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Fractal analysis of sampled profiles: Systematic study

C. Castelnovo, A. Podesta`, P. Piseri, and P. Milani*
INFM, Dipartimento di Fisica, Universita` degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy

~Received 9 August 2001; published 3 January 2002!

A quantitative evaluation of the influence of sampling on the numerical fractal analysis of experimental
profiles is of critical importance. Although this aspect has been widely recognized, a systematic analysis of the
sampling influence is still lacking. Here we present the results of a systematic analysis of synthetic self-affine
profiles in order to clarify the consequences of the application of a poor sampling~up to 1000 points! typical
of scanning probe microscopy for the characterization of real interfaces and surfaces. We interpret our results
in terms of a deviation and a dispersion of the measured exponent with respect to the ‘‘true’’ one. Both the
deviation and the dispersion have always been disregarded in the experimental literature, and this can be very
misleading if results obtained from poorly sampled images are presented. We provide reasonable arguments to
assess the universality of these effects and propose an empirical method to take them into account. We show
that it is possible to correct the deviation of the measured Hurst exponent from the ‘‘true’’ one and give a
reasonable estimate of the dispersion error. The last estimate is particularly important in the experimental
results since it is an intrinsic error that depends only on the number of sampling points and can easily
overwhelm the statistical error. Finally, we test our empirical method calculating the Hurst exponent for the
well-known 111 dimensional directed percolation profiles, with a 512-point sampling.

DOI: 10.1103/PhysRevE.65.021601 PACS number~s!: 68.37.2d, 89.75.Da, 61.43.Hv
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I. INTRODUCTION

The characterization of interfaces and of the mechani
underlying their formation and evolution is a subject of pa
mount importance for a broad variety of phenomena such
crystal growth, rock fracture, biological growth, vapor dep
sition, surface erosion by ion sputtering, cluster assembl
etc., ~@1–5# and references therein!. Since the pioneering
work of Mandelbrot, fractal geometry has been widely us
as a model to describe these physical systems that are
disordered to be studied with other mathematical tools
that still hold a sort of ‘‘order’’ in a scale-invariance sen
@1,2,6#. In particular, the growth of interfaces resulting fro
the irreversible addition of subunits from outside~vapor
deposition of thin films, low-energy cluster beam depositi
etc.,! shows a typical asymmetric scale invariance, beca
of the existence of a privileged direction~e.g., the direction
of growth! @4,7–23#. These interfaces belong to the class
self-affine fractals and they can be described either by
fractal dimensionD or by the well-known Hurst exponentH
@24–29#. If these systems are the result of a tempora
evolving process, they usually show also a time scale inv
ance described by the exponentb @1,6#. Because of the close
relationship between the scaling exponent~s! and the funda-
mental mechanisms leading to scale invariance, univers
classes can be defined@1,6#. An accurate knowledge ofH
~and b) is required to identify the universality class of th
system and to give a deep insight on the underlying form
tion processes.

The possibility of characterizing the topography of an
terface in a dimension range from the nanometer up to s
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eral tens of microns, in a relatively simple and quick way
atomic force microscopy~AFM! and scanning tunneling mi
croscopy~STM! @30,31# has stimulated an upsurge of expe
mental report claiming for self-affine structures~see Refs.
@32,33# and references therein!. The abundance of experi
mental characterization of different systems and the limi
sampling capability of the scanning probe microscop
~SPM! prompted at the attention of many authors the need
an accurate methodological approach to the determinatio
the exponentH and of its error@34,35#, realistically consid-
ering the consequences of the finite sampling inheren
SPM. Typical sampling with an AFM or a STM is 256 or 51
points per line, for a maximum of 512 lines. Most of th
results published in the late eighties and early nineties w
based upon 2563256-point data-sheets, or even smaller on
~see list of references in Ref.@32#!. Commercially available
SPMs offer today a maximum of 5123512-point resolution,
and homemade instruments hardly go beyond this value

Many authors have questioned the reliability of the me
surement of the Hurst exponent from a poorly sampled p
file @36–39#. In order to quantify the influence of the sam
pling on the determination ofH, a numerical analysis can b
performed on artificial self-affine profiles, generated with
specific algorithm, with a fixed number of pointsL and
known Hurst exponentHin . The ‘‘true’’ exponents (Hin) are
then compared with the ones measured directly from the g
erated profiles (Hout). Usually a sensible discrepancy b
tween the measuredHout and the expectedHin is found
@36,38,39#. The discrepancy is not uniform but depends
the value ofHin . As one would expect, the discrepancy
globally dependent on the numberL and it approaches zer
for large values ofL. In particular, forL,1000 the sampling
effect is of great importance since the discrepancy can b
the order of the exponent itself~100% relative error! @37#.
©2002 The American Physical Society01-1
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Dubucet al. have reported that even for values ofL as high
as 16 384, the discrepancy is still significant@36#.

Although the problem of sampling has been clearly a
dressed and discussed, quite surprisingly a systematic a
sis of the problem, considering different generation alg
rithms, is still lacking. The dependence of the sampl
effect onL has been investigated@36,37# and also many dif-
ferent methods for the measurement ofHout have been con-
sidered for different values ofHin in the range@0.121#
@36–39#. However, either only one single generation alg
rithm has been used@37,39#, or the results from differen
generation algorithms have not been compared@38#. We be-
lieve that this comparison is of fundamental importance.

Indeed, profiles from different generation algorithms c
be considered as different self-affine objects sampled iL
points. For a fixed value ofHin , these objects would all hav
the same fractal dimension if they were sampled with
infinite number of points. The fundamental question at t
point is whether the discrepancy ofHout from Hin , for a
finite value ofL, is the same for every self-affine object~i.e.,
for every generation algorithm!. Only an analysis that con
siders different self-affine objects has a statistical valid
and allows a reliable interpretation of the results. Up to n
the results obtained in literature from a single generat
algorithm did not allow a discussion of the nature of t
aforementioned discrepancy, which has been interprete
an uncontrollable error affecting the analysis of sampled p
files. The main conclusion drawn by these authors is
nonreliability of results obtained from profiles with less th
1024 sampling points@37#.

Our aim is to achieve a deeper understanding of the
fects of sampling in order to answer the question whether
measurement of the Hurst exponent with a poor numbe
sampling points is reliable or not. This point is crucial bo
for future analysis of self-affine profiles and for a corre
interpretation of the results already present in literature.

From a more general point of view, fractality is charact
ized by the repetition of somehow similar structures at
length scales and can be described in its major propertie
a single number: the fractal dimensionD @2,40#. Any finite
sampling of a fractal object poses both an upper and a lo
cutoff to this scale invariance. It has been shown that th
cutoffs introduce a deviation inD and the sampled object ha
a dimension different from the one of the underlying co
tinuous object @36,38,39#. However, it is still unknown
whether the sampling influences in a different way differe
objects characterized by the same ideal dimension,
breaking the sort of universality that makes a fractal be id
tified by its dimension only.

In this paper we present a systematic analysis conside
together all the generation algorithms found in literature. T
aim of our analysis is to understand whether the discrepa
of the measuredHout for a fixedL and for every generation
algorithm is completely random or has a universal dep
dence onHin . The latter observation can be interpreted a
reminiscence of the fact that a fractal object is complet
characterized by its dimension@63#. The distinction is of
crucial importance because in the case of universal de
dence ofHout on Hin , one can empirically correct the dis
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crepancy of the measured exponents from the ‘‘true’’ on
Some authors independently suggested to use directly
Hout vs Hin curves as correction, but they considered on
one generation algorithm without discussing the univer
character that these curves must have in order to be util
for any self-affine object@34#.

Conversely, on the basis of our analysis, we will interp
the discrepancy in terms of two distinct contributions: a u
versal deviation and a random dispersion. We will propos
powerful method to correct the universal deviation and
will discuss the nature of the dispersion, which is due to b
statistical fluctuations and an intrinsic sampling effect. T
latter turns out to be a sort of systematic error that canno
corrected unless one knows the generation algorithm
produced the self-affine object. In the case of generic s
affine profiles, which have not been generated by a spe
algorithm, such as experimental profiles, the above ar
ments no longer hold. A new procedure to quantify the
trinsic error in the measurement of the Hurst exponent
generic self-affine profiles is thus needed.

On this basis, we will discuss the effect of sampling
the reliability of the fractal analysis of poorly sampled se
affine profiles, focusing on both the deviation and the disp
sion of the measured exponents from the ideal ones, show
that the conclusions drawn by Schmittbuhlet al. that ‘‘ . . . a
system size less than 1024 can hardly be studied serio
unless one has some independent way of assessing the
affine character of the profiles and very large statistical sa
pling’’ were too restrictive@37#. Moreover, we will point out
that the estimate of the intrinsic error is essential for a corr
classification of a process in terms of universality classes
fact, in order to distinguish exponents belonging to differe
classes, it is necessary to quantify the error on the meas
ment. Up to now, the statistical error or the error of the
have been used to quantify the error on the measureme
H @41–43#. Both the statistical error and the error of th
linear fit can be made very small, if a large number of p
files are averaged. However, if the measurement is likely
be affected by more subtle intrinsic errors, such as the af
mentioned dispersion due to the sampling, considering o
the statistical error may be seriously misleading. The intr
sic error in many cases may indeed be much larger than
statistical one.

In the following sections we will present a systema
analysis of synthetic self-affine profiles with the aim of bo
achieving a deep understanding of the effects of samp
and providing the experimentalists a reliable tool for t
fractal analysis of surfaces and interfaces. For this purp
we have developed an automated fitting protocol in orde
avoid any arbitrariness in the measurement. With this me
odology we will study the effects of sampling, enlightenin
the main characteristics of the deviation and the dispersio
the measured exponents. We will present a powerful met
to correct the deviation ofHout and to estimate the error o
the measurement. Finally, we will apply our empirical co
rection procedure to 512-point profiles created with the
rected percolation~DP! algorithm@44#. This system provides
a simple benchmark to test our protocol and allows notic
the opportunity of the correction.
1-2
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II. THE AUTOMATED FITTING PROTOCOL

Self-affine systems occurring in nature are usually profi
or surfaces. In order to measure their Hurst exponents
211 dimensional case of surfaces is usually reduced to 111
dimensions, considering the intersection of the surface wi
normal plane. The particular case of in-plane anisotropy
sults in a dependence ofH on the orientation of the plan
with respect to the surface@1,36,37,40#.

Once we have scaled down the analysis to 111 dimen-
sions, the following general properties characterize a s
affine profile. Ifh(x) is the height of the profile in the pos
tion x, the orthogonal anisotropy can be expressed by
scaling relationship

h~lx!5lHh~x!, ~1!

whereHP(0,1) is the Hurst exponent,l is a positive scaling
factor and the equation holds in a statistical sense@1,45#. The
fractal dimensionD of the profile is related to the Hurs
exponent by the equationD522H while the dimension of
the surface isD532H @29,46#. The lower isH, the more
space invasive is the surface. In most of the physical s
affine surfaces, the scale invariance does not extend to
length scales but there is an upper cutoff above which
surface is no longer correlated. The length at which this c
off appears is defined as the correlation lengthj @1,32#. In
the present analysis, we consider only profiles whose co
lation length~expressed in number of points! is equal to their
length L. For this purpose we have carefully studied ea
generation algorithm in order to grant the conditionj5L.
For this reason we were often forced to generate very l
profiles and to consider only their central portion@38,47,48#.
The usual procedure to measure the Hurst exponent
self-affine profileh(x) is to calculate appropriate statistic
functions from the whole profile. These functions of analy
~FAs! show a typical power law behavior on self-affine pr
files

A@h~• !,k#5c kf (H), ~2!

whereA is a generic function of analysis,c is a constant,k is
a variable indicating the resolution at which the profileh is
analyzed~typically a frequency or a spatial/temporal sepa
tion!, and f (H) is a simple function of the Hurst exponentH
@1,38,46,49–52#. The power law behavior of theA is then
fitted in a log-log plot in order to calculate the exponentH.
In the analysis of statistical self-affine profiles there are r
dom fluctuations superimposed to this power law behav
The signal-to-noise ratio of these fluctuations is scale dep
dent, theAs being calculated as averages of statistical qu
tities at different length scales@1#. To reduce this noise, th
average of theAs obtained fromN independent profiles is
usually taken before the execution of the linear fit. Howev
while small-scale fluctuations are easily smoothed, larg
scale fluctuations converge very slowly.

The identification of the linear region in the analysis
theAs is a puzzling point. Windowing saturation is presen
length scales comparable with the profile length depend
on the nature of the profiles@49#. This results in a departur
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from the power law behavior to a constant value. Moreov
the degradation of the fractality due to the sampling caus
diversion of theAs from their ideal power law behavior. Thi
produces both a discrepancy of the measured Hurst expo
from the ideal value~a change of the slope in the log-lo
plot! and a shortening of the linear region as shown in Fig

Here, the presence of curved regions is clearly visible
can be seen that this anomalous behavior is not localize
length scales close to the length of the profile, but involv
also the shortest length scales especially for values oH
close to zero. It is important to notice that this effect is n
due to experimental conditions, such as the finite size of
SPM scanning probe. Thus it is necessary, in particular
small values ofH, to choose a linear region instead of fittin
the whole function. The methods proposed in the literature
identify the linear region~e.g., the consecutive slope
method@1,53#, correlation index method@54#, the coefficient
of determination method@55#, and the ‘‘fractal measure’
method @56#! are usually based on an arbitrary~human!
choice. This is particularly delicate since the curvature in
As can be so small, if compared to the statistical noise, th
is hard to distinguish the correct linear region. Because
this reason, we think that the proposed methods suffer
high degree of arbitrariness. Moreover, all these meth
make no distinction between a straight line with statisti
noise and a slightly curved line.

Due to the previous arguments and since no univers
accepted fitting procedure is available in literature, we w
prompted to develop an automated fitting protocol~AFP!
with two purposes: to reduce as much as possible the eff
of the curved regions on the measured exponent, and to
fine a standard algorithm for the choice of the linear regi
eliminating, as much as possible, any arbitrariness. Thi
very important for the reliability of the results, in particula

FIG. 1. Average height-height correlation functionC2 calculated
from N5500 profiles ofL5512 points, generated with the rando
addition method with Hurst exponentHin50.1. It is also shown the
linear region and the fit obtained with the automated fitting proto
~AFP!. One can clearly see the overall curved shape due to
sampling.
1-3
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C. CASTELNOVO, A. PODESTA` , P. PISERI, AND P. MILANI PHYSICAL REVIEW E65 021601
for the comparison of different generation algorithms. Mo
over, the automation of the fitting procedure is essentia
perform a systematic analysis. In fact, in order to have g
statistics, a large number ofAs must be calculated and fitted

In our procedure, that is an implementation of the co
secutive slopes algorithm@1#, the curve to be fitted is divided
in many portions of the same lengthl ~in number of points!
and each of them is considered separately. A linear an
cubic fit are performed on each portion. Comparing the m
distance of the linear fit from the portion to the mean d
tance of the cubic from the linear fit, we evaluate whether
portion is almost linear with uncorrelated noise or it prese
a definite curvature. Obviously, the distinction is not imm
diate and we have to set a threshold to separate the two c
through a parameter in the fitting procedure. The use o
parameter is common to other methods~see, for example, the
coefficient of determination method used in Ref.@55#!. Once
the fitting parameter is set, our procedure is able to dec
automatically whether the portion is ‘‘curved’’ or ‘‘linear.’
Only the ‘‘linear’’ portions are then considered. They u
dergo a straight-line-fit analysis through which the slop
and their errors are determined. A distribution of the slop
weighted with the values of the errors is then built@see Fig.
2~a!# and its main peak position and width are measured.
do not consider here the presence of more than one li
region with different slopes. Thus, there is a well-defin
main peak in the distribution. We have extended our pro
dure also to the case of more than one linear region, but
extension is out of the scopes of this paper.

The procedure described above is repeated varying
length l of the portions from a minimum valuel min up to
the length of the curve. The results are then shown in a
of the peak position~i.e., a slope value! versus the length o
the portion, with the peak widths as error bars@see Fig. 2~b!#.

If the analyzed curve presents a linear region, this p
shows a plateau forl ranging froml min to the length of the
whole linear region. This plateau is usually very easy to
identified because of the distinction between linear a
curved portions. In fact, portions of length larger than t
length of the whole linear region are considered curved p
tions and discarded. Thus, the plot usually drops to zer
the end of the plateau. Eventually, through an average a
standard deviation, we obtain the final slope value and
fitting error, while the length of the plateau gives the leng
of the linear region. In conclusion, our AFP is able to ident
not only the slope of the linear region but also its length.
have tested our AFP before its application to the system
analysis and we have found that the measured Hurst e
nent is widely independent of the fitting parameter@64#.
Conversely, the length of the linear region strongly depe
upon the value of the parameter and must be considered
an internal parameter of the analysis and not a direct m
surement of the scale invariance range.

III. NUMERICAL ANALYSIS

With all the generation algorithms published in literatu
we have created sampled self-affine profiles with kno
fractal dimensionD522H. We have varied the exponentH
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between 0.1 and 1 and we have focused on the valuL
5512 sampling points~the best sampling obtainable wit
most of the SPMs!. We discuss also different values ofL up
to 16 384. Because there exists only a few algorithms t
generate exactly self-affine profiles, we have used algorith
that generate statistically self-affine profiles, which are m
difficult to handle but closer to reproduce natural physi
systems. The algorithms we have used are known in lite
ture as: the random midpoint displacement@37,57#, the
random addition algorithm@24,58#, the fractional Brownian
motion @58#, the Weierstrass-Mandelbrot function@59,60#,
the inverse Fourier transform method@57#, and a variation
of the independent cut method@40#. For the measurement o
the Hurst exponent of self-affine profiles we have used
height-height correlation functionC2 @49# and the root mean

FIG. 2. Application of the fitting protocol step by step:~a! the
distribution of the slopes for a single value of the lengthl of the
portion (l 50.35 decades! and~b! the final plot of the slopes~peak
positions! vs l , with an inset magnification showing the error ba
1-4
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FIG. 3. Hout vs Hin graphs calculated fromN5500 profiles ofL5512 points each:~a! height-height correlation function and~b! root
mean square variable bandwidth~with fit subtraction!. The black dotted line represents the idealHout5Hin behavior. The other line styles
are related to different generation algorithms: random midpoint displacement~black continuous line!, inverse Fourier transform~black
dashed line!, random addition~black dash-dotted line!, Weierstrass-Mandelbrot~gray continuous line!, fractional Brownian motion~gray
dashed line! and independent cut~gray dash-dotted line!.
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square variable bandwidth with fit subtraction meth
@46,50#. The value ofHout has been calculated from th
slope in the log-log plot of the average overN statistically
independentAs, measured with our AFP.

The results are expressed in terms ofHout vs Hin plots.
Each plot is characteristic of a singleA and generation algo
rithm and it represents the relationship between the meas
Hurst exponentHout , calculated from the average ofN As,
and the nominal exponentHin of the profile. Grouping the
Hout vs Hin plots obtained using the sameA for all the gen-
eration algorithms, the dispersion of theHout values comes
to evidence.

In Fig. 3 we show theHout vs Hin graphs obtained from
N5500, L5512 profiles, as explained in the previous se
tion. We show separately in Figs. 3~a! and 3~b! the different
As used. Since the profiles arestatistically self-affine, the
measuredHout are subject to a statistical error that is i
versely related toN @42#. In order to characterize the depe
dence of this statistical error on the numberN of averaged
As, we letN vary from 1 to 50 using the same profiles co
sidered in Fig. 3. With these values ofN we have repeated
the numerical analysis~i.e., calculation of theAs, averaging
and application of the AFP! and we have extracted a standa
deviationsN of the measured exponents.

In Fig. 4 we show theHout vs Hin graphs, analogous to
those in Fig. 3, with the calculated error bars~twice the stan-
dard deviationsN), for a few values ofN. We present the
results for a singleA ~the root mean square variable ban
width with fit subtraction!, the results for the otherAs being
similar.

In Fig. 5 we show threeHout vs Hin graphs obtained
respectively with N5500, L5512 profiles, N550, L
54096 profiles andN515, L516 384 profiles. Again, we
present only oneA ~the height-height correlation functio
C2).
02160
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IV. RESULTS AND DISCUSSION: DEVIATION AND
DISPERSION FROM THE IDEAL BEHAVIOR

Ideal continuous fractal profiles are statistically charact
ized by their fractal dimension~universality! and theirHout
vs Hin graphs are straight lines@1,40,58#.

In Fig. 3 a deviation from the ideal behavior is observ
for both theAs. It turns out that the sampling of a profil
affects in a different way different methods of analysis. T
deviation from the ideal behavior has been already obser
in literature~for example, see Ref.@37#! and our results are
in good agreement with the previous ones.

Moreover, within the same method of analysis we obse
that the different generation algorithms give significantly d
ferentHout vs Hin plots. This dispersion is pointed out he
because different generation algorithms are considered
gether. The significance of the dispersion can be infer
from the characterization of the statistical error of the m
sured exponent discussed hereafter.

In Fig. 4 we show that forN.25 andHout,0.3 the error
bars ofHout for different generation algorithms hardly ove
lap. This fact suggests that the statistical error is not the o
reason of the differences between theHout vs Hin plots
shown in Fig. 3.

In Fig. 6 we plot the statistical errorsN times the square
root of N vs N. For N>10 the curves approach a consta
value according to the relationship between the standard
viation of independent, normally distributed measureme
and the standard deviation of the mean uponN measure-
ments:

sN5
s

AN
. ~3!

This result shows that the AFP and the averaging of theAs
1-5
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FIG. 4. Hout vs Hin graphs with error bars equal to twice th
standard deviationsN of the measured exponents. These grap
correspond to different values of the numberN of statistically inde-
pendent profiles from which an average Hurst exponent is m
sured:~a! N51, ~b! N510, and~c! N550. It can be seen that fo
N.10 and forHin,0.3 the overlap between the error bars cor
sponding to different generation algorithms is small or complet
absent. For the sake of clarity we have slightly shifted horizonta
the markers corresponding to different generation algorithms.
02160
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FIG. 5. Hout vs Hin graphs calculated with the height-heig
correlation function from:~a! N5500, L5512 profiles; ~b! N
550, L54096 profiles;~c! N515, L516 384 profiles. Line styles
are the same as in Fig. 3.
1-6
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FRACTAL ANALYSIS OF SAMPLED PROFILES: . . . PHYSICAL REVIEW E 65 021601
do commute. The assessment of this property is nontri
due to the complexity of the AFP. Thus, we extrapolate
statistical error of the measured exponents in Fig. 3N
5500) using Eq.~3! wheres is extracted from the plateau i
Fig. 6. Overestimatings with the value 0.16 we obtain
s50050.007. This value produces an error bar in Fig. 3
small as the symbol used to mark the data. A direct calc
tion of s500, obtained averagingAs calculated on groups o
N5500 profiles for everyHP@0.1,1# and for every genera
tion algorithm, fitting and extracting a mean value and
standard deviation ofH, would have required a huge an
time consuming calculation.

These results suggest that the observed dispersion
tween theHout vs Hin curves for different generation algo
rithms is an intrinsic effect of the sampling, depending on
on the number of sampling pointsL. This fact has an impor-
tant consequence on a fractal analysis of experimental
faces. While looking at a real sample, we do not know w
kind of ‘‘algorithm’’ has generated the surface. This intr
duces an uncertainty on its real fractal dimension indep
dent of the statistical error. Thus, there is an intrinsic up
limit to the precision of the measurement of the exponen
is useless to strengthen the statistics once the number o
quired profiles makes the statistical error smaller than
intrinsic dispersion.

In Fig. 5 we see that asL increases both the deviation an
the dispersion decrease in agreement with their expe
vanishing in the limit ofL going to infinity @37#. This is also
an a posteriori proof of the correctness of both the gene
tion algorithms and the methods of analysis.

Our interpretation of these effects is that the sampling o
self-affine profile lessens its fractality in such a way that i
no longer characterized universally by its fractal dimens
~or Hurst exponent!. While for a continuous self-affine pro
file the relationshipHout5Hin holds, for sampled profiles we
can see that differentAs produce differentHout vs Hin plots
from the same sampled fractal profile. Considering instea

FIG. 6. Graph of the statistical standard deviations of the Hurst
exponent, obtained from the definition of the standard deviation
the mean@Eq. ~3!#, vs the numberN of averagedAs. It can be
clearly seen the saturation for values ofN bigger than 25 for almos
all the generation algorithms.
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singleA, our results show that sampled fractal profiles ge
erated with different generation algorithms but with the sa
ideal dimension give different measured Hurst exponents

However, Fig. 5 clearly shows that the lessening of fra
tality of a profile is rather a continuous process than a sh
transition: the poorer is the sampling, the worse are the
viation and the dispersion. In Figs. 5 and 3 we observe
the lessening of fractality acts in a similar way on profil
generated with different algorithms. The common trend
the Hout vs Hin curves obtained from different generatio
algorithms is interpreted as a consequence of the univers
of fractal objects.

It is then reasonable to assume the existence for eveA
of a universal region in theHout-Hin plane containing all the
Hout vs Hin plots obtained with every possible generati
algorithm. This region, approximately identifiable with th
envelope of theHout vs Hin plots, has a width that depend
on the number of sampling points and approaches the o
dimensionalHout5Hin ideal curve for very large values o
L. We expect that, given any continuous self-affine pro
with a Hurst exponentHin and given the exponentHout mea-
sured from anL-point sampling of the continuous profile, th
pair (Hin ,Hout) belongs to the universal region of the corr
sponding graph~specific for everyA and number of sampling
pointsL). Provided a good characterization of the aforeme
tioned regions~i.e., using as many generation algorithms
possible!, we can use them to generate calibration graphs
everyL andA describing the relationship between the me
suredHout and the true valueHin .

To produce the calibration graphs we proceed as follo
First of all, we make two general assumptions in order
take quantitatively into account the problem of measur
the Hurst exponent of a sampled profile. We assume that
Hout values corresponding to the sameHin are normally dis-
tributed around a mean̂Hout&, and we assume also that th
values obtained with the available generation algorithms
a random sampling of the Gaussian distribution. We th
measure the average and the standard deviation of the
persedHout values corresponding to eachHin separately.
Thus we obtain a sampling of the functions describing
dependence of̂Hout& andsHout

from Hin . With an interpo-
lation algorithm using smooth functions, we derive the cur
representing the relationship between^Hout& and Hin . We
also derive the pair of curves corresponding to^Hout&
1nsHout

and^Hout&2nsHout
vs Hout , which define thenth

confidence level. For every value ofHout it is possible to find
the confidence interval ofHin for any given confidence level
The resulting graphs forL5512 are shown in Fig. 7.

These calibration graphs allow to take into account
deviation and the dispersion due to the sampling. A sim
method has been independently proposed in Ref.@34# even
though the analysis was limited to a single generation al
rithm and the discussions on the reliability of the calibrati
regions together with the intrinsic dispersion were co
pletely neglected.

Using the calibration graphs it is possible to measure
Hurst exponent of poorly sampled profiles correcting for t
first time the deviation due to the sampling and providing

f
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FIG. 7. Calibration graphsHout vs Hin for the methods of analysis used in this paper.~a! Height-height correlation function and~b!
variable bandwidth with fit subtraction. From the value of the measured exponent, one can easily extract the corresponding c
interval of the corrected exponent, as represented graphically in~a!.
as
ce
s

tru

in

d
o-
n
th
n
p

u
fi

n-

e
own
the
nts
an

h
or-
ts

he
elf-
n-
ling
ured
the
lue
he
on

en-

or-
reasonable estimate of the error on a confidence level b
The quantification of the error is of paramount importan
as pointed out in the Introduction, since many authors e
mated the error from the precision of the linear fit@41,43# or
from the standard deviation of the measured exponents@42#.
Our results show that they usually underestimated the
error.

V. APPLICATION OF THE CALIBRATION GRAPHS TO
THE STUDY OF DIRECTED PERCOLATION

NUMERICAL PROFILES

We have applied our procedure to the 111 dimensional
DP model, described by Buldyrevet al. @44#. This model
mimics the paper wetting process by a fluid. The result
pinned interface is self-affine with exponentH.0.63.

We have analyzedN530, L516384 DP profiles with the
height-height correlation function and the variable ban
width with fit subtraction, using the automated fitting prot
col to measure the Hurst exponents. The results are show
the second column of Table I. We have not calculated
statistical error~see Sec. IV! because it would have bee
excessively time consuming. Thus, the error shown is sim
the error of the fit calculated with the AFP.

The values of the measured exponentsHout
16384 are signifi-

cantly lower than the ones predicted by the DP model, s
gesting that a correction is needed even in the case of pro
02160
is.
,

ti-

e

g

-

in
e

ly

g-
les

of L516 384 points, which are widely considered as co
tinuous.

We have then analyzedN51000, L5512 profiles ex-
tracted from theL516 384 profiles. We have applied th
correction procedure based on the calibration graphs sh
in Fig. 7 to the exponents measured with the AFP. In
third column of Table I, the uncorrected measured expone
(Hout

512) are shown. The error is calculated as the root me
square~rms! value of the statistical errors1000 ~evaluated as
explained in Sec. IV! and the error of the fit calculated wit
the AFP. In the fourth column, the confidence intervals c
responding to the 68% probability for the ‘‘true’’ exponen
are shown@Hin

512(68%)#.
The results summarized in Table I allow to notice t

effectiveness of the calibration graphs in the analysis of s
affine profiles when the effects of sampling are no
negligible. In the example reported here, the poor samp
causes a discrepancy of about 4% between the meas
exponents and the theoretical one for DP profiles. After
correction with the calibration graphs, the expected va
Hin.0.63 is consistent with the confidence intervals of t
two As. Moreover, the intrinsic error due to the dispersi
~about half the width of the confidence interval! turns out to
be usually one order of magnitude larger than the aforem
tioned rms error.

In conclusion, our calibration graphs have allowed to c
TABLE I. Measured Hurst exponents of sampled DP profiles~theoretical value:H.0.63 @44#!.

Hout
16384a Hout

512b Hin
512 (68%)

Height-height correlation function 0.61560.004 0.60960.002 @0.613–0.635#
Variable bandwidth with fit subtraction 0.62060.003 0.60860.012 @0.611–0.644#

aThe error forL516 384 is the error of the fit.
bThe error forL5512 is the rms value of the statistical error and the error of the fit.
1-8
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FRACTAL ANALYSIS OF SAMPLED PROFILES: . . . PHYSICAL REVIEW E 65 021601
rect the deviation and to quantify the intrinsic error of t
Hurst exponent of poorly sampled (L5512) DP profiles.

VI. CONCLUSIONS

We have carried out a systematic analysis in order
achieve a deeper understanding of the effects of samplin
the measurement of the Hurst exponent of self-affine p
files. This is a crucial point for the assessment of the relia
ity of fractal analysis of experimental profiles, such as top
graphic profiles of growing thin films and interfaces acquir
with a scanning probe microscope. We have pointed out
some of the steps leading to the measurement of the H
exponent have been only superficially discussed, altho
worth of deeper attention. We have focused on the quan
cation of the effects of sampling and possibly on their c
rection, allowing a more reliable identification of the unive
sality class of growth.

In order to perform such a quantitative analysis we ha
developed an automated fitting protocol that allows to
move the ambiguity in the choice of the region for the line
fit of the analysis functions. This point is usually underes
mated in the published experimental literature, and app
to be a significant source of error in the whole analys
Moreover, an automated protocol sensibly reduces the t
required for the fitting of a large number of noisy curve
allowing a higher statistics. With our automated fitting pr
tocol we have systematically investigated synthetic s
affine profiles generated with all the generation algorith
found in literature using different method of analysis.

The systematic analysis presented in this paper has
carried out on 111 dimensional profiles and we have n
considered two-dimensional methods of analysis~e.g., see
@34,41#!. However, it is reasonable to suppose that even
this case the effects of sampling cannot be neglected, an
conclusions drawn in Ref.@34# are probably incorrect. The
similarity between Fig. 1 in Ref.@34# and the analogous
results presented in this paper@see the variable bandwidt
analysis of profiles generated with the random midpoint d
placement shown in Fig. 3~c!# suggests that conclusions ve
close to those presented here can be drawn also in the
dimensional case.

Studying the discrepancy between the measured Hurs
ponent Hout and the ‘‘true’’ one (Hin) for synthetic self-
affine profiles withL5512 points, we have shown that th
main effects of sampling are a deviation of theHout vs Hin
plots from the ideal behavior and a dispersion of the ex
nents calculated from different generation algorithms. B
these effects smoothly reduce with increasing values oL.
The deviation turns out to be universal in the sense that
trend of theHout vs Hin curves is common to all of the
generation algorithms, depending only on the number
sampling points and on the function used in the analysis.
propose that this behavior is reminiscent of the fact tha
fractal object is completely characterized by its dimens
and, therefore, the deviation can be at least empirically c
rected. The dispersion instead has to be considered a
intrinsic error due to the sampling, but for the very spec
case of profiles whose generation algorithm allows to bu
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their specificHout vs Hin plot. This dispersion error must b
quantitatively taken into account since it cannot be redu
with an increase in the statistics but only with an increase
the number of sampling points.

The existence of an intrinsic dispersion error in the m
surement of the Hurst exponent that depends only on
number of sampling points is very important. In fact, th
intrinsic error easily overwhelms the statistical error f
poorly sampled profiles. It is definitely clear that a reliab
result cannot be based on the consideration of the statis
error only. Moreover, the dispersion poses an upper limi
the precision in the measurement of the Hurst exponen
sampled profiles. It becomes useless to increase the stat
once the statistical error has been made reasonably sm
than the intrinsic one. This is particularly important in a
experimental analysis because it usually reduces significa
the number of profiles that have to be acquired, making
analysis much less time consuming.

Thanks to our systematic analysis, we have built, for e
method of analysis, a calibration graph representing the
gion of the Hout-Hin plane where the true exponents fa
within a given confidence level. We have originally propos
to use these graphs as a reliable empirical method to co
the measured value of the Hurst exponent of a poo
sampled profile and to estimate its intrinsic sampling err
The reliability of the calibration graphs is based on two a
sumptions:

~i! The measured exponents for all the possible self-af
profiles, with the same ‘‘true’’ exponentHin and with the
same number of sampling points, are normally distribute

~ii ! The numerical generation algorithms known in liter
ture provide a statistically reliable sample of all the possi
self-affine profiles.

Even though we have found just six generation algorith
in literature, we believe that they still allow to obtain reaso
able results or at least the only ones obtainable to date. T
results represent a step forward to a reliable fractal anal
of both numerical and experimental profiles and to the in
viduation of the universality classes in the study of the e
lution of many different systems.

In conclusion, we have demonstrated that a reliable m
surement of the Hurst exponent of poorly sampled self-affi
profiles is possible, provided that the measuredHout is cor-
rected of its deviation and that the sampling error is qua
tatively taken into account. We have thus given strength
experimental analyses, since the numerical results repo
in literature to date led to the conclusion that the analysis
self-affine profiles sampled with less than 1000 points is
reliable@37#. Even with the great improvement introduced b
the use of the calibration graphs in the analysis of self-affi
profiles, we definitely agree with Schmittbuhlet al. in point-
ing out that the comparison of the results obtained with d
ferent method of analysis is of fundamental importance@37#.
Furthermore, we shortly comment on the common exp
mental procedure of connectingAs calculated from profiles
acquired with different scan sizes@41,43,61#. This connec-
tion allows investigating a wider range of length scales w
a limited number of sampling points and makes the meas
ment more reliable. However, the deviation and dispers
1-9
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are not influenced by this procedure, since they depend
on the number of sampling points of the profiles on wh
the As are calculated.

The AFP and the calibration graphs have been tested
numerically generated 111 dimensional DP profiles, which
have provided a benchmark to check our protocol. We h
shown that forL5512 profiles a correction is needed and t
calibration graphs allow to recover the theoretical value oH
predicted by the DP model. We have also shown that a
rection is needed even for theL516 384 profiles, which are
widely considered as continuous.

Our results provide a powerful tool for the accurate e
traction of the Hurst exponent from poorly sampled profil
and for the quantification of the error in the measureme
-
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This is of paramount importance for experimentalists w
study the scale invariance of surfaces and interfaces by s
ning probe microscopy or other techniques, with the aim
identifying the underlying universality classes. The hu
amount of experimental results published in the past t
decades about the fractality of many interfaces can be n
analyzed under a new light.
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