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ABSTRACT

Heilbronn proved that for any e > 0 there exists a number C (e ) 

such that for any real numbers 0 and N O' 1)

min I I n^ 0 I I <C(e) N . 
l^n^N

In the first part of this thesis we prove various extensions of this 

result. We find values of g(r, k, s) so that the inequality

min max ||f.(Xj|| < C(r, k, s, e) N 
1C| l^i^r ^

is soluble, where ^  is an integral s-dimensional vector and the f's

are either polynomials (without constant term) or forms, both of

degree‘s k.

The method used depends upon estimates for certain exponential 

sums. Using Weyl’s estimates, we look, in Chapter 2, at monomials 

of different degree, and, in Chapter 3, at additive forms of degree 

k in s variables and quadratic polynomials. Using Hua's improvement 

of Vinogradov's estimates, we improve, for large values of k, the 

results of Chapter 2 and the results of Chapter 3 on additive forms. 

Also using Hua's estimates, we look, in Chapter 6 at polynomials of 

any degree (̂  k) . In the course of this work yte improve some results 

of Liu and Cook.

Birch, Davenport and Ridout proved that if Q is an indefinite 

quadratic form in n( ^21) variables, the inequality

|Q(x)| < E, 
has an integral solution X with jjc] ^ 1-

In the second part of the thesis we investigate the inequality

min |Q(X)|< C(n, k, e) 
ls|xl<N

where Q is an indefinite quadratic form in n C &21) variables of 

rank r, and k = min (r, n-r) , We find values for f(n, k) and show



that (i) for k < 6, H m  f (n, k) = h, (ii) fozr k > 7, 10k < 3n,
n-H»

lira f(n, k) = H, (ill) for 10k > 3n, lim f(n, k) = *2, 
k-H»
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NOTATION

Throughout the thesis, unless otherwise specified, k denotes 

a positive integer > 2, E an arbitrary positive number (usually 

very small) and C (a^, a.̂ , ... ) a positive number depending at 

most upon a^, a ^ r  , not necessarily the same at each occurrence.

In the proof of any theorems, by F «  G we mean G > o,

|F{ < G, where is a constant depending at most upon the same

variables as the constant in the statement of the theorem or as 

specified in the statement of the lemma. We also assume that N is 

an integer and, in any proof, that N > N^ where N^ depends at 

most upon the same variables as above, and that e < where

depends upon the same variables as except e. At all times

A will denote a positive integer, not necessarily the same at each 

occurrence, depending on the same variables as £^.

Finally, we write. K = 2^ e(z) denotes e^^^^ and ||a|| 

denotes the distance between a and the nearest integer. Also, 

when 3Ç is a vector, x = (x^, ..., x^), then

|x| = max |x |.
14i<n



INTRODUCTION

This thesis is divided into two parts, the first part of 

which is concerned with extensions to a certain theorem of 

Heilbronn. The second part is concerned with quantifying certain 

results of Davenport, Birch and Ridout concerning quadratic forms,

The starting point for the first part of this thesis is a 

paper of Heilbronn [23^, published in 1948, in which he proved 

the following theorem:

Theorem 1: For any N ^ 1 and any real 0, there is an integer

X satisfying

1 X N and | |0x^| | < C(e)N .

This theorem improved a result of Vinogradov [32] who had 
obtained as exponent - 2/5 + e instead of - *5 + e. We will 

give a proof of Theorem 1 in Chapter 1 since it demonstrates the 

essential argument, which is used throughout the first part of 

the thesis, in its simplest form. We note that Theorem 1 is a 

one-dimensional analogue to the famous theorem of Dirichlet on 

diophantine approximation (Lemma 1.1) in that the inequality is 

soluble for every N ^ 1 and the constant and the degree of 

approximation are indépendant of 0.

We may restate Theorem 1 thus:

min I|0 X I I < C(e) N (N & 1, 0 real)
l<x<N__________________- ___

Immediately, the following three questions arise:



1) Can one improve the exponent in Theorem 1 without losing 

the uniformity of the result ?

2) What type of upper bound can we obtain for

min I|e x^lI (N & 1, 8 real) ?
lOc<N

3) In view of the multi-dimensionality of Lemma 1.1, can one

generalise Theorem 1 to r dimensions ?

According to a conjecture of Hardy and Littlewood ,

made in 1914, the exponent - *5 + e in Theorem 1 could be 

replaced by - 1 + e. The exponent certainly cannot be improved 

beyond - 1, for, as Professor Heilbronn remarked, if p is an 

odd prime and a is not divisible by p then

I | - ^  I I for 1 3 n < p - 1.

Professor Heilbronn has also remarked that if one could improve

the exponent to - 1 + e then it would follow that the absolutely

least quadratic non-residue (mod p) is less than C(e) p^. For if

a is a quadratic non-residue (mod p) then so is each of the 
2numbers a n  (1 ^ n ^ p-1) and 

11^;^ II < C(e)

2implies that a n  is congruent (mod p) to a number of absolute

value less than C(e) p^. However, no improvement, other than a

slight sharpening by Liu \2l\ in which he replaces e by

e CN) =  --- 7---—  , ha,s been made to date.log log N



In answer to question 2, Danicic proved

1
Theorem 2; min | |e x^j | < C(e, k) N (N >1, 0 real)

l<pc^_________________________________________

The first attempt to generalise Theorem 1 to several dimensions 

was made by Danicic jjL^ who proved

min max (||e x^||, Ijeu x^||) < C(e) N
Kx4N

(N & 1, 0^,02 real).

He improved the exponent to - 1/8 + e Ql^ , and this was 

later improved by Liu [28, 2 ^  who proved the more general theorem:

Theorem 3 : Suppose fn (x) , f o (x) are additive forms in s variables

of degree k
X X

with real coefficients. Then, for N 1,

- 1 +e 
, s) N .min

l<|x|<N
max (11 1 1 ' 1 1^2 II) < C(E, k

where

7 k = 2, s = 1

g (k, s) 3K + i k > 3, s = 1

2K + 1 + s ^ 2

Cook {jŝ using the method of Danicic [is] proved

_ ^ ___ +e
min max (||0. x^||) < C(e, k, r) N 9 (r,k) 
l£x<N l^<x



10

(N ^ 1, 0^, ... 0^ real) , where g(l, k) = K,

and

g(r, k) = 2 g(r-l, k) + Kr + 1 (r ^ 2).

Liu improved Cook's result in again proving a more general

result:

Theorem 4: Suppose fĵ (x) (i = 1, ... r) are additive forms

in s variables of degree k with real coefficients. Then, for 

N % 1,

:  +e
min max (||f QK)||)< C (e, k , s, r) ^ g(k,s,r) 

l^lxkN Ki^r ^

where g(k, s, 2) = g(k, s) in Theorem 3,

and g(k, s, r) = 2 g(k, s, r-1) + + 1.

The method of [23] has also been used in proving several other 

results. Davenport |1l’Q  proved

Theorem 5: For any polynomial f of degree k, with real coefficients

and without constant term, and N ^  1,

2K-1min I|f(x)I I < C(k, e) N 
13x<N

Cook generalised this result of Davenport for polynomials of 

degree 2 proving



11

Theorem 6; Suppose (x) (1 = 1, ... r) are quadratic polynomials

with real variables and no constant term. Then, for N > 1,

min max ||f.(x)|| < C(e, r) N 
l,$x<N l<i-$r __________________________

where g(l) =3 ,  g(r) = 4g(r-l) + 4r + 2 for r & 2.

All the above results have been proved by making use of Weyl's 

estimates for certain exponential sums (Lemma 1.3), By using the 

estimates of Hua (Lemma 4.1) for these sums, one is able to improve 

some of the above results for large values of k. Thus Cook [s] 

improved Theorem 2 for large values of k, proving

Theorem 7: For N ^  1, 0 real, k ^  12

_ +s
min I|0 x^lI < C(k, e) N 
l^x<N_______________________________

where p ^(k) = 4 k(k-l) log (12 (k-1) ̂ ).

Similarly, Cook [s] improved Theorem 5, proving

Theorem 8: Suppose F(x) is a polynomial of degree k(^ 12),

with real coefficients and no constant term. Then, for N ^ 1,

1 + E
min I |f (x ) I I < c(k, e) N
L^x^N

where ^(k) = 4  k(k-l)^ log(12(k-l)k^).
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Cook [7] generalised Theorem 8 proving

1 +e
Theorem 9: min max (||f (x)||) <C(k,r,e) ^ g(r,k)

l^x<N K i 3r____________ ______

where g(l, k) = 16 k^ log k

and_________ g(r, k) = 8 g(r-l, k) + 4________ for k 2.

Danicic in two very elegant papers |T4, 1^, using some very 

delicate results from the Geometry of Numbers proved the following 

two theorems:

Theorem 10: Let Q , ... x )̂ be a real quadratic form in n 

variables. Then, for N ^ 1, there are integers , ... , not

all zero, satisfying

|xj| 4 N (j = 1, ... n)

and I1q (x ,̂ ... x^)|| < C(e, n) N n+1

Theorem 11: Let Qĵ, be two real quadratic forms as in Theorem 10. 

Then, for N & 1, there are integers x^, ... x^ , not all zero, 

satisfying

Xjl < N (j = 1, ... n)

—6 +e
and ll^i^^l' C(n, c) N * (i = 1, 2)

where 6 = ( 3 + 4 n ^ + 2 0 n ^ ) ^  with 0 = ^ r
^ r=l
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These results use Weyl's estimates for exponential sums but

the method of proof is rather different from that of Heilbronn.

Recently Cook Q.0, 1 ^  has been able to prove analogous 

results for cubic forms by using some results of Jane Pitman.

See also ^  for other results of Cook; also .

In Chapter 1, I will set up the mathematical structure needed 

to prove Heilbronn - type theorems using Weyl's estimates for 

exponential sums, and I will give a proof of Theorem 1. In 

Chapter 2, I will consider simultaneous approximations to monomials 

of different degrees

min max ( | | e .  x ||) (integers a. & 1)
l^x<N l<i<r ^

and in Chapter 3, I will give improvements of Theorems 4 and 6.

In Chapters 4, 5, 6, I will use Hua's estimates for exponential 

sums to improve the results of Chapter 2 for large values of k and 

also to prove a result corresponding to Theorem 4 on additive forms 

and to prove results which improve Theorems 7, 8 and 9.

In Part 2 of this thesis, we study certain diophantine 

inequalities concerned with quadratic forms. In a series of papers 

in the late 1950's, Davenport, Birch and Ridout Q., 18, 19, 20, 21, 3 ^  

proved '

Theorem 12: For any real indefinite quadratic form Q(x^, ... x )

in 21 or more variables, the inequality

(1) ... x^)I < e

is soluble for any e > O in integers x^, ... x^ not all zero.
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In [19] , Davenport suggested that by modifying the proof of 
his theorem it might be possible to show that (1) is soluble 

with I2ÇI < P and with e = P  ̂ for any sufficiently large 

P with a suitable 6 (depending upon n and X., the rank of Q). 

In Chapter 7 we do this using the methods of [l, 19, 21, 3:Q.



15

P A R T  1
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CHAPTER 1

In this chapter we will state the basic lemmas of analytic 

number theory which are necessary to prove the results of the next 

two chapters, and we will give a proof of Theorem 1.

§1. Lemma 1.1 (Dirichlet). Suppose 6 ,̂ ... 0^ to be real

numbers and Q :> 1. There are integers a^, ... a^, q

satisfying

-X, ^1 < q < Q # | 0 ^ - a ^ q  I < q Q (1 < i < r)

and (a^, ... a^, q) = 1.

Proof: The lemma is well-known and a proof is easily accessible, 

See, for example ^ .

Lemma 1.2 (Vinogradov). Let O < A and let a be a

positive integer. Then there exists a real function

^(z), of period 1, such that

ip(z) = O_______ for I I 21 I > A ,

ip(z) = ^ e(m z)
m= - *

«0 = A ' «-m = “m
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(1.1) |cXĵ| < C(a) min (A, m ^  ̂A )̂ , m ^ 1.

Proof; This is a special case of Lemma 12 of Chapter 1 of

Lemma 1.3 (Weyl): Let 0 be real and suppose there are

integers a, g & 1 satisfying

— jL I ""20 - a q I < q , (a, q) = i.

Then, for any positive integers P, N,

P+N ^
2 min (N, -I I _ri)<< N + q log q, i

j=P+l , I Ij Q

where the implied constant is absolute.

Proof: This is a special case of Lemma 8a of Chapter 1 of [33j,

k k-1Lemma 1.4: Let f(x) = 0 x + 0,x + ... + 0, x---------------------    JL--- ------k-1 —
be a polynomial with real coefficients. Let m(^ 1) 

be an integer, and let, for N ^ 1,

N
S (m) = J e (m f (x) ). 

x=l

I * 1 1 “"2Suppose |0 - a q I < q for some integers q(:̂  1) , a,
where (a, q) = 1. Then for H & 1,
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H K e K-k k-1
(1.2) I |s(m) I «  (H N) N ( - ^  +1) (N + q log q) .

m=l

If k = 1, q > 2H, then

H
(1.3) |3(m) I «  q log q,

m=l

The constants implied in (1.2), (1.3) depend at most upon 

e and k.

Proof ; By Satz 266 of [2^

|s(m) 1^ «  l+e/2 ^ jgK k+e/2 ^ min(N, y gj |)
v=l

H klN^'l . kîHN^“^
I I " V s i r  i x T M T '

because x = mv has «  (HN) solutions m, v for any x. Now 

we can complete the proof of (1.2) using Lemma 1.3.

For the second part.

f  | s ( m ) |  <  I  | | m  e | | - l  f  I  ! | m e | r ^  .
m=l m=l Km^^q

Since (a, q) = 1, the integers k = am (mod q) , 1 m ^ q, 

are distinct and not zero, and so for 1 m ^ q

I |m e| I = I |m aq ^ + >5 c(i q 1̂ I , (|*| < 1) 

= Ilk q-1 + ^ * q-l||
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and thus

I ||m e|| ^ << I q k ^ « q  log q. 
l<m<^q l<k<^q

The result (1.2) is due to Weyl,

§2. Before giving a proof of Theorem 1, we prove a lemma which

contains the bagic idea of Heilbronn's method. An 'improvement 

on Dirichlet's theorem' (see (1.5), (1.6)) is purchased by a 

'Heilbronn hypothesis', as we call the hypothesis of Lemma 1.5 

about the absence of an integral solution to certain inequalities.

Lemma 1.5 Let ... be positive real numbers and

^1' *** ^r real numbers. Suppose there is no integral
solution of the inequalities

a - X .
1 < X < N , 11% ] 6j||  ̂ (j = 1, ... r) ,

where the a  ̂ (1 < j < r) are positive integers,

1 < a^ < a^ < ... < a^, and N % 1.

Then there is a j, l < j < r ,  such that either

(1.4) Kj (X^ + ... + Xj) % 1 - E(j Kj + 3)

or

there is an integer q ^ 1 satisfying

K. (X, + ... + X.) + e(j K. + 2)
(1.5) q << N ]   /

and
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-a. -X. + K. (X, + ... + X.) + e(j K. + 2) 
(1.6) I |q 8j| I «  N  ̂  ̂ ^

a -1
where = 2______ (] = 1, ... r) and the implied constants

in (1.5), (1.6) depend at most upon , ... a^, r and g.

Proof : Let ip^(z) be the function obtained in Lemma 1.2 on 
letting A = ^ N ^i , a = f e ^  + 1  for 1 ^ i < r. Then, 

by the hypothesis,

N r
I II ip (x  ̂e ) = O 

x=l i=l

or

r 1 (X^ + ... + X^) * ' r
(1.7) 2 N + 2 0^ T(m ) = O f

r*where 2 denotes a summation over all non-zero integral vectors
27m = (m^, ... m^) , and

T (m ) = ^ e(mu e x + ... + m. e. x ) for 1 ̂  j ^ r.
x=l  ̂ ^

From (1.7) we deduce

2* ... Tlm')! .

r , I + cOn summing over the m with |m^| > N we have, by (1.1),

r I a Xi -a -1
2 IV  *m ) I << N I  N ■ m̂

. X,+e 
m^ > N

«   ̂ «  1



21

X2+e
and similarly for Im l̂ > N , etc. Thus (unless

1 - (X^ + ... + X^) < e , which we may ignore as it would 

prove (1.4)),

1 - (X +...+X ) (r)
N «  I ... T (a") I,

1 r

(r) X.+e
where J. is a sum over |mu| <  N ^ (i=l, ... r) ,

m^ O, and using (1.1) , we obtain

I r  IN «  2, |T(mn I

Clearly there is a j, 1 <  j < r such that

^(-j) - .
(1.8) N «  2 |T(m/)| .

ny + o

This completes the first stage of the lemma. We now

distinguish between the two cases: a. = 1, a. > 1. First
/  ]  ]

consider the latter.

Suppose Q = where y = a . - K. (X + ... + X.)
J J X J

+ Xj - E(j Kj + 2). Then, by Lemma 1.1 there exist integers 

q (^ 1), a, satisfying

(1.9) (a, q) = 1, 1 < q <  g, |©j - aq 1̂ ^ q ^ Q ^ q

Using Holder's inequality in (1.8) we obtain

K. (X.+...+X. + j e)(K.-l) (j) j K.
N ] << N 1 ^   ̂ I |T (m )| ] ,

•j+0m

and on using(1.2), ^
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K K (X +...X +j e)-X.+e+K -a. Sj-l+Aj+G
(1.10) N J << N J  ̂  ̂  ̂  ̂ (---------  +1) (N + q log q)

and (1.10) yields

a.-K.(X,+...+X.)+X.-(j K.+i)e a,+X.+e -1 a.-l+X.+e
N  ̂  ̂  ̂  ̂ «  N ] ] q + N  ̂ ^  log q

+ q log q

Since g < Q# the term q log q is negligible, and since we may
a.—l+X.+e

assume (1.4) is false, the term N  ̂  ̂ log q is negligible.

We are thus able to deduce

K.(X +...+X.)+e(j K.+2) 
q << N ]  ̂ ^

which is (1.5), and finally (1.9) implies (1.6). We now need

only consider the case a. = 1. Then j = 1, and from (1.8)
]

we obtain . .X.+e 
N 1

m^=l

1-e
We suppose q to be an integer, l . $ q ^ Q  = N , satisfying

X +e
(1.9) with j = 1. If q % 2N , by Lemma 1.4 we obtain

N «  q log q,

X.+e —1+e
which is absurd. So q ̂  2N , ||q 8^|| < N which

implies (1.6) and (1.5). This complete the proof of the lemma.

We now give a proof of Theorem 1. The proof given here 

is due to Davenport [iT^.
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Proof of Theorem 1; We assume that for some positive number

X,

(1.11) I |n^ e| I > N  ̂ for 1 3 n N.

We will show

(1.12) X > I  - 5e ,

and clearly this proves the theorem.

Now, by Lemma 1.5, on letting r = 1,'whence j = 1 and 

= 2, 
either

(1.13) 2X t 1 - 5e

or

there is an integer q (> 1) satisfying

2X+4e
(1.14) q «  N

-2+X+4E
(1.15) IIqelI «  N

We may suppose (1.13) to be false, for otherwise we would

have proved (1.12).

2X+4E 1-E
Now q 44 N N ,

1for otherwise X > -j - 5e which would prove (1.12). Also,

2 2X+4e —2+X+5e —2+3X+9e
q e| I ^ q 1 |q e| I << N .N = N
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and thus, by (1.11),

2 + 3X + 9e > — X — G , 

which implies (1.12) and thus proves the theorem.
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CHAPTER 2

In this chapter we consider simultaneous approximations to 

monomials of different degrees:

^ imin max (||e x ||) (integers a. (^ 1) ) ,
l^x^N l^i^r ^

and in Theorem 14 we prove an analogue to the following theorem 

of Minkowski:

Theorem 13: Let O < < 1, (i = 1, ... k), ... ^

Let e,, ... 0, be real. There is an integer, x, satisfying

1 3 X ^ N, I |e^ x[ I < TijL (1 < i < k).

This theorem is a special case of Minkowski's convex body theorem, 

a proof of which may be found in .

§1. Theorem 14: Let O < < 1, (i = 1, ... k), and

— —  + E
(2.1) % c (k, E) N K

Let 0 be real. Then there is an integer, x, satisfying

(2 .2) 1 ^ X ^  N, ||e x^ll «3 (i = 1 , ... k)
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Proof; Suppose that there is no solution of the inequalities

(2.2). We apply Lemma 1.5 with r = k, a^ = j , N  and

8j = 8 (1 < j < k). We shall show that

(2.3) (X^ + ... + Xĵ ) ^  1 - AE

This implies

. . .  (  N k

and therefore proves the theorem. Thus it is sufficient to 

show (2.3). By Lemma 1.5, since we have made a 'Heilbronn 

hypothesis', there is a j, 1 < j < k, such that 

either

(2.4) Kj (X^ + ... + Xj) ^ 1 - e(j Kj + 3)

or

. there is afi integer q (^ 1) satisfying

K. (X- + ... + X.) + e(j K. + 2)
(2.5) q << N ]  ̂ ^

and

- j -X. + K.(X^ + ... + X.) + e(j K. + 2) 
(2.6) ||g e|| << N ] : ^ ] :

We may suppose that (2.4) is false since this would automatically 

imply (2.3). So we assume (2.5), (2.6) hold. Clearly (2.5) 

implies

1-e
(2.7) q «  N
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for otherwise (2.3) is true. 

Now, for 1 < i < k.

where b = i (j K_ + 2). By the 'Heilbronn hypothesis' and

(2.7) , for some i, 1 4 i .< k

i K. (X + ... + X.) - j -  X. + (b + l)e -X. 
N  ̂  ̂  ̂ > N ^

and therefore

i K. X. X.
(2. 8) — (X^ + ... + Xj) - ^ 1 — Ae

If i = j, clearly (2.8) implies (2.3) .

If i > j, then

i K X. X. iK.
— T (X̂  + ... + Xj) - + -y ̂  t Aj + X̂ )

i x ,
< Jç_ (X^ + —  + x^) ^  (X^ + ... + X^)

and thus (2.8) implies (2.3),

If i < j, then

i K . X. X. i K. + 1
  (X. + ... + X . ) — —T" + —r- ̂ ---- 1---  (X., + ... + X.)j - 1  ]' j j ^ j ' 1  j

k K.
^ ^^1 *** ^k^ ^ ^  (X^ + ... + X̂ )

and thus (2.8) again implies (2.3). Since we have covered all 

possible values of i, this completes the proof of the theorem.
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We observe in particular

Corollary to Theorem 14: Let 9 be real and N ^ 1.

i " "vZ + EThen min max | |© x | | < C(k, e) N
__________l^x^N l^i^k______________________________

_ i  + i.Kk kProof: We let “ ^2 ~ *** = = N and the
result follows.

Recently Cook [V] using a slightly more elementary 

argument proved the following weaker result;

Theorem: For any e > O, there exists a constant C(g),

such that for any real 6, N ^ 1 ,  there is an integer x 

satisfying

1 ^ X < N and max (||x e||, ||x e||) < C ( e ) N _______

Proof: By Lemma 1.1, there is an integer y satisfying

3 3
.5 I I _  I I  .  „ 5l ^ y ^ N  , | | y © | | ^ N

By Theorem 1, there is an integer z satisfying

1  ~  + e
1 < z 4 N^, I | z V  e| I < C(e) N .

1
Clearly | |zy ©| | < N and on noting zy N, the result 

follows.
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§2. In this section we investigate what happens when we have 

different G's. We prove a result corresponding to Theorem 14 

and we improve this result in a certain special case - when we 

try to obtain a uniform degree of approximation - as in the 

Corollary to Theorem 14.

Theorem 15; Let ... be real positive numbers, with

^  X^ ^ ... ^  > O , and 8 ,̂ ... 0  ̂ be any real numbers.

Let 1 ^ a^ < a^ < ... < a^ = k be integers. Then there is an 

integer x satisfying

a . -X.
(2.9) 1 ^ X 4 N , max | 10. x | | < C (k, r , e ) N

___________K i 4x _̂______________________

r
if I V (k, r) X. < 1 - e 

i=l ^ ^

where

(2.10) Vĵ  (k, r) = max (v^ (k - 1, r - 1) + 2^ v^(k, r-1) + 2^ )̂ ,

for i = 1, —  r - 1 .

and v^ (k, r) = 2^ ^ , v^ (k, 1) = 2^

Proof; We call the theorem 'case (k, r)'. Case (k, 1) is

true, by Theorem 2 and Lemma 1.1. Assume Case (j, h) is known

for 1 < h ^ i < k, and that cases (k, 1), ... (k, r-1) are

known (r > 1). We deduce case (k, r); this will obviously 

prove the theorem.

Suppose there are no integral solutions of the inequalities
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a. -X.
(2.11) 1 < X <  N, max ||x e II ^ N ^

l<j<r ^

We shall deduce

r
(2.12) ^ V (k, r) X. & 1 - Ac ,

1=1 ^ 1

which will complete the proof.

By Lemma 1.5, there is a j, 1 ^ j ^  r such that 

either

(2.13) Kj (X^ + ... + Xj) ^ 1 - e (i Kj + 3)

or -

there is an integer q ^ 1 satisfying

K.(X- + ... + X.) + s(j K. + 2)
(2.14) q << N ] 1 ] ]

—a. —X. + K.(X + ... + X.) + e ( j K. + 2) 
with ||q e.ll << N ] ] ] 1 ] :

We may suppose that (2.13) is false for otherwise, since

(k, r) % 2 ^  ^ for i = 1, ... r, we would have proved

(2.12). There are two cases to consider.

1 - (X̂  ̂+ ... + X^)- e(r + 3)
(a) j = r. For every z, 1 z < N ^

1-e
zq << N < N,

and
a_ a_ a a, -1 p. -X̂

z q e^ll 3 z ^ q I|q I «  N . < N
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since (1 - + ... + X^)) + (â . - 1) (K̂ (Xĵ  + ... + X^))

- a^ - X^ + (X^ + ... + Xj.) - AS

= - X^ - Ae .

Thus, by the insolubility of (2.11) and the case (k-1, r-1).

r-1
I v\ (k - 1, r - 1) X & 1 - K (X + ... + X )• - Ae i_l r r J- . r

for otherwise we would have a contradiction. Thus

r-1 .
(2.15) I v. (k - 1, r - 1) X + K (X + ... + X ) % 1  - AE .i=l 1 r X r

1 — K. (X- + ... + X.)—e(j K. +3)
(b) i < r - 1. For every z, 1 ^ N ^

1-E
Z q «  N N,

and
a. a. a. a.-l -X,

z q Gjll -3 z q ||q Gjll << N . < N

since lî  = - X^ - Ae

Thus, by the insolubility of (2.11) and the case (k, r-1), 

3-1 r
I  V (k, r-1) X + I  v._, (k, r-1) X ^1-K. (X + ... + X 

i=l ^ ^ i=i+l ̂  ^ 1 3 ± 3

C2

for otherwise we would have a contradiction.

Since X^ > X2 ^ X ^ > O, we obtain

r-1
I V. (k, r - 1) X. + K. (X., + ... + X.) :> 1 - Ae

i=l ^ ^
and since j ^  r-1, and a^^^ ̂  k-1, it follows that

.16) Vilk, r-1) Xi + (%1 + -  + Vl> ^
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Now (2.15) or (2.16), slong with (2.10) implies (2.12) 

and this completes the proof of the theorem.

The following lemma gives an ex$ct value for v̂  ̂ (k, r) .

Lemma 2.1; Let (k, r) be defined as in (2.10). Then 

Vj. (k, r) = (r - i + 2) . 2^~^

Proof; We prove the result by induction on r. Suppose 

r = 1. Then v^ (k, 1) = 2^"^ = ( 1 - 1 + 2 )  2^"^, which 

proves the result for this case.

So suppose r > 1. Then v^ (k, r) = (r - r + 2) 2^ ^ = 2^ ^ 

which proves the result for i = r.

For 1 < i < r,

v^ (k, r) = max (v^ (k - 1, r - 1) + 2^ (k, r - 1 )  + 2^ )̂

= max {( r - i + 1) 2^"^ + 2^“^, (r - i + 1) 2^ ^ + 2^

max' {( r - i + 5) 2^”^, (2r - 2i + 4) 2^

(r - i + 2) 2^ ^ , since r - i ^ 1,

and the lemma is proved.

The following theorem is an improvement of Theorem 15 in 

the special case = • • • =.

Theorem 16 ; Let 1 < a^ < ... < a^ = k be integers, and

e^, ... 0^ be real numbers. Then, for N ^  1, there is an 

integer x satisfying
1

\  k,r
1 ^  X 4  N, max I |e. x 11 < c(k, r,e ) N

. l^i^r_________________________ _________________________________________________________________

+ e
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where

„ 2^"^ ((r - 1)2^ + 1) r = 1, 2, 3, 4
(2.17) k,r = -----------------------------------------

2^*4 (65 + 2 (r - 5) (r + 4)) r 5 .

Before we prove the theorem, we prove a recursive lemma.

Lemma 2.2: Let U. „ (k & 1, r = 1, ... k) be positivejc,r
integers defined recursively by

(2.18) \,1  = 2%-!, ("k.r-1 + V l . r - 1 ^

if r > 1.

Then U, satisfies (2.17). x,r

Proof : The cases r 4 are clearly true. So we suppose

r ^5. Now

°)c,5 = ‘”k,4 + "k-1,4+5-2* h

= max (2^ (3.2^ + 1) + 16.2^ 2^”^. 49 + 80.2^“ )̂

= max (130.2^ 129.2^"^) = 65.2̂ ""̂ ,

Now suppose h ^ 6 and the result known for all r < h, for 

all k. Then

^ = max (2^ ^ (65 + 2(h - 6) (h + 3)) + (h - 1)2 ,

2^ ^ (65 + 2(h - 6> (h + 3)) + h . 2^ h
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Clearly the first of this pair is larger and is

2*̂  (65 + 2(h - 5) (h + 4)),

and this proves the lemma.

Proof of Theorem 16: Again we call the theorem 'Case (k, r) ' , 

and the proof is similar to that of Theorem 15.

Suppose there are no integer solutions of the inequalities

a. — X
C2.19) 1 < X < N, max | |x e.|| < N

We shall prove

(2.20) X --- A e ,
k,r .

and this will prove the theorem.

In Theorem 15, let X^ = ... = X^ = X and replace

Z
^ V. (m, Z) by U .. We follow the proof of Theorem 15 i=l ^ m,X,

until (2.15) in (a), and (2.16) of (b). Then, instead of

(2.15), (2.16) we get

(2.21) ^\-l, r-1 )̂. X ^ 1 - A e ,

(2.22) (U^^ + (r - 1)2^"2) X %. 1 - A E

Then (2.21) or (2.22) together with Lemma 2.2 imply (2,20) 

which proves the theorem.
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Corollary to Theorem 16; For 0^̂ (1 = 1, ... k) real, N % 1 ,

min max | |x^ 0. | | < C(k, e) N W   ̂
l<x<N Ki^k_________________________ __

where

^k =

(k - 1) 2^ + 1 k = 1, 2, 3, 4

2^ (65 + 2(k - 5) (k + 4)) k & 5.

In Theorems 15 and 16, there are restrictions upon the 

relative sizes of the X^'s. In certain specific cases it is 

possible to relax this restriction and we prove the following

Corollary to Lemma 1.5; Suppose 1 < k^ < k^ where k^, k^ 

are integers and suppose 0^, 0^ to be real numbers. Then 

for N 1, there is an integer x satisfying 1 <_ x <. N,

k -X + e
|e^ X I I < C(k^, kg, e) N

kg -Xw + e
|0g X II < C(k^, kg, E) N

for any X̂ ,̂ X^ satisfying

X^ (K^ + Kg) t Xg Kg ^ 1,

k.-l k g-1
where K^ = 2 , Kg = 2

We note that this result is at least as good as Theorem 15 

in the case r = 2, since from Theorem 15, v^ (k, 2) = 3/2 Kg,
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Vg (k, 2) - Kg (on putting k = kg), while the above Corollary 

gives (k, 2) <  3/2 Kg, v^ (k, 2) = Kg, since K^.( % Kg.

This anomaly arises because of the generality for which Theorem 15 

was proved.

Proof of the Corollary to Lemma 1.5; We suppose that for any 

positive X^, X^

k -X k_ -X
(2 .22) ||e^ X 1 || > N 1 , I leg X II > N

for all integers x, 1 < x < N. 

Clearly, it is enough to show

(2.23) X^ (K^ + Kg) + Xg (Kg) ^  1 - A e ,

By (2.22) and Lemma 1.5, there is a j, 1 3 j ^ 2, such that 

either

(2.24) K. (X. + ... + X.) & 1 - A E
] 1. ]

or

there is an integer q O  1) satisfying

K.(X, + ... + X.) + A e 
q << N ] 1 ' ]

*^■^5) - k. - X. + K.(X, + ... + X.) + A e
||qe.|l «  N ] ] 5 :

We consider the possible cases;

j = 1; Then (2.24), (2.25) become

either

(2.26) X^ & 1  - A E
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or

there is an integer q satisfying

We may suppose (2.26) false for otherwise (2.23) is proved.

Now, by Theorem 2, there is an integer t satisfying

1-Ki X -Ae k_ kg - (1-K- X -AE) + E
(2.28) 1 < t <  N , ||t q Ogll << N 2

k k- k - 1  k. —X_ — Ae
Also ||q 1  t  1  e ^ l l  < <  q 1  t  1  ||q 8^|| << N

1-Ae
Thus, since q t .« N , it follows from (2.23) , (2.28) that

- (1 - X^ - Ae ) ^  - Xg - A e

i.e. - 1 + X^ ^ - Kg Xg - A e

i.e. K^ X^ + Kg Xg & 1 - AE, which proves (2.23) in

this case.

j = 2: Then (2.24), (2.25) become

either

(2.29) Kg (X^ + Xg) ^  1 - AE

or

there is an integer q satisfying
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Kg(X + X ) + AG 

q << N ^ ^

We may suppose (2.29) false, for otherwise (2,23) is proved.

Again, by Theorem 2, there is an integer t satisfying

(2.31) 1 < t < I |/l \  g j  I << ^-(l-Kgd^+kzj-Ae)^

; , kg kg k_-l -X - AG
Also ||q t Ggll << q t ||q Ggl] << N

1—AG
Thus, since q t «  N , it follows from (2.23), (2.31) that

- (1 - Kg (X^ + Xg) - AE) ^  ̂  \  ^

i.e. X^ (K^ + Kg) + Xg Kg ^  1 - AE

which proves (2.23) in this case.

This ccanpletes the proof of the theorem.
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CHAPTER 3

In this chapter we consider simultaneous approximations to 

certain types of polynomials without constant term. We prove a 

theorem on additive forms which improves Theorem 4 and one on 

quadratic polynomials which improves Theorem 6.

The method of proof of Theorem 17 is that of Liu [28, 29, 3(^ 

with some improvements in the arrangement of the proof. The method 

of proof of Theorem 18 is that of Cook where the improvement is 

obtained by incorporating an idea of Liu. (See pp.79-80 [29])...

§1; In this section we prove

kTheorem 17 ; For i = 1, ... r, let f ,(X) = % © • • x . be
i j=l ]

additive forms in s variables. Then

(3.1) min
i < U k N

max 1 |fĵ (X) 1 1 < C(e, k. r, s) N
g(k,r,s)

where

2 K + 1 r = 2, s = 2

(3.2) g(k, r. s) = 2̂ '*’̂  - 1 k = 2, r & 2, s = 1
r-2 1 2 (3 K + ^  +.1)

k

- 1 

%3, r 2, s = 1

+ e

The case kî>2, r = 2, s = l is proved in Theorem 3.

We improve the result of Theorem 3 if r = 2 , s > 2 .  We also 

improve the result of Theorem 4 for r &3, s = 1 and hence 

for s &1. The results can more easily be compared by noting 

that in (3.2)
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(3.3) g (k, r, 1) = 2g (k, r - 1, 1) + 1 (r &3).

By a straightforward extension of Theorem 9 it is possible 

to obtain the following result;

Let (x^, ... Xg), (i = 1, ... r), be real quadratic 

forms in s variables. Then there exist integers x̂ ,̂ ... x^, 

not all zero, satisfying, for N &1,

1
II II gtS'f)max I IQ (x , ... X, )|| < C(s, r, e) N

l(i<r ^ ^ ®

|x . I < N (j = 1, ... s)

-1 -1where g (s, r) - 2r s + 1 + 2ps

+ e

with p = % g(n, r - 1)
n=l

-1and g(s, 1) = (s + l).s .

(See Cook []bJ).

Suppose s = 1. Then g(l, 1) = 2, g(l, r) = 2r + 1 + 2p 

where p = 2g (1, r - 1) ajid this gives

g(l, r) = 9.2^"1 - 2r - 5.

Now the result obtained in Theorem 17 for g(2, r, 1) is
r+1a special case of this result, and we note g(2, r, 1) = 2 -1,

Clearly this is an improvement on g(l, r) for r & 6, which is 

what one would expect.
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Proof of Theorem 17; The proof of the theorem is by induction 

on r. In the case r ^2, s = 1 Theorem 3 starts the 

induction. For the case r = 2, s 2 Theorem 2 starts the 

induction. We will prove the theorem in the form of three 

lemmas.

Lemma 3.1; Let X (< ~) be a positive number such that

“X
(3.4) min max I I ̂ j (X) I I ^  N

1<LxJ l<i<r ________________

Then there is a p , 0 < p < X  + e, and a j, 1 < j < s , 

such that

1-r p/s
(3.5) Is (U) I »  N_______ _

rp-E
for at least [n  ] + 1 integer points 

U = (V^, ... U^) with

X+E
(3.6) 1 < |u| < N

N
where 8(U) = ^ e ( (U.T) x ),

x=l

T = (6kj, ... e^j), U.T = 8ij + + Uf ©rj

— X
Proof ; By Lemma 1.2, with A = ^ N and a - |^E J+ r ,
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y V, I n. f (X) •<|x|^N Ji=l   = O ,
13

i-e. I ... I ex ... a. II s . (u) = 0
V p  - oo = _ œ %  Uj, ] -

N kwhere S. (U) = I e((U.T)x ) 
5 -  1x 1=1 -  r

On separating out the term with U = O, we obtain

' " %  L  V ! ••• %  n s (U) = 0
1 r j=l

(where =f O in the summation) , which implies

(3.7) I ... I |oj, ... «0 I n I S.(U)| Ï.2 N®
U p  - 00 =s - 00 1 X j=i

(where ^  =f O in the summation). 

For 0 ^ Z < r.

I ... I
X+S X+E

sI I IX+e X+E^ r 1=1 ^

S—fX i(X+s)

IVl|iN^+k |o^|>N^+^ "l "r*

S+&E Xa(r-&) - (X+e) (r-Jl) a
«  N N N , by (1.1)

6+ie ea&-ear 
= N N «  1, by the choice of a*

Thus (3.7), along with the fact that «  A(i = 1, .. r),

implies
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I ... I n |s (u)I »  N 
j=i ]

X+e
where O < |u| ^ N ,

and therefore

? V r I s
I I ■■■ Z |S.(U) I »  N

j=l "l "r

X+e
where O <|(Ul|^ N

Thus, there is some j, 1 ^ j < s, for which we write 

3 j (IJ) = S (tJ) , satisfying

e s
(3.8) S = 2 ••• I IS (U)I >> C N

X+e
where O < [u] < N

So there exists ap, O < p <  X + e such that

1/s 1-rp/s
(3.9) |8(U)| > N

r , . %+cfor at least [n J, + 1 vectors IJ in 1 4|u|^ N , 

where (C, r, s) •

For suppose that such a p does not exist. For integer 

m, with e m > 2r (X + e), write

s m-1
S = I ls(U)| + I T ,J3=0

where the first summation on the right is over 

1 < |u| ^ and |s(U) I® < while T^ = %|s(u]
where the summation is taken over
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s-r(j+l) (X+e)m- ^  ̂ , -1
N < |S(U) I < N

It then follows that, by a suitable choice of C. ,1
sS < CN ,

for every large N, which contradicts (3.8). Thus (3,9) holds 

and together with (3.8) proves the lemma.

Lemma 3.2: Let X > O and suppose that (3.4) holds for

r ^  2. Then there is a p, 0 < p < X + e ,  such that at least 

one of the following inequalities hold:

(3.10) X ^ - Ae

2 -1
(3.11) (y^ + f  + ̂ ) -AC

tK 1(3.12) X (2g(k, r-1, 1) +1) + p ( ^  + ^  - 1 - g (k, r-1, 1) )

- AE

Proof: Let p and T be as in Lemma 3.1 and we write

(8^, ... e^) in place of (e^j, ... e^j). Let U be any of 

the vectors satisfying (3.5) and (3.6).

We may assume r Kp/s ^ 1 - 4e, for otherwise (3.10) holds 

and the lemma is proved. By Lemma 1.1 there are integers 

a = a(U), q = q(U) satisfying

k-Krp./s- 2e
(3.13) (a, q) = 1, 1 < q < N

and
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-k + Krp/s + 2e
(3.14) |q(U.T) - a| < N

By Lemma 1.4,

K K+e -1 K-l+e K-r Kp/s - e 
IS (U) I «  N q + N + N

and so by (3.5)

K-rKp/s K+e -1 K-l+e K-r Kp/a-e 
N «  N q + N  + N

The last two terms are negligible, and so 

r Kp/s + e
(3.15) q << N

Suppose now p &2e. By Lemma 1.1, there are integers 

W, b^, ... b^ such that

k-r Kp/s-3e
(3.16) 1 < W < N , (W, b^, ... b^) = 1,

and
- —  (k-r Kp/s - 3e).

(3.17) max |W0. - b. | < N

It now follows from (3.14), (3.15), (3.16), (3.17) 

that

r
|q(U^b^ + ... + U^b^) - a W| <  I q|u^| |b^ - W 0^| + w|q(U.T) - a|

r Kp/fe + X + 2 e - —  ( k - r  Kp/s - 3e) -e 
«  N ^ + N .

Since p ^ X + e, we may assume that
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rKp/s +X + 2e - —  (k - rKp/s - 3e) < - e, for 
otherwise (3.11) holds and the lemma is proved.

Thus

|q (Û bĵ  + ... + u^b^) - a w| «

and therefore we may conclude that q = q (U) divides W.
0But W has fewer than N divisors. Thus there are at 

rp-2e
least N vectors U satisfying (3,5) and (3.6) for which

q (U) takes the same value q; say for _U c H,

Consider those U e H which fall into the various regions

X“P+2e X“P+2e
k . b N 3 U. < (k. + 1) b N (j = 1, r) ,
J J 3

where k_, ... k are integers and b is a positive number,
-r r(p-e)

There are << b N + 1 of these regions that meet H,

by (3.6). If b = b (e, k, r) is suitably chosen, one of the 

regions contains two members of H, and Ug say, If 

U = - Ug, we have

(3.18) £  + O, I |q(U.T) I I < 2N k+rKp/s+2e

(3.19) |u| «
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If P < 2E, we simply take U to be any of the vectors 

satisfying (3.5) and (3.6). Without loss of generality we 

may assume > O.

We now apply the induction hypothesis (with Theorem 3 

starting the induction if r ^2, s = 1, and Theorem 2 
starting if r = 2, s ^2.) We write g = g (k, r - 1, 1). 

There is an integer n such that

(3.20) < n 6 - p) 9,

(3.21) I U^k-1 qk ^k| | 2X - 4e + p (2 < i r)

Let X = n q U^. Then, by (3.19), (3.21)

(3.22) I |e^ x’"! I «  U^l I q"" n’̂l | «  N < i 4 r)

Also, for 6 ^̂, we have by (3.15), (3.18), (3.19), (3.20) and

(3.21),

(3.23) I\e^ x’̂l I < rf qk ^ u/'^| |q(û 6̂^ + ... + 6 .̂)

+ I |uj llei qk nk; 
1=2

«  N -fM

where

(J = kg (2X + 5e - p) + (k-1) ( ̂ ^  + e)+ (k - 1) (X + 3e - p)

_ k + + 2c
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Suppose

(3.24) (7 < — X — e

Then | |e^ x^| | < îT^ (1 ^ i < r) .

XWe also have x «  N

where t = (2X + 5e - p) g + — + e + X - p + 3e .

By (3.24) T < 1. Thus X = (0, O, ... O, x, O, ... O)

(x in place) satisfies |x| ^ N, and | |f^(X) | | = ||e^ x^J| < n "^ 

(1 4 i < r) , which contradicts (3.4). Thus (3.24) does not hold,
which implies that (3.12) holds and thus proves the lemma.

Lemma 3.3: Let X > O and suppose (3.4) holds for r ^  2
Then,

if r = 2, s = 2

(3-25) '

and for r ^ 2, k = 2, s = 1

(3.26) % S.— TY Ae
2^+1- 1

and for r ^  2, k ^ 2, 5 = 1,

(3.27) X   ae
r-2 12f ^(3K + + 1) - 1

Clearly this proves the theorem.
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Proof: Suppose r = 2, s = 2. Then g(k, r-1, 1)

= g(k, 1, 1) = K. Thus the coefficient of p in (3.12) 

^ = kis K + - ^ - 1 - K  = - ^ - 1 < 0 .  Then, by Lemma 3.2,

^ i' ' 2 F T T  > -

^ - A C2K + 1

and this proves (3.25).

Now suppose r ^ 3, k = 2, s = l (since by Theorem 3,

(3.26) is true for r = 2). Then the coefficient of p in

(3.12) is

2r + *5 - 1 - (2^ - 1) = 2r + 5̂ - 2̂ ,

which is negative for r 3. 

Then, by Lemma 3.2,

and by a simple calculation we obtain

which proves (3.26).

We now suppose r ^ 3 ,  k ^ 3 ,  s = l  (since by Theorem 3,

(3.27) is true for r = 2).

Then the coefficient of p in (3.12) is

r K + i  C3K + i  + X) ,
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which is negative for k % 3, r %  3. Thus by Lemma 3.2

X ^min (— , ~  ^ ) - Ae
r K + rK + r 2^ (3K + ̂  + 1) - 1

and a simple calculation shows

 ̂^ 1 '2^ (3K + ^  + 1) - 1

which proves (3.27) and hence the lemma.

We notice that other than in the special case r = 2, s = 2,

the result does not improve as the value of s increases. This is

because our knowledge of the value of p is very limited. All 

we know is that 0 - ^ p ^  X + e, and so when its coefficient is 
negative we must implicitly suppose p = O. If somehow we could 

restrict p even further, i.e. allow p to lie in a range like 

{̂ 6, X + eQ for some positive 6, we would obtain a result
dependent upon s, which would improve as s increases. This,

however, I have been unable to do.

§2: In this section we prove

Theorem 18; Suppose that f^̂ , ... f^ are real quadratic 

polynomials having no constant term. Then there is an integer 

X satisfying

■ g Ü T  G
(3.28) 1 < X < N, max | |f. (x) | | < C(e, r) N

Ki<r

where

(3.29) g(r) = 4g (r - 1) + 2______________ (r ^ 3)

with______g(l) = 3  and g (2) = 15^ ,
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It is easily seen that an explicit formula for g(r) is

g(r) = 2/3 (4^“  ̂- 1) + 62.4^~^_________ (r 2).

Proof; We prove the theorem by induction on r. Theorem 5 

starts the induction and so we may assume r >  2, Suppose

(3.30) f^(n) = 0^ n^ + 0^ n (i = 1, ... r).

Suppose there is some number X > O such that the following 

inequalities have no integral solution:

(3.31) 1 < X N, I |f^(x) I I 4 n“^ (i = 1, ... r).

We will show

(3.32) X > (g(r))"l - e

By a slight adaptation of the argument of Lemma 3,1 we can 

show that there is a P, O < p X + E such that

(3.33) |T(m)I »

for at least [n^P + 1 r-tup les m = (m^, ... m^) with

(3.34) 1 < Iml 3 ,

N 2
where T (m) = ^ e ( m . ^ n ,  + m . 0 n )

n=l

and m.e = T m. 0 ., m .0 = 7 m. 0 .
1 = 1 1  1 ---- 1=1 ^ ^

We now confine ourselves to r-tuples m satisfying (3.33) , (3.34) 

Suppose
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(3.35) Q = N^-ZrP 2c , T = ,

where D > O will be chosen later. Since we know 

0 < p < A + e, we may assume Q ^ 1 for otherwise

(3.32) follows. Then, by Lemma 1.1, for each m, there 

exist integers a = a(m), b = b(ra), q = q(m), t = t(m), 

such that

(3.36) m . 0 = a q ^ + CX, (a, q) = 1, 1 ^ q < Q, qlql < q”^.

(3.37) m .  0 = b t ^  + P, (b,t) = 1 ,  l < t < T ,  t|g| ^ T ^ ,

Now,by Lemma 1.4,

and, thus, by (3.33)

Clearly q N^ = o (N^ ^^P) and therefore (3.38) implies 

either

(3.39) X > - Ae

or

13.40) q << N^^P+^

We may suppose (3.39) to be false for otherwise (3.32) would 
have been proved.
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Suppose p ^ 2e. By Lemma 1.1 there exist integers

W, z^, ... satisfying

1 4 W < N2-2rp-3c , (M, ... z )̂ = 1,

and |W - z^l < n ‘ 2+2rp+3e)^ ^  . 1, ... r)

Then

|q(m^ z^ + ... + m^ z^) - a w| << w|q(m.©-a) |

r+ 2 qial |w e - z I 
i=l ^

«  + M^rp+e+X+e - ^  (2-2rp-3e)

Now, either

(3.41) X (2r + 3)> ^  - Ae

or

(3.42) |q (m^z^ + ... + rn̂ ẑ ) - a w| «  N~^

We may suppose that (3.41) is false, for otherwise

(3.32) is proved. Since (a, q) = 1, q|w and thus there are 

O(N^) choices for q = q(m). Thus there are at least N^^ 

r-tuples m satisfying (3.33), (3.34) for which q(m) takes 

the same value q; say for m 0 H .

Consider those m ^ H which fall into the various regions

kj b N^"P+2e ^ ^  (kj + X) b (j = 1, ... r) ,
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where k^, ... k^ are integers and b is a positive number..

There are << b ^ + 1 of these regions that meet H ,

by. (3.34). If b = b(e, r) is suitably chosen, one of the

regions contains two members of h , m, ,m_ say. If m = mu-mu,—1 —z —  — 1 —2
we have

(3.43) I|q(m.e)|| < 2

(3.44) O < I m l  . «  .

If p ^ 2e, we simply suppose m to be any of the r-tuples 

satisfying (3.33) and (3.34). We may suppose m^ > O.

We now apply the inductive hypothesis, and we write 

g = g(r - 1). Let

(3.45) ÇT = 2gX + 4ge - gp

Then there is an integer x satisfying

(3.46) 1 X < , ||f^ (x)|| << N ^^■‘■P (i = 2, ... r)

where f^ (n) = :m̂  q^ t^ 0^ n^ + qt 0^ n (i = 2, ... r)

Suppose

(3.47) y = m^ q t x, D = 1 + p (̂  - 2r) - X - <7 - 4e

Clearly D > O, for otherwise (3.32) is true. Then

y = m^ q t X << P̂ ^̂  ^ , and therefore

(3.48) y < N
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By (3 .44), (3 .46), for i = 2 , ... r,

(3 .49) I lf^Cy) I 1 = 1 + m^qt0 ĵ x| I < m^| |f^*(x) |

2 2_2_ 2Also ||fq(y)|| = I I q  t e^x + m^qt0^x

<  I|m^^q^t^x^m.e|| + ||qtxm.0 ||

^ 2 .2_ 2+ I I I m (m.q t e x + qt0 X) 
1=2 ^

By (3 .49),

(3.50) I I I m. Cm,q^t^e.x^ + qt0 x) II % m ||f *(x)|| N ^ ^
1=2 1=2

Also,

(3.51) I |m^q^t^x^m.e| I ^ |m^qt?x^| | |q[B.*©| | «  N ^ ^

Thus by the Heilbronn hypothesis that (3.31) is insoluble 

and (3.49), (3.50), (3.51),

I I q t X m.0 1 I P" N ^  ̂ .

*̂ 1Now I Iq t X m.01 I < IqxI I 11 m.01 I «  N

where = g+ 2rp +e -1-p (H - 2r)' + X + a + 4e .

Thus

X + 2g + p (4r-^) + 5s - 1 > - X - s , 

and so by (3.45),
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(3.52) X (2 + 4g) + p (4r - %-2g) > 1 - ae .

We first consider the case r = 2. Then g(r - 1) = g(l) = 3, 

and so the coefficient of p in (3.52) is 3/2. Thus (3.52) 

implies

X > - Ae ,

which proves (3.32) in this case.

We now suppose r > 3. By the proof of the case r = 2 and the 

inductive hypothesis, it is clear that 4r - % - 2g < O, and 

so (3.52) gives

^ ^ 2 + 4g (r-1) “ '

which proves (3.32) in this case and hence completes -fce proof 

of the theorem.
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CHAPTER 4

In this chapter we use Hua’s estimates for certain types of 

exponential sums to improve the results of Chapter 2 for large 

values of k.

§1: We start by proving a result corresponding to Lemma 1.4.

kLemma 4.1; Let f (x) = X + ... + x + 9^ be a polynomial

with real coefficients. Let m 1) be an integer, and for P » 1,

suppose

P
3 (m) = J] e (m f (x) ) .
_______ x=l___________

Suppose further that the number of solutions in integers of

(4.1) x^^ + ... + = y^^ + .. • + ^2t
4t-^ k(k-l) + 6^

is << P

(1 < h < k - 1, 1 <  Xj, y^ ^ P), for some 6^ > 0, where t is

a positive integer. Suppose further that there are integers

q (^ 1), a, satisfying

(a, q) = 1 ,  |©ĵ - a q 1̂ < q
and that p is an integer, 1 <  p <  P. Then

H
C4.2) I |S(m)]4t

m=l_________

«  CHP)^ (Hp^^ + p*̂  p^^"^ ((y  + 1) (1 + log q) + H)) .

In particular, the estimates (4.1) and hence (4.2) hold if

6^ = % k(k - 1)(1 - y )'+ E, t = [ÿ k(k - 1) + — ^  + 1»
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where Z is any positive Integer.

Proof; The second assertion of the lemmA is Hua’s 'mean value 

theorem' . (Theorem 1 of f24] with ® replaced by 2t and k 

replaced by k-1 ^  1). We prove the first part of the lemma 

by slightly adapting the proof of Theorem 4 of [24].

Let S^(y) = 2 e (m f(x + y)).
x=l

Then,
P P

S (m) = —  2 I e (m f (z) )
x=l z=l

p P-x 
—  2 I e (m f (x + y) )

x=l y=l-x

I.e.
1(4.3) 3(m). = -  I Sg^y) + P where |q |̂ < 2.
^ y=l

k-1Write f(x + y) = x + A ^ x  "■ + ... + A^.

Then

(4.4) Ak = ®lc' \-l = V l  + k Sĵ y, ..., Ag = ê ŷ  ̂+

+ ... + © .o
By Holder's inequality.

I I I
y=l y=l

= I {8n(y)}t y=i
i.e.

p r 2t r2t-l Ç  ' ■ P P P P
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where 0 = m (f(x^ + y) + ... + f(x^ + y) - f(x^' + y) 

... - f(x^' + y))

= m ( I ( I (x.^ - X '^)) 
i=o ] i=l 1 1

Let Tp *** ^1^ be the number of solutions of

x^^+ —  + x^^ - x^'^ . - (1 < h < k-1, 1 X, X* < p) •

Then we obtain

I  i g ^ c y i i ^ t  3  !  • • .  !  ! . . .  !  1 1 e ( 0 ) i
y=l x^=l x^=l x^'=l x^'=l y=l

+ ... + N^))|

(4.6)^ J{ I ... I

P 2 -
I I e(m(Â _i + ... + N̂ )) | }y=i

by Schwarz's inequality.

First, the expression

2
Z Z ^ ^^k—1̂  ^2^

iNj^kt p kk-il-®"

1 1

I ^ J ^ t p  p*'"^ iT ••• f

2t
... + 9i x)| %

p>^-i
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I e X  + ... + x)| d ... d<

o O X=1

by the Parseval relation. By (4.1) we thus obtain

2 4t-^k(k-l) + 6'
(4.7). I ... I t (\_i ... N^) << p

Next, by (4.4)

p k k - i k t  ^ y=i

k-2 îs(k-l)(k-2) P P

k-2 >5(k-1) (k-2) P
(4.8) ( t p P I I I e(m y e N ) | ,

kk-ll(t P*"'

since the number of solutions of k (ŷ  ̂- yg) = y does not 

exceed P. Combining (4.7), (4.8) we obtain

P 2t I 4t+l-k+6' PI |s„(y)| « h  P I I I e (m y 8 N _ )
-=° iNk.J.tp ’̂ -^

and on using Holder's inequality we obtain

i + ( ^ ^ )  1- ^  p  iI|s ( y ) | « p  P / I I I «( “ y ®k“k-l’l)
'y=° pfri
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Thus, by (4.3),

4t 4t 6'-(k-1) 4t-l P 
S(m) I «  p + p P I I /  e(in y e N. ,)

4t (5’-(k-1) 4t-l+e/2 p k-1
« P  H-p P (1 + mi» (p ,|T^;r7^|))

by, Satz 266 of . Thus,

H 4t 4t ô'-(k-l) 4t-l+e/2 H P
Z |e(m)| << a p + p p (H+ Z Z min(p ” ,

m=l m=l y=0

11“ y ®vlI

4t 6*-(k-1) 4t-l+e e/2 HP k-1
«  H p + p p ” 1H ( H p -  + J ^ m i n ( P

e/2
because x = m y has << (H N) solutions m, y for any , x other

k—1
than in the special case y = O, which gives the term H p 

Now Lemma 1.3 gives

H 4t 4t 6'-(k-1) 4t-l+e e/2 k-1 H P
Z |s(m)| «  H P + p p H (H p +( q + 1)

m=l

k-1
(p + q log q) )

e 4t 5' 4t-l 1-k
«  (H P) (H p + p P (H + (“Y  + 1) (1 + p q log q) )

which proves the lemma.

We now prove an analogue to Lemma 1.5, using (4.2) instead 

of (1.2). We will assume that with every j <  r such that 

a_ > 1, there is associated an integer Aj & 1 and we write
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1 *1<5. = *2 a ( a - 1) (1 -  ---- -) ] + e,,J J J a j - ± .

= [s <^j -  1) + + 1

but 6^ = O, 4t̂  ̂= 1 if a^ = 1. We shall always have 

6j <1, and when there is no ambiguity we drop the subscripts 

from Aj, 6j and t^. This also holds for Chapters 5 and 6.

Lemma 4.2: Let 8 ,̂ ... 8^ be real and suppose there are

no integral solutions of the inequalities

a^ -X
1 < X N , max I IX 8. II < N ,
____________Kisr________Z_________

where l<a^ < ... < a^ = k are integers. Then there exists

a j / 1 ■$ j <■ r such that

either

^
j (4tj + k - 1 - 6.)

(4.9) X >  ^--------  - Ae

or

there is an integer q (^ 1) satisfying

5j+X(4j t.-&) + Ae
(4.10) q «  N__________________

and

-a. + 6. + jX(4t. + a. - 1 - 6. - -v) + Ae
(4.11) ||q ejl << N  ̂  ̂̂ ^  ______

Proof: By following the argument of Lemma 1.5 until (1,8), and

using the same notation (with X^ = Xg = ... = X^ = X), we
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obtain for some j, 1 j ^ r

^ (j) .
(4.12) N «  2 |T(m^)

“j+O

If = 1/ by using the same argument as in Lemma 1.5, we 

obtain either X % 1 - 4e, which implies (4.9) or that (4.10),

(4.11) are true. We may thus assume a^ > 1. By Holder's 

inequality,

4t j(X+e)(4t-l) (j) 4t.
N ] << N  ̂ I |T(m^)I ^

Wj+O

Suppose Q = where

C4.13) U = Uj - 6j - jX(4tj + aj - 1 - - 4) - Ae.

Clearly U > O (for otherwise (4.9) is true), and so we choose 

a, q, integers, satisfying

1 < q  ^ Q, (a./ q) = 1, |8j- aq ^ I < q ^ Q 

Then, by Lemma 4.1, for some integer p, 1 <  p ̂  N,

4t. (4j t. - 1) (X-te) 4t. X+2e
(4.14) N  ̂«  N  ̂ (p N +

6 .+e 4t.-l X+e 1+X+e 1-a.
p  ̂ N (N (  —  + 1) (1 + p q log q) ) )

p  1-j X- ( j+1) e-j 
We choose p = N ; then. 1 < p < N, unless

X ^ y  “ , which we may exclude, since it implies (4.9) . Then

4t. (4j t.-l)(X+e)+X+2e 4t
p  ̂N  ̂ = o (N ]),
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and thus (4.14) implies

l-(4j t.-l)(X+e) -6.-e 1+X+e ,(4.15) N 2 p 1 N_ J,x+e g^iog q

log q
p - 1

We may assume (4.9) is false. Then, with a suitable choice

of A in (4.9) the terms log q.p  ̂ are

negligible. Similarly, by a suitable choice of A in (4.13),
1-a^

the term q log q.p is negligible.

Thus (4.15) implies

4j t. X+Ae 6.+e 
q «  N  ̂ P ^

which is (4.10), while (4.13) implies (4.11). This completes 

the proof of the lemma.

§2. In this section, we look at approximation to monomials, 

similar to the work of Chapter 2. We first obtain an improvement 

of Theorem 7.

Theorem 19: Let 0 be real. Then for k ^ 3, and any

N » 1,

Vmin I|e X I I < C(k) N , 
l^x^N_______________________

where ^ (log k^ + log log k)rv 4k^ log k,

Proof: We suppose that there are no integer solutions of the

following inequalities, for some positive X,
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(4.16) 1 ^ X 3 N, ||e x^ll ,< n "^

We will show

(4.17) \ > .

We apply Lemma, 4.2 with r = 1, a^ = k, 0^ = 0 and since there 

is no ambiguity, Aj = A, = 6, tj = t. We choose

A =
log *5 k (k-1) + log log k

+ 1

SO that 6 < ^ , and

4t ^(k-l)(2A + k̂) + 4

2 2^(k-3) (2 log h k + 2  log log k) + % k(k + 3) +2,

We aPEume first that (4.9) is false and that (4.10) and (4.11) 

hold. Then

©II < 1̂ |q ©II «  N-k+kô+X(k(4t+l-ô)-2)+Ae

and q ^ N, (since (4.9) is false. ) Therefore, by the 

insolubility of (4.16),

— k + k<5 + X(k(4t + 1 - 6 )  — 2) + Ae X — e.

so that X >, 1 - 6
4t + k - 1

- Ae

Even if (4.9) holds instead, we can always conclude that

1 - 6
^ ^ 4t + k - 1 '
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i.e. X ^ 1 - (log k)-1
2 2 (k-1) (2 log >2 k + 2 log log k)+ *2 k(k+5)+ 1

1 - (log k)-1
2 22k (log k + log log k)

which proves (4.17) and hence the theorem.

We now use Lemma 4.2 to deduce improvements of the 

Corollary to Theorem 14, and Theorem 16 for large values of 

k.

Theorem 20: For k ^ 3, 0 real, N ^ 1

-T,
min max | |0 x^| | < C(k, e) N ^ 
l^x^N L$i$k ___________

_ -1 log k.2k , 2 . ,where k - 1  log log k)

Proof; Suppose there are no integral solutions of

(4.18) 1 X N, max I I0 x^ll < N  ̂ ,
13] Sk

where X > O. We will show

(4.19) X %

We apply Lemma 4.2 with r = k , a^ = j, 0  ̂ = 0 

for 1 ̂  j ^ k, and

log % k(i - 1) + log log k 

- log (1 - j^-j) J
+ 1
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and 4tj .3 (j - 1)(2A + % j) + 4

<  (j - 1)^ (2 log *5(j - 1) k + 2 log log k)

+ ^ j (j + 3) + 2

3 2 (log j k + log log k)

We first suppose that (4.9) is false and therefore (4.10) 

and (4.11) hold. Then for 1 < i ^ k.

I e| I « |q e|

-j+)c« +X ((4t -« )j k+j^-j)
<< N  ̂  ̂ ^

and since (4.9) is false q ^ N. Thus, by the insolubility 

of (4.18),

- j + k « . + X((4t. - 6.) j k + - j) + E s. - X

1 - k j'^ «
i.e. X ̂ ---------------   e .

4ktj - kôj + j - 1

Even if (4.9) holds instead, we can always include that

k(4tj + k - 1)

^   (since j ^ k)
2k (log k + log log k)

= ■̂ k '

which proves (4.19) and hence the theorem.
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We now prove a result corresponding to Theorem 16.

Theorem 21: For k & 3, 8^, ... 6^ real and N > 1,

1 + E
(4.20) min max | |x ^ G. || < C(k, r, e) N ^k,r 

13x4N___13i3r_______________________________

where the a^ are integers satisfying 1 < â  ̂< a^

< a? = k' ").,r = + (r + 2) (r - 1)

' 3(log k + log log k)), where Q, is defined as in

Theorem 19.

-1
'kfl "kProof: Define v,_  ̂ = a,. • Let r ^  2 and we assume

that for 2-1 > O we have

(4.21) min max ||x ^ 0^|[ < C(k, r, e) M
l<x^M l^i^r-l

(0^, ... 0^ real, M % 1, 1 3 by < b2 < ^^-1 ̂  ^ integers)

Clearly, by Theorem 19, we may make this assumption. Now, 

suppose there is no integral solution of

a. -X1 X N, max ||x ^ e.|| < N ,
iSiSr

for some X > 0. We apply Lemma 4.2 with
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- log (1 - —  ^ )
% 1

+ 1

(k -1) (log ^ k + log log k) + 1,

so that 6. <j k log k '

and 4tj 2(k - 1)^ log *5 k^ + 2k^ log log k + ^k(k + 3) + 2 
for j = 1, ... r.

We first assume that (4.9) is false, and that (4.10) and

(4.11) hold. Suppose

(4.22) % = 1 - 6j - jX(4tj - 6j + 1) - Ae

(Where j is as in (4.10), (4.11)),* since (4.9) is false,

W & O. Thus, by (4.21), there is an integer z, 1 ^ z ̂  N^, 

satisfying

max I|z ^ q ^ 0 .I I «  N ^ ,
I3i3r

Now ||z i q i Gjll ^ z i q i ||q 0j|| «  n'̂ ,

where v = y a^ + (â  - 1) (6̂  + X(4j t^ - 6^)) - a^ + 6j

+ jX(4tj + a^ - 1 - 6j — + Ae ^ — X

since Ô. <j - k I 3 i T  < k-
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Now zq < N, and so by the 'Heilbronn hypothesis' ,

\,r-l

Even if (4.9) holds instead we can always conclude that

X . ------- ' - ' j -(4t. + k - 1) j + Vk,r_i)

and so

a.
(4.23) min max ||x ^ e.|| < C(k, r, e) N 

1<X^ l<i^t k

where = Wk,r-1 + - 1) r) (1 +

Thus (4.23) is true for r = 1, ... k. Now

“1^k r ^ ^r where v^ = , and for r & 2,

= (v^_^ + ar) (1 +3) r

2 3 2where a = 2 k (log k + log log k) , 3 = xog k ’

Now, by induction.

r—1 V* r+1—"1V = V, (1 + 3) + I i a (1 + 3)
3=2
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< (1 +, 3)^ (v^ + a (*2 r (r + 1) - 1) )

< exp ^ + (r + 2) (r-1) k^(log + log log k) )

Since ^ ^ ^ the theorem is proved,

3 k^ log kCorollary: min max | |x^ ©. | | < C(k, e) N ,
l<x^N l^i^k________ ^_________________ _______ ___

for N & 1, e^f ... real/ where e ^ •+ 0 as k
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CHAPTER 5

In this chapter, we use Lemma 4.1 to obtain an improvement 

of Theorem 17 for large values of k. As in Theorem 17 we prove 

the results for additive forms in one variable since the same 

results hold good for more than one variable. We prove

Theorem 22: Make the hypotheses of Theorem 17 and further

suppose k ^  6. Then

• 1
g(k,r) + 6

(5.1) min max ||fi(XJ|| < C(s, k, r) N
1$|x U n  l$i$r  •

where

(5.2) g(k, r) -
k^ (12 log 2k + 6 log log 3k) + k, r = 1

3k^ (2^ ^(g(k, 1) + 1)), r a. 2.

We drop s from the notation of Theorem 17, since we are 

only concerned with the case s = 1; thus X = x.

Proof : We prove the theorem by induction on r. We will

use the same notation as in the proof of Theorem 17, except 

for dropping j, since s = i. By Theorem 19, since 

k^ (12 log 2k + 6 log log 3k) + k ^  log^k^-^l * (lo9 k^
+ log log k) for k ^  6, the theorem is true for r = 1.

So we suppose r & 2. We write f^(x) = 8^ x (i = 1, ... r) 

Suppose that for some positive X, there are no integral 

solutions of the inequalities.
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(5.3) l^x^N, max ||e. x || ^ N
l^i^r

-X

We will show

(5.4) X & g(k,r) - Ae

By (5.3) and Lemma 3.1, there is a p f O ^ p ^ X  + e such 

that

(5.5) |S(U)I »

for at least [n ^P ^  + 1 integer points U = (u.̂ , ... U.̂ ) 

with

(5.6) 1 3 |U| 3 NX+e

We confine ourselves to those points satisfying the above. 

We will use Lemma 4.1 with

&  =

Then

log h r k(k-l) + log log 3k

- log (1 Y  - i )
+ 1.

(5.7) 6 < — 5—  ----  and 4t .< 2k (log r k + log log 3k).
r^ log 3k

Now, by Lemma 1.1 there are integers b = b(U), q = q(U) such 

that

(5.8) (b, q) = 1< 1 3 q.< N
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and

(5.9) |q (U.T) - b| < n “^ ,

where a = k - 6^ - rp (4t^ + k - 1 - ô^) - ke.

By Lemma 4.1, and (5.7) , for integer p, 1 p ^ N,

4t 6 +£ 4t —1
S(U)I ^ «  p ^ N ^ (1 + (Nq~^ +1) (1 + p q log q))

4t +e 
+ P ^

and if we substitute from (5.5), we obtain

4t -4rt p « +e 4t -1 _
(5.10) N «  p N (Nq + 1) (1 + p q log q)

4t +e 
+ P ^

t“ 1—rp"£lN J  , and since we may suppose that
4t +e

O ^ rp ^ 1 -  2e, 1 < p < N. Then p ^ is negligible, and

(5.10) then implies

1-6 -rp(4t )-e(1-6 ) .
(5.11) N ^ «  Nq"^ + 1

2-k+rp(k-l)+ ke 1-6 -rp(4t -6 )-e 
+ N + N ^ ^ ^

Clearly the last term on the right is negligible. Now, either

1 - «J.
X ^ ------------ — Ae

r ( 4 t ^ - y

(r+l)(2 log k^ + log log 3k)
—  Ae

^ g(k,r)
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or 1 is negligible. We may suppose that the first possibility 

does not hold, for, if so, we would have proved (5.4); hence 

1 is negligible. Similarly the third term on the right in

(5.11) is negligible, for otherwise

r(2k^(log r^ k^ + log log 3k))
— Ae

1 - Ae ,
g(k, r)

and (5.4) would follow. Thus, from (5.11), we deduce

6 +rp(4t -)5 )+e(l-6 )
(5.12) q << N ^

Now, by Lemma 1.1 there are integers W, z^, ... such 

that

-(a-e)l/r
1 < W ^ N |w - Zj, 1 ^ N for i = 1, 2, ... r.

Then

q(U1 ^1 + ^2 2̂ - bw| < q % |u.| |w - ẑ |
i=i

w|q(U.T) - b]

6 +rp (4t -(5 ) +e (1-6 ) +X+e- (a-e) 1/r a-e-a 
<< N ^ ^ * ' + N

-e
«  N ,

for otherwise
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X  5 , ---------------------k -  ( r  + 1) 6r________r(4t^ (r + 1) + k - (r + D)

> _____________________k_zl___________________
2 2 2 ”r((r + 1) (2k log r k + log log 3k) + k)

^ g (k, X) ■ •

Thus, as in the argument of Lemma 3.2, q|w, and therefore 
there is an r-tuple U satisfying (5.5) and

-a
(5.13) I|q (U.T)II << N ,

and

A+2e—p
(5.14) 1 < |u| «  N

We may suppose U.̂  ^ 1. We now confine ourselves to the above

r-tuple U. By our inductive hypothesis, for the real numbers

©. U.^ ^ q^ (i = 2, ... r) and the integer 1 J-

j^(2X+4e  ̂ (where g = g (k, r-1)), there is an integer n

satisfying

(5.15) 1 <  n | |e^ gk „k| | „-2X-3£4p ^

for i = 2, ... r. Suppose x = n q Then for i = 2, ... r

lle^xNl < luj IlSi .

Now,
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@1 X^ll < I |0JL qf nk|| + n'̂  q’'"^ X

k I |q(V^ ®1 + + Uf ®r

_X_E ^1 «  N + N , by (5.15),

where = k(2%̂  + 4e - p) g + (k - 1) (6^ + rp (4t^ - 6^) + e(l - 6^))

+ (k - 1) (X + 2e - p) - k + 6^ + rp(4t^ + k - 1 - 6̂ ) + ke,

Suppose

(5.16) 0\ ^ - X - e

Then | |e^ x^| | < N ^ (1 < i ^ r).

^2We also have x << N ,

where a2 = (2X + 4e - p) g + 6^ + rp(4t^ - 6^) + e(l - 6̂ )

+ X + 2e — p e 

By (5.16) / a2 < 1 - e. Thus x 4  N satisfies

ISj, x*̂ ! 1 < n "^ (1 < i < r).

which contradicts (5.3). Hence (5.16) does not hold, and 

therefore

-1
C5.17) X (2g + 1) + p(4rt^ + r - r6^ - g - 1 + (1 - r) k )
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When r = 2, 2(4t^ + 1) ^  4k^ (log 4k^ + log log 3k) + 2

<  g(k, 1) f

and for r > 2, r(4t +1) r (2k^ (log r^ k^ + log log 3k))

g (k, r - 1).

Thus, the coefficient of p in (5,17) is negative for r ^  2, 

Therefore, (5.17) implies

(5-18) > 29 (k, r :'l) + 1 - A:

• r -1Now write F(r) = {2 g (k, r - 1) + l) (1 - 6^)

F(2) = (2g(k, 1) +1) a  - 7 1 ^ )

< exp(]_og^3k^^^^ (k, 1) + 1) — 9 (k, 2)

A simple inductive argument shows tha,t, for r & 3,

-1
F(r) = (2 g(k, r - 1) + 1) (1 - 6^)

 ̂ ' r -1 r _. j -1
= 2^"^ g(k, 1) n (1 - 6 ) + % 2^ ] n (1 - 6 )

j=2  ̂ j=2 i=l

< 2^ ^ (g (k, 1) + 1) exp = g(k, r) ,

and thus, from (5.18) we deduce

1 > g a, 7T - '

which is (5.4). This completes the proof of the theorem.
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CHAPTER 6

In this Chapter we look at approximations to polynomials without 

constant term, and we prove Theorems 23 and 24 which are improvements 

of Theorems 8 and 9. Note that in the proof of Theorem 24, we do not 

use Lemma 4.1 but, instead, a similar result of Hua which is slightly 

more convenient for our purposes.

§1: We first prove a lemma which is applicable to the two theorems

of this chap ter

Lemma 6.1: Let f^, ... f^ be real polynomials of degree k ,

k
f i (x) = 2 • X . Suppose there is no integral solution of the

j=l
inequalities

for some positive X < Then,

(6.2) y* |T(m) I >;> N ,

where ^ ' denotes a summation over m satisfying

N k 1 1
and T(m) = /, e ( 2. x-')
_____________ x=l j=l_________

j V and m.e = ) m. 0..
1=1 1
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Proof ; By Lemma 1.2, with A = *2 N ^ and a = p e  + 1,

we obtain

N r
I n *(f,(x)) = 0,
x=l i=l 

and therefore

y .... y a ... a T(m) = O,^  ̂ m- m —m,= -«> m = -a> 1 r1 r

On separating out the term with m = O, we obtain

-r 1-rX « ®
(G'3) 2 N + I ••• I V  *m T(m) = Om̂ =̂ - « m^= - «> 1 r —

a f  o
Summing a . ... a T (m) over those values of m for which m ^  -  -

|m̂ | > , we obtain, by Lemma 1.2,

aX -a-1
I 1 %  ••• “m 1̂(5) I «  N I N m 

|mil> ' 1-ae 
«  N «  1,

X+e
and similarly for the other regions |m̂ |̂ > N for i = 2, ...r. 

Thus, from (6.3), we obtain

1-rX
N ■ «  I* 1% ••• % I |T(m) I + 1,

1 r

whence by Lemma 1.2, and since X <

N «  y* |T(m) I ,

which is (6.2).

We will use the same notation throughout this chapter. We
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now restrict ourselves to one polynomial (thus we can drop 

one suffix from the notation of Lemma 6,1).

Theorem 23; Let F (x) be a polynomial of degree k 2 

with real coefficients and no constant term. Then, for 

N ^ 1, there is an integer x satisfying

-p "l(k)+G
(6.4) 1 < X 3 N, I|f(x)I I < C(k, e) N

where Pĵ (k) = (3k^ log k) (k + 4) .

Proof ; We prove the theorem by induction on k, and we 

split the proof up into three parts, as in Chapter 3.

Lemma 6.2; Suppose there is no integer x, such that for 

some positive < 1, the following inequalities are 

satisfied:

-Xk
(6.5) 1 < X < N, I |f (x ) I I < N____ .

Then, either 

(8-8) 4t^ T k - 1 -

or there is an integer g (^ 1) satisfying

(6.7) q << N

and

(6.8) ||q e^ll <<l N
(4yk-2-6]^) -e (4t^+2k+l-6^.))
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where, for any positive Integer

= [j. k(k - 1) + - l)j + 1, 5^ = %k(k - 1) (1 - ^

Proof : By (6.5) and Lemma 6.1, we have

y* |T(m) I »  N,

where m is a one-dimensional vector. Thus, by Holder’s 

inequality

k,

4t. 4t,-(4t^-l) (X,+e)
(6.9) . y* |T(m)| »  N

Now, by Lemma 1.1, there are integers b, q satisfying

(6.10) 1 ^  q 4 N^, (b, q) = 1, |q - b| < N ^ ,

where a = k - 6̂  ̂- X^ (4t^ + k - 2 - 6^) -e(4tj^ + 2k + 1 - 6^) 

Then, by Lejnma 4.1,

4tL 2e X.+e 4t, 6, 4t.-l X%+E
(6.11) y’ |T(m)| << N (N p + p N (N +

1+Xĵ +e
(-------  +1) (1 + ^ q log q))).

where p is an integer, 1 p ^ N. Thus, since we may suppose 

that Xĵ  < l-2e (for otherwise (6.6) would be trivially true),

we may let

(6.12)

On substituting from (6.9) into (6.11), we obtain
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" (4t-1) (X,+£) 2e X,+e 4t 6 4 t -1
(6.13) N ^ «  N (N p ^  + p ^ N ^

lk+: 1-k(N + (---   + 1) (1 + p q log q) ) ) .

. %k+3e
By (6.12), p N is negligible, arid on substituting

from (6.10), (6.12), (6.13) implies

1“X, (4t,-1)-e (4t,+1) 1+6,+X, (1-6,) + e(l-2 6, ) -1
(6.14) n ’ ^ ^ ^  ^ ^ ^ ^ q

H*k-lk(4k-l'+c(l-26%) l̂-Xk(4tk-l)-e(4t%;+2)

2+6,-k-X, (6,-k)-2e (6,-k)
.+ N * k ^ .

Clearly the third term on the right-hand side is negligible. 

Now either

1 - K  
- - 6% -

6%-X^X6^-l) +E (l-26ĵ ) 
or N is negligible. We may suppose

the former to be false, for otherwise (6.6) would be true.

Similarly, either

k - 1 - 6k 
■ )(k^ 41^ + k -

2+6^-k-X^ («^-k)-2e
or N is negligible. Again we may

suppose the former to be false, for otherwise (6.6) would be 

true. Thus, since the second, third and fourth terms on the 

right of (6.14) are negligible, we deduce

«  x*k+"k(4tk-6k)+s(4tk+2-2a%)
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which is (6.7) and together with (6.10) completes the proof 

of the lemma.

Lemma 6.3; There is an integer x satisfying

-a. ^(k)+e
(6.15) 1 < X N and | |f (x ) | | < C(k, e) N___________

where

(6.16) ct̂ (k) = {a^(k - 1) + 4t% + k} (1 - (k > 2)

and 0^(2) - 5*5,

and 6^, are as in Lemma 6.2.

Proof : We prove the lemma by induction on k. Let k = 2.

Then the result holds by Theorem 5. So we suppose that

k > 2 and that the result has been proved for all & < k.

We make the usual 'Heilbronn hypothesis’ ; suppose that there 

is no integral solution of the inequalities

”^k(6.17) 1 < X < N ,  ||f (x ) | | < N

for some > O. We will show

Xĵ  > «1 ^ (k) - E

By Lemma 6.2, either

1 -  3%
(6.18) &k > 4t^ + k - 1 - 6% ” '

or there is an integer q (> 1) satisfying
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(4t.-6 )+ G(4t +2-26 )
(6.19) q « N  ^  ^

and

I , 1. -k+V+V(4t+k-2-«.)+e(4t+2k+l-« )||q e^ll «  N k k k k -k k

We may suppose that (6.18) is false for otherwise (6.16) is 

true and the lemma is proved. We now suppose n = q t^ 

where 1 ̂  t^ < T. Then

1F (n) I I ^ q t^^llq G^|| + ||0 ^ q^ ^ t^^ ^ + ... + 0^q t̂ |

By the inductive hypothesis, there exists t, 1 < t < T, such 

that

-1 -1where a = (k-1) . Thus, for this value of t^.

(6.20) ||F(n)|t << T^ + T * ,

where O' = - k + k 6̂  ̂+ (k (4t^ - 6^ + 1) -2) + A?

Suppose

(6.21) T = N ,

— owhere O, =1 -1k + % + G

*2Then q t «ç N ,

-1k
where = — ------------------ :-----------------   Ae ,

^ k + «-1 .

Now k ^ 3 and since (6.24) is false
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Hence Og < 1 - Ae, whence

(6.22) q t << G

Now, by (6.21),

-1
-0, + e

F(n) «  T

and therefore, by (6.17), (6.22),

-1#2 (~ G + e) > - - E

i.e. Xĵ  > q^(k-l) + 4t^ - 6%+l - Ae

> ^ (k) - E

which proves the lemma.

Completion of the proof of Theorem 23; By Theorem 5 the theorem 

holds for k = 2. We may therefore suppose k ^ 3. Now, by 

Lemma 6.3, if we show

(k) p^(k) (k & 3),

we will have proved the theorem. In the notation of Lemma 6.2, 

let
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log S i  (i - 1)
- log (1 - Yry)

+ 1 (i = 3, ... k)

Then, for 1 = 3, ... k.

4t^ ̂  (i - 1) (*2 1 + 2i^) + 4

< (i - 1) (2(1 - 1) log % (i - 1). + *5 i + 2) + 4

.2^ 6 1  log i + 4 .

Now -1, (k) = (4t^ + k + (k - 1)) (1 - 6 )̂ ,

and a simple calculation shows

a, (k) = y (4t. + i) : (1 - 6 )■ + a, (2) J[ (1 - 6.)
1=3 ^ ,j=i  ̂ j=3 ^

< I (4t + i) n ( y ^ )  + n (— 3— )
1=3 j=i  ̂ j=3 j - 1

-1

11 k 
4 + k y

1=3
^ 6 i^ log i + i + 4

i - 1

< + 6 k log k (*5 k(k - 1) + %

< (3k log k) (k + 4) = Pĵ (k)

which proves the theorem.

§2. In this section we prove
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Theorem 24; Let (x), ... (x) be polynomials with

real coefficients and no constant term of degree k. Then, 

there is, for N & 1, an integer x satisfying

-P2“^(k,r)+e
(6.24) 1 ^ X ^ N, max ||f.(x)|| < C(e, k, r) N

___________ISiSC ______________________ _________

where

(6.25) P2 (k, r) = (2 + 4p2(k, r-1)).   (r & 2),
r - 1

and p (k, 1) = 8 k^ log 4 k^

Some simple calculations show

(6.26) 4^ (2 k^ log 4 k^) < p2 (k, r) < 4^“^,. (8 k^ log 4 k^ + 1)

Before proving the theorem, we need a lemma.

kLemma 6.4; Let f(x) = x + ... + q^x be a polynomial
*

with real coefficients. Suppose that the number of solutions 

in integers of, for N & 1,

x^^ + ... + x^^ = y^^ + ... y^^ (1 ^ h < k-1, 1 <  x ^ 4: N)

is
2t-*5k(k-l) + 6

(6.27) . «  N __________

for some 6 ^ 0  where t is a positive integer. Suppose also 

that there exist integers a, q, satisfying

for some r, 2 ^ r < k. Further suppose p is an integer 

1 ^ P < N. Then
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(6.28)
N
y e (f(x)) 

x=l

2t 2t+Jc—1+6 —k
«  N p (1 + &  + 23)

+JL
2t

In particular, the estimates (6.27) and hence (6.28) hold

« = ij k (Jc - 1) (1 - — " Y> * + e, t = k (k - 1) + t(k-l) | + 1

and I is any positive integer.

Proof: This is Lemma 5.10 of Hua (jL^ where we stop at---

&. - 9 of p.62. '

Proof of the Theorem; We use induction on r,,and clearly by 

Theorem 23, the theorem is true for r = 1. We now prove a lemma

which does the work, in this case, of Lemma 4.2.

Lemma 6.5: Make the hypotheses of Lemma 6.1. Then, either

(6.29) X > min
r 2 - (r + 1) 1 - 1

^^|^r(r(2t^ + k - 1) + 2t^ + k) ) r(2t^ + k)

or there is a P , 0 < P < X + E  having the following properties: 

for each j, 2 ̂  i < k there exists an integer satisfying

(6.30) «  N
a^+rp(2t^+k-l) + (k-1)E

and
-a

Il^j II «  N 5
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where a. = j - - rp (2t^ + k - 1) - ke

with
X+(k+1) e—p

(6.31) 1 < |ml «  N , % 1,

and t^ = [\ k (k - 1) + (k - 1)] + 1,

i

6 = *5 k (k - 1) (1 - j ^ ^ )  +e f

for anypositive integer .

Proof; By Lemma 6.1,

I .

y |T(m) I >?■ N,

and therefore by the argument of Lemma 3.1, there exists 

P' O < P < & + E, such that

1-rp
(6.32) |T(m)| >> N

for at least [n^P ^  + 1 distinct r-tuples m, with

(6.33) 1 < |ml <

We now confine ourselves to the r-tuples m satisfying

(6.32) and (6.33). Suppose p ^ ke. The following 

argument holds for each j, 2 ^ k.

By Lemma 1.1, there are integers b ^ s a t i s f y i n g

a. j -Sj
(6.34) 1 < Sj 4  N J, (%j, by) = 1, Isy - B  . 0 - bj| < N
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Thus, by Lemma 6.4, for integer P, 1 < p < N,

I 2t^+k-l+«^ -k _ - j  2t_
|T(m) I «  N p (1 + pSj + pq^ N ) + p .

On substituting from (6.32) we obtain

2t -2t rp 2t 2t +k-l+6 -k _ -j
N << P + N p (1 + pq^ + pq^ N )

Choose p = |N J . Then, since we have supposed
1X < — , 1 ^ p ^ N. Hence p is negligible in the above 

inequality. We thus deduce

l-2t rp 6 +krp+ke 1-rp-e -1 1-j-rp-e
N ^ N ^ (1 + N q. + N q.)3 3

a. 1-j-rP-e+a +krp+ke
Since 1 < q^ <  N , the term N ^ . q^ is

negligible. Thus, either

1 - <5r
(8-35) ^ r(2t^ + k) ■

or

a +rp(2t +k-l) + (k-l)e
(6.36) qj << N

We may assume that (6.35) is false for otherwise (6.29) would 

be true. Now, by Lemma 1.1, there are integers z^j, ... z^^, 

Wj, satisfying, for i = 1, ... r,

(6.37) 1 ^ W^ N , (z_, ... z^j, Wj) = 1 ,  |W - z^jl

Thus, by (6.34), (6.36), (6.37)
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kj + ... + ẑ j) - bjWjl « 1̂ qjiml |Wj ê j-ẑ jl

+ Wjkj m . - bjl

-e 6 +rp (2t +k-l) + (k-l)e + X + e - (a. - e) —
«  N + N ] ^

and therefore either

j - (r + 1)
(8-38)  ̂^ r(r(2t^ + k-1) + 2t^ + k) "

or

(6.39) kj z^j + ... + z^j) - b^ W ̂ | «  N ^

We may suppose (6.38) false for, otherwise, (6.29) would be 

true. Hence since (q^, b^) = 1, q^jw^. There are thus 

<< N choices for q^ and hence << ^ choices of

the vectors (qg, ... q̂ )̂ . Thus, since + 1  (> 1)

r-tuples m satisfy (6.32), (6.33), »  of them have

the same = (q^, ... q^) . We now use the argument of 

Lemma 3.2 to obtain an r-tuple m satisfying

X+(k+1)E—p
(6.40) m^ ^1, |mu| «  N , i = 1, ... r

and
-1:qj (m . ê )) II «  N 5 .

If p < ke, we take any of the r-tuples m satisfying (6.32), 

(6.33). This, together with (6.35), (6.36) and (6.38) proves 

the lemma.

Completion of the proof of Theorem 24; We now suppose that

(6.1) has no integral solutions. We will show that
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(6.41)
-1

X > p (k, r) - Ae .

Since (6.1) has no integral solution, by Lemma 6,5 either

(6.29) holds or (6.30) and (6.31) do. We choose

a =r
log r^ k (k - 1) ̂
- (1 - irry)

+ 1

Then 6 <
^ 2r^ (k - 1)

, and

2t^ < 2k^ (log k^ + log 2r^).

We may suppose that (6.29) is false, for otherwise, since by 

the choice of the first value is the smaller, and

2 - (r+1) 6

r(r(2t^ + k-1) + 2t^ + k) r(r(2k^(log2r^k^) + krJ)+2k^(log 2r^k?)+k)

3 2 " .r _ 3  ; _ 34r k log 2k r 4 2k log 4k

p2 (kf x) - Ae

(6.41) would be proved.

We write Pg = Pg (k, r - 1 )  and suppose

(6.42) a = 2pg X + (k + 3) Pg e - PgP

By the inductive hypothesis, there is an integer x satisfying

^ -2X-(k+2)e+p
1 <  X , I |f^ (x) II «  N for i = 1, ... r-1
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*  r - 1  iwhere f (n) = 2 m 0 (m Q n ) f o r  i = 1, ... r-1j=l r 13 r

k
and Q = n q . where q is an integer satisfying

j=l  ̂ ^

^1 1 ”^1 (by, qy) = 1, 1 < q^,^ N , |q^ m.0 - by| ^ N

for some integer b^, where a^ will be determined later. 

Let y = m^ Q X. Then

* ‘ -X-e
(6.43) ||fj^(y)|l «  |m̂ | ||f^ (x) I I «  N for i = 1, ...r-1.

Also

k j -1 . r-1 *
y -  ■ ^ . . J, > II + .I.l®il l|fi (X)ffty)!! < I h p  2x| |m q I ||q.a-e^||+ % |m | ||f j=i * k J J _ i=i

The contribution of the second sum on the right is clearly 

«  N ^ We consider the first sum. Choose

â  ̂= O' + (k-1) (6^ + rp (2t^ + k-1) + (k + 1)e) + X + e .

-X-eThen the contribution of the first term is << N 

For j >2, the contribution of the j-th term is

(6.44) m^^ ^ q^ [q̂  m.0^ | | «  N

where o^ = X(4j p^ + 2j-l) + p(rj(2k-2)(2t^+k-l) + 1 - j - 2j p^) 

+ 6 (j (2k-2)) - j + As .

Suppose that for each j, 2 j .< k

(6.45) o . < - X - G]

Now,
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*1(6.46) y = My Q % «  N

where = X(2 + 4p^) + p(2r(k-l)(2t^ + k-1) - 1 - 2pg)

+ 26^(k-1) + Ae, and so by (6.45) < 1-e whence y ̂  N.

This, together with (6.43), (6.45) contradicts the assumption 

that (6.1) had no integral solutions and therefore (6.45) must 

be false, i.e. for some j, 2 ^ j ^ k,

X(4p2 + 2)+p(r(2k-2)(2t^+k-l)+j -l-2p2)+26^(k-l) > 1-Ae.

Now by (6.26) and our inductive hypothesis

r-1 3 3 'Pg & 4^ (2k log 4k )

^r(k-l) (2k^ log 2r^k^)

:> r (k-1) (2t + k-1) ,

and therefore the coefficient of p above is negative. It

therefore follows that

1 - 5  (2k-2)
X > -------------  - Ae2 + 4pg

^ - - - Ae
r^(2 + 4p2(k, r-1))

which proves (6.41). It only remains to verify (6.26) . 

Now,

PgCk, r) = (2 + 4p2(k, r-1)) ' &ud it is easily

seen that

r r .2 r-1 r 2
(k, r) = I 4̂  ̂ 2. n —  + 4 p,(l, k) n -T-p„(k, r) = 2 4 z. M   + 4 PoU f  K.) M —

2 i=2. j=l - 1 i=2 r - 1

r r r
< y n (1 + -^) + 4*“)-p,(i, k) n (1 + - %  )

i=2 j=i j3 1=2 i‘‘



96

< (P2 (1, k) + 1),

and clearly Pgfr, k) > 4^ ^ pgfl, k)

= 4^ . 2k^ log 4k^.

This completes the proof of Theorem 24.

The proof of Theorem 24 uses the method of Cook ^7] 
where the improvement is obtained by incorporating an 

idea of Liu as was done in the proof of Theorem 18,
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P A R T  2
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CHAPTER 7

In this chapter we investigate a diophantine inequality 

concerned with quadratic forms. We actually prove a quantitative 

form of Theorem 12. In addition to the notation specified earlier 

we use the following notation in this chapter. Q = Q(x^, ... x^) 

will always represent a real indefinite quadratic form in n 

variable of rank r, and we will write •

n n 

]=1 k=l

n
= I X . L . (X,, ... X )j=l 3 3 X u

n
where (x^, ... x^) = I Xĵ  .

Also, for any real q > O, we write

2P^ 2P^
(7.1) S(a) .= y ... y e(« Q(x^, ... x^) )

^1=^1 =n=Pn

where P^, ... P^ are positive integers.

We will spend the rest of this chapter, and thus the rest 

of this thesis proving the following:

Theorem 25: For any Q, let k = min (r, n-r) . Suppose .

n ^21., _____ Then for every P >  1, there are integers

x^, ... X y not all o, satisfying
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Il I I(7.2) • |3c| ^  P/ |Q(Xĵ # ... x^) I ^ C(Q/ e ) P

where

(a) for 10k > 3n, n >  21

(7.3) f(n, k) = - c ,

(b) for 10k < 3rif n ^ 21^ k ^ 7

(7.4) f(n, k) = 2k + 3 ■ ^ '

(c) for n ^  21, I 4 k < 4:

(7.5) f(n, k) = '

(7.6) f(n, k)

J V  — - 1

r? - 2 In + 4
~ 2 ' 2n + 9n — 2

for n ^ 22, k  =  6

f(n, k)
3 2 >n — 22n + 7n + 4
3 2 2n + Bn - 5n - 2

for n = 21, k = 6

(7.7) f(n, k) = — X----- X -----  - e ;

(7.8) f(n, k) = - e.

We will pcove (a) , (b) and (f) in §2, (c) nnd (d) in 

§3 and (e) in §4,

§1; In this section we state the lemmas which we will use in 

the proof of the theorem and we introduce a few ideas from 

the geometry of numbers which we will find useful.
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Lemma 7.1; There exists a real function K(a) of the 

real variable a, satisfying

K (- g) = K (oc) ,

—N — 1
|K(g)I «  1, !%(%)I << |g|

for all g, where N is any large positive integer, with the 

following property. Let

^ ( 8 )  =  j e  ( e g )  K ( g )  d g  .

Then

O ^ ^ (8) <:_1_________ for all real 0,
i/j(0) = 0 ' for lei % i ,

^(8) = 1 _______ for |8 | ^ 1/3.

Proof : This follows from Lemma 1 of Q-SQ on replacing n

by N.

Lemma 7.2: There exist real positive constants ^
^  ̂  such that for all real ^

Q (X1> ••• V  -^2
and

Q (x,, ... X ) 2 Z *4 4̂ Z ^4
i=l J j=r+l ^

Proof ; This is Lemma 7 of [2cQ .

Lemma 7.3; Let x^^^, ... x^^̂  be linearly independent
(k) (k) (k)points in 2n dimensions with x = (x̂  ̂ , ... )
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for k = 1/ ... 5. Suppose that, for any real a, they satisfy

|xj I < (j = If ... n)

and < ^23̂ (j = If ... n)

where & If O < < If for k = 1, 2, ..., 5. Then,

provided '
-1 4

n n n . • h (max n n ) < c
21 22 23 25 k Ik 2k________

for a suitable constant C = C (n) , the points , ... X^2^

defined by X^^̂  = , ... x ^ ) for k = 1, ... 5 are

linearly independent in n dimensions

Proof : This is Lemma 1 of |]2]J.

5 5
Lemma 7.4: Let f(T, , ... T^) = J T f T T be a----------------- 1 5 u v u v______________________u=l v=l_________________

quadratic form in 5 variables with integral coefficients which

is either indefinite or represents zero. Let g^, ... g^ be

any five positive numbers. Then, there exist integers T̂ ,̂ ... Tg,

not all O, such that

f ... T^) = O,

2 / ^ 5 2 -1 -1\ 2
and g T* <<( I I  S  • • • 95 (“ = 1- • • • 5).

u=l v=l

Proof : This is a special case of Theorem B of |]zQ .

We now define the successive minima of a convex body. 

Suppose M is a symmetric convex set in n-dimensional Euclidean
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space, where by symmetric we mean that if x e M, then also 

— € M. We assume that M is compact and has a non-empty

interior. For X > O, let XM be the set consisting of 

the points Xx with x e M. The first minimum, X^, is 

defined to be the least positive value of X such that XM 

contains an integer point- x 4 O* More generally, for 

1 < j < n, the j-th minimum X^ is the least positive value 

of X such that XM contains j linearly independent integer 

points. It is clear that 0 < X^ ^ Xg ... X^ < « and that 

y M contains j linearly independent integer points if and 

only if y  > Xj.

We now suppose M̂ ,̂ ... Mg^ are the 2n successive 

minima of B(P, n), the parallelopiped in 2n dimensions 

defined by

(7.9) |Xj| j P (j = 1, ... n),

(7.10) |2g Lj(x^, ... x^) - x^^jI < P ^ (j = 1, ... n)

where P ^  1 and Q, is some positive real number.

Lemma 7.5; Suppose that in the definition of S (g), for

some P & 2, 1 ^ P^ <  ^P (i = 1, ... n). Then

(7.11) |s(g)|2 < C(g)P* (log P)^ (M^ ... M^)“^

where Mĵ , ... M^ are the first n successive minima of the

body B(P, g)
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Proof ; This follows from the proof of Lemma 5 of |j2cQ .

Lemma 7.6; Let (J>̂, ... be real numbers, not all of

the same sign, and all of absolute value 1 at least. Then, 

for any e > O, there exist integers t^, ... t^, not all O,

satisfying

1*1 + ... + *5 tg^l < 1

and
2 1+E

|*y ty I < C (E)|*^ ... (V = 1, ... 5).

Proof: This is the theorem of .

Lemma 7.7; Suppose that . m <5 n and let ... be

m real linear forms in x^, ... x^; say

n
Ji = Xj ' (1 3. i.3 m).

Let 6, e^, ... be fixed positive numbers satisfying 

m
y ©. = n ©; 0 ?” 1

i ^1 ^

Then, for any P & 1, there exist integers x^, ... x^, not

all 0, such that
|xj| <  P® (1 ^ j ^ n),

|j I «  P® ®i y |r..| (1< i <  m),
•___________ j=l _______________

where ' « ’ is at most dependent upon n, 0^, ... 0^
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Proof: This is the Lemma of [sjJ, and we give a proof here.

The result is clearly true for P < 2. So we suppose P ^2. 

Let X run through the integer points in the cube,

|Xj 1 i [»! P®] ,

the number of such points being (2|}s P ] + For each

X we have a m-dimensional point J = (J^, ... J^) in the box

e, "k j  < I IK„| .
j=i

If this box is divided into <<(P-1)^® parts by dividing the
r ®iTrange for each co-ordinate of J into |_(P̂ 1) J equal segments, 

there will be two distinct points , x." such that the corres

ponding points Ĵ ', Ĵ ' lie in the same range. Suppose 

X = x' - x”. Then x satisfies

|Xjl < 2[Jj P®] ^  P® ,

k i l  I

D p -
8.-1 a n

< 2 " P* I
 j=l ■ „8-8i n
0. 0.
2 ^ Q p  - 1) j=l

We will use Lemmas 7.1 - 7.5 in the proof of parts (a), (b) ,

(f) of Theorem 25 and Lemmas 7.6 7.7 in the proof of parts

(c) , (d) , (e) .

§2: Proof of parts (a) r (b) , (f) of Theorem 25: Until otherwise 

specified we suppose n ^ 21 and k ^  6, Without loss of 

generality we may suppose k = r. We further suppose that for
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all vectors x satisfying O < |x| P, and some positive X,

-X
(7.12) |q (x ,̂ ... x^)I > P '

We will show that, for all P > P^ (Q, e), in order for

(7.12) to hold we must have that

(7.13) X & f  (n, k).

and clearly this proves the theorem y in these cases,
2 2 2 2 We suppose Q = + ... + X^ - (X^^^+ .., + X^ )

where X^, ... X^ are real linear forms in x^, ... x^ of non

zero determinant. We choose any real numbers b^, ... b̂  ̂

satisfying

C7.14) Q (b^, ... bĵ ) = 0, .

and without loss of generality we may also suppose

(i) O <, < h (1 < i < n)
(ii) for x_ = bu, ... x = b none of the values 1 1  n n

of X^, ... X^ is zero.

In the definition (7.1) of S(a) we suppose

(7.16) ?! = [2/3 bj p3 .

Then 1 < P^< P/2 (i = 1, ... n).

Now, by Lemma 7.1, ip(P̂ 6) = 0 for |e| % P ^ , and thus by

1
(7.12) we obtain Re | e(aP^g(x^, ... x^)) K(a) da - O,

for all Xĵ , .... x^ satisfying Pĵ  ^ ^^i  ̂ î)

Summing over these ranges we obtain

(7.17) Re I S (p\) K(a) da = O.!
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We divide the range of integration into four parts, viz.

—3/2-X —3/2-X -^-X
(i) O < a < P , (ii) P < a < P ,

-*5“X e
(iii) P < a < P , (iv) a > P^ ,

and find values of the integral over each part of the range. 

From these values we will obtain a contradiction of (7.17) 

under the condition that (7.13) is not satisfied. This will 

imply that (7.13) is true and hence will prove the theorem 

for the cases (a) , (b) , (f).

-3/2-X
Part 1: O 4 g 4P

Define I («) - | . , , | e(q Q(x^, .., x^) )

d Xĵ  , t * d x^.

—1-X
Lemma 7.8: For o < a < P

X X n+2+2X 2
S (P a) - I(P*q) I 44 p g + P g ' ,

Proof : This follows from Lemma 7 of [jL^.

-2-XLemma 7.9: For a > P , we have

. —n X/2 — n/2 2+X n/2
I (Pa) I <4 P_______ a______ (log 2P g)

Proof: This follows from Lemma 8 of .

n-2-X
Lemma 7,10: Re I(P^q) K(g) da P

kJ
o
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Proof; By Lemma 7.1 and the definition of 1(a)/ the left 

hand side is

2P^+% 2P^+t
J = J  ... J' Ip (P̂  Q(x)) d X .

P.-h P1 n

Again by Lemma 7.1, the integrand is non-negative and is 1

if |g(x)| ^ 1/3 P  ̂ . Using the representation of Q,
2 2 2 2 Q = + ... + "... - , we transform the

variable from x̂ ,̂ ... x^ to X^, ... X^, obtaining

J'.,. J '  ip(P^(Xj^^ + ...J I ... I ip(P’(xr + ... + x^^ - x^^^- ... - X^^)
n

d X, ... d X_ 1 n

where H is a parallelopiped of fixed shape, the lengths of 

whose edges are all »  P. The centre of H is at the point 

in X-space corresponding to

. Xĵ  = 3/2 Pĵ , ... x^ = 3/2 P^ .

By (7.16) , the centre is at a bounded distance from the point 

in X-space corresponding to the point x^ = b̂  ̂P^, ... 

x^ = b^ P^, a point at which Q(x^, ... x^) = 0. We denote 

this point in X-space by X^ = d^ P, ... X^ = d^ P where the 

d^, ... d^ are constants, none of which is zero by our 

original construction, and

Clearly this point is in H for large enough values of P 

and thus H contains the cube
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(dj - b) < Xj < (dj + b) (j = 1, ... n)

for some small positive constant b. Thus 

(d,+b)P (d +b)Pr ■■■ r(dj^-b)P (d^-b)P

d X, ... d X . 1 n
i.

By the change of variable X_ = P Yj , (j = 1, ... n), we obtain 

(f, .f
'  j "  -  fJ >> P / I *(P (Ï1 + ••• + - \ + l  ■ ••• " V

—(Y-... y ) d Y, ... d Y I n  1 n

where f^ = (|d^| + b)^, ey = (|dj| - b ) ( j  = 1, ... n), so that

2 . ofj > dj > ey > O, (j = 1, ... n).

In view of (7.18), if h is a suitable small positive 

constant, (h << b) , the inequalities

|ï,_ - d/| < h, .... |y„ - d/| < h.

I?1 + ••• + ?r - ?r+i - ••• - ’'nl ^ ^ 3  ,

I 21imply |Y^ - d^ | < n h and so define a region within the range
-2-Xof integration. The volume of this region is >> P and the

integrand is »  1 there. Thus

J »

which proves the lemma.



109

-3/2-X
Lemma 7.11: Re I S(P^a) K(a) d a »  p"^2-X/o
Proof: By Lemmas7.8 and 7.1,

^-3/2-X y3/2-X
J  |s(P^a) - X(p\) I |K(a) |d a 44 j (p*+2+2% p*+&a)d a

By Lemma 7.9 and 7.1.

|l(p\) K(a)| d a «  J" a p“^ (log 2P^+^a)"/2 da
p-3/2-X P ^

«  f (aT*/2(log 2p2+A) ^ + a"*/^ ^ aIp-3/2-X
«  p3/4(n-2)-Xfe ^ ,-nX/2 /  ^-n/2

Jp-3/2-X 

+ f  (log o)*/2 d a

p3/4(n-2)-X+£

Bince n > 2, the result now follows by Lemma 7.10.

We have thus found a lower bound for the integral oyer thie 

part of the range. We will now calculate upper bounds for the 

integral over the second and fourth parts of the range. Clearly 

this will give us some information about the value of the integral 

in the third part of the range.
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Part 2: < a <

Lemma 7.12: For P < g < P we have

S(p\) I «  g P (log p)*/2 + p*/2 (log p)*/2 + p%

Proof : This follows from Lemma 11 of •

p-l/2-X
Lemma 7.13: f |s(P^a) K(a) | d a «  pn-2-l/4-X y

Jp-3/2-X

Proof: By Lemma 7.12 and Lemma 7.1

-1/2-X p"l/2“l
f*’ |s(P^o) K(a)|a a « f  p-nX/Z+Gp ^ *
V 3 / 2 - X  ;-3/2-X

>“1/2~X 1/2-X
n+nX n/2 

P g . d a  
-3/2-X -3/2-X

P-1/2-X ■
+ f p"/2+: d a + f*/-1/9-1 W -

p3n/4-3/2-X+e ^ pn/2-l/2-X+e ^ p3n/4-l/2-X

«  p“-2-l/4-X since n 5. 7.

We have now found an upper bound for the value of the integral 

in the second part of the range. By straightforward methods we 

now obtain the following lemma which gives us our result for 

the fourth range.

Lemma 7.14: I IS(P^a) K(a)Id a «  P^  ̂ .L
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Proof : In Lemma 7.1 suppose N = [Se + 1. Then

CO 00

J  |s(p\) K(o) |a o «  p“ J* o"“"^ d a «  p"-WE «  p”-3,
p"

It now follows from (7.17), Lemmas 7.11, 7.13 and 7,14 

that either

.p"'
(7.19) I l s ( p \ )  K(P^a) Id a »  P^  ̂ ^/ .p 1/2-A

or X ^ 1-E . -

We may suppose the second assertion to be false for otherwise
(7.13) is true. Bo.we assume (7.19) to be true and investigate 

the third part of the range. '

Part 3: P ^ < q < P^ . The contribution made to the

integral on the left hand side of (7.19) by those q for which 

|B(P^q) I .2 P^ ^ ^ ^ is, by Lemma 7.1 with N as in Lemma 7.14,

pG
pn-2-X-e r  d o «  '

p 1/2-X

Hence, if ^  is the set of those a in

(7.20) p-l/2-X < a < pE ^

for which

.X X I  ̂ ^n-2-X—E(7.21) |b (P a) I > P

we have
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n—2—X(7.22) / |s(P^q) K(a)|d q »  P

by (7.19).

We now suppose a belongs t o ^  . Suppose
Xare the 2n successive minima of B(P, P à). Then, by 

Lemma 7.5,

|s(P^q)|^ «  P*(log P)^ (M^ ... M^)"^, 

and thus, by (7.21),

(7.23) ... M ^ «  p-"+4+2X+AG ^

We also note that, by the proof of Lemma 3 of [2(Q ,

%h << 1 Mh+l'

We now suppose that r ,., are the integer points at

which the first n successive minima of the body B(p, P^a) are 

attained. These points are linearly independent in 2n-dimensional 

space and satisfy

(7.24) (j = l, ... n), r

(7.25) |2P^q Lj(x^(k), ... _ x^^^ | p"^ (j=l, ... n).,

for k = 1, ... n. Let , ... be the points in n

dimensions derived from x^^^, ... x^^^ as in Lemma 7.3.

Lemma 7.15: The integer points , ... corresponding

to any q in ^  are such that either the five numbers Q(X^^^), 

Q(X^^^), ... Q(X^^^). are all of the same sign or else (7.13) holds.
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Proof: By (7.24), (7.25), the points / ... X^^^
satisfy

(7.26) X. P (j = 1, ... n).

(7.27) ||2 P^a Lj ... Xn'*')|| < p'^ (j = l, ...n),

for k = 1, ... 5. By Lemma 7.3 the points 2Ç , ... are

linearly independent in n dimensions provided that

(M^ p"l) ... (M5 P” )̂ (P^)^ < C,

i.e.

(7.28) ... Mg < C p"^,

for some constant C depending at most upon n. We suppose

(7.28) to be true. Consider the quadratic form in 5 variables 

given by

$(T^, ... Tg) = 2 p \  Q X , + Tg X ) .

By (7.26) and the supposition that (7,28) is true, for all 

integers ... Tg, not all O, and satisfying

(7.29) |m^ Tĵ l <  1/5 (k = 1, ... 5),

we have

(7.30) |$(T^, .,. Tg) I ^ 2p\.p"^ = 2q,

5 5
Writing $(T^, ... Tg) = % % T^/ we have

u=l v-1

(j) = y x.(*) 2P^a L. (X^^^), and thusuv 3 i —

+UV << “ \  «V ' I kuvl I ■=■= “u “v •
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We now write where is the nearest

integer to 6 Then ^uv

kuvl “ “u “v l*uvl “u “v-

(k)Suppose the numbers Q (3J ), (k = 1, ... 5), are not all of

the same sign. If Q(X^^^) > O, then = 2 p \  Q(X^^^) > O,
(0 )whence f^^ ^  O. Similarly Q (3Ç ) < O = p  < O. The form

5 5
f(T^, ... Tc) = y y f T T is thus either indefinite1 5 uv u Vu=l v=l 2
or represents zero. We now apply Lemma 7.4 with g^ = ,

(u = 1, ...5). Then there exist integers T^, ... Tg, not all O,

satisfying f(T^, ... Tg) = O, and, for u = 1, ... 5,

« r  I V  A "  V ' /U=1 V=1

«  ,4 ... OyZ,

and hence T^ «  ... Mg.

Now, on using (7.23), and since (M^ ... M^) ̂  >> (M^ ... Mg)” ,

p4+2A M, ... «5 «  p4+2A-5+20/n + ̂
^ p-l+20/n+X(^ +2)+Ae

We can now deduce that either

(7-31) 1 > a Vt's) - 7̂ ^
or

(7.32) “u ■'u I  (u = 1, ... 5)

We may suppose (7.31) to be false for otherwise we would have 

proved (7.13). Thus (7.29) is satisfied. Therefore, by (7.30) 

and since f(T^, ... Tg) = 0 ,
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5 5
2a < |t(T^, ... Tj)! = 1 I I T

U=1 v=l

«  a" p8+41 m /  ... m / .

Hence ... Mg »  a p'^'^l »  p-4-2X-3e/2

This has been proved on the assumption that (7.28) holds but

it is clearly also true if (7.28) is false. Thus, by (7.23) 
(p-4-2X-Ae,n _ „^,5 p-5n+20+10X+Ac

and hence A > c? “ Ae .2 (n + 5;

If this is true we have proved (7.13) and hence the lemma.

If this does not hold we have a contradiction of the supposition
-(k)that the numbers Q(3̂  ) (k = l, ... 5) are neither all positive

or negative and this proves the lemma.

We may now suppose that the first alternative of Lemma 7.15 

holds, for otherwise we would have proved the theorem. Thus the 

set of values of a in ̂  fall into 2 p a r t s ^  + - , say,

depending on whether the values of Q(X^^^)/ ... Q(X^^^) are 

positive or negative. We consider^ - only since the following 

argument also holds for ̂  on interchanging the roles of r 

and n - r. We introduce a parameter . U satisfying ^  :

(7.33) 1 < U P

The inequalities

(7.34) |Xj |. P (1 < i 4  C) ,

(7.35) |xj| < U (r < j < n) ,

(7.36) |2P^q Lj (x^, ... x^) - x^^^j < p"^ (1 < j n) ,
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define a parallelopiped B(U, P, P^a) in 2n dimensions which

reduces to B(P, P a) when U = P. Let M^(U),
\denote the 2n successive minima of B(U, P, P a) . If

X Xthen B(U^, P, P a) contains BfUg, P , P a) and is contained

in (U^/Ug) BtUg, P, P^a). Hence

^ ^ ( ^ 2  ̂ <  (U^/Ug) M^(UJ for k = 1, ... 2n.

In particular each Mĵ (U) is a continuous function of U which 

increases as U decreases.

For each U there exist 2n minimal points x^^^ (U),

... x^^”  ̂(U). satisfying

(7.37) |x I < M^(U) P (1 < i < r)

(7.38) |x.(*3 I ^ M^(o) u (r < j 4 n)

(7.39) l2p\ L. (x^(^3, x^^*)) - x^jj) I < M^(U)P”)- (1 < j .$ n)

for k = 1, ... 2n.
We now consider the effect of diminishing U from the 

initial value U = P. Only a finite number of integer points 

can qualify as minimal points for any U. Hence the interval 

P > U 1 splits up into a finite number of intervals

P = U > U\ > ... > U. = 1, o 1 t

such that the same minimal points x.̂ ^̂  (U) , ... CU), can

be chosen throughout each interval > U > These points

can also be chosen when U = or Initially, when

U = P, by the note following (7.23) we have «  1 «  

gince Mĵ (U) increases as U decreases, it is plain that for
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some time at least in the process there exists some s = s (U) 

with 1 ̂  s n such that

(7.40) (U) «  1 «  Mg^^(U)

We also note that if any integer point X satisfies 

Q(X) <0, then, by Lemma 7.2, it satisfies

(7.41) max | x . |  «  max | x . |
j<r 3 j>r 3

Lemma 7.16: For any a inj^ - , and any U, we have

(7.42) |s(P^d)j2 «  p2n r %-(* r) P)” {m ^(u ) ... Mg(U)} ^

where s is defined as in (7.40).

Proof : This follows from Lemma 4 of |^l] .

Lemma 7.17: For any q i n ^  , and any U satisfying

(7.43) u"'"' > + 2X + AG

there exists s ^  5 satisfying (7.40) and we have

(7.44) {M^(U) .... Mg(U)} 4< p5(4-r+2X) y-S(n-r) (i^g p)5n ^

Proof : This follows from the proof of Lemma 5 of [j2lj .

Lemma 7.18: If g is i n ^  - , and U satisfies both (7.43)

and

(7.45) <  P^
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then the 5 numbers Q (U)), ... Q (X^^̂  (U)) cannot all
(k)be negative where, for k = 1, ... 5, X (U) is derived from 

the integer point (U) defined by (7.37), (7.38) and

(7.39).

Proof ; This follows from the proof of Lemma 6 of [2]^ «

Lemma 7.19: For each a i n ^  - , either (7.13) holds,

or there exists a value of U satisfying

(7.46) ^ P^ ,

with the following properties. First U satisfies (7.43) so

that Lemma 7.17 applies. Secondly there are two alternative
Xchoices of the first 5 minimal points of B(U, P, P q) ; for

(1) (5)one choice, say x (U), ... x (U),

(7.47) Q (x/^)(U)) < O, k = 1, ... 5.

For the other choice (U) , ... (U) , say, we have

(7.48) Q (y(k) (U)) > 0  for some k, 1 < k < 5.

Proof: We first show that (7.46) implies (7.43). This will

be so if (n - r) (r - 4 - 2X - Ae) > r(8 - r + 2X + Ae)^ i.e. 

if (n - r) (r - 4) - r(8 - r) > 2nX + Ae .

Now either (7.13) holds or 2nX < n-20 and so it suffices 

to show rn - 4n - 4r > n-20 + Ae

i.e. n(r - 5) > 4 (r - 5) + Ae ,

which is true for n > 4 since r & 6. This proves the first
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assertion about U. The second follows from the proof of 

Lemma 7 of .

Lemma 7.20; Either (7.13) holds, ox, for the value of U

determined by Lemma 7.19 we have

(7.49) M^(U) ... Mg(U) »  P

Proof : We use the same notation as in Lemma 7.19 and we

write Mĵ (U) = M̂ , X ( U )  = X^^^ (k = 1, ... 5).

The points , ... X^^^ satisfy, by (7.37), (7.41),

(7.50) |x. I 44 U (j = 1, ... n)

(7.51) I|2P^a Lj(X^^^^, ... X^^^^)II «  P ^ (j = 1, ... n)

\
We suppose that

-,(7.52) . ... Mg 4 C P U ,

for some constant C depending at most upon n.

Then the five points are linearly independent. Let

$ (T^, ... Tg) = 2P^q Q(T^ X^^^ + ... + Tg X^^^)

We now consider two cases.

Case 1: Suppose $ is indefinite; by (7.50), (7.52), it

satisfies
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(7.53) 1$ (T^, ... Tg)I ^ 2a

for all integers T^, ... Tgÿ not all O, satisfying

(7.54) Tĵ  ^ J  u"^ P (k = 1, ... 5).
5 5

If we write $(T^, ... Tg) = J I é T^ T , we obtain
u=l v=l ” u V

Putting (j)̂  ̂= f^^ + where f^^ is the integer nearest

to <f»̂  ̂ we obtain

-1(7-55) kuvl «  \ kuvl « W  U P
5 5 .

Now the question is whethe# the form f = Y 7 f T T
u=l v=l ^

is indefinite or represents zero. This will be so if det {f^^}

is of the same sign as det and if the analogous result

holds for the principal sub-determinants of {f^^} . Clearly,

from (7.55),

|det {f^^} - det «  (U P )̂ (P^ a) ̂  ... Mg^.

Similar inequalities hold for each principal sub-determinant

but with one or more factors P^ M^^a missing. We may 
X 2 2suppose P U a >> 1 for each u, since otherwise

f^^ = O, whence the form represents zero. So it suffices to 

show that (U P )̂ (P^ a)^ is less than a suitable

positive constant. This will be so if

(7.56) . : ... Mg «  p*5-2X-Ae y-9/2^

and we suppose this is true. Clearly (7.56) supersedes (7.52).
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2We now apply Lemma 7.4 with . Then there are

integers T^, ... Tg, not all zero, satisfying f = O, and

for u = 1, ... 5, T 2 «  X y I M 2 M 2 M % "2u u  u v  U V / ^U=1 V=1

2 2 X .

We thus obtain for u = 1, ... 5,

2X 2 4T^ «  P a U M^, ... Mg.

If we show that P^^q^ M̂ ,̂ ... Mg = o (u  ̂P) we will

have shown that T̂ ,̂ ... Tg satisfy (7.54). On substituting 

from (7.44) and noting that U ^ P, it is enough to show that

5/n (4-r + 2X) + 2X + 5r/n - 1 + Ae < - e, and either this is

true or

C7.57) A k A V ° )  -3^^ '

We may suppose (7,57) false for otherwise the lemma is proved. 

Thus Tĵ , ... Tg satisfy (7.54), and therefore by (7.53) and 

since f = O,

2a .< I I T I «  U® p-1+41 „^2 _ _ „^2
u=l v=l

i.e. M, ... M, »  »-3/2 U-9/2 »I b

Clearly this holds whether (7.56) is true or not and since

-^-2X-Ae -7/2U P, Mĵ  ... Mg »  P U , which proves (7.49)

and hence the lemma in this case.

Case 2; Suppose the form $ is definite, and thus negative 

definite, since its diagonal coefficients are negative. The
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form is non-singular since are linearly

independent.

We may assume in (7.48), without loss of generality,that

k = 5. The points , ... X^^^, are linearly inde

pendent, for it not, would be a linear combination of

... 2̂ ^̂  ̂ with rational coefficients, and so 2a )

would be a value of $(T^y ... Tg) and so would be negative.

Now consider the form.

4' (T^, ... Tg) = 2 P^ a Q(T^ X^^^ + ... + T^ X̂ "̂  ̂ + Tg Y ) ,

(1) (4)which is clearly indefinite. Now X ... X satisfy

(7.58) |x.(k)| «  U (j = 1, ... n).

(7.59) ||2P^ a Lj(X^(^), ... X^^^))]! << P"^ (j = 1, n),
(5)and satisfies

(7.60) |Yj I «  P (j = 1, ... n),

(7.61) ||2p\ Lj CYp(^^, << Mg P”^ (j - 1, ... n)

Thus, for all integers T^, ... T^, not all O, satisfying

(7.62) I Tĵ l < y  u”^ P (k = 1, ... 4),

(7.63) I %k T%| < g ,

1$' {Ty ... Tg) I > 2  a.

Clearly the coefficients of $' satisfy

X 2P a M M U u < 5, V < 5,u V
[d)' I «  pl^^aM M U  U < 5, V = 5,IT I U V

P^^^a Mg^ u = 5 = V,

|(|,> II «
M M U P ^  u < 5, V < 5,u V

u = 5 = y.
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By (7.47), (&.48), < 0 for u < 5, and * ' 5 5  ^ O.

Hence, on forming the corresponding integer form f ,  we obtain

< O for u < 5, and f'gg ^ O. Thus the form f'(T^, ... Tg)

is either indefinite or represents zero. We now apply Lemma 7.4
2 2 2 2with Gy = My U for u < 5 and g^ = Mg P . There exist

integers Tĵ , ... Tg, not all O, such that f’ (T^, ... Tg) =0 ,

and My^ Ty^ «  P^^ U® P^ M^^ ... Mg^ for u < 4, and

M^^ P^ Tg^ «  P^^ P^ M^^ ... Mg^. Hence, we obtain
2 3 1+2XM T «  a M ... Mr U P for u 4 4, and u u 1 5

Mg Tg «  M^ ... Mg P^^. Clearly, if we show that
2 4 2Xa M, ... M_ U P = o (1), we will have shown that T., ... T_- L b  X b

satisfy (7.62), (7.63). On substituting from (7.44), it clearly

suffices to show that

(7.64) p20-5r+10X+2nX+Ae y5r-n ^ ^ (i).

We separate this into two cases

(i) - Suppose n ^  5r. Then 5r-n is positive and thus

” < P^^ ” i Therefore either (7.64) is true or

(7.65) ^ ^  A 'V s )  - •

We may suppose (7.65) false for otherwise (7.13) is true and 

hence the lemma is proved. Thus (7.64) is proved.

(ii) Suppose n > 5r. Then 5r-n is negative, and therefore, 

on substituting from (7.46) , it is enough to show

p-n+ +A(2n + ^ )  + Ae ^ „ (1).

Clearly either this is true or

(7-66) A > 27;ïïT - A: .
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We may suppose (7.66) false for otherwise (7.13) is true and 

hence the lemma is proved. Thus (7.64) is satisfied. Thus, 

since f  (T^, ... T^) = 0,

2“ -f I I |t^ t Î « u p  I I m  h It t I + m  t
u=l v=l u<5 v=l

«  ... pl*4&+g8 p4Xj M^2 Jj7pl+4X

and thus ... Mg >> »  p-^-2A-Ae j,-7/2_

Clearly this holds independently of (7.52), and thus proves the 

lemma, in this case.

This completes the proof of Lemma 7.20.

We have so far shown that either (7.13) holds, or that for 

each a i n ^  - , for the value of U determined in Lemma 7.19, 

both (7.44) and (7.49) hold. Suppose that (7.13) is false, for 

otherwise we have proved the theorem. Then, by (7.44), (7.49)

p5(4-r+2^)+Ae ^-5(n-r) p-2nX-n/2-Ae ^-7/2

I.e.

(^67) y5r-3n/2 p5r-20-2X(5+n)-n/2-Ae

We now suppose r ^  7 and split the argument into 2 cases.

(i) Suppose 10 r & 3n. Then the exponent of U in (7.67)

is positive and since U < P, (7.67) implies

5r - 3n/2 ^ 5r - 20 - 2X(5 + n) - n/2 - As,

, . n - 20 
^ 2(n + 5) ^  '

which proves (7.13) and hence case (a) of the theorem.
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(ii) Suppose 10 r < 3n. Then 5r - 3n/2 is negative and
thus, by (7.46), u5r-3n/2 p-3n/2 + 5r + 6n/r - 20 + X(3n/r-10)+Ae

This with (7.67) implies

- 3n/2 + 5r + 6n/r - 20 + X(3n/r - 10) % 5 r  - 20 « 2X(n + 5) - n/2 - Ae,

i-G- ' A > - AC '

which (since k = r) proves (7.13) and thus proves case (b) of 

the theorem.

In this section it only remains to prove case (f) of the 

theorem, i.e. the case n = 21, k = 6. In this case (7,46) 

becomes

(7.68) U 

and (7,67) gives

T /3 u. 104%(7.69) U «  pl/ 3 + ,

On substituting from (7,68) into (7.44) we obtain

(7.70) M.(U) ... M^(U) <4 p-5/3+5/3X+AE ^

while on substituting from (7.69) into (7*49) we obtain

-S/3- -79% _ Ac(7.71) M^(u) .... M^(U) »  P / 3 ^  .

Furthermore, from (7.42), (7.68), (7.71), and on noting that 

since s < n = 21, (M^ ... M^) ^ << (M^ ... M^)

523
(7.72) |s(P^a) I «  P^^ ~2~ % + Ae

Now, for any a i n ^  - , there is a non-zero integer point 

in n dimensions which satisfies (7,50), (7,51) with 
k = 1. Since, by (7.70), M^(U) «  P 1/3+%/3+Ae  ̂ obtain
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on substituting from (7.69),

(7.73) I «  (j = 1, ... n).

(7.74) ||2P^a ... «  P V3+X/3+AE ^ ... n) .

(1)Since X is a non-zero integer point and L^, ... are

fixed real linear forms of non-zero determinant, one at least

"1 ) I # I ̂nof |l , (5(^^^)|, ... |l (X^^^)| is »  1. It will suffice to

consider the part of ̂  - in which ) | »  1, By (7.74)

we have

(7.75) « -
p-4/3+X/3+Ae 

|2P^ L^jX^l))I

where t is an integer. By (7.73) the number of integer points 

x^^^ that can arise from all d in ̂  - is << . For
(1)each X the number of possibilities for t in (7.75) is 

«  (]('̂  ̂) I since a < P^. Hence, for each the

possible values of g are restricted to intervals of total

«  IL,

«  p-4/3+X/3+Ae

. 2206
Thus the measure of^  - is «  P 3 X+Ae

Hence, by Lemma 7.1 and (7.72)

I |S(B\%) K(q)|d% << / |s(P^a)|da

r r-
«  p53/3 + - ^ X  + AE _

By (7.22) we must have

X+ Ae > 19 - X - 2eJ b
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which proves (7.13) and hence case (f) of the theorem.

As can quite easily be seen, the method of proof of case 

(f) can be generalised to a proof of the case k = 6, n >  21. 
The result obtained

f(n, k )  | _ ( n j L j O ) _ _  ^
15n — 28n — 40

is asymptotically much worse than the result (7,7) since for 

f(n, k) defined by (7.7),

f (n, k) + % as n + «,

§3: Proof of. parts (g) and (d) of Theorem 25; We start by

making similar assumptions to those made at the beginning of

§2. We suppose, until otherwise specified that n ^ 2 1  and

k < 5 and without loss of generality we assume k = r. We

further assume that (7.12) holds, under the same conditions

as in §2, and we will show that (7.12) implies (7.13). Clearly

this will prove the theorem in these cases.

We suppose P = where a is some positive real number,

dependent at most upon n, which will be chosen later. We now

choose 5 integer points , ... in n dimensions.

Suppose = (1, O, ... O). We now use Lemma 7.7 to choose

, in that order. We suppose, in the choice

of , (p = 2, 3, 4, 5) , that m = p - 1, = I X #
^  k=l ^

(i = 1, ... m), and 8 = m, 6^ = Gg = ••• = = n. We then obtain

integer points . By the choice of _z ,

these 5 non-zero integer points satisfy
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(7.76) ^ (j = 1, ... n, p = 1, ... 5),

and for 1 < a < p < 5

n n ,4 / & . n n(7-77) I I  I Ajk =k' ' = J, << I I Ij=l k=l 3  ̂ ^ j=l k=l jk k

«  wP-l-n+o-l _ ĵ p+(T-2-n

Note that since 0, 0^, ... 0^ depend upon, n only, in the 

above expressions depends upon n only.

We now distinguish the two cases r < 4, which is part (c), 

and r = 5, which is part (d).

Case 1; r < 4 : The linear substitution

(1) (5)(7.78) X = tĵ  2  + ... + tg jz' '

5 5
gives QCx^, ... x^) = $(t^, ... t^) = J I *pc ^

p=l a=l

where * = % I z^^^ / (1 f 0, P < 5).
P j=l k=l  ̂  ̂ '

By (7.76), (7.77),

(7.79) , 1 < P 4: 5 .
and for. 1 < cr < p 5

(7.80) l+p,l << n f .

We suppose a & 4. Since (f)̂  ̂ is a value of Q for integers 

x^, ... x^, not all O, and satisfying |)(| < P, we have

(7.81) IfppI > , 1 4 p ^ 5.

Now suppose
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(7.82) X < — ~ - e .

Then, by (7.80), (7,81), the form $(t_, ... t^) is almostJ- o
diagonal. In particular its determinant is not zero and 

thus the rank of substitution (7.78) is 5. Hence

(7.83) 1$ (tjy ... tg)| 5,

for all integers t^, ... t^, not all o, with

(7.84) [tpl < Y  (p = 1, 5).

If the rank of $ is r’, then r' ^ r ^ 4 since Q represents
(1)$. Also r* ^ If since by the choice of ^  and by

Lemma 7.2, X.J - > O. Hence $ is indefinite and the same is true
2 2 of the diagonal form #^^t^ + ... + t^ .

By (7.81) and Lemma 7.6 there exist integers t^f ... t^,
- . \ ' 

not all o, satisfying

|2P^ + ... + 2 t/l < 1

| 2 P ^ p p  tp^l < <  * 1 1 - * 5 5 ! ^ * =  - .

Thus there exist integers t^, ... t^, not all o, satisfying

(7.85) I ' * ’11^ /  + ••• + 't’ss tg^l < >5
and

2aX+10-(p-l)+Ae(7.86) |tpl «  N

Thus, by (7.80), (7.86), for l.< a < p < 5, 

(7.87) l^p, tp t j  «  .

Now suppose

(7.88) X < ^ " Ac



130

Then these values of t̂ ,̂ ... t^ satisfy (7.84) and therefore

(7.83). Therefore, by (7.85), (7.87) and (7.12) we inust have

4aX + 20 *" n + Ae  ̂— aX — e ,

i.e.

(7.89) X > ^ - AG .

1We suppose a = —  (2n + 10) . Then a > 10. With this value

of a, for

we have a contradiction of (7.12), since under this inequality

(7.82) (by a wide margin) and (7.88) hold while (7.89) does not.

Thus, for (7.12) to hold, (7.13) must be true, which proves part

(c) of the theorem.

' '

Case_2: r = 5; We use Lemma 7.7 to choose another integer
2

point • We suppose a = ---  . In Lemma 7.7 we
n ■ ..

let m = 5,y . . = J] X., z, ^ , (1 < i <  5) , and we choose
^  k=l ^

0- = ... = 0. = n, 0 = ; hence 0^ = (0 - 4) n > O. We1 4 5n - 3 5
f 6 Vthen obtain a non-zero integer point ^  satisfying 

(7.90) (1 < j 4 n),

17.911 I Ï I I «j=l k=l ^ ^ ^0+4-n(0-4)^ p ^

The linear substitution

(7.92) X = t_ z^^) + ... + t^ z/G)
—  1  —  D  —

6 6
gives Q(x^, ... x^) = $(t^, ... tg) = J J 4. t t^,

P=1 0=1 r

where (j> =  ̂  ̂ X., z. (1 f P < 6, 1 < a 6).
j=l k=i 3
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By (7.76), (7.77), (7.90), (7.91)

and for a < p. j,p+<r-2-n 1 < p < 5,
0+0—1—n(7.94) Ifpgl «  p = 6, a < 4,

^e+4-n(6-4) p = 6, o .  5.

Clearly a > 0, and, thus, since (j> is a value of g forPP
integers ... x^, not all o, and satisfying |xj ^ P, we

have V

(7-95) UppI •

We may suppose that

X c Biin + *) , e(n - 1).- 4(n + .1).̂  _ Ac =  ̂ - Ae,
^ ^ 2n + 9n - 2

for otherwise (7.13) is true. Then, by (7.95) and (7.94), the 

form $(t^, ... tg) will be almost diagonal. In particular the 

determinant is not zero and consequently the rank of substitution

(7.92) is 6. Hence

(7.96) 1$ (t^, ... t^)| =

for all integers t^, ... t^, not all o, satisfying

I  1 < p < 5,

I'.l' p . .  .
As in Case 1, > o, and we now distinguish two cases.
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Case 2 (a) : 6 > o for 1 < p 5, Since r = 5 and Q cannot
— ------------------------------------------------

represent a positive definite form in 6 variables, it follows that 
*̂ 66 ^ now consider the form $(t^, t^, ... t^, o, t^). By

Lemma 7.6 and (7.95) there exist integers t^, t^, t^, t^, t^, not 

all o, satisfying

|2P^ + ... + 2P% 4 4  t /  + 2P^ *gg t / \  < 1

and |2P^ 4pp t/| «  12^ P^^ 4,̂ ^̂ ... 4^^ 4'g6|̂ -*'% p=l,2,3,4,6.

These integers then satisfy

-X
(7.98) l+ufi + ••• + ^44 %4 ' + ^66 V l  "

and

(7.99) t «
^2aX+6+0— (p—1)+Ae 1 ^ p ^ 4,

„2aX+6+Ae ^N p = 6

By (7.94), (7.99),

(7.100) I* t t I «  M4aX+12+28-n+AE (o < p,< 4,
P P  p = 6, O = 4)

We may suppose that

X < Tf- e). _  ̂ ^
2n2 + 9n - 2

for otherwise (7.13) is true. Then these values of t^, ... t^, tg 

satisfy (7.97) and since t^ = O, they also satisfy (7,96). 

Therefore, by (7.98), (7.100), and (7..12),

4aX + 12 + 20 — n + Ae > — aX — Ae

i.e. X > " ~ .29) _ Ae = ^ - Ae ,
2n + 9n - 2

which proves (7.13) and hence the result in this case.
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Case 2 (b) ; < o for some p, 2 < p ^ 5. Since o,

the form $Ct^, ... t^, o) is clearly indefinite. As in the 

previous case, by Lemma 7.6 and (7.95) there exist integers 

t^, ... tg, not all O, satisfying

(7.101) Iflltl^ + ... + *55 tg2| < % p-A

and for 1 < p < 5

(7.102) |tp| < )^2aX+10- (p-1) +AE _

Thus, by (7.94), (7.102), for 1 ^ o < p ^ 5

(7.103) • | 4 p V t p t J « N

We may suppose that

4aX+2o-n+Ae

^ - Az = - Ae
^  2(2n + 9n - 2)

for otherwise (7.13) is true. Then the values of t^, ... t^ 

satisfy (7.97) and since tg = o, they also satisfy (7.96), 

Therefore, by (7.101), (7.103, and (7.12),

4aX + 20 — n + Ae > - aX ” Ae

i.e. X > - ~ a ~  - Ae = 5n - 103n + 60 _ ^  ^ f (n, k)
^ 5(2n + 9n - 2)

which proves (7.13) and hence completes the proof of part (d) 

of the theorem.

It is a remarkable coincidence that by using two rather 

dissimilar methods of proof one obtains, not only that the 

minimum value of n which can be treated is 21, in both cases, 
but that the values of f(n, k) obtained in (a) and (c) are the

same.
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§4: Proof of part (e) of the theorem. The proof of this part

of the theorem uses the same ideas as the proof of part (d), 

but it is written separately for simplicity. We make the same 

assumptions as made at the start of §2, i.e. we assume that 
(7.12) is true under the same conditions. As before, we will

show that (7.12) implies (7.13) and hence the theorem in this

case. Without loss of generality, we may assume that k = r

and thus r = 6. We note n ^ 22. We suppose P =

where
2n + 8n — 5n — 2 a = ---- ----- --------- .

5n - 6n - 3

As in §3 we choose 5 non-zero integer points , ...
(1)which satisfy (7.76), (7.77), with ̂  = (1, O, ... O). We now

choose two more non-zero integer points _ẑ ^̂  , 2̂ ^̂  ̂. First we 

choose z/^^ thus: in Lemma 7.7, let m = 5, .

- I, V  ... 5), - 02 - 63 - 6^ - n,

Q _ n^(n + 20)
^ 5n^-6n-3

• Vthus 0 = 4 +  —  . We then obtain a non-zero integer point
(6)^  satisfying

/c\ 4 + ^2
(7.104) I z j ̂ <  N n (j = 1, ... n),

n n 1 ^ a <4,
(7.105) I I £ X  z < ° ’ z < ) | «

' of + - *5 , a . 5.n

We now choose 2̂ ^̂  ̂ similarly, with 0, = ^ “t— . We
(7) - 6n - 3

then obtain a non-zero integer point ^  satisfying

,7% 4+ (0c + 0^)
(7.106) |zjl''| N " (j = 1, ... n).
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N
n n

(7.107) II I Xk=l j=l
(a) _ (7)

n 1 < o < 4, 
)
/ a =6,

8+ ®̂5 + e
M8+e5<^:p^+ , , .5.

The linear substitution

(7.108) x = t, z(l) + ... + t ,  z(7) —  1 —  7 —

7 7
gives QCx^, ... x^) = «(t^, ... t^) = [ % 4 t t^,

p=l 0=1  ̂ ^

where, for 1 ^ p ,  0 .̂  7,

Therefore, by (7,76), (7,104), (7.106)

(7.109)
l+ppi

2 (p-1)
N

8+ffs
N n

N
8+2/n(6g+6g)

1 P*^ 5,

p = 6,

p = 7,

and for 1 ^ a < p < 7,

(7.110) l+pal

p+0—2—n
N

. 0 r3+ 5 -n+a 
N n

8+îl - ®5 
N n

3-n+a+ — (0g+0g)
N
8^  <l=a)+ 8g

N s a —

8+^®5 + e,
N n '6 n

P 3 5,

1 < o < 4, p = 6,

0 - 5, p = 6,

1 < 0 < 4, p = 7, 

o = 5, p = 7,

0 = 6, p = 7.

0r- + 0,Since, by the choice of a, 0g, 0g, a > 4 + 5 6 ,
n

0 < | _ z I  ^  P, (p = 1, ... 7), and therefore, by the hypothesis
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(7.12) , for 1 4 9 <, 7,

(7-111) IfppI >

We may suppose that

n — (7 + ^5 + 6 ) 6g(l — ^)” (8 + ^6) 
X < min' ^ ^

8g(l - i)-(8 + ffs)
n

3 2n - 22n + 7n + 4-----------   - Ae ,
3 22n + 8n — 5n — 2

for otherwise (7.13) is true. Then by (7,110), (7,111) the 

form $ is almost diagonal and in particular it is non-singular 

and consequently the rank of substitution (7,108) is 7. Therefore, 

by our initial hypothesis (7.12) and (7.76), (7.104), (7,106),

(7.112) 1$ (t^, ... t^)| ^ N-aX f

for all integers t^, ... t.̂ , not all o, satisfying

J  1 < P < 5,

(7.113) |tp| < , p = 6,

. P = 7.

As in §3, we know that (|)ii> o. We now split the argument into 

3 cases.
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Case A ; <j>pp < o for some p, 2 ^ p ^ 5. Consider the form 

$ (t^, ... tg, o, o). By Lemma 7.6 there exist integers 

tĵ , ... tg, (not all o) satisfying

(7.114) U l l H ^  + ... + '(>55 tg2| < 1, N'SX ,

with, for 1 < p < 5,

(7.115) |tp| «  + Ae ^

Hence, by (7.110), (7.115), for 1 O < p <  5,

20-n+4aX+Ae
(7.116) l+pp tp t j  « N

Now, we may suppose that

O O
, , a-10 _ 2n - 42n + 55n + 28X < - Ae =  3-----2--  AP f

^  2(2n + 8n - 5n - 2)

for otherwise (7.13) is true. Then,by (7.115), (7.113) is 

satisfied for these values of t^, ... t^ and since 

tg = t,y = o, (7.112) is also satisfied. Therefore, by (7.114),

(7.116) ,

20 - n + 4aX + Ae > -aX - Ae,

3 2n - 20 , 5n - 106n + 117n +60 I.e. X > — ET Ae = ----   =----------—  - Ae
^  5(2n^ + 8n - 5n - 2)

> f(n, 7)

which proves (7.13) and hence the result in this case.

We now suppose ^^p > o, 2 < p . ^ 5 ;  since r = 6, this 
implies that either (f)gg or is negative (or possibly both)
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Case B ; ^ o. Consider the form $(t^, ... t^, o, tg, o),

As in Case A, by Lemma 7.6 there exist integers t^, ... t^, tg 

(not all o), satisfying

(7.117) + ••• + + *66 tg2| < %

5 - (p-1) + 2aX 
N n , 1 < P f 4,

with 10 + 2$ - (p-1) + 2aX + As

(7-118) |tpl << 6 + 2aX + As
N p = 6.

Then, by (7.110), (7.118), for 1 < 0 < 4, p = 1, 2, 3, 4, 6, a < p ,  

we obtain
• 2020 + __5 - n + 4aX + Ae

(7.119) l+pc tp tpl « N  n . .

We may suppose that

0a - (10 + 25) •  ̂ 2
, n 2n^ - 43n + 35n + 2 8  ,X <  5T------  - A e -------3-----2-----------   Ae

* 2(2n + 8n - 5n - 2)

for otherwise (7.13) is true. Then, by (7,118), (7,113) is 

satisfied for these values of t^, ... t^, tg,- and, since 

tg = t^ = o, (7.112) is also satisfied. Therefore, by (7,117),

(7.119),

205
20 +  n + 4aX + Ae > - aX - Aen

9ftn - (20 + j ^ )  3 2
n 5n - 108n + 77n + 60i.e. X > ------ pr--------- Ae =  r---%  - Ae

5(2n + 8n - 5n - 2)

> f(n, 7)

which proves (7.13) and hence the result in this case.
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Case C : < o; Consider the form $ (t^, ... t^, o, o, t^).

By Lemma 7.6 there exist integers t̂ ,̂ ... t^, tg (not all o) , 

satisfying

-aX(7.120) + ... + *44 + *27 t? I < t N

with
10 + — (0 + 0 )-(p-l) + 2aX + Ae

N " , 1 f p ^  4,
(7.121) Itpl «  g^2aX+Ae

N , p = 7.

By (7.110), (7.121), for 1 ̂  a 4 4, p = 1, 2, 3, 4, 7, 0 < P,

220-n+4aX+— (©c + ©g) + Ae
(7.122) h p p  tp tpl << N .

We may suppose that

a — (10 + ©5 + 0g) ’

X < -  , " - AS . ° V  ZZ", + 7" + 4 - Ae
2n + 8n - 5n - 2

for otherwise (7.13) is true. Then, by (7.121), (7.113) is 

satisfied for these values of t^, ... t^, t^, and, since 

tg = tg = o, (7.12) is also satisfied. Therefore, by (7.122),

(7.120),

220 - n + 4aX + —  (©n + 0^) + Ae F - aX ^ Ae , n o b

n - (20 + I (6g + 6g)) ^3 _ 22^2 + + 4 ^
I.e.  Si------------ Ae = ̂ 7 7 1 7 7 1 1 7 ^  - AS

= f(n, 7)

which proves (7.13) and hence completes the proof of part (e) 

of the theorem.

The proof of Theorem 25 is now complete. We note that the 

method of proof of parts (a), (b), (f) of the theorem follows
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closely the methods of Davenport {l^ and Davenport and Ridout 

[21], and that the method of proof of parts (c), (d), (e) 

follow closely the methods of Birch and Davenport jjf[ and . 

Ridout
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