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ABSTRACT

Various formulations of free Euclidean Markov spin one 

fields with m > 0  and m = 0 are studied. Attempts to construct 

Euclidean Markov spin two tensor fields with m ^ O  and m = 0 

are only partially successful.
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ERRATA

Page 15 Delete last line of equation (20) (i. e .  ̂ ^

and " and _TL the vacuum state " t ̂ at follows.

Page 16 Lines 5 & 6 from the bottom of the page should read

"Define { the orthogonal complement of

(Mr) ^  "

Page 18 All the A[ and J'i in Theorem (Nelson Ne : 3) slic uld be

replaced by and Q  respectively, (e.g.  ̂(Ĵ l)

should be replaced by iĴ  (^) , etc.)

Page 49 Delete the first paragraph (line 2 to line 8)

Page 55 Add the following remark after the proof :

"The anti-symmetric spin - 1 tensor field is equivalent 

to Proca field if ^  — 0  ̂ otherwise

and P  are not the same".

Page 57 Add the following parenthesis after line 11 :

"(For the Lagrangian is non-local in "Landau gauge"

which implies non-Markovicity)".

Page 76 Equation (31) should read :

where ~  /i[ /iC [ A  (X'a))

(31)

7 nr

Page 83 The sentence in line 8 of last paragraph should read :

"Furthermore the proof of TCP theorem does not hold since 

the assumption of local commutativity may not be valid 

in non-local field theory ...... "
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CHAPTER ONE 

INTRODUCTION

I, I. Summary Of Results

In the first chapter we give a brief historical account 

of the progress in Euclidean field theory, some essential mathema

tical tools and a brief account of Nelson's work. We generalize some 

of the basic concepts such as Euclidean covariance, reflection 

property, Markov property, etc. so that they are defined for 

Euclidean random tensor field of arbitrary rank.

We introduce a general Lagrangian formulation for massive 

particles with higher integer spin due to Umezawa and Takahashi in 

Section II. 1. This formulation has the advantage in the sense that 

if the corresponding Euclidean region field exists, then Nelson's 

proof of Markovicity can be applied directly. The reason for this 

is that the Euclidean propagator in this formulation always has a 

local inverse. The work of L. Gross and T.H. Yao is then considered 

in the light of this approach. In Section II. 3. we construct a 

anti-symmetric rank-two Euclidean tensor field which is Markovian. 

This Euclidean tensor field can be shown to be equivalent to the 

Euclidean Proca field. We conclude our study of Euclidean massive 

spin - 1 field by constructing a Euclidean vector field with a one 

parameter family of covariant gauges. This model is interesting for 

it enables one to take the KM — > O  limit. Although it is 

Markovian, but it does not satisfy the reflection property. The 

corresponding Minkowski region field is renormalizable but require



the use of indefinite metric Hilbert space because of the presence 

of unphysical states (ghosts).

Chapter three is devoted to the study of Euclidean electro

magnetic potential and field. We first discuss Euclidean electro

magnetic potential with one parameter family of covariant gauges, 

which is just the Ml ^ 0 limit of the Euclidean massive vector 

field discussed in Section II, 4. Again, such field though is 

Markovian, it violates the reflection property, this may explain why 

it does not lead to a Wightman field. Next we show that the Euclidean 

electromagnetic field in terms of anti-symmetric rank-two field 

intensity tensor is also Markovian, but the proof for this is more 

involved. In this case the reflection property is satisfied and it 

does give rise to a Wightman field in Minkowski space-time.

Finally we study Euclidean massive and massless spin - 2 

tensor field in chapter four. We start with Umezawa-Takehashi formu

lation of massive spin - 2 tensor field. However the corresponding 

Schwinger two-point function is not positive-semidefinite so we cannot 

construct a Euclidean field in the usual manner. In order to make 

the Schwinger function positive-definite, we impose traceless condi

tion on the tensor-valued test functions, but now we do not have the 

Markov property. In another attempt, we impose, in addition to the 

traceless condition, a differential condition (some kind of divergen- 

celess condition) on the test functions; however this again fails to 

give a Euclidean Markov tensor field. For the massless case, we 

do get a Euclidean Markov tensor field in some covariant gauges. This 

Markov field does not satisfy the reflection property and the 

Minkowski region field does not give a Wightman theory.



I. 2. Historical Account

The idea of using Euclidean space in quantum field theory 

has a long history. It goes as far back as 1949 in the work of 

Dyson (Dy 1) on renormalization theory. In order to get rid of the 

mass-shell singularities of the Feynman propagator

he replaced it by the well-behaved Euclidean propagator — ( Po 4" P - f - * 

Less than a decade later, Wightman and Hall (Wi 1, W - HI) considered 

the analytic continuation of vacuum expectation values of field 

products to a region including the Euclidean region, however, no 

emphasis has been placed on the importance of the Euclidean region 

vacuum expectation values.

Later on, Schwinger (Sc 1, 2) and Nakano (Na 1) independently 

studied in some details the vacuum expectation values of time- 

ordered field products taken at purely imaginary time and real space, 

called the Euclidean Green's functions or Schwinger functions. The 

former noted that such functions are invariant under Euclidean group, 

and he also stressed the importance of such an approach.

In the past few years there have been much progress in the 

Euclidean approach to quantum field theory, in particular the syste

matic use of the ideas and mathematical methods of statistical and 

probability theory. The first step towards this direction was carried 

out by Symanzik (Sy 1, 2, 3) who realized that it might be easier to 

construct Euclidean Green functions than the direct construction of 

the Wightman functions from a given Lagrangian density. He also 

developed many of the ideas special to Euclidean field theory, and 

established a useful connection between Euclidean field theory and 

classical statistical mechanics for certain class of interactions.

It was found that the existence of Euclidean fields depend crucially



on the requirement that the Schwinger functions need to be the 

expectation values of products of fields with respect to a positive 

measure, i.e.

S  n  J  ^ ( x , )  ■ ■ • (1)

where the ^ ( K )  are commuting fields defined for X  in Euclidean 

space-time. Since the functional integrations involved in the theory 

are respectable probability theory, the hyperbolic field equations 

are replaced by elliptic equations, the complications of Lorentz 

invariance are replaced by simple Euclidean covariance, and the 

Euclidean fields commute at all space-time points, all these ought 

to make the Euclidean field theory much easier to handle than ordi

nary quantum field theory.

The importance of Euclidean method in quantum field theory 

was not realised by many constructive field theorists before the 

publication of the decisive papers by Nelson (Ne 1, 2, 3). He gave 

a mathematically rigorous formulation of Euclidean massive scalar 

boson field, and also solved the question left open by Symanzik*s 

work, namely, the determination of quantum field theory in 

Minkowski region given a Euclidean field theory. The main emphasis 

in Nelson's work was on the probabilistic method, in particular, he 

isolated a crucial property of Euclidean scalar boson field - the 

Markov property.’ Actually this property was first discovered by 

Symanzik (Sz 4) but he did not explore it further. Nelson was able 

to show that given a Euclidean region field which satisfies certain 

suitable axioms, one could construct an associated Minkowski region 

field obeying the Wightman axioms. Thus, it would be suffice for one



to establish the proof of the existence of solutions in model theories 

in the Euclidean version of the theory; the existence of solutions 

in the Minkowski space version then follows from Nelson's general 

theory.

Another important contribution to Euclidean method in construc

tive quantum field theory came from the work of Osterwalder and 

Schrader (O - S 1, 2, 3). They showed that the Euclidean formulation 

of relativistic quantum field can be carried out in terms of Schwinger 

functions alone, without using additional assumptions provided by the 

existence of Euclidean region fields. The Schwinger functions are 

required to satisfy a set of axioms (O - S axioms) analogous to the 

Wightman axioms for Wightman functions. In general, 0 - S  axioms do 

not guarantee the existence of Euclidean region fields. In this respect 

Nelson's axioms are strictly stronger than the 0 - S axioms (Si - 1).

The results of Osterwalder and Schrader have been successfully
!

extended to field with arbitrary spin by Ozkaynak (Oz 1, 2). However 

the generalization of Nelson's probabilistic approach to arbitrary 

spin field has not been carried out except for the case of spin - 1 

Proca field which has been studied by L. Gross (Gr 1) and T.H. Yao 

(Ya 1) independently. The latter showed that the Euclidean Proca 

field is Markovian. Although the massless spin - 1 Euclidean vector 

field (or Euclidean electromagnetic potential) in Lorentz gauge has also 

been considered by Gross, however his conclusion that such a field is 

non-Markovian is incorrect.

In this work we shall study Euclidean spin - 1 and spin - 2 

fields in the spirit of Nelson and Yao. Various formulations of free 

massive and massless spin - 1 Euclidean fields will be studied and 

they are shown to be Markovian. We have found that those Euclidean



Markov fields which do not lead to Wightman fields in Minkowski space

time violate the reflection property. Attempts will be made to for

mulate Euclidean spin - 2 fields using the same approach. For 

Euclidean spin - 2 massless tensor field we have managed to show 

that it is Markovian in certain covariant gauges; whereas for the 

Euclidean massive spin - 2 tensor field there is a strong indication 

that it is non-Markovian. Throughout our analysis we rely heavily 

on two points, namely, the. positive-definiteness of the Schwinger 

functions and the existence of a local inverse for the covariance 

functionals.

I. 3. Some Basic Notions In Probability Theory

We shall give a brief introduction to the basic concepts and 

theorems in the theory of probability which are useful in the formu

lation of Euclidean field theory. We begin with some basic definitions 

A probability space is a triple (  ̂ ^   ̂ ^  ), where

is a set, is a (T -algebra of subsets of , and

is a positive measure defined on with y W  ( 61)— ^ . A

real random variable is a measurable real-valued function from GL  

to fR (i.e. such that "p ( B )  is in 2 L  for each Borel set 0) in

jR . If -j- is a positive or integrable random variable, its mean 

or expectation L -p J is given by p-

Given a random variable -j- , the measure induced on |R by

JU [6>j r: /X (2)
f

is called the probability distribution for -p" , and its Fourier

transform



r itx i r /-  J  e  cljU^M ~ € ,  cijL(m

is called the characteristic function of -j- A knowledge of jUt

is equivalent to that of C jl > which can be taken as the expecta

tion of the random variable 0  ' ^  , i.e. —  E  ^ 0  ]

A nice property of the characteristic function is its connection to 

the moments of p  . Recall that the moment of p  is

V > the expectation of the power of p  . p  has

moments of all orders if and only if is and in that case,

< f  > =  E [ f  1 =  1
a

(4)

An important criterion for a function C  to be a characteristic 

function is given by :

Bochner's Theorem (Bo 1) j-------------------- j
A necessary and sufficient condition for a function C  (from 

[R to 0  ) to be the characteristic function of a random variable 

is that C  C' ) obey :

(a) C  CO) —  ^

(b) I— > Clt) is continuous

(c) For any = i R  and t I ^

Z  z Z j C l t f - t j )  ^ 0
i > j = 1 4

Amongst the functions of positive type on the reals the Gaussians

play a particularly important role, A random variable p  is called a

Gaussian random variable of mean zero whenever its characteristic

function has the form

—  0   ̂ CK y/ 0



By Fourier inversion, (5) is equivalent to

’ d U r M  =  c f c x ) d X  ^
' T  , (5V)n  [2-Ka)-^  c l X  4 a > o

It can be checked that the moments of a Gaussian random variable are 

all finite. (4) and (5) imply that

E l i " " ' }  = 0 (6)
[ ji" j r ilAi = i-3 ■

In particular.

(7)

Let J t - i/-'P be random variables, the matrix

( f 7 g  »,

is called the covariance matrix of the random variables

Since %  Q(̂  OC- I ^ 0 » so the
t/j-l J J

covariance matrix is positive-definite, real and symmetric. If p^ 

and -f. have zero mean, then f^j =  (  iF; ."f] ( Q ,  dyx) ■

The joint probability distribution g 1 on of the

random variables p ^   ̂ —  1, - * • j K1 , all defined on ( ),

is given by



with (  f, (8- ' - ) (lü) :: ( j; M y  ' for each

Borel set 3  in HR . The joint characteristic function is

A finite set  ̂ of random variables all

defined on ( Ql ,  ̂jLt ) is called jointly Gaussian if and only

if their joint characteristic function has the form

c  x t .  . . t j  =  < - >
TI Tn

where ( J ) is the covariance matrix. For 'f, , ' ' *

to be jointly Gaussian it is necessary and sufficient that all real

linear combinations X  ~  ^  p- p. of the p- be Gaussian
' i~l

random variables. The Fourier inverse shows that if the covariance

V

z .  I . J,. (12)

matrix  ̂E j  V  Is invertible with inverse ( O ' j )  » then

Thus it is the inverse of covariance matrix that enters in 

Wick's Theorem (Si 1, page 9)

Let p^ * * ‘ ) p^K) tie jointly Gaussian random variables 

(not necessarily distinct), then

where ^ P i P - P  —  P? P; ci jJ- and means the sum• J J J / pairing
over all H  ! ways of writing X  * ' ' / as H.
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distinct (unordered) pairs C )  ̂' ‘ ' ( ^^ ' Jn, P

Suppose p  is a random variable with finite moments, then 

the Wick power of p  denoted by ! p  |  ̂ M  z 0 , ^

is defined recursively by :

: f :  : 1
. pn . rf-i

. - n  =  1 , 2 ,

(13a)

(13b)

(13c)

. 4

0  ; n r  1 , 2 ,

For a Gaussian random variable with zero mean,

: f :  =  f  < “ >
rv) = 0

where [.^ ] ^s the largest integer ^  • If p  and ^

are both Gaussian random variables, then

< ;  ; f ' . y  z  n !  < - f 5> "  d s )
This expression can be generalized to the case where p  ; ’ ' ' > 

are Gaussian random variables with R  p^  ̂  » now we

have

n, .n*

Furthermore, if "j" ; ' ' ' ; Pi &nd - ' -, are Gaussian and C\ ^ ^

then
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(17)

Remark

One can also consider a random variable as an equivalence 

class of measurable functions, the equivalence relation being 

equality almost everywhere with respect to jLA . The set of classes 

of bounded random variables on the probability space ( Gt ; ^  a ) 

is in one-one correspondence with R  ( > which is known

to be a von Neumann algebra. The unbounded random variables can be 

viewed as (normal) unbounded operators affiliated with L. [ Q. P p O  •

Conversely if CTl is a von Neumann algebra with a faithful 

normal state, then (JC can be realized as ( G l  > acting

by pointwise multiplication on L  ( Q. , (>{^3 for some (non

unique) probability space ( Qi y j ); whereby the unbounded

operators affiliated with become unbounded measurable functions

on GL • Note that in this context the polynomials, exponentials, 

and more generally the Borel functions of random variables go over 

into the same polynomials, exponentials and Borel functions of the 

corresponding operators.

I. 4. Generalized Random Field

A stochastic or random process indexed by a set J\ is a func

tion from y\. to the set of random variables on some underlying 

probability space ( G l  > J L  y ). Let J X  denotes either

the real Schwartz space of test functions; or ( iR ) , the

space of real-valued 0  -functions with compact support. A 

generalized random field over R C  is defined as the stochastic
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process indexed by such that if { Cl J R   ̂ p  — > p

in , then ^ ( p )  ^ X  ( j"j in measure.

We need to generalize Bochner's theorem so that nuclear 

spaces like ( iR ] and ^  (iR ] can be included in the

underlying measure spaces. To do this some new notions are required. 

We consider the theory on the space » but the same theory work

on ^  as well. A cylinder set in ^  is the set of distributions 

p  so that ^ F  p  ) ) " F  ^ p n  ) 3 0 E> where pi ’ p n  are 

n  fixed elements in and 2) is a fixed Borel set in iR

which indexes the cylinder set, A cylinder set measure is a measure 

. on the (T -algebra generated by the cylinder sets with

(4 ^ 3 - i By definition there corresponds to each -p C

a measurable function ^ ( p )  on " X  by ^ ( p ] ( F )  —  P ( p ] .
If p ^  -- > p  weakly, then ^  f p^ )  ^ ^  { p  3 pointwise.

I

Now we can state the generalization of Bochner's theorem:

Minlos* Theorem (Si 1, page 21)

Let C  be a function on ( lR ) A necessary and

sufficient condition for there to be a cylinder set measure, d  ,

on <5* ( fR ) so that

r  t $ f p )  ,C ( f )  =  e  d / x  (18)
is that

(a) C  (Û) —  i ,

(b) p~ h— ^ C  ( p  3 be continuous in the strong topology,

(c) for any p, , * * * p*̂  ^  cf and % ,  ,  , 0  (C ,

X  2 ; 2 j  C  >/ 0
i.3^1

(18) sets up a one-one correspondence between cylinder set measures
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and functions C  (') obeying (a) - (c).

Thus if is a positive semi-definite quadratic

form on which is weakly continuous and let (% ( p  ) —  0  ,2. B (f,f ̂

then by Minlos* theorem one can construct a measure djÀ on 'X . 

The generalized stochastic process ^  with such a characteristic 

functional C{j") is a generalized Gaussian random field with mean 

zero and covariance functional 3(|-, . It can be shown that the

probability distribution of a generalized Gaussian random field ^  

is uniquely defined by the covariance functional 6) and the

mean E ( j" ) of ^  (for proof see for example G - V 1, page 252).

Note that for Gaussian random field the map p > ^  ' ̂ ^  p)

defines a semi-definite inner product on JG • We can then form a 

Hilbert space by completing the inner product space quotient

P  I ^ (f )}■ - 0  j . If jX is itself already a Hilbert space, 

then we can always form a generalized Gaussian field indexed by JX, 

with mean zero and covariance functional given by the inner product.

We end this brief introduction to random field with two impor

tant notions, the conditional expectation and Markov property.

Theorem

Let ( û w y E y R  ) be a probability space and let 2L be a sub-
' j

(T -algebra of ZL . Let p  0  L-/' ( Q^djd) , Then there exists

a unique function E  [ ( p I ZL j] so that

(i) E . [ ( p l 2 . j j  is 2 L  - measurable;

(ii) — J p ^ ^ / ^  for all

which are ZZ - measurable and in Ep. ( } d ) •

(For proof we refer to Si 1, page 91. We remark that
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the existence of such a function E  [(j- 1 E  j j 
follows from the Radon-Nikodym Theorem.)

E R p l Z ) ]  is called the conditional expectation of ^  

given Z3 . Suppose Zü is the smallest (T -algebra for which all 

^  (jl] are measurable functions and Z R C I  H  is the smallest sub- 

CP -algebra for which the functions ^ ^  [p) ) SUpp p  (Z A ^  At (Z R  

a closed set ̂  are measurable, then E  [ p  | ] is the conditional

expectation of P  given Z R  .

We can now give a succinct statement of the multidimensional

Markov property in terms of conditional expectations. Let ^

be a generalized random field over . Let 21 /R and

be the sub- CT -algebra generated by the X  (p) with p  6 and 

St'-pp p  0  IX . Then $  is a Markov field if

E [ u  i Z y . ]  - (19)

where iR is any open set, 0 its complement and ^

its boundary, and 'U- is a positive random variable. Express in 

words, (19) states that there is no more information to be gained 

inside Ô  from knowing the random field everywhere outside than in 

knowing it on the boundary.

I. 5. Relativistic One Particle Hilbert Space And Fock Space

To describe the free relativistic scalar field theory we 

first construct a suitable one particle space and then second quantize.

A system of one relativistic scalar particle of mass HT is represented 

by the positive frequency solutions of the Klein-Gordon equation.

Therefore the Hilbert space of states or the one particle Hilbert space A t
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is obtained by completing the inner product space whose elements are 

equivalence classes of elements of OR. j , with equivalence 

defined with respect to the norm given by the inner product R  2 3^

P  > ^  IPi “  "^7 d x  d y  ^  (20)

where ~  j d  p  0  o ( p  " M  J

-  K t l . ( / ( y )  J l )

with CO (-p) —  ( p  -f' ) and J1 the vacuum state. If we let

-p be the Fourier transform of defined by p(j?) - j cf X

then

1

A unitary irreducible representation of the Poincare group can be 

defined on M  in the usual way.
e%) .

The boson Fock space is given by ^ O M j  —  where

yV[^ —  yv[ ®5 ' ' ' ̂  Id. is the n. -fold symmetric tensor product of A(. 

with itself, and P A q - 0  . The inner product in /An is given by

where sym. is the symmetrization operator

5 ^ m  I, ®  - - - ®  f„ =  X  Ç  i n o  ®  ®
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Given -j-G X f  snd we define the creation operator

(X (p ) ! A t n — ^ is defined as oAi^] ~  (M + X  P  .

The annihilation operator 61 (p) is the adjoint of 0̂ (f). The field

Y p )  is defined by  ̂ 4  ( p )  ] . Let ^

be the incomplete direct sum (finite particle vectors). Since the

vectors in %  are analytic vectors of , so p p )  are essentially

selfadjoint on . They commute in the strong sense of Nelson and

thus generate an abelian von Neumann algebra (TL

In order to see how the probabilistic method comes into play 

in quantum field theory we consider the abstract formalism of second 

quantization for Boson field due to I. Segal (Se 1), Let ^  be the 

Gaussian generalized stochastic process indexed by r e a l y M  (X̂ )̂ with 

mean zero and covariance functional given by

■ S g ,

If ( Q  , Z j , A   ̂ the underlying probability space of this process, 

then p* maps each j- G A E  in±o a Gaussian random variable on

( ) .

Let L  ( Q p ) b e  the L  -space over Q  with respect to the

measure d. , we shall denote it by PlMr), Let E n  ( A M  be the

closed subspace spanned by ^ Kl

Then (J Ç ^ i M r ]  is dense in L  and Q . , ( A 6 J  ^  (^^3.

Introduce the Hermite polynomial ^ |~R ^ Air ) j[ of degree A  

as the orthogonal complement of [7̂ ., ( (Air- 3 ,

i.e. E n  U X r )  - @  fp^( Air 3 . Since (J fRf/iJis dense in

[ , there exists a natural isomorphism between  ̂ , d ^ )

and r ( M j  =  £ © / ; ; f M j  with ^ M ) = c .
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Following Segal we define Wick ordered monomial " f ) ' ' ’ ^

as the orthogonal projection of "̂fi V  ' ' ) on (Afr ) •

We then have

use

It is clear from (22) and (23) that

• )' ' ' ^ Yi ® ■ ■ • ® "fn

extends uniquely to be unitary from E  (X(j onto A P  , We shall

this unitary mapping to identify (Atj and the H  -particle

space, and hence j A/A j Z ^ ( A t )  is a Fock space. We have 

the following theorem:

Theorem (Segal : Se 1)

The boson Fock space ^  (A(J is unitarily equivalent to E ( A ^ )  

under a unitary map so that

(a) V - A -  =  1

(b) \/Ml^ = E ( M )

(c) V c p ( f ) V ' '  =

Suppose /\ is a contraction on A4 (i.e. a linear mapping 

of norm ^  1 ). Then there exists a unique contraction E  ( A )
OKI E  ( A t  J such that

r ( A ) :  A A f J

In Fock space notation,

r i A i r i i H )  =  A ®  ■ ■ ■ ® A
Note that E ( A ) E ( B> ) ~ p ( A) P ( B) and p  ( 1 ) Z  1 .
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We shall end this section with a remarkable theorem of Nelson 

which characterizes completely P ( A )  in all cases of interest.

Theorem (Nelson : Ne 3)

Let A : be a contraction from one real Hilbert spaces

to another. Then P  (A) is a contraction from to P  (.j/i)

for 1 ^ p DO , provided that

«All < <w

If (24) does not hold, then P(A) is not a bounded operator from 

l 4 m )  to l ^ m )  .

I. 6. Free Euclidean Markov Field

To the physical single particle system living in Minkowski 

space we associate a mathematical image, living in Euclidean space, 

from which all properties of the physical system can be easily derived. 

The starting point is given by the two point Schwinger function

3  ( X  -  y  j -  (2TT) j e  ( p V w ‘J d  P  (25)

which is just the analytic continuation of the two point Wightman 

function to pure imaginary time and real space. It defines the Green's

function for [ —  j where ^

so that

t  m ' )  (26)

positive-definite and analytic for X  ^  y  , it
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-/Tî/X - ^  !
decreases like Ç, as j X  - y  I — ^ ^  *

We now introduce Sobolev space C /R ) » which i:

the space of all distributions -j- on jR with finite norm

I I f  11% .  =  y  I ( 27)
Recall that the relativistic one particle space for a free boson 

with mass KH >0 in 3 space dimensions is the space ( /R- ) .

The one particle space for the corresponding Euclidean field is

taken to be ( /R, j with finite norm

The choice of inner product in ]\f is dictated by the fact that the 

two point Schwinger function is formally the kernel of the operator 

rn j , so that

A generalized Gaussian random field ^  indexed by can 

then be defined as a generalized stochastic process with mean zero 

and covariance functional given by the inner product ^   ̂ ^

The representation of the Euclidean group %  0  ('4') on the underlying 

probability space ( Cj , S   ̂̂  ) of $  is given by the measure-

preserving automorphism of the measure algebra S  . Given T/,V

in I   ̂ ^ J tt (V'l^)d^is a measurable function on JL 0  ( 4 j  ,

Euclidean covariance of the field is given by
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i ;  É t f )  :  ^  ( f - r ' i  . . <30,
If ^ is the reflection in the hyperplane \  ~ S , then the

Gaussian random field is said to satisfy the reflection property if

X u  ■- =  u  ( 31)
where XL is any random variable which is measurable with respect to 

the sub- G -algebra • If the reflection property holds for

one hyperplane, it holds for all hyperplane.

In order to find the connection between the Minkowski and 

Euclidean one particle spaces, we introduce;the following mapping for

f e X  •

j. : ( x . t )  — > (32)

We have the following theorem: 

Theorem

(i) is an isometry from 2 ^  f /R ) to — R f  )

(ii) The range/^^5jOf consists precisely of those elements 

of J \ f  with support in the hyperplane —  5 .

(ill) j * j ;  =  e  II" Slyx where y W  I'M"
• *and is the adjoint of .

Proof

(i) and (iii) follow immediately from the identities 

foo ips
— P — - d p  z  J L Ê —  (33)

ro m
—  Oo



and ( I -j- [ p) As for (ii)

we need only to show that any element of J^f with support in the 

hyperplane = S has the form -j-(X)(5'(5) . But any distri

bution supported on the hyperplane has the form R_/ j~(r) ̂ ~  ̂

and form (28) we see that this distribution belongs to J]f if and only 

if a  - 0

Q.E.D.

We can thus naturally imbed Ĵ \. onto the subspace J\f of distri

bution with support on the hyperplane r 5 . Since the most

general element of J\fo) is of the form 6^ - ^ ( 6 ) (f

we have || -j- 0  (̂ o z  || ||^ • . Therefore there is an isomor

phic and isometric identification of two Hilbert spaces J\\ and 

In other words, the Euclidean scalar boson field (X) agrees at 

time zero with the relativistic boson field, i.e. z )

Similar relation holds between the Fock spaces and H  (/vi) ,

The second quantized version of the above theorem can be formulated 

as follows. Let Z  P ~ T  CM) then we

have

Theorem (Nelson)

(i) vJ5 is an isometric imbedding of ^  into 7 L  . The range 

of J 5 is the subspace of ^ 2  concentrated at

X *  - S.

(ii) j /  J 5 z: €1 I where )-|̂  = H  (/̂ ) is

the free Hamiltonian on ,

Let 0 ^  z be the projection in onto •

Suppose U l t )  denotes translation along the X y  -direction and

21
-1/



22

reflection in the hyperplane — 0 , then from the theorem above

we have

Co (its) 00 - j , c  j * (34)

1̂0 jo - 3. ; j X .  Z j" (35)

(35) is an immediate consequence of the fact that (P(^S —  /

an(3 it tells us that Xg leaves J\f pointwise invariant. If we iden

tify Â Ï ,«) and A f  by yVf 7 ^  > then (34) becomes

_/sl JU
( ^ 0 : :  (0 ' (36)

Let Z  P ( ^ s )  , P(W(t)) and R t  -  R  ( ̂ 6 ̂  -

We have

E.Ult)£.  r J. a»

with Ji Ji* = Ei ; Js =UinJ ,

leaves pointwise invariant. So ^  is naturally realized as

a subspace of such that

e'"'"' = EUitiEr? <w

where £  is the projection onto Ç- as imbedded in *

We remark that there exists a connection between Nelson's theory 

and the theory of unitary dilation of Foias-Sz-Nagy (F - S I ) .  It is 

clear that the group ilH) is a dilation of the semigroup 0, °
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on ^  . However it is not the minimal dilation. Rather is

the minimal dilation of 0  , so that U('tj is the second

quantization of the minimal dilation.

We now introduce a local structure on X/" by considering a 

close set TV ^  /R , then the subspace of consists of distri

butions 1 j” 1 j" ̂  ^ f  ̂  A  } . Denote by the orthogonal

projection on J\[̂  . It is obvious that if ^  6  then A / R

and —  0/^ . Let £  ( 0 ^  ) ~  E-a  the second

quantized operator. We can interpret Ej^ as the conditional expec

tation with respect to the sub- CT -algebra of ^  generated by

the fields with 6 GZ A  We can now

consider the Markov property for one particle system in terms of the 

projection operator 0j^ .

Theorem (Pre-Markov Property)

Let A  and be closed subsets of /R with /\ A\ 6  - P  ̂
wh6i^ A  7nts.rCtr oj- A •

Then

(i) < 2 a € 3 A  G g  ~  & s  , denotes i r h t  b o i ^ n M û y ÿ  of A ■
(ii) If j- £  y V g  I then lies in T/gA .

Proof

Since ^  3A “ 0  3A » so (i) is equivalent to

0 ^ A  0 g  —  0 A  G  g which is the same as (ii). To prove (ii) we must

show that 0/^^ has support in f̂\ as a distribution. Since A  is 

closed, Ca'F support in A  , so we need only to prove that
OO ** '

J(Cpi|-)(X) ^(X) —  0  , if ^ is in C o  , with support in A
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j ( e A - f ] ( x )  ^(x) -  < e ; | ,

-  <  f  , e ^ i - A ^ v n > )  g > ^
=  <  f  , ( - A  

~  'f > 9 -  (3

The second equality depends on the fact that is an -orthogonal 

projection, and the next on the fact that {~A t ^  also has 

support in j\ since ( — A-f is local.

Q.E.D.

Theorem (The Markov Property)

Let A  and B> be closed subsets of iR. with 

A  B> Z  0  . Then

(i) t g  -  E a E g
(ii) If -j- is any -S -measurable function, then the conditional

expectation ) is -measurable.

(iii) If is any -measurable function, then E^^j" ) ~  E^A^f ̂ •

Proof

The proof for (i) follows from second quantization of (i) in 

. the previous theorem. Now since E  2iA ^  > (ii) •

and (iii) follow.

Q.E.D.

Remarks

(i) In one dimension (i.e. /\ — 0  (X); O ] , 6  —  EO>03j ) 

this property reduces to the familiar Markov relation

that for questions about the future ( -measurable)

knowledge of the present ( £ 3 ^ *^0 is as good as 

knowledge of the entire past ( E# TX )

(ii) We have taken A  and 0  . closed merely for the sake
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of convenience, the result holds for arbitrary measura

ble sets.

(iii) The proof of Markovicity depends critically on the fact 

that y\f has a non-local inner product such that the 

kernel is the inverse of a local operator.

Before we can state the reconstruction theorem of Nelson two 

more assumptions are necessary.

(I) Regularity Assumption

There exist /c and t such that for each -p ^  CiR̂ )

( ̂  H  0 ) is bounded (where

1  ®  (5.1 =  90 ( f  ) 3

(II) Ergodicity Assumption |

The translation subgroup of XO(^) acts ergodically, i.e.

the only translation invariant measurable functions are constant.
!

Theorem (Nelson's Reconstruction Theorem)

Given Euclidean covariant Markov field theory which satisfies 

the regularity and ergodicity assumptions, then it is associated 

with an essentially unique Wightman theory.

Proof ; See (Ne 1, 2, 3)

I. 7. Euclidean Tensor Field

In this section we state the Wightman axioms and Osterwalder- 

Schrader axioms in terms of the Wightman distributions and Schwinger 

distributions respectively, for massive tensor field with integer spin S,
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Notations

l/jJl %  [/x'. y j ,  . i)i]l = 0 . L j M : =  Y ' - y h  .

[ kj" z k'... k" . [kj: %o . L k p Z  -k„:---k. .
-> >

iR ^  ~ " Xn ,Xj €

- d c r )  9 f ®  . • ■ 0  p "' ' e d c r j
Let be a massive tensor field obeying all the Wightman

axioms (V\A- S I ) .  Then its vacuum expectation values or Wightman 

distribution
K' , mk" , r 4^'%

have the following properties :

(wo). Distribution Property
,  iCkl"

For each H  , W  is a tempered distribution belonging

to with \a/ o z 1

(Wl). Relativistic Covariance
EK]1,/EKr'For each Kl , W  is Poincare invariant.

- M  (A'1^. W % i ^ f A x t o ) ( 4 o )

for all [ 0 , A  ̂ 6" Aq- , where /\^ + £î —  ( Â t, t ̂ ; ' ".

(W2). Positivity ^

For all finite sequences j- A.  ̂ > T  m of

test functions, f   ̂ 6  , C  , j" 6  <5  ̂ ~ \ ̂ " H  ,
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(41)

where ( ( X » , - - , * , )  .

(W3). Locality

For any /\ and all permutation 7T 0-j- ^ /

W  CjWJJ (^/■■■•^"] — VJ  zp)'̂  ('^Viu'" 7̂T(M|) (42)

where £ K  ] " =  C f r, = [ 0"'-■ h ■

(W4). Cluster Property

For any spacelike (À ,

L w  z  [ W c i u i u ^ '  I ^r7,rKr.-̂̂ co ^ 3 ' ■'

-  W ! % ' ;  ( ( f t w "  I ^

where  ̂ ■

(W5). Spectral Condition
\ /Translation invariance of the l/y ^  implies there 

exist distributions Ra/'cuI'''* ^  * such that

Then

iv1*l

S u f p û ^ ï  c :  v 7  =  f l  I î j « v , , j = i - " - ‘] < “ >
. . . .  4 , ' : : , '  i « )  =  ( « r  j e 7 " ' w ; : : : ( p d " l

the Fourier transform of cjUJ'’*̂  > V +  is the closed

forward light cone, and r .

One can recover the field structure by the following theorem:
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Theorem (Wightman's Reconstruction Theorem)
Ç ../[%]" I

Given a series  ̂ yy t^(]”  ̂ obeying axioms (W 1 - S),

there is an essentially unique field theory of Garding-Wightman type 

for which ^ W  | are the Wightman functions.

Proof : Refer to (Ar 1)

The analytic continuation of the Wightman function W  ty*]” 

to Euclidean region with pure imaginary time and real space gives the 

Tl -point Euclidean Green's function or Schwinger function.

i i ) ~  Jcf,]; ( : IVy,; X ' ) / 7 ' V y ( 4 5 )
for X 6 E" Z ^ % I . jiY àU I ■$ ■4 ^ J ~ *2 j _ He

also set Sc - \a/o —  i. .
Let [RS- - f X  E: I Xj > 0 -jlôr aU j and zf (R^ )

be the space of test functions with support of j- in I R  ^ ,

given the induced topology. The Euclidean Green's functions satisfy 

the following axioms of Osterwalder and Schrader.

(EO). Distribution Property

There is a Schwartz norm I ' 1̂  oi

1 5 ' " :  ( f 7  ) u n i r i T iCf()s

(El). Euclidean Covariance

j and some

f e  triRlf)
" - 1 " 

, ) -

1 f
1 -r  k. (46)

8 -k v /
^ s ) 7 ( 4 ) . ï ï ( r 7 , - - - ( r 7 S , / - W .

where R )  6  I  0 ( / ^ )  .
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(E2). Positivity

p u r n i  / X" )
i Aj vj Jki,c m” ^ Tm.cfr/ ) ^ (48)

yW
k,{

where ( ©J-)ki [/ ' -  f n  j 6) •

(E3). Symmetry

^  ipiA^^^r" \ m )  ( 49 )

Ç [kfrgl"' y q
y  [ ^  3  E CK]" (Ao’

(E4). Cluster Property

EKfrer  ^

- 5 7 7 6 ‘ f 3 l Z l 5 7 ( Q } = “ ‘ ” ’
The main result of Osterwalder and Schrader is as follows: 

Theorem (Osterwalder-Schrader Reconstruction Theorem)
r  CKi*’ ■)

J/\'o

axioms (E 0 - 4) is the sequence of Euclidean Green's functions of

r q  CKl" ■)
A sequence of distributions i O  r nn I satisfyingL LMJc

a uniquely determined Wightman quantum field theory.

Proof : See (0 - S 3)

Remark

In general the 0 - S axioms do not imply a field structure. The 

0 - S positivity condition is distinct from the one needed for fields 

(Symanzik-Nelson positivity). However, for the free scalar field, the 

field positivity condition follows from that for 3 a  • Thus in this 

case, 0 - S positivity does imply the possibility of fields. We shall 

see in chapter four that for higher integer spin S  >  E , 0 - S 

positivity does not imply field structure.
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Now we give a brief introduction to Euclidean tensor random 

field following Nelson's approach. A Euclidean covariant rank- S 

tnesor random field over z5C/R J is a collection of random variables 

f j on a probability space ( GL ; Z  , ) indexed by 5

indices - i , I ,  ̂ , I-l,"->  ̂ , such that $  )

is linear and  ̂ measure

if "I"  ̂ > J  in the usual topology of >

and there is a representation T  of the full Euclidean group (including 

reflection) on the underlying probability space such that

T , „ ,

w h e r e  is the r e p r e s e n t a t i v e  of the e l e m e n t  (.̂  ) R  ) % 0  (4").

in the r e p r e s e n t a t i o n  T  , w i t h  â 6  /R^ a t r a n s l a t i o n  and R „  

a ro t a tion, and f  (X) -  ( R  I ) •

Let ^ ~  ^ 0 ,  Rf)  denote reflection on hyperplane with
/ 1 0 O 0 \

U o V o ,
^ 0 0  0 - 1 '

, then

7  § < 7 ( 7 ^ ’- ) ^  n r V f )

where (X) -  J . A Euclidean

covariant tensor field is said to satisfy the reflection property if 

^  z  IX. for all lA 6  L  ( Q   ̂ Z  ,^) localized
f

at the hyperplane X < y .  Z  0 .  .

Let (j) C .  (R^ be an open set and ^  (J the (T -algebra

generated by the random variables ^   ̂ "f ^ j with Süpp C



31

If %L is any arbitrary subset of , then • —

Then the Euclidean tensor random field Cb r, i isJ- r^Js
Markovian if

E  [  »  I Z g . )  =  E  [ i '  I Z a J  < » >

for all positive random variables t/C measurable with respect to .

Examples of Euclidean Markov tensor fields will be given in the next 

three chapters.

Finally we remark that Nelson's axioms are more restrictive 

than that of Osterwalder and Schrader, and thus lead to a richer 

structure. However they seem to be harder to work with in constructive 

field theory, and none of the non-trivial models constructed so far

has the Markov property of Symanzik and Nelson, The Osterwalder and
!

Schrader axiom scheme provides a convenient 'route to the Wightman
I

axioms, especially in cases where one can control Schwinger functions 

rather than Markov field measures.
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CHAPTER TWO 

EUCLIDEAN MASSIVE SPIN ONE FIELD

II. 1. Tg.kahashi-Umezawa Formulation

The Euclidean formulation of massive spin - 1 vector field 

was first studied by L, Gross (Gr 1) and T.H. Yao (Ya 1) indepen

dently. Yao has correctly shown that the Euclidean Proca field is 

Markovian, contrary to the implied conjecture of Gross (Remark 2.3 

in Gr 1). A crucial point in Yao's proof of Markovicity for the 

Euclidean Proca field is that the matrix inverse of the propagator 

exists and is a local differential operator, just like the case in 

scalar field. Therefore, Nelson's proof of Markovicity can be 

imitated.

Actually the fact that the propagator has a local inverse 

is closely related to a familiar problem in quantum field theory, 

which has been clearly expounded by Umezawa and Takahashi (U - T 1;

Um 1; Ta 1, 2). The main idea is as follows. In the theory of 

higher spin field first studied by Dirac (Di 1), Fierz and Pauli 

(Fi 1; F - P 1) and later developed by Rarita and Schwinger (R - S 1) 

and others (Ch 1; S - H 1), massive particles with integral spin 

3  yy 1 are generally described by a tensor field of rank S,

Since a tensor index carries spin - 1 as well as spin - 0, the tensor 

field /̂J(i' 05^^^ will therefore include spin - S as well as 

lower spins associated with it. Some of these lower spins enter with 

negative metric in the Wightman function. In order to obtain a field 

describing definite spin S, subsidiary conditions need to be imposed
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on the field to eliminate all the lower spins. Explicitly, the 

tensor field  ̂^ ̂ describing free massive spin - S

particles satisfies in addition to the Klein-Gor.don equation*

C D  +  m M  % r - M ,  =  0  (1)

the following subsidiary conditions

(p ( X j %  (p / X )T'" Ae-fn■ -/Vs 10,- 0,r fr As (2)

-  0  ( 3 )

(A)

For example, the real massive vector field ^ ( X )  will describe a 

unique spin - 1 field if it satisfies not only the Klein-Gordon equa

tion ( O  -f  ̂ — 0 , but also the subsidiary condition

(j)̂  (X ) —  0  • This condition removes the spin - 0

part of the field which would have had a negative metric.

In the above formulation, it is difficult to construct a free 

Lagrangian from equations (1), (2), (3) and (4), because to do this 

one requires a compact, single matrix equation. Furthermore, the 

introduction of interaction is difficult since the interaction frequ

ently contradicted the subsidiary conditions. To overcome these 

problems, Umezawa and Takahashi proposed a new formulation. Their 

method is to express the wave equations in the form of single matrix

*  We use the following convention for Minkowski metric : "̂ 3
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local differential equation

A  (  à )  =  0  ( 5 )
such that it can be reduced to Klein-Gordon equation and all the 

subsidiary conditions by a finite number of differentiations and 

algebraic operations. In other words, there exists an operator 

cl (.3) » called Klein-Gordon divisor, such that

d C 3 ) A ( . 3 )  =  A O ) d t 9 )  -  □ ( 6 )

Furthermore, there exists a non-singular matrix Kj satisfying

[Kj ACS) = 13 A (-S)

I
so that the equation of motion (5) can be derived from the localI
Lagrangian defined by

^  ( x )  A ( S )  ( 7 )
where denotes hermitian-conjugate. It is interesting to note 

that the Klein-Gordon divisor d (3) is closely related to the 

spin-projection operators. To be more specific, ct(9) acts as 

a spin-projection operator for energy-momentum on the mass-shell.

From the above discussion it is clear that the Green's 

function is given by ) whose inverse is

the local operator f\ ( 3') . The locality of A
ensures the Markov property for the corresponding Euclidean theory. 

The Markov property is thus related to the possibility of finding
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a local Lagrangian. We remark that the above discussion on 

Markovicity holds only if the Euclidean Green's function is positive- 

definite (or positive-semidefinite). Otherwise, even if A  ( ̂ 3  

exists as a local operator, one cannot define a Euclidean random 

field, hence there is no Markov property to talk about.

II. 2. Euclidean Proca Field

In this section we shall like to apply the Umezawa-Takahashi 

formulation to Proca field [ S - 1 , Ml 0 ) , so as to make the 

Markov property of the corresponding Euclidean field more transpa

rent. The two equations describing the spin - 1 massive vector 

field

( □  -+ -  0  (8)

3 .  f i x )  -  0  (9)
. ^  

and OjA

can be combined into one, namely the Proca equation

(10)

This equation can be derived from the Lagrangian
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q HHere we have let in equation (7) be . The Klein-Gordon

divisor is then given by

( ô )  -  ~  (12)

as can be easily verified that

dl O) ÂyO) - A A (s) d
The Fourier-transform of the Green's function is

y (13)

G , x p )  ^

The two-point Wightman function can be expressed in the following 

form

ip(X'S/)r

y
where CA^ C ^ )  —

We now proceed to construct the relativistic one particle

Hilbert space YVl . Let AT be the space of complex vector 
^  \functions ^   ̂p ) defined on the positive mass hyperboloid
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V „ ‘  z  [ P e l R ' "  I P . U p V m *  . P. > o  j  ,
■■

with Lorentz-invariant inner product

~

This inner product does not lead to a positive-definite norm, however 

it does give rise to a positive-semidefinite norm. In order to 

obtain a Hilbert space one need to consider the set of equivalence 

classes modulo the subspace of zero norm. These non-zero vectors 

with vanishing norm are of the form ( p  ) z  cX(p)

If we denote by \fç the subspace spanned by these vectors, then 

the relativistic one particle Hilbert space XW. is defined as the 

quotient space . For the time zero vector field, one can

choose a suitable co-ordinate system such that z  0  and

thus leaves only three independent spatial components. Now the rele

vant test functions at time zero are real vector functions of

the space variable ^  . We have the following reality condition in

the momentum space :

In this representation the relativistic one particle space can be 

taken as the completion of the test function space ['5 (KjJ H

X ) X  0 % ^  ) in the topology given by

the inner product
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1

'M
- j - m  cUy-j- . 0  ^  , (16) ,

for Jp e  [ .where

I f  1 1 ^  =  < f
and

c W f  ( X )  =  Z  ^ - )
' i=i

The transition from relativistic Green's function to Euclidean 

Green's function is not as direct as that in scalar case. The main 

difference lies in the fact that the Minkowski metri appears

in the relativistic Green's function and no amount of analytic conti

nuation is going to change the indefinite into the definite

needed for a probabilistic interpretation. To overcome this 

difficulty, we shall use an idea suggested by Streater that one should 

re-introduce the "old-fashioned" four-vector <j>̂  , yx = 1, 2 , 3, Y",

with shall call ) with y/ =  /; -2, 3,

a Minkowski four-vector to distinguish it from the Lorentz four- 

vector  ̂ y,( r Oy i , -2. y 3  . It is the Schwinger func

tions of Minkowski four-vector field that are covariant under the
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real Euclidean group. This fact is a bit obscure in C 0 ' S i , /1, 3 J 
where for the most part, covariance relative to the complex Lorentz 

group is considered.

Now the Schwinger two-point function of the Minkowski four- 

vector field can be found by noting that

—  ( ( -  m  ) 3 (X. - ÿ)

S ( x - y )  
z 5 ( x - y }

where ^  ^ £ denotes vacuum expectation values taken at

Schwinger points, and 0  ( X —  y  j is the Schwinger two-point

function for scalar boson field. Combining these results we obtain 

for the two-point Schwinger function for Minkowski vector field as

c  X  - ) ;  : z  < :  / X  )
%  (  6 y u v  S ( x - y )

whose Fourier-transform is ( "E P ^ P v )  I P ^

By direct computation one can verify that the two-point Schwinger 

function SyUiV ^  ) is positive-definite. Thus one can

define Euclidean one particle Hilbert space the completion

of the vector-valued test-function space
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with respect to
the norm

'  t i p )  ( 4 v - t m - 4 p ^ P d f  (p)d'^P

p  ̂ -f

f  114 +
= l l f i C  i

4.I,,
A

X  OQ

where cIa */ -p —  '

The relation between the relativistic one particle space /V[ 

and the Euclidean one particle space is given by the following

theorem due to Cross (Gr 1) :

Theorem II. 1 .

Let y\o be the time zero subspace of JK/ consisting of 

those distributions with support in the hyperplane ^  ̂  — 0  .

Then fYo can be naturally identified with JV[ .

L. Gross has also shown that the space EC can be obtained
~t H e

by "dilating" the semigroup 0- , where H, is the

Hamiltonian of a single free particle of mass KT] and spin = 1.

Our remarks show that this dilation is connected to the analytic

continuation, just as it is in Nelson's theory of scalar boson. By

a straight forward generalization one can obtain a similar relation 

for the corresponding Fock spaces and E  ( E G )  . For

real Proca fields the one particle spaces will be real .A I and JG.

which we shall denote by //(^ and respectively.
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We shall now consider a generalized Gaussian random vector

field ^  over iE\/^ with mean zero and covariance given by

SO that ^  maps 6  jGr into a measurable function (a

Gaussian random variable) on a probability space ( Gt x )

We have §  ( f  ) =   ̂f  < ) +  ^  j  f J  ^ 3  ffj ) -0

and if ]—  —  P~i > l~~2. > ' ' ' J is a fundamental

sequence with 0  L  ^ ^ ^  ]  > then ^  (  F  j  —

{  $  ( F i )  , $  ( F  ' ' ' j 6  i Z  ( Q ,  Ej/d] » the space of square-

integrable functions on the sample space of ^  which are measura

ble with respect to the (T -algebra Z j generated by

To see that ^  is Euclidean covariance we let <^(a,R) 

be a transformation in JGy' such that

f  =

where f  =  -f (R. '(X - A ) )  ^  ^ e K r  ■

Then we have

{ J(P,R) f ) f 2  ~ ̂  F ■f'2 i
Hence is an orthagonal transformation in J'Gr then

there exists an automorphism ”T(0;jK) the measure algebra of

( G l ,  Z  > 0 )  s u c h  that
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Thus,

t c o . R J  (X) =  ( R ' ' ( x - a ) )  .
Therefore we have

T c t t .R )  ë y / ( f )  -  | L  ^ ’v F c o - w )

^ov 0" ( IF ) . . This relation holds also for

- j*- 0  ^  * Hence ~~f is a representation of the full

Euclidean group on [ (\ >Yj  ̂ yM ) • This completes the

verification of Euclidean covariance for the Gaussian random field 

^  , which we can now call Euclidean Proca field.

I
It was first suggested by Yao (Ya - 12) that the Euclidean

!

Proca field ^  satisfies a reflection property similar to that 

given by Nelson. We shall prove this property in the following 

theorem.

Theorem 2

Let be the (T - algebra generated by ^ ^  0  E C f  j

where is the real time zero subspace of JPb If ^  is

the reflection in the hyperplane ACy ~  0 then

:iL J V  E( €  2 / 0

Proof :

Let be the time-reversal transformation on

defined as follows;
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A* r y
=  ( " ' )  7ç

where j" ( X ) -  f  ^  ̂- X,̂ .)
f

By Euclidean covariance we have
4L

§  t T f )  ^  )

- ' T I(f )

Since the elements of are distributions of the form

" f f i  0  J where fj 6  zf x ( / R   ̂ T

leaves 2C>r pointwise invariant. Therefore we have

T ( ,  ) :z ^  [ T )

By Segal isomorphism the Fock space over J'^er , J  ̂ ) > is

isomorphic to L  and E  f - ~C is the

operator on L  Q  ^ c o r r e s p o n d i n g  to T  on .

Consequently we have

X | >  t x  =  u  V  e  L f

Q.E.D.
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The following result on Markovicity first proved by Yao 

(Ya 1) can be easily seen in Umezawa-Takahashi formulation.

Theorem 3

The generalized Gaussian vector field ^  over 

is Markovian.

Proof :

The proof is similar to that for scalar boson given by 

Nelson (Ne 1). We remark that the Markovicity for the Euclidean 

Proca field ^  is obvious if one consider Umezawa-Takahashi 

formulation. The existence of the local inverse A ^ v  I ^ ) 

for the Green's function (B) guarantees the Markovicity.

In the Euclidean region the Euclidean Green's function ($)- 3yt*V has 

a local inverse,

The rest of the proof then follows from Nelson's argument.

Q.E.D.

Remark

In L. Gross' work (Gr 1) he considered ^ ^Xr

instead of S  § , ^X/ * Since K  ( ^ 'Acr is

irrelevant to the question (of Markovicity), therefore it is not 

surprising that it lead to a wrong conclusion that ^  is non- 

Markov i an.
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We shall conclude this section with a remark on the subsi

diary condition ^yx ^  in Euclidean region. To see

what happens to this divergenceless condition in this model, we 

introduce the following definition;

Definition

A Euclidean field is said to be ultra-local if all its 

cumulants b. y [ , i.e. all its truncated

expectation values, are zero unless all X  i , • * - , X  n. are equal.

If we assume that the first moments ^  (j-)] are vanish,

then the Wightman field obtained from an ultra-local Euclidean field 

is zero. This is because, by definition, its Wightman functions 

are obtained by analytic continuation of the Euclidean Schwinger 

functions at unequal points at which points they vanish. Quantum 

fields with this property are related to infinitely divisible group 

representation ( str 1, 2)

The Euclidean Proca field does not satisfy c)/x ^

even though its Wightman field ' satisfies *c^ (j)̂  {'>()-0 ,

However ^X ) is ultra-local. Indeed, in momentum

space, ^

_

*-

_ ̂  C(4I
Then, the covariance function in X -  space is V  iX) .

leading to an ultra-local field since the field is Gaussian.

Thus there exists some kind of ambiquity in the Green's 

functions of the Euclidean fields, they are unique up to some ultra

local terms. The addition or subtraction of such ultra-local terms
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will still give the same Wightman theory.

II. 3. Euclidean Massive Anti-symmetric Tensor Field

In the previous section we have discussed the usual four-
(ir ^  )vector representation ' of the massive spin - 1 field,

i.e. the Proca field. From the group-theoretical point of view, 

the most natural representation for the spin - 1 massive field is 

0  Jj which contains entirely the spin - 1 compo

nents. This representation is described by a pair of symmetric 

spinors of rank-two and p .> which define uniquely

an anti-symmetric rank-two tensor A yuV as follows:

A/̂'̂ = 1 A  ̂ t i
where ^

and (j^ — ( OA. , J- ) is the J. X. 2 .  Pauli matrices,

In this way the massive spin - 1 particles can be described by a rank- 

two tensor satisfying the following equations:

(18)

Condition (18) leaves with 6 independent components, and
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the divergenceless condition (19) eliminates another 3  components 

hence leaves 3  independent components for which correctly

describe the spin - 1 meson.

Now we shall see that these '3 equations can be derived 

from a single equation as in Umezawa-Takahashi formulation, 

is not assume a priori an anti-symmetric tensor. Using a method due 

to Aurilla and Umezawa ( A - U 1, 2 ) » which was further

developed and simplified by Macfarlane and Tait (M - T 1) we

have found that the required single compact matrix equation is given 

by

A ' J I  i d )  f\ =  0

with ("S) =  j  ( ]

~  ^  ^  K  (20)

where A  is any real number ^  Û  . Equation (20) is the

Euler-Lagrangian equation derived from the Lagrangian

X  =  Ia ' m ’I  a ( ^ ) A ( x ) ]

To see that equation (20) indeed can be reduced to the Klein- 

Gordon equation and the two subsidiary conditions (18) and (19), we



48

write out equation (20) in full.

(□ +  m"") ( w) - + f 3 ^ 9  T A  M) ~ 2  A  A lA

( x )  -  :  ̂ A  A i )  =  0

(20)

Interchanging y(Av and V  indices and add the resulting equation 

to (20*) we get

0[ ïï\̂  C +  A ^ A x ) ) =  0

Since 0\ ^  0 and ^  0 , this implies A  — 0
which is just the subsidiary condition (17). Applying this condition

in (19*) gives Ii
( p  t  ~  ^  'àt!\<A+^'hj.(\(^)-0(2i)

Multiplying (21) by the left we obtain

. ( □  -MMA 2)fA A^(X) -  D  Ar A Ax) = 0

Since /\ is anti-symmetric , C ^ / 3  c) % A  ^(K) vanishes

identically. Therefore we are left with

-  i n ’- S y u  =  0

which implies A m  A ^  (X) —  0  which is just the
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divergenceless condition (18). This completes the proof.

Unlike the Proca field, equation (17), (18) and (19) are 

actually invariant under gauge transformation of second^ and they are 

equivalent to the Proca equation when the gauge is fixed. This can 

be verified by using a similar method as in electromagnetic field, 

noting that the relation between f\ i^) and Proca field

(.X ) is analogous to that between electromagnetic field

CX) and electromagnetic potential ^

The existence of a Klein-Gordon divisor [3^ is gua

ranteed by the ability to reduce equation (19) to the Klein-Gordon 

equation with a finite number of differentiation and algebraic opera

tions. By direct computation, (.3) is found to be

X 2 - A m  '■

?

It satisfies

-  d p [ d )  A p .  =

The Fourier transform of Green's function is given by

The theorem can be simplified a little by assuming (X)

a priori anti-symmetric. The necessary changes in /\ p,y-(3 )  and 

( 3 ) are just to drop the symmetric terms proportional to
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( ^  ̂  ^  ) * Such alternations do not affect

the Wightman theory because the term dropped in the Green's function, 

l-e-  ̂ 1 f ultra-local term

which does not contribute to the Wightman function. The new Green's 

function is

^  r i  f 9'p 9  A  A  + 2 I ,  A  ^

 < «

Let us see what happens if we try to generalize this Green's func

tion to a one-parameter family

—  p - 1 3

where (X is any real number ^  0 . It has an inverse given by

i Cd + p'̂ A (gf -- 9^%f j

which is non-local except for ^  zz j . This implies that for 

CX ^  i we obtain a non-local Lagrangian field theory which as we 

have remarked before, does not lead to a Euclidean Markov field 

theory. Therefore we shall restrict ourselves to the case cX “ ^ •

The relativistive one particle Hilbert space is defined

as the c o m p l e t i o n  o f  the s p a c e  of a n t i - s y m m e t r i c  t e n s o r - v a l u e d  test
5 1'*f u n c t i o n s  ][ -^ { iR J J w i t h  r e s p e c t  to the i n n e r  p r o d u c t
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with ^  ^ ^  C /R such that

a n d *  / l - p l L  <  <^

After some simplifications we find that

where ^

Oo (25)
■' J /% /

We note the close similarity between this norm and that for the one 

particle space for Proca field (compare equations (16) and (25). 

Therefore it is of no surprise that both Hilbert spaces describe the 

same system.

In order to go over to the Euclidean region, we need to intro

duce Minkowski tensor field as follows:

This is necessary to change to . The two-point Schwinger

function of the Minkowski tensor field is obtained by replacing 

by and D  by “  A  in ) . We get

C  /v-vj) r ( f L r  If ) ' A, A 4 <"̂ 4" W ,  A3, -  A'
A w t P / r  /       (16)

—  A  4- M

This is positive-definite as can be verified by direct computation 

that the determinants of all its major minors are positive in the
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anti-symmetric subspace. We can now construct the Euclidean one 

particle Hilbert space by completing the anti-symmetric tensor

valued test function space j with respect to the

inner product

such that II j-11^ -  p i  f ll-l PM /[ ll-i j ^

where c U v  p X )  .

This norm is clearly translation-invariant, If (R, is an 

orthogonal transformation in /R*^ , one has

c t ; v [ R ^ ( R x ) J  r  ^ t v v ( ^ ) ( r ' K )

This, together with the fact that the Sobolev norm is invariant under 

orthogonal transformation, enables us to conclude that the induced 

action on 3 ^  by Euclidean group is Unitary. For a unitary repre

sentation Ui of the Euclidean group,

U  (a-R) - /̂ ytixRv73 -f (R'A-a))
where C\ 6" •

Similar to the case in Proca field, if we denote by 

the subspace of  ̂ , consisting of those distributions with support

in the hyperplane X/y ^  ^ , we have the following theorem:

Theorem 4

The time zero subspace 51^ of is naturally identical to
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Proof;

Every element of 3K.o can be expressed in the form

(X) -  f (X ) @•5' (X̂ )

whose components are

r

(G
where f  6  ^nd 6  d ’U F A

since

0therefore || cilpj- ||., <T ^  implies all -

for V  - I, 2, . This requires all - 0

for V  H  \ J X , ̂  , H- • Now using the identity

d  R  -7T !
z.\k100 ( P + C P^+ HĴ )

it immediately follows that

11 f ®  ̂IIk = II f IIH
which implies that there exists an unitary map from onto

Jto ; -j- '— ^ f 0  ^(4) . Therefore we can identify

and in a natural way.

Q.E.D.

We can now define the Euclidean tensor field 0  as 

the generalized Gaussian tensor field over real ( i . e . K r  )
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with mean zero and covariance given by

E  [  G i f )  0 ( g ) ]  =  < - f ,
Theorem 5

(i) The Euclidean tensor field 0  on satisfies

the reflection property,

(ii) 0  is Markovian.

Proof ;

(i) The proof will be the same as that given for the Euclidean 

Proca field because the covariance functions for these 

two fields have the same kind of singularities,

(ii) First of all we note that relation (23) still holds even 

after we have dropped the ultra-local terms in X (3) 

and cl(^) • This is because the symmetric ultra-local 

terms vanish in the anti-symmetric subspace. In the 

Euclidean region a relation similar to (23) holds

where ( P I s  the matrix inverse of the two-

point. Schwinger function , and is

■ given by

t  f  ( P/zzff ~  A p
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This is a local operator, therefore the rest of the 

proof of Markovicity follows from Nelson's argument.

Q.E.D.

II. 4. Euclidean Massive Vector Field With^Covariant Gauges"

Now we shall like to consider a theory of vector mesons which

differs considerably from those given in the previous sections. This

is a model of free vector mesons with one parameter family of cova

riant gauges. The notion of gauge invariance plays no intrinsic 

role in the theory of Proca field, this can be seen from the field 

equations. However, we study this model for the following reasons.

It is a well-known fact that Proca field does not lead to a renor- 

malizable theory because the free propagator j

does not tend to zero at high momentum. In order to obtain a renor- 

malizable Lagrangian field theory, one introduces an extra ghost 

particle with mass 01 g such that the free propagator of vector 

meson becomes

(27)

which falls off like p as in the scalar theory. We have achieved

renormalizability by the method of regularization, however, at the 

expense of introducing an indefinite metric Hilbert space.' Further

more, unlike the Proca field which does not have 0 limit,

in this formulation the y\A 0 limit is well-defined and thus 

enables one to treat the massive and massless vector fields in a 

unified way. The most important reason, looking from our point of 

view, is that this model of vector meson provides us an example of
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Euclidean Markov vector field satisfying Nelson's axioms except the 

reflection property and it does not lead to a Wightman theory.

For a detailed discussion of the Lorentz-region field using 

indefinite metric Hilbert space we refer to ( Yo 1 ) where the

unphysical states are considered as dipole ghosts. A review of the 

recent developments in the renormalization theory of vector meson is 

given in ( F - T 1 ) which includes discussion on spontaneous 

symmetry breaking of gauge group and other recent advances in gauge 

theory. We shall only remark that Gupta-Bleuler formulation 

( Gu 1; B1 1 ) needs to be used and in the physical Hilbert

space the ghost field has zero expectation value. The observables 

of the theory are those quantities which commute with the divergence 

of the vector field, and they are independent of the mass of ghost 

particle.

In order to make our discussion more transparent, from now
!

on we shall let iV) ̂  ~  kY\ in (27) where is the usual 

mass of vector meson and (X is a positive real number. The free 

propagator now becomes

-  p\-

-  - r  +  w - ' >  p'l'' 0 »,

This propagator contains a gauge invariant term represen

ting the propagator of the Proca field of mass |Yl , and a gauge- 

dependent term arising from the ghost particle of mass foi M  

Thus (X can be viewed as a real parameter which characterized the 

covariant gauges. We also note that the M  0 limit is well-
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defined in (28). Indeed this massless limit can be taken as a 

special case of our more general formulation of electromagnetic 

potential with covariant gauges in next chapter.

There are two limiting cases worth mentioning, namely 

~ 0 and cX —  ^  . The latter corresponds to the usual Proca

formulation of vector meson. As for the case 0( ~  0 , we get

a massive vector field theory in a gauge which corresponds to the 

Landau gauge in the electromagnetic potential theory. In this case 

the propagator becomes ^ -— - ) ( ~ - i b  j

We shall see later on that the Euclidean massive vector field in 

Landau gauge is non-Markovian.

Euclidean Green's function is obtained by replacing p by 

— p and by (again we have to use Minkowski vector

field with - 'i ^  for the same reason as before), and we

get
p ' p '  i H '

p wi p X

A’'—  1  ̂ r (//Iy C ( X - 1) p ^ P
L p ̂  oL

(29)

This two-point Schwinger function is positive-definite if cK y 0  

The Euclidean one particle space Hilbert space can be defined

as the completion of the inner product space of vector-valued func

tions f  ^ ^  ^  with respect to the inner

product
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I j -  j  , S

r - x i o - > P - \
g ,  y p i " " " ' " r * " '  f . i p i ^ ’p

• p ̂ -f w>-

with (I f  11)̂ % fllflL i + («-1J II M + f IL,)̂

The natural action of the four-dimensional Euclidean group 

in _pC is unitary. This follows from the Euclidean invariance of 

the II' ll-l ~ norm and that d̂ l]/ { ^  ^  ^  zz j- ) ̂  R  X )

where is an orthogonal rotational transformation in ; and

 ̂ -k is an Euclidean-covariance quantity.

As in the previous section, we define the Euclidean vector 

field 0  as a generalized Gaussian vector field indexed by X*- with 

mean zero and covariance given by

E [  6 ( f ) 8(3)1 =  M , J >
K,

The following theorem holds for the Euclidean field 0 :
Theorem 6

(i) The Euclidean vector field A  on J(, is Markovian,

(ii) The Euclidean vector field 0 does not satisfy the 

reflection property.
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Proof :

(i) The Markovicity of 0  is proved by noting that the

matrix kernel of the inner product in (|)) ,

has a local matrix inverse

{ p V r n " - )  ( A  ~

Now the rest of the proof follows from Nelson's 

argument.

(ii) To prove that Ô  violates reflection property, we

shall show that reflection property does not hold for

certain class of test functions. The 4  - ^ component 

of the Schwinger two-point function^ O  Cp) contains 

the term ) ( p t )j which allows

test functions localized at the hyperplane 0 ,

of the form

with k y  k  0  and f/3 ̂  ) , For

such a test function we have

• —  ^  f »  ®

-  -  IX) & 4 )

=: -

Therefore ~J^ 0 ( ^  Ô  (~f )

Q.E,D,
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We note that in the present case the Schwinger two-point 

function is less singular than that of the Proca field which contains 

Ÿ  term IRJ ( p h i ^  j ^ , thus ruling out test

functions localized at the hyperpane Xi/. —  0 , of the form "fv 0  (Xy.)

thereby preserves the reflection property. The effect of the reflec

tion property may be considered as to prevent the theory from being 

too regular in its ultraviolet behaviour. As can be seen in Nelson's 

theory, reflection property excludes scalar boson fields with "good" 

covariance function of the form ( ̂  A  ~f~ . Actually

such fields give rise to indefinite metric Hilbert space with ghost 

states (or nonlocal theory without ghost states), hence do not form 

a Wightman theory. The fact that the Euclidean Markov vector field 

constructed above does not lead to a Wightman theory may be explained 

by its failure to satisfy the reflection property.

Finally we shall like to prove a remark made earlier in this 

section, namely the Euclidean vector field in Landau gauge (correspon

ding to X  - 0 ) is non-Markovian. We observe two points, first the 

covariance function in Landau gauge ) (p M  ) is

only positive-semidefinite; second point is that it is a singular 

matrix. Nelson's proof of Markovicity does not apply since the cova

riance matrix does not have an inverse. However, if we restrict the 

physical space to the subspace Kr of distribution satisfying

^ - 0 , we may hope to obtain Markov property since now S  
has a local inverse in . This is not possible as can be seen in

• A ' * '

the following argument.

In X ,  , we have
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Now let 3  j'v o » with S  Itpp jL CE C3 , where (3 is

an open set in . Let ^  Cr ^  ( 0  ) , 0 ' i s  the interior

of the complement of . Denote the projection onto 3 ^ « ( 0  )

by 0 ^ '  , then we have

< e c ' f J V  =

=  É < e „ . t  ( r - p M ) i )

_
y

r
Now the crucial step of the proof of Markovicity cannot be carried 

out because this requires that C ~  j be

a local operator, which is not true. Therefore we cannot conclude 

that the support of 0 ^ »  [ ^  y is

not contained in —  {J — 3) Ô  . This strongly suggests

that the Euclidean vector field in Landau gauge is non-Markovian.

This differs from Euclidean electromagnetic potential in Landau gauge 

which is Markovian as we shall see in next chapter.
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CHAPTER THREE 

EUCLIDEAN MASSLESS SPIN-ONE FIELD

Free Euclidean electromagnetic potential in Lorentz gauge 

has been studied by L, Gross (Gr 1). However his conclusion that 

such a field is non-Markovian is incorrect. In section two of this 

chapter we shall consider free Euclidean electromagnetic potential 

in a general class of covariant gauges which includes Gross* field 

as a particular case. Such Euclidean field is Markovian. The 

failure of this Euclidean theory to lead to a Wightman theory when 

analytic continue back to Minkowski region may be explained by its 

failure to obey the reflection principle. In the second part of this 

chapter we shall construct a free Euclidean, electromagnetic field 

in terms of electromagnetic field tensor Fjuy only. This field 

is also Markovian but the proof for Markovicity differs from the 

previous proof. The Euclidean electromagnetic field satisfies

the reflection principle and it leads to a Wightman theory in the 

Minkowski region.

Before we consider the Euclidean formulation, we shall like 

to discuss briefly the main difficulties present in the quantization 

of the free electromagnetic theory.

III. 1. Relativistic Quantum Electromagnetic Field Theory

The theory of massless spin - 1 particles or photons differs 

considerably from that of massive spin - 1 particles. The main diffi

culties in the quantized theory of electromagnetic field can be seen
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in the following discussion.
f — JWV»

Let b  be an anti-symmetric electromagnetic field tensor 

with p  —  tl as the electric field vector and p  

as the magnetic field vector. Then the gauge invariant Lagrangian 

for the relativistic classical electromagnetic field is

4- ' lA, ^

which gives rise to Maxwell equations

(1)

F (X) =  0 (2)

If we introduce electromagnetic potential vector H  ^ cj) A ]

such that

(3)

equation (2) then becomes

□  -  3  c ) y  A  f x )  -  0 (4)

From the point of view of Takehashi-Umezawa formulation the 

difficulty exists in the massless higher spin theory can be considered

to stem from the non-existence of Klein-Gordon divisor ( 3 j .

To illustrate this point explicitly for the massless spin - 1 field,

we write equation (3) in the form
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( 3 )  A  ) -  0  ( 5)
where / \ P ,  [ S )  =  O  -'â'^cS^z

Now the Klein-Gordon divisor ç/ ( 0  ) cannot be obtained from the

equation

_  r-n r/" (6)A v ( ^ )  d  ~  n  S ^ '

since the determinant of P  A -  5- of equation (6) is zero whereas 

the determinant of A -  A- S. is simply D  . This situation 

corresponds to the Strocchi’s difficulty in electromagnetic field 

which we shall discuss later on.

Due to the gauge invariant nature of the theory, the original 

equation (4) can be split into two if we choose the Lorentz gauge

we then obtain

o  -  0  ( 8)

3  V A  —  0  (9)

There exists a difficulty in the above Lagrangian approach since the 

momentum conjugate to ^  ,

(10)



65

has its y6l “  O  - component vanishes identically. Thus canonical 

quantization cannot be applied to this component.

To overcome this difficulty, one can choose the Fermi-gauge 

Lagrangian

which is not gauge-invariant due to the presence of the term ( J

however it is relativistic invariant. The corresponding equation of 

motion is

o  A ^ ( x )  -  0  ( 1 2 )

This is equivalent to Maxwell's equations if we impose the following 

subsidiary conditions

-  0 a t  t  =  0
(13)

4 b  =  0  dt t  = o
dir

Then yC ̂  0 for all times is implied by the equation of motion 

jI3 ̂  ~  0  . The Fermi Lagrangian can also be expressed in the

following form

(X =  ~ i  Ax;)

Using this we get
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so that the Hamiltonian is given by

Now we are facing with a new problem, namely the energy is not 

positive-definite because the - Q ~ component contributes a 

negative-definite quantities to p ( . The reason is that we have

as yet not made use of the subsidiary condition, so that the theory 

considered so far does not correspond to the Maxwell theory. In the 

classical theory, the Lorentz condition ( X ) zz 0

guarantees that the field equation ~ Q  corresponds

to Maxwell's equations and thus ensure the positive-definiteness of 

the total energy. In the quantized theory, the Lorentz condition 

does not hold as an operator identity, otherwise it would lead to 

a contradiction because

[ 3 ^ 1  r  0  a . )

So far we have only discussed the difficulties present in 

the Lagrangian formulation of electromagnetic field, the situation 

is no better in the axiomatic formulation. Carding and Wightman 

(G - W  1) have shown that in free quantum electrodynamics that the 

weak locality and relativistic covariance of electromagnetic 

potential leads inevitably to indefinite metric Hilbert space. The 

analysis of Strocchi (St 1, 2) has further indicated that if equations

(2) and (3) hold as operator equations, where transforms as a

four-vector, then one gets a trivial theory with ~ ^

( '{ is a vacuum state). These results were obtained without
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the use of spectral condition, the positive-definiteness of the 

Hilbert space or the locality condition. If one further requires
f— yxV

that y should be local and the underlying Hilbert space of

states should have a positive-definite metric, then one obtains 

rr 0 In addition, Strocchi has also shown that if

is quasi-local and satisfies (2) and (3) then the theory of 

the field p ^  is again trivial. All these results do not depend 

on whether the metric of the Hilbert space is positive-definite or 

indefinite. They also rule out the procedure proposed by Fermi.

To circumvent these difficulties it has been usual to follow 

one of the following two routes. One can either abandon the require

ment of relativistic covariance and quasi-locality for or

accept the point of view that the Maxwell equations are not satisfied 

as operator equalities. The first method is known as Coulomb (or 

radiation) gauge formalism, in which the gauge condition is ,

Now the underlying Hilbert space has a positive-definite metric. 

However the theory is no longer manifestly covariance and local, so 

it is necessary to supply under a Lorentz transformation with a 

gauge term in order to obtain covariance of the Coulomb condition. 

Since we are only interested in covariant theory, we shall not pursue 

this approach any further in this work.

The second method is known as Gupta-Bleuler formulation (Gu 1, 

B1 1), which allows local and covariant potential A ^  , This can 

only be done at the expense of the positive-definiteness of the under

lying Hilbert space, and now Maxwell equations can no longer be 

satisfied in the whole Hilbert space. By imposing the nonlocal condi

tion
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—\ A It)where \\ is the positive frequency part of the opera

tor /\^ , one can define the Hilbert space of physical

states l ^ y  , which has a positive-definite metric. However this 

subspace spanned by the physical states is not dense in the original 

indefinite metric Hilbert space, so the Maxwell equations are only 

satisfied in the sense that they hold when one takes the matrix

elements of these equations between physical states.

From the above brief discussion we conclude that one cannot 

have a local and covariant theory of electromagnetic potential with

out introducing indefinite metric Hilbert space and unphysical states.

III. 2. Free Euclidean Electromagnetic Potential

In quantum electrodynamics, different form of free photon 

propagator determines different type of gauge. The free propagator 

for electromagnetic potential /\^ in Gupta-Bleuler formulation is

<  A ' "  A ' ' )  ~  (18)

This propagator determines the Lorentz gauge for / \ ^  . The corres

ponding two-point Schwinger function is P  ^  which is positive-

definite. We can construct a Euclidean vector potential 

with

~  (18)
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In order to obtain a theory of Euclidean electromagnetic potential 

which includes a wide class of covariant gauges, we introduce the 

following transformation;

(20)

where /\(X) is a real scalar random field independent of 

The propagator for the transformed field has the general

form (in the Euclidean region)

( -  F i p V U l E ' ' ) - ±  , F £ i  ™
V r

where we have imposed a condition on p" which guarantees that the

Euclidean field has a positive metric, but we have ignored the condi

tion that the Lorentz-region field should have positive metric. This 

propagator has an inverse of the form

6 ( p ' ) P V  " ‘A  F = , - ^  ( » )

A limiting case of this is the Landau gauge for which ^

This, together with the condition f- i give the inequalities

~ i ^ Gr < ^  .
For cases of physical interest it is sufficient to consider

a parameter family of covariant gauges. This can be done by noting
/ , (cK -fj \ /that the massive spin - 1 propagator i 0 4- J

given in equation (29), section 11. 4 of previous chapter, has fTI— > 0

limit. This limit becomes one parameter family of photon propagator
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This is just a special case of (21). o  IPj is positive-definite 

if OC ^  0  , so we can define a Euclidean vector potential in one-

parameter family of covariant gauges characterized by Oi . The 

Euclidean one particle Hilbert space jK is defined as the completion 

of the inner product space OR̂ J J » with the inner

product given by

II f  IL <  c cx >  0}.II X  I'K

Then the Euclidean vector potential is the generalized random

vector field over JK/y. with mean zero and covariance 
cr f \Because O  (P) has a local inverse

(25)

therefore the Euclidean electromagnetic potential overjoy, is

Markovian for all covariant gauges characterized by Oi. ^  0 

We shall introduce the following definition;

Definition

The covariant gauges characterized by CX >  0 are called 

Markov gauges of the Euclidean electromagnetic potential over 3^/^ 

Some examples of Markov gauges are ÇX iz L , the Lorentz 

(or Fermi) gauge; and (X =: 3  , the Fried-Yennie gauge. For
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the limiting case —  0  which corresponds to Landau gauge, the

Markov property is not obvious because now is singular so

its inverse does not exist on the space of four-vector test functions 

Furthermore O  is only positive-semidefinite to obtain a Hilbert 

space we need to take the quotient space /Kernel jl' II 

Theorem 1

The Euclidean electromagnetic potential over with cova

riant gauges OC //' 0 is Markovian.

Proof

For iX y" 0 , equation (26rj implies that the Euclidean

propagator has a local inverse, so Nelson's proof applies.

For cX —  0 (i.e. Landau gauge), we shall restrict to test

functions satisfying =  0 so that the inverse of
cr ^O  exists in this subspace, and Nelson s argument can be used.

Let C9 <C be an open set and let be the set of distri

bution vector fields such that S  -0 and

J  ^  ( p) p  ( p) P <.00 . Let Z'o be the Borel

ring generated by the Gaussian field over and the

(f -ring generated by ^  j- C T  C9 ̂ ^  S

Let -j- (S -^oC9 and let be the projection onto

^'^0,  ̂^  3 , the subset of of distributions with support in

(3 , the complement of C9 . Then if h ^  ̂  (0 J , where (3

is the interior of C3 , we have

< ea> p  K f ~ ̂ J

since = 0 ^  - < { eo'jrf
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(Ü)so

since 0

/\

J<.

~  < i y À:

7  '  pFL. y

=  =  0  •

Hence SiXpp C * ^ ^ ‘" C Z  3  (3 and the field in Landau gauge is 

Markovian .

Q.E.D.

What we have just proved is the Markov property for a 

Euclidean electromagnetic potential satisfying the Lorentz condition.
i

We note that only in Landau gauge does the electromagnetic potential 

satisfy Lorentz condition as an operator identity. Thus we obtain 

the same theory as in (Gr 1) where test functions are subjected to 

0 conditions and the covariance is /p^

However we remark that in no gauge do we get a Wightman theory. This 

follows from our discussion in section III. 1. For example (X —  0  

leads to a non-local theory and c(zl leads to an indefinite metric. It 

is interesting to see that the Euclidean electromagnetic potential 

in covariant gauges does not satisfy the reflection property, just 

like the case of Euclidean vector meson in covariant gauges. Therefore 

we have another example of Euclidean Markov field which does not give 

rise to Wightman theory in the Minkowski region. This clearly indi

cates that the Markov property alone is not enough to ensure that
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a Euclidean field will lead to a Wightman field, reflection property 

is also needed to be satisfied.

We might ask for a property which, while more general then 

the reflection property (so as to include theories like electrody

namics and gravitation), yet still excludes very nonlocal theories 

like one with propagator of the form ( ’"J  ̂ y 1 .

Such a property is known as the classical Markov property which can 

be formulated as follows. Let be the completion of

in the norm defined by the covariance function of the random field 

in question. For any open set (3 ^  s let be the

(closed) subspace generated by { -p 6  , SU/|?p and let

be the (T- algebra generated by the f ^  ) | ^ 6  .

Let be the subspace of , consisting of measures,

and let j denote the Borel CT -ring generated by

[ $  (]") I (■ ^ ( ^) j . For any subset iX C  , denote

by ^  the intersection O  { I C3 Z D   ̂ (3

open. Then we say that a field ^  satisfies the classical Markov 

property if, for every function p  : Q  — > [R. which is

measurable, and every open set (J ^  ,

£  [ F  1 Z  J ' )  ~  E  [ F  I

holds, where [3 the complement of in /R^ , and 9 ( 3  is

the boundary of (3 • •

The random fields defined by the Euclidean electromagnetic 

potential in various Markov gauges are such that coincides

with
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=  Q  I  Z u ,  i . < ^ .
Hence the classical and Nelson's definitions of Markovicity coincide. 

These fields therefore also satisfy the classical Markov property.

Remarks

(i) In the Minkowski-region fields, except for the case X  z 1 

(which corresponds to Lorentz or Fermi gauge), one needs 

to introduce dipole ghost field in Gupta-Bleuler formalism 

of quantum electrodynamics. Supplementary condition is 

required to remove such ghost states,

(ii) Different values*fcX are related by the number 

gauge transformation:

where <C &  ^  ̂  pV ^

and y  : }  =  .

such that CjA-CvfJ. )  =  [ .

This gauge transformation changes a given value of gauge 

parameter (X into cX-f . Therefore by choosing

the value of |3 appropriately, we can connect any two 

covariant gauges by this ^ - number gauge transformation,

(iii) The propagator in Landau gauge is a singular matrix

G L  = f 9 L  - ) -p. • This
means that there is no direct relation between the quan

tization procedure in this gauge and the operator form
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of the classical field equation /\^y ( ^ )  A  —  0  ,

as given by ^   ̂ /\ y R  ̂ 0'̂ iz • However,

one hopes to find such a relation in the spin - I 

subspace. If we replace the Minkowski metric ̂  y by

the metric tensor in the spin - 1 subspace

- "gG - £ — 5' we get (jC (p) A L p '

-  "1th A L p ) = P V v - P L y

(iv) The gauge ambiguity of the propagator can be used to

simplify certain calculations in quantum electrodynamics. 

For example, Landau gauge is particularly useful in the 

consideration of ultraviolet divergences; on the other 

hand. Fried and Yennie gauge is used in the study of 

infrared divergences. These two gauges are just special 

cases of our general covariant gauge.

III. 3. Free Euclidean Electromagnetic Field

We have seen in the beginning of this chapter that it is imposs

ible to formulate a manifestly covariant and 3m: local theory of

quantized electromagnetic potential without using Gupta-Bleuler forma

lism. However there is a completely consistent covariant formulation 

of the free quantum electrodynamics in terms of the electromagnetic 

field intensity only, without introducing the vector potential

at all. In this formulation the indefinite metric does not arise 

and there is no unphysical state. This is a gauge-covariant formu

lation which does not suffer from the ambiguities connected with the 

gauge problem.

The anti-symmetric electromagnetic field strength tensor
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satifies following equations:

jUtV

and c)yM. F" ^  (27)

We obtain a Wightman theory with the following two-point Wightman 

function:

=  L  F ' " ( x )  f ' ’ L'j}')

where Q  3)+ (X) —  0 . The relativistic one particle Hilbert

space can then be defined as the completion of the test function

space p with respect to the inner product

with - - j- ^  and the norm J" ~ ^  |1 ^  ^  ̂

where d'̂AJ ̂   ̂  ̂ and /) f  11-̂  ' ^  j" X "  .

If (y( (G;A) is the irreducible unitary representation of 

inhomogeneous Lorentz group, then

U ( o > l A )  (X> U  A) —  (a  ) ̂ [ A o-) f~ (30)

For smeared field P ^  ^ ̂   ̂ ^  have
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where X  ( X ) =: (/A '(X-J fo/A)  ̂ J

I—  4] . r~ OjNow we define Minkowski tensor field as |“  ~ X \

Analytic continuation to Schwinger points of the two-point Wightman

function of this Minkowski tensor field gives two-point Schwinger

function in momentum space as

=  [ p v é " - (32)

This is positive-definite in the subspace of anti-symmetric tensor

valued test function space . The Euclidean one

particle Hilbert space is the completion of this space with respect
I

to the inner product

< - f ,  3 >k  ™

with ilx, P  )) "j" H-i <Z Oo where

II f  11-1 = < X  r  f  d ^ \  -  2, A-"
The Euclidean electromagnetic field 0  is defined as the 

generalized tensor-valued Gaussian random field over with mean

zero and covariance given by the inner product ^

In the probability space, ( (^j on which the fields

0  p )  are random variables is furnished with a realization of 

the Euclidean group %  , by measure-preserving transformations

“ P  Q  - - ^ Gi ) . This induces a unitary
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representation of X O C ^ )  f Q  , ) by

u )  ( w )  =z y. [ ^  ^ V ’((^,dfA)

The tensor field 0 ^  is covariant under 1 0 ( ^ 3  such that for

[ 0 , R ) €  I 0 1 4 - )  3

u ( o . R )  e ' A ) n  ( “ - « L I ,  < «

=  f  ( ■where 

Theorem 2

(i) The time zero Euclidean one particle space is naturally 

identical to the relativistic one particle space.

(ii) The Euclidean electromagnetic field satisfies the reflec

tion property.

Proof

The proof of this theorem is similar to the corresponding 

theorem for the anti-symmetric tensor field of massive spin - 1 

mesons (Theorem 6 of chapter two). The main point to be observed is 

that the two-point functions in both cases have similar kind of 

singularities.

Theorem 3

The Euclidean electromagnetic field over is Markovian.

Proof

Since the two-point Schwinger function is a singular matrix, 

Markov property is not so obvious as we cannot apply Nelson's proof 

directly. However for the case of two dimensional space-time there 

exists a very simple proof. In this case, there are only one indepen

dent components for J- namely ^  —  j-  ̂ with z j- zz 0 •

The inner product in K r  becomes
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z 4- y  y i  L R  q  \
I ^  \  IfAx , (7^

: 4
r  p , y p £

p "

p

Markovicity then follows from Nelson's argument.

As for 4-dimensional space-time, the proof is a bit more 

involved. We shall follow the proof due to Yao (Ya 2). First we 

note that the 6 independent components of <c can be indexed by 

][ - ^ ^ 1 ] so that the

S jxy)^r (p ) is reduced to !

CI,L) Cl,i) (1,4) (1,4) (iyj

I
Cl/) ^ p, 4  p; a  a P P . - p , a " P P . o 3

C',t) P.P3 R F p ; B P . a  a 0 - R P .

Cl/) p.p. P3 P. p / + p ; 0 e a R B

(1/) -p. a P i a 0 p y p ; B f t - H P .

Cl, 4)
- a  a 0 p , a a  p. p / p ; R P

(X4) - p p . a  a - a  a a  a P A B j
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With this reduced matrix we have

C(>.cr)C-I

Now let L? be an open set in iR and be its complement and 9 ( 5

its boundary. Define

- f -f e K.K 1
Ko’ - { f 1
d̂ij = [ f ̂ Kr 1

(9* and 6 ^ ^ be the projecti

SiA(Rp{ c  O']

ly ----- dV   -r- ^
respectively. If ^  &  jX is such that —  0

except for [p)^) = (-i, ^ ) and ( X  ; 1 ) , then > ■j' - K

has only non-vanishing components h,i and hii with h 11. —  ~~ hxi . 

Similarly let ^ ê: K-r with non-vanishing components and

belonging to jD ( (3 0  » space of infinitely differentiabl

functions with compact support contained in the interior of (5 ,

such that all ~ ^ except for components and

Then we have

< y  1 , ^ ,  =  < ? . f  > x .

Written in full,
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f  d / a ,  ( x ) ' L X ’
f A x  (X )
J — ^

Since 9 ,  -f- 9 &  is a local differential operator theS f
following step is permissible

j ( 3 ^  +  3>/ ) Fv  ) Fi «  )

=  I d X. p K )  ( 3 R +  $ £  ) 6 3 /  f 0. ) f,i

for any ^  ) .

In a similar way we can have -j- &  , such that ^

except for z - . Then Gji' f  ̂ ^   ̂ has only

non-vanishing components h ;y. —  —  jl y ̂  i . Again let ^   ̂̂  JX/
 ̂ ' J

with the only non-vanishing components and belonging to

) . Using a similar reasoning as given above, we get for any

g  6  ,

j d X O,"' +  3/ ) ( 3 i" + ) a,.

=  C dx ^cx) ( 3 , 4  3r J (3A+ 3 - V

If we choose -p —  'j’12- we o b t a i n

J d x  p % )  +  h , . G )

= j dx ÇIw3 (^1 + 3 /
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We. g-t O ' - f a :  h u  (X)

-  ( - 0 , ' + 3 F )  o o $ 4  ) a j / x )

as distributions on (5 . This implies

L i  =  4  y

where ^  is a distributional solution to

+ (s: + 2 ) 0  = 0 in ()’.

If we let ^  and J 1%!,^%/ be the distri

butional solutions to the Laplace equations

(a,y  ai ) = 0

respectively, then ) is given by

Oo , /? V)
y c x )  =  Z  T ‘ ' V . a Z L  '

in some sufficiently small neighbourhood of any point in C9 .

If we choose ^,2 —  9 ) 4  ~  â for some ^ ^

then
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and J d x  g ( A )  ( X )  =  | r f x

- A

d x g W  0 / 0  j  r

7,1

Hence j  d  X  g (X 3 K  1 (Xj =   ̂ C(X g W )  (X) - 0

13 >

For any ^  0  ^  ̂  ( (5 J which implies M  ^  0 •

Using the similar arguments we can show that for any 

■f 5^ 0  y ^ ( 3 ‘ ^  ^ • Therefore we can conclude,

by Nelson's proof, that the Euclidean electromagnetic field over 

is indeed Markovian.

Q.E.D.

Before we conclude this section, we would like to point out 

some short comings in the above formulation. The main limitation 

is its restriction to the interaction-free case which is, in many respect 

a rather trivial one. One does not know how to formulate a local inter

acting theory since we are not able to write down a local-interaction 

Lagrangian in terms of only. Furthermore the proof of T C P

theorem does not hold as it is based on local Langrangian field theory.

In addition, the assumption of local commutativity may not hold for 

non-local Lagrangian field theory. Therefore the above for formulation 

with positive metric quantization of electromagnetic field is eery- for 

academic interest only.
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C M P T E R  FOUR 

EUCLIDEAN SPIN TWO MASSIVE AND MASSLESS FIELDS

In this chapter we shall attempt to construct Euclidean 

spin - 2 massive and massless tensor fields using the method similar 

to that used in the previous chapters. The fact that spin - 2 

fields differ considerably from spin - 1 and spin - 0 fields suggests 

that one should not expect this method to work smoothly for the spin - 

2 case. This is indeed the case, for there exist serious difficul

ties in the formulation of spin - 2 Euclidean tensor field. The 

main difficulty is that the Schwinger functions obtained from analytic 

continuation to Schwinger points of the Wightman functions are not 

positive-semidefinite. In an attempt to overcome this difficulty, 

supplementary conditions have been imposed on the test functions.

However new problem arises since now the two-point Schwinger function 

does not have a local inverse, which therefore prevents us from getting 

a Markov tensor field via the usual method. For the massive spin - 2 

field, our results strongly indicate that the Euclidean field is non- 

Markovian. The massless spin - 2 tensor field does give rise to a 

Euclidean Markov tensor field in certain covariant gauges, although 

it does not lead to a Wightman theory. This, like the case of elec

tromagnetic potential with covariant gauges, may be explained by the 

fact that the reflection property is violated.

IV. 1. Relativistic Massive Spin Two Tensor Field

A  real massive spin - 2 free field can be described by a rank - 2
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fXïJ
tensor W  which satisfies the following equations:

(1)

(2)

M

(X) z  0  (3)

(4)

The subsidiary conditions (2), (3) and (4) impose six, one and four 
J ^conditions on (D respectively, so that only five out of the

sixteen components of (jA*(<) are independent (i.e. exactly ( D S  + i) 

components correspond to 5  —  %  , In terms of group-theoretic

language the field (X) transforms according to the representa

tion ]T) " D  Î) where %) Z: T) (1 ) 0  %) ( 0 ) has the trans

formation properties of a vector, ^ ( S )  being the irreducible 

representation corresponding to spin value 5  • Since each tensor

index carries spin - 1 and spin - 0, we get

T ) ( 0 )  ®  J>(0) -  D(0) : scalar,

\ These are eliminated D(0) ® Ddj r D(l) : vector \  by the subsidiary
/conditions (2), (3) D(l) ®D(0) Z j)(i) : vector /  ̂^d (4)

D ( l )  ® Dd) Z j)(D)®j)(l)î scalar & vector

0  ]) (2] : tensor 9  This is what remained
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Therefore

Now we shall like to-see that equations (1), (2), (3) and 

(4) can be combined into one compact wave equation as given by Umezawa- 

Takahashi formulation ( M - T l )  . By a suitable choice of 

Lagrangian, we are able to derive a single matrix equation from which 

the Klein-Gordon equation and all the subsidiary conditions can be 

derived. This free Lagrangian can be expressed in the following form:

(ô) - i (o + m̂ )( I

with ^3 ^  ^  ^ X  f2o(i-i)  ̂ — 0(+ 2 ^  and ^  ̂ a- ~ ^ f ^ -

is not unique because it contains two real parameters CK. and 

A  i 0 ̂  . From this Lagrangian we can derive the following field

equation:

It can be sho\-m that equations (1), (2), (3) and (4) can be deduced 

from equation (7) by a finite number of differentiations and algebraic 

operations. For the sake of simplicity, we shall do this for the
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case CX zz ( 'thsA ^  — 1 , . Equation (7) when written

out in full is

- i  a y  f v  A f  '

B'f A/cr
4  A ) ,  f  7  a A , f

—  2 ^  ( o f  ^  -f- f  ̂  ) — O

Here we have put çj) ~  (j) ̂  ~  (j) —  (j) , If we

interchange the indices JA and V in (7' ) and subtracting the 

resulted equation from (7') we get

r n ' c f  ( j =  0  (8 )

Since ^  O  and cT /  0  , this implies ~ cj) ^

which is just equation (2). Using this symmetric property in (7') 

we obtain

f -  ( 3 %  A  f ^ )

-h -f 3^3"^ - /(p+/Vĵ  = o (9)

Multiplying (9) by from the left and summing over JA given

rT]"̂ ( 3yw ^  - 0 or (j> ~ 0 (lo)

Let V in (9) and sum over yU we get

4  ( 0  ÿ )  f  c  0  ( u )
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Multiplying (10) by 9 y from the left and sum over V  gives

or f  (1 2)

Subtracting (12) from (11) we obtain d j —  0 . Since

rn ̂  ^  0  » this implies (j) —  —  0  , which is the

traceless condition (3). Substituting this condition into (9) gives 

3 jiA Oj) ̂  ~ Q  which is just the divergenceless condition

(4). By taking into account these three subsidiary conditions the 

field equation (7*) reduces to the Klein-Gordon equation (1).

We have just verified that we can reduce (7) into Klein- 

Gordon equation plus all the three subsidiary conditions by a finite 

number of differentiations and algebraic manupulations. This is 

equivalent to the existence of a Klein-Gordon divisor c/ ( ̂  ) such 

that

c((3) is given in ( M - T 1 ) as

IM' V I'P
(14)

n + m
fll*-
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We note that the Klein-Gordon divisor can be grouped into 

two terms ; the first term cf(^) is parameter-free and it is just 

the spin - 2 projection operator restricted to the mass-shell 

[ p Z  ) ; the second term c( ( 9 )  ( |Z( ig a contact

term which is parameter-dependent and is ultra-local. This contact 

term can be made to vanish by a specific choice of parameters

CK —  —  1 and ^  ~ O . The free propagator is given by

cl ̂  ( O  4 - tV)"-) . Since ( □  -f A - f  CX~'^ j =  Û  ,

only oi (^)term contributes to the commutation relation. From

now on we shall simplify our discussion by taking CX — “ 1 . This 

choice of parameter removes some of the ultra-local terms which do 

not affect the Wightman theory. Moreover we can drop the anti

symmetric terms by putting cf - (2 , this requires us to assume
J yuv ,

a priori that the tensor field CD is symmetric. The two-

point Wightman function is independent of the parameters, since only 

^  (3] contributes. We have

]̂ l ( A - p  (15)

where is the two-point Wightman function for the

is positive-semidefini te, so we 

cna construct a relativistic one particle Hilbert space in the 

usual manner.

IV. 2. Euclidean Massive Spin Two Tensor Field

We shall first of all introduce the Minkowski tensor field 

defined by (j)̂  ̂ - X (j) ̂  ̂  and (j zz ^

The Schwinger two-point is then the analytic continuation of the
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Minkowski tensor field to Schwinger points and is given by

=  [  f  ( n \ r n  - 1

(16)

\ ,)1 ̂ /

z  ± ( d ' ‘'d " + d " d " - |d ' ' i lP 3 7 - .

If we write the first line of the if. A  - S. of equation (16) in the 

form j _  ^  I"'

then we see that the term contributes a term with

negative norm associated with the trace. This term is not ultralocal, 

and thus cannot be cancelled by a term in equation (14) by another

choice of real PC . Hence we cannot use: this T-X —  y  )
j

to define a Euclidean random Gaussian field.
cr/U'Jî cr

Because of equation (13) we know that O  has a

local matrix inverse. We might get a Markov field if we can make

L) positive-definite by imposing some supplementary conditions

on the test functions. The simplest choice is to restrict the space 

of test functions to the subspace of traceless tensors, but this is 

insufficient since A  does not map this subspace to itself.

Instead, we consider a slightly different operator given by

This operator is the Klein-Gordon divisor of
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since b 3  —  c(t) —  [ p ) S . We shall now take the

Euclidean Green's function to be fd ® c( )(p fl»̂  x which is positive- 

semidefinite on the space of tensor-valued test function space 

I "t5* (iR^) ] • Since the inverse of (d 0  d ) is

not local, the random field with (d 0  d. ) [ as covariance is

not obviously Markovian for an argument analogous to that of Nelson 

cannot be given. This is inspite of the fact that the analytic con

tinuation of this Schwinger function leads to a free Wightman field 

theory (of rn >  0 , spins A  and O  ),

We might again attempt to seek a subspace of test functions 

for which the Markov property does hold. A reasonable choice is as 

follows. Let be the completion of [ ) "̂  in the

inner product

4-
< ( . ) > „ =  s ,  “ ’ f  4 / r < p )

J

and let Jd!  ̂ be the subset of traceless symmetric tensors -p 

such that p  €■ }{, c » 9 / 3 /  CX) —  0  . Restricting

to this subspace will serve to remove the spin - 0 component from 

the corresponding Wightman theory, leaving a field of pure spin - 2.

We note that the s^mimetric spin - 1 component of the field is ultra

local since
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is a local differential operator.

Now let ^  be the generalized Gaussian random tensor field 

over yij with mean zero and covariance given by the inner product

• To see whether ^  is Markovian or not, we proceed as 

follows. First of all we need to show that d  d  and b @  b 

map 3^0 to itself. Let <E- K.o j ^ ~  ( d (S> d J p , then

-  Ÿ'>' ^  " A Z Z i / ' / z
 ̂ /'Vi'- V /

Also +  P i f " )

/VI'

Further, defining M  — ' ( 5  (̂) |] 3 j-  ̂ ^  ^   ̂then

R -  ((pVl'Aj /  - P^F'" j ( (pVtuy  ̂ y  + P ^ P “")j Ÿ

It is also elementary to show that ^ ^  a~ ^  • Thus

it follows that on ] 4 o  , f'■ p'"-fKM*'y p )-
Now we need to show that the inverse of the Green's function

X p 0  ug . Clearly, — local 

except for the term ( P P f? )(p . But this vanishes on
KM ̂

Jd, . It appears as if we can now apply Nelson's proof of Markovicity
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to our case. However this cannot be done. The reason is simply that 

(d 0  d )  (p fI"V and [ b 0  b)(p ) do not map an arbitrary

^  (9j to an element of . Therefore we cannot

conclude that for ^  , Suj>pp CZ iS) and for all

9  G -  c  I ' d  j  , J [ e ^ 5 . f ) c x )  ^ o < )  d x  = 0  •
We only have j p) (X) g j x )  d X  = 0  for all P  K J Ô ’j

which is not sufficient for us to conclude that the Gaussian random 

field $  is Markovian.

Thus we are only able to construct a generalized Gaussian 

random field ^  with covariance function E  [ ^ ( p )  ^  ( 0 ̂ ] 

defined on  ̂X jX., , having an extension to a distribution which

is the Schwinger function of the usual free field with mass KVl Ü 

and spin 2. It is possible to do this in many way, even if we require

the extension to be the Schwinger function ;of some Wightman theory.
j

This choice also happen to define a Euclidean field too, it does not 

describe a unique spin however.

Remarks

(i) If X  is taken to be ^  , then the negative trace term

—  in (16) is cancelled out by a

similar term of opposite sign in the contact terms.

However in this case we do not have a inverse for 

and also the field equation ceases to exist.

(ii) It is interesting to note that the "soft propagator"

given by

p  ̂  -f ,V1 ''
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does give rise to a Markov tensor field if we restrict 

the space of test functions to a traceless, symmetric 

subspace. Since O  is positive-definite in

this subspace, therefore we can define a Hilbert space 

in the usual manner, with inner product

< 4 / 4 / r > .
/̂,cr

noting that \ T  j irriTl Q /, ̂  vanishes

for ^ c* K c  • Now maps

to itself. Let h ̂  ,

T , ( s ' ‘ " ' h " )  -  ( / ' r - ^ r n r

r  h ' f -

Since tracelessness and symmetry are just algebraic 

conditions, they do not affect the support properties 

of the test functions. Therefore Nelson's argument can 

be used to show the Markovicity.

IV. 3. Relativistic Massless Spin Two Tensor Field

In the classical theory, massless spin - 2 particles can be 

described by a rank-two tensor field y - ^  satisfying the following

equations :

(19)
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~  (20)

(/) -  0  (2 1)

(X) -=- 0  (22)

However, in contrast to the non-zero mass case, the subsidiary condi

tions, in particular equation (2 2 ), cannot be derived from a varia

tional principle. This means that Umezawa-Takahashi formulation 

fails to work for massless spin - 2 field, just like in the photon 

field. Again, if we attempt to quantize the field ( X )

in the usual manner, then there arise inconsistencies similar to 

those in electromagnetic potential. Furthermore, the analysis carried 

out by Strocchi and Bracci ( S t  3, S - B l ,  2, 3 )  has shown 

that gauge problems in spin - 2 massless field theory give rise to 

difficulties analogous to those appear in quantum electrodynamics.

Their results indicate that a local and covariant description of

massless spin - 2 particles by means of a symmetric rank-two tensor

field Y ( X. )is possible only in a Hilbert space with indefinite 

metric. In other words, one needs to introduce Gupta-Bleuler formalism 

with unphysical states.

The quantized theory in Gupta formalism (Gu 2, 3) requires 

the subsidiary conditions (2 1 ) and (2 2 ) to hold only on physical states 

in the form

l Ÿ )  =  0  <” >
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\ I \where y (X) denotes the positive frequency part of y l X)/
The free propagator is then given by

~  J I  f ' f - *  f T > Y -  <” >

This gives us a theory of massless spin - 2 field in Lorentz gauge 

(or Gupta gauge). In order to generalize the theory so as to include 

a class of covariant gauges, we introduce the following general 

gauge transformation:

  /  Ÿ p -  t ) (26)

where ^  is an arbitrary real parameter, is a vector

ghost field with the following two point function:

<  ^  (27)
Of* 2 - P

and '^r y  —  0 (28)

Using these we get

< Ÿ r f r ) - -  è ^ T p )  y  f / ' ) / r r ' j

rfV(29)

We note that this propagator contains three real parameters CX, 

and whereas there is only one real parameter in electro

magnetic potential. This is because the gauge transformation in
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spin - 2 potential ^  is specified by four-vector (Xj

whereas in spin - 1 potential it is specified by single gauge func

tion /( (x) . This clearly indicates that the spin - 2 propagator 

will be of much larger variety than its spin - 1 counterparts.

If the transformed field ( X" ) is to describe the

same particles then one needs to eliminate the effective ghost states 

due to ^ ^ ( X ) . This can be done by imposing the following 

subsidiary condition on the physical state vector :

m > >  =  0  (30)

Hence we have obtained a theory of massless spin - 2 field in a 

general class of covariant gauges. We note that for cX - I

and we get

G ' " c a )  = lifV'^fYi-àiyVuriV
I (31)

This propagator satisfies —  0  , thus

corresponds to the Landau gauge. We shall see later on that in this 

gauge the corresponding Euclidean field is Markovian.

IV. 4. Euclidean Massless Spin Two Tensor Field

The Euclidean version of the above theory can be achieved as 

follows. By analytic continuing the two-point function of the 

Minkowski tensor field to the Schwinger points we obtain the two- 

point Schwinger function
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S ' - ' T n

(32)
p M p - y f  ^  p Y p y ] X

' p t  J p

S Ml/iÿ’CT' to be positive-definite (or semidefinite) we

require ^  cX i  and ^  ^  0 . We can now
cruse O  to define a Euclidean one particle Hilbert space

3^  as before, with inner product

< f  <  r  5 ' - ' ' < p i  ™

The Euclidean spin - 2 mass tensor field ^  over is defined

as the generalized Gaussian random tensor field with mean zero and

covariance given by !
!

Theorem 1

The Euclidean massless spin - 2 tensor field ^  over

violates the reflection property.

Proof

We shall omit the proof since it is similar to that for 

Euclidean electromagnetic potential.

Theorem 2

The Euclidean massless spin - 2 tensor field ^  is

Markovian in

(i) Lorentz gauge [ ^  — o( ^  —  O j  ,
(ii) Landau gauge . ( f A ̂  z f j ] .

Proof

(i) Denote by the one particle Hilbert space which
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fconsists of symmetric, traceless tensor ^  

with inner product

Tracelessness is preserved by cf P ,
since for any E  M'p ,

Tr ( Z  p" r T ' A ê T

Since this is just an algebraic condition and the cova

riance matrix p  ^ is the inverse

of a local matrix operator, therefore Nelson's proof of 

Markovicity carries through.

(ii) In Landau gauge, the covariance matrix is

+

In the space of symmetric test functions we can write

P"

p^p^prpr 1 J_
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Now consider the subset of test functions satisfying 

the following conditions:

symmetry

tracelessness : ^  —  0

T  y  0divergenceless : Zj

The inner product g —  y t v V  / ^

reduces to ^  for such

test functions.

Furthermore, ^  ' maps J^o to Jto si

for any k  0  ,

x  r r p - j A ' ' "
y

= (p(-pf)(r"- p-'p'p"j k'" 3 0
I f  P " ( / z p - > r ) ( < ^ ”' ' - p - r p 1 M "
A*

-  (i«-p''FP')(P*-P') h" =0
Trf ir-p-'PY)('i'-p-yrjL")

ince

e<r

Let C3 Cl fR-^ be an open set and 6  3^ with
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y  d  (_9 If f̂ji is the projection onto

~j'\ ’ then one need to show that

^ ^ ~ ̂  for all h  R-  ̂^  ^

where ’ is the interior of the complement of 0 .

The proof of this depends crucially on two points.

Firstly, C ~ ) or C P'^P )
00  ̂M

maps any C  ( (y x to element satisfying

~  0 i.e. to element belonging to

( (j J . Second point is that the inverse of 

^ is a local differential operator.

Thus we have

P

fif
( whe re ^*’1  P<r) Ii ^ = °  )

s i n c e  Pf  9 ^ ' =  0 )  r  < € ( j , f Z

. = < ë , . r

since

=  <  f : 7

P / Y o ,  =  < / ' ,  V - X -  = “
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Hence S ^ p P  j- CZ. 3 , and the

tensor field in Landau gauge is Markovian.

Q.E.D.

Remark

We have only considered two important covariant gauges, 

namely the analogues of Lorentz and Landau gauges, and we are able

to show that the Euclidean massless tensor field in these gauges

is Markovian. The generalization to include other covariant gauges 

faces similar kind of difficulty as in Euclidean massive tensor field 

in I. 2. Furthermore, no attempt has been made to discuss gravitation 

field theory which, though is very interesting, is outside the scope 

of this work.
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