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Distribution-function analysis of mesoscopic hopping conductance fluctuations
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Variable-range hoppingVRH) conductance fluctuations in the gate-voltage characteristics of mesoscopic
gallium arsenide and silicon transistors are analyzed by means of their full distribution fun@ieiss The
forms of the DF predicted by the theory of Raikh and Ruzin have been verified under controlled conditions for
both the long, narrow wire and the short, wide channel geometries. The variation of the mean square fluctua-
tion size with temperature in wires fabricated from both materials is found to be described quantitatively by
Lee’s model of VRH along a one-dimensional chain. Armed with this quantitative validation of the VRH
model, the DF method is applied to the problem of magnetoconductance in the insulating regime. Here a
nonmonotonic variation of the magnetoconductance is observed in silicon metal-oxide-semiconductor field-
effect transistors whose sign at low magnetic fields is dependent on the channel geometry. The origin of this
effect is discussed within the framework of the interference model of VRH magnetoconductance in terms of a
narrowing of the DF in a magnetic fielfiS0163-182@6)10227-7

[. INTRODUCTION resistance can be well approximated by that of the single

most resistive hop. The fluctuations then arise as a conse-

Mesoscopic conductance fluctuations in the insulating requence of switching between the pairs of localized sites re-

gime of small, disordered transistors were first observed bgponsible for the critical hop as each elementary resistance
Peppet in gallium arsenide metal-semiconductor field-effectreacts differently to a change in the chemical potential. These

transistorsf MESFET'9 and then studied in detail in silicon fluctuations are therefore of “geometrical” origin, arising

metal-oxide-semiconductor field-effect transistof1OS- ~ from the random positioning of localized sites in energy and
FET'S) by Fowler, Webb, and co-workérsn the early —SPace, as distinct from the “quantum” nature of the tunnel-

1980's. Extremely strong random fluctuations, spanning sev"d mechanism, which would be strongly affected, for ex-

eral orders of magnitude, were observed at low temperaturédTP'€, by an applied magnetic field. Serota, Kalia, and’Lee

in the conductances of narrow-channel devices as the gay‘\éent on to simulate the ensemble distribution of the total

voltage was varied. At first the origin of this effect was not chain resistanc& and its dependence on the temperatlire
clear. Azbel suggested that resonant tunneling from sourcénd the sample length. In their ensemble, the random im-
to drain might produce such structure as the chemical poterRurities are distributed uniformly in energy and position
tial was swept through transmission resonances of the eige@Ong the chain. In experiments a single device is generally
states in the random impurity potential. However, it becamé{sed’ so that the impurity confl'guratlon is flxed,. and fluctua-
clear that this zero-temperature mechanism could not makepns are observed as a function of some variable external
significant contribution to the conductance in the relativelyParameter such as the chemical potential. An ergodicity hy-
long devices of this experiment. Instead, the most satisfad?Cthesis is then invoked to the effect that the same ensemble
tory explanation was provided by Lbavho proposed a 'S sar_npled in both cases, something that has bgen verified
model in which electrons move by variable-range hopping®XPerimentally by Orlov, Savchenko, and Kosfousing the
(VRH) along a one-dimensiondlLD) chain. A number of na}tural logarithm of the resistance, the_ a_uthors of Ref. 5 ob-
elementary hopping resistances, each depending exponegi@ined for the mean and standard deviation:
tially on the separation and energy difference between sites,
are added in series to give the overall resistance of the chain. U 2
In this model it is assumed that, because of the extremely E %

(InR)~| < £l 1

Lo . . In
broad distribution of the elementary resistors, the total chain
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where¢ is the localization radius ant, is the characteristic
temperature for Mott VRHT ;= 1/kgp¢ (p is the density of
states at the Fermi energyit can be seen that the sizeof
the fluctuations decreases extremely slowly with length, a
result characteristic of 1D, which was pointed out by
Kurkijarvi.” The explanation is simply that exceptionally
large resistance elements, even though they may be statisti-
cally rare, dominate the overall resistance since they cannot
be bypassed in this geometry. The averaging assumed in the
derivation of Mott’s hopping law for 1D does not occur and
the total resistance takes on the activated form of the largest os
individual element.

A detailed analytical treatment of this model was under- 4l
taken by Raikh and RuzZi who divided the problem up into
a number of length regimes. Their theory introduces the con-
cept of the “optimal break,” the type of gap between local-
ized stategon an energy versus position ploivhich is most
likely to determine the overall resistance. The optimal shape
of such a state-free region has maximal resistance for the )
smallest area and turns out to be a rhombus. A sufficiently oo L Y’
long chain will have many such breaks in series to give a In G (arbitrary units) ING = -INR (arbitrary units)
most probable resistance,

1/2 -1/2

' (2) (a) (b)
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FIG. 1. Device schematics and theoretical DF’s for two values
_ L(To 12 To of the parametep. (a) The 2D device behaves like a sum of par-
Rprob= ROE T 2T/ ©) allel conductors and its DF has a tail out to higiGIn(b) The 1D

. ] ~device behaves like a sum of series resistances with a tail on the DF
where R, is the prefactor in the Mott VRH formula. This towards low I'G.

formula breaks down once the expected number of optimal

breaks in the chain becomes small, of order one. It is valiq(A) is a function with a peak close tA=0 and width
only whenv>1, wherev is a parameter defined implicitly yetermined byv. In principle it can be written in terms of

by & and p using Egs.(4)—(7). There is a simple relationship
2T, (Lv'? betweenv and the variance of:
T ”( : ) @ 7T2
For v<<1, which corresponds to the normal experimental <Q2>_<Q>2:F<;_1 ' ®

situation for devices with lengths of a few micrometers, the

resistance of the chain is determined by a few suboptimaThis theory is equally applicabiéto the case of the trans-
breaks of which the expected number occurring in a chain oferse conductanc& of a thin film or barrier. Instead of a
lengthL is approximately one. The average resistance, or itsum of series resistances, the required quantity is the sum of
logarithm Q, then follows a more complicated temperature parallel conductances representing conducting chains of hops

law of the form traversing the film. Whereas in 1D the total resistance is
determined by the blocking effect of the critical hop, here the

Ry vl/ZTo~ To [L{To\* Lo(L\]|" total conductance is dominated by an optimal “puncture:”
Q=lIn Ry T Z?In T In & : an uncommonly high-conductance hopping chain through

the barrier, which effectively shorts out all other current
paths. On a logarithmic scale, sinc&ia—InG, the DF's for

the two geometries are simply reflections of each other. The
variation of the width and peak position with and p is
different, however, in the two cases. Figure 1 shows sche-

The probability distribution functiorlDF) for the quantity
Q is best written in terms of and a new parametey. For
v<<1 it is given by the following integral:

el o Y. matics of the two geometries, the equivalent resistor net-
f(A)=— J dxexp( —le/zcos—) works, and DF’s from Eq(6) characteristic of each case.
mJo 2 Here, as throughout the remainder of the paper, the abscissa
12 is InG. In 1D the importance of blocking resistors adds
2 . TV i bt ; i
XCos(xeA—x” Si ) (6)  weight to the contribution of extremely high resistances and
2 produces a long tail out to low values ofdn For a short 2D

y barrier the DF has the opposite asymmetry with a tail out to
A=Q- 2T, @) high conductances, reflecting the effect of punctures in short-
B T ° ing out less conductive paths. In fact the form of the DF is
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universal, the theory requiring only that the elementary quanthe very lightly dopeg-type Si adjacent to the oxide barrier.
tities to be summed are independent and come from an exdthographic dimensions for the 1D devices ranged from
ponentially wide distribution. The microscopic details of the 0.5-2 um wide by 5—20um long for the 1D wires and 100
conduction mechanism enter only into the dependence of ,m wide by 1-2um long for the short 2D geometry. Here
and A on external parameters such as the temperature anfle designation of length. always refers to the distance

magnetic field. The independence requirement in the case @letween source and drain. The electronically active dimen-
the barrier means that conductive chains must be sufficientlyjons of the channel were estimated from measurements of
far apart, which should be satisfied for a barrier with a SUf'sampIes of varying size to be about Q&n smaller than
ficiently large aspect ratioV/L. We use the description these nominal values.

“short 2D” for this short, wide-channel geometry to distin-

guish it from the square 2D geometry in which conduction is
via an interconnected percolation network.

While the above theory is that best suited to the hoppin

The GaAs devices were fabricated from a simple
6-doped layer of Si donors with a Hall carrier concentration
f 4x 10" cm™2. Channels were defined by the application

regime, numerous authdfshave examined the problem of f a negative bias to patterned surface gates. The split gate

6 . . . .
the zero-temperatureonductance distribution of disordered method® was used to define 1D wires, while narrow strip
wires and they find that, for a sufficiently long wire, the DF gates were used to create short 2D barriers. Beyond the chan-

is normal in IG. Some authof@ argue that this is also the Nel definition voltage, increasing the bias serves to shift the
case for the insulating regime in higher dimensions. To obchemical potential in the active region of the device without
tain a finite-temperature result, it is necessary to introduce freatly changing the channel dimensions. Because of the
temperature-dependent coherence length. Kramer argpreading out of the electric field between the edges of the
co-worker$®!* have used the Mott hopping length for this patterned gate and thé-layer situated 0.3um below the
purpose and performed an average over localization lengtigurface, the dimensions of the electrically active regions dif-
to calculate the size of the fluctuations inGn (The Lee fer significantly from the lithographic dimensions. For ex-
model does not allow for a distribution of localization ample, a split gate with gap dimensiong.in square should
lengths) With the caveat that it is difficult to rigorously jus- produce a narrow channel approximately 22 wide by 1.8
tify the averaging method, they find that the size of the fluc-,m long. This estimate is based on the observation that split
tuations varies with temperature thdimensions as gate devices narrower than 0s8m did not conduct. Strip
12(d+1) gates lithographically 3@m wide by 0.5—-2um long were
5~(To/T) : ©) used to produce short 2D barriers whose effective length was
For the casal=1, in which we are mostly interested, this not precisely known because of this Q8a gate-2DEG
yieldss~T~Y in contradiction with Eq(2), which predicts ~ separation. Aside from the ill-defined channel dimensions, a
s~T Y2 An intermediate mod& describes fluctuations further problem with these devices was the high series resis-
that are partly geometrical and partly quantum coherent itance resulting from the partially depleted 2DEG region near
nature. the gates. For the short 2D devices it was estimated that this
The experimental results presented below are able to diseries resistance, which varies with gate voltage, would be
tinguish between the two theories, providing good quantitasufficient to truncate some of the high-conductance fluctua-
tive agreement with the geometrical, 1D hopping chaintions. Our measurements were taken after brief illumination
theory. Section IlI introduces the results on 1D devices inwith light from a red light-emitting diode, using the persis-

both silicon and gallium arsenide and analyzes the tempergent photoconductivity effect to reduce the series resistance
ture dependence of the conductance and its fluctuations ifjom the sample leads.

terms of these theories. Section IV exhibits some experimen- Two-terminal ac resistance measurements were taken in

tal DF’s, which are also well described by the theory, bothy;tion refrigerators down to temperatures of 50 mK. For

for the 1D and for short 2D geometries with their oppositethe Si devices, a low-frequen¢g—18 Ha excitation voltage

characteristic asymmetric distributions. It is shown that fits -
to the full DF are more reliable in studying the fluctuation of 5 or 10V was used, depending on the temperature, and

. ) - o saturation of temperature-dependent quantities was observed
amplitude than just the standard deviation, which is prone t clow about 70 mK. The temperature dependence of. for
large statistical errors due to the long tails. Finally, Sec. ) P P '

examines the effect of an applied magnetic field and suggesgfample] the average conductance flattens out quite apruptly
interesting possibilities for investigating the intricacies of °€lOW this temperature. Measurements have been carried out

hopping magnetoconductivity by means of experimentaPSir_‘g several different e>_<perimenta| setups and it is our ex-
DF's. perience that the saturation temperature increases monotoni-
cally with the observed noise level. For the GaAs devices it
was necessary to use a higher excitation voltage to obtain a
sufficiently good signal-to-noise ratio and saturation of the
average conductance and the fluctuation amplitude was evi-

A number of different devices, both Si and GaAs and indent below 200 mK. Because of this and the above-
both the 1D and short 2D geometries, were used for thignentioned problems most of the data presented here are from
study. The Si MOSFET's were small-area complementansi MOSFET'’s. However, all of the results in Secs. Il and IV
metal-oxide semiconductor devices with an oxide thicknes$or Si have been reproduced in the GaAs devices, with the
of 210 A and self-aligned Ohmic contacts. The two-same quantitative agreement but somewhat greater uncer-
dimensional electron ga2DEG) is formed by inversion in tainties.

Il. DEVICES AND EXPERIMENTAL METHOD
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Ill. TEMPERATURE DEPENDENCE OF THE MEAN
CONDUCTANCE AND FLUCTUATION AMPLITUDE

The first part of the experiment is to determine the Mott -
parameterT, from an analysis of the temperature depen-
dence of the mean value of the conductance. This is for _ -

comparison with the value df, needed to explain the size 2 g

of the fluctuations. Although we expect VRH to be the con- € 5 : ' ! :

duction mechanism, in our mesoscopic device the averaging ~ | 1 i

implicit in Mott's law is not taking place. We therefore first 4l Il E 470 mK

take the logarithm of the measured conductance and then AL Wy e

perform a numerical average of the data points over a suit- sk '\|| lu I \ } l “ n‘ ‘ 5 88 mK

able range of gate voltage to obtain the quantiyG) 217 R BT 0

(= —(InR)) for insertion in Eq.(1). It is important to reach a V. (V)

suitable compromise between choosing a gate-voltage inter- eate

val sufficiently small tha®, does not vary significantly over = 21662171V

its length yet sufficiently wide to meet the requirements of o o 2171-2176V

statistical accuracy. More will be said on this matter in Sec. OF 52 A 2176-2181V

[l on DF’'s where the choice is much more critical. How- 039;‘ o 2.181-2.188V

ever, thanks to the large number of fluctuations observed at ‘A OZE v 2186-2191V

low temperatures, these requirements are easily met. moa © o 2.191-2.196V
Experimental data for a long, narrow 19.4 by Qb Si 4Lk "oa ¢ 2.196-2201V

MOSFET channel are presented in Fig. 2, where a section of oA

the gate voltage characteristic has been split into seven inter- '2

vals for averaging. It is not possible to distinguish between
activation laws with inverse temperature exponents of 1/3 ,
1/2, or even 1 from the temperature range we have available.
However, there does appear to be a change of gradient in the
vicinity of 0.3 K. This could be indicative of a change from
a 1D to a 2D percolation path as the temperature is raised
and the hopping distance becomes shorter than the sample 3tk
width. Indeed, if the values of ; above 0.3 K are extracted T,=9.1,99,7.3,
using the 2D Mott formula with exponent 1/3, and values | 42 29 24 14K
below 0.3 K using the 1D formula with exponent 1/2, equat- o N
ing the hopping lengths in the two formulas yields a cross- 15 20 25 30 35
over temperature of order 0.5 K, roughly consistent with the AR
position of the observed change of gradient. If we introduce (b) T(K)
the known sample widthV, this interpretation allowg and
p to be obtained independently. These work outat0.1 _ FIG. 2. (a) Part of the experimental characte_ristic on a logarith-
um andp~0.3 times the density of states for a 2D subbandMi¢ conductance scale from a 1%4.6 um 1D Si MOSFET. Dot-
in silicon. Both these values are physically reasonable anffd lines demarcate gate-voltage intervals used for averaging.
consistent with the conduction mechanism being VRH an its of these data tq Eql) averaged over the marked gate-voltage
1D in nature below 0.3 K. We therefore make this assumplntervals together with the values ®f, extracted below 0.3 K.
tion and restrict ourselves to the sub-0.3-K range in our sub-
sequent DF analysis. Note that the large valuet ahows 1.8 um long. Here the data pointef which there are only
that we are never very deep in the insulating regime. five ranging from 0.2 to 0.5 K best fit the law
The next task is to analyze the temperature dependence ef-0.47 %5201 This supports the model of Lee and Raikh
the fluctuation amplitude. We take the same gate voltagand Ruzin expressed in E() at the expense of the scaling
intervals as before and this time calculate the standard deviapproach in Eq(9), which would predict a power of-1/4.
tion s of InG. Here a log-log plot ofs againstT does not Moreover, estimating~0.1 xwm from the measured value of
yield a straight line[hollow circles, Fig. %¢)]. The slope Ty=1.6 K and the assumption that the valuepaf roughly
varies from approximately-0.5 to — 1.5 depending on the the 2D subband density of states multiplied by the channel
temperature. This upper power is much greater than can baidth gives the length-dependent prefactor in EB) as
accounted for by any of the theories. However, the standarfin(2L/£)]"?=0.5, very close to the observed prefactor of
deviation as calculated directly from the data points is domi-0.4. The exact numerical coefficient in E@) is not given
nated by the contribution from the low-conductance tail ofby the authors, but our data indicate that it should be close to
the distribution, where noise and statistical uncertainty isunity. Thus the available gallium arsenide data appear to be
greatest. As a result, we postpone further comment until thperfectly described by the VRH chain model. For silicon,
next section where a full distribution function analysis canonce the overall shape of the distribution is taken into ac-
resolve the issue. The problem is not so apparent in a galliuroount, both the power and the numerical coefficient are
arsenide split gate device estimated as being@rewide by  found to be perfectly in line with the calculatiotfsbased on

<In GS) >
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the 1D VRH model. This will be the conclusion of the fol-

lowing section. 0 WW
2

o
IV. EXPERIMENTAL DISTRIBUTION FUNCTIONS: 8
GEOMETRY AND TEMPERATURE DEPENDENCE c

An analysis relying solely on the first two moments of the 6 & .
distribution of IrG gives only limited information and, 40 35y
where the distribution has long tails as in this case, may give 5
unrepresentative or erroneous results. The aim of this paper 2.8<V, <25V
is to show that analysis of the full DF from experimental 1 v=080,4,=035
fluctuations in mesoscopic devices can be an important tool
for investigating hopping in the mesoscopic regime and may 0
shed light on the processes underlying the macroscopic mag- 1l
netoconductivity. To start with, we describe our method of
obtaining an experimental DF histogram.

The raw data consist of a set of points representing the
fluctuations in conductance as a function of some external
parameter, usually a gate voltayg. It is important to es-
tablish that there is no zero offset error since the first step is
to take the logarithm of the conductance. Generating the de-
sired histogram is simply a matter of binning the data points
into suitable classes &fy, whose width is chosen as a com- = e |
promise between acceptable resolution and statistical error. 4.0<V, <37V
The statistical uncertainty is governed not by the total num- v=030, 4=-35
ber of data points but by the number of conductance fluctua-
tions in the data set. If the number of points covering each
peak in the characteristic in excessively high, the data may In G(uS)
be thinned out before binning by retaining only everth
point. Care needs to be taken in identifying a “noise floor”  FIG. 3. Conductance fluctuations from a X.8.2 um 1D GaAs
in the conductance measurement, below which point the datgvice and experimental DF's obtained from five adjacent gate-
are meaningless. Such unreliable data cannot be included u9ltage intervals spanning the characteristic. At low gate voltages,
the histograms since taking the logarithm magnifies the noisie distribution is no longer exponentially wide while at high gate
at low conductances and might produce an artificially |0ngyoltages_ the conductancg becomes too small to measure. In between
tail in InG. Aside from these considerations, the critical de-'S @ region where good fits to the theorefical 1D (3Blid curves
cision is in the gate voltage range of the data set used t6" € obtained.
generate the histogram. This cannot be made arbitrarily wide
since it is the nature of the devices thatnd ¢ vary slowly  decreasing conductance and increasing relative size of the
with V4 as the chemical potential sweeps through the localfluctuations translates simply into a distribution that shifts to
ized states at the edge of the bamdhether it be conduction lower InG and broadens so that it is fit by a theoretical DF
or impurity band in natune If this variation causes the mean from Eg. (6) with a smaller value ofv. The peak position
or background conductance level to change significantly oveshifts quite markedly between adjacent intervals, suggesting
the chosen interval 0¢, the DF will be smeared out. This that the choice of interval size is close to its maximum rea-
was a problem for Orloet all” who studied the DF of short sonable limit. Unusually, these data show a nonmonotonic
2D channels down to 1.2 K in GaAs devices similar to ourvariation of the peak position with gate voltage. The effect is
own. To obtain a sufficient number of fluctuations they hadspecific to this device and its cause is unclear. A final impor-
to subtract a smooth background fronGlnsomething that tant point is that the experimental limitations on the smallest
cannot be strictly justified and which does not fully solve theconductances that can be measured above the noise level
problem. Our gate voltage characteristics, measured at mudeverely restrict the usable gate-voltage range. Thus a sig-
lower temperatures, have the advantage of much denser flunificant portion of the last DF in the figure is already lost in
tuations and it is possible to obtain histograms of a satisfacthe noise. At the other end of the range, the conductance
tory quality without any background subtraction. As a roughdoes not have to get very high before the fluctuations weaken
indication, aVy range covering 15 or more peaks yields aand the assumption of an exponentially broad distribution
good histogram provided that the background conductanckreaks down: it is for this reason that the first DF does not
does not vary by more than about 10—20% of the total dishave a significant 1D tail. Characteristics for DF analysis
tribution width. therefore have to lie within this gate-voltage window, imply-

An example of DF's calculated from the experimentaling that it is only possible to study a narrow range of values
gate-voltage characteristic of a Qun wide by 1.8um long  of the parameteT.

GaAs device is reproduced in Fig. 3 from Ref. 18. The char- To fit the experimental DF’s to Eq6), the integral is
acteristic has been split into five intervals so that the variacalculated on a mainframe computer for all values afith
tion of the DF as the channel is pinched off can be seen. Tha resolution of 0.01. These results are stored and used to

™) -3.0 -2.5

gate

3.1 <V, <-2.8V
v=078,4,= 00

O
T

34<Vy<-31V

distribution functions
0

3.7 <V, <-3.4V
V=062, A =-06

=0
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o owing to the rather large channel width and almost metallic
a) 05 I conductances. The topmost graph shows good agreement be-
' 3o M tween the short 2D theory and experimental data from a de-
. vice 2 um long by 100m wide. However, good agreement
GO, 1 for this short 2D case is not as ubiquitous in our data as it is
’ for the 1D wires. Frequently the DF’s show no clear asym-
metric tail at high conductances and are well represented by
. . : a Gaussian curve, as in the lower graph. The reasons for this
In G(uS) have not been resolved but some observations may provide
hints as to possible explanations. The simplest explanation
would be to claim that the devices possessed macroscopic
inhomogeneities that produced fixed high-current paths and
therefore destroyed the desired wide-channeled geometry.
However, it is not true that some devices produce good 2D
DF's and others are somehow imperfect; it is rather that the
2D asymmetric distribution is only seen in certain regimes.
& In particular, the asymmetric distribution is observed only in
2 -1 0 1 the most insulating measurable gate-voltage range when the
distribution is very wide. The narrow distributions occurring
in the more weakly insulating part of the characteristic are
invariably symmetric although the converse is not true:
sometimes the most resistive part of the characteristic still
yields symmetric distributions. Inexplicably, a strong mag-
netic field of the order of 5—10 T helps to restore the asym-
metric distribution in these cases. This has been observed in
both silicon and GaAs devices. It is perhaps possible that
there are other mechanisms at work in the tail of the distri-
bution where the conductance is generally rather high to be
truly in the VRH regime. Some such mechanism—perhaps
FIG. 4. Distribution functions obtained from three Si MOS- relatgd to resonant tunnel?ng or the increased effect Of, o
FET's fabricated on the same chip showing the characteristic 1€lations between hopping electrons at these higher

and 2D asymmetries. Lithographic channel dimensionslareyth conductances—'qould be responsible for truncating the high-
X width): () 2% 100 um fit by 2D DF, (b) 5x 2 um fit by 1D DF, ~ conductance tail in many of our measurements. This question

and(c) 1.5 100 um fit by a Gaussian. Inset are the regions of theiS Still unresolved, although we can be certain that the effect
characteristic from which the histograms were obtained. is not due to the addition of any series contact resistance
since subtracting even the largest plausible values for such a
perform a two-parameter least-squares fit to the experimenta¢sistance before calculating@nhas little effect on the
histogram by shifting the computed curve along th® kxis  shape of the distributions.
until the optimum fit to the peak positions, (which is more In order to reach the final result of this section, we reex-
precisely the difference betwednand IrG) is found. Thisis amine the temperature dependence of the fluctuation size us-
repeated for each value of to find the best global least- ing a distribution function analysis. Previously, for a given
squares fit tov andAg. interval of the gate-voltage characteristic, we simply calcu-
The results confirm the Raikh and Ruzin theory for thelated the standard deviatiom of the discrete data points.
form of the DF under controlled 1D conditions. Other au- Now we take the value af for the theoretical curve that best
thors have previously examined the DF in the short 2D gefits the DF histogram obtained from the same part of the
ometry, notable Orloet all” in n-type GaAs and Popovich characteristic and use it to obtain the standard deviation by
et all® who claim to have observed a weak asymmetry in ameans of Eq(8). Comparison between the two methods sug-
large-area, wide Si MOSFET. Yakimov, Stepina, andgests that the former gives good fits to the tail of the distri-
Dvurechenskii® observed a crossover from the 1D to shortbution, where the experimental histograms are prone to large
2D forms for conduction across thin-Si films. The thinnest statistical errors, at the expense of the bulk of the distribution
films apparently showed 1D behavior, which is surprisingwhile the latter gives a far superior overall fit. Reanalysis of
given that here the 2D DF theory should be most applicabledata from the 19.4¢m-long Si MOSFET shows that the dis-
Interestingly, these authors obtain their histograms withoutrepancy, while small for the mean log conductance, can be
relying on the ergodicity hypothesis by measuring a largeas much as a factor of 2 in the standard deviation. Fig(ae 5
number of macroscopically identical devices. In this papershows the full set of DF’s and their fits to the 1D theory. On
we find quantitatively good fits to both distributions underthe accompanying temperature dependence pl@s &nd
controlled conditions using differently shaped devices on thé(c), hollow circles represent simple calculations of the mean
same chip. and standard deviation directly from the data points while
Figure 4 shows three histograms obtained from thredull circles are the equivalent quantities calculated from the
MOSFET's fabricated on the same chip. The middle graphbest fit to the entire DF. Either method results in a similar
shows a reasonable 1D DF, though the situation is not ideastimate of the Mott parameter ©f=6—-8 K[Fig. 5b)]. For

(=3
~
;
G(uS)
o -
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devices, it is now possible to use the experimental histo-
grams as an additional tool with which to investigate the
0 <inG> magnetoconductance in the VRH regime. This field has wit-
il nessed a large theoretical effort, particularly using the inter-
ference mechanism of Nguen, Spivak, and Shklotskiiee
Ref. 22 and also Refs. 23—-26 for more recent calculations
In this model the presence of scatterers between the initial
. and final sites allows interference to occur between alterna-
” tive possible paths within a single hop. The phase shifts in-
1 T TR troduced when a dicul tic field is applied
v perpendicular magnetic field is applied can
0 ,,ﬁ‘gii!ﬂh‘a c) give rise to a positive magnetoconductae®IC) in a mac-
T=182mK R roscopic 2D or 3D sample. The macroscopic conductivity is
derived from a logarithmic average over the distribution of
elementary hopping conductances, which becomes narrower
in a magnetic field. At low fields the peak of this distribution

4| T=220mK <-4}
>
©

2 a0l e os @ does not shift and the relatively small PMC is a result of the
_? o % extra weight afforded to low conductances by the logarith-
el o5 2o s mic averagé® At slightly higher fields it is possible for the
’ T=108mK In T(K) peak of the distribution to shift to higher conductances, cor-
d) responding to a significant increase in the localization length,
A and the PMC can be exponentially large.
1 T=103mK ® s(v) Y . 7-30 . . .
15 grad=0.35) Experiment$’~*°on 2D gallium arsenide samples widely

exhibit PMC in the VRH regime, as does the study on in-
dium oxide films3! The interference effects are generally
smaller in silicon devices but PMC has been observed in the
2D inversion layer of MOSFET'YRef. 32 and also in
N narrow-channeled, quasi-1D MOSFET chanrfél€ur de-
0 B0 25 30 35 40 vices are not macroscopic so that the precise details of the
In G(uS) 0 averaging procedure needed to calculate the magnetoconduc-
tance in a 2D percolation network do not concern us. Instead,
FIG. 5. Temperature dependence of the fluctuations from analysis of the mesoscopic conductance fluctuations in terms
19.4<0.6 um Si MOSFET.(a) Experimental DF’s fit by the 1D  of their distribution functions can give direct insight into the
theoretical form.(b) Fit to Eq. (1) of the average of I8 obtained  elementary distributions at the root of the interference
both directly(hollow circleg and from the position\ of the fitted theory, provided that the effect of sample geometry is taken
DF's (filled circles. (c) Temperature dependence of the fluctuation jhto account. We have already seen that the geometry effect
amplitudes both measured by the standard deviation of the datgn gyr samples is well described by the theory of Raikh and
points (hollow circles and calculated from the fits to the 1D DF's Ryzin. The present section therefore proceeds by introducing
(filled circles. The gradient of the latter yields B power law.  gyma experimental magnetoconductance data, mostly from
(d) Fitting the fluctuation amplitude to &Y power law yields the silicon MOSFET devices, together with a suggeétion as to its
prefactor 0.35. interpretation in terms of the elementary hopping distribu-
tion.
the standard deviatios, the straightforward method as we  Ag pefore, the first approach is to calculate the mean
saw above gives @ - power-law dependence saturating atyalue(InG) from a suitable section of the gate-voltage char-
low temperaturesin GaAs at higher temperatures the bestacteristic. The variation ofinG) with magnetic fieldB is
powerlaw wasT ~°9). The full DF analysis, however, yields optained from data in which numerous gate-voltage sweeps
a straight line on a log-log plot over the entire range withare taken at a series of fixed magnetic fields. Over the full
a best fitting power also of-0.6 [Fig. 5(c)]. This is close  magnetic field range, the gross behavior is similar in GaAs
to the prediction of-0.5 for the 1D chain model and once and Si for both 1D and short 2D devices. Figure 6 shows the
again disagrees with the result derived from scaling. Inygriation of (ING) with B in Si MOSFET's of both geom-
Fig. 5(d) the fit to a forced— 0.5 power law to coincide with  etries up to high fields. At temperatures of order 100 mK
Eq. (1) gives a prefactor of 0.35, very close to the 0.4 ex-there is a negative magnetoconductati®IC) in fields up
pected from the Values @fandf eStimated in Sec. Il SO, in to abou 1T by afactor Of Ordere fo”owed by a |arger PMC
both Si and GaAs devices, Lee’s 1D chain hopping chainp to fields of around 7 T. The NMC is not observed in the
model giVeS a quantitatively accurate deSCI’iption of the reGaAS devices but the same PMC is evident and, at h|gh
sults, but a reliable analysis requires the distribution functiorjig|ds, is undoubtedly related to the proximity to the
method. insulator—quantum Hall transition also observed in macro-
scopic devices made from this matefalAt higher fields
still, the conductivity rapidly freezes out. These exponen-
tially large changes in conductance must be the result of
Having verified the applicability of both the 1D hopping changes in the localization length induced by the magnetic
chain theory and Raikh and Ruzin’s form of the DF to ourfield. At lower fields, of the order of a few tenths of a Tesla,

Q
1 T=88mK <
o
7]

0.5 !

V. VARIATION OF THE DF WITH MAGNETIC FIELD
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-4 0 2 4 6 8 10 12 FIG. 7. (a) DF’s obtained from a 1940.6 um Si MOSFET as
B (T) a function of magnetic field and their fits to the 1D thedty). The

average magnetoconductance obtained by the direct and fitting
. . methods is positive(c) The standard deviation of the distribution
FIG. 6. Average magnetoconductance of Si MOSFET’s with the,

. . “obtained by the two methods decreases.
(@ 1D and (b) short 2D geometries. On this scale the low-field y

PMC is indicated by just the first two points ia). smaller. We therefore believe that the hopping path is effec-

tively one dimensional while the channel is wide enough to
a smaller magnetoconductance is observed in the silicon decccommodate the cigar-shaped coherence region of the inter-
vices where this field range has been probed in detail. Theerence models.
effect is interesting in that the sign of this magnetoconduc- |t is not possible to demonstrate conclusively the origin of
tance is positive in the case of a 1D wire and negative in thehe different signs observed in the low-field magnetoconduc-
case of a short 2D sample. The presence or absence of sugihce for these two samples but the following explanation
an effect has not yet been sufficiently investigated in ourappears the most attractive. According to the interference
GaAs devices. Figures 7 and 8 show the behavigirg®) in  model, the distribution of elementary hopping conductances
the two instances, together with DF's and samples of théarrows on applying a small magnetic field. Our experimen-
data. In general, the time period necessary to collect all theal DF’s do not directly measure this elementary distribution,
data for a large number of magnetic fields is too great for thevhich is skewed because of the high aspect ratios of our
gate-voltage sweeps to remain entirely reproducible—thighannel geometries. In 1D, because the overall conductance
was the case in Fig. 6 and all our experiments to high fieldstends to be dominated by difficult hops, the low conductance
However, an acceptable degree of reproducibility wasail in the elementary distribution is amplified in the experi-
achieved for the data presented in the low-field figures. Thenental DF to produce the characteristic tail out to low con-
detailed structure of the characteristic changes substantialifuctances. When the elementary distribution narrows slightly
over this field range. The overall relative magnetoconducunder the influence of a magnetic field, the effect on the
tance is in both cases by a factor of orderMeasurable experimental DF should also be amplified so that the long
conductances are only obtainable with hopping lengths of theail disappears very quickly. Conversely, for the short 2D
order 0.1um so, in this low-field range, the hopping length geometry, the experimental DF is biased in favor of high
rv and the magnetic length are comparable. With the obeonductances so that when the elementary distribution nar-
served values of; generally aroud 5 K and a measurement rows, the high-conductance tail in our observed DF should
temperature of just under 0.1 K the hopping length should beapidly disappear. The result is that a narrowing of the el-
several times greater than the localization length so that thementary distribution in a magnetic field, provided that it is
conditionry,>¢ demanded by most of the theories is met.not accompanied by a shift in the mean conductance, should
For the 1D device, our estimates suggest thatis only  result in a positive magnetoconductance for a 1D wire but a
slightly greater than the channel width whfeis somewhat negative magnetoconductance for a short 2D channel. This is
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dependent sign of the magnetoconductance and the experi-

-14 2 o <.> Zwean mental 1D DF’s indicate a narrowing of the elementary hop-
st o 0 ping conductance distribution in a magnetic field, thereby
I o demonstrating the correctness of the interference model.
2ol ; However, the 2D DF’s, while not as straightforward to inter-
' ¢ pret as those from the 1D geometry, do not show any evi-
227 , O dence of such a narrowing.
00 02 04 06 There are several caveats concerning the presented data.
B(M Firstly, only one device of each geometry has been studied in
detail. The results are therefore subject to statistical uncer-
g 151 . tainty, although in taking the averagG) no single peak
g - ®e ° makes a dominant contribution to the magnetoconductance.
G Secondly, because the overall average conductance measured
£ 10} 0o ©0 in two geometries is similar, restricted by experimental con-
g °© % sal’, siderations, the two devices are being measured under
= . ,° s(f) , slightly different regimes: the short, wide device must be
00 02 04 06 more insulating to have the same conductance as a long,
B(M narrow sample. In fact, unlike the transistors used to demon-
strate the geometry dependence of the DF in Sec. IV, which
were produced on the same chip, the two devices here were
fabricated using similar, but not identical, processes. How-
ever, the regime is presumably similar in the two samples
since the magnetoconductances at intermediate and high
fields are very similar in Fig. 6. Finally, such experiments are

time consuming and a fundamental problem concerns the

reproducibility of the gate-voltage characteristics, which

FIG. 8. (a) DF’s obtained from a X100 um Si MOSFET as a change slowly (.)n tlme scales of gbqut a day.. It was ngt
possible to obtain reliable characteristics spanning the entire

function of magnetic field and their fits to the 2D theoflg) The o . .
average magnetoconductance obtained by the direct and fittingagnet'c field range shown in Fig. 6. Although the form of

methods is negativéc) The standard deviation of the distribution the magnetoconductance remains qualitatively unchanged,
obtained by the two methods increases slightly. guantitatively there is considerable variation between con-
secutive field sweeps spanning more than a few Tesla. Only
exactly what we observe in the magnetic field dependence dbr the low-field measurements up to 0.5 T described above
the averag€InG) up to about 0.5 T. However, a look at the was it possible to obtain results with a quantitatively accept-
distributions themselves can confirm or disprove this hypothable level of reproducibility.
esis. Given the questions raised in this section and the non-
Taking the 1D case first, the experimental histograms irmonotonic variation ofInG) andB at higher fields, there is
Fig. 7 immediately show that our hypothesis is reasonablegonsiderable scope for further experiments. Extension of the
The low-conductance tail rapidly disappears to the poinfheasurements to the high-field regime will be difficult be-
where the fit to the theoretical 1D DF starts to become dU'Cause the conductance Changes by several orders of magni_
bious. On the other hand, the high-conductance threshold @fide and also because of the problems with reproducibility.
the distribution does not shift at a”, eSpeCially when IOOkingDeta"ed examination Of the |ow_fie|d regime in ga|||um ars-

at the fitted functions. The overall effect is a shift in the enide devices, where PMC and interference effects in general
weight of the distribution leading to the PMC shown in the tend to be much stronger than in silicon, is also a priority.

adjacent plot{b). The narrowing of the distribution is appar-
ent in the shrinking of the standard deviation wisrevident

in Fig. 7(c). Moving next to the 2D case in Fig. 8, we see
that the real situation is more complicated. While it is argu-
able that the high-conductance tail starts to disappear at This paper details an experimental investigation into the
about 0.5 T, the low-conductance threshold steadily dewuse of distribution functions to analyze hopping conductivity
creases. In fact Fig.(8) shows a slight broadening of the in mesoscopic Si and GaAs transistors. A reliable method for
distribution, completely at odds with the distribution- obtaining histograms of useful quality has been described
narrowing hypothesis. It should be noted that the distribu-and the form of the DF predicted by Raikh and Ruzin for the
tions are somewhat noisy and the fits consequently poorer skD and short 2D cases verified under controlled conditions.
that it is difficult to be quantitatively certain of the results. For 1D Si wires, DF analysis is instrumental in showing that
Also, the experimental DF is further removed from the el-the temperature dependence of the fluctuation size is in
ementary distribution of the theories in that the measuredgreement with the predictions of Lee's model for VRH
conductance is not determined by the conductance of a singidong a 1D chain. The same quantitative agreement is also
hop but of a most conductive chain of hops connectingound in GaAs wires. Finally, we have shown that experi-
source to drain. Overall, we believe that the geometry-mental distribution functions from mesoscopic devices can

In G(uS)

VI. CONCLUSION
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provide a useful method of gaining additional insight into thecomplicated 2D case, this explanation is not supported by the
mechanisms of magnetoconductance. In Si MOSFET’s a¢xperimental DF's and further experiments are warranted.
low fields, the sign of the magnetoconductance depends on
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