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Abstract

There is no linear hull effect in linear cryptanalysis.

1 Introduction

Linear cryptanalysis [7] is one of the standard techniques of assessing the se-
curity of block ciphers and is based on linear approximations to the plaintext,
ciphertext and key. In our discussion of linear approximations, we consider an
iterated block cipher encryption with plaintext p, ciphertext ¢ and extended key
k, where p, ¢ and k are binary column vectors. We define the extended key k
as the concatenation of the the round subkeys derived from the block cipher
key through the key schedule. A linear approximation in its most basic form is
usually regarded as a statement of the form

al (i) = aktp +alc=~"k with probability $(1+e).

The vectors «, ap and e are known respectively as the (overall) data mask, the
plaintext mask and the ciphertext mask, with a” = (oleD ag), and the vector v as
the key mask. The value €, is known as the imbalance or correlation of the linear
approximation, and %e,y as the bias of the linear approximation. If the linear
expression is unbiased, that is e, # 0, then the linear expression can potentially
be used to give an estimate of one bit vk of key information. The number of
plaintext-ciphertext pairs required to estimate this key bit to a required accuracy
is proportional to € 2. This is the procedure given by Algorithm 1 of [7].

The more sophisticated Algorithm 2 of [7] uses trial encryptions and decryp-
tions of the outer rounds under various partial subkeys. Under certain assump-
tions, the technique of Algorithm 2 is equivalent to constructing a method of
distinguishing the distribution of the linear expression

al (]Z) —I—”ka,

which is zero with probability 3 (1 + €,), from a uniform distribution [7, 8]. As
before, the number of plaintext-ciphertext pairs required to make this distinction
to a required accuracy is proportional to €, 2[7.

The usual method of calculating the probability that such a single linear
expression holds is to use the so-called Piling-Up Lemma of [7]. However, in the
analysis of many block ciphers, such use of the Piling-Up Lemma can generate a
number of linear expressions with the same data mask but differing key masks,
that is a key mask set I" and a collection of expressions of the form

o <72) = ~Tk with probability s(14+e) el

The existence of a number of such “unbiased” expressions (e, # % ) generated by
the Piling-Up Lemma appears to be the motivation for the concept of the linear



hull of linear expressions introduced by [8]. The linear hull for data mask « is
the set of all such above expressions for different key masks . It is asserted by [8]
that existence of such a linear hull containing many such unbiased expressions
generally increases the efficiency of Algorithm 2 of [7]. Furthermore, such an
assertion appears to be generally accepted and widely used in the analysis of
block ciphers. For example, a standard reference work on cryptology makes the
following statement about the use of the linear hull in cryptanalysis [3].

LINEAR HULLS: Estimating the bias of approximations by construct-
ing linear characteristics is very convenient, but in some cases, the value
derived in this way diverges significantly from the actual bias. The most
important cause for this difference is the so-called linear hull effect, first
described by Nyberg in 1994 [8]. The effect takes place when the cor-
relation between plaintext and ciphertext bits, described by a specific
linear approximation, can be explained by multiple linear characteris-
tics, each with a non-negligible bias, and each involving a different set
of key bits. Such a set of linear characteristics with identical input and
output masks is called a linear hull. Depending on the value of the key,
the different characteristics will interfere constructively or destructively,
or even cancel out completely. If the set of keys used in different linear
characteristics are independent, then this effect might considerably re-
duce the average bias of [a single linear] expression, and thus the success
rate of the simple attack described above [Algorithm 1 of [7]]. Nyberg’s
paper [8] shows, however, that the more efficient attacks [Algorithm 2]
described in [7], which only use the linear approximations as a distin-
guisher, will typically benefit from the linear hull effect.

We show that this so-called linear hull effect [3,8] simply does not exist.

2 The Fundamental Probability

Our analysis of the linear hull effect is based on the fundamental probability
(Definition 1), together with the related concept of the fundamental imbalance
(Definition 2). The fundamental probability is a well-defined probability for use
in linear cryptanalysis, particularly in analysing the linear hull effect.

Definition 1. The fundamental probability q(k) of data mask « for block cipher
encryptions under the fixed extended key k is

e (2)-)

Definition 2. The fundamental imbalance of data mask o under fixed key k
with fundamental probability ¢(k) = % (1 + n(k)) is

n(k) =Py (aT <Zc’) = o) Py <aT (i’) = 1> = 2q(k) — 1.



3 Probabilistic Interpretation of the Linear Hull

We noted that the fundamental probability (Definition 1) is well-defined. How-
ever, the probability statements made in the usual definition of a linear hull are
not in general well-defined. To demonstrate this, we consider very carefully the
nature of the statements about linear expressions used in the linear hull for a
data mask a.

In the standard formulation of linear cryptanalysis given in Section 1, a
linear approximation is defined directly in terms of a key mask -, that is a linear
approximation is a statement of the form

al (ﬁ) = ~Tk with probability T (1+e),

which only depends on the key through the value of ¥7k. In terms of the funda-
mental probability for data mask a, we have

1 T
T(PY _4)_ 1 _ [ 2(+e) [v k=0
Pk(a (C)—())—2(14‘77(]“))—{%(1_67) thzl]'
Thus the fundamental imbalance n(k) is given in terms of the usual form of the
imbalance €, used in linear cryptanalysis by n(k) = (—1)7Tke,y. However, for a
fixed key k, the fundamental imbalance (k) is clearly a constant. Thus for the

above probability to be well-defined, we require (—1)'7Tke,y to be constant for all
non-trivial key masks ~ for fixed k. We now discuss this issue in more detail.

The linear hull is usually considered to be defined by several probabilistic
statements such as (for v # 7/)

p . .-
al (c) =Tk with probability % (1+€,)

and o (i) =~'Tk with probability % (1+ €,).

According to these linear expressions, for a fixed key k, a” <]Z ) has to simulta-

neously take the value v7'k with probability 3 (1 + €,) and the value vk with
probability 3 (14 €,/). This means there are four cases required to evaluate the

fundamental probability Py, <aT (Ic) > = 0>, as given in the following Table.

YTk =0 YTk =1
VTk=0 %(1+5v):%(1+67’)%(1+67):%(1_5v’)
Th=1 %(1_57):%(1"'57')%(1_57):%(1_57/)
(o (2) =)
c



We can therefore deduce that €, = e, = 0. Thus the probability statements used
in specifying a linear hull are not well-defined if there is more than one unbiased
linear approximation in the linear hull. A linear hull in the sense of [3, 8], that
is a collection of several linear expressions each with a significant imbalance or
bias, is not a well-defined probabilistic concept.

4 Analogues in Differential Cryptanalysis of Linear Hulls

A much-repeated heuristic justification for the linear hull effect is given in [8]
by claiming that the use of the linear hull is analogous to the use of the dif-
ferential [6] in differential cryptanalysis [1,2]. However, a detailed examination
shows that this analogy is not sustainable. We therefore state the claim of [8] of
an analogy between differential and linear cryptanalysis using our notation.

We conclude that Algorithm 2 [of [7]] makes in fact use of a family of
linear approximate expressions

app—l—a:gc—i—ka =al (i) +~Tk

where [the data mask] « is fixed but [the key mask] v varies. This means
that the round approximations which uniquely determine ~ and are
uniquely determined by 7, can be chosen in all possible ways to form
a chain of approximations from atp to o%c. Hence there is a close ana-
log with what is called differentials in differential cryptanalysis [6].

The key mask v does indeed determine a series of round data masks with the
outer round masks constrained by «. These data masks give a random process [4,
5] with a state space consisting of two elements {0, 1}, in for example the manner
described by [9]. The usual method of analysing this random process in linear
cryptanalysis is to use the Piling-Up Lemma [7], which is applicable to this
random process if it is a Markov process [9]. However, whether or not the Piling-
Up Lemma is applicable, both states are considered by the Piling-Up calculation.
Loosely speaking, the Piling-Up Lemma probability calculation may incorrectly
“assign probability” to the states if the Markov assumption is not valid, but “all
probability is assigned”. There are no “ignored” states in linear cryptanalysis,
and there is certainly no “missing probability” not considered by the Piling-Up
Lemma waiting to be found.

In differential cryptanalysis, a pair of plaintexts is encrypted under the same
fixed key. A random process is derived by taking the difference of those plaintexts
at every rounds, so giving a random process with a state space of size 2". Under
the assumption that this differential cryptanalysis random process is a Markov
process, the differential [6] is calculated by using the product of the matrices of
one-step (round) transition probabilities. The characteristic [1,2] is essentially
obtained by setting all but one element to 0 in each of these one-step transition
matrices and then calculating the product of these revised matrices. A value for



a probability calculated using a differential [6] is therefore always at least that
of the same value for a probability calculated using a characteristic [1,2]. Thus
there is a meaningful sense in differential cryptanalysis in which the differential
can be thought of as “finding probabilities” missed by the characteristic, as the
characteristic “ignores” most of the states in the random process.

The correct analogue of the linear hull in differential cryptanalysis is the
enhanced characteristic, considered in Sections 5.1 and 6.5 of [1]. The enhanced
characteristic gives an enhanced differential cryptanalysis random process in
which the state at any round is the difference between the between the data
values at that round (as for standard differential cryptanalysis) and also a col-
lection of data values at certain bit positions. Similarly, in linear cryptanalysis,
the simultaneous use of two key masks with the same data mask, really de-
fines sequences of 2-dimensional data masks for the inner rounds. This gives
rise to a random process with, in general, a 4-element state space rather than
the 2-element state space given by a single key mask. For both the enhanced
characteristic in differential cryptanalysis and the linear hull in linear cryptanal-
ysis, the state space of the underlying random process state space is obtained
by refining the standard differential cryptanalysis or linear cryptanalysis state
space.

The linear hull therefore defines a new (enhanced) random process beyond
the standard linear cryptanalysis random process. By contrast, probability cal-
culations in differential cryptanalysis using either characteristics or differentials
are conducted with respect to the same standard differential cryptanalysis ran-
dom process. Thus a calculation using a linear hull and a calculation using a
differential are fundamentally different in relation to their underlying standard
random process. A differential can find “unused probability”, whereas a linear
hull simply cannot. There is no analogue between linear hulls and differentials
in the manner claimed by [8].

5 Data Requirements for the Linear Hull Effect

The linear hull effect supposedly reduces the number of plaintext-ciphertext pairs
required to distinguish to a given accuracy a given distribution from the uni-
form distribution [3, 8]. Before analysing this claim, we first calculate the data
requirements exactly. For a fixed extended key k, the number Nj of plaintext-
ciphertext pairs required to use the distinguisher to a required accuracy is asymp-
totically inversely proportional to (q(k) — %)2 [7]. Under the assumption that
all extended keys are equally likely, then the mean number (over all keys) N
of plaintext-ciphertext pairs required to use the distinguisher to a specified de-
gree of accuracy is given by N = E[Ny], for some suitably-defined expectation
E. If we let I denote the set of extended keys, then the mean number N of
plaintext-ciphertext pairs required is proportional to

E [((qw - %)2)_1] - ﬁ S (Ank) "



We now consider the data requirement for the use of the linear hull given
by [8]. The supposed existence of a linear hull effect depends on the assertion
that this data requirement can be expressed in terms of a quantity defined by
the Fundamental Theorem of [8]. We now examine this assertion. Accordingly,
we let

r(k) = 4 (14 (-1 Fnk) ).

so (v, k) is the quantity referred to as “p(a,b, ¢; k)” in [8], where “a,b” refer to
the data mask a and “c” refers to the key mask v. We note that “p(a,b,c; k)” is
referred to as a probability by [8], but is not in general a well-defined probability
(Section 3). The Fundamental Theorem considers the quantity ¢ given by

1 12_1 1 2_1 1 1\2
U= 2 k) = 3) = g D k)t = e D % (k) - 5)

ke ke ke

Thus the quantity ¢ considered by the Fundamental Theorem can be expressed
in terms of the above expectation E as

v=E[(ah) - $)°] = 77 3 $ulky®

kex

The claim for the reduction in data complexity given by the linear hull effect
is then based on the assertion that the number N of plaintext-ciphertext pairs
required to distinguish the distribution from uniform is proportional to =1,
that is to say proportional to

v =B [ - 1)) - (ﬁ > in(kf) .

kex

We now compare these two quantities for distinguishing the specified distri-
bution from a uniform distribution. The actual expected number N of plaintext-
ciphertext pairs and the number given by the application of the Fundamental
Theorem in the manner of [8] are respectively proportional to

12\ ! 1\2] 7!
E|((ak)-1)°) | and B (k) - 5)°] .
These two quantities can easily be compared by using Jensen’s inequality [10],

which we state in Lemma 1.

Lemma 1. (Jensen’s Inequality.) A random variable X and convex function
satisfy ¢ (E[X]) < E[C(X)].

Inversion of the positive real numbers is a convex function, so Jensen’s inequality
gives

NIEg
S—
S
[
|
—

B| (- 1)) | 2 B [ -



The true data requirement is proportional to the left-hand side of the above
inequality, whereas the quantity ¢ considered by the Fundamental Theorem only
addresses the right-hand side of this inequality. Thus the Fundamental Theorem
can only ever be used to give a lower bound on the data complexity. We illustrate
this point in Examples 1 and 2.

Ezxample 1. We consider a linear cryptanalysis for data mask « where the fun-
damental probability is given by

q(k) = Py (aT <Zc’) = 0) = 2 (1 e (1) R

where €4, €, # 0. Thus the fundamental imbalance is given by

/T]i}

(k) = (—1)" Fey + (=1)7 " ke,

The true data requirement to distinguish this distribution from a uniform dis-
tribution to a given degree of accuracy is proportional to

E [((q(k) - %)2)_1} - i <(e7 +267')2 i (€y _2€V')2> ) (ejj;j)z

€

By contrast, the approach of [8] based on the Fundamental Theorem asserts
that the data requirement is proportional to

E [(Q(k) - %)2} - = i (2(67 + Ev’)Q +2(€y — 67’)2)7 =

) s (@) Las (E+2) > (- 2)% so

B| (- 5)°) | B[~ )7

For this example, we can easily see that the data requirement averaged over
all extended keys is always larger than that asserted by the supposed linear hull
effect.

However, (6,2Y + e%,) (6
can see that

Ezample 2. We consider the cryptanalysis of Example 1 for a block cipher where
€4 = €. Such a block cipher would be considered to possess a large linear hull
effect in the “linear hull literature”. The fundamental probability ¢(k) for data
mask « is given by

(1+ (Ev +€y) [’YTk =Tk = 0]
1= (e +ey)  [rk=~Tk=1]
3 Tk # 5Tk

Clearly, for any key k € ker(y + +')7, that is for half of all the extended keys,
the distribution in question is uniform, so by definition is indistinguishable from



a uniform distribution. This is reflected in that fact that the true data require-

2 2

ment, proportional to (E?Y + e?y,) (e,y — 67,)_2, is formally infinite. By contrast,

the supposed linear hull effect gives the data requirement as being proportional
to (€ +¢2)) ~' 4 finite quantity.

For this example, the supposed linear hull effect is effectively asserting that
it is possible to distinguish an indistinguishable distribution given by one key
because there exists a distinguishable distribution given by some other key.

6 Conclusions

The usual method of quantifying the supposed linear hull effect assumes that
expectation and inversion are operations on a random variable which commute.
Jensen’s inequality shows that this assumption is generally incorrect. Thus the
supposed linear hull effect simply ignores Jensen’s inequality, a fundamental
result in probability theory and statistical inference. Furthermore, Jensen’s in-
equality shows that the Fundamental Theorem of [8] can only ever give a lower
bound for the data requirement for using a collection of “linear approximations”
with the same data mask.

The linear hull effect, in the usual sense [3, 8] of always improving the average
efficiency of Algorithm 2 of [7], is an illusion.
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