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Variable-range hopping~VRH! conductance fluctuations in the gate-voltage characteristics of mesoscopic
gallium arsenide and silicon transistors are analyzed by means of their full distribution functions~DF’s!. The
forms of the DF predicted by the theory of Raikh and Ruzin have been verified under controlled conditions for
both the long, narrow wire and the short, wide channel geometries. The variation of the mean square fluctua-
tion size with temperature in wires fabricated from both materials is found to be described quantitatively by
Lee’s model of VRH along a one-dimensional chain. Armed with this quantitative validation of the VRH
model, the DF method is applied to the problem of magnetoconductance in the insulating regime. Here a
nonmonotonic variation of the magnetoconductance is observed in silicon metal-oxide-semiconductor field-
effect transistors whose sign at low magnetic fields is dependent on the channel geometry. The origin of this
effect is discussed within the framework of the interference model of VRH magnetoconductance in terms of a
narrowing of the DF in a magnetic field.@S0163-1829~96!10227-7#

I. INTRODUCTION

Mesoscopic conductance fluctuations in the insulating re-
gime of small, disordered transistors were first observed by
Pepper1 in gallium arsenide metal-semiconductor field-effect
transistors~MESFET’s! and then studied in detail in silicon
metal-oxide-semiconductor field-effect transistors~MOS-
FET’s! by Fowler, Webb, and co-workers2 in the early
1980’s. Extremely strong random fluctuations, spanning sev-
eral orders of magnitude, were observed at low temperatures
in the conductances of narrow-channel devices as the gate
voltage was varied. At first the origin of this effect was not
clear. Azbel3 suggested that resonant tunneling from source
to drain might produce such structure as the chemical poten-
tial was swept through transmission resonances of the eigen-
states in the random impurity potential. However, it became
clear that this zero-temperature mechanism could not make a
significant contribution to the conductance in the relatively
long devices of this experiment. Instead, the most satisfac-
tory explanation was provided by Lee4 who proposed a
model in which electrons move by variable-range hopping
~VRH! along a one-dimensional~1D! chain. A number of
elementary hopping resistances, each depending exponen-
tially on the separation and energy difference between sites,
are added in series to give the overall resistance of the chain.
In this model it is assumed that, because of the extremely
broad distribution of the elementary resistors, the total chain

resistance can be well approximated by that of the single
most resistive hop. The fluctuations then arise as a conse-
quence of switching between the pairs of localized sites re-
sponsible for the critical hop as each elementary resistance
reacts differently to a change in the chemical potential. These
fluctuations are therefore of ‘‘geometrical’’ origin, arising
from the random positioning of localized sites in energy and
space, as distinct from the ‘‘quantum’’ nature of the tunnel-
ing mechanism, which would be strongly affected, for ex-
ample, by an applied magnetic field. Serota, Kalia, and Lee5

went on to simulate the ensemble distribution of the total
chain resistanceR and its dependence on the temperatureT
and the sample lengthL. In their ensemble, the random im-
purities are distributed uniformly in energy and position
along the chain. In experiments a single device is generally
used, so that the impurity configuration is fixed, and fluctua-
tions are observed as a function of some variable external
parameter such as the chemical potential. An ergodicity hy-
pothesis is then invoked to the effect that the same ensemble
is sampled in both cases, something that has been verified
experimentally by Orlov, Savchenko, and Koslov.6 Using the
natural logarithm of the resistance, the authors of Ref. 5 ob-
tained for the mean and standard deviation:

^ lnR&;S T0T D 1/2F lnS 2Lj D G1/2, ~1!
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s[k~ lnR2^ lnR&!2l1/2;S T0T D 1/2F lnS 2Lj D G21/2

, ~2!

wherej is the localization radius andT0 is the characteristic
temperature for Mott VRH:T051/kBrj (r is the density of
states at the Fermi energy!. It can be seen that the sizes of
the fluctuations decreases extremely slowly with length, a
result characteristic of 1D, which was pointed out by
Kurkijarvi.7 The explanation is simply that exceptionally
large resistance elements, even though they may be statisti-
cally rare, dominate the overall resistance since they cannot
be bypassed in this geometry. The averaging assumed in the
derivation of Mott’s hopping law for 1D does not occur and
the total resistance takes on the activated form of the largest
individual element.

A detailed analytical treatment of this model was under-
taken by Raikh and Ruzin8,9who divided the problem up into
a number of length regimes. Their theory introduces the con-
cept of the ‘‘optimal break,’’ the type of gap between local-
ized states~on an energy versus position plot!, which is most
likely to determine the overall resistance. The optimal shape
of such a state-free region has maximal resistance for the
smallest area and turns out to be a rhombus. A sufficiently
long chain will have many such breaks in series to give a
most probable resistance,

Rprob5R0

L

j S T0T D 1/2expS T02TD , ~3!

whereR0 is the prefactor in the Mott VRH formula. This
formula breaks down once the expected number of optimal
breaks in the chain becomes small, of order one. It is valid
only whenn@1, wheren is a parameter defined implicitly
by

n5
2T0
T

lnS Ln1/2

j D . ~4!

For n,1, which corresponds to the normal experimental
situation for devices with lengths of a few micrometers, the
resistance of the chain is determined by a few suboptimal
breaks of which the expected number occurring in a chain of
lengthL is approximately one. The average resistance, or its
logarithmQ, then follows a more complicated temperature
law of the form

Q[ lnS RR0
D5

n1/2T0
T

'H 2T0T lnFLj S T0T D 1/2ln1/2S Lj D G J 1/2.
~5!

The probability distribution function~DF! for the quantity
Q is best written in terms ofn and a new parameterD. For
n,1 it is given by the following integral:

f ~D!5
eD

p E
0

`

dxexpS 2xn1/2cos
pn1/2

2 D
3cosS xeD2xn1/2sin

pn1/2

2 D , ~6!

D[Q2
n1/2T0
T

. ~7!

f (D) is a function with a peak close toD50 and width
determined byn. In principle it can be written in terms of
j and r using Eqs.~4!–~7!. There is a simple relationship
betweenn and the variance ofQ:

^Q2&2^Q&25
p2

6 S 1n 21D . ~8!

This theory is equally applicable10 to the case of the trans-
verse conductanceG of a thin film or barrier. Instead of a
sum of series resistances, the required quantity is the sum of
parallel conductances representing conducting chains of hops
traversing the film. Whereas in 1D the total resistance is
determined by the blocking effect of the critical hop, here the
total conductance is dominated by an optimal ‘‘puncture:’’
an uncommonly high-conductance hopping chain through
the barrier, which effectively shorts out all other current
paths. On a logarithmic scale, since lnR52lnG, the DF’s for
the two geometries are simply reflections of each other. The
variation of the width and peak position withj and r is
different, however, in the two cases. Figure 1 shows sche-
matics of the two geometries, the equivalent resistor net-
works, and DF’s from Eq.~6! characteristic of each case.
Here, as throughout the remainder of the paper, the abscissa
is lnG. In 1D the importance of blocking resistors adds
weight to the contribution of extremely high resistances and
produces a long tail out to low values of lnG. For a short 2D
barrier the DF has the opposite asymmetry with a tail out to
high conductances, reflecting the effect of punctures in short-
ing out less conductive paths. In fact the form of the DF is

FIG. 1. Device schematics and theoretical DF’s for two values
of the parametern. ~a! The 2D device behaves like a sum of par-
allel conductors and its DF has a tail out to high lnG. ~b! The 1D
device behaves like a sum of series resistances with a tail on the DF
towards low lnG.
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universal, the theory requiring only that the elementary quan-
tities to be summed are independent and come from an ex-
ponentially wide distribution. The microscopic details of the
conduction mechanism enter only into the dependence ofn
andD on external parameters such as the temperature and
magnetic field. The independence requirement in the case of
the barrier means that conductive chains must be sufficiently
far apart, which should be satisfied for a barrier with a suf-
ficiently large aspect ratioW/L. We use the description
‘‘short 2D’’ for this short, wide-channel geometry to distin-
guish it from the square 2D geometry in which conduction is
via an interconnected percolation network.

While the above theory is that best suited to the hopping
regime, numerous authors11 have examined the problem of
the zero-temperatureconductance distribution of disordered
wires and they find that, for a sufficiently long wire, the DF
is normal in lnG. Some authors12 argue that this is also the
case for the insulating regime in higher dimensions. To ob-
tain a finite-temperature result, it is necessary to introduce a
temperature-dependent coherence length. Kramer and
co-workers13,14 have used the Mott hopping length for this
purpose and performed an average over localization lengths
to calculate the size of the fluctuations in lnG. ~The Lee
model does not allow for a distribution of localization
lengths.! With the caveat that it is difficult to rigorously jus-
tify the averaging method, they find that the size of the fluc-
tuations varies with temperature ind dimensions as

s;~T0 /T!1/2~d11!. ~9!

For the cased51, in which we are mostly interested, this
yieldss;T21/4, in contradiction with Eq.~2!, which predicts
s;T21/2. An intermediate model15 describes fluctuations
that are partly geometrical and partly quantum coherent in
nature.

The experimental results presented below are able to dis-
tinguish between the two theories, providing good quantita-
tive agreement with the geometrical, 1D hopping chain
theory. Section III introduces the results on 1D devices in
both silicon and gallium arsenide and analyzes the tempera-
ture dependence of the conductance and its fluctuations in
terms of these theories. Section IV exhibits some experimen-
tal DF’s, which are also well described by the theory, both
for the 1D and for short 2D geometries with their opposite
characteristic asymmetric distributions. It is shown that fits
to the full DF are more reliable in studying the fluctuation
amplitude than just the standard deviation, which is prone to
large statistical errors due to the long tails. Finally, Sec. V
examines the effect of an applied magnetic field and suggests
interesting possibilities for investigating the intricacies of
hopping magnetoconductivity by means of experimental
DF’s.

II. DEVICES AND EXPERIMENTAL METHOD

A number of different devices, both Si and GaAs and in
both the 1D and short 2D geometries, were used for this
study. The Si MOSFET’s were small-area complementary
metal-oxide semiconductor devices with an oxide thickness
of 210 Å and self-aligned Ohmic contacts. The two-
dimensional electron gas~2DEG! is formed by inversion in

the very lightly dopedp-type Si adjacent to the oxide barrier.
Lithographic dimensions for the 1D devices ranged from
0.5–2mm wide by 5–20mm long for the 1D wires and 100
mm wide by 1–2mm long for the short 2D geometry. Here
the designation of lengthL always refers to the distance
between source and drain. The electronically active dimen-
sions of the channel were estimated from measurements of
samples of varying size to be about 0.5mm smaller than
these nominal values.

The GaAs devices were fabricated from a simple
d-doped layer of Si donors with a Hall carrier concentration
of 431011 cm22. Channels were defined by the application
of a negative bias to patterned surface gates. The split gate
method16 was used to define 1D wires, while narrow strip
gates were used to create short 2D barriers. Beyond the chan-
nel definition voltage, increasing the bias serves to shift the
chemical potential in the active region of the device without
greatly changing the channel dimensions. Because of the
spreading out of the electric field between the edges of the
patterned gate and thed-layer situated 0.3mm below the
surface, the dimensions of the electrically active regions dif-
fer significantly from the lithographic dimensions. For ex-
ample, a split gate with gap dimensions 1mm square should
produce a narrow channel approximately 0.2mm wide by 1.8
mm long. This estimate is based on the observation that split
gate devices narrower than 0.8mm did not conduct. Strip
gates lithographically 30mm wide by 0.5–2mm long were
used to produce short 2D barriers whose effective length was
not precisely known because of this 0.3-mm gate-2DEG
separation. Aside from the ill-defined channel dimensions, a
further problem with these devices was the high series resis-
tance resulting from the partially depleted 2DEG region near
the gates. For the short 2D devices it was estimated that this
series resistance, which varies with gate voltage, would be
sufficient to truncate some of the high-conductance fluctua-
tions. Our measurements were taken after brief illumination
with light from a red light-emitting diode, using the persis-
tent photoconductivity effect to reduce the series resistance
from the sample leads.

Two-terminal ac resistance measurements were taken in
dilution refrigerators down to temperatures of 50 mK. For
the Si devices, a low-frequency~8–18 Hz! excitation voltage
of 5 or 10mV was used, depending on the temperature, and
saturation of temperature-dependent quantities was observed
below about 70 mK. The temperature dependence of, for
example, the average conductance flattens out quite abruptly
below this temperature. Measurements have been carried out
using several different experimental setups and it is our ex-
perience that the saturation temperature increases monotoni-
cally with the observed noise level. For the GaAs devices it
was necessary to use a higher excitation voltage to obtain a
sufficiently good signal-to-noise ratio and saturation of the
average conductance and the fluctuation amplitude was evi-
dent below 200 mK. Because of this and the above-
mentioned problems most of the data presented here are from
Si MOSFET’s. However, all of the results in Secs. III and IV
for Si have been reproduced in the GaAs devices, with the
same quantitative agreement but somewhat greater uncer-
tainties.
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III. TEMPERATURE DEPENDENCE OF THE MEAN
CONDUCTANCE AND FLUCTUATION AMPLITUDE

The first part of the experiment is to determine the Mott
parameterT0 from an analysis of the temperature depen-
dence of the mean value of the conductance. This is for
comparison with the value ofT0 needed to explain the size
of the fluctuations. Although we expect VRH to be the con-
duction mechanism, in our mesoscopic device the averaging
implicit in Mott’s law is not taking place. We therefore first
take the logarithm of the measured conductance and then
perform a numerical average of the data points over a suit-
able range of gate voltage to obtain the quantity^ lnG&
(52^ lnR&) for insertion in Eq.~1!. It is important to reach a
suitable compromise between choosing a gate-voltage inter-
val sufficiently small thatT0 does not vary significantly over
its length yet sufficiently wide to meet the requirements of
statistical accuracy. More will be said on this matter in Sec.
III on DF’s where the choice is much more critical. How-
ever, thanks to the large number of fluctuations observed at
low temperatures, these requirements are easily met.

Experimental data for a long, narrow 19.4 by 0.6mm Si
MOSFET channel are presented in Fig. 2, where a section of
the gate voltage characteristic has been split into seven inter-
vals for averaging. It is not possible to distinguish between
activation laws with inverse temperature exponents of 1/3 ,
1/2, or even 1 from the temperature range we have available.
However, there does appear to be a change of gradient in the
vicinity of 0.3 K. This could be indicative of a change from
a 1D to a 2D percolation path as the temperature is raised
and the hopping distance becomes shorter than the sample
width. Indeed, if the values ofT0 above 0.3 K are extracted
using the 2D Mott formula with exponent 1/3, and values
below 0.3 K using the 1D formula with exponent 1/2, equat-
ing the hopping lengths in the two formulas yields a cross-
over temperature of order 0.5 K, roughly consistent with the
position of the observed change of gradient. If we introduce
the known sample widthW, this interpretation allowsj and
r to be obtained independently. These work out atj;0.1
mm andr;0.3 times the density of states for a 2D subband
in silicon. Both these values are physically reasonable and
consistent with the conduction mechanism being VRH and
1D in nature below 0.3 K. We therefore make this assump-
tion and restrict ourselves to the sub-0.3-K range in our sub-
sequent DF analysis. Note that the large value ofj shows
that we are never very deep in the insulating regime.

The next task is to analyze the temperature dependence of
the fluctuation amplitude. We take the same gate voltage
intervals as before and this time calculate the standard devia-
tion s of lnG. Here a log-log plot ofs againstT does not
yield a straight line@hollow circles, Fig. 5~c!#. The slope
varies from approximately20.5 to21.5 depending on the
temperature. This upper power is much greater than can be
accounted for by any of the theories. However, the standard
deviation as calculated directly from the data points is domi-
nated by the contribution from the low-conductance tail of
the distribution, where noise and statistical uncertainty is
greatest. As a result, we postpone further comment until the
next section where a full distribution function analysis can
resolve the issue. The problem is not so apparent in a gallium
arsenide split gate device estimated as being 0.2mm wide by

1.8 mm long. Here the data points~of which there are only
five ranging from 0.2 to 0.5 K! best fit the law
s;0.4720.660.1. This supports the model of Lee and Raikh
and Ruzin expressed in Eq.~2! at the expense of the scaling
approach in Eq.~9!, which would predict a power of21/4.
Moreover, estimatingj;0.1mm from the measured value of
T051.6 K and the assumption that the value ofr is roughly
the 2D subband density of states multiplied by the channel
width gives the length-dependent prefactor in Eq.~2! as
@ ln(2L/j)#21/250.5, very close to the observed prefactor of
0.4. The exact numerical coefficient in Eq.~2! is not given
by the authors, but our data indicate that it should be close to
unity. Thus the available gallium arsenide data appear to be
perfectly described by the VRH chain model. For silicon,
once the overall shape of the distribution is taken into ac-
count, both the power and the numerical coefficient are
found to be perfectly in line with the calculations5,8 based on

FIG. 2. ~a! Part of the experimental characteristic on a logarith-
mic conductance scale from a 19.430.6mm 1D Si MOSFET. Dot-
ted lines demarcate gate-voltage intervals used for averaging.~b!
Fits of these data to Eq.~1! averaged over the marked gate-voltage
intervals together with the values ofT0 extracted below 0.3 K.
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the 1D VRH model. This will be the conclusion of the fol-
lowing section.

IV. EXPERIMENTAL DISTRIBUTION FUNCTIONS:
GEOMETRY AND TEMPERATURE DEPENDENCE

An analysis relying solely on the first two moments of the
distribution of lnG gives only limited information and,
where the distribution has long tails as in this case, may give
unrepresentative or erroneous results. The aim of this paper
is to show that analysis of the full DF from experimental
fluctuations in mesoscopic devices can be an important tool
for investigating hopping in the mesoscopic regime and may
shed light on the processes underlying the macroscopic mag-
netoconductivity. To start with, we describe our method of
obtaining an experimental DF histogram.

The raw data consist of a set of points representing the
fluctuations in conductance as a function of some external
parameter, usually a gate voltageVg . It is important to es-
tablish that there is no zero offset error since the first step is
to take the logarithm of the conductance. Generating the de-
sired histogram is simply a matter of binning the data points
into suitable classes ofVg , whose width is chosen as a com-
promise between acceptable resolution and statistical error.
The statistical uncertainty is governed not by the total num-
ber of data points but by the number of conductance fluctua-
tions in the data set. If the number of points covering each
peak in the characteristic in excessively high, the data may
be thinned out before binning by retaining only everynth
point. Care needs to be taken in identifying a ‘‘noise floor’’
in the conductance measurement, below which point the data
are meaningless. Such unreliable data cannot be included in
the histograms since taking the logarithm magnifies the noise
at low conductances and might produce an artificially long
tail in lnG. Aside from these considerations, the critical de-
cision is in the gate voltage range of the data set used to
generate the histogram. This cannot be made arbitrarily wide
since it is the nature of the devices thatr andj vary slowly
with Vg as the chemical potential sweeps through the local-
ized states at the edge of the band~whether it be conduction
or impurity band in nature!. If this variation causes the mean
or background conductance level to change significantly over
the chosen interval ofVg , the DF will be smeared out. This
was a problem for Orlovet al.17 who studied the DF of short
2D channels down to 1.2 K in GaAs devices similar to our
own. To obtain a sufficient number of fluctuations they had
to subtract a smooth background from lnG, something that
cannot be strictly justified and which does not fully solve the
problem. Our gate voltage characteristics, measured at much
lower temperatures, have the advantage of much denser fluc-
tuations and it is possible to obtain histograms of a satisfac-
tory quality without any background subtraction. As a rough
indication, aVg range covering 15 or more peaks yields a
good histogram provided that the background conductance
does not vary by more than about 10–20% of the total dis-
tribution width.

An example of DF’s calculated from the experimental
gate-voltage characteristic of a 0.2mm wide by 1.8mm long
GaAs device is reproduced in Fig. 3 from Ref. 18. The char-
acteristic has been split into five intervals so that the varia-
tion of the DF as the channel is pinched off can be seen. The

decreasing conductance and increasing relative size of the
fluctuations translates simply into a distribution that shifts to
lower lnG and broadens so that it is fit by a theoretical DF
from Eq. ~6! with a smaller value ofn. The peak position
shifts quite markedly between adjacent intervals, suggesting
that the choice of interval size is close to its maximum rea-
sonable limit. Unusually, these data show a nonmonotonic
variation of the peak position with gate voltage. The effect is
specific to this device and its cause is unclear. A final impor-
tant point is that the experimental limitations on the smallest
conductances that can be measured above the noise level
severely restrict the usable gate-voltage range. Thus a sig-
nificant portion of the last DF in the figure is already lost in
the noise. At the other end of the range, the conductance
does not have to get very high before the fluctuations weaken
and the assumption of an exponentially broad distribution
breaks down: it is for this reason that the first DF does not
have a significant 1D tail. Characteristics for DF analysis
therefore have to lie within this gate-voltage window, imply-
ing that it is only possible to study a narrow range of values
of the parameterT0 .

To fit the experimental DF’s to Eq.~6!, the integral is
calculated on a mainframe computer for all values ofn with
a resolution of 0.01. These results are stored and used to

FIG. 3. Conductance fluctuations from a 1.830.2mm 1D GaAs
device and experimental DF’s obtained from five adjacent gate-
voltage intervals spanning the characteristic. At low gate voltages,
the distribution is no longer exponentially wide while at high gate
voltages the conductance becomes too small to measure. In between
is a region where good fits to the theoretical 1D DF~solid curves!
can be obtained.
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perform a two-parameter least-squares fit to the experimental
histogram by shifting the computed curve along the lnG axis
until the optimum fit to the peak positionsD0 ~which is more
precisely the difference betweenD and lnG) is found. This is
repeated for each value ofn to find the best global least-
squares fit ton andD0 .

The results confirm the Raikh and Ruzin theory for the
form of the DF under controlled 1D conditions. Other au-
thors have previously examined the DF in the short 2D ge-
ometry, notable Orlovet al.17 in n-type GaAs and Popovich
et al.19 who claim to have observed a weak asymmetry in a
large-area, wide Si MOSFET. Yakimov, Stepina, and
Dvurechenskii20 observed a crossover from the 1D to short
2D forms for conduction across thina-Si films. The thinnest
films apparently showed 1D behavior, which is surprising
given that here the 2D DF theory should be most applicable.
Interestingly, these authors obtain their histograms without
relying on the ergodicity hypothesis by measuring a large
number of macroscopically identical devices. In this paper
we find quantitatively good fits to both distributions under
controlled conditions using differently shaped devices on the
same chip.

Figure 4 shows three histograms obtained from three
MOSFET’s fabricated on the same chip. The middle graph
shows a reasonable 1D DF, though the situation is not ideal

owing to the rather large channel width and almost metallic
conductances. The topmost graph shows good agreement be-
tween the short 2D theory and experimental data from a de-
vice 2mm long by 100mm wide. However, good agreement
for this short 2D case is not as ubiquitous in our data as it is
for the 1D wires. Frequently the DF’s show no clear asym-
metric tail at high conductances and are well represented by
a Gaussian curve, as in the lower graph. The reasons for this
have not been resolved but some observations may provide
hints as to possible explanations. The simplest explanation
would be to claim that the devices possessed macroscopic
inhomogeneities that produced fixed high-current paths and
therefore destroyed the desired wide-channeled geometry.
However, it is not true that some devices produce good 2D
DF’s and others are somehow imperfect; it is rather that the
2D asymmetric distribution is only seen in certain regimes.
In particular, the asymmetric distribution is observed only in
the most insulating measurable gate-voltage range when the
distribution is very wide. The narrow distributions occurring
in the more weakly insulating part of the characteristic are
invariably symmetric although the converse is not true:
sometimes the most resistive part of the characteristic still
yields symmetric distributions. Inexplicably, a strong mag-
netic field of the order of 5–10 T helps to restore the asym-
metric distribution in these cases. This has been observed in
both silicon and GaAs devices. It is perhaps possible that
there are other mechanisms at work in the tail of the distri-
bution where the conductance is generally rather high to be
truly in the VRH regime. Some such mechanism—perhaps
related to resonant tunneling or the increased effect of cor-
relations between hopping electrons at these higher
conductances—could be responsible for truncating the high-
conductance tail in many of our measurements. This question
is still unresolved, although we can be certain that the effect
is not due to the addition of any series contact resistance
since subtracting even the largest plausible values for such a
resistance before calculating lnG has little effect on the
shape of the distributions.

In order to reach the final result of this section, we reex-
amine the temperature dependence of the fluctuation size us-
ing a distribution function analysis. Previously, for a given
interval of the gate-voltage characteristic, we simply calcu-
lated the standard deviations of the discrete data points.
Now we take the value ofn for the theoretical curve that best
fits the DF histogram obtained from the same part of the
characteristic and use it to obtain the standard deviation by
means of Eq.~8!. Comparison between the two methods sug-
gests that the former gives good fits to the tail of the distri-
bution, where the experimental histograms are prone to large
statistical errors, at the expense of the bulk of the distribution
while the latter gives a far superior overall fit. Reanalysis of
data from the 19.4-mm-long Si MOSFET shows that the dis-
crepancy, while small for the mean log conductance, can be
as much as a factor of 2 in the standard deviation. Figure 5~a!
shows the full set of DF’s and their fits to the 1D theory. On
the accompanying temperature dependence plots 5~b! and
5~c!, hollow circles represent simple calculations of the mean
and standard deviation directly from the data points while
full circles are the equivalent quantities calculated from the
best fit to the entire DF. Either method results in a similar
estimate of the Mott parameter ofT056–8 K @Fig. 5~b!#. For

FIG. 4. Distribution functions obtained from three Si MOS-
FET’s fabricated on the same chip showing the characteristic 1D
and 2D asymmetries. Lithographic channel dimensions are~length
3width!: ~a! 23100mm fit by 2D DF,~b! 532 mm fit by 1D DF,
and~c! 1.53100mm fit by a Gaussian. Inset are the regions of the
characteristic from which the histograms were obtained.
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the standard deviations, the straightforward method as we
saw above gives aT21.4 power-law dependence saturating at
low temperatures~in GaAs at higher temperatures the best
powerlaw wasT20.6). The full DF analysis, however, yields
a straight line on a log-log plot over the entire range with
a best fitting power also of20.6 @Fig. 5~c!#. This is close
to the prediction of20.5 for the 1D chain model and once
again disagrees with the result derived from scaling. In
Fig. 5~d! the fit to a forced20.5 power law to coincide with
Eq. ~1! gives a prefactor of 0.35, very close to the 0.4 ex-
pected from the values ofr andj estimated in Sec. III. So, in
both Si and GaAs devices, Lee’s 1D chain hopping chain
model gives a quantitatively accurate description of the re-
sults, but a reliable analysis requires the distribution function
method.

V. VARIATION OF THE DF WITH MAGNETIC FIELD

Having verified the applicability of both the 1D hopping
chain theory and Raikh and Ruzin’s form of the DF to our

devices, it is now possible to use the experimental histo-
grams as an additional tool with which to investigate the
magnetoconductance in the VRH regime. This field has wit-
nessed a large theoretical effort, particularly using the inter-
ference mechanism of Nguen, Spivak, and Shklovskii21 ~see
Ref. 22 and also Refs. 23–26 for more recent calculations!.
In this model the presence of scatterers between the initial
and final sites allows interference to occur between alterna-
tive possible paths within a single hop. The phase shifts in-
troduced when a perpendicular magnetic field is applied can
give rise to a positive magnetoconductance~PMC! in a mac-
roscopic 2D or 3D sample. The macroscopic conductivity is
derived from a logarithmic average over the distribution of
elementary hopping conductances, which becomes narrower
in a magnetic field. At low fields the peak of this distribution
does not shift and the relatively small PMC is a result of the
extra weight afforded to low conductances by the logarith-
mic average.21 At slightly higher fields it is possible for the
peak of the distribution to shift to higher conductances, cor-
responding to a significant increase in the localization length,
and the PMC can be exponentially large.23

Experiments27–30on 2D gallium arsenide samples widely
exhibit PMC in the VRH regime, as does the study on in-
dium oxide films.31 The interference effects are generally
smaller in silicon devices but PMC has been observed in the
2D inversion layer of MOSFET’s~Ref. 32! and also in
narrow-channeled, quasi-1D MOSFET channels.33 Our de-
vices are not macroscopic so that the precise details of the
averaging procedure needed to calculate the magnetoconduc-
tance in a 2D percolation network do not concern us. Instead,
analysis of the mesoscopic conductance fluctuations in terms
of their distribution functions can give direct insight into the
elementary distributions at the root of the interference
theory, provided that the effect of sample geometry is taken
into account. We have already seen that the geometry effect
in our samples is well described by the theory of Raikh and
Ruzin. The present section therefore proceeds by introducing
some experimental magnetoconductance data, mostly from
silicon MOSFET devices, together with a suggestion as to its
interpretation in terms of the elementary hopping distribu-
tion.

As before, the first approach is to calculate the mean
value^ lnG& from a suitable section of the gate-voltage char-
acteristic. The variation of̂ lnG& with magnetic fieldB is
obtained from data in which numerous gate-voltage sweeps
are taken at a series of fixed magnetic fields. Over the full
magnetic field range, the gross behavior is similar in GaAs
and Si for both 1D and short 2D devices. Figure 6 shows the
variation of ^ lnG& with B in Si MOSFET’s of both geom-
etries up to high fields. At temperatures of order 100 mK
there is a negative magnetoconductance~NMC! in fields up
to about 1 T by afactor of ordere followed by a larger PMC
up to fields of around 7 T. The NMC is not observed in the
GaAs devices but the same PMC is evident and, at high
fields, is undoubtedly related to the proximity to the
insulator—quantum Hall transition also observed in macro-
scopic devices made from this material.34 At higher fields
still, the conductivity rapidly freezes out. These exponen-
tially large changes in conductance must be the result of
changes in the localization length induced by the magnetic
field. At lower fields, of the order of a few tenths of a Tesla,

FIG. 5. Temperature dependence of the fluctuations from a
19.430.6 mm Si MOSFET.~a! Experimental DF’s fit by the 1D
theoretical form.~b! Fit to Eq. ~1! of the average of lnG obtained
both directly~hollow circles! and from the positionD0 of the fitted
DF’s ~filled circles!. ~c! Temperature dependence of the fluctuation
amplitudes both measured by the standard deviation of the data
points ~hollow circles! and calculated from the fits to the 1D DF’s
~filled circles!. The gradient of the latter yields aT0.65 power law.
~d! Fitting the fluctuation amplitude to aT1/2 power law yields the
prefactor 0.35.
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a smaller magnetoconductance is observed in the silicon de-
vices where this field range has been probed in detail. The
effect is interesting in that the sign of this magnetoconduc-
tance is positive in the case of a 1D wire and negative in the
case of a short 2D sample. The presence or absence of such
an effect has not yet been sufficiently investigated in our
GaAs devices. Figures 7 and 8 show the behavior of^ lnG& in
the two instances, together with DF’s and samples of the
data. In general, the time period necessary to collect all the
data for a large number of magnetic fields is too great for the
gate-voltage sweeps to remain entirely reproducible—this
was the case in Fig. 6 and all our experiments to high fields.
However, an acceptable degree of reproducibility was
achieved for the data presented in the low-field figures. The
detailed structure of the characteristic changes substantially
over this field range. The overall relative magnetoconduc-
tance is in both cases by a factor of ordere. Measurable
conductances are only obtainable with hopping lengths of the
order 0.1mm so, in this low-field range, the hopping length
r M and the magnetic length are comparable. With the ob-
served values ofT0 generally around 5 K and a measurement
temperature of just under 0.1 K the hopping length should be
several times greater than the localization length so that the
condition r M@j demanded by most of the theories is met.
For the 1D device, our estimates suggest thatr M is only
slightly greater than the channel width whilej is somewhat

smaller. We therefore believe that the hopping path is effec-
tively one dimensional while the channel is wide enough to
accommodate the cigar-shaped coherence region of the inter-
ference models.

It is not possible to demonstrate conclusively the origin of
the different signs observed in the low-field magnetoconduc-
tance for these two samples but the following explanation
appears the most attractive. According to the interference
model, the distribution of elementary hopping conductances
narrows on applying a small magnetic field. Our experimen-
tal DF’s do not directly measure this elementary distribution,
which is skewed because of the high aspect ratios of our
channel geometries. In 1D, because the overall conductance
tends to be dominated by difficult hops, the low conductance
tail in the elementary distribution is amplified in the experi-
mental DF to produce the characteristic tail out to low con-
ductances. When the elementary distribution narrows slightly
under the influence of a magnetic field, the effect on the
experimental DF should also be amplified so that the long
tail disappears very quickly. Conversely, for the short 2D
geometry, the experimental DF is biased in favor of high
conductances so that when the elementary distribution nar-
rows, the high-conductance tail in our observed DF should
rapidly disappear. The result is that a narrowing of the el-
ementary distribution in a magnetic field, provided that it is
not accompanied by a shift in the mean conductance, should
result in a positive magnetoconductance for a 1D wire but a
negative magnetoconductance for a short 2D channel. This is

FIG. 6. Average magnetoconductance of Si MOSFET’s with the
~a! 1D and ~b! short 2D geometries. On this scale the low-field
PMC is indicated by just the first two points in~a!.

FIG. 7. ~a! DF’s obtained from a 19.430.6mm Si MOSFET as
a function of magnetic field and their fits to the 1D theory.~b! The
average magnetoconductance obtained by the direct and fitting
methods is positive.~c! The standard deviation of the distribution
obtained by the two methods decreases.
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exactly what we observe in the magnetic field dependence of
the averagêlnG& up to about 0.5 T. However, a look at the
distributions themselves can confirm or disprove this hypoth-
esis.

Taking the 1D case first, the experimental histograms in
Fig. 7 immediately show that our hypothesis is reasonable.
The low-conductance tail rapidly disappears to the point
where the fit to the theoretical 1D DF starts to become du-
bious. On the other hand, the high-conductance threshold of
the distribution does not shift at all, especially when looking
at the fitted functions. The overall effect is a shift in the
weight of the distribution leading to the PMC shown in the
adjacent plot~b!. The narrowing of the distribution is appar-
ent in the shrinking of the standard deviation withB evident
in Fig. 7~c!. Moving next to the 2D case in Fig. 8, we see
that the real situation is more complicated. While it is argu-
able that the high-conductance tail starts to disappear at
about 0.5 T, the low-conductance threshold steadily de-
creases. In fact Fig. 8~c! shows a slight broadening of the
distribution, completely at odds with the distribution-
narrowing hypothesis. It should be noted that the distribu-
tions are somewhat noisy and the fits consequently poorer so
that it is difficult to be quantitatively certain of the results.
Also, the experimental DF is further removed from the el-
ementary distribution of the theories in that the measured
conductance is not determined by the conductance of a single
hop but of a most conductive chain of hops connecting
source to drain. Overall, we believe that the geometry-

dependent sign of the magnetoconductance and the experi-
mental 1D DF’s indicate a narrowing of the elementary hop-
ping conductance distribution in a magnetic field, thereby
demonstrating the correctness of the interference model.
However, the 2D DF’s, while not as straightforward to inter-
pret as those from the 1D geometry, do not show any evi-
dence of such a narrowing.

There are several caveats concerning the presented data.
Firstly, only one device of each geometry has been studied in
detail. The results are therefore subject to statistical uncer-
tainty, although in taking the average^ lnG& no single peak
makes a dominant contribution to the magnetoconductance.
Secondly, because the overall average conductance measured
in two geometries is similar, restricted by experimental con-
siderations, the two devices are being measured under
slightly different regimes: the short, wide device must be
more insulating to have the same conductance as a long,
narrow sample. In fact, unlike the transistors used to demon-
strate the geometry dependence of the DF in Sec. IV, which
were produced on the same chip, the two devices here were
fabricated using similar, but not identical, processes. How-
ever, the regime is presumably similar in the two samples
since the magnetoconductances at intermediate and high
fields are very similar in Fig. 6. Finally, such experiments are
time consuming and a fundamental problem concerns the
reproducibility of the gate-voltage characteristics, which
change slowly on time scales of about a day. It was not
possible to obtain reliable characteristics spanning the entire
magnetic field range shown in Fig. 6. Although the form of
the magnetoconductance remains qualitatively unchanged,
quantitatively there is considerable variation between con-
secutive field sweeps spanning more than a few Tesla. Only
for the low-field measurements up to 0.5 T described above
was it possible to obtain results with a quantitatively accept-
able level of reproducibility.

Given the questions raised in this section and the non-
monotonic variation of̂ lnG& andB at higher fields, there is
considerable scope for further experiments. Extension of the
measurements to the high-field regime will be difficult be-
cause the conductance changes by several orders of magni-
tude and also because of the problems with reproducibility.
Detailed examination of the low-field regime in gallium ars-
enide devices, where PMC and interference effects in general
tend to be much stronger than in silicon, is also a priority.

VI. CONCLUSION

This paper details an experimental investigation into the
use of distribution functions to analyze hopping conductivity
in mesoscopic Si and GaAs transistors. A reliable method for
obtaining histograms of useful quality has been described
and the form of the DF predicted by Raikh and Ruzin for the
1D and short 2D cases verified under controlled conditions.
For 1D Si wires, DF analysis is instrumental in showing that
the temperature dependence of the fluctuation size is in
agreement with the predictions of Lee’s model for VRH
along a 1D chain. The same quantitative agreement is also
found in GaAs wires. Finally, we have shown that experi-
mental distribution functions from mesoscopic devices can

FIG. 8. ~a! DF’s obtained from a 23100mm Si MOSFET as a
function of magnetic field and their fits to the 2D theory.~b! The
average magnetoconductance obtained by the direct and fitting
methods is negative.~c! The standard deviation of the distribution
obtained by the two methods increases slightly.
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provide a useful method of gaining additional insight into the
mechanisms of magnetoconductance. In Si MOSFET’s at
low fields, the sign of the magnetoconductance depends on
the device geometry, being positive in a narrow quasi-1D
device and negative in a short 2D channel. This is what one
would expect from a narrowing of the elementary hopping
conductance distribution taking into account the selection ef-
fects of the channel geometry. For the 1D device, DF analy-
sis shows that the observed PMC in^ lnG& is explicable as a
consequence of this narrowing of the elementary distribution
as predicted by the interference model. In the slightly more

complicated 2D case, this explanation is not supported by the
experimental DF’s and further experiments are warranted.
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