraint F would contain a component of the bound $p q$ orbitals. The unconstrained continuum orbital could be written

$$
\begin{equation*}
\tilde{F}=F+\alpha_{i} P, \quad(F, P)=0 . \tag{2}
\end{equation*}
$$

However, permitting the projectile to be captured into the $2 p$ subshell means that there are now ($q+1$) equivalent electrons, not q. in the ϕ term of Eq. (1).
Seaton's method, described above, for choosing the trial wave function in the close-coupling approximation in the scattering of electrons by atomic systems with incomplete p subshells has also been used by Smith et al. ${ }^{8}$ (SHB) for the same
problem. The same approximation was made with respect to the orbitals of the two configurations $1 s^{2} 2 s^{2} 2 p q \in l+1 s^{2} 2 s^{2} 2 p q+1$; however, the analytic self-consistent-field (SCF) functions of Roothaan and Kelly ${ }^{9}$ were used in the numerical calculations of Smith et al. ${ }^{10}$ and of Rudd and Smith. ${ }^{11}$ This method involves the evaluation of matrix elements

$$
\begin{align*}
& L_{k l}^{\alpha}=\alpha^{k}\left\langle\phi,\left(H_{N+1}-E\right) \sum_{\Gamma_{i}} \psi^{\Gamma_{l}}\left(\Gamma_{i}, \overrightarrow{\mathrm{x}}_{N+1}\right)\right\rangle, \tag{3}\\
& L_{k l}{ }^{\alpha^{2}}=\alpha^{k} \alpha^{l}\left\langle\phi,\left(H_{N+1}-E\right) \phi\right\rangle, \tag{4}
\end{align*}
$$

in the notation of Ref. 8, who used \mathbf{C} for the variational parameter denoted by α here. In their evaluation of these matrix elements, Smith et al. ${ }^{8}$ used the orthogonality, Eq. (2). between P and F, which would not be possible if the bound orbitals of the actual p^{q+1} configuration were used in ϕ. Furthermore, they chose to antisymmetrize the additional p electron in ϕ as being inequivalent to the other q electrons. That is to say, the $(q+1)$ th p electron in ϕ was treated on the same footing as the F electron in ψ. This results in ϕ not being fully antisymmetrized under the interchange of any pair of electrons. The purpose of this paper is to present the fully antisymmetrized function and to examine its effect on the results of Ref. 10 and 11, as well as to compare with the results of Ref. 5.
In Sec. 2 we evaluate the matrix elements (3) and (4) by specializing the general results of Smith and Morgan. ${ }^{12}$ referred to henceforth as SM, to the single incomplete p-configuration problem. The results obtained are verified in Sec. 3 using the methods of deShalit and Talmi. ${ }^{13}$ In Sec. 4 we re-examine the problem of choosing the trial function by discarding the restriction that the close-coupling functions F must be orthogonal to the bound-state orbitals P. Finally. in Sec. 5 we discuss the numerical effects of various ϕ symmetrizations on the scattering of electrons by atomic systems with configurations $2 p q$.

II. RECOUPLING COEFFICIENT METHOD

The theory of the scattering of electrons by atomic systems with any number of incomplete subshells has been developed within the Hartree-Fock, or close-coupling, approximation by Smith and Morgan. ${ }^{12}$ These authors assumed that the bound-electron orbitals are independent of the configuration. They impose the orthogonality condition, Eq. (2), with the result that the terms linear in α (see Eq. (54) of SM) reduce to

$$
\begin{equation*}
L_{i l, k}^{\alpha}=\Sigma_{\mu} \alpha_{\mu}^{k}\left(\langle i l| H_{1}|\mu\rangle+\langle i l| 1 / r|\mu\rangle\right) \tag{5}
\end{equation*}
$$

which is the many-configuration generalization of Eq. (3), and where the two terms are defined in Eqs. (56) and (60), respectively, of Smith and Morgan. The sum μ runs over all the incomplete subshells included in the eigenfunction expansion. We now restrict consideration to a single incomplete p subshell, as in Saraph et al., ${ }^{5}$ so that only the $\mu=n p$ term appears in Eq. (5).

The matrix element of H_{1} will be nonzero only when the interacting electron is in the incomplete $n p$. subshell. In the notation of Smith and Morgan, $\rho=n p=b_{\mu}, N_{\rho}=q+1, S_{\rho} \mu=S, L_{\rho} \mu=L, S_{\rho}{ }^{i}=S_{i}$, and $L_{\rho}{ }^{i}=L_{i}$,
since all other subshells are closed. Consequently, the first term of Eq. (5), reduces to

$$
\begin{align*}
\langle i l| H_{1}|2 p\rangle= & (q+1)^{\frac{1}{2}}\left(p^{q+1} S L ß p^{q} S_{i} L_{i}, p\right) \int d r F_{i l} \\
& \times \delta_{l_{i}}\left[-\frac{1}{2}\left(\frac{d^{2}}{d r^{2}}-\frac{2}{r^{2}}+\frac{2 Z}{r}\right)\right] p_{n p}(r)\left\langle S_{i} \frac{1}{2}, S \left\lvert\,\left(S_{i} \frac{1}{2}\right) S\right.\right\rangle\left\langle L_{i} l_{i}, L \mid\left(L_{i} p\right) L\right\rangle \tag{6}
\end{align*}
$$

Since there is no recoupling of the angular momenta, both recoupling coefficients are unity. Equation (6) leads to a different leading term in Eq. (24) of Smith et al. ${ }^{8}$ in that $(q+1)^{1 / 2}$ replaces $(N+1)^{1 / 2}$, where N is the total number of target electrons.
In the evaluation of the second term of Eq. (5), we note that $N_{\lambda}{ }^{i}=N_{\lambda} \mu$ for all subshells except $\lambda=2 p$. In the notation of Smith and Morgan, the outermost interacting subshell in ϕ is $\sigma=n p$, and we must have $\rho_{i}=\rho_{\mu}=\rho$, which is summed over all the subshells. Furthermore, we have $\Delta P=0, \bar{S}_{\sigma}=S, \bar{L}_{\sigma}=L_{i}, S_{\sigma}$ and $L_{\sigma}{ }^{\mu}=L$. For $\epsilon=0$, we have $\nu=\rho$ and $\zeta=n p$, which gives the spin and orbital recoupling coefficients to be

$$
\begin{align*}
& \left\langle s_{i} \mid S_{\mu}\right\rangle^{0}=\left\langle\left(\bar{S}_{\left.\rho^{\frac{1}{2}}\right) S_{\rho}} \ldots S_{i}, \frac{1}{2} S\left|\left(\bar{S}_{\rho} \frac{1}{2}\right) S_{\rho} \ldots\left(S_{i} \frac{1}{2}\right) S\right\rangle=1\right.\right. \tag{7}\\
& \left\langle\Theta_{i} \mid \theta_{\mu}\right\rangle^{0}=\left\langle\left[\bar{L}_{\rho},\left(l_{\rho} \nu\right) l_{\rho}\right] L \ldots, l_{i} ; L \mid\left(\bar{L}_{\rho} l_{\rho}\right) L_{\rho} \ldots\left[\bar{L}_{\sigma},\left(\nu l_{i}\right) l_{\sigma}\right] L_{\sigma} ; L\right\rangle,
\end{align*}
$$

which is precisely the same form as the direct recoupling coefficient [see SM Eq. (49)]. The dots in Eq. (7) represent the quantum numbers, either spin or orbital, of the spectator subshells lying between the two interacting subshells $\lambda=l_{\rho}$ and $\lambda=l_{i}$.
If $\epsilon=1$, then $\eta=n p$ and $\zeta=\rho$, resulting in the recoupling coefficients

$$
\begin{align*}
& \left\langle\Theta_{i} \mid \Theta_{\mu}\right\rangle^{1}=\left\langle\left[\bar{L}_{\rho},\left(l_{\sigma} \nu\right) l_{\rho}\right] L_{\rho} \ldots, l_{i} ; L \mid\left[\bar{L}_{\rho},\left(\nu l_{i}\right) l_{\rho}\right] L_{\rho} \ldots\left(\bar{l}_{\sigma} l_{\sigma}\right) L_{\sigma}\right\rangle . \tag{8}
\end{align*}
$$

These recoupling coefficients are precisely those which appear in the exchange term [see SM Eq. (40)], since the order of coupling is the same in both sets of coefficients.
Substituting Eqs. (6), (7), and (8) into Eq. (5) gives the function $\dot{V}_{i}(r)$, defined in Eq. (53a) [printed following Eq. (59)] of Smith and Morgan, as

$$
\begin{align*}
V_{i}(r)= & (q+1)^{\frac{1}{2}}\left\{\delta _ { l _ { i } 1 } \{ (p ^ { q + 1 } L S | \} p ^ { q } L _ { i } S _ { i } , p) \left[\left(-\frac{1}{2} \frac{d^{2}}{d r^{2}}+\frac{1}{r^{2}}-\frac{Z}{r}\right) P_{n p}(r)\right.\right. \\
& +\rho \sum_{\text {closed }} 2\left(2 l_{\rho}+1\right)\left[Y_{0}\left(n l_{\rho} n l_{\rho} ; r\right) P_{n p}(r)-\frac{1}{2} \Sigma_{t}(2 t+1)^{-1}\left(l_{\rho} 100 \mid t 0\right)^{2} Y_{t}\left(n \bar{l} l^{n} p ; r\right) P_{\rho}(r]\right] \\
& +3 q \sum_{L^{\prime} S^{\prime}} \delta_{S_{i} S^{\prime}}\left(p^{q+1} L S \sharp p^{q} L^{\prime} S ; p\right)\left[\left(2 L^{\prime}+1\right)\left(2 L_{i}+1\right)\right]^{\frac{1}{2}} \sum_{L_{2} S_{2}}(-1)_{2}+L+L^{\prime}+L_{i}\left(p^{q} L^{\prime} S^{\prime} \| p^{q-1} L_{2} S_{2}\right) \\
& \times\left(p^{q} L_{i} S_{i} \oslash p^{q-1} L_{2} S_{2}, p\right) \Sigma_{t}(2 t+1)^{-1}(1100 \mid t 0) W\left(1 L^{\prime} l_{i} L_{i} ; L t\right) W\left(1 L^{\prime} 1 L_{i} ; L_{2} t\right) \\
& \left.\times\left(1 l_{i} 001 t 0\right)\left[\left(2 l_{i}+1\right) 3\right]^{\frac{1}{2}} Y_{t}(n p n p ; r) P_{n p}(r)\right\} \tag{9}
\end{align*}
$$

This differs from Eq. (24) of Smith et al. ${ }^{8}$ in the over-all $(q+1)^{1 / 2}$ factor replacing $(N+1)^{1 / 2}$ and in the sum over t in the square brackets, which was missing in Ref.8. Equation (9) does agree with the results of Shemming; ${ }^{14}$ which presumably were used in Refs. 5 and 6.
The incomplete antisymmetrization of ϕ used in Ref. 8 also affects the matrix elements defined in Eq.
(4). This matrix element is evaluated in two parts, $\sum_{\alpha=1}^{N_{+1}} H_{1}(\alpha)$ and r^{-1}, rather than computing H_{N} as in

SM. Starting with Eq. (61) of SM, the first part can be shown to be ${ }^{15}$

$$
\langle\phi| H_{N+1}|\phi\rangle=-\frac{1}{2} \sum_{\rho=1 s}^{n p} N_{\rho} \int d r P_{\rho}(r)\left(\frac{d^{2}}{d r^{2}}-\frac{l_{\rho}\left(l_{\rho}+1\right)}{r^{2}}+\frac{2 Z}{r}\right) P_{\rho}(r)+\frac{1}{2} \sum_{\rho=1 s}^{n p} N_{\rho}\left(N_{\rho}-1\right) R_{0}\left(n l_{\rho}{ }^{4}\right)
$$

$$
\begin{align*}
& +\sum_{\rho>\sigma=1 s}^{n p} N_{\rho} N_{\sigma} R_{0}\left(n l_{\rho} n l_{\sigma} n l_{\rho} n l_{\sigma}\right)-\sum_{\rho>\sigma(s \text { subshell })} 2 R_{0}\left(n l_{l} n l_{\sigma} n l_{\sigma} n l_{\rho}\right) \\
& -\frac{1}{6} \sum_{\substack{\rho=p \\
\sigma \neq \rho}} \text { subshell } N_{\rho} N_{\sigma} \sum_{\kappa}\left(l_{\rho} \kappa 00 \mid 10\right)^{2} R_{K}\left(n l_{\rho} n l_{\sigma} n l_{\sigma} n l_{\rho}\right) \\
& \left.+\frac{3 q(q+1)}{5} \bar{L}_{i} \bar{L}_{j} L^{\prime} \bar{S} S^{\prime}\left(p^{q+1} L S \sharp p^{q} \bar{L}_{i} \bar{S}_{i}, p\right)\left(p^{q+1} L S\right\} p^{q} L_{j} \bar{S}, p\right) \\
& \left.\left.\left.\times\left(p^{q} \bar{L}_{i} \bar{S} \| p^{q-1} \bar{L}^{\prime} \bar{S}^{\prime}, p\right)\left(p^{q} L_{j} S\right\} p^{q-1} L^{\prime} S^{\prime}, p\right)(-1)^{L^{\prime}+L_{[(2}} \bar{L}_{i}+1\right)\left(2 \bar{L}_{j}+1\right)\right]^{\frac{1}{2}} \\
& \times W\left(L_{i} 1 L_{j} 1 ; L^{\prime} 2\right) W\left(L_{i} 1 L_{j} 1 ; L 2\right) R_{2}\left(n p^{4}\right), \tag{10}
\end{align*}
$$

while the second part is still given by Eqs. (62) and (62a) of SM. It is the first part which is different from the corresponding first two terms of Eq. (25) of Ref. 8, which are simply

$$
\sum_{L^{\prime} S^{\prime}}\left(p^{q+1} L S \sharp p^{q} L^{\prime} S^{\prime}, p\right)^{2} E_{N}\left(L^{\prime} S^{\prime}\right)+\int d r P_{n p}\left(-\frac{1}{2} \frac{d^{2}}{d r^{2}}+\frac{1}{r^{2}}-\frac{Z}{r}\right) P_{n p}
$$

One of the principal advantages of working with Eq. (10) rather than SM Eq. (72) is the fact that it becomes unnecessary to know the energies of highly excited configurations. A detailed proof that the work of Saraph et al. and Smith et al.,8 when the above antisymmetrization is taken into account, are proper subsets of the formulation of Smith and Morgan is given in Morgan. ${ }^{15}$ That is to say, Refs. 5 and 8 are special cases of Ref. 12, which permits any number of configurations to be included in the trial wave function.

III. OPERATOR METHOD

Although the work of Smith and Morgan had brought to light the incomplete antisymmetrization of Ref. 8, it was thought necessary to verify the expressions for the matrix elements, Eqs. (3) and (4), given in the previous section by using an alternative method. The method chosen was the antisymmetrization operators A_{N} of deShalit and Talmi. ${ }^{13}$ In this method the $(N+1)$-electron wave function for the bound term in Eq. (1) is

$$
\begin{equation*}
\left|1 s^{2} 2 s^{2} 2 p^{q+1} ; L S\right\rangle=\frac{A_{N+1}}{[2!2!(N+1)!(q+1)!]^{1 / 2}} \theta\left(1 s^{2} ; 12\right) \theta\left(2 s^{2} ; 34\right) \theta\left(2 p^{q+1} ; 5, \ldots, N+1 ; L S\right), \tag{11}
\end{equation*}
$$

where the q 's are properly antisymmetrized for the electrons in that subshell, but A_{N+1} effects the antisymmetrization between the subshells. Using the commutators

$$
\begin{equation*}
\left[A_{N^{\prime}} H\left(x_{N+1}\right)\right]=0, \text { and }\left[A_{N^{\prime}}, A_{N+1}\right]=0 \tag{12}
\end{equation*}
$$

gives the same matrix element as Eq. (6). In order to evaluate the matrix elements of the two-electron operator $\sum_{\alpha=1}^{N+1} r_{N+1, \alpha} \alpha^{-1}$, we consider closed and open subshells separately, leading to the terms in the ρ sum of Eq. (9).
Finally, to compute the terms quadratic in α, we consider matrix elements between closed subshells, between open subshells, and then the cross terms between open and closed. For the interaction of open, l_{1}, with closed, l_{2}, we find that the matrix element of the two-electron operator is independent of the total L and is given by

$$
\begin{equation*}
V\left(l_{1} l_{2} L\right)=\sum_{K} f_{K} F^{K}+(-1)^{l_{1}+l_{2}+S \sum_{K} g_{K} G^{\kappa}, ~} \tag{13}
\end{equation*}
$$

where F^{K} and G^{κ} are the usual Slater integrals, and f_{K} and g_{K} are geometric factors expressible in Racah algebra. For the matrix elements between a pair of closed subshells we find that the contribution
to Eq. (3) is

$$
(2 l+1)\left(2 l^{\prime}+1\right)\left[2 F^{0}\left(n l n^{\prime} l^{\prime}\right)-\sum_{\kappa}(-1)^{l+l^{\prime}+\kappa}\left(\begin{array}{ll}
l & l \tag{14}
\end{array} \kappa\right) G^{\kappa}\left(n l n^{\prime} l^{\prime}\right)\right] .
$$

The matrix elements of $\sum_{\alpha=1}^{N+1} H_{1}\left(x_{\alpha}\right)$ were determined as in the previous section, and the over-all results confirmed the correctness of Eqs. (9) and (10).

IV. VIRTUAL CAPTURE

In the Introduction it was emphasized that when the close-coupling functions were orthogonalized, Eq. (2), with respect to the bound orbitals, it was equivalent to neglecting virtual electron capture into open subshells. For this reason, configuration mixing via the ϕ terms was introduced in Eq. (1).
In this section, we shall discuss briefly the elimination of the orthogonalization constraint on the F^{\prime} s relative to the bound orbitals of the incomplete subshells; a complete discussion will be given elsewhere. ${ }^{15}$ This discussion will be within the framework of the techniques of Fano, ${ }^{16}$ and leads to the elimination of the so-called ϕ-dependent terms of Refs. 5, 6, 8, and 12. Consequently, virtual capture is now implicit in the close-coupling functions F.

The principal advantage of the orthogonalization procedure was the elimination of factors in the exchange term as a result of the vanishing of the overlap integral of F with a P. (It is clear that such an overlap does not occur in the direct terms, since both F^{\prime} s are found in the same integral.) We now have to derive an alternative expression for SM Eq. (25), with the orthogonality constraint expressed in the form

$$
\begin{equation*}
\int d r F_{i j}(r) P_{\lambda}(r)=\Delta(i j ; \lambda) \delta_{l_{i} l_{\lambda}} \tag{15}
\end{equation*}
$$

for the incomplete subshells P_{λ}, but the Δ still vanish for the closed subshells.

$$
\text { We begin by evaluating the matrix elements of the one-electron operators } \sum_{\alpha=1}^{N+1} H_{1}(\alpha) \text { and note that }
$$

only those for $\alpha \leqslant N-1$ contribute equally. If we let μ_{i} and μ_{j} be the subshells containing the labels N and $N+1$ in the distributions q_{i} and q_{j}, respectively, then using the methods of SM we can show that

$$
\begin{align*}
\left\langle\sum_{\alpha=1}^{N-1} H_{1}(\alpha)\right\rangle= & \sum_{\rho, \mu_{i}, \mu_{j}} C_{\rho \mu_{i} \mu_{j}}{ }^{i j} \int_{0}^{\infty} d r P_{\mu_{i}}(r) F_{j l}(r) \int_{0}^{\infty} d r F_{i \kappa}(r) P_{\mu_{j}}(r) \\
& \times \int_{0}^{\infty} d r P_{\rho}(r)\left(\frac{d^{2}}{d r^{2}}-\frac{l_{\rho}\left(l_{\rho}+1\right)}{r^{2}}+\frac{2 Z}{r}\right) P_{\rho}(r) \tag{16}
\end{align*}
$$

with one less integral for $H_{1}(N)$ and $H_{1}(N+1)$ on account of F and P_{ρ} being interchanged. The C factors are defined in Ref. 15.
A similar separation of the two-electron operator can be effected

The final matrix element is given in SM Eq. (41), and the remaining three matrix elements can be readily evaluated by the same method after using symmetry properties.

The variational principle of SM Eq. (73) is now replaced by

$$
\begin{equation*}
\delta\left(\sum_{i j} f_{i \kappa}{ }_{i j} F_{j l} d r+\sum_{i j} \int_{i \kappa} X_{i j}^{l} d r+\sum_{\lambda, \text { closed }} \operatorname{Ir}_{\lambda} \int_{\lambda} P_{i \kappa} d r-\frac{1}{2} K_{\kappa l}\right)=0 \tag{18}
\end{equation*}
$$

where \mathscr{H}_{λ} are the Lagrange undetermined multipliers chosen to ensure the orthogonality of the continuum with the closed subshells, and $X_{i j}(r)$ is an integral operator on F with terms from Eqs. (16) and (17). The associated Euler equations are

$$
\begin{equation*}
\sum_{j} \mathscr{L}_{i j} F_{j l}+\sum_{j} X_{i j}^{l}(r)+\sum_{\lambda, \text { closed }} H_{\lambda} P_{\lambda}(r)=0 \tag{19}
\end{equation*}
$$

where each of the factors of the inhomogeneous X term is of the form

$$
\begin{equation*}
x_{i j}^{l}(r)=g_{i j}(r) A_{i j}^{l} \tag{20}
\end{equation*}
$$

where $\mathcal{S}_{i j}(r)$ are known functions ${ }^{15}$ and $A_{i j}$ are unknown numbers dependent on F. If there are $N V$ such inhomogeneous terms, then we can generate $N V$ particular solutions of the inhomogeneous system by setting the $A^{\prime} s$ in turn equal to unity, the remainder zero. This is a variation of the numerical method developed in Ref. 8 and is equivalent to that used by Burke and McVicar ${ }^{17}$ for the electron-hydrogen-like-ion problem.

V. NUMERICAL RESULTS

In the preceding sections two changes have been proposed in the formalism. Firstly, there is the problem of antisymmetrization, which is now properly handled in Secs. 2 and 3; and secondly, there is the alternative approach to virtual capture described in Sec. 4. Here we shall report computations carried out on the effects of ϕ antisymmetrization.

In Table I we present results for the collision strengths of electrons incident on a variety of ions, as computed with both the partly and fully antisymmetrized ϕ functions, and we compare with the results of Saraph et al. We emphasize that the bound orbitals for the N-electron problem have been used in both ψ and ϕ of Eq. (1). Furthermore, in the computation of the matrix element, given in Eq. (4), we have written

$$
E=\frac{1}{2} K 1_{1}^{2}+E_{N}\left(S_{1} L_{1}\right)
$$

$$
\begin{equation*}
E_{N} \equiv\langle\phi(N)| H_{N}|\phi(N)\rangle \tag{21}
\end{equation*}
$$

where $S_{1} L_{1}$ are the quantum numbers of the lowest term, and the actual expression for E_{N} is obtained from Eq. (10). Two conclusions can be drawn from Table I. Firstly, the results do depend markedly on the symmetry of ϕ; and secondly, the quite different numerical procedures and bound orbitals of Refs. 5 and 8 lead to the same collision strengths to within a few percent. When the theoretical values of Roothaan and Kelly are used in Eq. (21), the results are hardly affected at all.

The large change in the collision strengths mentioned above, brought about by the full antisymmetrization of ϕ raises the question of its

TABLE I. Collision Strengths, $\Omega\left(n n^{\prime}\right)$.

\because ION	n	n^{\prime}	ϕ (SHB)	. ϕ -	Ref. 6
N^{+}	${ }^{3} p$	${ }^{1}$ D	6.342	3.292	3.203
$\because 6$	1 D	$4{ }^{1} \mathrm{~S} 5 \times 5$	0.677	$=0.428$	0.424
	${ }^{3} \boldsymbol{P}$	${ }^{1} S$	0.931	0.428	0.3915
\mathbf{O}^{++}	${ }^{3} \boldsymbol{P}$	${ }^{1}$ D	5.016	2.545	2.398^{5}
	${ }^{1} D$	${ }^{1} \mathrm{~S}$	0.438	0.294	0.319
	${ }^{3} P$	${ }^{1} S$	0.798	0.369	0.345

TABLE II, Values of conserved quantum numbers
influenced by the virtual ϕ term.

TABLE IV. Partial-wave contributions to the elastic cross sections. Numbers in parentheses are from Ref. 10.

Target	Process	SL π	$\kappa_{1}^{2}=0.1$	0.15	0.2	0.25	0.3	0.4	0.5	0.6	0.8	1.0
C	${ }^{3} P-{ }^{3} P$	${ }_{4}^{4} S^{0}$	1.989	2.246	2.263	2.182	2.063	1.804	1.570	1.373	1.078	0.877
			(2.462)	(3.005)	(3.096)	(2.950)	(2.735)	(2.215)	(1.754)	(1.392)	(0.914)	(0.658)
		${ }^{2} p^{0}$	10.623	6.429	4.157	3.001	2.429	1.829	1.496	1.275	0.996	0.829
			(3.898)	(3.747)	(3.344)	(2.804)	(2.364)	(1.681)	(1.208)	(0.884)	(0.516)	(0.344)
		${ }^{2} D^{0}$	8.564	5.257	4.258	3.703	3.317	2.779	2.407	2.129	1.744	1.493
			(4.163)	(4.169)	(3.970)	(3.629)	(3.240)	(2.501)	(1.916)	(1.488)	(0.965)	(0.703)
	${ }^{1} D-{ }^{1} D$	${ }^{2} P^{0}$	0.644	2.413	2.883				2.406	2.212	1.896	1.658
			(0.893)	(2.215)	(2.858)	(3.060)	(2.994)	(2.598)	(2.192)	(1.854)	(1.397)	(1.132)
		${ }^{2} D^{0}$	0.350	1.831	3.100	3.619	3.788	3.722	3.492	3.244	2.814	2.448
			(0.404)	(1.393)	(3.194)	(4.064)	(4.297)	(3.907)	(3.253)	(2.642)	(0.803)	(1.355)
	${ }^{1} S-{ }^{1} S$	${ }^{2} P^{0}$			0.026	3.143	5.852	8.684	9.727	9.972	9.540	8.754
					(0.028)	(3.321)	(6.364)	(9.124)	(9.693)	(9.367)	(8.197)	(7.146)
0	${ }^{3} P-{ }^{3} P$	${ }^{2} P^{0}$	$\begin{gathered} 9.209 \\ (1.017) \end{gathered}$	4.463	2.727	2.103	1.778	1.336	1.108	0.962	0.774	0.655
				(1.372)	(1.485)	(1.530)	(1.523)	(1.407)	(1.254)	(1.096)	(1.830)	(0.619)
	${ }^{1} D-{ }^{1} D$	${ }^{2} P^{0}$		0.104	0.298	0.566	0.696	0.732	0.746	0.735	0.693	0.653
				(0.115)	(0.050)	(0.234)	(0.431)	(0.697)	(0.800)	(0.808)	(0.725)	(0.640)
	${ }^{1} S-{ }^{1} S$	${ }^{2} P^{0}$						2.928	5.119	6.045	6.405	6.143
								(0.692)	(1.643)	(2.393)	(3.244)	(3.663)
N	${ }^{4} S-{ }^{4} S$	${ }^{3} P^{e}$	$\begin{gathered} 25.696 \\ (5.349) \end{gathered}$		8.279		5.119	4.110	3.576	3.206	2.693	2.344
					(6.648)		(5.373)	(4.319)	(3.540)	(2.956)	(2.146)	(1.654)
	${ }^{2} D-{ }^{2} D$	${ }_{3} P^{e}$					1.250	1.513	1.526	1.464	1.293	1.136
							(0.965)	(1.607)	(1.696)	(1.581)	(1.237)	(0.956)
		${ }_{1} D^{e}$					1.529	1.790	1.739	1.596	1.285	1.033
							(1.596)	(2.248)	(2.174)	(1.899)	(1.316)	(0.893)
	${ }^{2} P-{ }^{2} P$	${ }_{3} P^{e}$					0.244	1.073	1.536	1.760	1.874	1.812
							(...)	(0.421)	(1.258)	(1.675)	(1.835)	(1.708)
		${ }^{1} D^{e}$					0.131	0.644	0.949	1.094	1.155	1.101
							(...)	(0.261)	(0.786)	(1.035)	(1.100)	(0.998)

influence on the positions of the autoionized levels of oxygen, as reported in Rudd and Smith, ${ }^{11}$ and on the cross sections presented in Ref. 8. In Table II, we list those values of the conserved quantum numbers which are affected by the ϕ problem.
In Tables III and IV we present the partial-wave contributions to the excitation and elastic cross sections, respectively, as computed with the fully antisymmetrized ϕ, and compare them with the results of Ref. 10, which are given in parentheses. The general feature of these results is that at lower impact energies the new ϕ produces larger cross sections than the partly antisymmetric ϕ, while at the higher energies the new results are lower. In this regard the new results are in no better agreement with the experimental total cross sections for electrons on either oxygen or nitrogen. Of course the effects of excited configurations which have been neglected here, may well have a significant influence. We note that the relative phases of some of the coefficients of fractional parentage used in Refs. (10). (14) and Sobel' man ${ }^{18}$ are incorrect due to incorrect use of Eq. (19) in Racah ${ }^{19}$.
In Table V we present the results of the two partial waves in electron- ${ }^{+}$scattering which are affected by the antisymmetrization problem. For autoionized ${ }^{3}$ pe states we see that the new ϕ results are consistently higher than those of Rudd and Smith by about 0.1 ev . However, one notable feature of the new results is that we have been able to locate the low-lying ${ }^{2} D_{n p}$ resonances found by experiment, as well as to identify the
very narrow f series. For autoionized ${ }^{1} D^{e}$ states we see that the new ϕ has very little affect at all. Indeed, since the theoretical results of Rudd and Smith were obtained on a CDC-6600, while the present results were computed on an IBM System $360 / 65$, the difference due to ϕ is indeed slight. A new feature of the results presented here is

TABLE V. Positions of autoionized states in atomic oxygen.

LS π	Assignment	n	old ϕ	ϕ	Experiment
1,1,even	${ }^{2} P n p$	3	15.768	16.0174	15.77
		4	17.305	17.4069	17.31
		5	17.849	17.9103	
		6	18.121	18.2167	
		7	18.278	18.401	
	${ }^{2}$ Dnp	3		14.461	14.16
		4		15.729	15.62
		5	16.121	16.204	16.22
		6	16.312	16.4818	
		7	16.507		
	${ }^{2}$ Dmf	4		16.087	
		5			
2,0,even	${ }^{2} P n p$	4	17.387	17.403	
		5	17.908	17.903	
		6	18.135	18.159	
		7	18.285		
		8	18.366		
	${ }^{2} P n f$	4		17.786	
		5		18.094	
		6		18.255	
		7		18.380	

that we have been able to isolate several members of the ${ }^{2} P h f$ series.
In conclusion we note that the numerical results presented in this paper are based on a formalism which largely neglects polarization of the target by the impinging electron. To account for such polarization, we could include excited configurations süch as $1 s^{2} 2 s 2 p q+1$ and $1 s^{2} 2 s^{2} 2 p q-13 d$, etc. as in SM, or we could take the dipole distortion of the atom produced by the incident electron into account by using the method of polarized orbitals as used by Henry. ${ }^{20}$ Calculations based on the SM formalism are under way, and comparison will be made against the results of the polarized orbital method. Since no rigorous criteria exist for complex targets for selecting one approximation scheme over another, one can only
compare theoretical predictions with known experimental results to determine which features of the model are important before computing physical processes which have not been investigated experimentally.
Note added in proof: Henry et al. (unpublished) have carried out the calculations in Table IV to lower energies and have analyzed the low-energy peaks predicted here as "shape" resonances.

ACKNOWLEDGMENT

The authors are indebted to Professor M. J. Seaton for discussions and a helpful exchange of correspondence.
*Work supported by the National Science Foundation, the U. K. Science Research Council and by the Air Force Weapons Laboratory, Kirtland AFB, New Mexico, under contract No. AF29(601)-68-C-0052 with Quantum Systems, Inc., Albuquerque, New Mexico.
${ }^{1}$ P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
${ }^{2}$ I. C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc. 53, 654 (1957).
${ }^{3}$ P. G. Burke, D. D. McVicar, and K. Smith, Proc. Phys. Soc. (London) 83, 397 (1964).
${ }^{4}$ R. J. Damburg and S. Geltman, Phys. Rev. Letters 20, 485 (1968).
${ }^{5}$ H. E. Saraph, M. J. Seaton, and J. Shemming, Proc. Phys. Soc. (London) 89, 27 (1966).
${ }^{6}$ S. J. Czyzak and T. K. Krueger, Proc. Phys. Soc. (London) 90, 623 (1967).
${ }^{7}$ C. Froese, Canad. J. Phys. 41, 1895 (1963).
${ }^{8}$ K. Smith, R. J. W. Henry and P. G. Burke, Phys. Rev. 147, 21 (1966).
${ }^{9}$ C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131,

1177 (1963).
${ }^{10}$ K. Smith, R. J. W. Henry and P. G. Burke, Phys. Rev. 157, 51 (1967).
${ }^{11}$ M. E. Rudd and K. Smith, Phys. Rev. 169, 79 (1968).
${ }^{12}$ K. Smith and L. A. Morgan, Phys. Rev. 165, 110 (1968).
${ }^{13}$ A. deShalit and I. Talmi, Nuclear Shell Theory
(Academic Press Inc., New York 1963), p. 470.
${ }^{14} \mathrm{~J}$. Shemming, Ph.D. thesis, University of London, 1965, (unpublished).
${ }^{15}$ L. A. Morgan, Ph. D. thesis, University of London, 1968, (unpublished).
${ }^{16}$ U. Fano, Phys. Rev. 140, A67 (1965).
${ }^{17}$ P. G. Burke and D. D. McVicar, Proc. Phys. Soc. (London) 86, 989 (1965).
${ }^{18}$ I. I. Sobel'man, Introduction to the Theory of Complex Spectra, (Moscow 1963), Translated by the Foreign Technology Division, Wright-Patterson AFB, 1967.
${ }^{19}$ G. Racah, Phys. Rev. 63, 367 (1943).
${ }^{20}$ R. J. W. Henry, Phys. Rev. 162, 56 (1967).
: PHOTOIONIZATION OF ATOMS WITH CONFIGURATIONS

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{\prime \prime}
$$

M. Conneely, L. Lipskiy, F. Smith

(Royal Holloway College, Englefield Green, Egham, Surrey, England).
The abundance of some atoms in the second row of the periodic table ($\mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}$) in the sun is comparatively large, being approximately one tenth that of C, N, or O but ten times that of Fe [1]. Therefore, it is expected that their contributions to the solar spectrum will be significant. In particular, the photoabsorption cross sections for Al and Si are large

Fig. 1. Photoionization cross section σ of $(3 p)^{2}{ }^{3} P$ silicon. 1- expcrimental; 2 - this work; 3 - quantum defect.
enough to virtually obliterate light originating in the photosphere for certain parts of the spectrum. Recently, shock-tube experiments have been performed to determine these cross sections [2]. General interest in the inert gases has caused several experimental groups to measure the 'photoabsorption of argon [3,4]. It is therefore useful to have theoretical results avai-

Fig. 2. Photoionization cross section σ of $(3 p)^{21} S$ silicon. 1-this work; 2 - quantum defect.
lable for the ($3 p)^{q}$ elements. The quantum defect method [5] has been used extensively to calculate cross sections, but it becomes unreliable. when applied to the $3 p$-shell. This is due to the fact that the quantum defects of the singly excited states of these (and heavier) atoms are not smooth functions of n, the principle quantum number, and therefore it is difficult to extrapolate to above threshold.

The procedure followed here, in calculating the photoionization cross sections, is described in Henry and Lipsky [6]. Briefly, we calculate the wave functions for an electron scattering of a particular ion, assuming $L-S$
coupling, using the close coupling code of Smith, Henry and Burke [7]. These functions are then used to calculate the dipole matrix elements between states of an outgoing electron in a particular channel and a state of the ini-

Fig. 3. Photoionization cross section σ of $(3 p)^{2}{ }^{1} D$ silicon.

$$
1 \text { - experimental; } 2 \text { - this work; } 3 \text {-guantum defect. }
$$

tial atom. The analytic Hartree-Fock functions of Clementi [8] are used to represent the wave functions of the atoms and residual ions.

Some calculations have already been completed, and the results for silicon and argon are reproduced in fig. 1-4, together with available experi-

Fig. 4. Photoionization cross section σ of argon.

- 1 - experiment; 2 - this work; 3-3s3p ${ }^{5}$ edge.
mental data. The experimental data as well as the quantum defect curves for silicon are taken from Rich [2]. The argon data was given to the authors by Ederer et al. [4], in advance of publication. The dipole length calculations agrec fairly well with experiment for energies below the excited state thresholds, whereas the dipole velocity approximation gives values $1 / 2$ to $2 / 3$ that of experiment.

REFERENCES

1. L. Goldberg, E. Q. Müller, L. H. Aller, Astrop. J. Suppl., 5, 1 (19t0).
2. J. C. Rich, Astrop. J. (to be published).
3. J. A. R. S a m son, G. C. A. Technical Report, No 63-N (1964).
4. D. Ederer, K. Codilig, R. Madden (private communication).
5. Burgess, Seaton, Rev. Mod. Phys. (1960).
6. R. J. ${ }^{\text {W. Henry, L. Lipsky, Phys. Rev. (1967). }}$
7. Kenneth Smith, R.J. W. Henry, P. G. Burke, Phys: Rev., 147, 21 (1966).
8. E. Clementi. Table of atomic functions, I. B. M. J. Res. Develop., 9, 2 (1905).
