A Geometric View of Cryptographic Equation Solving

Sean Murphy and Maura Paterson

Technical Report
RHUL-MA-2007-4
14 May 2007

Royal Holloway
 University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England
http://www.rhul.ac.uk/mathematics/techreports

Abstract

This paper considers the geometric properties of the Relinearisation algorithm and of the XL algorithm used in cryptology for equation solving. We give a formal description of each algorithm in terms of projective geometry, making particular use of the Veronese variety. We establish the fundamental geometrical connection between the two algorithms and show how both algorithms can be viewed as being equivalent to the problem of finding a matrix of low rank in the linear span of a collection of matrices, a problem sometimes known as the MinRank problem. Furthermore, we generalise the XL algorithm to a geometrically invariant algorithm, which we term the GeometricXL algorithm. The GeometricXL algorithm is a technique which can solve certain equation systems that are not easily soluble by the XL algorithm or by Groebner basis methods.

1 Introduction

The solution of a multivariate polynomial equation system is a classical problem in algebraic geometry and computer algebra $[9,10]$. There has also been much recent interest in cryptology in techniques for solving multivariate equation systems over finite fields. Various classical methods, such as Buchberger's algorithm [3] and other related algorithms for computing a Gröbner basis [12, 13], have been considered in a cryptographic context. Furthermore, other methods, such as the Relinearisation algorithm [20] and the XL (extended linearisation) algorithm [8], have been proposed as being particularly appropriate in cryptology. This paper is concerned with the geometric aspects of the Relinearisation algorithm and the XL algorithm.

We are concerned with solution methods for the multivariate equation systems that arise in cryptology, so we consider such systems over a finite field \mathbb{F}. We sometimes require that the characteristic p of the finite field \mathbb{F} is not too small, and we make this statement more precise in Section 2.2. We usually consider multivariate polynomial systems $f_{1}=\ldots=f_{m}=0$ consisting of m homogeneous polynomials $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of the same degree d. This condition is not at all restrictive as any polynomial f of degree d in n variables can be transformed into a homogeneous polynomial in $n+1$ variables by the homogenising transformation

$$
f\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{0}^{d} f\left(\frac{x_{1}}{x_{0}}, \ldots \frac{x_{n}}{x_{0}}\right) .
$$

For simplicity, our discussion is based on multivariate quadratic systems $(d=2)$, though our comments are usually more generally applicable.

The general geometrical structures that are required to analyse properties of the Relinearisation and XL algorithms are discussed in Section 2. In our geometric analysis, we make particular use of a structure known as the Veronese Variety, which we discuss in Section 3. The Relinearisation algorithm is based on the Linearisation algorithm, and we consider the geometric properties of the Linearisation algorithm in Section 4, before discussing the geometric properties of the Relinearisation algorithm in Section 5. The related XL algorithm is then discussed in 6 , which leads to the definition of a new geometrically invariant version of the XL algorithm, the GeometricXL algorithm, in Section 7. The paper finishes with some general comments and observations in Section 8.

2 Vector Spaces and Projective Geometry

In this section, we give a brief description of the general algebraic and geometric structures that we use in our analysis of the Relinearisation algorithm and the XL algorithm.

2.1 The Symmetric Power of a Vector Space

In this paper, we make extensive use of the symmetric power of a vector space, which we now define. This is most naturally done in the language of the tensor product of vector spaces [7,14]. For simplicity, we give an approach that uses vector space bases, but it is just as possible to give an abstract explanation of a tensor product.

Suppose that $\left\{e_{0}, e_{1}, \ldots, e_{n-1}, e_{n}\right\}$ is the basis for the ($n+1$)-dimensional vector space V over \mathbb{F}. We can define a set $(n+1)^{2}$ of formal symbols $\left\{e_{i} \otimes e_{j}\right\}(0 \leq i, j \leq n)$. For our purposes, we regard the tensor product $V \otimes V$ as an $(n+1)^{2}$-dimensional vector space over \mathbb{F} with these basis vectors $e_{i} \otimes e_{j}$, together with an "inclusion" bilinear mapping $\iota: V \times V \rightarrow V \otimes V$ that relates the $2(n+1)$-dimensional vector space $V \times V$ to the $(n+1)^{2}$-dimensional vector space $V \otimes V$. This inclusion mapping ι is defined in such a way that bilinear mappings on $V \times V$ are equivalent to linear mappings on the tensor product $V \otimes V$.

A vector in $V \bigotimes V$ has $(n+1)^{2}$ components and so is naturally represented by a square $(n+1) \times(n+1)$ array or matrix, with the (i, j) component of the vector in $V \otimes V$ being the (i, j)-entry of the matrix.

Thus the tensor product space $V \otimes V$ can be thought of as the vector space of $(n+1) \times(n+1)$ matrices, with basis vectors $e_{i} \otimes e_{j}$ being the matrix with 1 in position (i, j) and 0 everywhere else. In this matrix formulation, the inclusion mapping ι from $V \times V$ to $V \otimes V$ is given by $(u, v) \mapsto u v^{T}$ for column vectors $u, v \in V$.

One subspace of the tensor product vector space that is of particular interest in the subspace of symmetric tensors. The definition of a symmetric tensor in $V \otimes V$ is clear. If $t=\left(t_{i j}\right)$ is a tensor in $V \otimes V$, then t is a symmetric tensor if $t_{i j}=t_{j i}$ for all i and j. In the matrix formulation of $V \otimes V, t$ is a symmetric matrix, so the set of all symmetric tensors is the subspace of symmetric matrices. Thus the set of all symmetric tensors forms a subspace of $V \otimes V$, which is called the symmetric square or second symmetric power of V [16]. The symmetric square has dimension $N=\frac{1}{2}(n+1)(n+2)$, and we denote the symmetric square by $\mathbb{S}^{2}(V)$. In the matrix formulation of $V \otimes V$, a matrix is in the symmetric square of V if and only if it is a symmetric matrix, so the symmetric square $\mathbb{S}^{2}(V)$ can be thought of as the vector space of symmetric matrices.

We can of course generalise the above construction to the d-fold tensor product $V \otimes \ldots \otimes V$. A tensor $t=\left(t_{i_{1} \ldots i_{d}}\right)$ is a symmetric tensor if

$$
t_{i_{1} \ldots i_{d}}=t_{\sigma\left(i_{1}\right) \ldots \sigma\left(i_{d}\right)}
$$

for all i_{1}, \ldots, i_{d}, where σ is any permutation of d objects. The set of all symmetric tensors forms a subspace of $V \otimes \ldots \otimes V$, and is the called the $d^{t h}$ symmetric power of the vector space V. We denote it by $\mathbb{S}^{d}(V)$.

2.2 The Symmetric Power of a Dual of a Vector Space

The dual space V^{*} of a finite-dimensional vector space V over \mathbb{F} of dimension $n+1$ is defined to be the vector space of all linear functionals on V, that is any mapping $\sigma_{a}: V \rightarrow \mathbb{F}$, where $a \in V$, of the form $x \mapsto a^{T} x$ for all $x \in V$. Thus the dual space V^{*} also has dimension $n+1$ and can be thought of as the vector space of all homogeneous linear polynomial $a_{0} x_{0}+\ldots a_{n} x_{n}$ in $(n+1)$ variables (with the 0 -polynomial).

As V^{*} is a vector space, we can also define its $d^{t h}$ symmetric power $\mathbb{S}^{d}\left(V^{*}\right)$. It can similarly be seen that this $d^{\text {th }}$ symmetric power of the dual space, $\mathbb{S}^{d}\left(V^{*}\right)$, can be thought of as the vector space of all homogeneous polynomials of degree d in $(n+1)$ variables (with the 0 -polynomial).

In this paper, we are sometimes specifically concerned with the case that $d<p$, where d is the degree of the homogeneous system and p the characteristic of \mathbb{F}. In this case, we can take formal partial derivatives of
a homogeneous polynomial of degree d. If we let $\mathbf{D}_{x_{i}}$ denote taking such a formal partial derivative with respect to x_{i}, so $\mathbf{D}_{x_{i}} f=\frac{\partial f}{\partial x_{i}}$, then

$$
\mathbf{D}_{x_{i}}: \mathbb{S}^{d}\left(V^{*}\right) \rightarrow \mathbb{S}^{d-1}\left(V^{*}\right)
$$

that is taking a derivative maps a homogeneous degree d polynomial to a homogeneous degree $d-1$ polynomial. More generally, if $\mathbf{x}=x_{i_{1}} \ldots x_{i_{k}}$ is a monomial of degree $k(k \leq d<p)$ and $\mathbf{D}_{\mathbf{x}}^{k}$ denotes taking the $k^{t h}$ order partial derivative with respect to the monomial \mathbf{x}, then

$$
\mathbf{D}_{\mathbf{x}}^{k}: \mathbb{S}^{d}\left(V^{*}\right) \rightarrow \mathbb{S}^{d-k}\left(V^{*}\right)
$$

Moreover, $\mathbf{D}_{\mathbf{x}}^{k}$ is a linear transformation between these vector spaces.
We can also use such $k^{t h}$ order partial derivative mapping $\mathbf{D}_{\mathbf{x}}^{k}$ to define subspaces of $\mathbb{S}^{d-k}\left(V^{*}\right)$. For a homogeneous polynomial f of degree d, so $f \in \mathbb{S}^{d}\left(V^{*}\right)$, we define

$$
\left.W_{f}^{(k)}=\left\langle\mathbf{D}_{\mathbf{x}}^{k} f\right| \mathbf{x} \text { is a monomial of degree } k\right\rangle
$$

a subspace of $\mathbb{S}^{d-k}\left(V^{*}\right)$. We can represent all the possible $k^{t h}$ order partial derivatives of f as a matrix in which each row is a vector $\mathbf{D}_{\mathbf{x}}^{k} f \in \mathbb{S}^{d-k}\left(V^{*}\right)$. We call such a matrix a partial derivatives matrix and denote it by $C_{f}^{(k)}$. By construction, the row space of this partial derivatives matrix $C_{f}^{(k)}$ is the subspace $W_{f}^{(k)}<\mathbb{S}^{d-k}\left(V^{*}\right)$ and its rank is the dimension of $W_{f}^{(k)}$.

Example 1. Consider the polynomial $f \in \mathrm{GF}(37)\left[x_{0}, x_{1}, x_{2}\right]$ given by
$8 x_{0}^{3}+34 x_{0}^{2} x_{1}+20 x_{0}^{2} x_{2}+26 x_{0} x_{1}^{2}+8 x_{0} x_{1} x_{2}+28 x_{0} x_{2}^{2}+32 x_{1}^{3}+3 x_{1}^{2} x_{2}+34 x_{1} x_{2}^{2}+25 x_{2}^{3}$.
The first and second partial derivatives matrices of f are respectively given by

$$
C_{f}^{(1)}=\left(\begin{array}{rrrrrr}
24 & 31 & 3 & 26 & 8 & 28 \\
34 & 15 & 8 & 22 & 6 & 34 \\
20 & 8 & 19 & 3 & 31 & 1
\end{array}\right) \text { and } C_{f}^{(2)}=\left(\begin{array}{rrrr}
11 & 31 & 3 \\
31 & 15 & 8 \\
3 & 8 & 19 \\
15 & 7 & 6 \\
8 & 6 & 31 \\
19 & 31 & 2
\end{array}\right)
$$

In order to use partial derivatives in this way, we generally assume that $d<p$ in this paper when considering partial derivatives. In particular, this means that this paper is not directly concerned with the case when the finite field \mathbb{F} has characteristic 2 when discussing partial derivatives. The proper technical approach for considering formal partial derivatives in nonzero characteristic is to use a divided power ring and a contraction action in place of the multivariate polynomial ring $\mathbb{F}\left[x_{0}, \ldots, x_{n}\right]$ and the formal derivative [18]. However, these two approaches are equivalent in the case when $d<p$, that is the degree of the equation system is less than the field characteristic. In this case, a "partial derivatives" matrix are equivalent to catalecticant matrix [18] in the divided power ring.

2.3 Projective Geometry

As in Section 2.1, we consider the vector space V of dimension $n+1$ over the finite field \mathbb{F}. Any invertible linear transformation $V \rightarrow V$ gives a well-defined mapping of the set of one-dimensional subspaces to itself, known as a collineation. The projective geometry $\mathbb{P}(V)$ is the geometry obtained by considering the one-dimensional subspaces of V under the group of all collineations, so

$$
\mathbb{P}(V)=\left\{\left\langle\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T}\right\rangle \mid\left(x_{0}, x_{1}, \ldots x_{n+1}\right)^{T} \in V \backslash\{0\}\right\}
$$

This projective geometry $\mathbb{P}(V)$ is said to be of (projective) dimension n and is generically denoted by $\operatorname{PG}(n, \mathbb{F})$ where there is no danger of confusion. The vector subspaces of V define the projective subspaces of $\mathbb{P}(V)$.

We now define some terms from projective geometry geometry that we use in this paper. A (projective) line, plane, secundum and hyperplane are projective subspaces of (projective) dimension $1,2,(n-2)$ and $(n-1)$ respectively of $\mathrm{PG}(n, \mathbb{F})$. The (projective) variety $\mathbb{V}\left(f_{1}, \ldots, f_{m}\right)$ of a set of homogeneous polynomials $\left\{f_{1}, \ldots, f_{m}\right\}$ in $(n+1)$ variables over \mathbb{F} is the subset of $\operatorname{PG}(n, \mathbb{F})$ for which $f_{1}=\ldots=f_{m}=0$. A primal of degree d is a variety of a single homogeneous polynomial of degree d, and a quadric is a primal of degree 2 , that is a quadric is a variety defined by a single homogeneous quadratic polynomial. A chord or secant of a variety is a line joining a pair of points of that variety, and the chordal variety or secant variety of a variety is the variety containing all chords or secants to that variety. The pencil generated by two primal varieties $V_{1}=\mathbb{V}\left(f_{1}\right)$ and $V_{2}=\mathbb{V}\left(f_{2}\right)$ of the same degree is the set of varieties

$$
\left\{\mathbb{V}\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right) \mid \lambda_{1}, \lambda_{2} \in \mathbb{F} \text { not both } 0\right\} .
$$

The aspects of projective geometry relevant to this paper are discussed in $[5,17,24]$.

The projective geometries of particular interest in this paper are those formed by the $d^{t h}$ symmetric powers of the vector space V and its dual V^{*}, namely

$$
\mathbb{P}\left(\mathbb{S}^{d}(V)\right) \text { and } \mathbb{P}\left(\mathbb{S}^{d}\left(V^{*}\right)\right)
$$

In particular, $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ and $\mathbb{P}\left(\mathbb{S}^{2}\left(V^{*}\right)\right)$) are projective geometries of (projective) dimension $N=\frac{1}{2}(n+1)(n+2)-1=\frac{1}{2} n(n+3)$. A point in one of these projective geometries can be thought of as a nonzero $(n+1) \times(n+1)$ symmetric matrix and its scalar multiples.

3 Veronese Varieties

Our geometric analysis of the Relinearisation algorithm and the XL algorithm makes extensive use of the geometrical structure known as the Veronese variety. In its most general form, the Veronese variety is a structure of $\mathbb{P}\left(\mathbb{S}^{d}(V)\right)$, the projective geometry of the $d^{t h}$ symmetric power of a vector space, though the case of the symmetric square $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is of most interest to us.

3.1 The Veronese Surface

We first illustrate the Veronese variety by considering the Veronese variety generated by the projective geometry $\mathbb{P}(V)$, where V is a vector space of dimension 3 (so $n=2$) over \mathbb{F}. This projective geometry

$$
\mathbb{P}(V)=\left\{\left\langle\left(x_{0}, x_{1}, x_{2}\right)^{T}\right\rangle \mid\left(x_{0}, x_{1}, x_{2}\right)^{T} \in V \backslash\{0\}\right\}
$$

is also known as the projective plane $\operatorname{PG}(2, \mathbb{F})$. This Veronese variety is a subset of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, a projective geometry of dimension $N=\frac{1}{2}(2 \cdot 5)=5$, so
$\mathbb{P}\left(\mathbb{S}^{2}(V)\right)=\left\{\left\langle\left(y_{00}, y_{01}, y_{02}, y_{11}, y_{12}, y_{22}\right)^{T}\right\rangle \mid\left(y_{00}, \ldots, y_{22}\right)^{T} \in \mathbb{S}^{2}(V) \backslash\{0\}\right\}$.
The Veronese embedding is the mapping $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ defined by

$$
\left(x_{0}, x_{1}, x_{2}\right)^{T} \mapsto\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{T}
$$

The Veronese variety \mathcal{V}_{V} is the image of the projective plane $\mathbb{P}(V)$ under this mapping, so

$$
\mathcal{V}_{V}=\varphi_{V}(\mathbb{P}(V)) \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

In this particular case of the projective plane, the Veronese variety \mathcal{V}_{V} is known as the Veronese surface. The Veronese embedding φ_{V} is a bijection, so \mathcal{V}_{V} contains $q^{2}+q+1$ points. Thus the Veronese surface \mathcal{V}_{V} is known as a variety of dimension 2 as it is in one-to-one correspondence with a 2-dimensional projective space. Furthermore, the Veronese surface \mathcal{V}_{V} has order 4 , as it intersects a generic $(5-2)=3$-dimensional subspace in 4 points.

We also give another useful method of defining the Veronese surface. In Section 2.1 , we saw that the points of projective space $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be identified with the elements of the vector space of 3×3 symmetric matrices, that is matrices of the form

$$
\left(\begin{array}{lll}
y_{00} & y_{01} & y_{02} \\
y_{01} & y_{11} & y_{12} \\
y_{02} & y_{12} & y_{22}
\end{array}\right)
$$

In this matrix formulation, the Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is given by

$$
\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right) \mapsto\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)\left(x_{0} x_{1} x_{2}\right)=\left(\begin{array}{ccc}
x_{0}^{2} & x_{0} x_{1} & x_{0} x_{2} \\
x_{0} x_{1} & x_{1}^{2} & x_{1} x_{2} \\
x_{0} x_{2} & x_{1} x_{2} & x_{2}^{2}
\end{array}\right)
$$

It is clear to see that a point $P \in \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is in $\mathcal{V}_{V}=\operatorname{Im}\left(\varphi_{V}\right)$ if and only if the matrix corresponding to P has rank 1 , that is if and only if all the 2 -minors (2×2 sub-determinants) vanish. Thus the Veronese surface \mathcal{V}_{V} in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be defined as the set of all points $P=$ $\left\langle\left(y_{00}, y_{01}, y_{02}, y_{11}, y_{12}, y_{22}\right)^{T}\right\rangle$ such that all six 2-minors of the above matrix are zero, namely

$$
\begin{array}{lll}
0=y_{00} y_{11}-y_{01}^{2}, & 0=y_{00} y_{22}-y_{02}^{2}, & 0=y_{11} y_{22}-y_{12}^{2} \\
0=y_{00} y_{12}-y_{01} y_{02}, & 0=y_{02} y_{11}-y_{01} y_{12} \text { and } 0=y_{01} y_{22}-y_{02} y_{12}
\end{array}
$$

3.2 Veronese Varieties of Degree 2

We can define Veronese varieties of higher dimension by a similar process. The projective geometry of a vector space V of dimension $n+1$ is defined as

$$
\mathbb{P}(V)=\left\{\left\langle\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T}\right\rangle \mid\left(x_{0}, x_{1}, \ldots x_{n}\right)^{T} \in V \backslash\{0\}\right\}
$$

a projective geometry of dimension n. The corresponding projective geometry of the symmetric square of $V, \mathbb{S}^{2}(V)$, is defined by

$$
\mathbb{P}\left(\mathbb{S}^{2}(V)\right)=\left\{\left\langle\left(y_{00}, y_{01}, \ldots, y_{i j}, \ldots y_{n n}\right)^{T}\right\rangle \mid y_{i j} \in \mathbb{F}, i \geq j\right\}
$$

This is a projective geometry of dimension $N=\frac{1}{2} n(n+3)$ (Section 2.3). The Veronese embedding

$$
\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

of the first projective space in the second is defined by

$$
\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T} \mapsto\left(x_{0}^{2}, x_{0} x_{1}, \ldots, x_{0} x_{n}, x_{1}^{2}, \ldots x_{1} x_{n}, \ldots, x_{n}^{2}\right)^{T}
$$

The Veronese variety \mathcal{V}_{V} of dimension n is the image of $\mathbb{P}(V)$ under φ_{V}, so

$$
\mathcal{V}_{V}=\varphi_{n}(\mathbb{P}(V)) \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

The intersection of the Veronese variety \mathcal{V}_{V} with a generic $(N-n)$ dimensional subspace has 2^{n} points, so the Veronese variety is said to have order 2^{n}.

The vector space $\mathbb{S}^{2}(V)$ can also be thought of as the vector space of symmetric $(n+1) \times(n+1)$ matrices of dimension $(N+1)$ (Section 2.1), that is matrices of the form

$$
\left(\begin{array}{ccccc}
y_{00} & y_{01} & y_{02} & \ldots & y_{0 n} \\
y_{01} & y_{11} & y_{12} & \ldots & y_{1 n} \\
y_{02} & y_{12} & y_{22} & \ldots & y_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{0 n} & y_{1 n} & y_{2 n} & \ldots & y_{n n}
\end{array}\right)
$$

We can also similarly define $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ in terms of such symmetric $(n+$ $1) \times(n+1)$ matrices. In this matrix formulation, the Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is defined by

$$
\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\left(x_{0} x_{1} \ldots x_{n}\right)=\left(\begin{array}{cccc}
x_{0}^{2} & x_{0} x_{1} & \ldots & x_{0} x_{n} \\
x_{0} x_{1} & x_{1}^{2} & \ldots & x_{1} x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{0} x_{n} & x_{1} x_{n} & \ldots & x_{n}^{2}
\end{array}\right) .
$$

As before, it is clear to see that a point $P \in \mathcal{V}_{V}$ if and only if the matrix corresponding to P has rank 1 . An $(n+1) \times(n+1)$ symmetric matrix has $\frac{1}{12} n(n+1)^{2}(n+2)$ independent 2-minors [15], which must all vanish if the matrix has rank 1 . However, each such 2 -minor defines a quadric in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, and a point $P \in \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is in the Veronese variety \mathcal{V}_{V} if and only if P lies in the intersection of all the these quadrics. Thus the Veronese variety $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be defined as the intersection of $\frac{1}{12} n(n+1)^{2}(n+2)$ quadrics in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$.

Further information about Vereonese varieties can be found in $[2,17$, $23,24]$. A Veronese variety is an example of a determinantal variety [16, 18].

3.3 Higher Degree Veronese Varieties

The Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be generalised to degrees higher than 2. The higher degree Veronese embedding

$$
\varphi_{V}^{(d)}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{d}(V)\right)
$$

is an embedding of $\mathbb{P}(V)$ in a projective space of dimension $N_{d}=\binom{n+d}{d}-1$ and is defined by

$$
\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T} \mapsto\left(x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots x_{n-1} x_{n}^{d-1}, x_{n}^{d}\right)^{T}
$$

The higher degree Veronese variety $\mathcal{V}_{V}^{(d)}$ of dimension n is the image of $\mathbb{P}(V)$ under $\varphi_{V}^{(d)}$, so we have

$$
\mathcal{V}_{V}^{(d)}=\varphi_{V}^{(d)}(\mathbb{P}(V)) \subset \mathbb{P}\left(\mathbb{S}^{d}(V)\right)
$$

3.4 Veronese Varieties of the Dual Space

We now consider the projective geometry $\mathbb{P}\left(\mathbb{S}^{d}\left(V^{*}\right)\right)$ of the symmetric power of the dual vector space V^{*} (Section 2.3). In particular, if we consider the elements of V^{*} as linear polynomials, then the ordinary Veronese embedding

$$
\left.\varphi_{V^{*}}: \mathbb{P}\left(V^{*}\right) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}\left(V^{*}\right)\right)\right)
$$

is defined by the mapping

$$
a_{0} x_{0}+\ldots+a_{n} x_{n} \mapsto\left(a_{0} x_{0}+\ldots+a_{n} x_{n}\right)^{2}
$$

when the characteristic of \mathbb{F} is more than $2(p>2)[16,18]$. In this case, the corresponding Veronese variety $\mathcal{V}_{V^{*}}=\varphi_{V^{*}}\left(\mathbb{P}\left(V^{*}\right)\right)$ can be characterised as all homogeneous quadratic polynomials which are squares (up to scalar multiplication), that is

$$
\left.\mathcal{V}_{V^{*}}=\left\{\left\langle L^{2}\right\rangle \mid L \text { is a linear polynomial }\right\} \subset \mathbb{P}\left(\mathbb{S}^{2}\left(V^{*}\right)\right)\right)
$$

More generally, the higher degree Veronese variety of degree d has a similar characterisation for $d<p[16,18]$. The higher degree Veronese variety $\mathcal{V}_{V^{*}}^{(d)^{*}}=\varphi_{V^{*}}^{(d)}\left(\mathbb{P}\left(V^{*}\right)\right)$ of $\mathbb{P}\left(\mathbb{S}^{d}\left(V^{*}\right)\right)$ is given by

$$
\mathcal{V}_{V^{*}}^{(d)}=\left\{\left\langle L^{d}\right\rangle \mid L \text { is a linear polynomial }\right\} \subset \mathbb{P}\left(\mathbb{S}^{d}\left(V^{*}\right)\right)
$$

Thus the Veronese varieties arising from dual spaces in the case that $d<p$ are sets consisting of any polynomial which is the appropriate power of some linear polynomial.

4 A Geometric View of the Linearisation Algorithm

The Linearisation algorithm is an algorithm that both motivates and is used by the Relinearisation algorithm and the XL algorithm. We thus first consider the geometric aspects of the Linearisation algorithm. Linearisation is fundamentally a technique in which a projective space is embedded in another projective space of higher dimension, with the intention that a nonlinear variety in the first space becomes a linear variety in the second larger space. This linear variety can then be easily analysed using simple linear algebra, thus allowing us to reach conclusions about the original variety in the smaller space. In particular, if the original linear variety is the unique solution of a system of quadratic equations, then it may be possible with the Linearisation algorithm to solve this system using only linear algebra.

4.1 Linearisation of a Quadric

The Veronese embedding $\left.\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)\right)$ induces a linearisation mapping $\bar{\varphi}_{V}$ from the set of homogeneous quadratic polynomials in $\mathbb{F}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ to the set of homogenous linear polynomials in $\mathbb{F}\left[y_{00}, y_{i j}, \ldots, y_{n n}\right]$ defined by

$$
\sum_{i=0}^{n} \sum_{j=0}^{i} a_{i j} x_{i} x_{j} \mapsto \sum_{i=0}^{n} \sum_{j=0}^{i} a_{i j} y_{i j} .
$$

We then say that $\bar{f}=\sum_{j \leq i} a_{i j} y_{i j}=\bar{\varphi}_{V}(f)$ is the linearisation of the homogeneous quadratic polynomial $f=\sum_{j \leq i} a_{i j} x_{i} x_{j}$. For such a quadratic polynomial f, the geometric structure defined by

$$
Q_{f}=\left\{\left\langle\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T}\right\rangle \mid f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0\right\} \subset \mathbb{P}(V)
$$

is known as a quadric. Geometrically, the linearisation mapping $\bar{\varphi}_{V}$ induces a mapping from the quadrics in $\mathbb{P}(V)$ to the hyperplanes of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, which we also denote by $\bar{\varphi}_{V}$. Thus $\bar{\varphi}_{V}$ is also a mapping in which the quadric Q_{f} in $\mathbb{P}(V)$ is mapped to the hyperplane $\mathcal{H}_{\bar{f}}$ in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, so $\mathcal{H}_{\bar{f}}=\bar{\varphi}_{V}\left(Q_{f}\right)$, where
$\mathcal{H}_{\bar{f}}=\left\{\left\langle\left(y_{00}, \ldots, y_{i j}, \ldots y_{n n}\right)^{T}\right\rangle \mid \bar{f}\left(y_{00}, \ldots, y_{i j}, \ldots y_{n n}\right)=0\right\} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$.

4.2 Linearisation of a Quadratic Equation System

Suppose $f \in \mathbb{F}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is a homogeneous quadratic equation with the (projective) point $P \in \mathbb{P}(V)$ as a solution of $f=0$, so $P \in Q_{f}$. By construction, the point $\varphi_{V}(P) \in \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is a solution of $\bar{f}=\bar{\varphi}_{V}(f)=0$, or equivalently $\varphi_{V}(P) \in \mathcal{H}_{\bar{f}}$. Suppose now that $P \in \mathbb{P}(V)$ is a solution of a system of m such independent homogeneous quadratic equations $f_{1}=\ldots=f_{m}=0$, then $\varphi_{V}(P) \in \mathcal{H}_{\overline{f_{1}}}, \ldots, \mathcal{H}_{\overline{f_{m}}}$. We can define the projective subspace $\mathcal{H} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ by

$$
\mathcal{H}=\bigcap_{i=1}^{m} \mathcal{H}_{\overline{f_{i}}} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

so we clearly have

$$
\varphi_{V}(P) \in \mathcal{H} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

Thus the solutions in $\mathbb{P}(V)$ of a system of homogeneous quadratic polynomials are mapped to points in the intersection of hyperplanes in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. The intersection of hyperplanes can be efficiently calculated by row reduction of a matrix, so a linear space containing $\varphi_{V}(P)$ can be easily obtained. If the original equation system has a unique solution (so $m>n$) and this space \mathcal{H} is a unique (projective) point, then necessarily \mathcal{H} is on the Veronese variety \mathcal{V}_{V} We can then obtain the unique (projective) solution P to the original equation system as

$$
P=\varphi_{V}^{-1}(\mathcal{H})
$$

The Linearisation algorithm (described in [20]) is an equation solving technique in which every monomial is regarded as an independent variable. The resulting linearised system is then solved using basic linear algebra. If the original equation system has a unique solution, then it is hoped that solving the linearised system provides it. The geometric technique for equation solving described above is a geometric description of the Linearisation algorithm. However, the Linearisation algorithm can give "parasitic" solutions, that is elements of \mathcal{H} which do not correspond to solutions of the original equation system, even when this equation system has a unique solution. In fact, if we define the linearisation variety \mathcal{L} by

$$
\mathcal{L}=\mathcal{V}_{V} \bigcap \mathcal{H} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

then the solution set of the original equation system is given by

$$
\varphi_{V}^{-1}(\mathcal{L})=\varphi_{V}^{-1}\left(\mathcal{V}_{V} \bigcap \mathcal{H}\right) \subset \mathbb{P}(V)
$$

so the solution set is given by the intersection of the Veronese variety with the intersection of hyperplanes. Parasitic solutions can arise when this hyperplane intersection is not contained in the Veronese variety. However, the Veronese variety contains no non-trivial linear spaces, so the hyperplane intersection \mathcal{H} is only contained in the Veronese variety \mathcal{V}_{V} if it is a single point. The solutions of the quadratic system $f_{1}=\ldots=f_{m}=0$ are therefore given by the system of linear equations $\bar{f}_{1}=\ldots=\bar{f}_{m}=0$ and the quadratic equations that define the Veronese variety \mathcal{V}_{V}. When the original equation system has a unique solution given by the point $P \in \mathbb{P}(V)$, then the Linearisation algorithm succeeds when $\varphi_{V}(P) \in \mathcal{L}=\mathcal{H}$, that is the Veronese quadratic equations are not needed to obtain a unique solution.

Example 2. Consider the following quadratic equation system

$$
\begin{aligned}
& 0=1+x_{1}+x_{2}-x_{1} x_{2} \\
& 0=2+x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=x_{1}+x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2} \\
& 0=3+x_{1}+9 x_{2}+8 x_{1}^{2}+18 x_{1} x_{2}+22 x_{2}^{2} \\
& 0=1+4 x_{1}+3 x_{2}+2 x_{1}^{2}-3 x_{1} x_{2}-5 x_{2}^{2}
\end{aligned}
$$

with three equations in two variables over GF(37). Homogenising these equations by the addition of a variable x_{0} gives

$$
\begin{aligned}
& 0=f_{1}=x_{0}^{2}+x_{0} x_{1}+x_{0} x_{2}-x_{1} x_{2} \\
& 0=f_{2}=2 x_{0}^{2}+x_{0} x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=f_{3}=x_{0} x_{1}+x_{0} x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2} \\
& 0=f_{4}=3 x_{0}^{2}+x_{0} x_{1}+9 x_{0} x_{2}+8 x_{1}^{2}+18 x_{1} x_{2}+22 x_{2}^{2} \\
& 0=f_{5}=x_{0}^{2}+4 x_{0} x_{1}+3 x_{0} x_{2}+2 x_{1}^{2}-3 x_{1} x_{2}-5 x_{2}^{2} .
\end{aligned}
$$

We thus take V to be the vector space of dimension 3 over $\operatorname{GF}(37)$, so $n=2$ and $N=\frac{1}{2}(2 \cdot 5)=5$. The above equation system now defines a variety in $\mathbb{P}(V)$. Applying the linearisation mapping $\bar{\varphi}_{V}$ induced by the Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, we obtain

$$
\begin{aligned}
& 0=\overline{f_{1}}=y_{00}+y_{01}+y_{02}-y_{12} \\
& 0=\overline{f_{2}}=2 y_{00}+y_{02}+y_{11}-y_{22} \\
& 0=\overline{f_{3}}=y_{01}+y_{02}-2 y_{11}+2 y_{12}-y_{22} \\
& 0=\overline{f_{4}}=3 y_{00}+y_{01}+9 x_{02}+8 y_{11}+18 y_{12}+22 y_{22} \\
& 0=\overline{f_{5}}=y_{00}+4 y_{01}+3 y_{02}+2 y_{11}-3 y_{12}-5 y_{22} .
\end{aligned}
$$

Each of these linear equations defines a hyperplane $\mathcal{H}_{\overline{f_{i}}}$, so we have

$$
\mathcal{H}=\bigcap_{i=1}^{5} \mathcal{H}_{\overline{f_{i}}}=\left\langle(1,2,3,4,6,9)^{T}\right\rangle \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

Applying the inverse Veronese embedding gives

$$
\varphi_{V}^{-1}(\mathcal{H})=\left\langle(1,2,3)^{T}\right\rangle \subset \mathbb{P}(V) .
$$

Thus we have $\left(x_{0}, x_{1}, x_{2}\right)=\lambda(1,2,3)$, which is the only solution as \mathcal{H} contains a single (projective) point. To obtain the solution to the original nonhomogeneous equation system, we set $x_{0}=1$, that is we take $\lambda=1$ to obtain $\left(x_{1}, x_{2}\right)=(2,3)$.

In general, a system of m homogeneous quadratic equations in $\mathbb{P}(V)$ leads to m hyperplanes in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. These hyperplanes intersect in a space of dimension $N-m$. Thus linearisation transforms the original problem in n dimensions into a problem in $\frac{1}{2} n(n+3)-m$ dimensions.

5 A Geometric View of the Relinearisation Algorithm

The Relinearisation algorithm [20] is a technique that can be used when the Linearisation algorithm fails, that is the solution produced contains parasitic solutions. The technique of linearisation gives a subspace of a projective space that contains all solutions. The Relinearisation algorithm applies a further linearisation mapping to this subspace with the aim of recovering this solution.

5.1 Relinearisation of a Linearisation Variety

When the Linearisation algorithm fails, we know that the Veronese embedding $\varphi_{V}(P)$ of a solution $P \in \mathbb{P}(V)$ of the original homogeneous equation system lies in the linearisation variety $\mathcal{L}=\mathcal{V}_{V} \bigcap \mathcal{H}$. However, the linearisation variety is the intersection of quadrics, so we have

$$
\mathcal{L}=\bigcap_{i=1}^{s} Q_{\widehat{f_{i}}},
$$

where $i=1, \ldots, s$ with $s \leq \frac{1}{12} n(n+1)^{2}(n+2)$ and \widehat{f}_{i} is a homogeneous quadratic polynomial in $\mathbb{F}\left[y_{00}, \ldots, y_{i j}, \ldots, y_{n n}\right]$.

The Relinearisation algorithm is essentially the algorithm obtained by applying a further linearisation mapping to the linearisation variety \mathcal{L}. The Veronese embedding

$$
\varphi_{\mathbb{S}^{2}(V)}: \mathbb{P}\left(\mathbb{S}^{2}(V)\right) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}\left(\mathbb{S}^{2}(V)\right)\right)
$$

is a mapping of a projective space of dimension $N=\frac{1}{2} n(n+3)$ to a projective space of dimension at most $\frac{1}{2} N(N+3)$. The corresponding linearisation mapping $\bar{\varphi}_{\mathbb{S}^{2}(V)}$ maps quadrics in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ to hyperplanes in $\mathbb{P}\left(\mathbb{S}^{2}\left(\mathbb{S}^{2}(V)\right)\right)$. This mapping $\bar{\varphi}_{\mathbb{S}^{2}(V)}$ is the relinearisation mapping, and applying it to the linearisation variety gives

$$
\bar{\varphi}_{\mathbb{S}^{2}(V)}(\mathcal{L})=\bigcap_{i=1}^{s} \bar{\varphi}_{V}\left(Q_{\widehat{f}_{i}}\right)=\bigcap_{i=1}^{s} H_{\widehat{\hat{f}}_{i}}
$$

Suppose a point $P \in \mathbb{P}(V)$ is a solution of the original homogeneous quadratic equation $f_{1}=\ldots=f_{m}=0$ in $\mathbb{F}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, then (by construction) we have

$$
\varphi_{\mathbb{S}^{2}(V)}\left(\varphi_{V}(P)\right) \in \bar{\varphi}_{\mathbb{S}^{2}(V)}(\mathcal{L})
$$

Thus a mapping of a solution lies in the intersection of hyperplanes in a projective space, which can be easily calculated with basic algebra. If the original equation system has a unique solution and $\bigcap_{i=1}^{s} \mathcal{H}_{\bar{f}_{i}}$ is a unique (projective) point, then

$$
P=\varphi_{V}^{-1}\left(\varphi_{\mathbb{S}^{2}(V)}^{-1}\left(\bar{\varphi}_{\mathbb{S}^{2}(V)}(\mathcal{L})\right)\right)
$$

Thus the Relinearisation algorithm offers a technique for finding the solution to a system of quadratic equations. Furthermore, even if the Relinearisation algorithm fails to find the solution, the variety $\bar{\varphi}_{\mathbb{S}^{2}(V)}(\mathcal{L})$ could itself be relinearised to find a solution and so on.

5.2 An Efficient Relinearisation Algorithm

The Relinearisation algorithm is actually performed in a slightly different manner to that described above for reasons of efficiency. The projective subspace

$$
\mathcal{H}=\bigcap_{i=1}^{m} \mathcal{H}_{\overline{f_{i}}} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

given by the intersection of the hyperplanes defines by the polynomials f_{1}, \ldots, f_{m} has (projective) dimension $N-m$. Thus \mathcal{H} is the projectivisation of a vector space over \mathbb{F} of dimension $N+1-m$. If we suppose that U is a generic vector space over \mathbb{F} of dimension $N+1-m$, then we can define a bijective substitution mapping

$$
\psi_{U}: \mathbb{P}(U) \rightarrow \mathcal{H} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

As ψ_{U} is bijective, there exists an inverse mapping $\psi_{U}^{-1}: \mathcal{H} \rightarrow \mathbb{P}(U)$, so we can then define an equivalent linearisation variety $\mathcal{L}^{\prime}=\psi_{U}^{-1}(\mathcal{L}) \subset \mathbb{P}(U)$. This equivalent linearisation variety \mathcal{L}^{\prime} is the intersection of s quadrics, where $s \leq \frac{1}{12} n(n+1)^{2}(n+2)$.

The Veronese embedding for $\mathbb{P}(U)$ is $\varphi_{U}: \mathbb{P}(U) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(U)\right)$, where the projective geometry $\mathbb{P}\left(\mathbb{S}^{2}(U)\right)$ has dimension $\frac{1}{2}(N-m)(N-m+$ 3). Relinearisation of the equivalent linearisation variety \mathcal{L}^{\prime} is achieved by applying the corresponding linearisation mapping $\bar{\varphi}_{U}$. The resulting variety $\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)$ is the intersection of hyperplanes, so is easily calculated. If P is a solution of the original equation system, then

$$
\varphi_{U}\left(\psi_{U}^{-1}\left(\varphi_{V}(P)\right)\right) \in \bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)
$$

Thus if the original equation system has a unique solution and $\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)$ is a unique (projective) point P, then the solution of the original equation system is given by

$$
P=\varphi_{V}^{-1}\left(\psi_{U}\left(\varphi_{U}^{-1}\left(\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)\right)\right)\right)
$$

This is clearly a more efficient way of implementing the Relinearisation algorithm as it is performing calculations in the projective geometry $\mathbb{P}\left(\mathbb{S}^{2}(U)\right)$, which has smaller dimension than the original projective geometry $\mathbb{P}\left(\mathbb{S}^{2}\left(\mathbb{S}^{2}(V)\right)\right)$.

Example 3. Consider the following quadratic equation system

$$
\begin{aligned}
& 0=1+x_{1}+x_{2}-x_{1} x_{2} \\
& 0=2+x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=x_{1}+x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}
\end{aligned}
$$

with three equations in two variables over $\operatorname{GF}(37)$. This is the equation system given by the first three equations of Example 2 and has the unique solution $\left(x_{1}, x_{2}\right)=(2,3)$. There are clearly not enough equations in this equation system to obtain this solution by the Linearisation algorithm. As before, we can homogenise these equations by the addition of a variable x_{0} to give

$$
\begin{aligned}
& 0=f_{1}=x_{0}^{2}+x_{0} x_{1}+x_{0} x_{2}-x_{1} x_{2} \\
& 0=f_{2}=2 x_{0}^{2}+x_{0} x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=f_{3}=x_{0} x_{1}+x_{0} x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}
\end{aligned}
$$

which also defines a variety in $\mathbb{P}(V)$, where V is a vector space of dimension 3 , so $n=2$. We can now apply the linearisation mapping $\bar{\varphi}_{V}$ induced
by the Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ to give

$$
\begin{aligned}
& 0=\overline{f_{1}}=y_{00}+y_{01}+y_{02}-y_{12} \\
& 0=\overline{f_{2}}=2 y_{00}+y_{02}+y_{11}-y_{22} \\
& 0=\overline{f_{3}}=y_{01}+y_{02}-2 y_{11}+2 y_{12}-y_{22}
\end{aligned}
$$

The projective subspace \mathcal{H} defined by the intersection of the subspaces $\mathcal{H}_{\overline{f_{i}}}$ of $\mathbb{S}^{2}(V)$ defined by these equations is given by

$$
\mathcal{H}=\left\langle(1,0,0,0,1,2)^{T},(0,1,0,1,1,1)^{T},(0,0,1,13,1,14)^{T}\right\rangle \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

If we let U be a 3 -dimensional vector space over $\operatorname{GF}(37)$, then we can define a substitution mapping $\psi_{U}: \mathbb{P}(U) \rightarrow \mathcal{H}$ based on a 6×3 matrix A with the property that if u is a nonzero vector in U, then $\langle z\rangle=\psi_{U}(\langle u\rangle) \in$ $\mathcal{H} \subset \mathbb{P}(V)$, where $z=A u \in \mathbb{S}^{2}(V)$. The columns of A define \mathcal{H}, so A is given by

$$
A=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 13 & 1 & 14
\end{array}\right)^{T}
$$

The Veronese surface $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is defined as the intersection of the six quadrics

$$
\begin{array}{lll}
0=y_{00} y_{11}-y_{01}^{2}, & 0=y_{00} y_{22}-y_{02}^{2}, & 0=y_{11} y_{22}-y_{12}^{2} \\
0=y_{00} y_{12}-y_{01} y_{02}, & 0=y_{02} y_{11}-y_{01} y_{12} \text { and } 0=y_{01} y_{22}-y_{02} y_{12}
\end{array}
$$

There exist six symmetric 6×6 matrices $M_{i}(1 \leq i \leq 6)$ such that the above quadrics defining the Veronese variety $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ are given by $0=y^{T} M_{i} y$. The linearisation variety $\mathcal{L}=\mathcal{V}_{V} \bigcap U$ is contained in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. We use the equivalent linearisation variety $\mathcal{L}^{\prime}=\psi_{U}^{-1}(\mathcal{L}) \subset$ $\mathbb{P}(U)$ in a space of smaller dimension. Applying the substitution mapping $y=A z$ we obtain quadrics defining the equivalent linearisation variety $\mathcal{L}^{\prime} \subset \mathbb{P}(U)$ given by $0=(A z)^{T} M_{i}(A z)=z^{T}\left(A^{T} M_{i} A\right) z$. Thus the equivalent linearisation variety \mathcal{L}^{\prime} is defined by the intersection of the quadrics

$$
\begin{aligned}
& 0=u_{0} u_{1}+13 u_{0} u_{2}+36 u_{1}^{2} \\
& 0=2 u_{0}^{2}+u_{0} u_{1}+14 u_{0} u_{2}+36 u_{2}^{2} \\
& 0=36 u_{0}^{2}+24 u_{0} u_{2}+25 u_{1} u_{2}+33 u_{2}^{2} \\
& 0=u_{0}^{2}+u_{0} u_{1}+u_{0} u_{2}+36 u_{1} u_{2} \\
& 0=36 u_{0} u_{1}+36 u_{1}^{2}+13 u_{2}^{2} \\
& 0=2 u_{0} u_{1}+36 u_{0} u_{2}+u_{1}^{2}+13 u_{1} u_{2}+36 u_{2}^{2} .
\end{aligned}
$$

We can now relinearise $\mathcal{L}^{\prime} \subset \mathbb{P}(U)$ by applying the linearisation mapping $\bar{\varphi}_{U}$ induced by the Veronese embedding $\varphi_{U}: \mathbb{P}(U) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(U)\right)$ to obtain $\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)$ as the intersection of the hyperplanes defined by

$$
\left(\begin{array}{rrrrrr}
0 & 1 & 13 & 36 & 0 & 0 \\
2 & 1 & 14 & 0 & 0 & 36 \\
36 & 0 & 24 & 0 & 25 & 33 \\
1 & 1 & 1 & 0 & 36 & 0 \\
0 & 36 & 0 & 36 & 0 & 13 \\
0 & 2 & 36 & 1 & 13 & 36
\end{array}\right)\left(\begin{array}{l}
w_{00} \\
w_{01} \\
w_{02} \\
w_{11} \\
w_{12} \\
w_{22}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Reducing this linear system to echelon form, we obtain

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 & 0 & 8 \\
0 & 0 & 1 & 0 & 0 & 12 \\
0 & 0 & 0 & 1 & 0 & 16 \\
0 & 0 & 0 & 0 & 1 & 24 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
w_{00} \\
w_{01} \\
w_{02} \\
w_{11} \\
w_{12} \\
w_{22}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We can thus solve this linear system to obtain

$$
\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)=\left\langle(4,8,12,16,24,-1)^{T}\right\rangle=\left\langle(1,2,3,4,6,9)^{T}\right\rangle \in \mathbb{P}\left(\mathbb{S}^{2}(U)\right)
$$

Having obtained this solution, we can now back-track through the various mappings to obtain the unique solution to the original equation system. Applying the first inverse Veronese embedding, we have

$$
\varphi_{U}^{-1}\left(\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)\right)=\left\langle(1,2,3)^{T}\right\rangle \in \mathbb{P}(U)
$$

Applying the substitution mapping ψ_{U} by calculating $A(1,2,3)^{T}$ gives us

$$
\psi_{U}\left(\varphi_{U}^{-1}\left(\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)\right)\right)=\left\langle(1,2,3,4,6,9)^{T}\right\rangle \in \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

We can now apply the last inverse Veronese embedding to give the solution as

$$
\varphi_{V}^{-1}\left(\psi_{U}\left(\varphi_{U}^{-1}\left(\bar{\varphi}_{U}\left(\mathcal{L}^{\prime}\right)\right)\right)\right)=\left\langle(1,2,3)^{T}\right\rangle \in \mathbb{P}(V)
$$

Thus we have $\left(x_{0}, x_{1}, x_{2}\right)=\lambda(1,2,3)$, so taking $x_{0}=1$ gives $\left(x_{1}, x_{2}\right)=$ $(2,3)$ as the unique solution of the original nonhomogeneous equation system.

5.3 A Matrix Rank Formulation of the Relinearisation Algorithm

The quadratic equation system defines a collection of quadrics in $\mathbb{P}(V)$. After linearisation, we obtain a subspace \mathcal{H} of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ of (projective) dimension $N-m$. However, the projective geometry $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be defined by the vector space of symmetric $(n+1) \times(n+1)$ matrices (Section 2.1). Thus, in terms of the vector space of symmetric matrices, the subspace \mathcal{H} is generated by $N-m$ symmetric matrices H_{1}, \ldots, H_{N-m}, that is

$$
\mathcal{H}=\left\langle H_{1}, \ldots, H_{N-m}\right\rangle
$$

so any point in \mathcal{H} is a linear combination of the above matrices.
The original quadratic equation system is analysed by considering $\mathcal{H} \bigcap \mathcal{V}_{V}$. However, in terms of the vector space of symmetric matrices, the points of the Veronese surface \mathcal{V}_{V} are given by the matrices of rank 1 (Section 3.2). Thus $\mathcal{H} \bigcap \mathcal{V}_{V}$ is given by the matrices of rank 1 in \mathcal{H}. We can thus potentially solve the equation system by finding $\lambda_{0}, \ldots, \lambda_{N-m-1} \in \mathbb{F}$ such that

$$
\operatorname{Rank}\left(\sum_{l=1}^{N-m-1} \lambda_{l} M_{l}\right)=1
$$

The 2 -minors or 2×2 sub-determinants of a matrix of rank 1 are all 0 . Thus evaluating the 2 -minors of $\sum_{l=1}^{N-m-1} \lambda_{l} M_{l}$ gives a system of multivariate quadratic equations in the variables $\lambda_{1}, \ldots, \lambda_{N-m-1}$. This equation system defines the linearisation variety \mathcal{L}^{\prime} used in the efficient Relinearisation technique of Section 5.2.

Example 4. Consider the quadratic equation system of Example 3, namely

$$
\begin{aligned}
& 0=1+x_{1}+x_{2}-x_{1} x_{2} \\
& 0=2+x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=x_{1}+x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}
\end{aligned}
$$

We saw that after homogenisation and linearisation (Example 3) we obtain the subspace \mathcal{H} of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ given by

$$
\mathcal{H}=\left\langle(1,0,0,0,1,2)^{T},(0,1,0,1,1,1)^{T},(0,0,1,13,1,14)^{T}\right\rangle
$$

Expressing $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ in terms of symmetric matrices, we obtain $H=$ $\left\langle H_{1}, H_{2}, H_{3}\right\rangle$, where

$$
H_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right), H_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \text { and } H_{3}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 13 & 1 \\
1 & 1 & 14
\end{array}\right)
$$

An arbitrary linear combination of these generating matrices gives

$$
\lambda_{1} H_{1}+\lambda_{2} H_{2}+\lambda_{3} H_{3}=\left(\begin{array}{ccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\lambda_{2} & \lambda_{2}+13 \lambda_{3} & \lambda_{1}+\lambda_{2}+\lambda_{3} \\
\lambda_{3} \lambda_{1}+\lambda_{2}+\lambda_{3} & \lambda_{1}+\lambda_{2}+14 \lambda_{3}
\end{array}\right)
$$

Evaluating the 2-minors of $\lambda_{1} H_{1}+\lambda_{2} H_{2}+\lambda_{3} H_{3}$ gives the system of nine quadratic equations described by the matrix equation

$$
\left(\begin{array}{rrrrrr}
0 & 1 & 13 & 36 & 0 & 0 \\
1 & 1 & 1 & 0 & 36 & 0 \\
0 & 1 & 0 & 1 & 0 & 24 \\
36 & 36 & 36 & 0 & 1 & 0 \\
35 & 36 & 23 & 0 & 0 & 1 \\
0 & 35 & 1 & 36 & 24 & 1 \\
0 & 1 & 0 & 1 & 0 & 24 \\
0 & 2 & 36 & 1 & 13 & 36 \\
36 & 0 & 24 & 0 & 25 & 33
\end{array}\right)\left(\begin{array}{c}
\lambda_{1}^{2} \\
\lambda_{1} \lambda_{2} \\
\lambda_{1} \lambda_{3} \\
\lambda_{2}^{2} \\
\lambda_{2} \lambda_{3} \\
\lambda_{3}^{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We reduce this linear system of rank 5 to obtain

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 & 0 & 8 \\
0 & 0 & 1 & 0 & 0 & 12 \\
0 & 0 & 0 & 1 & 0 & 16 \\
0 & 0 & 0 & 0 & 1 & 24
\end{array}\right)\left(\begin{array}{c}
\lambda_{1}^{2} \\
\lambda_{1} \lambda_{2} \\
\lambda_{1} \lambda_{3} \\
\lambda_{2}^{2} \\
\lambda_{2} \lambda_{3} \\
\lambda_{3}^{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We thus have $\lambda_{1}=-12 \lambda_{3}$ and $\lambda_{2}=-24 \lambda_{3}$, so $\lambda_{3}=3 \lambda_{1}$ and $\lambda_{2}=2 \lambda_{1}$, so we obtain

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)+2\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+3\left(\begin{array}{lrr}
0 & 0 & 1 \\
0 & 13 & 1 \\
1 & 1 & 14
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right) .
$$

The matrix on the right has rank 1 and corresponds to the projective point $\langle(1,2,3)\rangle$, which is the solution of Example 3. We note that the final linear system of both this example and that of Example 3 defining the equivalent linearisation variety \mathcal{L}^{\prime} are identical.

5.4 Failure of the Relinearisation Algorithm

Example 3 illustrates one of the complications that can arises during relinearisation. The six quadratic equations defining the Veronese surface
in $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ (projective dimension 5) are linearly independent. However, there is no guarantee that their respective restrictions to a given subspace are independent. In Example 3, the restriction of the six quadratic equations to the projective subspace \mathcal{H} (projective dimension 2) gives a system of rank 5. The analysis of the Relinearisation algorithm given in [20] does not take this issue into account. Hence the estimates given in [20] for the number of equations required for the successful application of the Relinearisation algorithm can be overly optimistic. Example 5 illustrates this point.

Example 5. We consider eight homogeneous polynomials in four variables over GF(37) given by

$$
\left(\begin{array}{rrrrrrrrrr}
17 & 18 & 18 & 12 & 5 & 21 & 11 & 22 & 4 & 32 \\
15 & 32 & 17 & 23 & 4 & 33 & 18 & 13 & 26 & 8 \\
10 & 32 & 20 & 20 & 8 & 27 & 32 & 19 & 20 & 10 \\
11 & 30 & 23 & 31 & 14 & 5 & 2 & 35 & 14 & 14 \\
9 & 11 & 3 & 17 & 24 & 10 & 16 & 3 & 27 & 23 \\
23 & 25 & 11 & 4 & 13 & 8 & 8 & 32 & 31 & 18 \\
13 & 17 & 5 & 29 & 19 & 18 & 23 & 34 & 17 & 16 \\
8 & 28 & 25 & 19 & 35 & 8 & 36 & 21 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0}^{2} \\
x_{0} x_{1} \\
x_{0} x_{2} \\
x_{0} x_{3} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} x_{3} \\
x_{2}^{2} \\
x_{2} x_{3} \\
x_{3}^{2}
\end{array}\right) .
$$

If we let S denote the above 8×10 matrix over $\mathrm{GF}(37)$ and x the vector of quadratic monomials, then the equation system $S x=0$ has the unique (projective) solution $\left\langle(1,6,14,5)^{T}\right\rangle$. If this equation system had a ninth equation, then we could solve this system by the Linearisation algorithm. Thus the equation system $S x=0$ is almost fully linearised.

We consider the above equation system in terms of the vector space V of dimension 4 over $\operatorname{GF}(37)$, so $n=3$. This equation system gives eight quadrics in $\mathbb{P}(V)$. The Veronese embedding $\varphi_{V}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ embeds this projective geometry of dimension 3 in one of dimension $N=$ $\frac{1}{2}(3 \cdot 6)=9$. This Veronese embedding φ_{V} induces a linearisation mapping $\bar{\varphi}_{V}$. Applying $\bar{\varphi}_{V}$ to this equation system gives the linear system $S y=0$, where $\left(y_{00}, \ldots, y_{i j}, \ldots, y_{33}\right)^{T}$ are the variables used to define $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. Solutions to this linear system are contained in the intersection $\mathcal{H} \subset$ $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ of the 8 hyperplanes, a projective subspace \mathcal{H} with (projective) dimension 1 and defined by
$\mathcal{H}=\left\langle(1,0,13,21,1,31,22,20,30,0)^{T},(0,1,31,22,12,15,26,17,19,35)^{T}\right\rangle$.

If we let U denote a generic vector space of dimension 2 over $\operatorname{GF}(37)$, then $\mathbb{P}(U)$ is a projective geometry of dimension 1 (a projective line). We can now define a bijective substitution mapping $\psi_{U}: \mathbb{P}(U) \rightarrow(H)$ based on the 10×2 matrix

$$
A=\left(\begin{array}{rrrrrrrrrr}
1 & 0 & 13 & 21 & 1 & 31 & 22 & 20 & 30 & 0 \\
0 & 1 & 31 & 22 & 12 & 15 & 26 & 17 & 19 & 35
\end{array}\right)^{T} .
$$

The Veronese variety $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ can be defined as the intersection of 20 quadrics. Thus there exist twenty 10×10 matrices M_{i} such that $y^{T} M_{i} y=0$. The linearisation variety is given by $\mathcal{L}=\mathcal{V}_{V} \bigcap \mathcal{H} \subset$ $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. The substitution mapping ψ_{U} allows us to define an equivalent linearisation variety $\mathcal{L}^{\prime}=\psi_{U}^{-1}(\mathcal{L}) \subset \mathbb{P}(U)$ in a space of dimension 1. Applying the substitution mapping gives twenty quadrics $z^{T}\left(A^{T} M_{i} A\right) z(i=$ $1, \ldots, 20)$ defining the equivalent linearisation variety \mathcal{L}^{\prime}. Thus the equivalent linearisation variety \mathcal{L}^{\prime} is given by $L u=0$, where $u=\left(u_{0}^{2}, u_{0} u_{1}, u_{1}^{2}\right)^{T}$ and L^{T} is the 3×20 matrix

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrr}
1 & 31 & 22 & 36 & 16 & 3 & 24 & 16 & 4 & 15 & 19 & 5 & 7 & 36 & 21 & 14 & 34 & 9 & 6 & 25 \\
12 & 2 & 5 & 25 & 7 & 36 & 29 & 7 & 11 & 32 & 6 & 23 & 10 & 25 & 30 & 20 & 1 & 34 & 35 & 4 \\
36 & 6 & 15 & 1 & 21 & 34 & 13 & 21 & 33 & 22 & 18 & 32 & 30 & 1 & 16 & 23 & 3 & 28 & 31 & 12
\end{array}\right) .
$$

The Relinearisation algorithm requires us to linearise the above linearisation variety \mathcal{L}^{\prime}. The Veronese embedding $\varphi_{U}: \mathbb{P}(U) \rightarrow \mathbb{P}\left(\mathbb{S}^{2}(U)\right)$ embeds $\mathbb{P}(U)$ in a projective space of dimension $\frac{1}{2}(1 \cdot 4)=2$. When we apply this embedding to the above variety, we obtain the variety
$\mathcal{X}=\left\{\left\langle\left(w_{00}, w_{01}, w_{11}\right)^{T} \in \mathbb{P}\left(\mathbb{S}^{2}(U)\right)\right\rangle \mid L\left(w_{00}, w_{01}, w_{11}\right)^{T}=0\right\} \subset \mathbb{P}\left(\mathbb{S}^{2}(U)\right)$.
For the Relinearisation algorithm to succeed, we require that $\mathcal{X} \subset$ $\mathbb{P}\left(\mathbb{S}^{2}(U)\right)$ is a unique (projective) point. This condition requires that the matrix L has rank 2. However, the matrix L has rank 1 as every row is a multiple of $(1,12,36)$. Thus the direct Relinearisation algorithm fails to find the solution of this equation system.

This system could be easily solved from information given by the above process. For example, we know that $u_{0}^{2}+12 u_{0} u_{1}+36 u_{1}^{2}=\left(u_{0}+\right.$ $\left.6 u_{1}\right)^{2}=0$. However, such a technique would not work if we were solving a system with seven of the original eight equations. In any case, the main point of this example is to illustrate that even in an almost fully linearised equation system, the direct Relinearisation algorithm can fail.

5.5 Tangent Spaces

An interesting characterisation for when Relinearisation succeeds or fails can be obtained by considering the tangent spaces to the Veronese variety. Suppose we have a system of m quadrics intersecting in a unique (projective) point P in $\mathbb{P}(V)$. The linearisation variety \mathcal{L} is the intersection of the Veronese variety \mathcal{V}_{V} with the subspace \mathcal{H} defined by linearising the original quadratic system (Section 4.2). This linearisation variety \mathcal{L} can be defined as the intersection of s quadrics, so we have

$$
\mathcal{L}=\mathcal{V}_{V} \bigcap \mathcal{H}=\bigcap_{i=1}^{s} Q_{\widehat{f}_{i}} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

We first suppose that the Relinearisation algorithm succeeds for this system. In this case, we know that

$$
\varphi_{V}(P)=\mathcal{L}=\bigcap_{i=1}^{s} Q_{\widehat{f_{i}}},
$$

so we have a full-rank system of quadrics whose intersection is $\varphi_{V}(P)$. We now denote the (projective) $(N-m-1)$-dimensional tangent space to the quadric $Q_{\widehat{f_{i}}}$ at $\varphi_{V}(P)$ by $\mathbb{T}_{\varphi_{V}(P)}\left(Q_{\widehat{f_{i}}}\right)$. The intersection of all these tangent spaces is the unique point $\varphi_{V}(P)$, that is

$$
\varphi_{V}(P)=\bigcap_{i=1}^{s} \mathbb{T}_{\varphi_{V}(P)}\left(Q_{\widehat{f}_{i}}\right)
$$

Conversely, if the intersection of these tangent spaces is not a unique point, then the Relinearisation algorithm fails. We now consider the linear subspace

$$
\mathcal{H} \bigcap \mathbb{T}_{\varphi_{V}(P)}\left(\mathcal{V}_{V}\right) \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)
$$

which has the same dimension as

$$
\bigcap_{i=1}^{s} \mathbb{T}_{\varphi_{V}(P)}\left(Q_{\widehat{f}_{i}}\right)
$$

This give us a criterion for the success or failure of the Relinearisation algorithm to provide a unique solution without actually having to relinearise. If the intersection of the linear space \mathcal{H}, given directly by linearising the quadratic system, and the tangent space to the Veronese variety at $\varphi_{V}(P)$ is not a single point, then the Relinearisation algorithm fails.

Example 6. We consider the equation system of Example 3 with unique solution $P=\left\langle(1,2,3)^{T}\right\rangle$. In this case, the vector space V has dimension 3 over $\operatorname{GF}(37)$ (so $n=2$). The space \mathcal{H} is the (projective) 2-dimensional subspace of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ given by the kernel of the matrix

$$
\left(\begin{array}{rrrrrr}
1 & 1 & 1 & 0 & -1 & 0 \\
2 & 0 & 1 & 1 & 0 & -1 \\
0 & 1 & 1 & -2 & 2 & -1
\end{array}\right) .
$$

The tangent space to the Veronese surface \mathcal{V}_{V} at $\varphi_{V}(P)$ is a (projective) 2-dimensional subspace of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ given by the kernel of the matrix

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 24 & 0 & 0 & 33 \\
0 & 1 & 24 & 0 & 12 & 29 \\
0 & 0 & 0 & 1 & 11 & 21
\end{array}\right)
$$

We can construct a 6×6 matrix by combining these two matrices. This larger matrix has rank 5 , so the intersection of the tangent space to the Veronese surface at $\varphi_{2}(P)$ with \mathcal{H} is the unique (projective) point P. Thus the Relinearisation algorithm succeeds for Example 3.

By contrast, we can consider the equation system of Example 5 with unique (projective) solution $P=\left\langle(1,6,14,5)^{T}\right\rangle$. In this case, the vector space V has dimension 4 over $\operatorname{GF}(37)$ (so $n=3$). The space \mathcal{H} is a (projective) 1-dimensional subspace given by the kernel of a 8×10 matrix of the 9 -dimensional projective geometry $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$. The tangent space to the Veronese variety at $\varphi_{V}(P)$ is a 3 -dimensional subspace of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ given by the kernel of a 6×10 matrix. Combining these two matrices gives an 18×10 matrix that only has rank 8 , so the intersection of the tangent space to the Veronese surface at $\varphi_{V}(P)$ with \mathcal{H} is not a unique (projective) point. Thus the Relinearisation algorithm fails for Example 5.

6 A Geometric View of the XL Algorithm

The XL or extended linearisation algorithm was proposed to be a "simplified and improved version of relinearisation" [8]. We now consider some geometric properties of the XL algorithm. The original description of the XL algorithm of [8] is given for a non-homogeneous equation system. We thus term the original XL algorithm description the AffineXL algorithm. There is an natural generalisation of the AffineXL algorithm to a homogeneous equation system, which we term the ProjectiveXL algorithm. The ProjectiveXL algorithm is thus more mathematically natural, and we consider its properties.

1. Generate the $m\binom{D-2+n}{D-2}$ possible polynomials of degree at most D that are formed by multiplying each of the polynomials of the original system by monomials of degree less than $D-2$.
2. Choose an ordering of the monomials of degree at most D. Find an echelon form for this new system of polynomials of degree at most D by using Gaussian reduction. The ordering of monomials should be chosen in such a way that the linearisation yields a univariate polynomial in just one of the variables.
3. Note that it is not always possible to find such an ordering, and in this case AffineXL fails for degree D.
4. This univariate polynomial can be factored using Berlekamp's algorithm [21]. This potentially allows the elimination of a variable from the original system of equations.
5. The process is repeated on the new smaller system until a complete solution is found.

Fig. 1. A Basic Description of the AffineXL Algorithm

6.1 The AffineXL Algorithm

Without loss of generality, we consider the application of the AffineXL algorithm to a quadratic equation system. The basic idea of the AffineXL algorithm is to multiply the polynomials of this original equation system by monomials of degree up to $D-2$ to obtain many polynomials of degree at most D. We then regard this degree D polynomial system as a linear system in the monomials of degree at most D. It is then hoped that the linear span of the generated polynomials in this larger system contains a univariate polynomial in one of the variables x_{i}. An ordering of the monomials of degree at most D is chosen such that such a univariate polynomial in x_{i} can be found simply by reducing the matrix of this system to echelon form. This univariate polynomial could then be factored using Berlekamp's algorithm [21] or some other method to give values for one of the variable x_{i}. We could then substitute these values for x_{i} to obtain a smaller quadratic system. This smaller system could then potentially be analysed using the AffineXL algorithm or some other technique to enable a full solution to be found. Clearly, the smaller the value of D, the degree of the generated polynomials for which this is possible, the faster the AffineXL algorithm works. We give a fuller description of the basic form of the AffineXL algorithm in Figure 1 and a simple example in Example 7.

Example 7. We consider the homogenised version of the equation system defined by two quadratic polynomials f_{1} and f_{2} in two variables over
$\mathrm{GF}(37)$ given by

$$
f_{1}=x_{1}^{2}+5 x_{1} x_{2}+15 \text { and } f_{2}=x_{2}^{2}+9 x_{1} x_{2}+23
$$

We wish to find solutions to $f_{1}=f_{2}=0$. The application of the XL algorithm to such a quadratic system is discussed in $[6,8]$. In order to apply the AffineXL algorithm with $D=2$, that is using the original equation system with no monomial multiplication, we would need to find a linear combination $\lambda_{1} f_{1}+\lambda_{2} f_{2}$ which is a univariate polynomial in either solely in x_{1} or solely in x_{2}.

The equation system $f_{1}=f_{2}=0$ can be represented as the kernel of the matrix

$$
\left(\begin{array}{llllll}
0 & 5 & 0 & 1 & 0 & 15 \\
1 & 9 & 0 & 0 & 0 & 23
\end{array}\right)
$$

with respect to the column ordering $\left(x_{2}^{2}, x_{1} x_{2}, x_{2}, x_{1}^{2}, x_{1}, 1\right)$. Reducing this matrix to echelon form gives

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 13 & 0 & 23 \\
0 & 1 & 0 & 25 & 0 & 5
\end{array}\right) .
$$

Thus there is no polynomial in the linear span of f_{1} and f_{2} which is a univariate polynomial in x_{1} alone. Similarly, there is no polynomial in the linear span of f_{1} and f_{2} which is a univariate polynomial in x_{2} alone.

We next consider the linear span of the cubic polynomials $x_{i} f_{j}$, that is the $D=3$ case. However, this linear span does not contain any polynomials in x_{1} alone or in x_{2} alone. We therefore consider the $D=4$ case and calculate all quartic polynomials $x_{i} x_{i^{\prime}} f_{j}$, and find that the linear span of these polynomials contains

$$
x_{1}^{4}+10 x_{1}^{2}+26=\left(x_{1}-1\right)\left(x_{1}-10\right)\left(x_{1}-27\right)\left(x_{1}-36\right) .
$$

We would thus obtain the four solutions to $f_{1}=f_{2}=0$ in GF(37), namely

$$
\left(x_{1}, x_{2}\right)=(1,19),(10,31),(27,6), \text { or }(36,18)
$$

Thus the application of the AffineXL algorithm requires that we multiply the the two original polynomials by all monomials of degree 2 for the AffineXL algorithm to succeed, that is we take $D=4$.

6.2 The ProjectiveXL Algorithm

The AffineXL algorithm is designed for non-homogeneous polynomial equation systems (despite the comment to the contrary in [8]). However,
any non-homogeneous equation system in variables $x_{1}, \ldots x_{n}$ can be transformed into a homogeneous system in the variables $x_{0}, x_{1}, \ldots x_{n}$ by the inclusion of a homogenising variable x_{0}. We thus give a description of an XL -type algorithm as it applies to a homogeneous multivariate quadratic system defined by $f_{1}, \ldots, f_{m} \in \mathbb{F}\left[x_{0}, x_{1}, \ldots x_{n}\right]$, and we term this version of the XL algorithm for a homogeneous equation system the ProjectiveXL algorithm.

Without loss of generality, we consider the application of the ProjectiveXL algorithm to a homogeneous quadratic equation system. In a similar manner to the AffineXL algorithm, we multiply the polynomials of this original equation system by monomials of degree $D-2$ to obtain many polynomials of degree D. We then regard this homogeneous degree D polynomial system as a linear system in the monomials of degree D. The aim of the ProjectiveXL algorithm is that the linear span of the generated polynomials in this larger system contains a bivariate polynomial in two of the variables x_{i} and x_{j}. An ordering of the degree D monomials is then chosen such that such a bivariate polynomial can be easily found by a simple matrix reduction. Such a homogeneous bivariate polynomial $f\left(x_{i}, x_{j}\right)$ of degree D could then potentially be factored directly. One common technique when $x_{j} \neq 0$ is to apply a univariate factorisation technique to $x_{j}^{-D} f\left(x_{i}, x_{j}\right)$, which can be regarded as a univariate polynomial in $\frac{x_{i}}{x_{j}}$. A factorisation of $f\left(x_{i}, x_{j}\right)$ would allow us to substitute values of x_{i} by some multiple of x_{j}, thus obtaining a smaller equation system.

This ProjectiveXL algorithm thus retains all the features of the AffineXL algorithm, yet the homogeneous description can provide greater flexibility and fits more naturally into a geometric setting. We give a fuller description of the ProjectiveXL algorithm in Figure 2. The original or AffineXL algorithm can be thought of as the special case of the special case of the ProjectiveXL algorithm in which one of the two variables x_{i} and x_{j} is restricted to being the homogenising variable x_{0}. Consequently, the bivariate equation produced by the algorithm in this case can be regarded as a univariate equation in $\frac{x_{i}}{x_{0}}$. The greater power offered by the ProjectiveXL algorithm is illustrated by Example 8.
Example 8. We consider the homogenised version of the equation system of Example 7. We thus consider the homogeneous quadratic polynomials f_{1} and f_{2} in three variables over $\mathrm{GF}(37)$ given by

$$
f_{1}=15 x_{0}^{2}+x_{1}^{2}+5 x_{1} x_{2} \text { and } f_{2}=23 x_{0}^{2}+x_{2}^{2}+9 x_{1} x_{2} .
$$

We wish to the ProjectiveXL algorithm with $D=2$, that is using the original equation system with no monomial multiplication. We consider

1. Generate the $m\binom{D-2+n}{D-2}$ possible polynomials of degree D that are formed by multiplying each of the polynomials of the original system by some monomial of degree $D-2$.
2. Choose an ordering of the degree D monomials. Linearise the new system of polynomials of degree D and perform a Gaussian reduction. The ordering of monomials should be chosen in such a way that the linearisation yields a polynomial in just two of the original variables, say x_{i} and x_{j}.
3. Note that it is not always possible to find such an ordering, and in this case ProjectiveXL fails for degree D.
4. This bivariate polynomial is x_{i} and x_{j} can be considered to be a univariate polynomial equation in $\frac{x_{i}}{x_{j}}$. This univariate polynomial can be factored using Berlekamp's algorithm [21]. This potentially allows the elimination of a variable from the original system of equations.
5. The process is repeated on the new smaller system until a complete solution is found.

Fig. 2. A Basic Description of the ProjectiveXL Algorithm
the monomial ordering $\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$, and the echelon form of the defining matrix of Example 7 is given by

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 2 & 29 \\
0 & 0 & 0 & 1 & 12 & 9
\end{array}\right)
$$

with respect to this ordering. Thus the linear span of f_{1} and f_{2} contains

$$
23 f_{1}-15 f_{2}=x_{1}^{2}+12 x_{1} x_{2}+9 x_{2}^{2}=\left(x_{1}-2 x_{2}\right)\left(x_{1}-23 x_{2}\right)
$$

so we obtain $x_{1}=2 x_{2}$ or $x_{1}=23 x_{2}$. Substituting these two values into f_{1} gives

$$
\text { and } \begin{aligned}
15 x_{0}^{2}+14 x_{2}^{2} & =15\left(x_{0}-2 x_{2}\right)\left(x_{0}-35 x_{2}\right) \\
15 x_{0}^{2}+15 x_{2}^{2} & =15\left(x_{0}-6 x_{2}\right)\left(x_{0}-31 x_{2}\right)
\end{aligned}
$$

respectively. We thus obtain the full (projective) solution as

$$
\left\langle\left(x_{0}, x_{1}, x_{2}\right)^{T}\right\rangle \in\left\{\left\langle(1,1,19)^{T}\right\rangle,\left\langle(1,10,31)^{T}\right\rangle,\left\langle(1,27,6)^{T}\right\rangle,\left\langle(1,36,18)^{T}\right\rangle\right\} .
$$

Examples 7 and 8 show that the ProjectiveXL algorithm can be much more efficient than the AffineXL algorithm. On essentially the same equation system, the ProjectiveXL algorithm only required the use of quadratic polynomials $(D=2)$, whereas the AffineXL algorithm required the use of quartic polynomials $(D=4)$. Furthermore, the ProjectiveXL algorithm offers far more scope for minimising the value of D than the

AffineXL algorithm. In an equation system with n variables, the AffineXL algorithm offers n different methods of constructing a suitable univariate polynomial of minimal degree (D), one for each variable. By contrast, the ProjectiveXL algorithm applied to the equivalent homogeneous equation system offers $\binom{n+1}{2} \approx \frac{1}{2} n^{2}$ different methods of constructing a suitable bivariate polynomial. Thus the AffineXL algorithm can be seen as a very small special case of the ProjectiveXL algorithm which restricts itself to a small and usually arbitrary set of special cases of the ProjectiveXL algorithm.

6.3 Geometric Aspects of the ProjectiveXL ALgorithm

We suppose that the homogeneous quadratic system has a unique (projective) solution. The homogeneous quadratic system defines a system of quadrics in $\mathbb{P}(V)$ which intersect in a unique projective point P corresponding to this unique solution. In the ProjectiveXL algorithm with degree D, we multiply each polynomial by monomials of degree $D-2$. Geometrically, this gives a system of primals of degree D that have a unique intersection at the (projective) point P. Clearly any linear combination of the defining polynomials of the above primals gives another primal which also contains P. The next step in the ProjectiveXL algorithm is to find a degree D primal whose defining polynomial is in the linear span of the polynomials defining the generated degree D primals whose equation involves only two coordinates x_{i} and x_{j}. Such a primal is defined by some bivariate polynomial

$$
g\left(x_{i}, x_{j}\right)=a_{0} x_{i}^{D}+a_{1} x_{i}^{D-1} x_{j}+\ldots a_{D-1} x_{i} x_{j}^{D-1}+a_{D} x_{j}^{D}
$$

We note that the secundum $\mathcal{S}=\left\{x \in \mathcal{P}(V) \mid x_{i}=x_{j}=0\right\}$ (Section 2.3) is contained in the primal defined by $g\left(x_{i}, x_{j}\right)$. The bivariate polynomial g factorises over some extension field $\overline{\mathbb{F}}$ of \mathbb{F} as

$$
g\left(x_{i}, x_{j}\right)=\left(\theta_{1} x_{i}-\theta_{1}^{\prime} x_{j}\right) \ldots\left(\theta_{D} x_{i}-\theta_{D}^{\prime} x_{j}\right)
$$

If we define \bar{V} to be the vector space of dimension $n+1$ over this extension field $\overline{\mathbb{F}}$, then each of these factors defines a hyperplane in $\mathbb{P}(\bar{V})$. Thus the primal defined by g is a product of hyperplanes in $\mathbb{P}(\bar{V})$, each of which contain the secundum \mathcal{S}. However, if the original equation system has a unique (projective) solution in \mathbb{F}, then we need only consider the hyperplanes defined by the linear factors of $g\left(x_{i}, x_{j}\right)$ which are defined over \mathbb{F}. Thus we know the solution point P lies on one such hyperplane. We can analyse each such hyperplane by projecting the whole system
into that hyperplane. This effectively removes a variable from the original system, and we can now examine the smaller system by the same method and so on.

In the ProjectiveXL algorithm, the fundamental aim is to find a primal defined by a bivariate polynomial. However, the property of being defined by a bivariate polynomial is not a geometrical property of the primal. A collineation of the projective geometry can transform a primal defined by a bivariate equation into a primal defined by a polynomial that is not bivariate. This is illustrated by Example 9.
Example 9. We consider the homogeneous quadratic polynomials in three variables over GF(37) given by

$$
\text { and } \begin{aligned}
& f_{1}=6 x_{0}^{2}+2 x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2}+16 x_{1} x_{2}+3 x_{2}^{2} \\
& f_{2}=18 x_{0}^{2}+35 x_{0} x_{1}+15 x_{0} x_{2}+26 x_{1}^{2}+12 x_{1} x_{2}+x_{2}^{2}
\end{aligned}
$$

We wish to apply the ProjectiveXL algorithm to the system $f_{1}=f_{2}=0$, and there are three possible pairs of variables, namely $\left(x_{0}, x_{1}\right),\left(x_{0}, x_{2}\right)$ and $\left(x_{1}, x_{2}\right)$, in which we can construct a bivariate polynomial. Unfortunately, in all three cases, we are forced to use quartic polynomials $(D=4)$ before we can do so. However, this polynomial system is derived from that of Example 8 by the linear mapping

$$
\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right) \mapsto\left(\begin{array}{rrr}
2 & 26 & 10 \\
26 & 4 & 13 \\
33 & 21 & 2
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)
$$

but the equation system of Example 8 can be solved by only using quadratic polynomials $(D=2)$. In geometrical terms, both this equation system and that of Example 8 define a pair of intersecting quadrics in $\mathrm{PG}(2, \mathrm{GF}(37))$, and there is a collineation mapping one pair to the other. Thus this equation system and that of Example 8 are geometrically equivalent.

7 A Geometrically Invariant XL Algorithm

The aim of the ProjectiveXL algorithm for a homogeneous equation system with a small number of (projective) solutions is to find a primal defined by a bivariate polynomial which contains the points corresponding to the solutions. However, as we saw in Section 6.3 the property of being defined by a bivariate primal is not a geometrical property of the primal. Nonetheless, a primal defined by a bivariate polynomial does have definite geometric characteristics that are invariant under collineations of the projective space. Consideration of such geometric characteristics gives the GeometricXL algorithm.

7.1 The GeometricXL Algorithm

Suppose we have a homogeneous equation system $f_{1}=\ldots=f_{m}=0$ in $(n+1)$ variables $x_{0}, x_{1}, \ldots, x_{n}$ over a finite field \mathbb{F}, and that this system has a few (projective) solutions. As before, we suppose that V denotes the vector space of dimension $(n+1)$ over \mathbb{F}. The ProjectiveXL algorithm generates a number of primals of degree D whose intersection contains the (projective) points corresponding to the solutions. As discussed in Section 6.3, the next step of the ProjectiveXL algorithm is to find a primal of degree D defined by a bivariate polynomial g, which factorises over some extension field $\overline{\mathbb{F}}$ as

$$
g\left(x_{i}, x_{j}\right)=\left(\theta_{1} x_{i}-\theta_{1}^{\prime} x_{j}\right) \ldots\left(\theta_{D} x_{i}-\theta_{D}^{\prime} x_{j}\right)
$$

If \bar{V} denotes the vector space of dimension $(n+1)$ over the extension field $\overline{\mathbb{F}}$, then the variety in $\mathbb{P}(\bar{V})$ defined by $g\left(x_{i}, x_{j}\right)$ consists of D (not necessarily distinct) hyperplanes from the pencil of hyperplanes in $\mathbb{P}(\bar{V})$ generated by the hyperplanes given by the equations $x_{i}=0$ and $x_{j}=0$. Over \mathbb{F}, the polynomial g splits into factors that are irreducible over \mathbb{F}. The variety in $\mathbb{P}(V)$ described by an irreducible factor of g consists of the intersection of $\mathbb{P}(V)$ with the conjugate hyperplanes of $\mathbb{P}(\bar{V})$ defined by this irreducible factor. This intersection is a secundum of $\mathbb{P}(V)$ since all of the conjugate hyperplanes come from a single pencil. This property of the primal being composed of hyperplanes from a pencil is clearly invariant under collineations, and it is this property of the primal, rather than that of being defined by a bivariate polynomial, that we exploit. A collineation of $\mathbb{P}(V)$ maps the primal defined by g to one defined by

$$
\left(\theta_{1} L-\theta_{1}^{\prime} L^{\prime}\right) \ldots\left(\theta_{D} L-\theta_{D}^{\prime} L^{\prime}\right)
$$

where L and L^{\prime} are some linear polynomials over \mathbb{F}. The GeometricXL algorithm is the generalisation of the ProjectiveXL algorithm which attempts to find primals of the above generalised form.

Suppose the multiplication step of the ProjectiveXL algorithm yields homogeneous polynomials h_{1}, \ldots, h_{k} of degree D. In order to to use a primal of the above form, we need to find a homogeneous polynomial h of degree D and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ such that

$$
h=\sum_{i=1}^{k} \lambda_{i} h_{i}=\prod_{j=1}^{D}\left(\theta_{j} L-\theta_{j}^{\prime} L^{\prime}\right)
$$

for some linear polynomials L and L^{\prime}. Geometrically, a factor $\left(\theta_{j} L-\theta_{j}^{\prime} L^{\prime}\right)$ of the above expression defines a hyperplane in a pencil of hyperplanes
defined by the hyperplanes $L=0$ and $L^{\prime}=0$ (Section 2.3). Thus the primal $\mathbb{V}(h)$ defined by h can be thought as a product of D hyperplanes all from the same pencil.

We now suppose that D is smaller than the characteristic of the finite field \mathbb{F}. We can take the formal $(D-1)^{\text {th }}$ partial derivative of the above expression with respect to any monomial $\mathbf{x}=x_{j_{1}} \ldots x_{j_{D-1}}$ of degree ($D-$ 1). As in Section 3.4, we use the notation $\mathbf{D}_{\mathbf{x}}^{D-1}$ to denote the formal $(D-1)^{t h}$ partial derivative with respect to a degree $(D-1)$ monomial \mathbf{x}, so we can obtain the linear polynomial

$$
\mathbf{D}_{\mathbf{x}}^{D-1} h=\sum_{i=1}^{k} \lambda_{i} \mathbf{D}_{\mathbf{x}}^{D-1} h_{i}=a_{\mathbf{x}} L+a_{\mathbf{x}}^{\prime} L^{\prime}
$$

where $a_{\mathbf{x}}$ and $a_{\mathbf{x}}^{\prime}$ are constants. However, any such linear polynomial can be represented by a (row) vector of length $n+1$, so this expression can be interpreted as a vector expression. Thus the partial derivatives matrix $C_{h_{i}}^{(D-1)}$ of Section 2.2, whose rows are the various $(D-1)^{\text {th }}$ partial derivatives of h_{i}, is given by

$$
C_{h_{i}}^{(D-1)}=\left(\mathbf{D}_{\mathbf{x}}^{D-1} h_{i}\right),
$$

so we obtain the matrix equation

$$
C_{h}^{(D-1)}=\sum_{i=1}^{k} \lambda_{i} C_{h_{i}}^{(D-1)}=\left(a_{\mathbf{x}} L+a_{\mathbf{x}}^{\prime} L^{\prime}\right)
$$

The matrix on the right-hand side clearly has rank 2 as its rows are linear combinations of two vectors, so in the notation of Section 2.2, the vector subspace $W_{h}^{(D-1)}$ of $\mathbb{P}\left(V^{*}\right)$ has dimension 2 . Thus if there is a polynomial $h \in\left\langle h_{1}, \ldots, h_{k}\right\rangle$ with a factorisation of the above type, then there is a linear combination of partial derivatives matrices $C_{h_{i}}^{(D-1)}$ that has rank 2. The converse is also true. One method to solve an equation system is therefore to try to find a linear combination of the partial derivative matrices $C_{h_{1}}^{(D-1)}, \ldots, C_{h_{l}}^{(D-1)}$ with rank 2.

We term this process the GeometricXL algorithm. The GeometricXL algorithm is a geometrically invariant generalisation of the ProjectiveXL algorithm. Having generated the polynomials of degree D, we then analyse their partial derivatives matrices to try to determine a solution to the original equation system. We give a fuller description of the GeometricXL algorithm in Figure 3 and a simple illustration in Example 10

1. Generate the $m\binom{D-2+n}{D-2}$ possible polynomials of degree D that are formed by multiplying each of the polynomials of the original system by some monomial of degree $D-2$.
2. The degree D is required to be less than the characteristic of the finite field \mathbb{F}.
3. Find a basis S of the linear span of all the polynomials generated by the first step.
4. Calculate the matrix C_{f}^{D-1} of $(D-1)^{t h}$ partial derivatives for each polynomial $f \in S$.
5. Find a linear combination of these partial derivative matrices C_{f}^{D-1} which has rank 2 (or lower) by considering the 3 -minors or some other method.
6. Note that this it is not always possible to find such a linear combination, and in this case GeometricXL fails for degree D.
7. Using this linear combination, construct a polynomial in the linear span of S that is known to have factors, and then factorise this polynomial. This potentially allows the elimination of a variable from the original system of equations.
8. The process is repeated on the new smaller system until a complete solution is found.

Fig. 3. A Basic Description of the GeometricXL Algorithm

Example 10. We consider the homogeneous quadratic polynomials in three variables over GF(37) of Example 9 given by

$$
\begin{aligned}
h_{1} & =6 x_{0}^{2}+2 x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2}+16 x_{1} x_{2}+3 x_{2}^{2} \\
\text { and } & h_{2}
\end{aligned}=18 x_{0}^{2}+35 x_{0} x_{1}+15 x_{0} x_{2}+26 x_{1}^{2}+12 x_{1} x_{2}+x_{2}^{2} .
$$

The matrix of the linear combination of partial derivatives is thus given by

$$
\left(\begin{array}{l}
\lambda_{1} \mathbf{D}_{x_{0}} h_{1}+\lambda_{2} \mathbf{D}_{x_{0}} h_{2} \\
\lambda_{1} \mathbf{D}_{x_{1}} h_{1}+\lambda_{2} \mathbf{D}_{x_{1}} h_{2} \\
\lambda_{1} \mathbf{D}_{x_{2}} h_{1}+\lambda_{2} \mathbf{D}_{x_{2}} h_{2}
\end{array}\right)=\left(\begin{array}{rrr}
12 \lambda_{1}+36 \lambda_{2} & 2 \lambda_{1}+35 \lambda_{2} & 3 \lambda_{1}+15 \lambda_{2} \\
2 \lambda_{1}+35 \lambda_{2} & 2 \lambda_{1}+15 \lambda_{2} & 16 \lambda_{1}+12 \lambda_{2} \\
3 \lambda_{1}+15 \lambda_{2} & 16 \lambda_{1}+12 \lambda_{2} & 6 \lambda_{1}+2 \lambda_{2}
\end{array}\right) .
$$

This matrix has rank 2 , so on taking its determinant, we obtain
$0=34 \lambda_{1}^{3}+28 \lambda_{1}^{2} \lambda_{2}+23 \lambda_{1} \lambda_{2}^{2}+7 \lambda_{2}^{3}=34\left(\lambda_{1}-10 \lambda_{2}\right)\left(\lambda_{1}-28 \lambda_{2}\right)\left(\lambda_{1}-33 \lambda_{2}\right)$,
so $\lambda_{1}=10 \lambda_{2}, \lambda_{1}=28 \lambda_{2}$ or $\lambda_{1}=33 \lambda_{2}$. We thus obtain the following polynomials in the linear span of h_{1} and h_{2},

$$
\begin{aligned}
& 10 h_{1}+h_{2}=4 x_{0}^{2}+18 x_{0} x_{1}+8 x_{0} x_{2}+36 x_{1}^{2}+24 x_{1} x_{2}+31 x_{2}^{2} \\
& 28 h_{1}+h_{2}=x_{0}^{2}+17 x_{0} x_{1}+25 x_{0} x_{2}+17 x_{1}^{2}+16 x_{1} x_{2}+11 x_{2}^{2} \\
& 33 h_{1}+h_{2}=31 x_{0}^{2}+27 x_{0} x_{1}+3 x_{0} x_{2}+33 x_{1}^{2}+33 x_{1} x_{2}+26 x_{2}^{2} .
\end{aligned}
$$

We have given all three for completeness, even though we note that the three polynomials are necessarily linearly dependent. Each of these poly-
nomials factorises, so we have

$$
\begin{aligned}
& 10 h_{1}+h_{2}=4\left(x_{0}+8 x_{1}+25 x_{2}\right)\left(x_{0}+15 x_{1}+14 x_{2}\right) \\
& 28 h_{1}+h_{2}=\left(x_{0}+24 x_{1}+16 x_{2}\right)\left(x_{0}+30 x_{1}+36 x_{2}\right) \\
& 33 h_{1}+h_{2}=31\left(x_{0}+25 x_{1}+15 x_{2}\right)\left(x_{0}+26 x_{1}+3 x_{2}\right)
\end{aligned}
$$

If we for example now take the first factor and substitute $x_{0}=-\left(8 x_{1}+\right.$ $25 x_{2}$) into h_{1}, we obtain

$$
36 x_{1}^{2}+11 x_{1} x_{2}+15 x_{2}^{2}=36\left(x_{1}-18 x_{2}\right)\left(x_{1}-30 x_{2}\right)
$$

Taking the first factor, we have $x_{1}=18 x_{2}$ so $x_{0}=-\left(8 x_{1}+25 x_{2}\right)=16 x_{2}$, which gives $\left\langle(16,18,1)^{T}\right\rangle=\left\langle(1,15,7)^{T}\right\rangle$ as a solution. This is the image of the solution $\left\langle(1,27,6)^{T}\right\rangle$ of Example 8 under the matrix of Example 9. We can calculate all four solutions similarly to obtain
$\left\langle\left(x_{0}, x_{1}, x_{2}\right)^{T}\right\rangle \in\left\{\left\langle(1,8,31)^{T}\right\rangle,\left\langle(1,14,14)^{T}\right\rangle,\left\langle(1,15,7)^{T}\right\rangle,\left\langle(1,32,6)^{T}\right\rangle\right\}$.
These are the images of the solutions of Example 8 under the matrix of Example 9.

In general, computing the $(D-1)^{\text {th }}$ partial derivatives in terms of the $\lambda_{1}, \ldots, \lambda_{k}$ in a successful application of the ProjectiveXL algorithm yields a linear system in $\lambda_{1}, \ldots, \lambda_{k}$ of rank 2. However, the matrix of this linear system has rank two if and only all its 3 -minors vanish. Thus evaluating all the 3 -minors of this partial derivatives matrix gives a homogeneous cubic equation system in $\lambda_{1}, \ldots, \lambda_{k}$. If we can find any solution of this cubic system by any method, then can obtain a factorisation of the above type for some polynomial in the linear span of h_{1}, \ldots, h_{k}.

The most obvious method to try to solve this cubic system is the Linearisation algorithm. There are $\binom{n+D-1}{D-1}$ monomials in $(n+1)$ variables of degree $(D-1)$, so the partial derivatives matrix is an $\binom{n+D-1}{D-1} \times$ $(n+1)$ matrix. There are $\binom{l}{3} \cdot\binom{n+1}{3} 3$-minors of an $l \times(n+1)$ matrix, where in this case $l=\binom{n+D-1}{D-1} \sim \frac{n^{D-1}}{(D-1)!}$ for large n. Thus for an equation system with many variables (large n), the GeometricXL algorithm gives a homogeneous cubic system containing about $\frac{1}{6}\left(\frac{n^{D}}{(D-1)!}\right)^{3}$ cubic equations in k variables $\lambda_{1}, \ldots, \lambda_{k}$, that is about $\binom{k}{3} \approx \frac{1}{6} k^{3}$ cubic monomials. Thus if $k<\frac{n^{D}}{(D-1)!}$, it may be possible to find a solution by linearisation, and hence a factorisation that may allow us to eliminate a variable from the original equation system. Furthermore, if we have vastly more cubic equations than cubic monomials, we may be able to analyse the
system much more efficiently by only selecting a random subset of cubic equations for linearisation and still have reasonable confidence in our solution. Example 11 illustrates the method of the GeometricXL algorithm in generating such a cubic system using the 3-minors of partial derivative matrices, which are then solved to find solutions to the original equation system.

Example 11. We give five homogeneous quartic polynomials $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$ in five variables over GF(37) in Appendix A. The Appendix then describes how to find the unique (projective) solution for the system $f_{1}=f_{2}=f_{3}=$ $f_{4}=f_{5}=0$ using the GeometricXL algorithm. The solution method does not require the generation of any higher degree polynomials, so $D=4$.

For comparison, we also calulated the unique solution of the system of Appendix A using both Gröbner basis techniques and traditional XL algorithms. Calculation of this solution using Gröbner basis techniques with either lexicographic or graded reverse lexicographic monomial orderings typically requires the generation of polynomials of degree $D=14$. Similarly, solving this equation system using the AffineXL or ProjectiveXL algorithm typically requires the generation of polynomials of degree $D=14$. In a typical example of the ProjectiveXL algorithm, the final stage is the row reduction of a 5005×3060 matrix of rank 3055 to give a quintic bivariate equation, which can then be solved.

7.2 Geometric Analysis of the GeometricXL ALgorithm

We have seen that the GeometricXL algorithm works by constructing a polynomial $h \in\left\langle h_{1}, \ldots, h_{k}\right\rangle$ such that $h \in \mathbb{F}\left[L, L^{\prime}\right]$, that is h is a polynomial in two linear polynomials L and L^{\prime}. We construct such a polynomial of degree D by finding a polynomial h for which the rank of the partial derivatives matrix $C_{h}^{(D-1)}$ has rank 2. A basis for the row space of $C_{h}^{(D-1)}$ then gives L and L^{\prime}. This is the situation (for rank 2) discussed by Proposition 1 of [4].

Geometrically, the constructed polynomial h of degree D is an element of the projective geometry of the $D^{t h}$ symmetric power dual space $\mathbb{P}\left(\mathbb{S}^{D}\left(V^{*}\right)\right)$. This projective geometry contains the degree D Veronese variety

$$
\mathcal{V}_{V^{*}}^{(D)}=\varphi_{V^{*}}^{(D)}\left(\mathbb{P}\left(V^{*}\right)\right)
$$

In the case that $D<p$, the characteristic of \mathbb{F}, the polynomial h is in this Veronese variety $\mathcal{V}_{V^{*}}^{(D)}$ if and only if $h=\lambda L^{D}$ for some linear polynomial L and $\lambda \in \mathbb{F}$ (Section 3.4). An equivalent condition is that its
partial derivatives matrix $C_{h}^{(D-1)}$ has rank 1. Geometrical aspects of this situation are discussed in [22]. Thus we could define a rank-one version of GeometricXL in which we find a partial derivatives matrix $C_{h}^{(D-1)}$ of rank 1. In certain situations, this can give a very efficient algorithm, as illustrated in Example 12.

Example 12. Consider the equation system over GF(37) given by the first four homogenised equations of Example 2, namely

$$
\begin{aligned}
& 0=f_{1}=x_{0}^{2}+x_{0} x_{1}+x_{0} x_{2}-x_{1} x_{2} \\
& 0=f_{2}=2 x_{0}^{2}+x_{0} x_{2}+x_{1}^{2}-x_{2}^{2} \\
& 0=f_{3}=x_{0} x_{1}+x_{0} x_{2}-2 x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2} \\
& 0=f_{4}=3 x_{0}^{2}+x_{0} x_{1}+9 x_{0} x_{2}+8 x_{1}^{2}+18 x_{1} x_{2}+22 x_{2}^{2} .
\end{aligned}
$$

By calculating the partial derivatives matrix $\sum_{i=1}^{4} \lambda_{i} C_{f_{i}}$ and evaluating its 2 -minors, we can find two linear combinations of partial derivatives matrices having rank 1 . We thus obtain

$$
\begin{aligned}
& f_{1}+11 f_{2}+6 f_{3}+20 f_{4}=9\left(x_{0}+20 x_{1}+11 x_{2}\right)^{2}=0 \\
& \text { and } f_{1}+29 f_{2}+20 f_{3}+7 f_{4}=6\left(x_{0}+27 x_{1}+31 x_{2}\right)^{2}=0 \text {, }
\end{aligned}
$$

from which we can easily deduce that $x_{1}=2 x_{0}$ and $x_{2}=3 x_{0}$. We note that there is no linear combination of the first three equations that has a similar factorisation as a square. Thus rank-one GeometricXL cannot be applied to the equation system $f_{1}=f_{2}=f_{3}=0$.

We are primarily interested in the GeometricXL algorithm in the situation where the partial derivatives matrix $C_{h}^{(D-1)}$ has rank 2. However, any matrix of rank 2 can be written as the sum of two matrices of rank 1 , but a partial derivatives matrix of rank 1 indicates a point in the Veronese variety $\mathcal{V}_{V^{*}}^{(D)}$. We can therefore show that any polynomial h of degree D has a partial derivatives matrix $C_{h}^{(D-1)}$ of rank 2 if and only if h is on a line joining some pair of points in the Veronese variety $\mathcal{V}_{V^{*}}^{(D)}$, that is h lies on a chord or secant of the Veronese variety (Section 2.3). We denote the chordal or secant variety of the Veronese variety $\mathcal{V}_{V^{*}}^{(D)}$, that is the set of all points in $\mathbb{P}\left(\mathbb{S}^{D}\left(V^{*}\right)\right)$ on some chord of $\mathcal{V}_{V^{*}}^{(D)}$, by $\mathcal{S}_{V^{*}}^{(D)}$. Geometrical properties of the secant variety of the Veronese variety are extensively discussed in $[18,19]$.

The natural geometrical interpretation of the GeometricXL algorithm is that it is a method that attempts to calculate the intersection of the variety $\mathbb{V}\left(h_{1}, \ldots, h_{k}\right)$ generated by the polynomials h_{1}, \ldots, h_{k} of degree D with the secant variety $\mathcal{S}_{V^{*}}^{(D)}$. The algebraic interpretation of the

GeometricXL algorithm or any XL -type algorithm, is that it is a method that attempts to find a linear combination of a collection of matrices that has rank 2, a problem sometimes termed MinRank.

Certain other XL -type algorithms can now be seen geometrically as special cases of the GeometricXL algorithm. The rank-one GeometricXL algorithm of Example 12 is the special case when this intersection contains a point of the Veronese variety itself. When the Linearisation algorithm works, it would typically produce a polynomial of the form $x_{i} x_{0}^{D-1}+\lambda x_{0}^{D}=x_{0}^{D-1}\left(x_{i}+\lambda x_{0}\right)$. Polynomials of this type form a subset of the secant variety $\mathcal{S}_{V^{*}}^{(D)}$. Thus the Linearisation algorithm can typically be viewed as a special case of the GeometricXL algorithm in which we are constrained to take the intersection of the polynomial variety $\mathbb{V}\left(h_{1}, \ldots, h_{k}\right)$ with a subset of the secant variety of the Veronese variety.

The AffineXL and ProjectiveXL algorithms (Section 6.1 and 6.2) can also be considered special cases of the GeometricXL algorithm in which we are constrained to take the intersection of the polynomial variety $\mathbb{V}\left(h_{1}, \ldots, h_{k}\right)$ with a particular subsets of the secant variety $\mathcal{S}_{V^{*}}^{(D)}$. In the ProjectiveXL algorithm, this subset is defined by the hyperpanes $x_{i}=0$ and $x_{j}=0$, whereas in the AffineXL algorithm we are constrained to take to the hyperplanes $x_{i}=0$ and $x_{0}=0$. We illustrate this in Example 13.

Example 13. Suppose V is a vector space of dimension 3 over \mathbb{F}. We consider he degree 3 Veronese embedding $\varphi_{V}^{(3)}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(\mathbb{S}^{3}(V)\right)$. An element of the pencil defined by $x_{0}=0$ and $x_{1}=0$ is defined by $x_{0}+$ $\theta x_{1}=0$ for some $\theta \in \mathbb{F} \cup\{\infty\}$ (with the usual interpretation of ∞). The Veronese embedding of such an element of the pencil is defined by $\left(1, \theta, 0, \theta^{2}, 0,0, \theta^{3}, 0,0,0\right)$. The set of such Veronese embeddings forms a normal rational curve, in this case a twisted cubic, in the subspace defined by equations $w_{002}=w_{012}=w_{022}=w_{112}=w_{122}=w_{222}=0$, and these points span this space.

7.3 The GeometricXL Algorithm and the Relinearisation Algorithm

The Relinearisation algorithm can also be viewed in some sense as a special case of the AffineXL algorithm [8] and hence of the GeometricXL algorithm However, the relationship between these algorithms is geometrically more complicated than the other special cases we have considered. We discuss this by considering the application of the GeometricXL
algorithm and Relinearisation algorithm to a quadratic system that produces degree 4 equations.

During degree 4 version of the GeometricXL algorithm, the points of $\mathbb{P}(V)$ are mapped to points on a variety $\mathcal{V}_{V}^{(4)}$ in $\mathbb{P}\left(\mathbb{S}^{4}(V)\right)$, with generic quadrics being mapped to varieties of dimension $n-1$ and order 8 that are the intersection of $\mathcal{V}_{V}^{(4)}$ with subspaces of $\mathbb{P}\left(\mathbb{S}^{4}(V)\right)$ of dimension $N_{4}-N-1$. In relinearizing the same original system, the points are initially mapped to the Veronese variety $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, and the equations become hyperplanes in that space. If we were to apply the Veronese embedding $\varphi_{\mathbb{S}^{2}(V)}$ to the points of $\mathbb{P}\left(\mathbb{S}^{2}(V)\right)$, then they would be mapped to points on a larger Veronese variety $\mathcal{V}_{\mathbb{S}^{2}(V)}$ in the projective geometry $\mathbb{P}\left(\mathbb{S}^{2}\left(\mathbb{S}^{2}(V)\right)\right)$ of dimension

$$
N^{\prime}=\frac{1}{8} n(n+3)\left(n^{2}+3 n+6\right)>N_{4} .
$$

However, the Veronese variety $\mathcal{V}_{V} \subset \mathbb{P}\left(\mathbb{S}^{2}(V)\right)$ is contained in $\frac{1}{12} n(n+$ $1)^{2}(n+2)$ linearly independent quadrics, which are mapped to linearly independent hyperplanes in $\mathbb{P}\left(\mathbb{S}^{2}\left(\mathbb{S}^{2}(V)\right)\right)$. These hyperplanes intersect in a subspace of dimension N_{4}, and this subspace intersects the Veronese variety $\mathcal{V}_{\mathbb{S}^{2}(V)}$ in precisely the variety $\mathcal{V}_{V}^{(4)}$ obtained by a degree 4 version of the GeometricXL algorithm. This can be seen by considering the fact that the quadrics in question have equations of the form $y_{i i} j_{j j}-y_{i j}^{2}=0$, $y_{i j} y_{i k}-y_{i i} y_{j k}=0$ or $y_{i j} y_{k l}-y_{i l} y_{k j}=0$, and observing that they are mapped into hyperplanes with equations $y_{(i j)(i k)}=y_{(i i)(j k)}$ and so on, so the points contained in the intersection of all these hyperplanes have the same coordinates as those arising from degree 4 XL , but with some repeated.

Both the Relinearisation algorithm and the GeometricXL algorithm have the problem that they may consider polynomials that are not independent. In the Relinearisation algorithm, this can occur when restricting the Veronese equations to a subspace; whereas in the GeometricXL algorithm this can occur when generating higher degree equations. This is fundamentally the same problem in two different guises. However, in the case where the original equation system has a unique solution over the given field, then if (the possibly repeated application of) relinearisation succeeds in finding this solution, then carrying out an XL procedure of the corresponding degree also finds this solution without having to carry out the latter stages of the XL procedure.

7.4 Properties of the GeometricXL Algorithm

We have seen that the first stages of XL can be interpreted as a search for points on the secant variety $\mathcal{S}_{V^{*}}^{(D)}$ of the Veronese variety $\mathcal{V}_{V^{*}}^{(D)}$, and that there is correspondence of this secant variety with a set of matrices of rank 2. Thus the points of this secant variety can be described by a set of cubic equations which are given by the 3 -minors of these matrices. In order to formally specify the GeometricXL algorithm as a well-defined algorithm, it would be necessary to provide an algorithm for finding points on this variety. Unfortunately, this is likely to be difficult in general as there is no efficient method for solving a general system of cubic equations.

We therefore consider some more specialised algorithms. Suppose \mathcal{W}_{D} denotes the subspace of $\mathbb{P}\left(\mathbb{S}^{D}\left(V^{*}\right)\right)$ spanned by all the polynomials of degree D generated by an XL process. Given a projective space Σ contained in $\mathcal{S}_{V^{*}}^{(D)}$ we can compute the subspace $\mathcal{W}_{D} \bigcap \Sigma$ very efficiently using using linear algebra. There are particular subspaces Σ of the secant variety $\mathcal{S}_{V^{*}}^{(D)}$ for which there are well established methods for finding points on the subspace. By choosing such a subspace, we can produce an efficient XL -type algorithm.

We can regard the projective geometry $\mathbb{P}\left(\mathbb{S}^{D}\left(V^{*}\right)\right)$ as the space of all homogeneous polynomials of degree D. For a polynomial h in the Veronese variety $\mathcal{V}_{V^{*}}^{D}$, we denote the tangent space to $\mathcal{V}_{V^{*}}^{D}$ at h by $\mathbb{T}_{h}\left(\mathcal{V}_{V^{*}}^{D}\right)$. This tangent space has has dimension n and is contained in in the secant variety $\mathcal{S}_{V^{*}}^{(D)}$. For example, the tangent space at the polynomial x_{0}^{D} is given by

$$
\mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)=\left\{\left\langle L x_{0}^{D-1}\right\rangle \mid L \text { is a linear polynomial }\right\} .
$$

If our homogeneous equation system is derived from some original nonhomogeneous system, then we may not actually be interested in solutions with $x_{0}=0$, that is solutions lying in the "hyperplane at infinity". In this case, if the space \mathcal{W}_{D} of generated polynomials of degree D contain $\left\langle L x_{0}^{D-1}\right\rangle$, then we can immediately deduce that any solutions of the original nonhomegeneous system lie in the hyperplane with equation $L=$ 0 . This essentially eliminates a variable from the system.

We thus need to determine whether \mathcal{W}_{D} contains such a polynomial we have only to calculate its intersection with $\mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)$. If this intersection $\mathcal{W}_{D} \bigcap \mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)$ has dimension $r>0$, then we can find a space of dimension $n-r$ containing the solution, and the process can be repeated on the smaller system. There is a sense in which this process can be thought of a geometrically invariant version of the Linearisation algorithm in which
a co-ordinate specific linear polynomial $x_{i}-x_{0}$ is replace by an arbitrary linear polynomial. We note that this procedure is essentially equivalent to the method called ElimLin of [1], where it is derived in the context of considering the application of a SAT-solver to cryptololgy.

This technique cannot be applied in the other case that $\mathcal{W}_{D} \bigcap \mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)=$ \emptyset. It is then necessary to consider methods for choosing the smallest possible value of D that enables this intersection to be nonempty. We restrict our attention now to a system of equations that has a single solution over the algebraic closure of a field \mathbb{F}, so as to increase the likelihood of this intersection being non-empty. A sufficient condition for the intersection of \mathcal{W}_{D} and $\mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)$ to be nonempty is for the dimension of \mathcal{W}_{D} to be greater than or equal to $N_{D}-n$. The consideration of Hilbert series in [11] suggests that if the system of equations consists of $n+1$ quadrics then the degree d must be at least $n+1$ for this to occur. However, for a generic system of $n+1$ quadrics with an empty intersection, the dimension of \mathcal{W}_{D} is $N_{D}-1$. This suggests that it might be advantageous to seek a D such that $\mathcal{W}_{D} \bigcap \mathbb{T}_{x_{0}^{D}}\left(\mathcal{V}_{V^{*}}^{D}\right)$ has dimension $n-1$, which occurs if the dimension of \mathcal{W}_{D} is $N-1$. This makes it possible to find n hyperplanes whose (affine) intersection determines the solution precisely. However, if for some D the dimension of \mathcal{W}_{D} is $N_{D}-1$, then linearisation of \mathcal{W}_{D} directly yields the solution.

7.5 Problems with the GeometricXL ALgorithm

An XL -type algorithm, including the GeometricXL algorithm, aims to produce a polynomial which can potentially factor into many linear factors. However, we usually have no a priori method of determining which linear factor pertains to the true solution, and we may have to test each linear factor in turn. We would usually test each linear factor by using it to make a substitution and then applying the same technique to the smaller system. However, each of these smaller systems could give rise to a number of linear factors, only one of which pertains to the true solution, and so on. It is thus possible, in principle, that for a large enough D such a proliferation of linear factors could lead to more possibilities than can be efficiently checked. In this case, a useful heuristic approach would seem to be to increase the degree D, which should generally greatly lower the number of linear factors.

8 Conclusions

We have given an extensive discussion of the geometrical properties of the XL -type algorithms for finding the solution to a multivariate equation system and put these algorithms on a firm geometrical footing. In particular, we have shown how XL -type algorithms are different techniques for finding points on the intersection of some subspace determined by the equations with the secant variety of the Veronese variety of some degree D. The different XL -type techniques which have been proposed are essentially those obtained by considering some subset of this secant variety rather than the full secant variety. The new method proposed in this paper, the GeometricXL algorithm, generalises all the previous methods by considering the full secant variety. As we demonstrated in Example 11, the GeometricXL algorithm can be considerably more efficient in some cases then either a standard XL algorithm or a Gröbner basis algorithm.

There are a number of obvious areas for future research. Firstly, the GeometricXL algorithm requires us to find a linear combination of a collection of matrices having rank 2 . We did this by considering the 3 -minors of these equation systems to obtain a cubic equation system, which we were able to solve. However, it may be that there is a more efficient way in some cases of finding such a linear combination of matrices having rank 2. Secondly, the reducible linear combinations of polynomials produced by the GeometricXL algorithm are of a very particular form. Ideally, we would like some efficient method of determining in many cases when a linear combination of polynomials is reducible. Finally, the GeometricXL algorithm as described in Figure 3 is only applicable when the characteristic of the field is not too small. However, the fundamental geometric results we have been discussing are true in any characteristic $[4,18,19]$. In particular, a point on the secant variety of the Veronese variety corresponds to a factorisation of a homogeneous polynomial to give $\Pi\left(\theta_{j} L-\theta_{j}^{\prime} L^{\prime}\right)$ (Section 7.1). Furthermore, this secant variety is defined by a set of cubic polynomials ([18] Theorem 1.56). Thus it may be possible to construct an algorithm to find a solution to a multivariate equation system by finding the intersection of the span of this system with the secant variety of the Veronese variety. Such an algorithm would work over a field of any characteristic.

9 Acknowledgements

Maura Paterson was supported by EPSRC research grant GR/S42637.

References

1. G. Bard and N. Courtois. Algebraic Cryptanalysis of the Data Encryption Standard, 2006. http://eprint.iacr.org/2006/402.
2. E. Bertini. Introduzione Alla Geometrica Proiettiva Degli Iperspazi, Con Appendice Sulle Curve Algebriche E Loro Singolaritá. Pisa, 1907. http://historical. library.cornell.edu/cgi-bin/cul.math/docviewer?did=00\y0002\&seq=5.
3. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck, 1965.
4. E. Carlini. Reducing the Number of Variables of a Ploynomial. In M. Elkadi, B. Mourrain, and R. Piene, editors, Algebraic Geometry and Geometric Modelling (Mathematics and Visualisation), pages 237-247. Springer, 2006.
5. Rey Casse. Projective Geometry: An Introduction. Oxford University Press, 2006.
6. C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of the Advanced Encryption Standard. Springer, 2006.
7. P. Cohn. Classical Algebra. John Wiley, 2000.
8. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, volume 1807 of LNCS, pages 392407. Springer-Verlag, 2000.
9. D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, second edition, 1997.
10. D. Cox, J. Little, and D. O'Shea. Using Algebraic Geometry, volume 185 of Graduate Texts in Mathematics. Springer, second edition, 2004.
11. C. Diem. The XL-Algorithm and a Conjecture from Commutative Algebra. In P.J. Lee, editor, Advances in Cryptology - ASIACRYPT 2004, volume 3329 of LNCS, pages 323-337. Springer-Verlag, 2004.
12. J-C. Faugère. A New Efficient Algorithm for Computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139:61-88, 1999.
13. J-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In T. Mora, editor, International Symposium on Symbolic and Algebraic Computation - ISSAC 2002, pages 75-83, 2002.
14. W.T. Gowers. How to Lose your Fear of Tensor Products, 2005. http://www. dpmms.cam.ac.uk/ $\backslash \sim$ wtg10/tensors3.html.
15. W. Gröbner. Über Veronesesche Varietäten und deren Projektionen. Arch. Math., 16:257-264, 1965.
16. J. Harris. Algebraic Geometry: A First Course. Number 133 in Graduate Text in Mathematics. Springer, 1992.
17. J.W.P. Hirschfeld and J.A. Thas. General Galois Geometries. Oxford University Press, 1991.
18. A. Iarrobino and V. Kanev. Power Sums, Gorenstein Algebras and Determinantal Loci. Number 1725 in Lecture Notes in Mathematics. Springer, 1999.
19. V. Kanev. Chrodal Varieties of Veronese Varieties and Catalechticant Matrices. Journal of Mathematical Sciences, 94:1114-1125, 1999.
20. A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In H. Imai and Y. Zheng, editors, Advances in Cryptology, Crypto '99, volume 1267 of LNCS, pages 19-30. Springer-Verlag, 1999.
21. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge University Press, 1994.
22. M. Pucci. The Veronese Variety and Catalecticant Matrices. Journal of Algebra, 202:72-95, 1998.
23. T.G. Room. The Geometry of Determinantal Loci. Cambridge University Press, 1938.
24. J.G. Semple and L. Roth. Introduction to Algebraic Geometry. Oxford University Press, 1949.

A Using the GeometricXL Algorithm to solve Example 11

We specify the five homogeneous quartic polynomials $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$ in five variables over GF (37) of Example 11 below. We describe how to solve this equation system using the GeometricXL algorithm with $D=4$ to systematically eliminate variables from the system.

Five Variables

The co-efficients of these polynomials f_{i} with respect to lexicographic monomial ordering $x_{0}^{4}, x_{0}^{3} x_{1}, \ldots, x_{3} x_{4}^{3}, x_{4}^{4}$ are given below.

$$
\begin{aligned}
& 163032361311 \quad 0 \quad 0362812 \quad 51529 \\
& \begin{array}{llllllll}
419 & 12 & 212 & 9 & 28 & 2 & 27 & 33 \\
8 & 13 & 22 & 17
\end{array} \\
& \begin{array}{llllllllll}
27 & 20 & 20 & 17 & 27 & 5 & 28 & 32 & 2 & 29 \\
3 & 2 & 15 & 5
\end{array} \\
& \begin{array}{lllllllll}
17 & 17 & 13 & 22 & 16 & 9 & 429 & 13 & 8 \\
10 & 5 & 33 & 27
\end{array} \\
& 273432320021 \quad 23112331117 \quad 9 \\
& 22 \quad 217 \quad 724 \quad 52513323128192422 \\
& \begin{array}{lllllllllll}
36 & 6 & 5 & 13 & 33 & 9 & 28 & 30 & 0 & 16 & 9 \\
9 & 4 & 5
\end{array} \\
& 223129 \quad 51734161615 \quad 735 \quad 227 \quad 2 \\
& 23101525 \quad 631 \quad 0261318 \quad 1 \quad 223 \quad 8 \\
& \begin{array}{llllllllll}
22 & 7 & 20 & 32 & 36 & 2 & 30 & 24 & 24 & 19 \\
35 & 9 & 35 & 12
\end{array} \\
& 36241227 \quad 73519 \quad 6 \quad 6 \quad 120273610 \\
& 1130113317 \quad 83527111813362913 \\
& 52121888162812292031162913 \\
& 23 \quad 6123128 \quad 926232734193620 \quad 5 \\
& 32 \quad 5142434202017 \quad 030 \quad 225 \quad 2 \quad 4 \\
& 36302835135 \quad 9 \quad 7162829232435 \\
& 19213328243215 \quad 63618152611 \quad 1 \\
& 18331710 \quad 8 \quad 421 \quad 3 \quad 1 \quad 413291013 \\
& \begin{array}{lllllllll}
24 & 4 & 23 & 10 & 8 & 10 & 36 & 619 & 5 \\
26 & 2 & 36 & 28
\end{array} \\
& 112027242510 \quad 824 \quad 231 \quad 0342036 \\
& 2511303222 \quad 72626321711 \quad 32023 \\
& \begin{array}{lllllllllll}
3 & 8 & 1 & 18 & 23 & 35 & 34 & 3 & 7 & 7 & 32 \\
22 & 23 & 17
\end{array} \\
& \begin{array}{llllllllll}
32 & 4 & 5 & 33 & 4 & 22 & 25 & 21 & 31 & 7 \\
22 & 0 & 17 & 27
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1363236322333 \quad 7 \quad 2510 \quad 7 \quad 12625
\end{aligned}
$$

We apply the GeometricXL algorithm to this equation system. Thus we need to find $\lambda_{1}, \ldots, \lambda_{5}$ such that

$$
\lambda_{1} C_{f_{1}}^{(3)}+\lambda_{2} C_{f_{2}}^{(3)}+\lambda_{3} C_{f_{3}}^{(3)}+\lambda_{4} C_{f_{4}}^{(3)}+\lambda_{5} C_{f_{5}}^{(3)}
$$

has rank 2, where $C_{f_{i}}^{(3)}$ of is the matrix of third partial derivatives for each polynomial f_{i}. There are 35 monomials of degree 3 , so the matrices $C_{f_{i}}$ are 35×5 matrices. We give the transpose of each of these matrices
$C_{f_{i}}^{(3)}$ below, where each row has 35 entries and is written below across two rows.
$\begin{array}{lllllllllllll}1432 & 7 & 31 & 4 & 7 & 0 & 0 & 35 & 1 & 24 & 10 & 23 & 21 \\ 16 & 3 & 24 & 4\end{array}$ $241828 \quad 2173316 \quad 4 \quad 7341720 \quad 328171020$
$32 \quad 7 \quad 0 \quad 035 \quad 324 \quad 4241828 \quad 2173316281226$ $18 \quad 83010313415213218 \quad 8292611201013$ $\begin{array}{llllllllllllllllllllllll}7 & 0 & 1 & 24 & 10 & 24 & 18 & 28 & 2 & 4 & 7 & 34 & 17 & 20 & 3 & 12 & 8 & 30\end{array}$

$\begin{array}{llllllllllllllll}31 & 0 & 24 & 23 & 21 & 4 & 28 & 17 & 33 & 7 & 17 & 20 & 17 & 10 & 30 & 31\end{array}$ 3432829112010141727005429137828 $43510211624 \quad 233163420 \quad 3171020181034$ $151829262010131927 \quad 0 \quad 5 \quad 4 \quad 113 \quad 72831$
$101228 \quad 533201326271319122 \quad 733361026$ $291828 \quad 30 \quad 0 \quad 161817 \quad 810 \quad 7 \quad 312130343122$
$122013262736102629182830 \quad 016181416 \quad 5$ $\begin{array}{lllllllllllll}25 & 8 & 17 & 4 & 18 & 20 & 23 & 2 & 12 & 25 & 0 & 26 & 26 \\ 34 & 2 & 4 & 27\end{array}$ $2813131911018283017 \quad 810 \quad 7312116$ $4 \quad 21225 \quad 02626 \quad 721 \quad 5 \quad 6273312231133$ $\begin{array}{lllllllllllll}5 & 26 & 19 & 22 & 7 & 26 & 28 & 0 & 16 & 8 & 7 & 31 & 30 \\ 34 & 31 & 5 & 17 & 18\end{array}$ $2012 \quad 02634 \quad 2 \quad 421 \quad 62712231112253625$
$3327 \quad 1 \quad 7332930161810312134312225420$ $23252626 \quad 2 \quad 427 \quad 5273323113325362529$
$13333514 \quad 52911212413173320 \quad 732 \quad 229$ $341635272218263121261021 \quad 511163220$
$3329 \quad 1121232 \quad 229341635272218262926 \quad 9$ $1272126181211 \quad 11918152317191835 \quad 9$
$35 \quad 1 \quad 4 \quad 317 \quad 21635273121261021 \quad 5262721$ $\begin{array}{llllllllllll}26 & 1 & 19 & 18 & 15 & 23 & 17 & 9 & 7 & 30 & 19 & 11 \\ 25 & 9 & 3 & 34 & 0\end{array}$
$1412 \quad 333202935221821102111163292118$ 1219152319183571911963417122612
$5121720 \quad 7342718262621 \quad 5163220 \quad 12612$ $111823171835 \quad 9301125 \quad 334 \quad 012261222$
$13322025 \quad 629181432121 \quad 92233 \quad 2152919$ $112715 \quad 6351830 \quad 822 \quad 23633342316$
$3229181432152919112715 \quad 635183035 \quad 624$ $\begin{array}{llllllllllll}4 & 5 & 20 & 26 & 22 & 8 & 18 & 23 & 16 & 20 & 35 & 6 \\ 1 & 130 & 15 & 4 & 31\end{array}$
$\begin{array}{llllllllllllll}20 & 18 & 1 & 21 & 9 & 29 & 27 & 15 & 6 & 8 & 22 & 2 & 36 & 33 \\ 34 & 6 & 5 & 20\end{array}$ $2623162035 \quad 6 \quad 1 \quad 629 \quad 934112623161112$
$2514212233191535182236332316 \quad 8242022$ $81635 \quad 63015 \quad 429341123161144025 \quad 9$
$632933 \quad 211 \quad 61830 \quad 2333416$ $1820 \quad 6 \quad 115 \quad 431991126161112025913$
$82932 \quad 721281515273122 \quad 6 \quad 6 \quad 91211 \quad 236$ $\begin{array}{llllllllllll}9 & 33 & 34 & 3 & 14 & 7 & 27 & 21 & 9 & 34 & 27 & 4 \\ 10 & 13 & 8 & 7 & 2\end{array}$
$292815152711 \quad 236 \quad 933341314$ $21 \quad 034172912161212 \quad 92019 \quad 024222923$
$32153122 \quad 6 \quad 23334 \quad 321 \quad 93427 \quad 410$ $171212 \quad 92019 \quad 033 \quad 631173517272914 \quad 2$
$\begin{array}{lllllllllllll}7 & 15 & 22 & 6 & 9 & 36 & 34 & 14 & 7 & 9 & 27 & 4 & 13 \\ 8 & 7 & 5 & 34 & 29\end{array}$ $121220192422296173527291418 \quad 5 \quad 4 \quad 8$
$\begin{array}{lllllllllllllll}21 & 27 & 6 & 9 & 12 & 9 & 3 & 7 & 27 & 34 & 4 & 10 & 8 & 7 & 2 \\ 21 & 17 & 12\end{array}$ $\begin{array}{llllllllll}16 & 9 & 19 & 0 & 22 & 29 & 23 & 31 & 35 & 17 \\ 29 & 14 & 2 & 5 & 4 & 8 & 8\end{array}$

We now consider the 3 -minors (3×3 sub-determinants) of the ma$\operatorname{trix} \sum_{i=1}^{5} \lambda_{i} C_{f_{i}}$ as polynomials in $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$. There are 654503 minors of a 5×35 matrix, so we obtain 65450 homogeneous cubic equations in $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$. We give below as an example the co-efficients of the "upper left" such minor with respect to the lexicographical ordering $\lambda_{1}^{3}, \lambda_{1}^{2} \lambda_{2}, \ldots, \lambda_{4} \lambda_{5}^{2}, \lambda_{5}^{3}$.

```
11332814443222 2 16 0 31 11 18 27 14 25 27 24
    231177}92207[118 217 3 33 511135 3-1
```

As there are only 35 cubic monomials in $\lambda_{1}, \ldots, \lambda_{5}$, this cubic system clearly has the potential for solution by linearisation (Section 4.1), and the linearisation matrix is a 65450×35 matrix. This matrix has rank 34 and the first 34 rows of the echelon form are the matrix $\left(I_{34} \mid v\right)$, where the components of the vector v of length 34 are given below.

$$
\begin{array}{rrrrrrrrrrrrrrrr}
23 & 7 & 35 & 3 & 16 & 15 & 1 & 17 & 29 & 5 & 11 & 34 & 2 & 23 & 24 & 11 \\
10 & 4 & 16 & 13 & 20 & 36 & 7 & 25 & 6 & 28 & 26 & 32 & 35 & 14 & 26 & 3 \\
16
\end{array}
$$

By considering the appropriate components of v, we obtain

$$
0=\left(\lambda_{1} \lambda_{5}^{2}+24 \lambda_{5}^{3}\right)=\left(\lambda_{2} \lambda_{5}^{2}+25 \lambda_{5}^{3}\right)=\left(\lambda_{3} \lambda_{5}^{2}+14 \lambda_{5}^{3}\right)=\left(\lambda_{4} \lambda_{5}^{2}+16 \lambda_{5}^{3}\right)
$$

As $\lambda_{5}=0$ would give a matrix of rank 0 , we obtain

$$
\lambda_{1}=13 \lambda_{5}, \lambda_{2}=12 \lambda_{5}, \lambda_{3}=23 \lambda_{5} \text { and } \lambda_{4}=21 \lambda_{5}
$$

We can now construct the polynomial $g=13 f_{1}+12 f_{2}+23 f_{3}+21 f_{4}+$ f_{5}. The coefficients of this polynomial with respect to the lexicographic monomial ordering $x_{0}^{4}, x_{0}^{3} x_{1}, \ldots, x_{3} x_{4}^{3}, x_{4}^{4}$ are given by the array below.

9	16	34	16	32	11	27	23	26	32	18	31	22	1
29	15	8	30	27	6	4	26	35	14	7	8	34	26
30	36	10	5	23	22	1	6	0	13	24	28	7	22
11	14	2	31	25	4	10	31	13	27	18	30	7	9
29	24	23	5	32	14	36	32	18	33	14	24	23	24

The 35×5 matrix $C_{g}^{(3)}=13 C_{f_{1}}^{(3)}+12 C_{f_{2}}^{(3)}+23 C_{f_{3}}^{(3)}+21 C_{f_{4}}^{(3)}+C_{f_{5}}^{(3)}$ of third partial derivatives can be used to find the factorisation of g. The transpose of $C_{g}^{(3)}$ is given by the array below.
$\begin{array}{lllllllllll}31 & 22 & 19 & 22 & 7 & 7 & 17 & 9 & 15 & 17 & 36 \\ 25 & 14 & 2 & 5 & 16 & 16 & 23\end{array}$
171242633141411311523362030
$22 \quad 717 \quad 915161623171242633141433004$
$\begin{array}{lllllllllllllll}33 & 1 & 14 & 7 & 7 & 28 & 8 & 1 & 13 & 8 & 20 & 31 & 26 & 14 & 36 \\ 23 & 5\end{array}$
$19171736251612 \quad 426113115233620$
$\begin{array}{lllllllllllll}7 & 1 & 13 & 8 & 20 & 31 & 26 & 31 & 26 & 33 & 18 & 10 & 17 \\ 10 & 35 & 27 & 34\end{array}$
$22 \quad 93614 \quad 223 \quad 4331431233630$
2813203114362326181010352715102227
$71525 \quad 2 \quad 517261414153620 \quad 9 \quad 7 \quad 633 \quad 728$
$8 \quad 831263623 \quad 533101735273410222721$

This matrix $C_{g}^{(3)}$ has rank 2 (by construction) and any row is a linear combination of the rows $(1,0,7,24,12)$ and $(0,1,28,21,12)$. Thus the linear factors of g are a linear combination of $x_{0}+7 x_{2}+24 x_{3}+12 x_{4}$ and $x_{1}+28 x_{2}+21 x_{6}+12 x_{4}$. We can now factorise g by a small search through all the possible such linear factors or by some other method to find that the only linear factor of g is

$$
x_{4}+21 x_{3}+31 x_{2}+6 x_{1}+28 x_{0} .
$$

Four Variables

We can now eliminate a variable from the equation system. We use the linear factor of g to make the substitution $x_{4}=-\left(21 x_{3}+31 x_{2}+6 x_{1}+28 x_{0}\right)$ in the original equation system. This gives a new equation system $f_{1}^{\prime}=$ $f_{2}^{\prime}=f_{3}^{\prime}=f_{4}^{\prime}=0$ of four independent quartic equations in the four variables $x_{0}, x_{1}, x_{2}, x_{3}$. The coefficients of these polynomials with respect to lexicographic monomial ordering are given below.

$$
\begin{aligned}
& 351321261310 \\
& 41923 \quad 3 \quad 3 \quad 728143514153417 \quad 710431 \\
& 143210 \quad 5351118 \quad 22325 \quad 62820 \quad 8 \quad 0 \quad 93329 \\
& 23181523 \quad 7 \quad 52735302115 \quad 9302312316 \\
& \begin{array}{llllllllllllll}
27 & 21 & 34 & 15 & 2 & 3 & 27 & 1 & 1 & 32 & 19 & 16 & 17 & 4 \\
2 & 6 & 3 & 32
\end{array} \\
& 7351217232525313425271315 \\
& 921 \quad 9121719 \quad 6 \quad 7 \quad 630221415171810 \quad 828 \\
& 427 \quad 6253114 \quad 0 \quad 4273032 \quad 53617242133
\end{aligned}
$$

We now apply the GeometricXL algorithm to this new equation system. The matrices $C_{f_{i}^{\prime}}^{(3)}$ of third partial derivatives for each polynomial f_{i}^{\prime} are 20×4 matrices, and we give the transpose $C_{f_{i}^{\prime}}^{T}$ of each of these matrices below.

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrr}
26 & 4 & 15 & 8 & 15 & 20 & 0 & 21 & 30 & 18 & 30 & 26 & 26 & 16 & 2 & 31 & 30 & 19 & 8 & 3 \\
4 & 15 & 20 & 0 & 30 & 26 & 26 & 16 & 2 & 31 & 34 & 18 & 18 & 28 & 19 & 19 & 25 & 28 & 30 & 19 \\
15 & 20 & 21 & 30 & 26 & 16 & 2 & 30 & 19 & 8 & 18 & 28 & 19 & 25 & 28 & 30 & 1 & 5 & 3 & 24 \\
8 & 0 & 30 & 18 & 26 & 2 & 31 & 19 & 8 & 3 & 18 & 19 & 19 & 28 & 30 & 19 & 5 & 3 & 24 & 4 \\
& \\
3 & 7 & 23 & 30 & 29 & 22 & 36 & 8 & 9 & 26 & 36 & 19 & 3 & 16 & 0 & 18 & 13 & 21 & 9 & 34 \\
7 & 29 & 22 & 36 & 36 & 19 & 3 & 16 & 0 & 18 & 27 & 27 & 5 & 20 & 17 & 29 & 32 & 5 & 30 & 17 \\
23 & 22 & 8 & 9 & 19 & 16 & 0 & 13 & 21 & 9 & 27 & 20 & 17 & 32 & 5 & 30 & 17 & 27 & 4 & 27 \\
30 & 36 & 9 & 26 & 3 & 0 & 18 & 21 & 9 & 34 & 5 & 17 & 29 & 5 & 30 & 17 & 27 & 4 & 27 & 14 \\
& \\
19 & 15 & 19 & 16 & 8 & 6 & 17 & 4 & 2 & 17 & 3 & 32 & 34 & 8 & 2 & 12 & 18 & 27 & 14 & 25 \\
15 & 8 & 6 & 17 & 3 & 32 & 34 & 8 & 2 & 12 & 29 & 28 & 27 & 26 & 13 & 13 & 19 & 13 & 17 & 4 \\
19 & 6 & 4 & 2 & 32 & 8 & 2 & 18 & 27 & 14 & 28 & 26 & 13 & 19 & 13 & 17 & 9 & 12 & 20 & 16 \\
16 & 17 & 2 & 17 & 34 & 2 & 12 & 27 & 14 & 25 & 27 & 13 & 13 & 13 & 17 & 4 & 12 & 20 & 16 & 24 \\
& & & & & & & & & & & & & & & & & & \\
31 & 15 & 17 & 35 & 31 & 1 & 12 & 28 & 12 & 9 & 21 & 28 & 30 & 34 & 18 & 20 & 11 & 19 & 8 & 14 \\
15 & 31 & 1 & 12 & 21 & 28 & 30 & 34 & 18 & 20 & 33 & 2 & 1 & 19 & 0 & 16 & 14 & 23 & 27 & 30 \\
17 & 1 & 28 & 12 & 28 & 34 & 18 & 11 & 19 & 8 & 2 & 19 & 0 & 14 & 23 & 27 & 13 & 28 & 22 & 15 \\
35 & 12 & 12 & 9 & 30 & 18 & 20 & 19 & 8 & 14 & 1 & 0 & 16 & 23 & 27 & 30 & 28 & 22 & 15 & 15
\end{array}
$$

As before, we need to find a linear combination of these matrices with rank 2 , so we consider the 3 -minors of the matrix $\sum_{i=1}^{4} \lambda_{i} C_{f_{i}^{\prime}}$. There are 45603 -minors of a 20×4 matrix, so we obtain 4560 homogeneous cubic equations in the 20 cubic monomials in $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$. The 4560×20 linearisation matrix for this cubic system in λ_{i} has rank 19, and the first 19 rows of the echelon form are the matrix $\left(I_{19} \mid v^{\prime}\right)$, where the vector v^{\prime} of length 19 with components given below.

$$
2334301221729156321113027332826316
$$

By considering the appropriate components of v, we obtain

$$
0=\left(\lambda_{1} \lambda_{4}^{2}+32 \lambda_{4}^{3}\right)=\left(\lambda_{2} \lambda_{4}^{2}+28 \lambda_{4}^{3}\right)=\left(\lambda_{3} \lambda_{4}^{2}+16 \lambda_{4}^{3}\right)
$$

As $\lambda_{4}=0$ would give a matrix of rank 0 , we obtain

$$
\lambda_{1}=5 \lambda_{4}, \lambda_{2}=9 \lambda_{4} \text { and } \lambda_{3}=21 \lambda_{4}
$$

We can now construct the polynomial $g^{\prime}=5 f_{1}^{\prime}+9 f_{2}^{\prime}+21 f_{3}^{\prime}+f_{4}^{\prime}$. The coefficients of this polynomial with respect to the lexicographic monomial ordering $x_{0}^{4}, x_{0}^{3} x_{1}, \ldots, x_{2} x_{3}^{3}, x_{3}^{4}$ are given by the array below.

> 26130213293226136191252833172328
> $820271202720 \quad 42 \quad 0321115 \quad 5 \quad 3 \quad 820$

We calculate $C_{g^{\prime}}^{(3)}=5 C_{f_{1}^{\prime}}^{(3)}+9 C_{f_{2}^{\prime}}^{(3)}+21 C_{f_{3}^{\prime}}^{(3)}+C_{f_{4}^{\prime}}^{(3)}$, the 20×4 matrix of third partial derivatives of g^{\prime}. Its transpose is given by the array below.

```
32 6 32151718 27 30 26 24 3 2 13 19 33 34 27 1916 9
    61718 27 3
3218 30 26 2 19 33 27 1916 35 34 3 12 0 27 27 3012 11
152726 2413 33 341916 9 0 3 16 0 27 29 30 12 11 36
```

The matrix $C_{g^{\prime}}^{(3)}$ has rank 2, so any row of $C_{g^{\prime}}^{(3)}$ is a linear combination of the two rows $(1,0,23,12)$ and $(0,1,6,4)$, so the linear factors of g are a linear combination of $x_{0}+23 x_{2}+12 x_{3}$ and $x_{1}+6 x_{2}+4 x_{3}$. This allows us to factorise g^{\prime} by a small search through all the possible linear factors or by some other method to find that the only linear factor of g is

$$
x_{3}+32 x_{2}+21 x_{1}+11 x_{0} .
$$

Three Variables

We can now eliminate a second variable. The substitution $x_{2}=-\left(32 x_{2}+\right.$ $\left.21 x_{1}+11 x_{0}\right)$ in the four variable equation system gives an equation system $f_{1}^{\prime \prime}=f_{2}^{\prime \prime}=f_{3}^{\prime \prime}=0$ of three independent quartic equations in the four
variables x_{0}, x_{1}, x_{2}. The coefficients of these polynomials $f_{1}^{\prime \prime}, f_{2}^{\prime \prime}, f_{3}^{\prime \prime}$ with respect to lexicographic ordering are given by the array below.

$$
\begin{aligned}
& 313035110332322 \quad 622 \quad 8 \quad 7 \quad 6 \quad 636 \\
& 111 \quad 3143363532 \quad 5 \quad 030211213 \quad 4 \\
& 1915308069141329 \quad 6 \quad 527 \quad 328 \quad 0
\end{aligned}
$$

We give the transpose of the 10×3 matrices $C_{f_{i}^{\prime \prime}}^{(3)}$ of third partial derivatives for each polynomial $f_{i}^{\prime \prime}$ below.

$$
\begin{array}{rrrrrrrrrr}
4 & 32 & 25 & 7 & 0 & 21 & 27 & 7 & 12 & 21 \\
32 & 7 & 0 & 27 & 7 & 12 & 7 & 5 & 24 & 36 \\
25 & 0 & 21 & 7 & 12 & 21 & 5 & 24 & 36 & 13 \\
& & & & & & & & \\
24 & 29 & 18 & 19 & 6 & 33 & 25 & 27 & 10 & 0 \\
29 & 19 & 6 & 25 & 27 & 10 & 17 & 15 & 11 & 4 \\
18 & 6 & 33 & 27 & 10 & 0 & 15 & 11 & 4 & 22 \\
12 & 16 & 32 & 32 & 0 & 36 & 10 & 26 & 21 & 36 \\
16 & 32 & 0 & 10 & 26 & 21 & 9 & 14 & 12 & 20 \\
32 & 0 & 36 & 26 & 21 & 36 & 14 & 12 & 20 & 0
\end{array}
$$

We consider the 3-minors of the matrix $\sum_{i=1}^{3} \lambda_{i} C_{f_{i}^{\prime \prime}}$ to obtain 120 homogeneous cubic equations in the 10 cubic monomials in $\lambda_{1}, \lambda_{2}, \lambda_{3}$. The 120×10 linearisation matrix for this system has rank 9 , and the first 9 rows of the echelon form are the matrix $\left(I_{19} \mid v^{\prime \prime}\right)$ where the the $v^{\prime \prime}$ is a vector of length 9 with components given below.

$$
3118102078141613
$$

We thus obtain the equations

$$
\lambda_{1} \lambda_{3}^{2}+8 \lambda_{3}^{3}=\lambda_{2} \lambda_{3}^{2}+13 \lambda_{3}^{3}=0, \text { so } \lambda_{1}=29 \lambda_{3} \text { and } \lambda_{2}=24 \lambda_{3},
$$

as only nonzero solutions are permissible. We can now construct the polynomial $g^{\prime \prime}=29 f_{1}^{\prime \prime}+24 f_{2}^{\prime \prime}+f_{3}^{\prime}$. The co-efficients of this polynomial with respect to the lexicographic monomial ordering are given below.

172734351741327153231213330
The transpose of the matrix $C_{g^{\prime}}=29 C_{f_{1}^{\prime}}+24 C_{f_{2}^{\prime}}+C_{f_{3}^{\prime}}$ of third partial derivatives is given by the array below.

$$
\begin{array}{rrrrrrrrrr}
1 & 12 & 5 & 25 & 33 & 31 & 24 & 26 & 17 & 16 \\
12 & 25 & 33 & 24 & 26 & 17 & 28 & 1 & 10 & 13 \\
5 & 33 & 31 & 26 & 17 & 16 & 1 & 10 & 13 & 17
\end{array}
$$

This matrix has rank 2 and is spanned by the rows $(1,0,20)$ and $(0,1,8)$, so the linear factors of $g^{\prime \prime}$ are linear combinations of $\left(x_{0}+20 x_{2}\right)$ and $\left(x_{1}+8 x_{2}\right)$. Thus we find that the only linear factor of $g^{\prime \prime}$ is

$$
x_{2}+27 x_{1}+17 x_{0} .
$$

Two Variables

We can now make the substitution $x_{2}=-\left(17 x_{0}+27 x_{1}\right)$ to obtain the bivariate equation system $f_{1}^{\prime \prime \prime}=f_{2}^{\prime \prime \prime}=0$, where the polynomials are given by

$$
\begin{aligned}
f_{1}^{\prime \prime \prime} & =35 x_{0}^{4}+25 x_{0}^{3} x_{1}+5 x_{0}^{2} x_{1}^{2}+31 x_{0} x_{1}^{3}+8 x_{1}^{4} \\
& =\left(x_{1}-2 x_{0}\right)\left(x_{1}-31 x_{0}\right)\left(8 x_{1}^{2}+36 x_{1} x_{0}+31 x_{0}^{2}\right) \\
\text { and } \quad f_{2}^{\prime \prime \prime} & =5 x_{0}^{4}+14 x_{0}^{3} x_{1}+27 x_{0}^{2} x_{1}^{2}+35 x_{0} x_{1}^{3}+13 x_{1}^{4} \\
& =\left(x_{1}-2 x_{0}\right)\left(13 x_{1}^{3}+24 x_{1}^{2} x_{0}+x_{1} x_{0}^{2}+16 x_{0}^{3}\right)
\end{aligned}
$$

Thus we can deduce that $x_{1}=2 x_{0}$, and hence find the unique (projective) solution to the original equation system as

$$
\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=\left\langle(1,2,3,4,5)^{T}\right\rangle
$$

