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Abstract

We show that Corollary 1 of “On Multiple Linear Approximations” (Crypto
2004 – LNCS 3152) is incorrect. In particular, the value given for the gain by
Corollary 1 is likely to be a significant overestimate of this quantity. Thus any
data requirements for linear cryptanalysis with multiple linear approximations
based on this value for the gain are highly questionable.

1 Introduction

Linear cryptanalysis [4] of a block cipher in its basic form uses a linear approx-
imation of the form

αT

(
p

c

)
= k with probability 1

2
(1 + ǫ),

where α is a data mask, k is one bit of key information, p is a plaintext and c is
a corresponding ciphertext. The value ǫ is known as the imbalance or correlation

(twice the bias) of the linear approximation. If ǫ 6= 0, then it is possible to esti-
mate the key bit k reasonably accurately if the number N of plaintext-ciphertext
pairs is at least ǫ−2 [4].

Enhanced forms of linear cryptanalysis [2, 3] use a collection of m such linear
approximations. Such a situation with multiple linear approximations is also
considered by [1], where the gain of such a linear cryptanalysis is defined. The
gain is a attempt to quantify the advantage of a such a linear cryptanalysis over
exhaustive search.

This paper is concerned with the values given for the gain by [1]. In particular,
we show that the value for the gain given there by Corollary 1 generally greatly
exceeds the value for the gain given there by Theorem 1.

2 Multiple Linear Approximations

We consider a linear cryptanalysis based on N plaintext-ciphertext pairs. We
suppose that we have m linear approximations

αT

i

(
p

c

)
= ki with probability 1

2
(1 + ǫi)

for distinct data masks αi, individual bits of key information ki and imbalances
ǫi (i = 1, . . . , m). The capacity c2 of this collection of linear approximations is
given by Definition 2 of [1] to be c2 =

∑m

i=1
ǫ2
i
.

For simplicity, we suppose that the m key bits k1, . . . , km give m bits of
information about the block cipher key. We let z = (k1, . . . , km)T denote the key

class, and we denote the set of all key classes by Z, so Z = Z
m
2

and |Z| = 2m.
We let z∗ denote the key class containing the true key, and, without loss of
generality, we suppose that z∗ = 0. We let Z∗ = Z \ {z∗} = Zm

2
\ {0} denote



the set of key classes not containing the true key, so |Z∗| = 2m − 1. We denote
the m-dimensional imbalance vector corresponding to key class z by cz, so

cz = ((−1)z1ǫ1, . . . , (−1)zmǫm)
T

.

We note that the squared distance from such an imbalance vector to the imbal-
ance vector for the true key class is given by

|cz − cz
∗ |2 = |cz − c0|2 =

∣∣∣−2 (z1ǫ1, . . . , zmǫm)
T

∣∣∣
2

= 4

m∑

i=1

z2

i ǫ2i .

3 Mathematical Concepts used to Define Gain Values

The values given for the gain by [1] can be expressed in terms of two functions,
g and Hm, and a random variable X , which we now define.

The function g on the positive real numbers is defined by

g(x) = φ
(
− 1

2
N

1

2 x
1

2

)
,

where φ denotes the cumulative distribution function for a standard normal
N(0; 1) random variable. We note that g(x) is a convex function of x for x > 0
as

g′′(x) =
1

32

1√
2π

N
1

2 e−
Nx

8 (N + 4x−1)x− 1

2 > 0 for x > 0.

The function Hm on the positive real numbers is defined by

Hm(x) = − log
2

(
2(1 − 2−m)x + 2−m

)
= − log

2

[
2
|Z∗|
|Z| x +

1

|Z|

]
.

We note that Hm(x) is a decreasing function of x for x > 0 as

H ′
m(x) = − 1

log 2

(
2(1 − 2−m)

2(1 − 2−m)x + 2−m

)
< 0 for x > 0.

The random variable X is defined by

X = |cz − cz
∗ |2 with probability |Z∗|−1 = (2m − 1)−1 for z ∈ Z∗.

Thus X is the random variable giving the squared distance of an imbalance
vector for an incorrect key class from the imbalance vector for the true key class.

4 Comparison of Values for the Gain

We now compare the two values given for the gain in Theorem 1 and Corollary 1

of [1]. We show in Appendix A that the value γ for the gain given by Theorem 1

is given by
γ = Hm (E [g(X)]) .



We show in Appendix B that the value γ̃ for the gain given by Corollary 1 is
given by

γ̃ = Hm

(
g

(
2c2

))
= Hm

(
g

((
1 − 2−m

)
E[X ]

))
.

However, this value γ̃ for the gain can be well approximated by γ̂, where

γ̂ = Hm (g (E[X ])) .

We now use Jensen’s inequality [6] to compare γ and γ̂. As g is a convex
function of the positive real numbers, Jensen’s inequality shows that

g(E[X ]) ≤ E[g(X)].

Furthermore Hm is a decreasing function of the positive real numbers, so

γ̂ = Hm(g(E[X ])) ≥ Hm(E[g(X)]) = γ.

However, γ̃ is usually extremely well-approximated by γ̂, so giving Lemma 1.

Lemma 1. The value γ̃ for the gain given by Corollary 1 generally exceeds the
value γ given for the gain by Theorem 1.

5 Example Values for the Gain

The important issue in the use of Corollary 1 of [1] to give the gain is whether
the overestimate of γ by γ̃ referred to in Lemma 1 gives a significant error in
the value of the gain. We show by giving an example that it is indeed generally
the case that the use of γ̃ given in Corollary 1 gives a large overestimate of the
gain γ given by Theorem 1.

For simplicity, we assume that all m linear approximations have the same
imbalance ǫ, that is ǫ1 = . . . = ǫm = ǫ. The capacity of such a collection of linear
approximations is clearly c2 = mǫ2. In this situation, using the result given in
Section 2, we have

|cz − cz
∗ |2 = 4ǫ2

m∑

i=1

z2

i
= 4ǫ2|z|2.

As there are
(
m

l

)
such vectors z ∈ Z

m
2

with |z|2 = l, the random variable X is
given by

X = 4ǫ2l with probability

(
m

l

)
(2m − 1)−1 [l = 1, . . . , m].

Thus X is a multiple of a censored Bin(m, 1

2
) random variable with 0 removed,

so the mean of X is given by E[X ] = 4ǫ2 m

2

2
m

2m−1
. We therefore obtain g(E[X ]),

used to define γ̂, as

g(E[X ]) = φ

(
− 1

2
N

1

2 ǫ
(
2m 2

m
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) 1

2

)

= φ

(
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(
Nǫ2
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2

(
m

2
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2

(
2

m
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) 1

2

)
.



By contrast, the mean of g(X) is given by

E[g(X)] = 1

2m−1

∑
m

l=1

(
m

l

)
φ

(
− 1

2
N

1

2 2ǫl
1

2

)

= 1

2m−1

∑
m

l=1

(
m

l

)
φ

(
−

(
Nǫ2

) 1

2 l
1

2

)
.

We now consider the values of these two expressions for a particular example.
We suppose that there are m = 8 linear approximations, so the capacity c2 =
8ǫ2. We further suppose that we have N = 2ǫ−2 plaintext-ciphertext pairs, so
Nǫ2 = 2. In this case we have

g(E[X ]) = 0.0023, whereas E[g(X)] = 0.0074.

For this example, we have g(E[X ]) > 3E[g(X)], so illustrating Jensen’s inequal-
ity. However, despite Jensen’s inequality, it is essentially asserted by the “proof”
of Corollary 1 that g(E[X ]) = E[g(X)]. (We note that the function f(x) = g(−x)
is erroneously used in this “proof” instead of g(x).) This example shows that
this assertion, which is the basis of the “proof” of Corollary 1, is simply wrong.
As with the discussion by [1] of probabilities for dependent data masks [5], the
given “proof” of Corollary 1 by [1] is not correct.

We now calculate the various values given for the gain in this situation, so

γ = H8(g(E[X ])) = 5.75 and γ̂ = H8 = (E[g(X)]) = 6.88.

Furthermore, a direct calculation gives γ̃ = 6.87, so γ̂ is obviously a very good
approximation of γ̃. In this situation, Corollary 1 overestimates the gain as given
by Theorem 1 by over one bit in six.

6 Conclusions

We have shown that the value for the gain given by Corollary 1 of [1] is not
reliable, and is in general a large overestimate of the value of the gain given
by Theorem 1. Furthermore, the “proof” given of Corollary 1 simply ignores
Jensen’s inequality, a fundamental result in probability and theoretical statistics.
Any result based on this value for the gain given by Corollary 1, such as the
theoretical data requirements for such a linear crypanalysis, is therefore highly
questionable.
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A Value for the Gain given by Theorem 1

The value γ given for the gain given by Theorem 1 of [1] is

γ = − log
2

[
2

1

|Z|
∑

z∈Z∗

φ
(
− 1

2
N

1

2 |cz − cz
∗ |

)
+

1

|Z|

]
.

Thus we have

γ = − log
2


2

(
1 − 2−m

) 1

2m − 1

∑

z6=0

g
(
|cz − c0|2

)
+ 2−m


 .

However, the mean value of g(X) is given by

E[g(X)] =
1

2m − 1

∑

z6=0

g
(
|cz − c0|2

)
,

so we have shown that the value γ given for the gain by Theorem 1 is given by

γ = − log
2

[
2

(
1 − 2−m

)
E[g(X)] + 2−m

]
= Hm(E[g(X)]).

B Value for the Gain given by Corollary 1

The value γ̃ given for the gain by Corollary 1 of [1] is

γ̃ = − log
2

[
2 |Z|−1

|Z| φ
(
−

(
1

2
Nc2

) 1

2

)
+ 1

|Z|

]

= Hm

(
φ

(
− 1

2

(
2Nc2

) 1

2

))
= Hm

(
g

(
2c2

))
.

We express this quantity in terms of the mean of X , which is given by

E[X ] =
1

|Z∗|
∑

z6=z
∗

|cz − cz
∗ |2 = (2m − 1)−1

∑

z6=0

|cz − c0|2.

However, |cz − c0|2 = 4
∑m

i=1
z2

i
ǫ2
i

(Section 1), so we have

E[X ] = (2m − 1)−1
∑

z6=0

m∑

i=1

4z2

i
ǫ2
i

=
4

2m − 1

m∑

i=1

ǫ2
i

∑

z6=0

z2

i
=

4 · 2m−1

2m − 1
c2,



as the two summations in the above expression can be evaluated to give

∑

z6=0

z2

i =
∑

z6=0

zi = 2m−1 and

m∑

i=1

ǫ2i = c2.

Thus we can give the capacity in terms of the mean of X as

c2 = 1

2

(
1 − 2−m

)
E[X ],

so we can obtain

φ
(
−

(
1

2
Nc2

) 1

2

)
= φ

(
− 1

2
N

1

2

((
1 − 2−m

)
E[X ]

) 1

2

)
= g

((
1 − 2−m

)
E[X ]

)
.

This means we can express the value γ̃ given for the gain by Corollary 1 as

γ̃ = Hm

(
g

((
1 − 2−m

)
E[X ]

))
.

If we now define the value

γ̂ = Hm (g (E[X ])) ,

then clearly γ̂ is a very good approximation of γ̃ when m is moderately large.


