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Fractal analysis of sampled profiles: Systematic study
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A quantitative evaluation of the influence of sampling on the numerical fractal analysis of experimental
profiles is of critical importance. Although this aspect has been widely recognized, a systematic analysis of the
sampling influence is still lacking. Here we present the results of a systematic analysis of synthetic self-affine
profiles in order to clarify the consequences of the application of a poor sanipfing 1000 pointstypical
of scanning probe microscopy for the characterization of real interfaces and surfaces. We interpret our results
in terms of a deviation and a dispersion of the measured exponent with respect to the “true” one. Both the
deviation and the dispersion have always been disregarded in the experimental literature, and this can be very
misleading if results obtained from poorly sampled images are presented. We provide reasonable arguments to
assess the universality of these effects and propose an empirical method to take them into account. We show
that it is possible to correct the deviation of the measured Hurst exponent from the “true” one and give a
reasonable estimate of the dispersion error. The last estimate is particularly important in the experimental
results since it is an intrinsic error that depends only on the number of sampling points and can easily
overwhelm the statistical error. Finally, we test our empirical method calculating the Hurst exponent for the
well-known 1+1 dimensional directed percolation profiles, with a 512-point sampling.
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[. INTRODUCTION eral tens of microns, in a relatively simple and quick way by
atomic force microscopyAFM) and scanning tunneling mi-
The characterization of interfaces and of the mechanismsroscopy(STM) [30,31] has stimulated an upsurge of experi-
underlying their formation and evolution is a subject of para-mental report claiming for self-affine structurésee Refs.
mount importance for a broad variety of phenomena such 882,33 and references therginThe abundance of experi-
crystal growth, rock fracture, biological growth, vapor depo-mental characterization of different systems and the limited
sition, surface erosion by ion sputtering, cluster assemblingsampling capability of the scanning probe microscopies
etc., ([1-5] and references therginSince the pioneering (SPM) prompted at the attention of many authors the need of
work of Mandelbrot, fractal geometry has been widely usedyn accurate methodological approach to the determination of
as a model to describe these physical systems that are t9Qe exponent and of its errof 34,35, realistically consid-
disordered to be studied with other mathematical tools buéring the consequences of the finite sampling inherent to
that still hold a sort of “order” in a scale-invariance sense gpp;. Typical sampling with an AFM or a STM is 256 or 512
[1’2’.@' In pa}rticular, Fhe growth of interfaces resglting from points per line, for a maximum of 512 lines. Most of the
Ejhe |rr'e.ver3|ble. aqldmon of subunits from outsuﬂeapo.r. results published in the late eighties and early nineties were
eposition of thin fllms, Iow-ener_gy clustgr begm deDOSItIcm’based upon 256256-point data-sheets, or even smaller ones
etc.) shows a typical asymmetric scale invariance, becaus? . . . .
see list of references in R€f32]). Commercially available

of the existence of a privileged directiga.g., the direction . . .
of growth) [4,7—23. These interfaces belong to the class ofSP'vIS offer toda)_/ a maximum of 532512-point res_olutlon,
gnd homemade instruments hardly go beyond this value.

self-affine fractals and they can be described either by th . R
fractal dimensiorD or by the well-known Hurst exponekt Many authors have questioned the reliability of the mea-
[24-29. If these systems are the result of a tempora”ys_urement of the Hurst expone_nt from_a poorly sampled pro-
evolving process, they usually show also a time scale invarifile [36—39. In order to quantify the influence of the sam-
ance described by the exponghf1,6]. Because of the close pling on the determination dfi, a numerical analysis can be
relationship between the scaling exporienand the funda- Pperformed on artificial self-affine profiles, generated with a
mental mechanisms leading to scale invariance, universalitgpecific algorithm, with a fixed number of points and
classes can be defingd,6]. An accurate knowledge dfl known Hurst exponert;, . The “true” exponents H;,) are
(and B) is required to identify the universality class of the then compared with the ones measured directly from the gen-
system and to give a deep insight on the underlying formaerated profiles Kl,,y). Usually a sensible discrepancy be-
tion processes. tween the measureHl,,; and the expectedd;, is found
The possibility of characterizing the topography of an in-[36,38,39. The discrepancy is not uniform but depends on
terface in a dimension range from the nanometer up to sewthe value ofH;,. As one would expect, the discrepancy is
globally dependent on the numblerand it approaches zero
for large values ot.. In particular, forL <1000 the sampling
*Electronic  address: pmilani@mi.infn.it; URL: http:// effect is of great importance since the discrepancy can be of
webcesid1.fisica.unimi.it/labmilani/ the order of the exponent itse{l00% relative error[37].
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Dubucet al. have reported that even for valueslofs high  crepancy of the measured exponents from the “true” ones.
as 16 384, the discrepancy is still significhg6]. Some authors independently suggested to use directly the
Although the problem of sampling has been clearly adH,,; vs H;, curves as correction, but they considered only
dressed and discussed, quite surprisingly a systematic analgne generation algorithm without discussing the universal
sis of the problem, considering different generation algo-character that these curves must have in order to be utilized

rithms, is still lacking. The dependence of the samplingfor any self-affine objecf34].
effect onL has been investigatd86,37] and also many dif- Conversely, on the basis of our analysis, we will interpret
ferent methods for the measurementf,,; have been con- the discrepancy in terms of two distinct contributions: a uni-
sidered for different values ofl;, in the range[0.1-1] versal deviation and a random dispersion. We will propose a
[36—39. However, either only one single generation algo-powerful method to correct the universal deviation and we
rithm has been usefB7,39, or the results from different will discuss the nature of the dispersion, which is due to both
generation algorithms have not been compd@8]. We be-  statistical fluctuations and an intrinsic sampling effect. The
lieve that this comparison is of fundamental importance. latter turns out to be a sort of systematic error that cannot be
Indeed, profiles from different generation algorithms cancorrected unless one knows the generation algorithm that
be considered as different self-affine objects sampletl in produced the self-affine object. In the case of generic self-
points. For a fixed value df;,, these objects would all have affine profiles, which have not been generated by a specific
the same fractal dimension if they were sampled with aralgorithm, such as experimental profiles, the above argu-
infinite number of points. The fundamental question at thisments no longer hold. A new procedure to quantify the in-
point is whether the discrepancy éf,,, from H;,, for a trinsic error in the measurement of the Hurst exponent of
finite value ofL, is the same for every self-affine objéce.,  generic self-affine profiles is thus needed.
for every generation algorithmOnly an analysis that con- On this basis, we will discuss the effect of sampling on
siders different self-affine objects has a statistical validitythe reliability of the fractal analysis of poorly sampled self-
and allows a reliable interpretation of the results. Up to nowaffine profiles, focusing on both the deviation and the disper-
the results obtained in literature from a single generatiorsion of the measured exponents from the ideal ones, showing
algorithm did not allow a discussion of the nature of thethat the conclusions drawn by Schmittbetlal.that “ ... a
aforementioned discrepancy, which has been interpreted aystem size less than 1024 can hardly be studied seriously,
an uncontrollable error affecting the analysis of sampled prounless one has some independent way of assessing the self-
files. The main conclusion drawn by these authors is theffine character of the profiles and very large statistical sam-
nonreliability of results obtained from profiles with less thanpling” were too restrictive[37]. Moreover, we will point out
1024 sampling point§37]. that the estimate of the intrinsic error is essential for a correct
Our aim is to achieve a deeper understanding of the efelassification of a process in terms of universality classes. In
fects of sampling in order to answer the question whether théact, in order to distinguish exponents belonging to different
measurement of the Hurst exponent with a poor number oflasses, it is necessary to quantify the error on the measure-
sampling points is reliable or not. This point is crucial bothment. Up to now, the statistical error or the error of the fit
for future analysis of self-affine profiles and for a correcthave been used to quantify the error on the measurement of
interpretation of the results already present in literature. H [41—43. Both the statistical error and the error of the
From a more general point of view, fractality is character-linear fit can be made very small, if a large number of pro-
ized by the repetition of somehow similar structures at allfiles are averaged. However, if the measurement is likely to
length scales and can be described in its major properties lye affected by more subtle intrinsic errors, such as the afore-
a single number: the fractal dimensi@n[2,40]. Any finite  mentioned dispersion due to the sampling, considering only
sampling of a fractal object poses both an upper and a lowethe statistical error may be seriously misleading. The intrin-
cutoff to this scale invariance. It has been shown that thessic error in many cases may indeed be much larger than the
cutoffs introduce a deviation iB and the sampled object has statistical one.
a dimension different from the one of the underlying con- In the following sections we will present a systematic
tinuous object[36,38,39. However, it is still unknown analysis of synthetic self-affine profiles with the aim of both
whether the sampling influences in a different way differentachieving a deep understanding of the effects of sampling
objects characterized by the same ideal dimension, thusnd providing the experimentalists a reliable tool for the
breaking the sort of universality that makes a fractal be idenfractal analysis of surfaces and interfaces. For this purpose
tified by its dimension only. we have developed an automated fitting protocol in order to
In this paper we present a systematic analysis consideringvoid any arbitrariness in the measurement. With this meth-
together all the generation algorithms found in literature. Thendology we will study the effects of sampling, enlightening
aim of our analysis is to understand whether the discrepanche main characteristics of the deviation and the dispersion of
of the measuredt,, for a fixedL and for every generation the measured exponents. We will present a powerful method
algorithm is completely random or has a universal depento correct the deviation dfl,,; and to estimate the error of
dence orH,, . The latter observation can be interpreted as ahe measurement. Finally, we will apply our empirical cor-
reminiscence of the fact that a fractal object is completelyrection procedure to 512-point profiles created with the di-
characterized by its dimensidi63]. The distinction is of rected percolatiofDP) algorithm[44]. This system provides
crucial importance because in the case of universal deper simple benchmark to test our protocol and allows noticing
dence ofH,,; on H;,, one can empirically correct the dis- the opportunity of the correction.
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Il. THE AUTOMATED FITTING PROTOCOL 10%3

Self-affine systems occurring in nature are usually profiles oo°
or surfaces. In order to measure their Hurst exponents the
2+1 dimensional case of surfaces is usually reduceditd 1
dimensions, considering the intersection of the surface with a
normal plane. The particular case of in-plane anisotropy re-
sults in a dependence &f on the orientation of the plane
with respect to the surfadd,36,37,40.

Once we have scaled down the analysis tolldimen-
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sions, the following general properties characterize a self- o”loo .
affine profile. Ifh(x) is the height of the profile in the posi-
tion x, the orthogonal anisotropy can be expressed by the .
scaling relationship L
h(Ax)=\"nh(x), (1) . | |
: : . : 10° 10 10°
whereH e (0,1) is the Hurst exponery, is a positive scaling AX (arb. units)

factor and the equation holds in a statistical s¢ds45]. The

fractal dimensionD of the profile is related to the Hurst FIG. 1. Average height-height correlation functiGga calculated
exponent by the equatiod =2—H while the dimension of from N=500 profiles ofL =512 points, generated with the random
the surface iD=3—H [29,46. The lower isH, the more addition method with Hurst exponeht,=0.1. It is also shown the
space invasive is the surface. In most of the physical selflinear region and the fit obtained with the automated fitting protocol
affine surfaces, the scale invariance does not extend to df\FP). One can clearly see the overall curved shape due to the
length scales but there is an upper cutoff above which th&amPling.

surface is no longer correlated. The length at which this cut-

off appears is defined as the correlation lengtfi,32]. In  from the power law behavior to a constant value. Moreover,
the present analysis, we consider only profiles whose corrghe degradation of the fractality due to the sampling causes a
lation length(expressed in number of points equal to their ~ diversion of theAs from their ideal power law behavior. This
length L. For this purpose we have carefully studied eachproduces both a discrepancy of the measured Hurst exponent
generation algorithm in order to grant the conditigsr L.  from the ideal valuga change of the slope in the log-log
For this reason we were often forced to generate very longlot) and a shortening of the linear region as shown in Fig. 1.
profiles and to consider only their central porti®8,47,48. Here, the presence of curved regions is clearly visible. It
The usual procedure to measure the Hurst exponent of @an be seen that this anomalous behavior is not localized at
self-affine profileh(x) is to calculate appropriate statistical length scales close to the length of the profile, but involves
functions from the whole profile. These functions of analysisalso the shortest length scales especially for value$i of

(FAs) show a typical power law behavior on self-affine pro- close to zero. It is important to notice that this effect is not
files due to experimental conditions, such as the finite size of the

SPM scanning probe. Thus it is necessary, in particular for
A[h(-),k]=c ki), (2)  small values oH, to choose a linear region instead of fitting
the whole function. The methods proposed in the literature to
whereA is a generic function of analysis,is a constantkis  identify the linear region(e.g., the consecutive slopes
a variable indicating the resolution at which the profilés  method[1,53], correlation index methofb4], the coefficient
analyzed(typically a frequency or a spatial/temporal separa-of determination method55], and the “fractal measure”
tion), andf(H) is a simple function of the Hurst exponddt  method [56]) are usually based on an arbitraffiuman
[1,38,46,49-5p The power law behavior of th& is then  choice. This is particularly delicate since the curvature in the
fitted in a log-log plot in order to calculate the exponéht As can be so small, if compared to the statistical noise, that it
In the analysis of statistical self-affine profiles there are ranis hard to distinguish the correct linear region. Because of
dom fluctuations superimposed to this power law behaviorthis reason, we think that the proposed methods suffer of a
The signal-to-noise ratio of these fluctuations is scale deperkigh degree of arbitrariness. Moreover, all these methods
dent, theAs being calculated as averages of statistical quanmake no distinction between a straight line with statistical
tities at different length scald4]. To reduce this noise, the noise and a slightly curved line.
average of theAs obtained fromN independent profiles is Due to the previous arguments and since no universally
usually taken before the execution of the linear fit. Howeveraccepted fitting procedure is available in literature, we were
while small-scale fluctuations are easily smoothed, largerprompted to develop an automated fitting proto¢AFP)
scale fluctuations converge very slowly. with two purposes: to reduce as much as possible the effects
The identification of the linear region in the analysis of of the curved regions on the measured exponent, and to de-
theAs is a puzzling point. Windowing saturation is present atfine a standard algorithm for the choice of the linear region,
length scales comparable with the profile length dependingliminating, as much as possible, any arbitrariness. This is
on the nature of the profild€9]. This results in a departure very important for the reliability of the results, in particular
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for the comparison of different generation algorithms. More- L10°
over, the automation of the fitting procedure is essential to y
perform a systematic analysis. In fact, in order to have good
statistics, a large number 8fs must be calculated and fitted. 31 q
In our procedure, that is an implementation of the con- (@
secutive slopes algorithfi], the curve to be fitted is divided
in many portions of the same length(in number of points
and each of them is considered separately. A linear and a
cubic fit are performed on each portion. Comparing the mean
distance of the linear fit from the portion to the mean dis-
tance of the cubic from the linear fit, we evaluate whether the
portion is almost linear with uncorrelated noise or it presents 2|
a definite curvature. Obviously, the distinction is not imme-
diate and we have to set a threshold to separate the two cases
through a parameter in the fitting procedure. The use of a
parameter is common to other methdsdse, for example, the
coefficient of determination method used in R&5]). Once
the fitting parameter is set, our procedure is able to decide
automatically whether the portion is “curved” or “linear.”
Only the “linear” portions are then considered. They un-
dergo a straight-line-fit analysis through which the slopes sk,
and their errors are determined. A distribution of the slopes
weighted with the values of the errors is then b[skee Fig. 0By
2(a)] and its main peak position and width are measured. We o2k
do not consider here the presence of more than one linear
region with different slopes. Thus, there is a well-defined
main peak in the distribution. We have extended our proce-
dure also to the case of more than one linear region, but this
extension is out of the scopes of this paper.
The procedure described above is repeated varying the
length /" of the portions from a minimum valug ,;, up to
the length of the curve. The results are then shown in a plot
of the peak positiorfi.e., a slope valdeversus the length of o1t
the portion, with the peak widths as error bggse Fig. 20)]. (b)
If the analyzed curve presents a linear region, this plot I
shows a plateau fof’ ranging from/ ,,;,, to the length of the 02} ]
whole linear region. This plateau is usually very easy to be o1 05 08 1 12 12 16 15 2
identified because of the distinction between linear and log, (D
curved portions. In fact, portions of length larger than the
length of the whole linear region are considered curved por- FIG. 2. Application of the fitting protocol step by stef@ the
tions and discarded. Thus, the plot usually drops to zero alistribution of the slopes for a single value of the lengttof the
the end of the plateau. Eventually, through an average and pertion (/= 0.35 decadgsand (b) the final plot of the slopegpeak
standard deviation, we obtain the final slope value and itpositiong vs //, with an inset magnification showing the error bars.
fitting error, while the length of the plateau gives the length

of the linear region. In conclusion, our AFP is able to identify hetween 0.1 and 1 and we have focused on the value
not only the slope of the linear region but also its length. We— 512 sampling pointgthe best sampling obtainable with
have tested our AFP before its application to the systematigost of the SPMs We discuss also different values lofup
analysis and we have found that the measured Hurst exp@y 16 384. Because there exists only a few algorithms that
nent is widely independent of the fitting parameféd].  generate exactly self-affine profiles, we have used algorithms
Conversely, the length of the linear region strongly dependshat generate statistically self-affine profiles, which are more
upon the value of the parameter and must be considered onjytficult to handle but closer to reproduce natural physical
an internal parameter of the analysis and not a direct meayystems. The algorithms we have used are known in litera-
surement of the scale invariance range. ture as: the random midpoint displacemdi37,57, the
random addition algorithnh24,58, the fractional Brownian
motion [58], the Weierstrass-Mandelbrot functid®9,60Q,
the inverse Fourier transform meth@87], and a variation
With all the generation algorithms published in literature of the independent cut meth¢d0]. For the measurement of
we have created sampled self-affine profiles with knowrthe Hurst exponent of self-affine profiles we have used the
fractal dimensiorD=2—H. We have varied the exponedt  height-height correlation functio@, [49] and the root mean

counts (arb. units)
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FIG. 3. Hy, VS H;,, graphs calculated fro=500 profiles ofL=512 points each(a) height-height correlation function ar{)) root
mean square variable bandwidthith fit subtraction. The black dotted line represents the ideial,.=H;, behavior. The other line styles
are related to different generation algorithms: random midpoint displacetbimk continuous ling inverse Fourier transforntblack
dashed ling random additionblack dash-dotted line Weierstrass-Mandelbrdgray continuous ling fractional Brownian motior(gray
dashed lingand independent cugray dash-dotted line

square variable bandwidth with fit subtraction method  IV. RESULTS AND DISCUSSION: DEVIATION AND
[46,50. The value ofH,,; has been calculated from the DISPERSION FROM THE IDEAL BEHAVIOR
slope in the log-log plot of the average owverstatistically
independeniAs, measured with our AFP.

The re;ults are exprgssed |n'termsl-tgut S Hi,_1 plots. vs H,. graphs are straight lindd.,40,58.
Each plot is characteristic of a singleand generation algo- Ianig 3 a deviation from the ideal behavior is observed
rithm and it represents the relationship between the measur(?d '

Hurst exponentd calculated from the average bF As or both theAs. It turns out that the sampling of a profile
bonentiout, s g€’ ' affects in a different way different methods of analysis. The
and the nominal exponem;, of the profile. Grouping the

H_ Vs H.. plots obtained using the samefor all the aen- deviation from the ideal behavior has been already observed
er(:';\uttion almorr)ithms the dis ers?on of the,, values cgmes in literature (for example, see Ref37]) and our results are
o evidenge ’ P ut in good agreement with the previous ones.
. ' . Moreover, within th me meth f analysis w rv
In Fig. 3 we show théH,; vs H;, graphs obtained from oreover, e same method of analysis we observe

_ " , : ) i that the different generation algorithms give significantly dif-
?10?158\(/)(9’ I;h_osfepr;:;?esl, "’tlr? ls.le(&;%n:g d'gkt)??hzrg\.'&?::n?ec'ferentHout vs H;, plots. This dispersion is pointed out here
AI\ ' d S'W t‘; ¥|' %at' ticall i ff.' th because different generation algorithms are considered to-

S used. since the prolies asgaustically sefi-affine, ne gether. The significance of the dispersion can be inferred
measuredH,; are subject to a statistical error that is in-

. from the characterization of the statistical error of the mea-
versely reIaFed th. [1_12]. In order to characterize the depen- sured exponent discussed hereafter.
dence of this statistical error on_the numtbénf ave_raged In Fig. 4 we show that foN>25 andH,,<0.3 the error
As, we I?tN vary fmf“ 1 o 50 using the same profiles con- bars ofH,, for different generation algorithms hardly over-
tsr:ie;i?ng]rig;?'ai;y:ig ;heizlgj;?;n%ffvzﬁgivzgfaﬁgd lap. This fact suggests that the statistical error is not the only
and application of the APPand we have extracted a standard reason of the differences between thg,, vs Hin plots

deviati £ th d A shown in Fig. 3.
evialionoy of the measured exponents. In Fig. 6 we plot the statistical errary times the square
In Fig. 4 we show theH,; vs H;, graphs, analogous to

I . | root of N vs N. For N=10 the curves approach a constant
those in Fig. 3, with the calculated error bawice the stan- 5 g according to the relationship between the standard de-
dard deviationoy), for a few values ofN. We present the

its f il (th ; “ble band viation of independent, normally distributed measurements
resulls for a sing ( € root mean square varablé band-,,q he standard deviation of the mean updmeasure-
width with fit subtraction, the results for the otheks being

Ideal continuous fractal profiles are statistically character-
ized by their fractal dimensiofuniversality and theirH,;

- ments:
similar.
In Fig. 5 we show threeH,,; vs H;, graphs obtained
respectively with N=500, L=512 profiles, N=50, L P 3)
=4096 profiles andN=15, L=16 384 profiles. Again, we JN
present only onéA (the height-height correlation function
C,). This result shows that the AFP and the averaging ofAke
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FIG. 4. Hy, vs H;, graphs with error bars equal to twice the () S . . . . . . .
standard deviationry of the measured exponents. These graphs 01 02 03 04 05 06 07 08 09 I
correspond to different values of the numibéof statistically inde- Hy

pendent profiles from which an average Hurst exponent is mea-

sured:(a) N=1, (b) N=10, and(c) N=50. It can be seen that for

N>10 and forH;,<0.3 the overlap between the error bars corre- FIG. 5. Hyy VS Hj, graphs calculated with the height-height
sponding to different generation algorithms is small or completelycorrelation function from:(a) N=500, L=512 profiles; (b) N
absent. For the sake of clarity we have slightly shifted horizontally=50, L =4096 profilesi(c) N=15, L =16 384 profiles. Line styles
the markers corresponding to different generation algorithms. ~ are the same as in Fig. 3.
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single A, our results show that sampled fractal profiles gen-
erated with different generation algorithms but with the same

@ random midpoint displacement]
—#— random addition

022

- Weicrstrass—Mandelbrot

02} | % e Foui et ideal dimension give different measured Hurst exponents.
2 independent cut . .
£ However, Fig. 5 clearly shows that the lessening of frac-
O tality of a profile is rather a continuous process than a sharp
2 o016 transition: the poorer is the sampling, the worse are the de-
Z o viation and the dispersion. In Figs. 5 and 3 we observe that
& on the Iessemng of fractallty acts_ in a similar way on profiles
L generated with different algorithms. The common trend of

01 the Hyyt VS Hi, curves obtained from different generation

0.0

=3

0.06 . .
It is then reasonable to assume the existence for efery

5 & i B 5 65 @ B 40 45 %0 55 of a universal region in thel,,-H;, plane containing all the

N Hout VS H;, plots obtained with every possible generation
algorithm. This region, approximately identifiable with the
envelope of theH,; vs H;, plots, has a width that depends
bn the number of sampling points and approaches the one-
dimensionalH,,=H;, ideal curve for very large values of
L. We expect that, given any continuous self-affine profile
with a Hurst exponenit;,, and given the exponeht, ,; mea-
ured from arL-point sampling of the continuous profile, the
air (H;, ,Ho,t) belongs to the universal region of the corre-
sponding graplispecific for everyA and number of sampling
pointsL). Provided a good characterization of the aforemen-
Fig. 6. Overestimatingr with the value 0.16 we obtain tione_d regiongi.e., using as many generat_ion algorithms as

SDOSSIle, we can use them to generate calibration graphs for

o500=0.007. This value produces an error bar in Fig. 3 a o ) .
srsr?gll as the symbol useg to mark the data. A direct galcula(—averyl‘ andA describing the relationship between the mea-

. : : suredH,,; and the true valuéi;,, .
tion of o5, Obtained averaginés calculated on groups of out A
N=500 profiles for everH [0.1,1] and for every genera- To produce the calibration graphs we proceed as follows.

tion algorithm, fiting and extracting a mean value and First of all, we make two general assumptions in order to

Sandar Gevton o, o e Tequred a ge and (e iauvey 10 SCCOUTL e proiem of meseuring
time consuming calculation. P pled p '

These results suggest that the observed dispersion b?—om values corresponding to the saig, are normally dis-

teen thetl, vs Hiy curves for diferent generation aigo- Leet BOCRE, Feelilows, 0 Y SRR 200 2
rithms is an intrinsic effect of the sampling, depending onlya random samoling of the Gaussi%n distributiogn We then
on the number of sampling points This fact has an impor- ping '

tant consequence on a fractal analysis of experimental syfpeasure the average and the standard deviation of the dis-

faces. While looking at a real sample, we do not know wha ersedH oy, va_llues corre_sponding to ea_dhm separ_at_ely.
i ’ hus we obtain a sampling of the functions describing the

kind of “algorithm” has generated the surface. This intro- . .
duces an uncertainty on its real fractal dimension indepenc_iependence afHou) and THout from H;, . With an interpo-

dent of the statistical error. Thus, there is an intrinsic uppef@tion algorithm using smooth functions, we derive the curve
limit to the precision of the measurement of the exponent. [f€presenting the relationship betweg,,) and H;,. We
is useless to strengthen the statistics once the number of a@lso derive the pair of curves corresponding (doyy)
quired profiles makes the statistical error smaller than therNow_, and(Heu) —noy_  vsHoyur, which define thenth
intrinsic dispersion. confidence level. For every value df, ;; it is possible to find

In Fig. 5 we see that dsincreases both the deviation and the confidence interval di;, for any given confidence level.
the dispersion decrease in agreement with their expectethe resulting graphs fdr =512 are shown in Fig. 7.

|
‘\H
- | algorithms is interpreted as a consequence of the universality
'/]W /m I of fractal objects.

0.04

FIG. 6. Graph of the statistical standard deviatioof the Hurst
exponent, obtained from the definition of the standard deviation o
the mean[Eq. (3)], vs the numbeN of averagedAs. It can be
clearly seen the saturation for valueshbbigger than 25 for almost
all the generation algorithms.

do commute. The assessment of this property is nontrivial
due to the complexity of the AFP. Thus, we extrapolate th
statistical error of the measured exponents in Fig.N8 (
=500) using Eq(3) whereo is extracted from the plateau in

vanishing in the limit ofL going to infinity[37]. This is also These calibration graphs allow to take into account the
an a posterioriproof of the correctness of both the genera-deviation and the dispersion due to the sampling. A similar
tion algorithms and the methods of analysis. method has been independently proposed in R3] even

Our interpretation of these effects is that the sampling of @hough the analysis was limited to a single generation algo-
self-affine profile lessens its fractality in such a way that it isrithm and the discussions on the reliability of the calibration
no longer characterized universally by its fractal dimensiorregions together with the intrinsic dispersion were com-
(or Hurst exponent While for a continuous self-affine pro- pletely neglected.
file the relationshigH ,,+= H;, holds, for sampled profiles we Using the calibration graphs it is possible to measure the
can see that differeris produce differenH,; vs H;, plots  Hurst exponent of poorly sampled profiles correcting for the
from the same sampled fractal profile. Considering instead &rst time the deviation due to the sampling and providing a
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FIG. 7. Calibration graph$l, vs H;, for the methods of analysis used in this pagay.Height-height correlation function an)
variable bandwidth with fit subtraction. From the value of the measured exponent, one can easily extract the corresponding confidence
interval of the corrected exponent, as represented graphical).in

reasonable estimate of the error on a confidence level basisf L=16 384 points, which are widely considered as con-
The quantification of the error is of paramount importance tinuous.

as pointed out in the Introduction, since many authors esti- \We have then analyzetl=1000, L=512 profiles ex-
mated the error from the precision of the lineaf4i,43 or  tracted from theL= 16384 profiles. We have applied the
from the standard deviation of the measured exporl@®s  correction procedure based on the calibration graphs shown
Our results show that they usually underestimated the trug, Fig. 7 to the exponents measured with the AFP. In the

error. third column of Table I, the uncorrected measured exponents
(H31) are shown. The error is calculated as the root mean
V. APPLICATION OF THE CALIBRATION GRAPHS TO square(rms) value of the statistical errar ;o (evaluated as
THE STUDY OF DIRECTED PERCOLATION explained in Sec. IVand the error of the fit calculated with

NUMERICAL PROFILES the AFP. In the fourth column, the confidence intervals cor-

We have applied our procedure to the 1 dimensional responding to the 68% probability for the “true” exponents
DP model, described by Buldyrest al. [44]. This model are showr{H;1%(68%)].
mimics the paper wetting process by a fluid. The resulting The results summarized in Table | allow to notice the
pinned interface is self-affine with exponett=0.63. effectiveness of the calibration graphs in the analysis of self-

We have analyzetl=30, L=16384 DP profiles with the affine profiles when the effects of sampling are non-
height-height correlation function and the variable band-negligible. In the example reported here, the poor sampling
width with fit subtraction, using the automated fitting proto- causes a discrepancy of about 4% between the measured
col to measure the Hurst exponents. The results are shown #xponents and the theoretical one for DP profiles. After the
the second column of Table I. We have not calculated theorrection with the calibration graphs, the expected value
statistical error(see Sec. IY because it would have been H;,=0.63 is consistent with the confidence intervals of the
excessively time consuming. Thus, the error shown is simplywo As. Moreover, the intrinsic error due to the dispersion
the error of the fit calculated with the AFP. (about half the width of the confidence intervairns out to

The values of the measured exponerf$:®*are signifi-  be usually one order of magnitude larger than the aforemen-
cantly lower than the ones predicted by the DP model, sugtoned rms error.
gesting that a correction is needed even in the case of profiles In conclusion, our calibration graphs have allowed to cor-

TABLE |. Measured Hurst exponents of sampled DP proftegoretical valueH=0.63[44]).

Haur Hau” Hi7? (68%)
Height-height correlation function 0.619.004 0.6090.002 [0.613-0.63%
Variable bandwidth with fit subtraction 0.62®.003 0.6080.012 [0.611-0.644

&The error forL =16 384 is the error of the fit.
bThe error forL =512 is the rms value of the statistical error and the error of the fit.
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rect the deviation and to quantify the intrinsic error of thetheir specificH,,; vs H;, plot. This dispersion error must be
Hurst exponent of poorly sampled € 512) DP profiles. quantitatively taken into account since it cannot be reduced
with an increase in the statistics but only with an increase in
the number of sampling points.

The existence of an intrinsic dispersion error in the mea-

We have carried out a systematic analysis in order tesurement of the Hurst exponent that depends only on the
achieve a deeper understanding of the effects of sampling amumber of sampling points is very important. In fact, this
the measurement of the Hurst exponent of self-affine promntrinsic error easily overwhelms the statistical error for
files. This is a crucial point for the assessment of the reliabilpoorly sampled profiles. It is definitely clear that a reliable
ity of fractal analysis of experimental profiles, such as topo+esult cannot be based on the consideration of the statistical
graphic profiles of growing thin films and interfaces acquirederror only. Moreover, the dispersion poses an upper limit to
with a scanning probe microscope. We have pointed out thahe precision in the measurement of the Hurst exponent of
some of the steps leading to the measurement of the Hursampled profiles. It becomes useless to increase the statistics
exponent have been only superficially discussed, althougbnce the statistical error has been made reasonably smaller
worth of deeper attention. We have focused on the quantifithan the intrinsic one. This is particularly important in an
cation of the effects of sampling and possibly on their cor-experimental analysis because it usually reduces significantly
rection, allowing a more reliable identification of the univer- the number of profiles that have to be acquired, making the
sality class of growth. analysis much less time consuming.

In order to perform such a quantitative analysis we have Thanks to our systematic analysis, we have built, for each
developed an automated fitting protocol that allows to reimethod of analysis, a calibration graph representing the re-
move the ambiguity in the choice of the region for the lineargion of the H,,-H;, plane where the true exponents fall
fit of the analysis functions. This point is usually underesti-within a given confidence level. We have originally proposed
mated in the published experimental literature, and appeat® use these graphs as a reliable empirical method to correct
to be a significant source of error in the whole analysisthe measured value of the Hurst exponent of a poorly
Moreover, an automated protocol sensibly reduces the timsampled profile and to estimate its intrinsic sampling error.
required for the fitting of a large number of noisy curves, The reliability of the calibration graphs is based on two as-
allowing a higher statistics. With our automated fitting pro- sumptions:
tocol we have systematically investigated synthetic self- (i) The measured exponents for all the possible self-affine
affine profiles generated with all the generation algorithmsprofiles, with the same “true” exponertt;, and with the
found in literature using different method of analysis. same number of sampling points, are normally distributed.

The systematic analysis presented in this paper has been (ii) The numerical generation algorithms known in litera-
carried out on *1 dimensional profiles and we have not ture provide a statistically reliable sample of all the possible
considered two-dimensional methods of analygg., see self-affine profiles.

[34,41)). However, it is reasonable to suppose that even in Even though we have found just six generation algorithms
this case the effects of sampling cannot be neglected, and the literature, we believe that they still allow to obtain reason-
conclusions drawn in Ref34] are probably incorrect. The able results or at least the only ones obtainable to date. These
similarity between Fig. 1 in Ref[34] and the analogous results represent a step forward to a reliable fractal analysis
results presented in this paplsee the variable bandwidth of both numerical and experimental profiles and to the indi-
analysis of profiles generated with the random midpoint disviduation of the universality classes in the study of the evo-
placement shown in Fig.(8)] suggests that conclusions very lution of many different systems.

close to those presented here can be drawn also in the two- In conclusion, we have demonstrated that a reliable mea-
dimensional case. surement of the Hurst exponent of poorly sampled self-affine

Studying the discrepancy between the measured Hurst eprofiles is possible, provided that the measuleg, is cor-
ponentH,,, and the “true” one H;,) for synthetic self- rected of its deviation and that the sampling error is quanti-
affine profiles withL=512 points, we have shown that the tatively taken into account. We have thus given strength to
main effects of sampling are a deviation of tHg,; vs H;, experimental analyses, since the numerical results reported
plots from the ideal behavior and a dispersion of the expoin literature to date led to the conclusion that the analysis of
nents calculated from different generation algorithms. Botlself-affine profiles sampled with less than 1000 points is not
these effects smoothly reduce with increasing value.of reliable[37]. Even with the great improvement introduced by
The deviation turns out to be universal in the sense that theéhe use of the calibration graphs in the analysis of self-affine
trend of theH,,; vs H;, curves is common to all of the profiles, we definitely agree with Schmittbugt al. in point-
generation algorithms, depending only on the number ofng out that the comparison of the results obtained with dif-
sampling points and on the function used in the analysis. Werent method of analysis is of fundamental importaf84.
propose that this behavior is reminiscent of the fact that &urthermore, we shortly comment on the common experi-
fractal object is completely characterized by its dimensiormental procedure of connectins calculated from profiles
and, therefore, the deviation can be at least empirically coracquired with different scan siz¢41,43,61. This connec-
rected. The dispersion instead has to be considered as &on allows investigating a wider range of length scales with
intrinsic error due to the sampling, but for the very speciala limited number of sampling points and makes the measure-
case of profiles whose generation algorithm allows to buildnent more reliable. However, the deviation and dispersion

VI. CONCLUSIONS
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are not influenced by this procedure, since they depend onlyhis is of paramount importance for experimentalists who
on the number of sampling points of the profiles on whichstudy the scale invariance of surfaces and interfaces by scan-
the As are calculated. ning probe microscopy or other techniques, with the aim of
The AFP and the calibration graphs have been tested oidentifying the underlying universality classes. The huge
numerically generated-11 dimensional DP profiles, which amount of experimental results published in the past two
have provided a benchmark to check our protocol. We hav@ecades about the fractality of many interfaces can be now
shown that folL =512 profiles a correction is needed and theanalyzed under a new light.
calibration graphs allow to recover the theoretical valuél of
predicted by the DP model. We have also shown that a cor-
rection is needed even for the= 16 384 profiles, which are ACKNOWLEDGMENTS
widely considered as continuous.
Our results provide a powerful tool for the accurate ex- We thank E. H. Roman and G. Benedek for discussions.
traction of the Hurst exponent from poorly sampled profiles,Financial support from MURST under the project COFIN99
and for the quantification of the error in the measurementis acknowledged.
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