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Summary

This thesis deals with random graph processes. More precisely it deals with two
random graph processes which create H-free graphs. The first of these processes
is the random H-elimination process which starts from the complete graph and in
every step removes an edge uniformly at random from the set of edges which are
found in a copy of H . The second is the H-free random graph process which starts
from the empty graph and in every step an edge chosen uniformly at random from
the set of edges which when added to the graph would not create a copy of H is
inserted.

We consider these graph processes for several classes of graphs H , for example
strictly two balanced graphs. The class of strictly two balanced graphs includes
among others cycles and complete graphs.

We analysed the H-elimination process, when H is strictly 2-balanced. For this
class we show the typical number of edges found at the end of the process. We
also consider the subgraphs created by the process and its independence number.
We also managed to show the expected number of edges in the H-elimination pro-
cess when H = K−4 , the graph created from the complete graph on 4 vertices by
removing an edge and when H = K−3,4 where K−3,4 is created from the complete bi-
partite graph with 3 vertices in one partition and 4 vertices in the second partition,
by removing an edge.

In case of the H-free process we considered the case when H is the triangle and
showed that the triangle-free random graph process only creates sparse subgraphs.
Finally we have improved the lower bound on the length of the K−3,4-free random
graph process.
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Chapter 1

Introduction

Random graph processes have received considerable attention lately. These pro-
cesses provide a natural context for modelling complex networks which evolve
over time. They also provide a simple way, and in some cases the only way, to
construct a counterexample in extremal graph theory. There are also strong con-
nections to algorithmic graph theory as examining these processes provide good
estimates on the typical running time of algorithms.

There are multiple ways to define a random graph process. The first of these is
known as the Erdős-Rényi random graph process, which was introduced by Erdős
and Rényi [14]. The process starts from the empty graph on n vertices and in ev-
ery step an edge is selected uniformly at random from the set of non-edges and
inserted into the graph. The process stops after m edges have been inserted. Even
though we call this a random graph this actually describes a probability space over
the graphs on n vertices containing m edges, where each of these graphs is selected
with the same probability. The aim is to study the likely structural properties of the
graph created by this process when the number of vertices is large. We say that a
property holds asymptotically almost surely (a.a.s.) if the probability that the prop-
erty holds tends to one as the number of vertices tends to infinity. The properties
of the Erdős-Rényi random graph process are well known, due to its connection to
the Erdős-Rényi random graph, where every edge is inserted independently with
probability p ≈

(
m/
(
n
2

))
.

One of the significant results of this process was improving the lower bound
of the Ramsey number R(k, t). We have that R(k, t) > n if there is a graph on n
vertices which neither contains a complete graph on k vertices as a subgraph nor
does it contain an independent set of size t i.e. a set where no two vertices in the set
are connected. Constructing such graphs is difficult.

The Erdős-Rényi random graph process a.a.s. creates graphs with small inde-
pendent sets. Therefore if one chooses m as large as possible such that the process
a.a.s. has no copies of a complete graph on k vertices one has a lower bound on the
Ramsey number. One can improve the bound slightly by allowing a small number
of copies of a complete graph on k vertices and removing every edge from every
copy as this has almost no affect on the size of the independent sets. In order to in-
crease the number of edges in the final graph the following two modifications were
suggested at a conference by Bollobás and Erdős [10]. The processes first appeared
in print in Erdős, Suen and Winkler [17].

The first of these processes is called the H-free random graph process which starts
out from the empty graph on n vertices. In every step of the process we select an
edge from the set of non-edges which when added to the graph do not create a
copy of H , and insert it into the graph. The process stops once no more edges can
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be added.
The second process, called the H-elimination process, runs in the opposite direc-

tion. This process starts from the complete graph on n vertices and in every step of
the process an edge selected uniformly at random from the set of edges contained
in a copy of H is removed. The process stops after no more copies of H exist.

This thesis deals with these two processes. Similarly to the Erdős-Rényi ran-
dom graph process we are interested in the likely structural properties of the graph
created by these processes. However, in contrast to the Erdős-Rényi random graph
process, which always finishes with the complete graph after inserting all of the(
n
2

)
possible edges, already determining the typical length of the H-free and H-

elimination process can prove challenging.
Multiple equivalent definitions exist for both theH-free andH-elimination ran-

dom graph process. We will discuss these in Chapter 3. The alternative definitions
indicate a connection between the Erdős-Rényi, the H-free, and the H-elimination
graph processes. This connection was used by Osthus and Taraz [31] and inde-
pendently by Bollobás and Riordan [9] to establish bounds on the H-free process.
These results can also be transferred to the H-elimination process for more details
see Chapter 4.

We examine the H-elimination process for a special class of graphs, namely the
strictly 2-balanced graphs. Let v(H) and e(H) denote the number of vertices and
the number of edges of the graph H respectively. A graph H is strictly 2-balanced
if

e(H ′)− 1

v(H ′)− 2
<
e(H)− 1

v(H)− 2

holds for every proper subgraphH ′ ofH which contains more than two vertices. In
Chapter 5 we will show the expected number of edges contained in this process and
that the number of edges is a.a.s. concentrated around its expectation. Formally we
will show that there exists a constant c depending on H such that the final graph
created by this process contains a.a.s.

(1 + o(1))cn2−(v(H)−2)/(e(H)−1)

edges. We also investigate the subgraphs created by this process and have shown
that a.a.s. every sparse H-free graph is created by this process, but no dense sub-
graphs are. We also include bounds on the independence number of the graph
created by this process which hold a.a.s.. In case H is a complete graph we show
that the independence number of the graph created by the H-elimination process
is a.a.s. larger then that created by the H-free process and thus provides a worse
bound for the Ramsey number.

The remainder of the thesis deals with the H-free random graph process. When
H is a star Ruciński and Wormald [38] have shown that the number of edges in the
final graph is a.a.s. the maximal possible number of edges in a H-free graph. The
next breakthrough was made by Bohman [4], who showed upper and lower bounds
matching up to a constant factor for the number of edges in the triangle-free pro-
cess which hold a.a.s.. He also determined an upper bound on the independence
number of the process and thus was able to recreate Kim’s [27] lower bound on
the asymptotics of the off-diagonal Ramsey number R(3, t). The results have been
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extended to several other graphs and classes of graphs [6], [46], [51], [33], [34], [47],
[32], for more details see Chapter 4.

The subgraphs of the random H-free graphs have also been considered. When
H is a triangle Bohman and Keevash [6] and Wolfovitz [50] established subgraph
counts which hold for the early stages of the process. Their results imply that a.a.s.
only sparse triangle-free graphs appear during the early stages of the triangle-free
process. However denser H-free graphs may appear during the later stages of
the process. We will show in Chapter 6 that this is not the case, namely a.a.s. no
dense triangle-free graph appears in the triangle-free process. More precisely we
show that there exists a constant δ such that if (e(F )/v(F )) > δ then F is a.a.s. not
contained in the random triangle-free graph process.

In the final chapter of the thesis we examine the K−3,4-free random graph pro-
cess. We apply the differential equation method to this random graph process in
order to establish a lower bound on the number of edges contained in the graph. We
show that the final graph contains at least Cn3/2

√
log log n edges for some constant

C. This improves the previous best known lower bound established by Osthus and
Taraz [31].
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Chapter 2

Preliminaries

This chapter introduces the notation and definitions used throughout this thesis. It
also contains the proof of several simple propositions which will be relevant later.

2.1 Graphs

A graph G = (V,E) is a set of vertices V and a set of edges E where E ⊆ {{u, v} :
u, v ∈ V, u 6= v}. We denote the vertex set of a graph by V (G) and its edge set with
E(G) also v(G) = |V (G)| and e(G) = |E(G)|. The conjugate of a graph G = (V,E)
denoted by G is a graph on the same set of vertices, however an edge is present in
G iff it is not present in G.

There are several important classes of graphs. The complete graph on k vertices
is denoted by Kk and the cycle on ` vertices is denoted by C`. Also P` denotes
a path of length `, where the length of a path is determined by the number of
edges contained in it. The complete bipartite graph, where one partition has r1

and the other partition has r2 vertices is denoted by Kr1,r2 . In many cases we will
be interested in graphs which are created from another graph by removing specific
edges. Let {e1, e2, ...ek} ⊆ E(G) then G{e1,e2,...ek} denotes the graph created from G
by removing the edges {e1, e2, ...ek}. Also let R ⊆ V (G) then GR denotes the graph
where every edge between the vertices of R is removed. The notation G− will be
used for Ge when G is symmetric meaning that removing any of its edges gives the
same graph, e.g. P`−1 = C−` .

We are interested in several graph properties. The notation δ(G) is used for
the minimal degree of G and ∆(G) for the maximal degree. The size of the largest
independent set in G, also referred to as the independence number ofG, is denoted
by α(G).

Let F and G be graphs such that v(F ) ≤ v(G). For an injective function f :
V (F ) → V (G) let f(E(F )) denote the set of vertex pairs in G which correspond to
the edges of F i.e. f(E(F )) = {{f(u), f(v)} : {u, v} ∈ E(F )}.

We say that there is a copy of F in G if there is an injective function f : V (F )→
V (G) such that f(E(F )) ⊆ E(G). A graph F is a subgraph of G if V (F ) ⊆ V (G)
and E(F ) ⊆ E(G) and is denoted by F ⊆ G. We say that F is a proper subgraph of
G, denoted by F ( G, if F is a subgraph of G and F is not isomorphic to G. Also
for S ⊆ V (G) we denote byG[S] the spanning subgraph ofG on S i.e. V (G[S]) = S
and E(G[S]) = {{u, v} ∈ E(G) : u, v ∈ S}.

The Ramsey-number is denoted by R(k, l). We say that R(k, l) = n if n is the
smallest number such that any two colouring of the edges of Kn, with red and blue
either contains a blue Kk or a red Kl.
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2.2 ASYMPTOTICS

The Turán number denoted by ex(n,H) is the maximal number of edges that
can be found in a graph on n vertices without creating a copy of H .

2.2 Asymptotics

When describing asymptotics we will use the following notation: Let f, g : N→ R+

then

f(n) = O(g(n)) ⇐⇒ ∃C s.t. f(n)/g(n) ≤ C
f(n) = Ω(g(n)) ⇐⇒ g(n) = O(f(n))

f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) and g(n) = O(f(n))

f(n) = o(g(n)) ⇐⇒ lim
n→∞

f(n)/g(n) = 0

f(n) = ω(g(n)) ⇐⇒ g(n) = o(f(n))

2.3 Probability

A probability space is defined by a triple (Ω,F ,P), where Ω is the sample space, F
is a σ-algebra and P : F → {0, 1}.

In case of a random graph processes described above we consider graphs on n
vertices. Let Ω be the set of all maximal sequences of distinct pairs inE(Kn) satisfy-
ing the condition of the process. Each element ω ∈ Ω describes a possible evolution
of the process. Note that the probability measure on Ω is not necessarily uniform.
However in the case of the H-elimination and H-free random graph process it is
given by the uniform random choice at each step. Define a family of equivalence
classes on the elements of Ω, where two elements belong to the same class in case
their first i entries match. Denote the partitions created by the equivalence classes
with Pi. The parts of Pi are called atoms. For every i the partition Pi generates a
σ-algebra Fi. The collection F = F0 ⊆ F1 ⊆ F2 ⊆ ... is called the natural filtration
of the process. Given a random variable X and a σ-algebra F we say that X is F
measurable if it is constant on each atom of F . Define the conditional expectation of
a random variable X as:

E(X|F)(ω) =
∑
ω′∈[ω]

P(ω′)X(ω′)

/ ∑
ω′∈[ω]

P(ω′),

where [ω] denotes the atom of F containing ω. Note that E(X|F) is a random
variable and that it is measurable.

2.4 Graph Densities

Let H be a graph, then we define the density of H as

d(H) =
e(H)

v(H)
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2.4 GRAPH DENSITIES

and the maximal density of H as

m(H) = max
H′⊆H

d(H ′).

We say that a graph is strictly balanced if for every H ′ ( H d(H ′) < d(H) and it
is balanced if m(H) = d(H). The 2-density of a graph with more than 2 vertices is
defined similarly

d2(H) =
e(H)− 1

v(H)− 2

and the maximal 2-density

m2(H) = max
H′⊆H
v(H′)>2

d2(H ′).

A graph is strictly 2-balanced if for everyH ′ ( H with v(H ′) > 2 we have d2(H ′) <
d2(H) and it is 2-balanced if m2(H) = d2(H). When determining whether a graph
is strictly 2-balanced it is enough to examine the densities of every spanning sub-
graph i.e. H is strictly 2-balanced if for every S ( V (H) with |S| > 2 we have that
d2(H[S]) < d2(H). An analogous statement holds for 2-balanced graphs.

Bohman and Keevash [6] have shown that strictly 2-balanced graphs are 2-
connected. Osthus and Taraz [31] noted that they are also strictly balanced. In
Proposition 2.1 we show that every 2-balanced graph is balanced, however they
are not necessarily connected as a complete matching on 2k vertices where k > 1 is
2-balanced. In Proposition 2.2 we will show that this is the only class of 2-balanced
graphs which are not connected. Note that adding an isolated vertex to a graph
decreases its 2-density and thus no 2-balanced graph contains an isolated vertex.
Let H be a 2-balanced graph, since it does not contain any isolated vertices thus
2e(H) ≥ v(H) and thus d2(H) ≥ 1/2.

Proposition 2.1

Every 2-balanced graph is balanced.

PROOF Let H be a 2-balanced graph and H ′ ( H . Since H has no isolated vertices,

removing k vertices fromH removes at least dk/2e edges. Therefore e(H)−e(H ′) ≥
(v(H)− v(H ′))/2 or equivalently 2e(H ′) + v(H) ≤ 2e(H) + v(H ′).

Since H is 2-balanced we have that:

e(H ′)− 1

v(H ′)− 2
≤ e(H)− 1

v(H)− 2

e(H ′)v(H)− 2e(H ′)− v(H) ≤ e(H)v(H ′)− v(H ′)− 2e(H)

e(H ′)v(H) ≤ e(H)v(H ′)

e(H ′)

v(H ′)
≤ e(H)

v(H)

completing the proof. �
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2.5 ROOTED GRAPHS

Excluding the case when H is a maximal matching on 2k vertices every 2-
balanced graph has maximal 2-density larger than 1/2 as it must contain a path
with 2 edges and d2(P2) = 1. Using this fact we can show that every 2-balanced
graph which is not a matching is connected. Define the family of functions

fd(H) = v(H)− 2− (e(H)− 1)/d.

This family is very useful when analysing densities as fd(H) > 0 iff d2(H) < d,
fd(H) < 0 iff d2(H) > d and fd(H) = 0 iff d2(H) = d.

Proposition 2.2

Every 2-balanced graph H with d2(H) > 1/2 is connected.

PROOF Assume for contradiction that H is 2-balanced with d2(H) > 1/2 and not

connected. Therefore one can partition V (H) into V1, V2 such that there is no edge

joining a vertex in V1 to a vertex in V2. Then we have that

0 > −2 +
1

d2(H)
= fd2(H)(H)− 2 +

1

d2(H)
= v(H)− 2− e(H)− 1

d2(H)
− 2 +

1

d2(H)

= |V1| − 2− e(H[V1])− 1

d2(H)
+ |V2| − 2− e(H[V2])− 1

d2(H)

= fd2(H)(H[V1]) + fd2(H)(H[V2]).

Therefore at least one of the terms is less then 0 and without loss of generality

we may assume that it is the first. Thus 0 > fd2(H)(H[V1]) which implies that

d2(H[V1]) > d2(H) contradicting the fact that H is 2-balanced. �

2.5 Rooted Graphs

Let F be a graph and let R ⊆ V (F ), then we call (R,F ) a rooted graph. We say that
(R,F ) is nontrivial if every vertex in the root has a non-root neighbour. In most
cases we will be considering rooted graphs where R forms an independent set.

Definition 2.1

Let (R,F ) be a rooted graph and G be a graph such that v(F ) ≤ v(G) and let S ⊆ V (G)

with |S| = |R|. For an injective function φ : R → V (G) we say that there is a copy of

(R,F ) with respect to φ in G if there exists an injective function f : V (F ) → V (G) such

that f(E(F )) ⊆ E(G) and f |R = φ.

In many cases it is enough that there is a copy of (R,F ) with respect to φ in G
for some φ : R → S where S ⊆ V (G). In this case we say that there is a copy of
(R,F ) rooted at S in G.

Definition 2.2

(R′, F ′) is a rooted subgraph of (R,F ) denoted by (R′, F ′) ⊆ (R,F ) if (R′, F ′) is a rooted

graph, F ′ is a subgraph of F and R′ = R ∩ V (F ′).
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2.5 ROOTED GRAPHS

We say that (R′, F ′) is a proper rooted subgraph of (R,F ) denoted by (R′, F ′) (
(R,F ) in case (R′, F ′) is a rooted subgraph of (R,F ) and F ′ is a proper subgraph
of F .

The following density function can be defined for rooted graphs:

d(R,F ) =
e(F )

v(F )− |R|

and the maximal density

m(R,F ) = max
R(S⊆V (F )

d(R,F [S]).

We say that a rooted graph is strictly balanced if for every R ( S ( V (F )
we have d(R,F [S]) < d(R,F ) and it is balanced if d(R,F [S]) ≤ d(R,F ). In the
following we show that if (R,F ) is a non-trivial strictly balanced rooted graph then
d(R′, F ′) < d(R,F ) for every (R′, F ′) ( (R,F ).

Proposition 2.3

Let (R,F ) be a nontrivial strictly balanced rooted graph and (R′, F ′) ( (R,F ) then

d(R′, F ′) < d(R,F ).

PROOF In case R′ = R then the statement holds as either V (F ′) = V (F ) in which

case e(F ′) < e(F ) or d(R,F ′) ≤ d(R,F [V (F ′)]) < d(R,F ).

Now if R′ ( R then create F ′′ by adding the vertices in R\R′ to F ′, formally

F ′′ = (V (F ′) ∪ R,E(F ′)). Obviously d(R′, F ′) = d(R,F ′′). Due to the fact that

(R,F ) is nontrivial we have that (R,F ′′) ( (R,F ) and we have already shown that

d(R,F ′′) < d(R,F ). �

Note that this is not true for trivial rooted graphs, as removing an isolated vertex
from the roots does not necessarily have an affect on the density.

Proposition 2.4

Let (R,F ) be a balanced rooted graph and (R′, F ′) ( (R,F ) then d(R′, F ′) ≤ d(R,F ).

PROOF Similarly as before let F ′′ be the graph created from F ′ by adding all the

vertices in R\R′. Obviously d(R′, F ′) = d(R,F ′′). The result follows as (R,F ′′) ⊆
(R,F ) and since (R,F ) is balanced d(R,F ′′) ≤ d(R,F [V (F ′′)]) ≤ d(R,F ). �

When determining whether a rooted graph is strictly balanced it is easier to
work with the following family of functions

fd(R,F ) = v(F )− |R| − e(F )

d

as fd(R,F ) = v(F ) − |R| − e(F )
d > 0 iff d(R,F ) < d and similarly fd(R,F ) =

v(F ) − |R| − e(F )
d < 0 iff d(R,F ) > d. Note that if R is an independent set then
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2.6 PROBABILISTIC THEOREMS

fd(R,F ) = 0 iff d(R,F ) = d or F = (R, ∅). Therefore if (R,F ) is a nontrivial strictly
balanced rooted graph such that R forms an independent set then by Lemma 2.3
we have that fd(R,F )(R

′, F ′) > 0 for every (R′, F ′) ( (R,F ).
There is a connection between strictly balanced rooted graphs and strictly 2-

balanced graphs, namely H is strictly 2-balanced iff for every r ∈ E(H) the rooted
graph (r,Hr) is strictly balanced. Similarly H is 2-balanced iff for every r ∈ E(H)
the rooted graph (r,Hr) is balanced.

Note that rooted graphs generalise the notion of a graph as every graph can
be considered as a rooted graph where the roots form an empty set. In this case
the notion of density of the rooted graph and the notion of density of the graph
coincide.

2.6 Probabilistic Theorems

In this section we introduce some probabilistic Lemma’s and Theorem’s which will
be used during this thesis. The following two Lemmas give lower bounds on the
probability that no event from a set of multiple dependent events happen.

Lemma 2.5 (Harris’s Lemma[23])

Let Ω be a finite universal set and let E be a random subset of Ω given by

P(e ∈ E) = pe

where these events are mutually independent over e ∈ Ω. Let {Ai}i∈I be subsets of Ω,

where I is a finite index set. Let Xi be the indicator random variable for the event that

Ai ⊆ E. Then for X =
∑

i∈I Xi we have that:

P(X = 0) ≥
∏
i∈I

P(Xi = 0).

Lemma 2.6

With the setup of Lemma 2.5, if in addition E(Xi) < 1 for every i ∈ I then

P(X = 0) ≥ exp

(
− E(X)

maxi∈I(1− E(Xi))

)
.

PROOF Lemma 2.5 gives us that P(X = 0) ≥
∏
i∈I P(Xi = 0). We also have that

∏
i∈I

P(Xi = 0) =
∏
i∈I

(1− E(Xi)) ≥
∏
i∈I

exp

(
− E(Xi)

1− E(Xi)

)
≥ exp

(
− E(X)

maxi∈I(1− E(Xi))

)
completing the proof. �

The following two Theorems give upper bounds on the probability that no
event from a set of multiple dependent events happens. We need the following
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2.6 PROBABILISTIC THEOREMS

definition for the first of these. We say that L is a dependency graph for a family of
random variables {Xi}i∈I if V (L) = I such that if A and B are two disjoint sub-
sets of I and L contains no edge between A and B, then the families {Xi}i∈A and
{Xi}i∈B are mutually independent.

Theorem 2.7 (Suen’s inequality [24])

Let Xi, i ∈ I be a finite family of Bernoulli random variables having dependency graph L.

For i, j ∈ I we write i ∼ j if {i, j} ∈ E(L). Let

∆ =
∑
i∼j

E(XiXj)

and

δ = max
i∈I

∑
i∼k

E(Xk).

Then for X =
∑

i∈I Xi we have that:

P(X = 0) ≤ exp
(
−E(X) + ∆e2δ

)
.

Theorem 2.8 (Janson’s inequality[25])

Let Ω be a finite universal set and let E be a random subset of Ω given by

P(e ∈ E) = pe

where these events are mutually independent over e ∈ Ω. Let {Ai}i∈I be subsets of Ω,

where I is a finite index set. Let Bi be the event that Ai ⊆ E. For i, j ∈ I we write i ∼ j if

i 6= j and Ai ∩Aj 6= ∅. Let

µ =
∑
i∈I

P(Bi)

and

∆ =
∑
i∼j

P(Bi ∩ Bj).

Then:

P

(⋂
i∈I
Bi

)
≤ exp (−µ+ ∆)

and

P

(⋂
i∈I
Bi

)
≤ exp

(
− µ

2

2∆

)
.

Note that we can assign indicator variablesXi to the eventsBi and in such a case
the event that none of the Bi happen is equivalent to the event that X =

∑
Xi = 0.

Note that if one considers a set of random variables which fulfil the conditions
of Janson’s inequality, then Suen’s inequality can also be applied to them, with the
same value of ∆. Thus Janson’s inequality gives a stronger bound, but Suen’s in-
equality can be applied more generally. The final Theorem in this section gives an
upper bound on the probability that out of a set of events many mutually indepen-
dent events happen.
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2.6 PROBABILISTIC THEOREMS

Theorem 2.9 ([18])

Let {Ai}i∈I be a set of events in an arbitrary probability space with I finite. Denote µ =∑
i∈I P(Ai). Let Y denote the size of the largest set J ⊆ I such that the set of events

{Aj}j∈J are mutually independent and the event
⋂
j∈J Aj holds. Then

P(Y ≥ s) ≤ µs

s!
≤
(eµ

s

)s
.

17



Chapter 3

Random Graph Processes

We start this chapter by showing equivalent definitions for the Erdős-Rényi ran-
dom graph process. Later we show how these definitions can be modified to create
equivalent definitions for the H-free and H-elimination random graph processes.

3.1 Erdős-Rényi random graph process

Definition 3.1

The Erdős-Rényi random graph process starts out from the empty graph on n vertices

and in every step it selects an edge uniformly at random from the set of non-edges and

inserts it into the graph.

Denote the graph created after m vertices were inserted by Gn,m. There are several

alternative definitions for this random graph process. The first of these orders the

edges before starting the process, instead of selecting the next edge after every step,

formally:

Definition 3.2

Consider the empty graph on n vertices and select a random permutation of the
(
n
2

)
possible

edges. Insert the first m edges of this permutation to create the random graph Gn,m.

Originally Erdős and Rényi [13] considered the following equivalent random graph

model.

Definition 3.3

Let Gn,m be the graph selected uniformly at random from all labelled graphs on n vertices

containing m edges.

The properties of Gn,m are well understood mostly due to its connection to Gn,p

when m ≈
(
n
2

)
p.

Definition 3.4

Let Gn,p be the random graph on n vertices where each of the
(
n
2

)
edges is present with

probability p independently of the presence or absence of the other edges.

18



3.2 THE H -FREE PROCESSES

A well known equivalent definition for this random graph model Gn,p is the fol-

lowing:

Definition 3.5

Consider the complete graph on n vertices and assign to each of its
(
n
2

)
edges a birthtime

uniformly and independently distributed on [0, 1]. An edge is present in Gn,p if its birth-

time is at most p.

This definition suggests the previously described connection between Gn,p and
Gn,m as ordering the edges according to their birthtimes and inserting the first m
edges into the graph creates Gn,m. Also if m =

(
n
2

)
p such that m = ω(1) then there

are a.a.s. m edges with birthtimes less then p.

Łuczak [29] showed that for a graph property Q if one knows the asymptotic

probability for Gn,m and this is the same for every m ≈ p
(
n
2

)
than one also has it for

Gn,p.

Theorem 3.1 ([29])

Let Q be an arbitrary graph property and p = p(n) ∈ [0, 1]. If for every graph Gn,m such

that m =
(
n
2

)
p + O

(√(
n
2

)
p(1− p)

)
it holds that P(Gn,m hasQ) → a as n → ∞, then

also P(Gn,p hasQ)→ a as n→∞.

In the same paper Łuczak [29] also showed the other direction, but only if the graph

property is monotone. A graph property is increasing if it is preserved under the

addition of edges and it is decreasing if it is preserved under the removal of edges.

A graph property is monotone if it is either increasing or decreasing.

Theorem 3.2 ([29])

Let Q be a monotone graph property and 0 ≤ m ≤
(
n
2

)
. If for every graph Gn,p such that

p = m/
(
n
2

)
+ O

(√
m(m−

(
n
2

)
)/
(
n
2

)3) it holds that P(Gn,p has Q) → a as n → ∞,

then also P(Gn,m hasQ)→ a as n→∞.

Similar results were known beforehand for the cases when the probability that the
graph property appears tended to 0 or 1 see for example [8].

3.2 The H-free processes

Definition 3.6 (H-free random graph process)

Fix a finite graph H . Start out from the empty graph on n vertices denoted by Gf (H)n,0.

In step i consider O(i) the set of non-edges which when inserted into Gf (H)n,i would not

create a copy of H . Gf (H)n,i+1 is constructed by adding an edge chosen uniformly at

random from O(i). The process stops when no more edges can be inserted.
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3.2 THE H -FREE PROCESSES

The set O(i) is called the set of open pairs at step i and let Q(i) = |O(i)|. The set of
non-edges which when inserted would create a copyH inGf (H)n,i is called the set
of closed pairs at step i and is denoted by C(i). The graph created by this process is
denoted by Gf (H)n.

Similarly to the Erdős-Rényi random graph process there are several alternative

definitions. Erdős, Suen and Winkler [17] gave the following equivalent definitions.

The first of these is based on ordering the edges randomly at the start of the process.

Definition 3.7 (H-free random graph process)

Fix a finite graph H . Consider a random permutation on the edges of the complete graph

on n vertices. Start from the empty graph on n vertices and consider the edges in the

permutation one at a time. An edge is inserted into the graph if it does not form a copy of H

with the previously inserted edges. The process stops after all edges have been considered.

Proposition 3.3

The above definitions of the H-free random graph process are equivalent.

PROOF Note that it is enough to show that at any step of Definition 3.7 we have

that the next edge which will actually be inserted is chosen uniformly at random

from the set of edges which when inserted into the graph would not create a copy

of H . Denote the edges of the complete graph on n vertices with e1, ..., e(n2)
and let

σ be a permutation on
[(
n
2

)]
. Fix i <

(
n
2

)
and let j1, j2 be such that j1, j2 6= σ(j) for

any j ≤ i and inserting either the edge ej1 or the edge ej2 would not create a copy

of H . Now we are interested in the number of permutations S1 such that for all

σ1 ∈ S1 we have that σ1(j) = σ(j) for j ≤ i and the next edge to be inserted is j1.

Define S2 analogously. Our aim is to show that |S1| = |S2|. Let σ1 ∈ S1 and let σ2

be the permutation created from σ1 by switching j1 and j2 i.e. σ2(σ−1
1 (j1)) = j2 and

σ2(σ−1
1 (j2)) = j1. Note that σ2 ∈ S2 and that due to symmetry this operation is a

bijection between the two sets. �

These first two models resemble the random graph process Gn,m. Introducing

birthtimes gives us a model resembling Gn,p. In this case birthtimes are used to

determine the order the edges are chosen.

Definition 3.8 (H-free random graph process)

Fix a finite graph H . Consider the complete graph on n vertices and assign to each of the

possible
(
n
2

)
edges a birthtime uniformly distributed in [0, 1]. Now start out from an empty

graph on n vertices and increase p gradually. Every time a new edge is born consider adding

this edge to the graph. In case adding this edge would create a copy of H in the graph then

discard the edge, otherwise insert it into the graph. Edges with equal birthtime (which occur
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3.3 H -ELIMINATION PROCESS

with probability zero) are considered in arbitrary order. Denote with Gf (H)n,p the graph

where all the edges with birthtime at most p have been considered.

Note that the term H-free can be replaced with any graph property preserved
by the deletion of edges, i.e. the next edge is chosen uniformly at random from
the set of non-edges which when added to the graph the chosen property is still
satisfied. In addition to the H-free random graph process, planar [21], bipartite
[17] and cycle-free [1] random graph processes have been studied.

3.3 H-elimination process

Definition 3.9 (H-elimination random graph process)

Fix a graph H . Start out from the complete graph on n vertices and in every step of the

process select an edge uniformly at random from the set of edges contained in a copy of H

and remove it from the graph. The process stops once no more copies of H exist.

Bollobás and Erdős [10] noted that the definition above actually describes a
family of processes as the edge which will be removed does not have to be selected
according to a uniform distribution, e.g. the edge could be selected in proportion
to the number of copies of H it is contained in. However the following equivalent
definitions only apply when the following edge is selected uniformly. Similarly to
the case of the H-free process this is equivalent to the following definition.

Definition 3.10 (H-elimination random graph process)

Fix a finite graph H . Start from the complete graph on n vertices. Take a random permu-

tation of the edges of Kn and traverse the edges one at a time. An edge is removed from the

graph if it is contained in a copy of H otherwise it remains in the graph.

Erdős, Suen and Winkler [17] observed that in this second definition if one has
a copy of H in the graph then none of its edges have been traversed, as every
traversed edge has either been removed or it is not in a copy of H . Therefore when
deciding whether an edge is in a copy of H one only has to consider the edges
which have not yet been traversed. Thus we have that an edge remains in the graph
iff it does not form a copy of H with the edges which have not yet been traversed.
Note that this is equivalent to the process which starts out from the empty graph
and in every step of the process and edge is inserted iff it does not form a copy of
H with the edges which have not yet been traversed. Reversing the direction in
which the edges are traversed leads to the following definition.

Definition 3.11 (H-elimination random graph process)

Fix a finite graph H . Consider a random permutation on the edges of the complete graph

on n vertices. Start from the empty graph on n vertices and consider the edges in the

permutation one at a time. An edge is added if it does not form a copy of H with the

previously traversed edges, otherwise it is discarded.
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3.4 H -REMOVAL PROCESS

The difference between this definition and Definition 3.7 for the random H-
free graph process is that in this case an edge is discarded if it forms a copy of H
with the previously traversed edges, instead of the previously inserted edges. This
implies that for any permutation theH-elimination process gives a subgraph of the
H-free process. Similarly as in the previous section we can construct our process
by assigning birth times to the edges.

Definition 3.12 (H-elimination random graph process)

Fix a finite graph H . Consider the complete graph on n vertices and assign to each of the

possible
(
n
2

)
edges a birthtime uniformly distributed in [0, 1). Now start out from an empty

graph on n vertices and increase p gradually. Every time a new edge is born consider adding

this edge to the graph. In case adding this edge forms a copy of H with the previously born

edges then discard the edge, otherwise insert it into the graph. Edges with equal birthtime

(which occur with probability zero) are considered in arbitrary order.

Note that choosing the edge uniformly at random from [0, 1] or from [0, 1) is
equivalent as with probability 1 none of the edges was assigned birthtime 1. The
graph created after every edge with assigned value less then p has been considered
is denoted by Ge(H)n,p.

3.4 H-removal process

A third option to create an H-free graph is the H-removal process, which similarly
to the previous process starts out from the complete graph on n vertices and in
every step a copy of H is selected uniformly at random and its edges are removed
from the graph. The process stops once no more copies of H exist.

The number of edges present in this process has been investigated when H is a
triangle. Recently Bohman, Frieze and Lubetzky [5] have shown that the random
triangle-removal process terminates a.a.s. with n3/2+o(1) edges, improving previous
results by Spencer [43], Rödl and Thoma [36] and Grable [22].
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Chapter 4

Previous Results

4.1 H-free process

The first question concerning the H-free random graph process is the number of
edges contained in the process. The first results relied on comparing the H-free
random graph process to Gn,p. These results already managed to approximate the
number of edges in the process up to a logarithmic factor. In many cases these are
still the best known bounds. The first half of this section discusses the ideas behind
these approximations. In many cases applying the differential equation method
improves these bounds. In some cases it gives lower and upper bounds which
differ only by a constant factor and for a special class of graphs it gives even tighter
concentration.

4.1.1 Bounds using approximations

Erdős, Suen and Winkler [17] observed that Definition 3.8 implies that the graph
created from Gn,p by removing every edge contained in a copy of H is a subgraph
of Gf (H)n,p and thus also of Gf (H)n. We will denote the graph created from Gn,p
by removing every copy ofH withG(H)n,p. This observation was later used by Os-
thus and Taraz [31] and Bollobás and Riordan [9] to give lower and upper bounds
for special cases of the H-free random graph process. We will give the results in
Osthus and Taraz [31] as these are more general and their upper bounds are more
accurate.

Theorem 4.1 ([31])

Let H be a balanced graph then a.a.s.

e(Gf (H)n) = Ω
(
n2−1/m(H)

)
.

Note that this implies a lower bound for every 2-balanced graph H .

Theorem 4.2 ([31])

Let H be a strictly 2-balanced graph then a.a.s.

∆(Gf (H)n) = O
(
n1−1/d2(H) log1/(∆(H)−1)

)
.

The proofs analyse G(H)n,p where p is chosen in such a way that the expected
number of copies of H in Gn,p is a small fraction of the expected number of edges
found in Gn,p i.e. p = cn−1/m(H) where c is a suitably chosen constant. Based
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4.1 H -FREE PROCESS

on concentration results on the number of edges and the number of copies of a
balanced graph in Gn,p one can deduce e(G(H)n,p) = Ω(n2−1/d2(H)).

For the upper bound consider x a vertex with maximal degree in H and denote
the neighbourhood of x with N(x). Now consider the graph H ′ which is created
from H by removing x. Note that for any vertex v ∈ V (Gf (H)n) and any S ⊆ N(v)
with |S| = ∆(H) there can be no copy of (N(x), H ′) rooted at S in Gf (H)n, except
when this copy contains v, as any such copy would imply that a copy of H is also
present in Gf (H)n.

Osthus and Taraz [31] show that any set of Cn1−1/d2(H) log1/(∆(H)−1) n vertices
in V (G(H)n,p) a.a.s. contains a subset S such that |S| = ∆(H) and a copy of
(N(x), H ′) is rooted at S in G(H)n,p. This clearly implies the upper bound on the
degree of every vertex and thus also on e(Gf (H)n).

In many cases these are still the best known results on the number of edges in
the H-free process.

Instead of removing every edge found in a copy of H Wolfovitz [49] calcu-

lated, for strictly 2-balanced graphs, the probability that an edge is actually re-

moved. More precisely he gave an upper bound on the probability that assuming

f ∈ E(Gn,p) we have that f 6∈ E(Gf (H)n,p) when p = c(log n)1/8e(H)n−1/d2(H)

for a suitably chosen constant c. This improved the lower bounds on e(Gf (H)n),

although only in expectation.

Theorem 4.3

Let H be a strictly 2-balanced graph then

E(e(Gf (H)n)) = Ω(n2−1/d2(H)(log log n)1/(e(H)−1)).

Warnke [47] showed the following connection between Gf (H)n,m and Gn,m for
decreasing graph properties:

Lemma 4.4 ([47])

Suppose Q is a decreasing graph property and that λ = λ(n) ≥ 2 is a parameter. Then for

every 1 ≤ m ≤
(
n
2

)
/λ, setting M = mλ, we have

P[Gf (H)n,m /∈ Q and |O(m)| ≥ n2/λ] ≤ P[Gn,M /∈ Q] + e−m/4.

Further using the connection between Gn,m and Gn,p Warnke [47] showed that

Theorem 4.5 ([47])

Let m = m(n) = ω(1) and p = m/
(
n
2

)
. Suppose that a.a.s. |O(i)| >

(
n
2

)
/λ for some

λ = λ(m) and that Q is a decreasing graph property. Then for the H-free process we have

P[Gf (H)n,m /∈ Q] ≤ P[Gn,pλ /∈ Q] + o(1).

Later we will use a slightly modified version of this Theorem namely
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4.1 H -FREE PROCESS

Theorem 4.6

Let m = m(n) = ω(log n) and p = m/
(
n
2

)
. Then for any decreasing graph property Q we

have that:

P[Gf (H)n,m /∈ Q and |O(m)| ≥ n2/λ] ≤ P[Gn,pλ /∈ Q] + o(n−2).

4.1.1.1 Hamiltonicity

One can also answer the question whether there is a Hamiltonian cycle in Gf (H)n
using similar methods. For this we need the following statements on random
graphs:

Theorem 4.7 ([7])

The threshold function for the appearance of a subgraph S in Gn,p is p = n−1/m(S).

Theorem 4.8 ([35])

The threshold function for the appearance of a Hamiltonian cycle in Gn,p is p = n−1 log n.

When d(H) > 1 the Hamiltonicity of the H-free process follows from the fact
that Gn,p = G(H)n,p = Gf (H)n,p as long as no copy of H is present in Gn,p. Since
this holds a.a.s. when p = o(n−1/d(H)) and because d(H) > 1 this holds at the time
when the Hamiltonian cycle is formed inGn,p. Therefore there is also a Hamiltonian
cycle in Gf (H)n.

The case when H is a cycle was solved by Allen [2] and Osthus [30] using the
following result of Sudakov and Vu [44]:

Theorem 4.9 ([44])

For every fixed ε > 0 and p ≥ log4 n/n the random graph Gn,p a.a.s. has the following

property. IfG′ is a subgraph ofGn,p with maximum degree ∆(G′) ≤ (1−ε)np thenG−G′

contains a Hamiltonian cycle.

Theorem 4.10

Let H be a cycle then a.a.s. Gf (H)n is Hamiltonian.

PROOF The difference compared to the previous case is that a small number of

copies ofH are already present inGn,p when the Hamiltonian cycle is formed at p =

log n/n. Select p̂ = log4 n/n. Next we will show that the graph G′ = Gn,p̂−G(H)n,p̂

a.a.s. has maximum degree 2. Note that once we have shown this the result follows

from Theorem 4.9.

In order to show that the maximum degree of G′ is 2 we will show that Gn,p̂
does not contain two vertex overlapping copies of H . Let F be a graph created

from two vertex overlapping copies of H . Note that the density of F is larger than

1 as δ(F ) ≥ 2 and ∆(F ) > 2 thus d(F ) ≥ ((vF − 1)δ(F ) + ∆(F ))/(2vF ) > 1.

Therefore according to Theorem 4.7 a.a.s. no copy of such a graph is present in
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4.1 H -FREE PROCESS

Gn,p̂. The result follows as there are only finite number of ways two copies of H

can overlap. �

4.1.2 Bounds using the Differential Equation Method

Applying the differential equation method to the H-free random graph process
brought the next breakthrough. The differential equation method was developed
by Wormald [52]. The main idea is to identify a collection of random variables
whose one step expected changes can be approximated in terms of the random
variables in the collection. These expressions yield an autonomous system of or-
dinary differential equations, and in case some additional conditions are met then
the random variables in our collection are tightly concentrated around the trajec-
tory given by the solution of the o.d.e.. There are several different sets of conditions
which when fulfilled result in tight concentration of the random variables for ex-
ample Theorem 5.1 in Wormald [52] or Lemma A.1 in Warnke [46] which is an
improved version of Lemma 7.3 in Bohman and Keevash [6].

Next we present the version by Warnke [46]. The notation ± is used in two
ways. First for b ≥ 0 we denote by a ± b the closed interval [a − b, a + b]. For
brevity we use the notation x = a ± b for x ∈ [a − b, a + b] and x ± y = a ± b for
[x − y, x + y] ⊆ [a − b, a + b]. The second is the notation ±1. Every expression
containing this symbol is an abbreviation for two different statements the first is
where every ±1 is replaced by + and the second is when it is replaced by −. For
example x±1 = a±1 ± b holds if both x+ = a+ ± b and x− = a− ± b hold. For the
sake of brevity we will omit the labels of the ± sign whenever there is no danger of
confusion.

In case all of the conditions of the following Lemma are satisfied for every value
of i ≤ m then we have bounds on the random variables Xσ(i) which hold a.a.s. for
every i ≤ m.

Lemma 4.11 (‘Differential Equation Method’[46])

Suppose that m = m(n) and s = s(n) are positive parameters. Let V = V(n) be a set, and

{Ij}j∈V be a family of sets, where Ij = Ij(n). For every 0 ≤ i ≤ m set t = t(i) := i/s.

Suppose we have a filtration F0 ⊆ F1 ⊆ · · · and random variablesXσ(i) and Y ±σ (i) which

satisfy the following conditions. Assume that for all j ∈ V and σ ∈ Ij the random variables

Xσ(i) are non-negative and Fi-measurable for all 0 ≤ i ≤ m, and that for all 0 ≤ i < m

the random variables Y ±σ (i) are non-negative, Fi+1-measurable and satisfy

Xσ(i+ 1)−Xσ(i) = Y +
σ (i)− Y −σ (i).

In addition, suppose that for each j ∈ V and σ ∈ Ij we have positive parameters uσ =

uσ(n), λσ = λσ(n), βσ = βσ(n), τσ = τσ(n), sσ = sσ(n) and Sσ = Sσ(n), as well as

functions xσ(t) and fσ(t) that are smooth and non-negative for t ≥ 0. For all 0 ≤ i∗ ≤ m,

let Gi∗ denote the event that for all 0 ≤ i ≤ i∗, j ∈ V and σ ∈ Ij , we have

Xσ(i) =

(
xσ(t)± fσ(t)

sσ

)
Sσ.
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4.1 H -FREE PROCESS

Moreover, assume that we have an event Hi ∈ Fi for all 0 ≤ i ≤ m with Hi+1 ⊆ Hi for

all 0 ≤ i < m. Finally, suppose that for n large enough the following conditions hold:

1. (Trend hypothesis) For all 0 ≤ i < m, j ∈ V and σ ∈ Ij , whenever Gi ∩Hi holds we

have

E
[
Y ±1
σ (i) | Fi

]
=

(
y±1
σ (t)± hσ(t)

sσ

)
Sσ
s
,

where y±σ (t) and hσ(t) are smooth non-negative functions such that

x′σ(t) = y+
σ (t)− y−σ (t) and fσ(t) ≥ 2

∫ t

0
hσ(τ) dτ + βσ.

2. (Boundedness hypothesis) For all 0 ≤ i < m, j ∈ V and σ ∈ Ij , whenever Gi ∩ Hi
holds we have

Y ±σ (i) ≤ β2
σ

s2
σλστσ

· Sσ
uσ
.

3. (Initial conditions) For all j ∈ V and σ ∈ Ij we have

Xσ(0) =

(
xσ(0)± βσ

3sσ

)
Sσ.

4. (Bounded number of variables) For all j ∈ V and σ ∈ Ij we have

max{|V|, |Ij |} ≤ euσ .

5. (High probability event) The eventHi satisfies

P[∃i ≤ m : Gi ∩ ¬Hi] = o(1).

6. (Additional technical assumptions) For all j ∈ V and σ ∈ Ij we have uσ = ω(1) as

well as

s ≥ max
{

15uστσ(sσλσ/βσ)2, 9sσλσ/βσ
}
, s/(18sσλσ/βσ) < m ≤ s · τσ/1944,

sup
0≤t≤m/s

y±σ (t) ≤ λσ,
∫ m/s

0
|x′′σ(t)| dt ≤ λσ,

hσ(0) ≤ sσλσ and
∫ m/s

0
|h′σ(t)| dt ≤ sσλσ.

Then Gm ∩Hm holds with high probability.

The fact that the xσ(t) are the solutions of a system of differential equations is
implicitly contained in the trend hypothesis. In order to verify the trend hypothe-
sis we need that E(Y ±1

σ (i)|Fi) can be expressed using the random variables Xσ(i).
We also have that Xσ(i) is concentrated around xσ(t)Sσ. Removing all of the error
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terms leaves us with a system of differential equations. In general this system of
differential equations is determined, usually with the help of heuristics, before at-
tempting to verify the conditions of Lemma 4.11. In this section we will show the
heuristics used in determining these equations for several H-free processes.

When analysing the H-free process using the differential equation method Def-
inition 3.6 will be used. One of the key observations behind the analysis of the
H-free process is that until one has roughly n2−ε open edges for some small ε > 0,
depending only onH , theH-free random graph process resembles the Erdős-Rényi
random graph process.

4.1.2.1 Star-free processes

In the special case when H is a star the H-free process is equivalent to the degree
bounded random graph process, or d-process where d = ∆(H)−1. In the d-process,
one starts out from the empty graph on n vertices and in every step selects uni-
formly at random a pair of non-adjacent vertices which have degree less then d and
adds this edge to the graph. Obviously the process contains at most bdn/2c edges.
Wormald [52], extending an argument of Ruciński and Wormald [38], has shown
that one can track the random variables D0(i), ..., Dd(i) accurately, where Dj(i) is
the number of vertices of degree j in Gf (H)n,i when i ≤ d(n/2 − n1−ε) for some
ε > 0. Note that at this stage |O(d(n − n1−ε))| = Ω(n2−2ε) as we have Ω(n1−ε)
vertices with degree less then d.

Note that

Q(i) =
1

2

(
d−1∑
k=0

Dk(i)

)2

+O(n) =
1

2
(n−Dd(i))

2 +O(n)

where the O(n) term follows from the edges already present between the vertices
with degree less then d. Let D+

j (i) be the number of vertices v which had degree
j − 1 in Gf (H)n,i, but have degree j in Gf (H)n,i+1. Similarly let D−j (i) be the
number of vertices v which had degree j in Gf (H)n,i, but have degree j + 1 in
Gf (H)n,i+1. Then we have that:

E(D+
j (i)) =

Dj−1(i)
∑d−1

k=0Dk(i) +O(n)

Q(i)
=

2Dj−1(i)

n−Dd(i)
+O(n−1)

for j > 0 as Q(i) = Ω(n2−2ε). Since inserting an edge can increase the degree of any
vertex by at most one we have that D+

j (i) = D−j−1(i) and thus:

E(D−j (i)) =
2Dj(i)

n−Dd(i)
+O(n−1)

for j < d. Clearly D0(0) = n and Dj(0) = 0 for j > 0.
In the following we will show the heuristics involved in determining the differ-

ential equations needed for the proof. Let t = i/n and Dj(i) ≈ zj(t(i))n where ≈
means that we approximate the value ofDj(i) with zj(t(i))n. Then we can estimate
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4.1 H -FREE PROCESS

the derivative of z0 as follows:

z′0(t) = z′0(t(i))(t(i+ 1)− t(i))n
≈ (z0(t(i+ 1))− z0(t(i)))n

≈ (D0(i+ 1))− (D0(i))

≈ D+
0 (i)−D−0 (i)

≈ E(D+
0 (i))− E(D−0 (i))

≈ − 2D0(i)

n−Dd(i)

≈ − 2z0(t(i))n

n− zd(t(i))n

= − 2z0(t(i))

1− zd(t(i))
.

A similar argument for the remaining variables gives us the following differen-
tial equations and initial conditions:

z′0(t) = − 2z0(t)

1− zd(t)
z0(0) = 1

z′j(t) =
2zj−1(t)− 2zj(t)

1− zd(t)
zj(0) = 0 for 0 < j < d

z′d(t) =
2zd−1(t)

1− zd(t)
zd(0) = 0.

The simple way to find the solution for this system of differential equations is
by exploiting the connection between Gf (H)n,i and Gn,i, and thus the connection
between Gf (H)n,i and Gn,p. Note that i = nt ≈

(
n
2

)
p thus p ≈ 2t/n. When p =

O(n−1) then the degree of every vertex can be approximated with independent
Poisson random variables with parameter λ = np thus the expected number of
vertices with degree j is n(np)je−np/j!. This suggests the following solutions for
the differential equations:

zj(t) =
(2t)je−2t

j!
for 0 ≤ j < d

zd(t) = 1−
d−1∑
k=0

zk(t)

and one can quickly check that these solutions satisfy the differential equations.
Wormald [52] has shown that a.a.s. the random variables remain close to the solu-
tions given by these differential equations.

Definition 4.1

Let Gm be the event that

Dk(i) = nz(i/n) + o(n)

holds for all 0 ≤ k ≤ d and 0 ≤ i < m.
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4.1 H -FREE PROCESS

Theorem 4.12 ([52])

Let H be a star. Then there exists an ε > 0 depending only on H such that Gm holds a.a.s.

for m = n(d/2− ε).

Wormald [52] actually states that this can be extended until d(n/2−n1−ε) edges
have been inserted into the process for some small ε. Ruciński and Wormald [38]
showed that after this point the minimum degree in the process a.a.s. increases and
soon after the minimum degree reaches d−1 a.a.s. all the vertices with degree d−1
form an independent set. Thus the process can continue until every vertex has
degree d and the graph contains bdn/2c edges.

Ruciński and Wormald [39] also show that when the d ≥ 3 the degree bounded
random graph process is a.a.s. connected. However Telcs, Wormald and Zhou [45]
showed that this does not hold in the case when d = 2, as in this case the degree
bounded process is a.a.s. not connected.

4.1.2.2 Strictly 2-balanced graphs

However when H is not a star this simplification can not be applied anymore.
Bohman and Keevash [6] in order to track the number of open pairs, also needed to
track the formation of rooted graphs. Let (R,Γ) be a rooted graph where R forms
an independent set and J is a spanning subgraph of Γ. Denote by Ξφ,J,Γ(i) the
set of injective functions f : V (Γ) → V (Gf (H)n,i) such that f |R = φ, f(E(J)) ⊆
E(Gf (H)n,i) and f(E(Γ)\E(J)) ⊆ O(i). Note that Ξφ,J,Γ(i) describes the copies of
the rooted graph (R, J) rooted at φ(R) such that the edges needed to extend this
copy into a copy of (R,Γ) can still be inserted. Let Xφ,J,Γ(i) = |Ξφ,J,Γ(i)|.

In addition to the number of open pairs Bohman and Keevash [6] track the
random variables Xφ,J,Γ(i) if one of the following two conditions holds:

• a) m(R,Γ) < d2(H) and Γ does not contain H as a subgraph

• b) m(R,Γ) = d2(H), E(J) ( E(Γ) and the graph Γ′ created from Γ by adding
all the edges {a, b} ∈ R×R such that φ(a)φ(b) ∈ E(Gf (H)n,i) does not contain
a copy of H .

We will refer to these variables as the tracked variables. Let t(i) = i/n2−1/d2(H)

and similarly as before we would like to show that these random variables are a.a.s.
concentrated around some functions for the beginning of the process namely for the
first µn2−1/d2(H) log1/(e(H)−1) n steps, where µ is a constant depending on H . Our
aim is to approximate the random variables as follows:

Xφ,J,Γ(i) ≈ xR,J,Γ(t(i))nfd2(H)(R,J)

Q(i) ≈ q(t(i))n2.

Recall that fd2(H)(R, J) = v(J) − |R| − e(J)/2. Note that the expected number
of copies of (R, J) rooted at S ⊆ V (Gn,p), with |R| = |S|, when p = n−1/d2(H)+o(1)

is nfd2(H)(R,J)+o(1). Since we expect the H-free random graph process to create a
graph which resembles Gn,p when p = n−1/d2(H)+o(1) we choose this as our scaling
factor.
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4.1 H -FREE PROCESS

Note thatQ(i) = Xφ0,e,e(i)/2 where φ0 : ∅ → V (Gf (H)n) and e and e are graphs
on 2 vertices with the edge present and absent, respectively.

Similarly as before we will use differential equations to determine the values of
these functions based on the expected change in the variables.

Denote by Cu,v(i) the number of pairs inO(i) which would become closed if the
edge {u, v}were inserted in step i. We will use the following heuristic:

Cu,v(i) ≈
∑

r,e∈E(H)
r 6=e

∑
φ:r→{u,v}

Xφ,H{r,e},Hr(i)/aut(H)

≈ 2

aut(H)

∑
r,e∈E(H)
r 6=e

xr,H{r,e},Hr(t)n
1/d2(H).

Note that this approximation assumes that Cu,v(i) is concentrated around the same
value for every open pair {u, v}. Define

c(t) =
2

aut(H)

∑
r,e∈E(H)
r 6=e

xr,H{r,e},Hr(t)

and let Q(i)+ be the size of O(i + 1)\O(i) and Q(i)− be the size of O(i)\O(i + 1).
Define X+

φ,J,Γ(i) and X−φ,J,Γ(i) similarly. Then we have that:

E(Q(i)+) = 0

E(Q(i)−) ≈ 1

Q(i)

∑
{u,v}∈O(i)

Cu,v(i) ≈ c(t)n1/d2(H)

E(X+
φ,J,Γ(i)) ≈ 1

Q(i)

∑
e∈E(J)

Xφ,Je,Γ(i) ≈
∑

e∈E(J)

1

q(t)n2
xR,Je,Γ(t)nfd2(H)(R,Je)

≈
∑

e∈E(J)

1

q(t)n2−1/d2(H)
xR,Je,Γ(t)nfd2(H)(R,J)

E(X−φ,J,Γ(i)) ≈ 1

Q(i)

∑
f∈Ξφ,J,Γ(i)

∑
e∈E(Γ)\E(J)

Cf(e)(i)

≈ 1

q(t)n2−1/d2(H)
(e(Γ)− e(J))c(t)xR,J,Γ(t)nfd2(H)(R,J).

Recall that t(i + 1) − t(i) = n−2+1/d2(H) and thus we have the following differ-
ential equations:

q′(t) = −c(t)

q(t)x′R,J,Γ(t) =
∑

e∈E(J)

xR,Je,Γ(t)− (e(Γ)− e(J))c(t)xR,J,Γ(t)

c(t) =
2

aut(H)

∑
r,e∈E(H)
r 6=e

xr,H{r,e},Hr(t).
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Clearly xR,J,Γ(0) = 1 if J is the empty graph and xR,J,Γ(0) = 0 otherwise. Also
q(0) = 1/2.

Similarly to the star-free random graph process the similarities to Gn,p can be
exploited, this time with p ≈ 2tn−1/d2(H). Obviously the edges are distributed
independently and we will assume that the open pairs are also distributed inde-
pendently. This suggests the following solution:

xr,J,Γ(t) = (2t)e(J)(2q(t))e(Γ)−e(J)

it follows that

c(t) =
2e(H)(e(H)− 1)

aut(H)
2e(H)−1te(H)−2q(t)

and thus

2q(t) = exp

(∫ t

0
−c(τ)dτ

)
= exp

(
−2e(H) e(H)

aut(H)
te(H)−1

)
.

Fix constants µ, ε, V and W satisfying 0 < µ � ε � 1/W � 1/V � 1/eH . The
notation 0 ≤ α � β means that there is an increasing function f(x) such that the
following hold for every 0 < α < f(β):

• e(µ log1/(e(H)−1) n) ≤ nε

• q(µ log1/(e(H)−1) n)−V ≤ nε

where e(t) = eP (t) − 1 with P (t) = W (te(H)−1 + t). Also define se = n1/(2e(H))−ε

and m = µn2−1/d2(H) log1/(e(H)−1) n.

Definition 4.2

Let Gm be the event that for every tracked variable and every i ≤ m the following holds:

Xφ,J,Γ(i) = (1± e(t)/se)(xR,J,Γ(t(i))± 1/se)n
fd2(H)(R,J).

Theorem 4.13 ([6])

For strictly 2-balanced graphs Gm holds a.a.s..

Theorem 4.14 ([6])

For strictly two balanced H we have that Gf (H)n contains a.a.s.

Ω(n2−1/d2(H) log1/(e(H)−1) n)

edges.

PROOF Since Gm holds a.a.s. we have that

Q(i) =

(
1± e(t)

se

)(
q(t(i))± 1

se

)
n2.

Note that e(t(m))/se = o(1) and that se = o(q(t(m))). We also have that q(t(m)) =

Ω(n−ε) thus Q(i) = Ω(q(t(m)n2)) = Ω(1). The statement follows from the fact that

the H-free process finishes only when there are no more open pairs. �
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4.1 H -FREE PROCESS

Note that in order to set up the differential equations it would be enough to
consider the random variables Xφ,J,Hr(i) for every J ( Hr and r ∈ E(H) as these
variables determine Cu,v(i).

Before showing how these results can be extended to determine upper bounds
on the size of the maximal independent set and on the maximum degree we first
show how this result was modified by Picollelli [32] to show a lower bound on the
diamond-free process.

4.1.2.3 The Diamond

The diamond or K−4 is a 2-balanced graph however it is not strictly 2-balanced as
K3 ( K−4 and d2(K3) = d2(K−4 ) = 2. Similarly to the previous cases the aim is to
trackQ(i) for which we need to determine E(Q(i)−). However unlike the strictly 2-
balanced case Cu,v(i) is not concentrated around one value for every {u, v} ∈ O(i).
This is due to the fact that there is a large difference in the value of Cu,v(i) based
on whether the codegree of {u, v} ∈ O(i) is 0 or 1. Note that when the codegree of
{u, v} is larger than one then it is already closed.

PartitionO(i) into two partsO0(i) andO1(i) whereO0(i) is the set of open pairs
which have codegree zero and O1(i) is the set of open pairs which have codegree
1. Also let Q0(i) = |O0(i)| and Q1(i) = |O1(i)|. Note that this is similar to what
was done in the star free process where the vertices with degree less than d were
partitioned into classes with degree exactly k for every k < d. The edges are also
partitioned into two groups namely the edges not contained in a triangle denoted
by E0(i) and the edges contained in a triangle denoted by E1(i). We are interested
in the sets Ξφ,J,Γ(i) and the random variables Xφ,J,Γ(i) only in the case when Γ =
(K3)r for r ∈ E(K3) and φ(r) ∈ O(i). Therefore we simplify the notation. For
the rest of this section fix r ∈ K3 and let {e1, e2} = E(K3)\r. Let Ξφ,E(J)(i) =
Ξφ,J,(K3)r(i) and Xφ,E(J)(i) = Xφ,J,(K3)r(i). In order to track Q0(i) and Q1(i) we
need to partition the set Ξφ,E(J)(i) according to whether the codegree of f(e1) and
f(e2) is zero or one. Thus for fixed φ and J we are looking at 4 sets Ξφ,E(J),D(i) and
thus 4 random variables Xφ,E(J),D(i), where D ⊆ {e1, e2}. Formally Ξφ,E(J),D(i) is
the set of maps f ∈ Ξφ,E(J)(i) which satisfy that f(e) ∈ O1(i) ∪ E1(i) iff e ∈ D.
Similarly to the strictly 2-balanced case let t = i/n2−1/m2(H) = i/n3/2 and

Q0(i) ≈ q0(t)n2

Q1(i) ≈ q1(t)n2

Xφ,E(J),D(i) ≈ xr,E(J),D(t)nf2(r,J).

Similarly to the strictly 2-balanced case the nf2(r,J) term follows from the fact
that we expect our graph to look similar to Gn,p when p = n−1/2+o(1). The expected
number of copies in (R, J) rooted at S in Gn,p, when p = n−1/2+o(1) is nf2(R,J)+o(1).
We also assume that each partition of Ξφ,E(J)(i) contains a large fraction of the
elements.

We modify the definition of Cu,v(i) slightly. For u, v ∈ O1(i) it still denotes the
number of edges which when inserted into the graph would close {u, v}. However
in the case when {u, v} ∈ O0(i) this is the number of open pairs which when in-
serted into the graph would remove {u, v} from O0(i), therefore in addition to the

33



4.1 H -FREE PROCESS

edges which when inserted would close {u, v} the edges which would increase the
codegree of {u, v} are also counted. Thus for {u, v} ∈ O0(i) we have that:

Cu,v(i) =
∑

φ:r→{u,v}

∑
D⊆{e1,e2}

Xφ,e1,D(i)

≈ 2
∑

D⊆{e1,e2}

xr,e1,D(t)
√
n

= c0(t)
√
n.

For {u, v} ∈ O1(i) let g({u, v}) denote the vertex connected to both u and v. As-
sume that inserting the edge {w1, w2} closes {u, v} and in particular increases the
codegree of {u, g({u, v})}. Then we have that {w1, w2} ∈ O1(i) as inserting this
edge created a triangle. Therefore when {u, v} ∈ O1(i) we have that:

Cu,v(i) =
∑

φ:r→{u,v}

∑
D∈{e1,e2}

Xφ,e1,D(i)

+

 ∑
φ:r→{u,g({u,v})}

Xφ,e1,e2(i) +
∑

φ:r→{v,g({u,v})}

Xφ,e1,e2(i)


≈

2
∑

D⊆{e1,e2}

xr,e1,D(t) + 4xr,e1,e2(t)

√n
= c1(t)

√
n.

Let Du,v(i) denote the number of edges which when inserted into the graph would
increase the codegree of {u, v} by one and does not close {u, v} in the process.

Du,v(i) =
∑

φ:r→{u,v}

Xφ,e1,∅(i) ≈ 2xr,e1,∅(t)
√
n = d(t)

√
n.

Thus we can express the expected change as:

E(Q+
0 (i)) = 0

E(Q−0 (i)) =
1

Q(i)

∑
{u,v}∈O0(i)

Cu,v(i) ≈
q0(t)c0(t)

q(t)

√
n

E(Q+
1 (i)) =

1

Q(i)

∑
{u,v}∈Q0(i)

∑
φ:r→{u,v}

Xφ,e1,∅(i) ≈ 2
q0(t)

q(t)
xr,e1,∅(t)

√
n

E(Q−1 (i)) =
1

Q(i)

∑
{u,v}∈O1(i)

Cu,v(i) ≈
q1(t)c1(t)

q(t)

√
n.
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Also

E(X+
φ,E(J),D(i)) =

1

Q(i)

 ∑
e∈E(J)

Xφ,E(J)\e,D(i) +
∑
e∈D

∑
f∈Ξφ,E(J),D\e(i)

Df(e)(i)


≈ 1

q(t)

 ∑
e∈E(J)

xr,E(J)\e,D(t) +
∑
e∈D

xr,E(J),D\e(t)d(t)

 nf2(R,J)√n
n2

E(X−φ,E(J),D(i)) =
1

Q(i)

∑
e∈E(Γ)\E(J)

∑
f∈Ξφ,E(J),D(i)

Cf(e)(i)

≈
xr,E(J),D(t)

q(t)
((2− |E(J) ∪D|)c0(t) + |D\E(J)|c1(t))

nf2(R,J)√n
n2

.

This gives us the following system of differential equations:

q′0(t) = −q0(t)c0(t)

q(t)

q′1(t) =
q0(t)

q(t)
d(t)− q1(t)c1(t)

q(t)

x′r,E(J),D(t) =
1

q(t)

 ∑
e∈E(J)

xr,E(J)\e,D(t) +
∑
e∈D

xr,E(J),D\e(t)d(t)


−
xr,E(J),D(t)

q(t)
((2− |E(J) ∪D|)c0(t) + |D\E(J)|c1(t))

c0(t) = 2
∑

D⊆{e1,e2}

xr,e1,D(t)

c1(t) =

2
∑

D⊆{e1,e2}

xr,e1,D(t) + 4xr,e1,e2(t)


d(t) = 2xr,e1,∅(t)

and initial conditions q0(0) = 1/2, q1(t) = 0, xr,E(J),D = 1 if E(J) = D = ∅ and
0 otherwise. Similarly to earlier occasions we solve these differential equations by
comparing the diamond free random graph process to Gn,p when p = 2t/

√
n. We

have that the codegree for any given pair of vertices in Gn,p is Poisson distributed
with parameter np2 which would indicate that q0(t) = e−4t2 and q1(t) = 4t2e−4t2 .
However the approximation for q1(t) is incorrect as this considers all edges, how-
ever for a pair of vertices which have exactly one mutual neighbour to be open, it is
required that neither edge involved in the creation of the mutual neighbour is con-
tained in a triangle. One could try expanding this argument by multiplying with
an e−4t2 term i.e. the probability that a given pair of vertices have codegree zero,
for both edges. However this is unlikely to hold, as we have strongly limited the
number of triangles which can appear, due to the fact that every edge can be found
in at most one triangle. Recall that by definition |E(i)| = tn3/2. Let E0(i) ≈ r(t)n3/2

and thus E1(i) ≈ (t− r(t))n3/2. Then replacing the 4t2 term with 4(r(t))2 and thus
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q1(t) = 4(r(t))2e−4t2 should be the correct term. Note that |E0(i)| increases by 1 ev-
ery time an element in O0(i) is selected and it decreases by 2 every time an element
in O1(i) is selected. This implies the following differential equation for r(t)

r′(t) =
q0(t)− 2q1(t)

q(t)
=
q0(t)− 2q1(t)

q0(t) + q1(t)
=

1− 8r(t)2

1 + 4r(t)2

and this differential equation with the initial condition r(t) = 0 holds if r(t) satis-
fies:

8t+ 4r(t)− 3
√

2 · arctanh(2
√

2 · r(t)) = 0.

If one examines the solutions of the differential equations when H is a strictly
2-balanced graph one multiplies a 2t term for every edge present in the graph and
a 2q(t) term for every edge still needed. Similarly here one multiplies a 2r(t) term
for every edge not in a triangle, a 2(t − r(t)) term for every edge in a triangle, a
2q0(t) term for every needed edge with codegree zero and a 2q1(t) term for every
needed edge with codegree one. Thus the solutions of the above variables can be
expressed as follows:

q0(t) = e−4t2/2

q1(t) = 4(r(t))2e−4t2/2 = 2(r(t)2)e−4t2

xr,E(J),D(t) = (2q0)2−|E(J))∪D|(2q1)|D\E(J)|(2r(t))|E(J)\D|(2(t− r(t)))|E(J)∩D|.

Let K be a sufficiently large constant and define

e(t) = eK(t2+t), eq(t) = 1 +

∫ t

0
Ke(τ)dτ, se = n1/6.

Let 0 ≤ ε ≤ 1/40 and let µ = µ(ε,K) > 0 be sufficiently small so that e(µ
√

log n) <
nε for all sufficiently large n. Let m = µ

√
log nn3/2.

Definition 4.3

Let Gm be the event that the following bounds hold for every i ≤ m, E(J) ⊆ {e1, e2},
D ⊆ {e1, e2} and f ∈ V (Gf (K−4 )n,i)× V (Gf (K−4 )n,i)

Qj(i) = (qj(t)±
eq(t)

se
)n2

∑
φ:r→f

Xφ,E(J),D =

(
2xr,E(J),D(t)± e(t)e4t2(e(J)−2)

se

)
nf2(r,J)

Theorem 4.15 ([32])

For the diamond-free random graph process Gm holds a.a.s..

4.1.2.4 Independent sets

Before discussing the upper bounds on the number of edges we will first show an
upper bound on the size of the largest independent set. Similar ideas will be used
when establishing an upper bound on the number of edges. Actually an upper
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4.1 H -FREE PROCESS

bound is shown for α(Gf (H)n,m) and since adding edges can only decrease the
independence number this is an upper bound on the size of any independent set at
the end of the process. Note that in case H is a triangle this actually gives an upper
bound on the length of the triangle-free random graph process as in a triangle-free
graph the neighbourhood of any vertex forms an independent set.

The main idea behind the proof is to give a lower bound on the number of open
pairs in any set of size 3µ−1(log n)1−1/(e(H)−1)n1/d2(H). Consider a set I of this size,
and let OI(i) denote the set of open pairs in I at step i. Again the differential equa-
tion method is used to track the random variable |OI(i)|. However using the differ-
ential equation method for this random variable is not straightforward as inserting
certain edges into the graph can cause a large change in this random variable, e.g.
when H is a triangle then adding an edge connecting a vertex in I to a vertex with
many neighbours in I could close a large number of open pairs in OI(i). Therefore
instead of tracking |OI(i)| one tracks a random variable |O′I(i)|, which do not take
the affect of these large changes into account. Note that |O′I(i)| > |OI(i)|, however
in special cases, e.g. whenH is a cycle or whenH is a complete graph, one can give
an upper bound on |O′I(i)| − |OI(i)|.

Theorem 4.16 ([6])

Let H be a cycle or a complete graph. Let QI(i) denote the number of open pairs in the H-

free process at step i in I ⊂ V (Gf (H)n,i), where |I| = 3µ−1(log n)1−1/(e(H)−1)n1/d2(H)

then:

QI(i) = (1± e(t)n−2ε)(2q(t)± 2n−2ε)(3µ−1(log n)1−1/(e(H)−1)n1/d2(H))2/2.

Now one can calculate the probability that none of these edges are chosen in the
first m steps and applying the union bound gives:

Theorem 4.17 ([6])

LetH be a cycle or a complete graph then every set of size 3µ−1(log n)1−1/(e(H)−1)n1/d2(H)

contains an edge by time m.

4.1.3 Upper bounds

The idea for finding an upper bound on the number of edges is similar to find-
ing the size of the maximal independent set. However due to technical difficul-
ties, so far the order of magnitude has only been determined for cycles, the K4

and the diamond. In general one tries to show that after m steps a.a.s. there is a
copy of (N(v), H[V (H)\v]) for some v ∈ V (h) rooted in every vertex set of size
Cn1−1/d2(H) log1/e(H)−1 n. When H is the K4 we want to show that there is a trian-
gle in every set of size Cn3/5 log1/5 n and in case H is a cycle of length ` then we
want to show that in any set of size Cn1/(`−1) log1/(`−1) n there is a pair of vertices
connected by a path of length `−2. In case H is the diamond we want to show that
there is an edge with codegree one in every set of size Cn1/2

√
log n.

The main idea is to track the number of open pairs which would complete a
copy of such a graph. Similarly to the independent set one ignores the edges which
would cause large changes in this random variable and tries to estimate the maxi-
mal affect of the ignored edges.
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Theorem 4.18 ([46],[51])

We have a.a.s. that

∆(Gf (K4)n) = O(n3/5 5
√

log n).

Theorem 4.19 ([47],[34])

We have a.a.s. that

∆(Gf (C`)n) = O((n log n)1/(`−1)).

Theorem 4.20 ([32])

We have a.a.s. that

∆(Gf (K−4 )n) = O(
√
n log n).

4.1.4 Ramsey and Turán numbers

As we mentioned in the introduction this graph process is strongly connected to
the Ramsey number. More precisely it is connected to the asymptotics of the off-
diagonal Ramsey number R(k, t) when k is fixed and t tends to infinity. Note that
showing that there exists a Kk-free graph on n vertices which has an independent
set of size t implies that R(k, t) > n. Therefore it follows from Theorem 4.17 that

Theorem 4.21 ([6])

For fixed k ≥ 3 we have that

Rk,t = Ω
(
t
k+1

2 (log(t))
1

k−2
− k+1

2

)
.

Currently these are the best known lower bounds.

Recall that the Turán number ex(n,H) is the maximal number of edges con-

tained in an H-free graph on n vertices. Note that the number of edges in the

H-free random graph process give a lower bound for the asymptotics of the Turán

number.
Theorem 4.22

For every strictly 2-balanced H we have that

ex(n,H) = Ω(n2−1/d2(H) log1/(e(H)−1) n).

In most cases deterministic methods give better lower bounds. For general H
the Erdős-Stone theorem [16] gives the exact asymptotics for the Turán number,
except when H is bipartite. Deterministic constructions also exist for complete bi-
partite graphs. It is known that ex(n,Ks,t) = O(n2−1/s) [28], [19]. Lower bounds
matching this upper bound up to a constant factor are known for the K2,2 [15], the
K3,3 [11] and the Ks,t when t > (s− 1)! + 1 [3].

Note that ex(n,H ′) ≤ ex(n,H) when H ′ ⊆ H . Thus we have that

Ω(n5/3) = ex(n,K3,3) ≤ ex(n,K−3,4) ≤ ex(n,K3,4)) = O(n5/3).

Still in many cases Theorem 4.22 is the best known lower bound. For example
when H = Kr,r for r ≥ 5.
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4.2 H -ELIMINATION PROCESS

4.2 H-elimination process

Although the H-elimination process has not been studied in detail, many results
originally shown for the H-free process still apply. Note that removing every edge
in every copy of H from Gn,p, in addition to creating a subgraph of the H-free
process, one also creates a subgraph of the H-elimination process. Therefore the
previous results imply a lower bound when H is balanced, namely e(Ge(H)n,1) =
Ω(n2−1/d2(H)). Recall that the H-elimination process creates a subgraph of the H-
free process, this implies that every upper bound for the H-free process is also an
upper bound for the H-elimination process. Tighter upper bounds can be shown
using the following Theorem of Spencer [42].

Fix a rooted graph (R,F ) such that R forms an independent set. Let Ext(R,F )
be the event that for every injective function φ : R → V (Gn,p) there exists a copy
of (R,F ) with respect to φ in Gn,p. Spencer [42] proved thresholds for the event
Ext(R,F ).

Theorem 4.23 ([42])

Let (R,F ) be a non-trivial strictly balanced rooted graph. Let c1 be the number of graph

automorphisms of F such that the roots are fixed points. Let c2 be the number of bijections

on R which can be extended to an automorphism over F . Let λ > 0 be arbitrary and fixed.

Let p = p(n) satisfy

nv(F )−|R|pe(F )/c1 = ln(n|R|/(c2λ)).

Then

P(Ext(R,H))→ e−λ.

Select r ∈ E(H) for H strictly 2-balanced. Then inserting any pair of vertices
intoGn,p when p = cn−1/d2(H) log1/(e(H)−1) n a.a.s. creates a copy ofH . This implies
that there are a.a.s.O(n2−1/d2(H)) log1/(e(H)−1) n edges in theH-elimination process,
when H is strictly 2-balanced.

A slightly weaker version of this theorem is valid for any graph.

Theorem 4.24 ([42])

Let (R,F ) be a rooted graph such that R forms an independent set.

If for every (R′, F ′) ⊆ (R,F ) such that m(R,F ) = d(R′, F ′) we have that R′ is a set

of isolated vertices then p = n−1/m(R,F ) is a threshold function for Ext(R,F ) in the sense

that

If p = o(n−1/m(R,F )) then P(Ext(R,F ))→ 0

If p = ω(n−1/m(R,F )) then P(Ext(R,F ))→ 1.

Otherwise let (R′, F ′) ⊆ (R,F ) be the rooted subgraph with the least number of

edges such that m(R,F ) = d(R′, F ′) and R′ is not a set of isolated vertices. Then

p = n−1/m(R,F ) log1/e(F ′) n is a threshold function for Ext(R,F ) in the sense that there
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4.2 H -ELIMINATION PROCESS

exists constants 0 < c < C such that

If p ≤ cn−1/m(R,F ) log1/e(F ′) n then P(Ext(R,F ))→ 0

If p ≥ Cn−1/m(R,F ) log1/e(F ′) n then P(Ext(R,F ))→ 1.

This clearly gives an upper bound for the H-elimination process in general,
after examining (r,Hr) for every r ∈ E(H). Let m = minr∈E(H)m(r,Hr). Now
let r1, r2, ..rk be the set of edges where this minimum is achieved. If there exists
i ≤ k such that for every (ri, F ) ⊆ (ri, Hri) with d(ri, F ) = m we have that r
is a set of isolated vertices, then for any g(n) = ω(1) function the H-elimination
process terminates with O(n−1/m(H))g(n) edges. On the other hand if this does not
hold, then let si be the minimal number of edges found in (ri, F ) ⊆ (ri, Hi) such
that d(ri, F ) = m and ri is not an isolated set. Let s = max si. Then the process
terminates a.a.s. with O(n−1/m(H) log1/s n) edges.
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Chapter 5

H-elimination random graph process

In contrast to the H-free process one does not need to use the differential equation
method to analyse the H-elimination process. First we will show bounds on the
expected number of edges created by the H-elimination process. Afterwards we
will show that the number of edges is concentrated around its expectation in case
H is strictly 2-balanced. Finally we will examine the independence number and the
subgraphs present in the H-elimination process when H is strictly 2-balanced. In
this chapter we will be using Definition 3.12, where we assign a birthtime to every
edge independently and uniformly from [0, 1) and consider the edges in order of
the birthtimes. Let pe denote the value assigned to edge e and note that edge e is
inserted into the graph if no copy of (r,Hr) is rooted at e in Gn,pe for any r ∈ E(H).
Since in most cases the appearance of different copies of (r,Hr) rooted at e are not
independent it is vital to study how these copies can overlap.

5.1 Overlapping rooted graphs

In this section we are considering how two rooted graphs can overlap.

Definition 5.1

Let (R1, F1) and (R2, F2) be two (not necessarily different) nontrivial rooted graphs. De-

fine (R1, F1)⊕(R2, F2) as the set of triples (g1, g2, F ) where F is a graph and gi : V (Fi)→
V (F ) are injective functions such that the following hold:

• F = (g1(V (F1)) ∪ g2(V (F2)), g1(E(F1)) ∪ g2(E(F2)))

• g1(E(F1)) ∩ g2(E(F2)) 6= ∅

• g1(R1, F1) 6= g2(R2, F2)

In addition denote the vertex sets Sg1,g2,F = g1(R1)∪g2(R2), Rg1,g2,F = g1(R1)∩g2(R2)

and the graph Tg1,g2,F = (g1(V (F1)) ∩ g2(V (F2)), g1(E(F1)) ∩ g2(E(F2))).

Sg1,g2,F is the “union” of the roots, Rg1,g2,F is the “intersection” of the roots,
Tg1,g2,F is the “intersection” of the graphs and F is the “union” of the graphs. When
the roots of a rooted graph form an empty set then we have a graph and in this case
the rooted graph being strictly balanced is equivalent to the fact that the graph
is strictly balanced. It is known that the union of two balanced graphs with the
same density is at least as dense as the original graphs, however when both are

41



5.1 OVERLAPPING ROOTED GRAPHS

strictly balanced the density of the union is denser then the original graphs. The
following Lemmas generalise these statements for balanced and strictly balanced
rooted graphs.

Lemma 5.1

For any two rooted graphs (R1, F1), (R2, F2) and (g1, g2, F ) ∈ (R1, F1) ⊕ (R2, F2) we

have for any value of d that

fd(Sg1,g2,F , F ) = fd(R1, F1) + fd(R2, F2)− fd(Rg1,g2,F , Tg1,g2,F ).

PROOF Applying the inclusion exclusion principle gives that:

fd(Sg1,g2,F , F ) = v(F )− |Sg1,g2,F | −
e(F )

d

= v(F1) + v(F2)− v(Tg1,g2,F )− |R1| − |R2|+ |Rg1,g2,F |

−
e(F1) + e(F2)− e(Tg1,g2,F )

d

= v(F1)− |R1| −
e(F1)

d
+ v(F2)− |R2| −

e(F2)

d

−
(
v(Tg1,g2,F )− |Rg1,g2,F | −

e(Tg1,g2,F )

d

)
= fd(R1, F1) + fd(R2, F2)− fd(Rg1,g2,F , Tg1,g2,F )

completing the proof. �

Lemma 5.2

Let (R1, F1) be a strictly balanced nontrivial rooted graph and (R2, F2) be a rooted graph

such that d = d(R1, F1) ≤ d(R2, F2). Then we have for every (g1, g2, F ) ∈ (R1, F1) ⊕
(R2, F2) that:

fd(Rg1,g2,F , Tg1,g2,F ) ≥ 0

where equality holds only if (Rg1,g2,F , Tg1,g2,F ) = g1(R1, F1).

PROOF Due to the fact that Rg1,g2,F ⊆ g1(R1) we have that fd(Rg1,g2,F , Tg1,g2,F ) ≥
fd(g1(R1) ∩ V (Tg1,g2,F ), Tg1,g2,F ) and equality holds only if Rg1,g2,F = g1(R1) ∩
V (Tg1,g2,F ). Note that (g1(R1) ∩ V (Tg1,g2,F ), Tg1,g2,F ) ⊆ g1(R1, F1). Since (R1, F1) is

a strictly balanced rooted graph we have that fd(g1(R1) ∩ V (Tg1,g2,F ), Tg1,g2,F ) ≥ 0.

Proposition 2.3 gives us that equality holds only if (g1(R1)∩ V (Tg1,g2,F ), Tg1,g2,F ) =

g1(R1, F1). The statement follows. �

Lemma 5.3

Let (R1, F1) be a balanced rooted graph and (R2, F2) be a rooted graph such that d =

d(R1, F1) ≤ d(R2, F2). Then we have for every (g1, g2, F ) ∈ (R1, F1)⊕ (R2, F2) that:

fd(Rg1,g2,F , Tg1,g2,F ) ≥ 0.
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PROOF The proof is similar to the strictly balanced case. Since Rg1,g2,F ⊆ g1(R1)

thus fd(Rg1,g2,F , Tg1,g2,F ) ≥ fd(g1(R1) ∩ V (Tg1,g2,F ), Tg1,g2,F ). Note that (g1(R1) ∩
V (Tg1,g2,F ), Tg1,g2,F ) ⊆ g1(R1, F1). Since (R1, F1) is a balanced rooted graph we

have by Proposition 2.4 that fd(g1(R1) ∩ V (Tg1,g2,F ), Tg1,g2,F ) ≥ 0. �

Lemma 5.4

Let (R1, F1), (R2, F2) be nontrivial strictly balanced rooted graphs such that d(R1, F1) =

d(R2, F2). Then we have for any d ≤ d(R1, F1) and for every (g1, g2, F ) ∈ (R1, F1) ⊕
(R2, F2) that:

fd(Sg1,g2,F , F ) < 0.

PROOF Obviously fd(Sg1,g2,F , F ) ≤ fd′(Sg1,g2,F , F ) if d ≤ d′ so we may assume that

d = d(R1, F1). According to Lemma 5.1 for any (g1, g2, F ) ∈ (R1, F1) ⊕ (R2, F2)

we have that fd(Sg1,g2,F , F ) = fd(R1, F1) + fd(R2, F2) − fd(Rg1,g2,F , Tg1,g2,F ). We

have that fd(R1, F1) = 0 and fd(R2, F2) = 0. Thus it follows that fd(Sg1,g2,F , F ) =

−fd(Rg1,g2,F , Tg1,g2,F ). Lemma 5.2 gives us that fd(Rg1,g2,F , Tg1,g2,F ) ≥ 0 where

equality holds only if (Rg1,g2,F , Tg1,g2,F ) = g1(R1, F1).

Assume for contradiction that (Rg1,g2,F , Tg1,g2,F ) = g1(R1, F1). This implies that

g1(R1, F1) ⊆ g2(R2, F2). However the case g1(R1, F1) = g2(R2, F2) is ruled out by

the definition, therefore g1(R1, F1) ( g2(R2, F2). However this implies that (R2, F2)

a nontrivial strictly balanced graph has a rooted subgraph with the same density

which is a contradiction with Proposition 2.3. �

Lemma 5.5

Let (R1, F1), (R2, F2) be balanced rooted graphs such that d(R1, F1) = d(R2, F2). Then

we have for any d ≤ d(R1, F1) and for every (g1, g2, F ) ∈ (R1, F1)⊕ (R2, F2) that:

fd(Sg1,g2,F , F ) ≤ 0.

PROOF Similarly to the strictly balanced case we may assume that d = d(R1, F1).

Lemma 5.1 implies fd(Sg1,g2,F , F ) = fd(R1, F1) + fd(R2, F2)− fd(Rg1,g2,F , Tg1,g2,F ).

Again fd(R1, F1) = 0 and fd(R2, F2) = 0. Thus we have that fd(Sg1,g2,F , F ) =

−fd(Rg1,g2,F , Tg1,g2,F ) and Lemma 5.3 gives us that fd(Rg1,g2,F , Tg1,g2,F ) ≥ 0. �

5.2 Expected number of edges

In this section we consider the expected number of edges contained in the final
graph of theH-elimination process. We give lower and upper bounds which match
up to a constant factor when H is 2-balanced, and we give the exact asymptotics
when H is strictly 2-balanced and when K = K−4 and H = K−3,4.
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Let He denote the event that an edge e is inserted into the H-elimination ran-
dom graph process. Recall thatHe holds if no copy of (r,Hr) is rooted at e in Gn,pe
for any r ∈ E(H).

Erdős, Suen and Winkler [17] have considered the case when H is a triangle.
Note that in this case for He to hold e must have no mutual neighbours in Gn,pe .
Since the appearance of the individual mutual neighbours of e are independent
thus

P(e ∈ E(Ge(K3)n,1)|pe) = (1− p2
e)
n−2

and thus

P(e ∈ E(Ge(K3)n,1)) =

∫ 1

0
(1− p2

e)
n−2dpe = 4n−2 ((n− 2)!)2

(2n− 3)!
= (1 + o(1))

√
π

2
n−1/2.

Therefore the expected number of edges in the process is (1 + o(1))
√
πn3/2/4. We

will generalise this result.
Let (R,F ) be a rooted graph and S ⊆ V (Gn,p) with |S| = |R|. Let IS,(R,F ) be the

set of injective functions f : V (F ) → V (Gn,p) such that f(R) = S. Note that if for
some function f ∈ IS,(R,F ) we have that f(E(F )) ⊆ E(Gn,p) then there is a copy of
(R,F ) rooted at S in Gn,p. Now consider a set of rooted graphs M = {(Ri, Fi)}ki=1

where |Ri| = |Rj | for every i, j = 1..k. We define

IS,M =
⋃

(R,F )∈M

⋃
f∈IS,(R,F )

((R,F ), f).

However it can happen for some ((R,F ), f), ((R′, F ′), f ′) ∈ IS,M that f(E(F )) =
f ′(E(F ′)). Based on this we can split the elements of IS,M into equivalence classes
and let I ′S,M denote the set where one representative of each of these classes is taken.
We will also need the notation [a]b = a(a− 1)...(a− b+ 1).

5.2.1 2-balanced graphs

We start by showing bounds on the expected number of edges in the random H-
elimination graph process when H is 2-balanced.

Lemma 5.6

LetH be a 2-balanced random graph and let pe be the probability assigned to edge e. Assume

n−1/d2(H) ≤ pe ≤ n−1/d2(H) log2 n then there exist constants c, C > 0 depending only on

H and not on pe such that

exp(−C(nv(H)−2pe(H)−1
e )) ≤ P(He|pe) ≤ exp

(
−cn1/d2(H)pe

)
.

PROOF Let M = {(r,Hr)}r∈E(H). Since |Ie,(r,Hr)| = 2[n]v(H)−2 for r ∈ E(H) thus

we have that |Ie,M | = 2e(H)[n]v(H)−2 = (1 + o(1))2e(H)nv(H)−2. Note that every

f , such that ((r,Hr), f) ∈ Ie,M for some (r,Hr), is counted aut(H) times. Therefore

|I ′e,M | = (1+o(1))2e(H)nv(H)−2/aut(H). For ((R,F ), f) ∈ I ′S,M letX(R,F ),f,pe be the
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indicator random variable for the event that f(E(F )) ⊆ E(Gn,pe). Let

Xpe =
∑

((R,F ),f)∈I′S,M

X(R,F ),f,pe

then we have that

E(Xpe) = (1 + o(1))
2e(H)

aut(H)
nv(H)−2pe(H)−1

e .

Note that

P(He|pe) = P ({Xpe = 0}) .

Since E(X(R,F ),f,pe) = p
e(H)−1
e = o(1) applying Lemma 2.6 gives

P(Xpe = 0) ≥ exp

(
− E(Xpe)

1− pe(H)−1
e

)
≥ exp

(
−C(nv(H)−2pe(H)−1

e )
)

for some constant C depending only on H (e.g. C = 2e(H) + 1 works for every H).

For the upper bound Theorem 2.8 will be used. First we need to calculate the value

of ∆. Let τ = n1/d2(H)pe and note that 1 ≤ τ ≤ log2 n then

∆ ≤
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

g1(r1)=g2(r2)

nv(F )−2pe(F )
e

≤
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

nfd2(H)(Sg1,g2,F ,F )τ e(F )

≤ c1τ
2e(H)−3

since fd2(H)(Sg1,g2,F , F ) ≤ 0 according to Lemma 5.5 and e(F ) ≤ 2(e(H)) − 3.

Note that c1 ≤
∑

r1,r2∈E(H) |(r1, Hr1) ⊕ (r2, Hr2)| and thus depends only on H .

We already established that E(Xpe) ≥ c2n
v(H)−2p

e(H)−1
e = c2τ

e(H)−1 for any c2 <

2(e(H))/aut(H). Applying Theorem 2.8 gives us that

P(Xpe = 0) ≤ exp

(
−(c2τ

e(H)−1)2

2c1τ2e(H)−3

)

= exp

(
− c2

2

2c1
τ

)
= exp

(
−cn1/d2(H)pe

)
where c = c2

2/(2c1) depends only on H as c1 and c2 depend only on H . �

Note that the proof actually works for a much wider range of pe. The lower
bound actually holds for pe = o(1) for any fixed ε > 0 and the upper bound holds
for n−1/d2(H) ≤ pe ≤ 1. However the Lemma above is enough to show the asymp-
totics of the probability that the edge e will be inserted.
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Lemma 5.7

Let H be a 2-balanced graph then:

P(He) = Θ(n−1/d2(H)).

PROOF Let p0 = n−1/d2(H) and p1 = n−1/d2(H) log2 n. Clearly

P(He) =

∫ 1

0
P(He|pe)dpe

=

∫ p0

0
P(He|pe)dpe +

∫ p1

p0

P(He|pe)dpe +

∫ 1

p1

P(He|pe)dpe.

Since 0 ≤ P(He|pe) ≤ 1 thus

0 ≤
∫ p0

0
P(He|pe)dpe ≤ p0 = n−1/d2(H).

Note that∫ p1

p0

exp(−C(nv(H)−2pe(H)−1
e ))dpe = n−1/d2(H)

∫ log2 n

1
exp(−Cτ e(H)−1)dτ

= (1 + o(1))n−1/d2(H)

∫ ∞
1

exp(−Cτ e(H)−1)dτ

= Θ
(
n−1/d2(H)

)
.

Also ∫ p1

p0

exp
(
−cn1/d2(H)pe

)
dpe = n−1/d2(H)

∫ log2 n

1
exp(−cτ)dτ

= (1 + o(1))n−1/d2(H)

∫ ∞
1

exp(−cτ)dτ

= Θ
(
n−1/d2(H)

)
.

Applying Lemma 5.6 gives us that∫ p1

p0

exp(−C(nv(H)−2pe(H)−1
e ))dpe ≤

∫ p1

p0

P(He|pe)dpe

and that ∫ p1

p0

P(He|pe)dpe ≤
∫ p1

p0

exp(−c(n1/d2(H)pe))dpe.

Thus ∫ p1

p0

P(He|pe)dpe = Θ
(
n−1/d2(H)

)
.

We also have that ∫ 1

p1

P(He|pe)dpe ≤
∫ 1

p1

P(He|p1)dpe ≤ P(He|p1)

≤ exp(−c log2 n) = o(n−4)

and the result follows. �
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Corollary 5.8

When H is a 2-balanced graph then

E(e(Ge(H)n,1)) = Θ(n2−1/d2(H)).

5.2.2 Strictly 2-balanced graphs

In the case when H is strictly 2-balanced these bounds can be improved. However
instead of just showing bounds on P(He|pe) we will show a slightly more general
bound, which we will need later.

Lemma 5.9

Let H be a strictly 2-balanced random graph. Let M = {r,Hr}r∈E(H) and Y ⊆ I ′e,M .

Define the event Y as the event that for every ((r,Hr), f) ∈ Y we have that f(E(H)) 6⊆
E(Gn,p).

If in addition we have that |Y | = (1 + O(n−ε))|I ′e.M | for some fixed ε ≥ 0 and that

p ≤ p0 = n−1/d2(H) log n then

P(Y) = (1 + o(1)) exp

(
− 2e(H)

aut(H)
(nv(H)−2pe(H)−1)

)
.

Note that when pe ≤ p0 then by setting Y = I ′e,M and p = pe this implies that

P(He|pe) = (1 + o(1)) exp

(
− 2e(H)

aut(H)
(nv(H)−2pe(H)−1

e )

)
.

The proof is similar to the 2-balanced case with the exception that in this case
∆ = o(1) and thus sharpening the remaining estimates gives us a tighter bound.

PROOF Let M = {r,Hr}r∈E(H). Then we have that |Ie.M | = 2e(H)[n]v(H)−2 = (1 +

O(n−1))2e(H)nv(H)−2. As in the 2-balanced case every f , such that ((r,Hr), f) ∈
Ie,M for some (r,Hr), is counted aut(H) times and thus |I ′e.M | = |Ie,M |/aut(H). Set

δ = min{ε, 1/(2d2(H))} and note that this implies that 0 < δ < 1. Therefore

|Y | = (1 +O(n−δ))
2e(H)nv(H)−2

aut(H)
.

For ((R,F ), f) ∈ Y let X(R,F ),f,p be the indicator random variable for the event

that f(E(F )) ⊆ E(Gn,p). Let

Xp =
∑

((R,F ),f)∈Y

X(R,F ),f,p

then we have that

E(Xp) = (1 +O(n−δ))
2e(H)

aut(H)
nv(H)−2pe(H)−1.
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Note that E(X(R,F ),f,p) = pe(H)−1 and that 1/(1−pe(H)−1) = 1+O(p0) = 1+O(n−δ).

Applying Lemma 2.6 gives

P(Xp = 0) ≥ exp

(
− E(Xp)

1− pe(H)−1

)
≥ exp

(
−(1 +O(n−δ))

2e(H)

aut(H)

(
nv(H)−2pe(H)−1

))
.

For the upper bound Theorem 2.8 will be used. First we need to calculate the

value of ∆. We have that

∆ ≤
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

g1(r1)=g2(r2)

nv(F )−2pe(F )

≤
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

g1(r1)=g2(r2)

nv(F )−2p
e(F )
0

≤
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

nfd2(H)(Sg1,g2,F ,F ) loge(F ) n

=
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

nfd2(H)(Sg1,g2,F ,F )+o(1)

= o(1).

The last step follows from Lemma 5.4 since fd2(H)(Sg1,g2,F , F ) < 0 as when H is

strictly 2-balanced graph then (r,Hr) is a nontrivial strictly balanced rooted graph

such that d(r,Hr) = d2(H).

We already established that E(Xp) = (1+O(n−δ))2e(H)nv(H)−2pe(H)−1/aut(H).

Applying Theorem 2.8 gives us that

P(Xp = 0) ≤ exp

(
−(1 +O(n−δ))

2e(H)nv(H)−2pe(H)−1

aut(H)
+ o(1)

)

= (1 + o(1)) exp

(
−(1 +O(n−δ))

2e(H)nv(H)−2pe(H)−1

aut(H)

)
.

Therefore we have shown that

P(Xp = 0) = (1 + o(1)) exp

(
−(1 +O(n−δ))

2e(H)nv(H)−2pe(H)−1

aut(H)

)
.

Note that O(n−δnv(H)−2pe(H)−1) = O(n−δ loge(H)−1 n) = o(1) and thus

P(Xp = 0) = (1 + o(1)) exp

(
−2e(H)nv(H)−2pe(H)−1

aut(H)

)
.

�
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Lemma 5.10

Let H be a strictly 2-balanced graph then we have that:

P(He) = (1 + o(1))n−1/d2(H) Γ

(
e(H)

e(H)− 1

)/(
2e(H)

aut(H)

)1/(e(H)−1)

where Γ(x) is the gamma function.

PROOF Let p0 = n−1/d2(H) log n then:

P(He) = P(He ∩ {pe ≤ p0}) + P(He ∩ {pe > p0}).

When pe ≤ p0 Lemma 5.9 can be applied, thus:

P(He ∩ {pe ≤ p0}) =

∫ p0

0
P(He|pe)dpe

= (1 + o(1))

∫ p0

0
exp

(
−2e(H)p

e(H)−1
e nv(H)−2

aut(H)

)
dpe

= (1 + o(1))n−1/d2(H)

∫ logn

0
exp

(
−2e(H)te(H)−1

aut(H)

)
dt

= (1 + o(1))n−1/d2(H)

∫ ∞
0

exp

(
−2e(H)te(H)−1

aut(H)

)
dt

and ∫ ∞
0

exp

(
−2e(H)te(H)−1

aut(H)

)
dt = Γ

(
e(H)

e(H)− 1

)/(
2e(H)

aut(H)

)1/(e(H)−1)

.

On the other hand P(He∩{pe > p0}) =
∫ 1
p0
P(He|pe)dpe ≤

∫ 1
p0
P(He|{pe = p0})dpe ≤

P(He|{pe = p0}) and

P(He|{pe = p0}) ≤ (1 + o(1)) exp
(
− loge(H)−1 n

)
≤ exp(− log2 n+ o(1)) = o(n−4),

as every strictly 2-balanced graph contains at least 3 edges. �

Corollary 5.11

When H is a strictly 2-balanced graph then

E(e(Ge(H)n,1)) = (1 + o(1))
1

2
n2−1/d2(H) Γ

(
e(H)

e(H)− 1

)/(
2e(H)

aut(H)

)1/(e(H)−1)

.

5.2.3 The K−4

We have shown the exact asymptotics of the expected number of edges found in
the H-elimination process when H is strictly 2-balanced. Next we show similarly
tight bounds on the expected number of edges in the H-elimination process when
H = K−4 and when H = K−3,4. Recall that the K−4 is a 2-balanced graph, however it
is not strictly 2-balanced as d2(K−4 ) = d2(K3) = 2 and K3 ( K−4 .
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Theorem 5.12

Let H = K−4 . Assume that pe ≤ p0 = n−1/2 log n then

P(He|pe) = (1 + o(1))(exp(−np2
e) + np2

e exp(−3np2
e))

PROOF Let e = {u, v}. Note that for He to hold either e has no mutual neighbours

in Gn,pe or e has exactly one mutual neighbour in Gn,pe , denoted by w, and the

codegree of both {u,w} and {v, w} is zero. In case the codegree of e in Gn,pe is

larger than one then He does not hold. Let E{u,v},W where W ( V (Gn,pe) be the

event that W forms the set of mutual neighbours of {u, v} in Gn,p{u,v} . Then

P(He|pe) = P(He ∩ Ee,∅|pe) +
∑

w∈V (Gn,pe )\e

P(He ∩ Ee,{w}|pe).

Note that Ee,∅ ( He. Therefore P(He ∩ Ee,∅|pe) = P(Ee,∅|pe) and the proof of Lemma

5.9 implies that P(Ee,∅|pe) = (1 + o(1)) exp(−np2
e). Now to establish the value of

P(He∩Ee,{w}|pe) for a fixedw. LetM = (r, (K3)r). Let I be the union of the sets I ′e,M ,

I ′{u,w},M and I ′{v,w},M excluding the elements ((r, (K3)r), f) such that f(V (K3)) =

{u, v, w} formally

I = {((r, (K3)r), f) ∈ I ′e,M ∪ I ′{u,w},M ∪ I
′
{v,w},M : f(V (K3)) 6= {u, v, w}}.

Note that |I| = 3(n − 3) = 3(1 + O(n−1))n. For ((r, (K3)r), f) ∈ I let X(r,(K3)r),f,pe

be the indicator random variable for the event that f(E((K3)r)) ⊆ E(Gn,pe). Let

Xpe =
∑

((r,(K3)r),f)∈I

X(r,(K3)r),f,pe

then we have that E(Xpe) = 3(1 +O(n−1))np2
e. Note that

P
(
He ∩ Ee,{w}|pe

)
= P ({Xpe = 0} ∩ {{u,w}, {v, w} ∈ E(Gn,pe))}.

Note that E(X(r,(K3)r),f,pe) = p2
e and that 1/(1 − p2

e) = 1 + O(p0). Since O(n−1) =

O(p0) applying Lemma 2.6 gives

P(Xpe = 0) ≥ exp

(
−E(Xpe)

1− p2
e

)
≥ exp

(
−3(1 +O(p0))(np2

e)
)
.

For the upper bound Theorem 2.8 will be used. First we need to calculate the

50



5.2 EXPECTED NUMBER OF EDGES

value of ∆.

∆ ≤
∑

r1,r2∈E(K3)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

(
3

|Sg1,g2,F |

)
nv(F )−|Sg1,g2,F |pe(F )

e

≤
∑

r1,r2∈E(K3)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

(
3

|Sg1,g2,F |

)
nv(F )−|Sg1,g2,F |p

e(F )
0

≤
∑

r1,r2∈E(K3)

∑
(g1,g2,F )∈((r1,Hr1 )⊕(r2,Hr2 ))

(
3

|Sg1,g2,F |

)
nf2((g1(r1),F ))+o(1)

= o(1)

according to Lemma 5.4, f2(Sg1,g2,F , F ) < 0, as we are combining strictly balanced

rooted graphs of density 2. We already established that E(Xpe) = 3(1 +O(p0))np2
e.

Applying Theorem 2.8 gives us that

P(Xpe = 0) ≤ exp
(
−3(1 +O(p0))np2

e + o(1)
)

= (1 + o(1)) exp
(
−3(1 +O(p0))np2

e

)
.

Since O(np3
0) = o(1)

P(Xpe = 0) = (1 + o(1)) exp
(
−3(1 +O(p0))np2

e

)
= (1 + o(1)) exp

(
−3np2

e

)
.

Note that the events {Xpe = 0} and {{u,w}, {v, w} ∈ E(Gn,pe)} are independent

and therefore

P(He ∩ Ee,{w}|pe) = (1 + o(1))p2
e exp

(
−3np2

e

)
.

The statement follows as the events Ee,w and Ee,w′ are mutually exclusive for any

w,w′ ∈ V (Gn,pe)\e when w 6= w′. �

Lemma 5.13

Let H = K−4 then

P(He) = (1 + o(1))

(√
π

2
+

√
π

12
√

3

)
n−1/2.

PROOF Let p0 = n−1/2 log n. Similarly to the previous calculations we have that

P(He) = P(He ∩ {pe ≤ p0}) + P(He ∩ {pe > p0}).
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According to Lemma 5.12

P(He ∩ {pe ≤ p0}) =

∫ p0

0
P(He|pe)dpe

=

∫ p0

0
(1 + o(1))(exp(−np2

e) + np2
e exp(−3np2))dpe

= (1 + o(1))n−1/2

∫ logn

0
exp(−τ2) + τ2 exp(−3τ2)dτ

= (1 + o(1))n−1/2

∫ ∞
0

exp(−τ2) + τ2 exp(−3τ2)dτ

= (1 + o(1))n−1/2

(√
π

2
+

√
π

12
√

3

)
.

We also have that

P(He ∩ {pe > p0}) ≤ P(He|p0) ≤ 2 exp(− log2 n) = o(n−4)

completing the proof. �

Corollary 5.14

E(e(Gn,1(K−4 ))) = (1 + o(1))

(√
π

4
+

√
π

24
√

3

)
n3/2.

5.2.4 The K−3,4

Now the case when H = K−3,4. This is also a 2-balanced graph which is not strictly
2-balanced as d2(K3,3) = d2(K−3,4) = 2. Recall that in the K−4 case we conditioned
on the number of copies of (r, (K3)r) rooted at e inGn,pe and this was done because
d2(K3) = d2(K−4 ) and K3 ( K−4 . In case of the K−3,4 we will condition on the
number of copies of (r, (K3,3)r) rooted at e in Gn,pe . However in the case of the K−4
we had thatHe held only in case the codegree of e was at most 1. However no such
restrictions apply in theK−3,4 case for the number of copies of (r, (K3,3)r) rooted at e
in Gn,pe . We will show that for any pair of vertices e there are a.a.s. at most 2 log8 n
copies of (r, (K−3,4)r) rooted at e in Gn,pe when pe ≤ n−1/2 log n, but due to this,
one has to distinguish between many cases. The other difference is that the copies
of (r, (K3,3)r) rooted at e can overlap. We will show that this happens with small
probability and thus these cases can be ignored.

A key property used in the previous proof was that the event that w was a mu-
tual neighbour of {u, v} was independent of the event that {u, v}, {u,w} or {v, w}
has any additional mutual neighbours. The following definition helps us express
this property.

Definition 5.2

Let (R,F ) be a rooted graph and G be a graph such that v(F ) ≤ v(G). Also let S ⊆ Q ⊆
V (G) such that |S| = |R|. We say that there is a copy of (R,F ) rooted at S and outside Q
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in G if there exists an injective function f : V (F ) → V (G) such that f(E(f)) ⊆ E(G),

f(R) = S and f(V (F )) ∩Q = S.

For a set of vertices W ⊆ V (Gn,pe) let

IS,(R,F ),W = {f ∈ IS,(R,F ) : f(V (F )\R) ∩W = ∅}.

The sets IS,M,W and I ′S,M,W are defined analogously to the sets IS,M and I ′S,M .

3 2

4 6

5 7

1

Figure 5.1: The K−3,4

Figure 5.1 shows a labelled copy of K−3,4. Let r1 = {1, 6}, r2 = {2, 3} and r3 =

{4, 6}. Note that due to symmetries of the graph edge e is inserted during the K−3,4
elimination process iff there is no copy of (r1, (K

−
3,4)r1), no copy of (r2, (K

−
3,4)r2) and

no copy of (r3, (K
−
3,4)r3) rooted at e in Gn,pe see Figure 5.2.

Figure 5.2: The forbidden rooted graphs

Lemma 5.15

Let H = K−3,4 and assume that pe ≤ p0 = n−1/2 log n then

P(He|pe) = (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)
exp

(
n4

4
p8
e exp(−6np2

e)

)
+ o(n−4).
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PROOF As mentioned above we split the cases according to the number of copies

of (r, (K3,3)r) rooted at e. Assume e = {u, v}.
Define the set B as the set of sets A ⊆ I ′e,(r,(K3,3)r)

such that a(V (K3,3)) ∩
b(V (K3,3)) = e for every a, b ∈ A when a 6= b. LetMA be the event that a set A ∈ B
describes a maximal set of vertex disjoint copies of (r, (K3,3)r) rooted at e. Formally

the eventMA holds if for every a ∈ A we have that a(E((K3,3)r2)) ⊆ E(Gn,pe) and

A is maximal in the sense that for any injective function g ∈ I ′e,(r,(K3,3)r)
\A such that

g(V (K3,3))∩a(V (K3,3)) = e for every a ∈ Awe have that g(E((K3,3)r)) 6⊆ E(Gn,pe).

Let D be the event that there are no overlapping copies of (r, (K3,3)r) rooted at e.

Then

P(He|pe) ≥ P(He ∩ D|pe) ≥
∑
A∈B

|A|≤2 log8 n

P(He ∩ D ∩MA|pe).

FixA such that |A| ≤ 2 log8 n. Our goal is to determine a lower bound on P(He∩D∩
MA|pe). Let EA be the event that a(E((K3,3)r)) ⊆ E(Gn,pe) for every a ∈ A and let

IA be the event that a(E(K3,3))∩E(Gn,pe) = ∅ for every a ∈ A. Note that if both EA
and IA hold then the copies in A are induced copies. Define U =

⋃
a∈A a(V (K3,3)).

Now we introduce an event G such that (G ∩ EA ∩ IA|pe) ⊆ (He ∩ D ∩MA|pe) and

the events G and EA ∩ IA are independent, i.e. G depends only on the presence or

absence of edges not spanned by U . Clearly for any such event G we have that

P(He ∩ D ∩MA|pe) ≥ P(G ∩ IA ∩ EA|pe) = P(G|pe)P(EA ∩ IA|pe).

Let G be the following event:

• there is no copy of (r, (K3)r) rooted at a(e) outside U in Gn,pe for any a ∈ A
and e ∈ E(K3,3)

• no copy of (r1, (K
−
3,4)r1) is rooted at e outside U in Gn,pe

• no copy of (r, (K3,3)r) is rooted at e outside U in Gn,pe

• for any R ( V (K−3,4), such that |R| > 2 and K−3,4[R] 6= K3,3, no copy of

(R, (K−3,4)R) is rooted at S outside U in Gn,pe for any S ⊆ U with |S| = |R|

• for any R ( V (K3,3) with |R| > 2 no copy of (R, (K3,3)R) is rooted at S

outside U in Gn,pe for any S ⊆ U with |S| = |R|.

Note that when conditioning on IA ∩ EA this ensures that A contains all the

copies of (r, (K3,3)r) rooted at e and also that no copy of (r, (K−3,4)r) for any r ∈
E(K−3,4) is rooted at e.
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Let M1 = (r, (K3)r) and M2 = ((r, (K3,3)r), (r1, (K
−
3,4)r1)). Also for j > 2 let

Mj = {R, (K3,3)R : R ( V (K3,3) ∩ |R| = j}

∪ {R, (K−3,4)R : R ( V (K−3,4) ∩K−3,4[R] 6= K3,3 ∩ |R| = j}.

Let

I =
⋃
a∈A

⋃
e∈E(K3,3)

I ′a(e),M1,U
∪ I ′e,M2,U ∪

6⋃
j=3

⋃
S∈(Uj )

I ′S,Mj ,U

and for ((R,F ), f) ∈ I let X(R,F ),f,pe be the indicator random variable for the event

that f(E(F )) ⊆ E(Gn,pe). Let

Xpe =
∑

((R,F ),f)∈I

X(R,F ),f,pe

then we have that G holds iffXpe = 0. Note that |I ′a(e),M1,U
| = n−|U | = n−4|A|−2 =

n−O(log8 n) thus

∑
a∈A

∑
e∈E(K3,3)

∑
((r,F ),f)∈I′

a(e),M1,U

E(X(R,F ),f,pe) = 6|A|
(

1 +O

(
log8 n

n

))
np2

e.

We also have that∑
((r,F ),f)∈I′e,M2,U

E(X(R,F ),f,pe) = 2[n− |U |]2
(
n− |U | − 2

3

)
p10
e +

(
n− |U |

4

)(
4

2

)
p8
e

=

(
1 +O

(
log8 n

n

))(
n5

3
p10
e +

n4

4
p8
e

)
.

Fix R ( V (K3,3) and S ∈
(
U
|R|
)

then∑
((R,F ),f)∈I′

S,(R,(K3,3)R),U

E(X(R,F ),f,pe) ≤
∑

((R,F ),f)∈I′
S,(R,(K3,3)R),U

E(X(R,F ),f,p0
)

≤ nv(K3,3)−|R|p
e(K3,3)−e(K3,3)[R]
0

= nf2(R,(K3,3)R)+o(1).

Similarly if R ( V (K−3,4) and S ∈
(
U
|R|
)

then∑
((R,F ),f)∈I′

S,(R,(K3,3)R),U

E(X(R,F ),f,pe) = nf2(R,(K−3,4)R)+o(1).
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Therefore

6∑
j=3

∑
((R,F ),f)∈I′S,Mj,U

E(X(R,F ),f,pe) ≤
6∑
j=3

∑
((R,F ),f)∈I′S,Mj,U

E(X(R,F ),f,p0
)

= no(1)


∑

R(V (K3,3)
|R|>2

nf2(R,(K3,3)R)+o(1) +
∑

R(V (K−3,4)

K−3,4[R] 6=K3,3

|R|>2

nf2(R,(K−3,4)R)+o(1)


Let R ( V (K3,3) with |R| > 2. If E(K3,3[R]) = ∅ then

|R|+ f2(R, (K3,3)R) = f2(∅,K3,3[R]) + f2(R, (K3,3)R) = f2(∅,K3,3) = 1.5

and since |R| > 2 thus f2(R, (K3,3)R) < 0. Otherwise let r ∈ E(K3,3[R]) then

f2(r,K3,3[R]) + f2(R, (K3,3)R) = f2(r,K3,3) = 0. Since K3,3 is strictly 2-balanced

f2(r,K3,3[R]) > 0 and thus f2(R, (K3,3)R) < 0. The only difference for K−3,4 is

that it can happen that for some r ∈ E(K−3,4) and r ( R ( V (K−3,4) we have

that f2(r,K−3,4[R]) = 0, however this is true only when K−3,4[R] = K3,3. Thus

f2(R, (K−3,4)R) < 0 for every R ( V (K−3,4) with |R| > 2 and K−3,4[R] 6= K3,3. There-

fore

E(Xpe) =

(
1 +O

(
log8 n

n

))(
6|A|np2

e +
n4

4
p8
e +

n5

3
p10
e

)
+ o(1).

Since E(X(R,F ),f,pe) ≤ p0 for every ((R,F ), f) ∈ I Lemma 2.6 gives us the following

P(Xpe = 0) ≥ exp (−(1 +O(p0))E(Xpe))

= exp

(
− (1 +O (p0))

(
6|A|np2

e +
n4

4
p8
e +

n5

3
p10
e

)
+ o(1)

)
= (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)(
exp(−6np2

e)
)|A|

.

Since the event G is independent of the edges spanned by U thus

P(He ∩ D ∩MA|pe) ≥ P(Xpe = 0)p8|A|
e (1− pe)(

4|A|+2
2 )−8|A|

≥ P(Xpe = 0)p8|A|
e (1− pe)8|A|2+4

= (1 + o(1))P(Xpe = 0)p8|A|
e .

The last result needed to establish the lower bound is the number of sets A ∈ B

such that |A| = k when k ≤ 2 log8 n. Clearly(
n4/4

k

)
≥ |{A ∈ B : |A| = k}| ≥

(
(n− 4k − 2)4/4

k

)
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and thus |{A ∈ B : |A| = k}| = (1 + o(1))(n4k/(4kk!)). Thus

P(He|pe) ≥
2 log8 n∑
k=0

(
(1 + o(1))

n4k

4kk!
p8k
e exp

(
−n

4

4
p8
e −

n5

3
p10
e

)(
exp(−6np2

e)
)k)

= (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

) 2 log8 n∑
k=0

1

k!

(
n4

4
p8
e exp(−6np2

e)

)k
= (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)
exp

(
n4

4
p8
e exp(−6np2

e)

)
.

Now for the upper bound. Let B be the event that there are more than 2 log8 n

vertex disjoint copies of (r, (K3,3)r) rooted at e. Then

P(He|pe) ≤ P(B) +
∑
A∈B

|A|≤2 log8 n

(P(He ∩MA|pe).

We use Theorem 2.9 to bound P(B). Note that the expected number of copies of

(r, (K3,3)r) rooted at e in Gn,pe is less than the number of copies rooted at e in Gn,p0 .

Now there are less than n4/4 possible copies of (r, (K3,4)r) rooted at e and thus the

expected number is less than log8 n/4. Therefore

P(B) ≤
(

e log8 n

8 log8 n

)2 log8 n

≤ exp(−2 log8 n) = o(n−4).

Fix A ∈ B. Recall that M1 = (r, (K3)r) and M2 = ((r, (K3,3)r), (r1, (K
−
3,4)r1)). Let

I ′ =
⋃
a∈A

⋃
e∈E(K3,3)

I ′a(e),M1,U
∪ I ′e,M2,U

and for ((R,F ), f) ∈ I ′ letX(R,F ),f,pe be the indicator random variable for the event

that f(E(F )) ⊆ E(Gn,pe). Let

X ′pe =
∑

((R,F ),f)∈I′
X(R,F ),f,pe

then we have that (He ∩MA|pe) ⊆ {X ′pe = 0} ∩ (EA|pe) and thus

P(He ∩MA|pe) ≤ P({X ′pe = 0} ∩ EA|pe) ≤ P({X ′pe = 0}|pe)P(EA|pe)

as the events EA and {X ′pe = 0} are independent. Clearly P(EA|pe) = p
8|A|
e and

to bound P({X ′pe = 0}|pe) we will use Theorem 2.8. As always the first step is to
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5.2 EXPECTED NUMBER OF EDGES

establish the value of ∆.

∆ ≤
∑

(r1,F1),(r2,F2)∈M1∪M2

∑
(g1,g2,F )∈(r1,F1)⊕(r2,F2)

(
|U |

|Sg1,g2,F |

)
nv(F )−|Sg1,g2,F |pe(F )

e

≤
∑

(r1,F1),(r2,F2)∈M1∪M2

∑
(g1,g2,F )∈(r1,F1)⊕(r2,F2)

no(1)nv(F )−|Sg1,g2,F |p
e(F )
0

≤
∑

(r1,F1),(r2,F2)∈M1∪M2

∑
(g1,g2,F )∈(r1,F1)⊕(r2,F2)

no(1)nf2(Sg1,g2,F ,F )+o(1)

= o(1)

as according to Lemma 5.4 f2(Sg1,g2,F , F ) < 0 for every element of the sum. Note

that one can calculate E(X ′pe) similarly to E(Xpe) and thus

E(X ′pe) =

(
1 +O

(
log8 n

n

))(
6|A|np2

e +
n4

4
p8
e +

n5

3
p10
e

)
.

Therefore

P(X ′pe = 0|pe) ≤ (1 + o(1)) exp (−(1 +O(p0))E(Xpe))

= exp

(
− (1 +O (p0))

(
6|A|np2

e +
n4

4
p8
e +

n5

3
p10
e

)
+ o(1)

)
= (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)(
exp(−6np2

e)
)|A|

.

Recall that |{A ∈ B : |A| = k}| = (1 + o(1))(n4k/(4kk!)) thus

P(He|pe) ≤ o(n−4) +

2 log8 n∑
k=0

(1 + o(1))
n4k

4kk!
p8k
e exp

(
−n

4

4
p8
e −

n5

3
p10
e

)(
exp(−6np2

e)
)k

= (1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)
exp

(
n4

4
p8
e exp(−6np2

e)

)
+ o(n−4)

completing the proof. �

Lemma 5.16

Let H = K−3,4 and

c =

∫ ∞
0

exp

(
−τ

8

4
− τ10

3

)
exp

(
τ8

4
exp(−6τ2)

)
dτ

then

P(He) = (1 + o(1))cn−1/2.

PROOF Let p0 = n−1/2 log n. Similarly to the previous calculations we have that

P(He) = P(He ∩ {pe ≤ p0}) + P(He ∩ {pe > p0}).
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5.3 CONCENTRATION

According to Lemma 5.15

P(He ∩ {pe ≤ p0}) =

∫ p0

0
P(He|pe)dpe

=

∫ p0

0
(1 + o(1)) exp

(
−n

4

4
p8
e −

n5

3
p10
e

)
exp

(
n4

4
p8
e exp(−6np2

e)

)
+ o(n−4)dpe

= o(n−4) + (1 + o(1))n−1/2

∫ logn

0
exp

(
−τ

8

4
− τ10

3

)
exp

(
τ8

4
exp(−6τ2)

)
dτ

= o(n−4) + (1 + o(1))n−1/2

∫ ∞
0

exp

(
−τ

8

4
− τ10

3

)
exp

(
τ8

4
exp(−6τ2)

)
dτ.

Note that this integral exists as exp
(
τ8 exp(−6τ2)/4

)
is bounded from above by a

constant.

We also have that

P(He ∩ {pe > p0}) ≤ P(He|p0) ≤ 2 exp(− log10 n) + o(n−4) = o(n−4)

completing the proof. �

Corollary 5.17

Let H = K−3,4 and

c =

∫ ∞
0

exp

(
−τ

8

4
− τ10

3

)
exp

(
τ8

4
exp(−6τ2)

)
dτ

then

E(e(Ge(K
−
3,4)n,1)) = (1 + o(1))

c

2
n3/2.

5.3 Concentration

In this section we show that the number of edges is a.a.s. concentrated around its
expected value in case H is a strictly 2-balanced graph. The proof uses the second
moment method and in order to give bounds on the second moment we establish
P(He1 ∩He2).

Lemma 5.18

Let H be a strictly 2-balanced graph and assume that pe1 < pe2 ≤ p0 = n−1/d2(H) log n

then

P(He1 ∩He2 |pe1 , pe2) = (1 + o(1)) exp

(
−
(
pe(H)−1
e1 + pe(H)−1

e2

) 2e(H)nvH−2

aut(H)

)
.

PROOF Recall that we haveHe, if for any r ∈ E(H) no copy of (r,Hr) is rooted at e

in Gn,pe .
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5.3 CONCENTRATION

Let M = {(r,Hr) : r ∈ E(H)} and let X(r,Hr),f,p be the indicator random vari-

able for the event that f(E(Hr)) ⊆ E(Gn,p). Obviously

P(He|pe) = P

 ∑
((r,Hr),f)∈I′e,M

X(r,Hr),f,pe = 0

 .

Recall that |I ′e,M | = (1 +O(n−1))2e(H)nv(H)−2/aut(H). Define

X1 =
∑

((r,Hr),f)∈I′e1,M

X(r,Hr),f,pe1

and X2 analogously.

We will establish a lower bound on the probability that X1 + X2 = 0 using

Lemma 2.6. The Lemma requires an underlying set and a unique probability as-

signed to every element in the set. This is achieved by exposing the edges of

Gn,pe2 in two rounds. First we consider Gn,pe1 and then add the edges in Gn,p′

where p′ =
pe2−pe1
1−pe1

to create Gn,pe2 . In the setup of Lemma 2.6, Ω is two disjoint

copies of the edge set of Kn, denoted by Γ1 and Γ′. Let E1 be a random subset

of Γ1 where every edge is chosen independently with probability pe1 , except e1

and e2, which are chosen with probability 0. Similarly E′ is a random subset of

Γ′ where every edge is chosen independently with probability p′, except for e1,

which is chosen with probability 1 and e2 which is chosen with probability 0. Note

that E1 is equivalent to E(Gn,pe1 ) and E′ is equivalent to E(Gn,p′) when the as-

sumption pe1 < pe2 is taken into account as this is satisfied when e1 6∈ E(Gn,pe1 ),

e1 ∈ E(Gn,pe2 ) = E(Gn,pe1 ) ∪ E(Gn,p′) and e2 6∈ E(Gn,pe2 ) = E(Gn,pe1 ) ∪ E(Gn,p′).

Let ((r,Hr), f) ∈ I ′e1,M then f(E(Hr)) ⊆ E(Gn,pe1 ) is equivalent to f(E(Hr)) ⊆ E1.

However in the case when ((r,Hr), f) ∈ I ′e2,M then for f(E(Hr)) ⊆ E(Gn,pe2 ),

we have to consider all possible S ⊆ E(Hr), such that the edges in f(S) are in

E1 and the remaining edges i.e. f(E(Hr)\S) are in E′. For S ⊆ E(Hr) define

A(r,Hr),f,S = (f(E(F )\S) ∩ Γ1) and B(r,Hr),f,S = (f(S) ∩ Γ′). Let Y(r,Hr),f,S be the

indicator random variables for the event that A(r,Hr),f,S ⊆ E1 and B(r,Hr),f,S ⊆ E′.

Therefore, we have that

P(X1 +X2 = 0|pe1 , pe2)

= P

 ∑
((r,Hr),f)∈I′e1,M

Y(r,Hr),f,∅ +
∑

((r,Hr),f)∈I′e2,M

∑
S⊆E(Hr)

Y(r,Hr),f,S = 0

 .

Now we apply Lemma 2.6 to the right hand side. We have that Y(r,Hr),f,S is the

indicator random variable that e(H) − 1 edges in Γ1 ∪ Γ′ appear in E1 ∪ E′. Also
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5.3 CONCENTRATION

only one edge appears with probability one, thus

max
((r,Hr),f)∈I′e1,M∪I

′
e2,M

max
S⊆E(F )

{E(Y(r,Hr),f,S)} ≤ pe(H)−1
0 ≤ p0

as e(H) > 2 for every strictly 2-balanced graph. Therefore:

P

 ∑
(r,f)∈I′e1,M

Y(r,Hr),f,∅ +
∑

((r,Hr),f)∈I′e2,M

∑
S⊆E(Hr)

Y(r,Hr),f,S = 0



≥ exp

−
 ∑

((r,Hr),f)∈I′e1,M

E(Y(r,Hr),f,∅)

1− p0
+

∑
((r,Hr),f)∈I′e2,M

∑
S⊆E(Hr)

E(Y(r,Hr),f,S)

1− p0


 .

For ((r,Hr), f) ∈ I ′e1,M such that e2 ∈ f(E(Hr)) we have that E(Y(r,Hr),f,∅) =

0 and that this affects at most O(nv(H)−3) elements in I ′e1,M . For the remaining

((r,Hr), f) ∈ I ′e1,M we have that E(Y(r,Hr),f,∅) = p
e(H)−1
e1 and thus

∑
((r,Hr),f)∈I′e1,M

E(Y(r,Hr),f,∅) = (1 +O(n−1))
2e(H)nv(H)−2

aut(H)
pe(H)−1
e1 .

Also since nv(H)−2p
e(H)−1
0 = no(1) we have that

∑
((r,Hr),f)∈I′e1,M

E(Y(r,Hr),f,∅) =
2e(H)nv(H)−2

aut(H)
pe(H)−1
e1 + o(1).

Note that E(X1|pe1 , pe2) =
∑

((r,Hr),f)∈I′e1,M
E(Y(r,Hr),f,∅).

Let ((r,Hr), f) ∈ I ′e2,M such that e1 ∈ f(E(Hr)). Then∑
S⊆E(Hr)

E(Y(r,Hr),f,S) =
∑

f−1(e1)⊆S⊆E(Hr)

pe(H)−1−|S|
e1 p′(|S|−1) = (pe1 + p′)e(H)−2

and this affects at most O(nv(H)−3) elements in I ′e2,M . For the remaining (r, f) ∈
I ′e2,M we have that∑

S⊆E(Hr)

E(Y(r,Hr),f,S) =
∑

S⊆E(Hr)

pe(H)−1−|S|
e1 p′|S| = (pe1 + p′)e(H)−1.

Therefore:∑
((r,Hr),f)∈I′e2,M

∑
S⊆E(Hr)

E(Y(r,Hr),f,S)

= (1 +O(n−1))
2e(H)nv(H)−2

aut(H)
(pe1 + p′)e(H)−1 +O(nv(H)−3)(pe1 + p′)e(H)−2.

61



5.3 CONCENTRATION

Note that pe1 + p′ = (pe2 − p2
e1)/(1 − pe1) = (1 + O(pe1))(pe2 − p2

e1) = (1 +

O(pe1))pe2(1 + O(pe1)) = pe2(1 + O(p0)). Thus we have that O(nv(H)−3)(pe2(1 +

O(p0)))e(H)−2 = O(nv(H)−3p
e(H)−2
0 ) = O((np0)−1) = o(1) as d2(H) > 1 for strictly

2-balanced graphs. Therefore∑
((r,Hr),f)∈I′e2,M

∑
S⊆E(Hr)

E(Y(r,Hr),f,S)

= (1 +O(n−1))
2e(H)nv(H)−2

aut(H)
pe(H)−1
e2 (1 +O(p0)) + o(1)

=
2e(H)nv(H)−2

aut(H)
pe(H)−1
e2 + o(1).

Note that a similar calculation where pe1 + p′ is replaced by pe2 gives us that

E(X2|pe1 , pe2) = (1 +O(p0))
2e(H)nv(H)−2

aut(H)
pe(H)−1
e2 + o(1).

The bound

P(He1 ∩He2 |pe1 , pe2) ≥ (1 + o(1)) exp

(
−
(
pe(H)−1
e1 + pe(H)−1

e2

) 2e(H)nvH−2

aut(H)

)
follows from the fact that 1/(1−p0) = (1+O(p0)), and we have already established

that

O(p0)
2e(H)nv(H)−2

aut(H)
(pe(H)−1
e1 + pe(H)−1

e2 ) = o(1).

We use Theorem 2.7 to establish a matching upper bound. We are considering

the indicator random variables X(r,Hr),f,pe1
for ((r,Hr), f) ∈ I ′e1,M and X(r,Hr),f,pe2

for ((r,Hr), f) ∈ I ′e2,M , assuming pe1 < pe2 . Note that connecting X(r,Hr1 ),f1,p and

X(r2,Hr2 ),f2,q for p, q ∈ {pe1 , pe2}, when f1(E(Hr1)) ∩ f2(E(Hr2)) 6= ∅, forms a de-

pendency graph for our random variables. The upper bound follows once δ = o(1)

and ∆ = o(1) is established.

Fix ((r1, Hr1), f1) ∈ I ′e1,M ∪ I
′
e2,M

, then there are at most O(nv(H)−3) copies of

((r2, Hr2), f2) ∈ I ′e1,M ∪ I
′
e2,M

such that X(r1,Hr1 ),f1,p and X(r2,Hr2 ),f2,q are connected

in the dependency graph. Note that P(X(r,Hr),f,pe1
|pe1 , pe2) < P(Xr,f,pe2

|pe1 , pe2) ≤
p
e(H)−2
0 which implies that δ = O(nv(H)−3)p

e(H)−2
0 = o(1).

Now to show that ∆ = o(1). Define Ve as the set of endvertices of e1 and e2. For

((r1, Hr1), f1), ((r2, Hr2), f2) ∈ I ′e1,M ∪ I
′
e2,M

such that f1(E(Hr1))∩ f2(E(Hr2)) 6= ∅,
we have that f1(Hr1) ∪ f2(Hr2) is the copy of (Sg1,g2,F , F ) for some (g1, g2, F ) ∈
(r1, Hr1)⊕(r2, Hr2), rooted at some S ⊆ Ve such that |S| = |Sg1,g2,F |. We distinguish

between two cases based on whether e1 ∈ f(E(Hr1) ∪ f(E(Hr2))) or not.

In case e1 ∈ f(E(Hr1) ∪ f(E(Hr2))), assume that e1 ∈ f(E(Hr1)), which im-

plies that ((r1, Hr1), f1) ∈ I ′e2,M . There are at most O(nv(H)−3) ways to select

62



5.3 CONCENTRATION

((r1, Hr1), f1) ∈ I ′e2,M such that e1 ∈ f(E(Hr1)). Since this already fixed v(H) −
2 vertices of F , there are O(nv(H)−3nv(F )−|Sg1,g2,F |−v(H)+2) = O(nv(F )−|Sg1,g2,F |−1)

ways to select ((r1, Hr1), f1), ((r2, Hr2), f2) ∈ I ′e1,M ∪ I
′
e2,M

such that the two copies

create a copy of (Sg1,g2,F , F ) rooted at some S ⊆ Ve and e1 ∈ f(E(Hr1))∪f(E(Hr2)).

The same holds when e1 ∈ f(E(Hr2)). In this case we have that pe1 ≤ p ≤ q ≤ p0

thus

E(X(r1,Hr1 ),f1,pX(r2,Hr2 ),f2,q|pe1 , pe2) ≤ pe(F )−1
0 .

Similarly when e1 6∈ f(E(Hr1)) ∪ f(E(Hr2)), then there are O(nv(F )−|Sg1,g2,F |) ways

to select ((r1, Hr1), f1), ((r2, Hr2), f2) ∈ I ′e1,M ∪ I
′
e2,M

such that the two copies create

a rooted copy of (Sg1,g2,F , F ). Also

E(X(r1,Hr1 ),f1,pX(r2,Hr2 ),f2,q|pe1 , pe2) ≤ pe(F )
0 .

Since O(nv(F )−|Sg1,g2,F |−1p
e(F )−1
0 ) = O(nv(F )−|Sg1,g2,F |p

e(F )
0 ) thus

∆ =
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈(r1,Hr1 )⊕(r2,Hr2 )

O(nv(F )−|Sg1,g2,F |p
e(F )
0 )

=
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈(r1,Hr1 )⊕(r2,Hr2 )

O(nv(F )−|Sg1,g2,F |−e(F )/d2(H)+o(1))

=
∑

r1,r2∈E(H)

∑
(g1,g2,F )∈(r1,Hr1 )⊕(r2,Hr2 )

O(nfd2(H)(Sg1,g2,F ,F )+o(1))

= o(1)

according to Lemma 5.4 completing the proof. �

Lemma 5.19

Let H be a strictly 2-balanced graph then we have that:

P(He1 ∩He2) = (1 + o(1))P(He1)P(He2).

PROOF Let p0 = n−1/d2(H) log n and A = [0, p0]× [0, p0] then similarly as before:

P(He1 ∩He2 ∩ {pe1 ≤ p0} ∩ {pe2 ≤ p0}) =

∫
A
P(He1 ∩He2 |pe1 , pe2)d(pe1 , pe2)

= (1 + o(1))

∫ p0

0

∫ p0

0
P(He1 |pe1)P(He2 |pe2)dpe1dpe2

= (1 + o(1))

∫ p0

0
P(He1 |pe1)dpe1

∫ p0

0
P(He2 |pe2)dpe2

= (1 + o(1))P(He1)P(He2).

In Lemma 5.10 we have shown that the probability of inserting e1 if pe1 > p0 is

o(n−4) = o(P(He1)P(He2)) and similarly for e2 completing the proof. �
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Theorem 5.20

We have a.a.s. that

e(G(H)n,1) = (1 + o(1))
1

2
Γ

(
e(H)

e(H)− 1

)/(
2e(H)

aut(H)

)1/(e(H)−1)

n2−1/d2(H).

PROOF Let Xe be the indicator random variable for the event He and set X =∑
e∈Kn Xe. Corollary 5.11 states that that

E(X) = (1 + o(1))
1

2
Γ

(
e(H)

e(H)− 1

)/(
2e(H)

aut(H)

)1/(e(H)−1)

n2−1/d2(H),

and therefore we only have to prove the concentration. Chebyshev’s inequality

implies that the statement holds if Var(X) = o((E(X))2). Now

Var(X) ≤ E(X) +
∑

e1,e2∈E(Kn)

E(Xe1Xe2)− E(Xe1)E(Xe2)

= o((E(X))2) +
∑

e1,e2∈E(Kn)

P(He1 ∩He2)− P(He1)P(He2)

≤ o((E(X))2) + n4o((P(He))2)

= o((E(X))2)

as required. �

5.4 Independence Number

In the following, we will show bounds on the independence number of G(H)n,1
when H is strictly 2-balanced. Erdős [12] has shown that there exist constants c1,c2,
such that if one removes every triangle from Gn,p, when p = c1/

√
n then a.a.s.

every set of size c2
√
n log n still contains an edge. Since this creates a subgraph of

Ge(K3)n,1 we have that α(Ge(K3)n,1) = O(
√
n log n). We can generalise this result

for any strictly 2-balanced H by modifying a proof of Osthus and Taraz [31].
We will need the following result from Osthus and Taraz [31].

Lemma 5.21 ([31])

Given a graphG and f ∈ E(G) we say that a sequenceH1, ...,Hk of copies ofH inG forms

a (k, f,H) cluster if they all contain f and have the property that for all i with 1 ≤ i ≤ k

Hi contains an edge which is not contained in any of the other Hj with j < i. Then for

strictly 2-balanced H and p = c0n
−1/d2(H), where c0 satisfies ce(H)−1

0 e(H)2 = 1/100 we

have that Gn,p a.a.s. contains no (log n, f,H) cluster for any edge f ∈ E(Gn,p).

Theorem 5.22

For strictly 2-balanced H we have that a.a.s.

α(Ge(H)n,1) = O(n1/d2(H) log n).
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PROOF Consider Gn,p with p = c0n
−1/d2(H), where c0 is as in Lemma 5.21, and

remove every copy of H from it. We will show that a.a.s. every vertex set of size

s = 2cn1/d2(H) log n/c0, where c will be determined later, still contains an edge and

thus this also holds in Ge(H)n,1. Define µ =
(
s
2

)
p.

For a set S ⊆ V (Gn,p), define an auxiliary graph GS,H on Gn,p. Consider the set

of copies of H , such that at least one edge is contained in S. Now fix an ordering

on the set and consider the copies in order. For every copy containing an edge in S

which has not been covered by previous copies of H , we set it as a vertex in GS,H .

Two vertices in GS,H are connected if the two copies share an edge. We have that

at most e(H)v(GS,H) edges are removed from S when we delete every copy of H

from the graph. To bound the number of vertices in GS,H we will use the fact that

v(G) ≤ α(G) + 2∆(G)γ(G) where α(G) is the size of the maximal independent set,

∆(G) is the maximal degree and γ(G) is the size of the largest induced matching on

G. Assume that a.a.s. every S ⊆ V (Gn,p) such that |S| = s spans at least µ/2 edges,

α(GS,H) ≤ µ/(8e(H)) and γ(GS,H) ≤ µ/(16(e(H))2 log n). Lemma 5.21 implies that

a.a.s. ∆(GS,H) ≤ e(H) log n holds for every S such that |S| = s and thus v(GS,H) ≤
µ/(8e(H)) + 2e(H)(log n)µ/(16e(H)2 log n) = µ/(4e(H)). Then we have a.a.s. at

least µ/2− e(H)v(GS,H) ≥ µ/4 edges left in any set S with |S| = s.

Now we will show that our assumptions hold. Fix S ⊆ V (Gn,p) such that |S| =
s and let XS denote the number of edges spanned by S. We have that µ =

(
s
2

)
p =

(1 + o(1))cs log n. Applying the Chernoff bound gives that:

P(XS ≤ µ/2) ≤ exp(−µ/8) ≤ n−s,

if c > 8.

Let YS,H denote the maximal number of edge disjoint copies of H with at least

two vertices in S. We have that α(GS,H) ≤ YS,H . Note that the expected number of

copies of H with at least two vertices in S is

µS,H ≤ nv(H)−2s2pe(H) = c
e(H)−1
0 s2p ≤ µ

8e2e(H)
,

due to our choice of c0. Then Theorem 2.9 gives us that

P(YS,H ≥ µ/8e(H)) ≤
(

eµS,H
µ/8e(H)

)µ/8e(H)

≤ exp(−µ/8(e(H))) ≤ n−s,

if c > 8e(H).

Note that an induced matching in GS,H is equivalent to a set of pairs of copies

of H where the two elements in a pair overlap, but any two pairs are edge dis-

joint. Thus we wish to determine a maximal set of edge disjoint graphs, such
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that every graph in this set is contained in H ⊕ H = (∅, H) ⊕ (∅, H). Consider

the copies of graphs F such that (g1, g2, F ) ∈ (H ⊕ H) and at least three vertices

of the copy are in S. For a given (g1, g2, F ) ∈ (H ⊕ H) the expected number of

such copies is µS,F ≤ nv(F )−3s3pe(F ). Note that if Tg1,g2,F contains more than 2

vertices, then, since the graph is strictly 2-balanced nv(Tg1,g2,F )−2pe(Tg1,g2,F )−1 =

Ω(n(v(Tg1,g2,F )−2)−(e(Tg1,g2,F )−1)/d2(H)) = Ω(nε) for some ε > 0. Otherwise Tg1,g2,F

is an edge and nv(Tg1,g2,F )−2pe(Tg1,g2,F )−1 = 1. Therefore the expected number of

overlapping pairs of H is:

µγ =
∑

(g1,g2,F )∈H⊕H

µS,F ≤
∑

(g1,g2,F )∈H⊕H

nv(F )−3s3pe(F )

≤
∑

(g1,g2,F )∈H⊕H

n2v(H)−v(Tg1,g2,F )−3s3p2e(H)−e(Tg1,g2,F )

≤
∑

(g1,g2,F )∈H⊕H

c
2(e(H)−1)
0 n1−v(Tg1,g2,F )s3p2−e(Tg1,g2,F )

≤
∑

(g1,g2,F )∈H⊕H

1

104e(H)4

s3n−1p

nv(Tg1,g2,F )−2pe(Tg1,g2,F )−1
.

Since there are at most e(H)2 elements (g1, g2, F ) ∈ H ⊕H , such that T is an edge

thus µγ ≤ (1 + o(1))s3pn−1. Similarly, as before, Theorem 2.9 gives a bound on the

probability that a maximal edge disjoint subset is large. Since d2(H) > 1 when H

is strictly 2-balanced, we have that

P (γ(GS,H) ≥ 2s) ≤
(
s3pn−1

2s

)2s

=

((
sc log n

n

)2
)s

= o
(( s

en

)s)
.

If c > 32(e(H))2 then 2s < µ/(16(e(H))2 log n). Set c > 32(e(H))2 and our assump-

tions follow after applying the union bound. �

A lower bound, matching the upper bound up to a constant factor in the case of
the triangle-elimination process follows from a Theorem of Shearer [40]. This states
that every triangle free graph with average degree d, has independent set of size at
least n(d ln d − d + 1)/(d − 1)2 and in our case d = Ω(

√
n), and so α(G(H)n,1) =

Ω(n3/2 log n/n) = Ω(
√
n log n). We can show a lower bound however, only when

d2(H) > 2 and in these cases it only matches the upper bound up to a log log factor.
Note that d2(H) > 2, for every complete graph on at least 4 vertices.

Theorem 5.23

For strictly 2-balanced H such that d2(H) > 2 we have that a.a.s.

α(Ge(H)n,1) = Ω

(
n1/d2(H) log n

log log n

)
.
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PROOF Consider p = cn−1/d2(H)(log log n)1/(e(H)−1) where c satisfies the equal-

ity e(H)ce(H)−1/aut(H) = 1. Define p0 = n−1/d2(H) log n. For a set of vertices

S ⊆ V (Gn,p) let XS be the indicator random variable for the event that S forms an

independent set inGn,p. Also let Yu,v be the indicator random variable for the event

that {u, v} ∈ E(Ge(H)n,p0) and let YS =
∑

u,v∈S Yu,v. Note that if S is independent

in Gn,p then S is also independent in G(H)n,p and the set S′ which is created from

S by removing either u or v for every pair of vertices such that Yu,v = 1 is also

independent. Also S′ will be a.a.s. independent in Ge(H)n,1 as a.a.s. no more edges

are inserted. In addition, if |S| = n1/d2(H) logn
log logn and YS ≤ |S|/2, then |S′| ≥ |S|/2.

Fix S1, S2 ⊆ V (Gn,p) such that |S1| = |S2| = n1/d2(H) logn
log logn and condition on the

event that both S1 and S2 are independent in Gn,p. Since this conditioning affects

at most O(nv(H)−3(|S1| + |S2|)) possible copies of (r,Hr) rooted at {u, v} therefore

the results of Lemma 5.9 still hold for q such that p ≤ q ≤ p0. Thus for u, v ∈ S1 and

similarly for u, v ∈ S2 we have that:

P(Yu,v = 1|{XS1XS2 = 1}) = (1 + o(1))

∫ p0

p
exp

(
−2e(H)qe(H)−1nvH−2

aut(H)

)
dq

≤ (1 + o(1))p0 exp

(
−2e(H)pe(H)−1nvH−2

aut(H)

)
= (1 + o(1))p0 exp (−2 log log n)

= (1 + o(1))n−1/d2(H)/ log n.

Therefore E(YS1 |{XS1XS2 = 1}) = o(|S1|) and thus P({YS1 ≥ |S|/2}|{XS1XS2 =

1}) = o(1). Due to symmetry P({YS2 ≥ |S|/2}|{XS1XS2 = 1}) = o(1). Let ZS be

the indicator random variable that XS = 1 and YS ≤ |S|/2. Then P(ZS1ZS2 = 1) =

(1 + o(1))P(XS1XS2 = 1) and in the special case when S1 = S2 then P(ZS1 = 1) =

(1 + o(1))P(XS1 = 1).

We will show that there exists an independent set in Ge(H)n,1 of size k =

n1/d2(H) log n/ log log n by applying the second moment method to the random vari-

able Zk =
∑

S⊆V (Gn,p),|S|=k ZS . Define Xk =
∑

S⊆V (Gn,p),|S|=kXS , we have shown

that E(Zk) = (1 + o(1))E(Xk) and that E(Z2
k) = (1 + o(1))E(X2

k). Therefore

P(Zk > 0) ≥ (E(Zk))
2

E(Z2
k)

= (1 + o(1))
(E(Xk))

2

E(X2
k)

.

The statement
(E(Xk))

2

E(X2
k)

= 1 + o(1)
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follows from the proof of Lemma 7.2 in Janson, Łuczak and Ruciński [26], but

for completeness we include a short adaptation of their proof. Note that when

d2(H) > 2 then k = o(
√
n/ log n). We have that (E(Xk))

2/E(X2
k) = 1 + o(1) iff

E(X2
k)/(E(Xk))

2 = 1 + o(1). We have that E(X2
k)/(E(Xk))

2 > 1 so we only have to

give an upper bound. Now

E(X2
k)

(E(Xk))2
=

(
n
k

)
(1− p)(

k
2)
∑k

i=0

(
k
i

)(
n−k
k−i
)
(1− p)(

k
2)−(i2)((

n
k

)
(1− p)(

k
2)
)2

≤
k∑
i=0

(
k
i

)(
n−k
k−i
)
(1− p)−(i2)(
n
k

) .

Let

ai =

(
k
i

)(
n−k
k−i
)
(1− p)−(i2)(
n
k

)
and

bi =
ai+1

ai
=

(k − i)2

(i+ 1)(n− 2k + i+ 1)
(1− p)−i.

Note that bi < 1 otherwise the following would have to hold

(k − i)2(1− p)−i ≥ (i+ 1)(n− 2k + i+ 1)

k2 exp(pk) ≥ (1 + o(1))n

n2/d2(H)+o(1) exp(o(log n)) ≥ (1 + o(1))n

n2/d2(H)+o(1) ≥ (1 + o(1))n

which leads to a contradiction as d2(H) > 2. Therefore the value of ai decreases.

Note that for every i ≤ log n

ai =

(
k
i

)(
n−k
k−i
)
(1− p)−(i2)(
n
k

) ≤ ki
(
n−k
k−i
)(

n
k

) exp(p log2 n) ≤
(

2k

n

)i
.

Thus
k∑
i=0

ai ≤
k∑
i=0

(
2k

n

)i
+ k

(
2k

n

)logn

=
1

1− o(1)
+ o(1) = 1 + o(1)

completing the proof. �

Note that this result implies that the graph created by the H-elimination pro-
cess a.a.s. has a larger independence number than the graph created by the H-free
process, whenH is a complete graph. Therefore it will give worse lower bounds for
the off-diagonal Ramsey number. This is not unexpected as the H-elimination ran-
dom graph process creates a.a.s. less edges than the H-free random graph process
and thus it is expected to have a larger independence number.
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5.5 Subgraphs

Finally we will show that graphs with m(F ) < d2(H) are a.a.s. present in the H
removal process, while graphs with m(F ) > d2(H) are a.a.s. not present. The ex-
istence of subgraphs in the H removal process is proven similarly to the existence
of subgraphs in Gn,p, which was shown by Bollobás [7] using the second moment
method. However our proof follows a simpler version by Ruciński and Vince [37].

Theorem 5.24

Every finite graph F with m(F ) < d2(H) is a.a.s. present in the H-elimination process for

strictly 2-balanced H .

PROOF Define d′2(H) = maxH′(H d2(H ′) and let a satisfy max{d′2(H),m(F )} <
a < d2(H). Instead of showing that F is present in Ge(H)n,1 we will show that it is

already present in Ge(H)n,p when p = n−1/a. Let XF denote the number of copies

of F in Gn,p then the second moment method implies that

P(XF = 0) ≤ Var(XF )

(E(XF ))2
.

Again we use the fact that a graph is actually a rooted graph, where the roots are

given by the empty set. Let M = {(∅, F )} and let I ′F = {f : ((∅, F ), f) ∈ I ′∅,M}.
Obviously |I ′F | = (1+o(1))nv(F )/aut(F ). For f ∈ I ′F letXf be the indicator random

variable that all of the edges in f(E(F )) are present in Ge(H)n,p. We establish a

lower bound on P(Xf = 1) by considering the appearance of an induced copy in

Gn,p where none of the edges of the induced copy are contained in a copy of H

in Gn,p. Note that the second condition holds if for every R ( V (H) such that R

spans an edge in H , and every S ( f(V (F )) such that |R| = |S| there is no copy of

(R,HR) rooted at S and outside f(V (F )) in Gn,p. Applying Theorem 2.6 gives us

that

P(Xf = 1) ≥ pe(F )(1− p)(
v(F )

2 ) exp

− ∑
R(V (H)
e(H[R])>0

∑
S(f(V (H))
|S|=|R|

nv(H)−|R|pe(H)−e(H[R])

1− p

 .

Note that with our choice of p we have for every R ( V (H) such that R spans an

edge in H , that nv(H[R])−2pe(H[R])−1 ≥ 1 and nv(H)−2pe(H)−1 = o(1). Therefore

nv(H)−|R|pe(H)−e(H[R])

1− p
= O

(
nv(H)−2pe(H)−1

n(|R|−2)p(e(H[R])−1)

)
= O

(
nv(H)−2pe(H)−1

)
= o(1),
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and thus P(Xf = 1) ≥ (1 + o(1))pe(F ). Obviously P(Xf = 1) ≤ pe(F ). Now

E(X) =
∑

f∈I′ E(Xf ) = Θ(nv(F )pe(F )). On the other hand:

Var(X) =
∑

f1,f2∈I′F

E(Xf1Xf2)− E(Xf1)E(Xf2)

≤
∑
T(F
e(T )>0

n2v(F )−v(T )p2e(F )−e(T )

= o(n2v(F )p2e(F ))

Which is o((E(XF ))2), completing the proof. �

The fact that no copies of graphs denser than d2(H) are present follows trivially
when comparing to Gn,p, with p = n−1/d2(H) log n.

Observation 5.25

Every finite graph F with m(F ) > d2(H) is a.a.s. not present in the H-removal process

when H is strictly 2-balanced.

PROOF Follows from a Theorem of Erdős and Rényi [14] that no copy of F with

m(F ) > d2(H) is contained in Gn,p when p = n−1/d2(H) log n. �
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Chapter 6

Subgraphs of the triangle-free random

graph process

In Chapter 4 we discussed results on the H-free random graph process. The main
focus was on determining the number of edges and the independence number of
the H-free random graph process. In this chapter we will focus on the subgraphs
created by the process. Wolfovitz [50] has shown for the triangle-free process and
Bohman and Keevash [6] have shown for the H-free random graph process, when
H is strictly 2-balanced, that the random variables tracked described in detail in
Chapter 4 imply that the H-free random graph process contains every finite graph
F as a subgraph when m(F ) ≤ d2(H). It also implies that as long as the random
variables are tracked no denser subgraphs appear. However it is still possible for
denser subgraphs to appear during the later stages of the process. In this chapter
we show that very dense graphs do not appear in the triangle-free random graph
process i.e. there exists a constant c such that no copy of any finite graph with
d(F ) > c is present in Gf (K3)n. This is joint work with Stefanie Gerke [20].

In this chapter we will use the slightly simpler notation used by Bohman [4]. A
non-edge is open at step i if inserting it into Gf (K3)n,i would not create a copy of
a triangle, otherwise it is closed. The set of open pairs in step i is denoted by O(i)
and the set of closed pairs is denoted by C(i). In the original version of the proof
the number of open pairs and for any pair of non-adjacent vertices u, v, the number
of open, partial and complete vertices were tracked.

w w w

u u uv v vv v v

w open w partial w complete

Figure 6.1: open/partial/complete vertices

w is open/partial/complete with respect to {u, v}.
Dotted lines indicate open pairs, continuous lines indicate edges

A vertex w is open with respect to {u, v} if both pairs {u,w} and {v, w} are
open. A vertex w is partial with respect to {u, v} if exactly one of {u,w} and {v, w}
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is open and the other is an edge. Finally w is complete with respect to {u, v} if it
is a mutual neighbour of {u, v}, see Figure 6.1. Although these random variables
can be constructed from the random variables described in Chapter 4 due to the
simplicity of the triangle slightly tighter bounds exist.

Our proof requires only the number of open pairs at step i, denoted by Q(i),
and the set of partial vertices with respect to {u, v} at step i denoted by Yu,v(i).
The following bounds were proven by Bohman [4] for the first µn3/2

√
log n steps.

(Bohman sets µ = 1/32, however no effort was made to optimise the value.) For
the remainder of this chapter we set µ = 1/32 and m = µn3/2

√
log n.

Definition 6.1

LetH(i) be the event that the following bounds hold for all j ≤ i and for all pairs {u, v} 6∈
E(j):

|Q(j)− n2q(t(j))| ≤ n2gq(t(j))∣∣∣|Yu,v(j)| − √ny(t(j))
∣∣∣ ≤ √ngy(t(j))

|Zu,v(j)| ≤ log2 n

where

t(i) = i/n3/2

q(t) = exp(−4t2)/2

y(t) = 4t exp(−4t2)

gq(t) =

{
exp(41t2 + 40t)n−1/6 : t ≤ 1
exp(41t2+40t)

t n−1/6 : t > 1

gy(t) = exp(41t2 + 40t)n−1/6.

Theorem 6.1 ([4])

The eventH(m) holds a.a.s..

Let W ⊆ V (Gf (K3)n,i) and define eW (i) as the number of edges spanned by W
after step i.

Lemma 6.2

Fix k. Let Sk(i) be the event that there exists W ⊆ V (Gf (K3)n,i) with |W | = k and

eW (i) ≥ 3k. Then a.a.s. Sk(m) does not hold.

Note that since Sk(m) is a decreasing property it implies Sk(i) for every i < m.
A sharper result showing that a.a.s. eW (m)

|W | ≤ 2 for any finite set of vertices W
can be found in [6] and [50], however for completeness a short proof of the result
has been included.
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PROOF Fix k vertices in V and denote this set by W . Let Ai be the event that an

edge is added between two vertices in W at step i.

Then since q(t(i)) > q(t(m)) for i < m we have

P(Ai+1|H(i)) ≤ k2

Q(i)
≤ k2

n2(q(t(i))− gq(t(i)))
≤ 2k2

n2q(t(i))

≤ 2k2

n2q(t(m))
≤ 4k2

n2 exp(−4µ2 log n)
=

4k2

n2−4µ2 .

Note that these estimates hold irrespective of the events Aj occurring when j 6= i.

Since P(Ai+1 ∩H(i)) ≥ P(Ai+1 ∩H(m)) andH(m) holds a.a.s. thus

(1 + o(1))P(Ai+1|H(i)) ≥ P(Ai+1|H(m))

Thus conditioning onH(m), we have that the random variable eW (m) is dominated

by Bin
(
m, (1+o(1))4k2

n2−4µ2

)
therefore

P(eW (m) ≥ 3k|H(m)) ≤
(
m

3k

)(
(1 + o(1))

4k2

n2−4µ2

)3k

≤
(

(1 + o(1))em4k2

3kn2−4µ2

)3k

≤

(
(1 + o(1))eµn3/2

√
log n4k

3n2−4µ2

)3k

= o

(
1

n3k/2−20kµ2

)
.

Since there are
(
n
k

)
ways to select k vertices, it follows from the union bound that

P(Sk(m)|H(m)) ≤
(
n

k

)
o

(
1

n3k/2−20kµ2

)
= o

(
nk

n3k/2−20kµ2

)
= o(1)

as µ2 is sufficiently small. �

The above proof shows that no copy of a dense graph appears in the process

while the first m edges are taken. We will now show that when m edges have been

taken at least one edge of any placement of a dense graph F is closed.

Theorem 6.3

Let T be the event that there exists a copy of a finite graph F satisfying 10v(F )/µ2 ≤ e(F )

in the triangle-free graph process. Then a.a.s. T does not hold.

PROOF Fix a set of vertices W ⊂ V (Gf (K3)n,i) with |W | = v(F ), and a set of pairs

of vertices EF ⊆ W ×W such that if the pairs in EF were inserted as edges they

would form a copy of F on W . Let CF (i) be the event that at least one pair in EF

is closed after step i and OF (i) be the event that none is closed after step i. For the

following assume we are in the event OF (i).
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w1

w2 w3 w4

v

Figure 6.2: Closing multiple open pairs

The edge {v, w1} closes {w1, w2},{w1, w3} and {w1, w4}

Note that a pair {u, v} is closed at step i if and only if there is a partial vertexw ∈
Yu,v(i) and the missing edge is chosen. Thus the probability of closing a pair s ∈ Oi
is |Ys(i)|/Q(i). The problem is that an edge can close several pairs of vertices in EF .

The subset ofW×W closed by {wj , v} ∈ Oi, with v 6∈W is at mostwj×(Ni(v)∩W )

(see Figure 6.2), where Ni(v) denotes the neighbourhood of v in Gf (K3)n,i.

Let Di be the set of vertices not in W that have more than 6 neighbours in W at

time i. Excluding the pairs with both vertices in W and the pairs with a vertex in

Di the remaining pairs close at most 6 pairs in W ×W and in particular at most 6

pairs in EF . Therefore
∑

f∈EF (W )\Ei |Yf (i)\(Di ∪W )| counts any pair that closes a

pair in EF at most 6 times.

Assume we are in S2v(F )(i), then the setDi can have size at most v(F ) otherwise

W ∪Di forms a set of 2v(F ) vertices that span more then 6v(F ) edges. Let B(i) =

Sv(F )(i) ∩ S2v(F )(i) ∩H(i). Hence

P(CF (i+ 1)|[OF (i) ∩ B(i)]) ≥
∑

f∈EF \Ei |Yf (i)\(Di ∪W )|
6Q(i)

≥
∑

f∈(EF )\Ei(|Yf (i)| − 2v(F ))

6Q(i)
.

Since we are in the event Sv(F )(i) there are at most 3v(F ) edges in EF also |EF | ≥
10v(F )/µ2 and becauseOF (i) holds every non-adjacent pair inEF is open therefore

the sum is over at least (10/µ2 − 3)v(F ) ≥ 9v(F )/µ2 open pairs. Thus

P(CF (i+ 1)|[OF (i) ∩ B(i)]) ≥ 9v(F )

µ2

√
n(y(t(i))− gy(t(i)))− 2v(F )

6n2(q(t(i)) + gq(t(i)))
.

If n is large enough then q(t(i)) + gq(t(i)) ≤ 2q(t(i)), and for m ≥ i ≥ n4/3 we have

y(t(i))− gy(t(i)) ≥
y(t(i))

2
≥ 2t(n4/3) exp(−4t2(m)) = 2n−

1
6
−4µ2

,
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therefore since v(F ) is a constant:
√
ny(t(i))

2
− 2v(F ) ≥ 7

15

√
ny(t(i)),

and so:

P(CF (i+ 1)|[OF (i) ∩ B(i)]) ≥ 9v(F )

µ2

7
√
ny(t(i))/15

6n2(q(t(i)) + gq(t(i)))

≥ 7v(F )

µ2

√
ny(t(i))

20n2q(t(i))
=

7v(F )

µ2

4t(i) exp(−4t2(i))

10n3/2 exp(−4t2(i))

=
14v(F )i

5µ2n3
.

It follows that for m ≥ i ≥ n4/3 and sufficiently large n,

P(OF (i+ 1)|[OF (i) ∩ B(i)]) ≤ 1− 14v(F )i

5µ2n3
≤ exp

(
−14v(F )i

5µ2n3

)
.

Using OF (i) ⊂ OF (i+ 1) and that B(i) ⊂ B(i+ 1) thus for sufficiently large n

P(OF (m) ∩ B(m)) =

m−1∏
i=0

P (OF (i+ 1) ∩ B(i+ 1)|[OF (i) ∩ B(i)])

≤
m−1∏
i=0

P (OF (i+ 1)|[OF (i) ∩ B(i)])

≤
m−1∏

i=dn4/3e

exp

(
−14v(F )i

5µ2n3

)
= exp

 m−1∑
i=dn4/3e

−14v(F )i

5µ2n3


= exp

(
−14v(F )

5µ2n3

(
m(m− 1)

2
− dn

4/3e(dn4/3e − 1)

2

))

≤ exp

(
−4v(F )

3

m2

µ2n3

)
= exp

(
−4v(F )

3
log n

)
= n−4v(F )/3.

As there are
(

n
v(F )

) v(F )!
aut(F ) possible placements of F applying the union bound gives

P (T ∩ B(m)) ≤
(

n

v(F )

)
v(F )!n−4k/3 ≤ nv(F )−4v(F )/3 = o(1).

�

Note that there is an alternative way to estimate P(CF (i+ 1)|[OF (i) ∩ B(i)]). As
mentioned earlier the vertices with more than one neighbour inW cause a problem.
However the total number of such vertices is small as each of them is a complete
vertex with respect to {u, v} for some u, v ∈ W . Bohman [4] showed that the num-
ber of complete vertices with respect to any pair of vertices {u, v} is at most log2 n
and this implies that

P(CF (i+ 1)|[OF (i) ∩ B(i)]) ≥
∑

f∈EF (W )\Ei |Yf (i)| − v(F )2 log2 n

Q(i)
.

This was one of the observations in Warnke [48] where he generalised the result for

strictly 2-balanced H .
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Theorem 6.4 ([48])

For every strictly 2-balanced graphH there exist constants c, d > 0 such that a.a.s. no copy

of any graph F with 1 ≤ v(F ) ≤ nd and m(F ) > c is present in the H-free random graph

process.
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Chapter 7

The K−3,4-free process

7.1 The differential equations

In this section we are considering the K−3,4-free random graph process. We will
show that the process contains a.a.s. Ω(n3/2

√
log logn) edges. This improves the

previous lower bound by Osthus and Taraz [31] who have shown that the process
contains Ω(n3/2) edges.

Recall that the graphK−3,4 is 2-balanced, but not strictly 2-balanced as d2(K−3,4) =

d2(K3,3) = 2 and K3,3 is the only proper subgraph of K−3,4 which has 2-density of 2
the remaining subgraphs have a smaller 2-density.

As in Chapter 4 we call a pair of non-adjacent vertices which can be connected
by an edge inGf (K−3,4)n,i without creating a copy ofK−3,4 an open pair at step i. The
set of open pairs at step i are denoted byO(i) andQ(i) = |O(i)|. Otherwise a pair of
non-adjacent vertices is called a closed pair and the set of closed pairs is denoted by
C(i). Recall that we are interested in the rooted graphs (r1, (K

−
3,4)r1), (r2, (K

−
3,4)r2)

and (r3, (K
−
3,4)r3), see Section 5.2.4, as the presence of any of these graphs rooted at

a vertex implies that it is closed.
The differential equation method will be used for the proof. Our aim in this

section is to introduce the random variables and the differential equations implied
by the expected changes in these random variables needed for Lemma 4.11. This
should not be considered a rigorous proof as for simplicity we only estimate the
expected change. In the following section we will show that these estimates are
fairly accurate during the early stages of the process.

We start by considering the random variables. As in the previous results for
H-free random graph processes we wish to track the number of open pairs. Recall
that in the diamond-free process for an open pair {u, v} the codegree of {u, v} had
a significant affect on the number of edges which would close {u, v}. In case of
the K−3,4 one can observe a similar phenomenon, however instead of the codegree
of {u, v} it is the number of copies of (r, (K3,3)r) rooted at {u, v} which have a
significant affect on the number of edges which would close {u, v}. Note that unlike
in the case of the diamond-free graph process where the codegree of any open pair
is at most one, in this case no upper bound exists. Let Ok(i) ⊆ O(i) be the set
of open pairs {u, v} where the number of copies of (r, (K3,3)r) rooted at {u, v} is
exactly k. Define Qk(i) = |Ok(i)|. Obviously Q(i) =

∑
k≥0Qk(i).

Let (R,Γ) be a fixed rooted graph where R forms an independent set. Later we
will see that we can restrict our analysis to graphs Γ which contain at most one
copy of K3,3 where this copy is induced. Let φ : R→ V (Gf (K−3,4)n,i) be an injective
mapping and J ⊆ Γ be a fixed spanning subgraph of Γ. Similarly to the strictly two
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7.1 THE DIFFERENTIAL EQUATIONS

balanced case we are interested in the random variables Ξφ,J,Γ(i). Recall that these
random variables were the maps g : V (Γ) → V (Gf (K−3,4)n,i) such that g|R = φ,
g(E(J)) ⊆ E(Gf (K−3,4)n,i) and for every f ∈ E(Γ)\E(J) we have that g(f) ∈ O(i).

Similarly to the diamond-free case we would like to partition this based on
the number of copies of (r, (K3,3)r) rooted at the open pairs of this copy. Let
κ : E(Γ)\E(J)→ N, where N denotes the set of non-negative integers. This gives us
sets Ξφ,J,Γ,κ(i) such that g ∈ Ξφ,J,Γ,κ(i) if g ∈ Ξφ,J,Γ(i) and for every f ∈ E(Γ)\E(J)
we have that g(f) ∈ Oκ(f)+γ(i) where γ is the number of copies of (r, (K3,3)r) rooted
at f in J . Introducing γ allows us to differentiate between the edges of Gf (K−3,4)
based on whether they are spanned by g(V (Γ)) or not. Note that since Γ contains
at most one copy of K3,3 the value of γ is either 0 or 1.

We partition Ξφ,J,Γ,κ(i) even further. In order to motivate this consider the case
when (R,Γ) = (r, (K3,3)r). Note that for φ(r) to be open it is vital that the codegree
of every non-edge in the copy of (K3,3)r, except for that of r has to be exactly 2. Let
C ⊆ (E(ΓR)) be a subset of the non-edges of Γ, but not in R and for convenience
let C = E(ΓR)\C. Then g ∈ Ξφ,J,Γ,κ,C(i) if g ∈ Ξφ,J,Γ,κ(i) and the codegree of g(c)
in Gf (K−3,4)n,i matches the codegree of c in J for every c ∈ C and the codegree of
g(c) in Gf (K−3,4)n,i is larger than the codegree of c in J for every c ∈ C.

In summary the set Ξφ,J,Γ,κ,C(i) denotes the set of injective maps g : V (Γ) →
V (Gf (K−3,4)n,i) such that the following conditions hold:

• g|R = φ

• g(E(J)) ⊆ E(Gf (K−3,4)n,i)

• for every f ∈ E(Γ)\E(J), g(f) ∈ Oκ(f)+γ(i) where γ is the number of copies
of (r, (K3,3)r) rooted at f in J

• for every c ∈ C the codegree of g(c) in Gf (K−3,4)n,i is larger then the codegree
of c in J .

• for every c ∈ C the codegree of g(c) in Gf (K−3,4)n,i matches the codegree of c
in J .

Define Xφ,J,Γ,κ,C(i) = |Ξφ,J,Γ,κ,C(i)|.
In order to express small changes in the function κ let

κe,k(f) =

{
κ(f) if f 6= e

k if f = e

and this notation is also used when κ(e) is undefined. Also let

κ−e (f) =

{
κ(f) if f 6= e

κ(f)− 1 if f = e

and let κe(f) be the same as κ after removing e from its domain. In some cases when
|E(Γ)\E(J)| = 1 we replace κ with k when κ(e) = k e.g. Xφ,(K3){r,e},(K3)r,κe,k,∅(i) =

Xφ,(K3){r,e},(K3)r,k,∅(i). In many cases when |E(Γ)\E(J)| = 1 we are not only inter-
ested in the individual random variables Xφ,J,Γ,k,C(i) but also in their sum over k,
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7.1 THE DIFFERENTIAL EQUATIONS

which gives us all the possibilities when this last edge is open, therefore define:

Xφ,J,Γ,C(i) =
∑
k≥0

Xφ,J,Γ,k,C(i).

Similarly to the other H-free processes where H has 2-density 2, we define
t(i) = i/n3/2. In the following we will write t instead of t(i). Next we set up
our differential equations. As mentioned earlier in this section we will ignore small
errors thus approximate

Qk(i) ≈ qk(t)n2

Xφ,J,Γ,κ,C(i) ≈ xR,J,Γ,κ,C(t)nf2(R,J)

where f2(R, J) = v(J) − |R| − e(J)/2. We will also assume that for {u, v} ∈ Ok(i)
the copies of (r, (K3,3)r) rooted at {u, v} are non-edge disjoint.

One expects that in most cases we will have a similar result to the one shown
for the H-free process when H is strictly 2-balanced namely

xR,J,Γ(t) =
∑

κ:E(Γ)\E(J)→N

∑
C⊆ΓR

xR,J,Γ,κ,C(t) = (2t)e(J)(2q(t))e(Γ)−e(J).

Next we examine the changes of the random variables. Let Q+
k (i), Q−k (i) rep-

resent the positive and negative change in the random variable formally Q+
k (i) =

|Ok(i + 1)\Ok(i)| and Q−k (i) = |Ok(i)\Ok(i + 1)|. For {u, v} ∈ Ok(i) consider the
number of edges which when inserted into the graph would remove {u, v} from
Ok(i). Trivially inserting the edge {u, v} would remove {u, v} from Ok(i). The re-
maining edges can be split into two parts based on whether {u, v} is in Ok+1(i+ 1)
or C(i + 1). Denote the number of open pairs which when added would cause
{u, v} to end up in Ok+1(i) with Auv(i) and let Cuv(i) denote the number of open
pairs which when added to the graph would cause {u, v} to end up in C(i + 1).
The random variables Auv(i) will be needed to determine Q+

k (i) and together with
Cuv(i) it helps to determine Q−k (i).

We have that

Auv(i) ≈
1

aut(K3,3)

∑
r,e∈E(K3,3)

r 6=e

∑
φ:r→{u,v}

∑
k≥0

Xφ,(K3,3){r,e},(K3,3)r,k,∅(i) (7.1)

=
1

aut(K3,3)

∑
r,e∈E(K3,3)

r 6=e

∑
φ:r→{u,v}

Xφ,(K3,3){r,e},(K3,3)r,∅(i)

≈ 2

72

∑
r,e∈E(K3,3)

r 6=e

xr,(K3,3){r,e},(K3,3)r,∅(t)
√
n

since f2(r, (K3,3)r,e) = 6− 2− 7/2 = 1/2 for any choice of r and e. Define

a(t) =
2

72

∑
r,e∈E(K3,3)

r 6=e

xr,(K3,3){r,e},(K3,3)r,∅(t).
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7.1 THE DIFFERENTIAL EQUATIONS

Now Cuv(i) can be split into further 3 parts. The first of these is when {u, v}
is closed by adding the last edge to a copy of (r1, (K

−
3,4)r1) rooted at {u, v}. The

second is when an edge is added which creates a copy of (r2, (K
−
3,4)r2) or a copy

of (r3, (K
−
3,4)r3) rooted at {u, v} and in particular a copy of (r, (K3,3)r) rooted at

{u, v}. Finally when it creates a mutual neighbour for a pair of vertices assigned to
a non-edge of an already existing copy of (r, (K3,3)r) rooted at {u, v}. Denote these
in order Cuv,1(i), Cuv,2(i) and Cuv,3(i).

We start with determining Cuv,1(i). Note that this either requires a copy of K3,3

to be already present in the graph or we create a copy of K3,3 in the last step. How-
ever for a copy ofK3,3 to be created it is required that all of the vertex pairs assigned
to the non-edges of K3,3 have no mutual neighbours other than the ones required
to create the copy of K3,3. Let L be the set of non-edges contained in the copy
of K3,3 found in (K−3,4) formally L = {{2, 6}, {2, 7}, {6, 7}, {3, 4}, {3, 5}, {4, 5}} ⊆
E((K−3,4)) as in Figure 5.1. Note that for any C such that L ∩ C 6= ∅ we have that
Xφ,(K−3,4){r1,e},(K

−
3,4)r1 ,k,C

(i) = 0. Therefore

Cuv,1(i) ≈
∑

e∈E((K−3,4)r1 )

∑
L⊆C⊆E((K−3,4))

∑
φ:r1→{u,v}

Xφ,(K−3,4){r1,e},(K
−
3,4)r1 ,C

(i)

aut(r1, Hr1)

≈ 2

6

∑
e∈E((K−3,4)r1 )

∑
L⊆C⊆E((K−3,4))

xr1,(K−3,4){r1,e},(K
−
3,4)r1 ,C

(t)
√
n

= c1(t)
√
n

where aut(r,Hr) is the number of automorphisms of Hr which transfer the ele-
ments of r to r e.g. aut(r1, (K

−
3,4)r1) = 6. Cuv,2(i) resembles Auv(i) except here

C 6= ∅

Cuv,2(i) ≈ 1

aut(K3,3)

∑
r,e∈E(K3,3)

r 6=e

∑
φ:r→{u,v}

∑
C⊆E(K3,3)

C 6=∅

Xφ,(K3,3){r,e},(K3,3)r,C(i)

≈ 1

36

∑
r,e∈E(K3,3)

r 6=e

∑
C⊆E(K3,3)

C 6=∅

xr,(K3,3){r,e},(K3,3)r,C(t)
√
n

= c2(t)
√
n.

Finally fix r′ ∈ E(K3,3) and φ : r′ → {u, v} then since we assume that the copies of
(r, (K3,3)r) rooted at {u, v} are non-edge disjoint we have that

Cuv,3(i) ≈ 1

4

∑
g∈Ξφ,(K3,3)r′ ,(K3,3)r′ ,κ0,∅(i)

∑
e∈K3,3

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(e)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

≈ 6
Xφ,(K3,3)r′ ,(K3,3)r′ ,κ0,∅(i)

4

∑
r,e∈E(K3)

r 6=e

xr,(K3){r,e},(K3)r,∅(t)

3

√
n

= c3,Xφ,(K3,3)r′ ,(K3,3)r′ ,κ0,∅(i)/4
(t)
√
n
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where κ0 is the function ∅ → N. Note that if {u, v} ∈ Ok(i) then according to our
assumptions we have that k = Xφ,(K3,3)r′ ,(K3,3)r′ ,(K3,3)r′ ,κ0,∅(i)/4 and thus Cuv,3(i) ≈
c3,k(t)

√
n.

In order to set up our differential equations we examine the one step changes
for each random variable. Start with the random variable Qk(i). Let

Qk(i+ 1)−Qk(i) = Q+
k (i)−Q−k (i)

where Q+
k (i), Q−k (i) ≥ 0. For k = 0 we have that Q+

k (i) = 0 for all i and for k > 0
the following holds:

E(Q+
k (i)) ≈ 1

Q(i)

∑
f∈Ok−1(i)

Af (i) ≈ qk−1(t)

q(t)
a(t)
√
n. (7.2)

We also have that

E(Q−k (i)) ≈ 1

Q(i)

∑
f∈Ok(i)

1 +Af (i) + Cf (i) (7.3)

≈ 1

Q(i)

∑
f∈Ok(i)

Af (i) + Cf,1(i) + Cf,2(i) + Cf,3(i)

≈ qk(t)

q(t)
(a(t) + c1(t) + c2(t) + c3,k(t))

√
n.

Similarly for Xφ,J,Γ,κ,C(i)

Xφ,J,Γ,κ,C(i+ 1)−Xφ,J,Γ,κ,C(i) = X+
φ,J,Γ,κ,C(i)−X−φ,J,Γ,κ,C(i)

with X+
φ,J,Γ,κ,C(i) ≥ 0 and X−φ,J,Γ,κ,C(i) ≥ 0 where X+

φ,J,Γ,κ,C(i) and X−φ,J,Γ,κ,C(i) are
defined analogously to Q+

k (i) and Q−k (i).
We will distinguish between the cases when J contains a copy of K3,3 or not.

We start with the case when J contains no copy of K3,3. Note that the value of
Xφ,J,Γ,κ,C(i) increases if the last edge of a copy (r, J) with respect to φ is inserted,
a last copy of (r, (K3,3)r) needed to satisfy κ is added and finally if the last non-
edge not in C receives a mutual neighbour, assuming of course that the remaining
parameters remain unchanged. Therefore

E(X+
φ,J,Γ,κ,C(i)) ≈ 1

Q(i)

∑
e∈E(J)

∑
k≥0

Xφ,Je,Γ,κe,k,C(i)

+
1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξ

φ,J,Γ,κ−
f
,C

(i)

Ag(f)(i)

+
1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C\c(i)

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(c)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)
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≈ 1

q(t)

∑
e∈E(J)

∑
k≥0

xR,Je,Γ,κe,k,C(t)
√
nnf2(R,J)

+
1

q(t)

∑
f∈E(Γ)\E(J)

xR,J,Γ,κ−f ,C
(t)a(t)

√
nnf2(R,J)

+
1

q(t)

∑
c∈C

xφ,J,Γ,κ,C\c(t)
∑

r,e∈E(K3)
r 6=e

xφ,(K3){r,e},(K3)r,∅(t)

3

√
nnf2(R,J).

The only ways to decrease its value other than adding an edge are to close an open
pair required byE(Γ)\E(J) or add a copy of (r, (K3,3)r) rooted at one of these open
pairs or to create a mutual neighbour for a pair of vertices which are required not
to have one. Thus

E(X−φ,J,Γ,κ,C(i)) ≈ 1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξφ,J,Γ,κ,C(i)

(
1 + Cg(f)(i) +Ag(f)(i)

)
+

1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C(i)

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(c)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

≈
xR,J,Γ,κ,C(t)

q(t)

 ∑
f∈E(Γ)\E(J)

(a(t) + c1(t) + c2(t) + c3,κ(f)(t))

+
∑
c∈C

∑
r,e∈E(K3)

r 6=e

xφ,(K3){r,e},(K3)r,∅(t)

3

nf2(R,J)+1/2.

Something similar is true for the case when J contains a copy of K3,3. The only
difference is in the number of edges which can create a mutual neighbour for a pair
of vertices which are required not to have one. Let L(J) be the set of non-edges
found in the induced copy of K3,3 and note that L ⊆ C. Also note that once the
copy of K3,3 has been completed the codegree of the vertex-pairs in Gf (K−3,4)n,i
corresponding to the non-edges in L(J) are fixed i.e. they will not change any more
during the process. Thus if K3,3 ⊆ J then we have that:

E(X−φ,J,Γ,κ,C(i)) ≈ 1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξφ,J,Γ,κ,C(i)

(
1 + Cg(f)(i) +Ag(f)(i)

)
+

1

Q(i)

∑
c∈C\L(J)

∑
g∈Ξφ,J,Γ,κ,C(i)

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(c)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)
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≈
xR,J,Γ,κ,C(t)

q(t)

 ∑
f∈E(Γ)\E(J)

(a(t) + c1(t) + c2(t) + c3,κ(f)(t))

+
∑

c∈C\L(J)

∑
r,e∈E(K3)

r 6=e

xφ,(K3){r,e},(K3)r,∅(t)

3

nf2(R,J)+1/2.

Note that if there is no copy ofK3,3 in J then L(J) = ∅. These heuristics suggest
the following system of differential equations:

q(t)q′k(t) = qk−1(t)a(t)− qk(t)(a(t) + c1(t) + c2(t) + c3,k(t))

q(t)x′R,J,Γ,κ,C(t) =
∑

e∈E(J)

∑
k≥0

xR,Je,Γ,κe,k,C(t) +
∑

f∈E(Γ)\E(J)

xR,J,Γ,κ−f ,C
(t)a(t)

+
∑
c∈C

xφ,J,Γ,κ,C\c(t)
∑

r,e∈E(K3)
r 6=e

xφ,(K3){r,e},(K3)r,∅(t)

3

− xR,J,Γ,κ,C(t)
∑

f∈E(Γ)\E(J)

(a(t) + c1(t) + c2(t) + c3,κ(f)(t))

− xφ,J,Γ,κ,C(t)
∑

c∈C\L(J)

∑
r,e∈E(K3)

r 6=e

xφ,(K3){r,e},(K3)r,∅(t)

3
.

Since the process starts from the empty graph we have that q0(0) = 1/2 and
qk(0) = 0 for k > 0. Also xR,J,Γ,κ,C(0) = 1 if E(J) = 0, C = ∅ and κ is the constant
0 function. Otherwise xR,J,Γ,κ,C(0) = 0.

In order to find a solution for this system of differential equations we will as-
sume that similarly to all of the previous cases the functions xR,J,Γ,κ,C(t) can be
constructed by multiplying different terms. In the first step assume that we have
found functions qk(t), which satisfy the differential equations. We have seen that
the number of triangles in the diamond-free process differs from the number of
triangles in Gn,i. Similarly the number of copies of K3,3 found in the K−3,4 process
will diverge from the number of copies of K3,3 found in Gn,i. We will first consider
cases where J does not contain a copy of K3,3.

In the strictly 2-balanced case we have seen that the solution for the differential
equations was xR,J,Γ(t) = (2t)e(J)(2q(t))e(Γ)−e(J). In the diamond-free process we
have seen that when partitioning the open pairs one just has to replace the q(t)
terms with the appropriate qk(t) terms. This indicates the following solution

xφ,J,Γ,κ(t) =
∑
C⊆ΓR

xφ,J,Γ,κ,C(t) = (2t)e(J)
∏

f∈E(Γ)\E(J)

(2qκ(f)).

Finally we will rely on the fact that this process is similar toGn,i and thus also to
Gn,p when i ≈

(
n
2

)
p and since i = tn3/2 thus p ≈ 2t√

n
. Note that the codegree of a pair

of vertices in Gn,p follows a Poisson distribution with parameter λ = np2 = (2t)2.
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Based on these intuitions this suggests the following solutions

xR,J,Γ,κ,C(t) = (2t)e(J)
∏

f∈E(Γ)\E(J)

(2qκ(f))
(
exp(−4t2)

)|C| (
1− exp(−4t2)

)|C|
and one can easily verify that, based on our assumptions, these solutions satisfy
the differential equations.

Now consider the function xφ0,K3,3,K3,3,κ0,C(t) and note that this is zero unless
C = ∅ in which case we have that:

q(t)x′φ0,K3,3,K3,3,κ0,∅(t) =
∑

e∈E(K3,3)

∑
k≥0

xφ0,(K3,3)e,K3,3,κe,j ,∅(t)

=
∑
k≥0

9(2t)82qk(t)
(
exp(−(2t)2)

)6
= 18(2t)8q(t)

(
exp(−(2t)2)

)6
and thus

xφ0,K3,3,K3,3,κ0,∅(t) =

∫ t

0
18(2τ)8 exp(−6(2τ)2)dτ

=
35
∫ t

0 e−24τ2
dτ

384
− e−24t2

(
96t7 +

7

2
t5 +

35

24
t3 +

35

384
t

)
.

Define the correction factor

ξ(t) =

∫ t
0 18(2τ)8 exp(−6(2τ)2)dτ

(2t)9 exp(−6(2t)2)

where the numerator is the correct form for xφ0,K3,3,K3,3,κ0,∅(t), while the denomi-
nator is the form which we would get based on our previous calculations i.e. if we
ignored the fact that it is a copy of K3,3. Let γ(J) be the indicator function that J
contains a copy of K3,3. Since Γ contains at most one copy of K3,3, and this copy is
induced we have that:

xR,J,Γ,κ,C(t) = (2t)e(J)
∏

f∈E(Γ)\E(J)

(2qκ(f))
(
exp(−4t2)

)|C| (
1− exp(−4t2)

)|C|
ξγ(J).

Note that this also satisfies the system of differential equations assuming that qk(t)
satisfies them.

Now we will determine qk(t). Recall that:

a(t) =
1

36

∑
r,e∈E(K3,3)

r 6=e

xr,(K3,3){r,e},(K3,3)r,∅(t) = 2(2t)72q(t) exp(−(2t)2)6

c1(t) =
1

3

∑
e∈E((K−3,4)r1 )

∑
L⊆C⊆E((K−3,4))

xr1,(K−3,4){r1,e},(K
−
3,4)r1 ,C

(t) =

=
1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))
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c2(t) =
1

36

∑
r,e∈E(K3,3)

r 6=e

∑
C⊆E(K3,3)

C 6=∅

xr,(K3,3){r,e},(K3,3)r,C(t)

= 2(2t)72q(t)(1− exp(−(2t)2)6)

c3,k(t) = 6k
∑

r,e∈E(K3)
r 6=e

xr,(K3){r,e},(K3)r(t)

3
= 6k2(2t)(2q(t)).

In order to solve the differential equations we again use the connection to Gn,p
when p = 2t/

√
n. In this graph the number of copies of (r, (K3,3)r) rooted at {u, v}

is Poisson distributed with parameter (2t)8/4 and thus the probability that there
are exactly k of them is

(2t)8k

4kk!
exp

(
−(2t)8

4

)
.

Note that (2t)8/4 =
∫

(c2(τ) + a(τ))/q(τ)dτ Also the codegree of a vertex pair is
Poisson distributed and thus the probability that a vertex pair has codegree zero
is exp(−(2t)2). Now if we consider multiple vertex pairs and assume that their
codegrees are independent thus the probability that 6k vertex pairs have codegree
zero is

exp
(
−(2t)2

)6k
.

Note that 24kt2 =
∫
c3,k(τ)/q(τ)dτ . This leads us to guess that the the last term

needed is

exp

(
−
∫ t

0

c1(τ

q(τ)
dτ

)
.

Define

F (t) =

∫ t

0

c1(τ)

q(τ)
dτ =

∫ t

0

1

3
(2τ)92 exp(−(2τ)2)6(9 + ξ(τ))dτ

and note that

F (t) =

∫ t

0
6(2τ)9 exp(−(2τ)2)6dτ +

∫ t

0

∫ τ

0
18(2ρ)8 exp(−6(2ρ)2)dρdτ

=
1

216
− exp(−(2t)2)6

(
64t8 +

32

3
t6 +

4

3
t4 +

1

9
t2 +

1

216

)
+

35

384
t

∫ t

0
exp(−(2τ)2)6dτ +

(
114

18432

)(
exp(−24t2)− 1

)
+ exp(−(2t)2)6

(
2t6 +

93

32
t4 +

33

64
t2
)
.

We will only need that when t ≤ 1 then 0 ≤ F (t) ≤ 1 and that for t > 1 there exists
a small constant c such that ct ≤ F (t) ≤ t.

Multiplying these terms together, and including a 1/2 term to satisfy the initial
conditions, gives us that:

qk(t) =
1

2

(2t)8k

4kk!
exp

(
−(2t)8

4

)(
exp(−(2t)2)

)6k
exp (−F (t)) .
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Note that summing over k ≥ 0 gives us

q(t) =
1

2
exp

(
(2t)8

4
exp(−6(2t)2)

)
exp

(
−(2t)8

4

)
exp (−F (t)) .

It is easy to verify that qk(t) is in fact the solution. Derive qk(t) according to
the product rule. Deriving the first term gives us a(t)qk−1(t)/q(t), the second term
gives us −(a(t) + c2(t))qk(t)/q(t), the third term gives −c3,k(t)qk(t)/q(t) and the fi-
nal term gives −c1(t)qk(t)/q(t). Also note that the only terms in q(t) which tend
to 0 are exp

(
−(2t)8/4

)
and exp(−F (t)) and that the exp

(
−(2t)8/4

)
term tends to

zero much faster. Note that the process contains q(t)n2 open pairs. Assuming that
the differential equations hold until the end of the process we have that the process
terminates once q(t) = n−2. Note that this happens when t = Θ(log1/8 n) suggest-
ing that the process terminates with Θ(n3/2 log1/8 n) edges. This differs from the
strictly 2-balanced case where it is conjectured [6] that the process terminates after
Θ(n2−1/d2(H) log1/(e(H)−1) n) steps, as the exponents of the log factors do not match.
We will only show that a.a.s. the process runs for Ω(n3/2

√
log logn) steps.

Theorem 7.1

The K−3,4-free random graph process. a.a.s. contains Ω(n3/2
√

log log n) edges.

7.2 Differential equation proof

7.2.1 The Setup

In this section we verify the conditions of Lemma 4.11. In the setup of the Lemma
4.11 set m = µn3/2

√
log logn, where µ = 1/200. No attempt was made to optimise

the value of µ. Also let s = n3/2. We make several additional restrictions on the
random variables described in the previous section, first we are only interested in
the random variables Xφ,J,Γ,κ,C(i) when Γ is one of (K3)r, (K3,3)r or (K−3,4)r1 and J
is a proper spanning subgraph of Γ i.e. e(Γ)− e(J) ≥ 1. The differential equations
imply that since there are only a few open pairs f with many copies of (r, (K3,3)r)
rooted at f , they will have no significant impact on the outcome of the process. Set
kmax = log n/22 log log n. However we still need an estimate for

∑
k>kmax

Qk(i) and
similarly for

∑
κ:max{κ}>kmax Xφ,J,Γ,κ,C(i). It would be hard to track these sums as

even determining their expected change is difficult. Instead of
∑

k>kmax
Qk(i) we

track the number of open pairs {u,v} which have been in Ok(j) for some k > kmax
and j ≤ i, formally

Yo(i) =

∣∣∣∣∣∣
⋃
j≤i

⋃
k>kmax

Ok(j)

∣∣∣∣∣∣ .
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Similarly for every random variable Xφ,J,Γ,κ,C(i) and every f ∈ E(Γ)\E(J) we
would like to track

∑
κ:max{κ}>kmax Xφ,J,Γ,κ,C(i) therefore define

Zφ,J,Γ,κ,C,S(i) =

∣∣∣∣∣∣∣∣∣∣∣∣
⋃
j≤i

⋃
κ′:E(Γ)\E(J)→N

minf∈S κ
′(f)>kmax

κ′|E(Γ)\(E(J)∪S)=κ

Ξφ,J,Γ,κ,C(j)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Let V = {q, x, y, z}. The elements of Ij for j ∈ V are as follows:

• Iq is the set of positive integers from 0 to kmax

• Ix is the set of quintuples (φ, J,Γ, κ, C) such that (r,Γ) is one of (r, (K3)r),
(r, (K3,3)r), or (rr, (K

−
3,4)r1) such that φ : r → V (Gf (K−3,4)n,i) is an injec-

tive function, J is a proper spanning subgraph of Γ, C ⊆ E(ΓR) and κ :
E(Γ)\E(J)→ [kmax]

• Iy = {o}

• Iz is the set of sextuplets (φ, J,Γ, κ, C, S) such that (r,Γ) is one of (r, (K3)r),
(r, (K3,3)r), or (rr, (K

−
3,4)r1) such that φ : r → V (Gf (K−3,4)n,i) is an injective

function, J is a proper spanning subgraph of Γ, C ⊆ E(ΓR), S ⊆ E(Γ)\E(J)
and κ : E(Γ)\(E(J) ∪ S)→ [kmax].

We are interested in the set of random variables Qk(i) for k ∈ Io, Xφ,J,Γ,κ,C(i)
when (φ, J,Γ, κ, C) ∈ Ix, Yo and Zφ,J,Γ,κ,C,S when (φ, J,Γ, κ, C, S) ∈ Iz . Let I =⋃
j∈V Ij . In order to comply with the notation of Lemma 4.11 for σ ∈ Iq we have

that Qσ(i) plays the role of Xσ(i) and similarly for σ ∈ Iy and σ ∈ Iz we have that
Yσ(i) and Zσ(i) play the role ofXσ(i). We will use this notation only when referring
to all random variables i.e. to Xσ for σ ∈ I.

We do not track every random variable through all of the m steps. If Γ is ei-
ther (K3,3)r or (K−3,4)r1 we stop tracking the random variables Xφ,J,Γ,κ,C(i) and
Zφ,J,Γ,κ,C,S(i) for every S ∈ E(Γ)\E(J) if φ(r) or respectively φ(r1) becomes closed
or an edge. In case Γ = (K3)r we stop tracking the variables when φ(r) becomes a
non-edge in a copy of K3,3 in Gf (K−3,4)n,i.

Define

W = 420

ε = 1/66

uσ = log2 n

τσ = log n

Sk = So = n2

Sr,J,Γ,κ,C = Sr,J,Γ,κ,C,S = nf2(r,J)

βk =
1

k!

87



7.2 DIFFERENTIAL EQUATION PROOF

βr,J,Γ,κ,C =
∏

f∈E(Γ)\E(J)

βκ(f)

λσ = βσn
ε

βo = 1

βr,J,Γ,κ,C,S =
∏

f∈E(Γ)\(E(J)∪S)

βκ(f)

sσ = n(1/22)−ε

fk(t) = βk2q(t) exp(24Wkmax(t2 + t))

fr,J,Γ,κ,C(t) = (2q(t))e(Γ)−e(J)βr,J,Γ,κ,C exp(24Wkmax(t2 + t))

fo = (2q(t)) exp(24Wkmax(t2 + t))

fr,J,Γ,κ,C,S(t) = (2q(t))e(Γ)−e(J)βr,J,Γ,κ,C,S exp(24Wkmax(t2 + t)).

Also define f(t) =
∑

k≥0 fk(t) = e2q(t) exp(W (24kmax(t2 + t)) and note that fk(t) =
f(t)/(ek!). If we can show that the conditions of Lemma 4.11 hold then we will
have that for every σ ∈ I

Xσ =

(
xσ ±

fσ
sσ

)
Sσ

where qk(t) and xr,J,Γ,κ,C(t) are as in the previous chapter and yo(t) = 0 and
zr,J,Γ,κ,C,S(t) = 0.

Next we define the event Hi. The event Hi is the union of several events, most
of which concern the number of overlapping rooted graphs.

Definition 7.1

For a set of graphs Fi where i = 1..k define the set F1 ⊗ F2 ⊗ ... ⊗ Fk as the set of k + 1

tuples (g1, g2, ..., gk, F ) where gi : V (Fi) → V (F ) are injective functions for i = 1..k

such that the following hold

• V (F ) =
⋃k
i=1 gi(V (Fi))

• E(F ) =
⋃k
i=1 gi(E(Fi))

• for every i, j ∈ [k] with i 6= j we have that gi(E(Fi)) 6= gj(E(Fj)).

The first event is Bi. Consider the rooted graphs (r′, F ) which are formed of two
copies of (r, (K3,3)r), with shared roots and an overlapping non-edge. Formally
(r′, F ) = (g1(r), F ) where (g1, g2, F ) ∈ ((K3,3)r)⊗ ((K3,3)r) such that g1(r) = g2(r),
and there exists e1, e2 ∈ E(K3,3) such that g1(e1) = g2(e2). Let Bi be the event that
for every j ≤ i we have that for any such rooted graph the total number of copies
of F in Gf (K−3,4)n,j such that (r′, F ) is rooted at an open pair is at most f(t)nε.

Let Ci be the event that for every j ≤ i we have that

• for any pair of vertices u, v ∈ V (Gf (K−3,4)n,j) with u 6= v and for any rooted
graph (r, F ) ∈ {(r1, (K

−
3,4)r1), (r, (K3)r), (r, (K3,3)r)}we have that the number

of edges which when inserted into Gf (K−3,4)n,j would create multiple copies
of (r, F ) rooted at u, v is at most f(t)

√
n/n1/11
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7.2 DIFFERENTIAL EQUATION PROOF

• for any four vertices u1, u2, v1, v2 ∈ V (Gf (K−3,4)n,i), with u1 6= v1, u2 6= v2

and for (r1, F1), (r2, F2) ∈ {(r1, (K
−
3,4)r1), (r, (K3)r), (r, (K3,3)r)} the number

of edges which when inserted into Gf (K−3,4)n,j would create both a copy of
(r1, F1) at {u1, v1} and (r2, F2) at u2, v2 is at most f(t)

√
n/n1/11.

The event Di holds if for every j ≤ i the following hold. Select a rooted graph
(r,Γ) ∈ {(r, (K3)r), (r, (K3,3)r), (r1, (K

−
3,4)r1)} and let (r, J) be a proper spanning

subgraph of (r,Γ). Also let (r2, F2) ∈ {(r, (K3)r), (r, (K3,3)r), (r1, (K
−
3,4)r1)}. Then

for any (g1, g2, F ) ∈ (J ⊗ F2) such that g2(r2) ⊆ g1(V (J)) and g1(E(Γ)\E(J)) ∩
g2(E(F2)) = ∅ we have that for any pair of distinct vertices u, v ∈ V (Gf (K−3,4)n,j)
the number of edges which when inserted into the graph would create a copy of
(g1(r), F ) rooted at {u, v} in Gf (K−3,4)n,j is O(nf2(r,J)nε).

Finally let Ei be the event that for every j ≤ i the Boundedness hypothesis
holds. Define

Hi = Bi ∩ Ci ∩ Di ∩ Ei.

Note that in Ci and Di we are considering non-edges not open pairs. This is
clearly an upper bound on the number of open pairs which satisfy the conditions.

Now we can state the Theorem

Definition 7.2

Let Gm be the event that for every σ ∈ I and every i ≤ m we have that

Xσ(i) =

(
xσ(t)± fσ(t)

sσ

)
Sσ.

Theorem 7.2

We have that Gm holds a.a.s. for m = µn3/2
√

log logn.

PROOF We will use Lemma 4.11 for the proof. The trend hypothesis is verified in

Corollary 7.14. Note that the boundedness hypothesis follows from the condition

on the high probability events. The initial conditions follow from Lemma 7.15. We

show that the number of variables is bounded in Lemma 7.16. The fact that Hi is a

high probability event follows from Corollary 7.30. Finally the remaining technical

assumptions are verified in Lemma 7.31. �

PROOF (THEOREM 7.1) Theorem 7.2 implies that there are still n2−o(1) open pairs

after m steps. �

7.2.2 Basic Observations

Before continuing we first consider how two copies of (r, (K3,3)r) rooted at the
same or different open pairs in Gf (K−3,4)n,i can overlap.

We start by considering two copies rooted at the same open pair.
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Lemma 7.3

Let {u, v} ∈ O(i) then any edge adjacent to u or v can be found in at most one copy of

(r, (K3,3)r) rooted at {u, v}.

PROOF Without loss of generality assume that it is adjacent to u and let w denote

the other end of the edge. Note that v 6= w and that v, w must have exactly 2

mutual neighbours as two are needed for {u,w} to be in a copy of (r, (K3,3)r)

rooted at {u, v}, but more than two would imply that the presence of a copy of

(r, (K3,3)r) rooted at {u, v} including the {u,w} edge would also imply the pres-

ence of (r3, (K
−
3,4)r3) rooted at {u, v}. Denote the vertices connected to both u and

w with w1 and w2. A similar argument gives us that w1 and w2 can have at most

one mutual neighbour other then v and w. This restricts us to one possibility of

(r, (K3,3)r) containing {u,w} as an edge. �

Lemma 7.4

For {u, v} ∈ O(i) any edge is found in at most two copies of (r, (K3,3)r) rooted at {u, v}.

PROOF In Lemma 7.3 we have seen that if the edge is adjacent to u or v then we

can have at most one copy. Now assume that {w1, w2} is not adjacent to either u or

v. In order for {w1, w2} to be an edge in a copy of (r, (K3,3)r) rooted at {u, v} the

copy must also contain either {u,w1} or {u,w2} as an edge. Since there are at most

one of each of these thus at most two copies containing {w1, w2}. �

Lemma 7.5

Let f ∈ O(i). Assume that there are two copies of (r, (K3,3)r) rooted at f which share a

non-edge in addition to f . Then we have that the two copies create the following construc-

tion rooted at f :

Figure 7.1: Overlap at an open pair

PROOF Let two copies of (r, (K3,3)r) rooted at f share {w1, w2} as a non-edge and

let f = {u, v}. There are two cases based on whether {w1, w2} ∩ {u, v} = ∅ or not.
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In case {w1, w2} ∩ {u, v} 6= ∅ then without loss of generality we may assume that

v = w1 and thus any copies which share {w1, w2} as a non-edge, must also contain

{u,w2} as an edge. However no two copies may share an edge adjacent to {u, v}
according to Lemma 7.3. Otherwise since f is open and {w1, w2} is a non-edge in a

copy of (r, (K3,3)r) rooted at f thus {w1, w2} has exactly 2 mutual neighbours other

than u and v. Denote these vertices by w3 and w4. Thus both copies must be on

the same set of vertices and the edges spanned by w1, w2, w3, w4 can be found in

both copies. Since for i = 1..4 the edge {u,wi} and {v, wi} can be found in at most

one copy of (r, (K3,3)r) rooted at f hence none of the remaining edges may overlap.

The result follows. �

7.2.3 Approximations

In the following we introduce several approximations which we will rely on heav-
ily while verifying the trend hypothesis for Lemma 4.11.

The first of these is that when 0 ≤ a ≤ 1/2 then

1

1± a
= 1± 2a.

Also according to Stirling’s formula

kmax! = (1 + o(1))
√

2πkmax

(
kmax
e

)kmax
= no(1) exp

(
log n

22 log log n
(1 + o(1)) log log n

)
= n1/22+o(1)

and note that 1/kmax! = o(1/sσ) and also (kmax!)10 = o(n1/2−ε). We also have that
if Gi holds then for every σ ∈ Iq ∪ Ix we have that Xσ = (1 + o(1))xσSσ, due to the
fact that in these cases xσ = ω(βσn

−ε) and fσ ≤ βσnε.

Lemma 7.6

We have that

qk(t) ≤
(

(2t)8

4
exp(−6(2t)2)

)k
q(t)

k!
≤ q(t)

k!

PROOF The first inequality follows from the fact that exp((2t)8 exp(−(2t)2)6/4) ≥ 1

and the second follows from the fact that (2t)8 exp(−(2t)2)6/4 < 1/4. �

Since e(J) ≤ 9 we have that

xr,J,Γ,κ,C(t) ≤ (2t)e(J)
∏

f∈E(Γ)\E(J)

2qk(t) ≤ ((2t)9 + 1)(2q(t))e(Γ)−e(J)βr,J,Γ,κ,C .
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Also note that

(2t)7 exp(−(2t)2)6 <
1

4
(7.4)

(2t)8 exp(−(2t)2)6 <
1

4
(7.5)

((2t)9 + 1)(2t)7 exp(−(2t)2)6 <
1

4
(7.6)

((2t)9 + 1)(2t)8 exp(−(2t)2)6 <
1

4
. (7.7)

Lemma 7.7

Assuming that Gi andHi hold then

Q(i) =

(
q(t)± 3f(t)

sσ

)
n2.

PROOF Note that Taylor’s theorem using the Lagrange form of the remainder im-

plies that

ex =

kmax∑
k=0

xk

k!
± ex xk+1

(k + 1)!
.

Note that when x ≤ 1/16 then ex ≤ 2. Set x = (2t)8 exp(−(2t)2)6/4 and (7.5) implies

that (2t)8 exp(−(2t)2)6/4 ≤ 1/16. Therefore

exp

(
(2t)8

4
exp(−(2t)2)6

)
=

kmax∑
k=0

(2t)8k

4kk!
exp(−(2t)2)6k

± 2
(2t)8(k+1)

4k+1(k + 1)!
exp(−(2t)2)6(k+1).

This implies that

q(t) =
∞∑
k=0

qk(t) = exp

(
−(2t)8

4

)
exp(−F (t)

∞∑
k=0

(2t)8k

4kk!
exp(−(2t)2)6k

= exp

(
−(2t)8

4

)
exp(−F (t)

kmax∑
k=0

(2t)8k

4kk!
exp(−(2t)2)6k

± 2 exp

(
−(2t)8

4

)
exp(−F (t)

(2t)k+1

4k+1(k + 1)!
exp(−(2t)2)6(k+1)

=

kmax∑
k=1

qk(t)± 2qk+1(t) =

kmax∑
k=1

qk(t)± 2 max
t≥0

qk+1(t)

as we are only interested in cases when t ≥ 0. Thus we have that

Q(i) =
∞∑
k=0

Qk(i) =

kmax∑
k=0

Qk(i)± Yo(i) =

kmax∑
k=0

(
qk(t)±

fk(t)

sσ

)
n2 ± f(t)

sσ
n2

=

(
q(t)± f(t)

sσ

)
n2 ± 2 max

t≥0
(qkmax+1(t))n2 ± f(t)

sσ
n2.
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Now all we have to show is that 2 maxt≥0(qkmax+1(t)) ≤ f(t)/sσ in fact we will

show that qkmax+1(t) = o(1/sσ). We have for every k that

2qk(t) ≤ 2
q(t)

k!
= O

(
1

k!

)
.

Subbing in k = kmax + 1 gives us that

2qkmax+1(t) ≤ n−1/22+o(1) = o

(
1

sσ

)
completing the proof. �

Recall that γ was the indicator function whether a graph contains a copy of K3,3.

Lemma 7.8

Select (r,Γ) ∈ {(r, (K3)r), (r, (K3,3)r), (r, (K
−
3,4)r1)} and J a spanning subgraph of Γ

such that e(J) ≥ 1. Fix φ : r → V (Gf (K−3,4)n,i) with φ(r) = {u, v} such that

Xφ,J,Γ,κ,C(i) is still tracked. Assuming that Gi and Hi holds then for any e ∈ E(J)

we have that∑
k≥0

Xφ,Je,Γ,κe,k,C(i) =

(
2q(t)xφ,Je,Γ,κ,C(t)

(2t)1−γ(J)(ξ(t))γ(J)
±

3e2q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)√n.

PROOF Let e(t) = 2q(t)fr,J,Γ,κ,C(t) then we have that

∑
k≥0

Xφ,Je,Γ,κe,k,C(i) =

kmax∑
k=0

Xφ,Je,Γ,κe,k,C(i)± Zφ,Je,Γ,κ,C,e(i)

=

kmax∑
k=0

(
xr,Je,Γ,κe,k,C(t)± 1

k!

e(t)

sσ

)
nf2(r,Je) ±

(
e(t)

sσ

)
nf2(r,Je)

=

(
2q(t)xr,J,Γ,κ,C(t)

(2t)1−γ(J)(ξ(t))γ(J)
± ζ ± (2e)e(t)

sσ

)
nf2(r,Je)

where ζ = 2 maxt≥0 xr,Je,Γ,κe,kmax+1,C(t) and similarly as before all we have to show

is that 2 maxt≥0 xr,Je,Γ,κe,kmax+1,C(t) ≤ βr,J,Γ,κ,C/sσ. Note that

2xr,Je,Γ,κe,kmax+1,C(t) ≤ 2((2t)9 + 1)
1

kmax!
βr,J,Γ,κ,C .

Also t = O(
√

log log n) and thus

2xr,Je,Γ,κe,kmax+1,C(t) ≤ n−1/22+o(1)βr,J,Γ,κ,C ≤
βr,J,Γ,κ,C

sσ

completing the proof. �

Note that when e(Γ) − e(J) = 1 then we have that fr,J,Γ,k,C(t) = fk(t) and thus∑
k≥0 fr,J,Γ,k,C(t) = f(t).
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7.2.4 Trend hypothesis

In the following Lemmas we verify that the trend hypothesis holds.

Lemma 7.9

For all 0 ≤ i ≤ m and k ∈ Iq, whenever Gi∩Hi holds there exists a smooth function hk(t)

such that

E(Q±k (i)|Fi) =

(
q±k ±

hk(t)

sσ

)√
n

and

fk(t) ≥ 2

∫ t

0
hk(τ)dτ + βσ.

PROOF We first consider Q+
k (i). Clearly if k = 0 then Q+

k (i) = 0 so we are only

interested in the cases when k > 0. In (7.2) we used the estimate

E(Q+
k (i)) ≈ 1

Q(i)

∑
f∈Ok−1(i)

Af (i).

This estimate assumed that inserting an edge creates at most one copy of (r, (K3,3)r)

rooted at f . However this is not the case, but according to Lemma 7.4 we have that

for any given open pair of vertices inserting any open pair can create at most 2

copies. Since we are in the event Ci there are at most f(t)
√
n/n1/11 such open pairs.

Since we are in Gi we have that Qk−2(i) ≤ (k − 1)Qk−1(i) thus

E(Q+
k (i)) =

1

Q(i)

 ∑
f∈Ok−1(i)

(Af (i))±Qk−2(i)
f(t)

n1/11

√
n


=

1

Q(i)

 ∑
f∈Ok−1(i)

(Af (i))± (k − 1)f(t)

n1/11
Qk−1(i)

√
n


=

1

Q(i)

 ∑
f∈Ok−1(i)

(
Af (i)± f(t)

sσ

√
n

) .

We already established the following estimate in (7.1):

Af (i) ≈ 1

aut(K3,3)

∑
r,e∈E(K3,3)

r 6=e

∑
φ:r→{u,v}

∑
k≥0

Xφ,(K3,3){r,e},(K3,3)r,k,∅(i).

However some of these edges might create multiple copies of (r, (K3,3)r) rooted

at f and thus should not be counted. Note that assuming Ci there are at most

f(t)
√
n/n1/11 of these and each of them is counted at most twice. Also inserting

some of these edges might not just create a copy of (r, (K3,3)r) rooted at f it could

also close f . Note that this happens if inserting an edge not only creates a copy of

(r, (K3,3)r) rooted at f it also creates one of the following
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• a copy of (r1, (K
−
3,4)r1) rooted at f

• a second copy of (r, (K3,3)r) rooted at f

• a copy of (r, (K3)r) rooted at a non-edge of the already present k − 1 copies

of (r, (K3,3)r) rooted at f .

Since we are in the event Ci there are at most (6(k− 1) + 2)f(t)
√
n/n1/11 such open

pairs. Therefore by applying Lemma 7.8

Af (i) = 2

(
(2t)72q(t) exp(−6(2t)2)± 3f(t)

sσ

)√
n± (6k − 3)f(t)

n1/11

√
n

=

(
2(2t)72q(t) exp(−6(2t)2)± 6f(t)

sσ

)√
n± f(t)

sσ

√
n

=

(
2(2t)72q(t) exp(−6(2t)2)± 7f(t)

sσ

)√
n.

Recall that we already had an f(t)/sσ error term and by applying Lemma 7.7 we

have that

E(Q+
k (i)) =

√
n

q(t)± 3f(t)
sσ

(
qk−1(t)± fk−1(t)

sσ

)(
2(2t)72q(t) exp(−6(2t)2)± 8f(t)

sσ

)
.

Note that for our range of t we have that 0 ≤ 3f(t)/(q(t)sσ) ≤ 1/2 and thus

1

q(t)± 3f(t)
sσ

(
qk−1(t)± fk−1(t)

sσ

)(
2(2t)72q(t) exp(−6(2t)2)± 8f(t)

sσ

)
=

1

q(t)

1

1± 3f(t)
q(t)sσ

(
qk−1(t)± fk−1(t)

sσ

)(
2(2t)72q(t) exp(−6(2t)2)± 8f(t)

sσ

)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
qk−1(t)± fk−1(t)

sσ

)(
2(2t)72q(t) exp(−6(2t)2)± 8f(t)

sσ

)
=

(
2(2t)72q(t) exp(−6(2t)2)

qk−1(t)

q(t)
±
h+
k (t)

sσ

)
=

(
4(2t)7 exp(−6(2t)2)qk−1(t)±

h+
k (t)

sσ

)
= q+

k (t)±
h+
k (t)

sσ

where

h+
k (t) =

6f(t)qk−1(t)2(2t)72q(t) exp(−6(2t)2)

q2(t)
+
fk−1(t)2(2t)72q(t) exp(−6(2t)2)

q(t)

+
qk−1(t)8f(t)

q(t)
+ o(1/k!).
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Using (7.4) and Lemma 7.6 gives us that:

h+
k (t) ≤ 6

qk−1(t)

q(t)
f(t) + fk−1(t) + 8

qk−1(t)

q(t)
f(t) =

14

(k − 1)!
f(t) + fk−1(t).

We also have that f(t)/(k − 1)! ≤ efk−1(t) thus

h+
k (t) ≤ (14e + 1)fk−1(t) = (14e + 1)kfk(t) ≤ 43kfk(t).

Next we consider E(Q−k (i)). (7.3) implies that

E(Q−k (i)) ≈ 1

Q(i)

∑
f∈Ok(i)

Af (i) + Cf (i).

Next we partitioned the set of open pairs which contribute to Cf (i) into three parts,

Cf,1(i), Cf,2(i) and Cf,3(i) depending on the structure this last edge completes.

Note that inserting an open pair can possibly complete multiple structures, which

would remove it from Ok(i), at the same time, however since we are in the event Ci
there are at most (6k + 2)2f(t)

√
n/n1/11 ≤ log2 nf(t)

√
n/n1/11 such pairs. Thus

E(Q−k (i)) =
1

Q(i)

 ∑
f∈Ok(i)

Af (i) + Cf,1(i) + Cf,2(i) + Cf,3(i)± log2 n
f(t)

n1/11

√
n


=

1

Q(i)

 ∑
f∈Ok(i)

Af (i) + Cf,1(i) + Cf,2(i) + Cf,3(i)± f(t)

sσ

√
n

 .

We will examine the terms individually. Note that a similar argument as before

gives us that

1

Q(i)

∑
f∈Ok(i)

Af (i) =

(
4(2t)7 exp(−6(2t)2)qk(t)±

43fk(t)

sσ

)√
n.

Note that there is a k factor difference to our previous calculations which is due to

the fact that this time we sum over the open pairs in Ok(i) instead of the open pairs

in Ok−1(i) and thus would end up with an error term of 43(k+ 1)fk+1(t) = 43fk(t).

We continue with the Cf,1(i) term. Note the additional f(t)
√
n/sσ term at the end

which is for completing multiple copies.

Cf,1(i) =
∑

e∈E((K−3,4)r1 )

∑
L⊆C⊆E((K−3,4))

∑
φ:r1→{u,v}

Xφ,(K−3,4){r1,e},(K
−
3,4)r1 ,C

(i)

aut(r1, Hr1)
± f(t)

sσ

√
n

=

(
1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))± 2 · 10 · 210 · 3 + 1

sσ
f(t)

)√
n
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where the 2 in the error term comes from the two options for φ, the 10 is for the 10

edges and 210 is from the 10 non-edges which have to be considered. Therefore:

1

Q(i)

∑
f∈Ok(i)

Cf,1(i) =
1

q(t)± 3f(t)
sσ

(
qk(t)±

fk(t)

sσ

)
(

1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))± 216

sσ
f(t)

)√
n

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
qk(t)±

fk(t)

sσ

)
(

1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))± 216

sσ
f(t)

)√
n

=

(
qk(t)

2

3
(2t)9 exp(−(2t)2)6(9 + ξ(t))± h−1 (t)

sσ

)√
n

where

h−1 (t) = 6
qk(t)

q2(t)
f(t)

1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))

+
fk(t)

q(t)

1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t)) + 216 qk(t)

q(t)
f(t) + o(1/k!).

We have that 2(2t)9 exp(−(2t)2)6(9 + ξ(t)) < 3 for every value of t thus:

h−1 (t) ≤ 6
f(t)

k!
+ fk(t) + 216 f(t)

k!

≤ 18fk(t) + fk(t) + 3 · 216fk(t) ≤ 218fk(t).

Next we consider Cf,2(i):

Cf,2(i) =
1

aut(K3,3)

∑
r,e∈E(K3,3)

r 6=e

∑
φ:r→{u,v}

∑
C⊆E(K3,3)

C 6=∅

Xφ,(K3,3){r,e},(K3,3)r,C(i)± f(t)

n1/11

√
n

=

(
2(2t)72q(t)(1− (exp(−(2t)2))6)± 2(26 − 1)3 + 1

sσ
f(t)

)√
n.

Therefore:
1

Q(i)

∑
f∈Ok(i)

Cf,2(i) =
1

q(t)± 3f(t)
sσ

(
qk(t)±

fk(t)

sσ

)
(

2(2t)72q(t)(1− (exp(−(2t)2))6)± 29f(t)

sσ

)√
n

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
qk(t)±

fk(t)

sσ

)
(

2(2t)72q(t)(1− (exp(−(2t)2))6)± 29f(t)

sσ

)√
n

=

(
qk(t)2(2t)72(1− (exp(−(2t)2))6)± h−2 (t)

sσ

)√
n
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where

h−2 (t) = 6
qk(t)

q2(t)
f(t)2(2t)72q(t)(1− (exp(−(2t)2))6)

+
fk(t)

q(t)
2(2t)72q(t)(1− (exp(−(2t)2))6) + 29 qk(t)

q(t)
f(t) + o(1/k!)

≤ 72(2t)7fk(t) + 4(2t)7fk(t) + 3 · 29fk(t)

≤ (76(2t)7 + 211)fk(t).

Finally considerCf,3(i). Now we need the fact that f ∈ Ok(i). Assume for a mo-

ment that all of the k copies of (r, (K3,3)r) rooted at f are vertex disjoint. As usual

we have to be careful with an edge completing multiple copies of (r2, (K
−
3,4)r2)

and (r3, (K
−
3,4)r3) rooted at f . For each pair of non-edges belonging to a copy of

(r, (K3,3)r) rooted at f there are at most f(t)
√
n/n1/11 edges which would create a

copy of (r, (K3)r) rooted at both of them as we are in the event Ci. Thus there are at

most 36k2f(t)
√
n/n1/22 ≤ f(t)

√
n/sσ such edges. Therefore

Cf,3(i) =
1

4

∑
g∈Ξφ,(K3,3)r′ ,κ0,∅(i)

∑
e∈K3,3

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(e)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)
± f(t)

sσ

√
n

= 6k

(
2(2t)2q(t)± 6f(t)

sσ

)√
n± f(t)

sσ

√
n

=

(
12k(2t)2q(t)± (36k + 1)f(t)

sσ

)√
n.

Since we are in the event Bi there are at most f(t)nε not non-edge disjoint copies in

the graph hence:∑
f∈Ok(i)

Cf,3(i) = Qk(i)

(
12k(2t)2q(t)± (36k + 1)f(t)

sσ

)√
n

± f(t)nε
(

2(2t)2q(t)± 6f(t)

sσ

)√
n

= (Qk(i)± f(t)nε)

(
12k(2t)2q(t)± (36k + 1)f(t)

sσ

)√
n

=

(
Qk(i)±

fk(t)

sσ
n2

)(
12k(2t)2q(t)± (36k + 1)f(t)

sσ

)√
n

as nε = o(n2/(kmax!sσ)). Therefore

1

Q(i)

∑
f∈Ok(i)

Cf,3(i) =
1

q(t)

(
1± 6f(t)

sσ

)(
qk(t)±

2fk(t)

sσ

)
(

12k(2t)2q(t)± (36k + 1)f(t)

sσ

)√
n

=

(
12k(2t)2qk(t)±

h−3 (t)

sσ

)√
n
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where

h−3 (t) = 6
qk(t)

q2(t)
f(t)24k(2t)q(t) + 2

fk(t)

q(t)
24k(2t)q(t) + (36k + 1)

qk(t)

q(t)
f(t) + o(1/k!)

= (960kt+ 108k + 3)fk(t).

Recall that Qk(i) = (1 + o(1))qk(t) and Q(i) = (1 + o(1))q(t) for 0 ≤ t ≤ t(m)

when Gi holds thus

1

Q(i)
Qk(i)

f(t)

sσ

√
n ≤ (1 + o(1))qk(t)

q(t)

f(t)

sσ

√
n ≤ 3fk(t)

sσ

√
n.

Define h−k (t) = 43fk(t) + h−1 (t) + h−2 (t) + h−3 (t) + 12fk(t) then we have shown

that

E(Q−k (i)) =

(
q−k (t)±

h−k (t)

sσ

)√
n.

Also let hk(t) = h+
k (t) + h−k (t) and if we show that fk(t) ≥ 2

∫ t
0 hσ(τ) + βk then we

have completed the proof. Note that this is implied if fk(0) = βk, which holds by

definition and f ′k(t) ≥ 2hk(t). Note that

hk(t) ≤ (43k + 43 + 218 + 76(2t)7 + 211 + 960kt+ 108k + 2 + 3)fk(t)

≤ (960t+ 200)kmaxfk(t).

We also have that

f ′k(t) = q′(t) exp(24W (t2 + t))/k! + 24Wkmax(2t+ 1)fk(t)

= (1 + o(1))24Wkmax(2t+ 1)fk(t)

as q′(t) exp(24W (t2 + t)) = O(t9 + t + 1) = O((log logn)5) = o(kmax). Therefore

f ′k(t) > 2hk(t) as W > 40. �

Lemma 7.10

Whenever Gi ∩Hi holds there exists a smooth function ho(t) such that

E(Y ±o (i)|Fi) =

(
0± ho(t)

sσ

)√
n

and

fo(t) ≥ 2

∫ t

0
ho(τ)dτ + βo.

PROOF Note that Y −o (i) = 0 so we only need the expected increase. Since we

are in the event Gi we have that Qk(i) is concentrated around qk(t)n
2and Xσ(i) is

concentrated around xσ(t)Sσ. Also note that

qkmax−1

q(t)

√
n

n1/11
= o

(
qkmax
q(t)

√
n

)
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therefore

E(Y +
o ) = (1 + o(1))

1

q(t)

(
qkmax((2t)7)2q(t) exp(−(2t)2)6

)√
n

≤ q(t)

kmax!

√
n ≤ n−1/22+o(1)√n = o

(
f ′o(t)

sσ

)√
n

which in addition to the fact that fo(0) = βo completes the proof. �

Next we concentrate on the random variables Xφ,J,Γ,κ,C(i).

Lemma 7.11

We have that for every 1 ≤ i ≤ m assuming Gi ∩Hi hold then:

E(X+
φ,J,Γ,κ,C(i)) =

1

Q(i)

∑
e∈E(J)

∑
k≥0

Xφ,Je,Γ,κe,k,C(i)

+
1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξ

φ,J,Γ,κ−
f
,C

(i)

Ag(f)(i)

+
1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C\c(i)

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(c)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

± 1

Q(i)

(
q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)√n.

PROOF First note that we are considering the mappings g ∈ Ξφ,J,Γ,κ,C(i + 1) such

that g 6∈ Ξφ,J,Γ,κ,C(i). The majority of these g come form one of the following

sets Ξφ,Je,Γ,κe,k,C(i) for some e ∈ E(J), Ξφ,J,Γ,κ−f ,C
(i) for some f ∈ E(Γ)\E(J) or

Ξφ,J,Γ,κ,C\c(i) for some c ∈ C.

However these are not the only sets g could have originated from, as it is pos-

sible for the same edge to create multiple constructions e.g. there are some open

pairs, which when inserted as edges would transfer g from Ξφ,J,Γ,κ−f ,C\c
(i) for f ∈

E(Γ)\E(J) and c ∈ C to Ξφ,J,Γ,κ,C(i) as inserting this open pair would create a copy

of (r, (K3,3)r) rooted at g(f) and a copy of (r, (K3)r) rooted at g(c). Note that if g was

transferred from Ξφ,J ′,Γ,κ′,C′(i) to Ξφ,J,Γ,κ,C(i+1) during step i then e(J)−e(J ′) ≤ 1

and according to Lemma 7.4 κ(f)− κ(f ′) ≤ 2 for every f ∈ E(Γ)\E(J).

Start with the case when J ′ 6= J and fix e ∈ E(J). Since we are in the event

Di there are at most O(nf2(r,J)nε) elements such that inserting g(e) in step i would

transfer g to Ξφ,J,Γ,κ,C(i+1). Note that kmax! = n−1/22+o(1) and that e(Γ)−e(J) ≤ 10.

Hence

nε = n1/66 = o(
√
n(n−1/22+o(1))10) = o(q(t)fr,J,Γ,κ,C(t)

√
n/sσ)

thus this has little affect on the expected value.
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For the remaining Ξφ,J,Γ,κ′,C′(i) such that g ∈ Ξφ,J,Γ,κ′,C′(i) can be transferred to

Ξφ,J,Γ,κ,C(i + 1) we have that in order for g to be transferred to Ξφ,J,Γ,κ,C(i + 1) at

least one of the following has to happen

• inserting an edge has to create more than one copy of (r, (K3,3)r) rooted at

g(f) for some f ∈ E(Γ)\E(J)

• inserting an edge has to create a copy of (r, (K3,3)r) rooted both at g(f) and

g(f ′) for some distinct f, f ′ ∈ E(Γ)\E(J)

• inserting an edge has to create a copy of (r, (K3,3)r) rooted at g(f) and a copy

of (r, (K3)r) rooted at g(c) for some f ∈ E(Γ)\E(J) and c ∈ C

• inserting an edge has to create a copy of (r, (K3)r) rooted at g(c) and g(c′) for

some distinct c, c′ ∈ C.

Since we are in the event Ci for a fixed g there areO(f(t)
√
n/n1/11) open pairs which

would satisfy any of the above conditions. We also have that xr,J,Γ,κ′,C′(t)f(t) ≤
210(t9 + 1)q(t)e(Γ)−e(J)βr,J,Γ,κ′,C′f(t) ≤ (log log n)5 log20 nq(t)fr,J,Γ,κ,C(t) and thus

this adds an error term of

O

(
log21 n

q(t)fr,J,Γ,κ,C(t)nf2(r,J)√n
n1/11

)
= o

(
q(t)fr,J,Γ,κ,C(t)nf2(r,J)√n

sσ

)
.

On the other hand we overestimate the change as not every combination we

count would actually result in a new element in Ξφ,J,Γ,κ,C(i+1). Similarly as before

this is due to the fact that when inserting an edge transfers g from Ξφ,J ′,Γ,κ′,C′(i)

to Ξφ,J,Γ,κ,C(i + 1) more than one of J ′, κ′ and C ′ can change. Similarly as be-

fore we have to take into account the case that for some g ∈ Ξφ,Je,Γ,κe,k,C(i) in-

serting the edge g(e) could affect the status of g(f) for some f ∈ E(Γ)\E(J).

In the previous section we considered the case when the value of κ(f) was in-

creased, now we also have to consider the case when it is closed. However since

we are in Di there are O(nf2(r,J)nε) = o(q(t)fr,J,Γ,κ,C(t)nf2(r,J)√n/sσ) such copies.

Now fix g ∈ Ξφ,J,Γ,κ−f ,C
(i) then there are edges counted in Ag(f)(i) such that in-

serting that edge does not result in g ∈ Ξφ,J,Γ,κ,C(i + 1) as inserting the edge

might transfer g(f) to Oκ(f)+1(i + 1) or change the status of g(f ′) for some f ′ ∈
E(Γ)\(E(J) ∪ {f}) or the status of some c ∈ C. Since we are in the event Ci for

every g there are O(f(t)
√
n/n1/11) non-edges which when inserted any of these

would happen. Therefore in total

O(xφ,J,Γ,κ−f ,C
(t)nf2(r,J)f(t)

√
n/n1/11) = o(q(t)fr,J,Γ,κ,C(t)nf2(r,J)√n/sσ).
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Finally a similar argument gives that the same bound holds when g ∈ Ξφ,J,Γ,κ,C\c(i)

for some c ∈ C. Therefore the total affect on the expected value is at most

1

Q(i)

q(t)fr,J,Γ,κ,C(t)

sσ
nf2(r,J)√n.

�

Lemma 7.12

For all 0 ≤ i ≤ m and (φ, J,Γ, κ, C) ∈ Ix, whenever Gi ∩ Hi holds there exists a smooth

function hr,J,Γ,κ,C(t) such that

E(X±φ,J,Γ,κ,C(i)|Fi) =

(
x±r,J,Γ,κ,C(t)±

hr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)

n3/2

and

fr,J,Γ,κ,C(t) ≥ 2

∫ t

o
hφ,J,Γ,κ,C(τ)dτ + βr,J,Γ,κ,C .

PROOF In Lemma 7.11 we have established that

E(X+
φ,J,Γ,κ,C(i)) =

1

Q(i)

∑
e∈E(J)

∑
k≥0

Xφ,Je,Γ,κe,k,C(i)

+
1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξ

φ,J,Γ,κ−
f
,C

(i)

Ag(f)(i)

+
1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C\c(i)

∑
φ:r→g(c)

∑
r,e∈E(K3)

r 6=e

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

± 1

Q(i)

(
q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)√n

and now we will analyse the individual terms one by one. Assume K3,3 6⊆ J

then we have that

1

Q(i)

 ∑
e∈E(J)

∑
k≥0

Xφ,Je,Γ,κe,k,C(i)


=

1

q(t)

(
1± 6f(t)

q(t)sσ

)
e(J)

(
2q(t)xr,φ,J,Γ,κ,C

2t
±

3e2q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)

n3/2

=

(
e(J)

xr,J,Γ,κ,C(t)

t
±
h+

1,1(t)

sσ

)
nf2(r,J)

n3/2

where

h+
1,1(t) = 6e(J)

xr,J,Γ,κ,C(t)

tq(t)
f(t) + 6e(J)efr,J,Γ,κ,C(t) + o(βr,J,Γ,κ,C).
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Note that when K3,3 6⊆ J then

xr,J,Γ,κ,C(t) ≤ (2t)e(J)
∏

f∈E(Γ)\E(J))

(2qκ(f)(t)) ≤ (2t)e(J)(2q(t))e(Γ)−e(J)βr,J,Γ,κ,C

and that in our case e(J) ≥ 1 and e(Γ) − e(J) ≥ 1 as we only track variables with

at least one open edge. Therefore

xr,J,Γ,κ,C(t)

tq(t)
≤ 4(2t)e(J)−1(2q(t))e(Γ)−e(J)−1βr,J,Γ,κ,C

≤ 4((2t)8 + 1)(2q(t))e(Γ)−e(J)−1βr,J,Γ,κ,C .

We also have that f(t)(2q(t))e(Γ)−e(J)−1βr,J,Γ,κ,C ≤ efr,J,Γ,κ,C(t) and thus

h+
1,1(t) ≤ 24e(J)e((2t)8 + 2)fr,J,Γ,κ,C(t) ≤ 600((2t)8 + 2)fr,J,Γ,κ,C(t).

On the other hand if K3,3 ⊆ J then since we only track one such random vari-

able we have that

1

Q(i)

∑
e∈E(J)

∑
k≥0

Xφ,Je,Γ,κe,k,C(i)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)
e(J)

(
2q(t)xr,J,Γ,κ,C(t)

2tξ(t)
±

3e2q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)

n3/2

=

(
e(J)

xr,J,Γ,κ,C(t)

tξ(t)
±
h+

1,2(t)

sσ

)
nf2(r,J)

n3/2

where

h+
1,2(t) = 6e(J)

xr,J,Γ,κ,C(t)

2tq(t)ξ(t)
f(t) + 6e(J)efr,J,Γ,κ,C(t) + o(βr,J,Γ,κ,C)

≤ 600((2t)8 + 2)fr,J,Γ,κ,C(t)

due to a similar argument as before. Let h+
1 = 600((2t)8 + 2)fr,J,Γ,κ,C(t) then clearly

both h+
1,1 and h+

1,2 are less than h+
1 . The second term is

1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξ

φ,J,Γ,κ−
f
,C

(i)

Ag(f)(i)

=
∑

f∈E(Γ)\E(J)

1

q(t)

(
1± 6f(t)

q(t)sσ

)(
qκ(f)−1(t)xr,J,Γ,κ,C(t)

qκ(f)(t)
±
κ(f)fr,J,Γ,κ,C(t)

sσ

)
(

2(2t)72q(t) exp(−6(2t)2)± 3f(t)

sσ

)
nf2(r,J)

n3/2

=

 ∑
f∈E(Γ)\E(J)

2(2t)72 exp(−6(2t)2)
qκ(f)−1(t)xr,J,Γ,κ,C(t)

qκ(f)(t)
± h+

2 (t)

sσ

 nf2(r,J)

n3/2
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where

h+
2 (t) =

∑
f∈E(Γ)\E(J)

6
f(t)

q(t)
2(2t)72 exp(−6(2t)2)

qκ(f)−1(t)xr,J,Γ,κ,C(t)

qκ(f)(t)

+ κ(f)fr,J,Γ,κ,C(t)2(2t)72q(t) exp(−6(2t)2) +
1

q(t)

qκ(f)−1(t)xr,J,Γ,κ,C(t)

qκ(f)(t)
3f(t)

+ o(βr,J,Γ,κ,C).

Note that

qκ(f)−1(t)xr,J,Γ,κ,C(t)

qκ(f)(t)
≤ κ(f)((2t)9 + 1)

(
(2t)8

4
exp(−(2t)6)

)k
q(t)e(Γ)−e(J)βr,J,Γ,κ,C .

Now if κ(f) = 1 then (2t)9 + 1 ≤ kmax otherwise we have an exp(−6(2t)2) factor

and (2t)8((2t)9 + 1) exp(−6(2t)2) < 1/4. Therefore

h+
2 (t) ≤

∑
f∈E(Γ)\E(J)

(12eκ(f) + κ(f) + 6ekmax)fr,J,Γ,κ,C(t)

≤ e(Γ)(55kmax)fr,J,Γ,κ,C(t)

≤ 550kmaxfr,J,Γ,κ,C(t).

Note that for the third term we only consider random variables which are still

tracked. This is due to the fact that for a fixed c ∈ C and g ∈ Ξφ,J,Γ,κ,C\c(i) if

g(c) is a non-edge in a copy of K3,3 then c 6∈ C. The third term is

1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C\c(i)

∑
r,e∈E(K3)

r 6=e

∑
φ:r→g(c)

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

= |C| 1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xφ,J,Γ,κ,C(t) exp(−(2t)2)

1− exp(−(2t)2)
±
fr,J,Γ,κ,C(t)

sσ

)
(

2(2t)2q(t)± 3f(t)

sσ

)
nf2(r,J)

n3/2

=

(
|C|

xφ,J,Γ,κ,C(t) exp(−(2t)2)

1− exp(−(2t)2)
2(2t)2± h+

3 (t)

sσ

)
nf2(r,J)

n3/2

where

h+
3 (t) = |C|6f(t)

q(t)

xφ,J,Γ,κ,C(t) exp(−(2t)2)

1− exp(−(2t)2)
2(2t)2

+ |C|fr,J,Γ,κ,C(t)2(2t)2 + 3|C|f(t)

q(t)

xφ,J,Γ,κ,C(t) exp(−(2t)2)

1− exp(−(2t)2)
.
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Note that when |C| ≥ 1 then xφ,J,Γ,κ,C(t) ≤ (2t)e(J)q(t)e(Γ)−e(J)(1− exp(−(2t)2))

and that (2t)ae(−4t2) ≤ 15 when a ≤ 10 thus

h+
3 (t) ≤ |C|(4320t+ 8t+ 270)fr,J,Γ,κ,C(t)

≤ |C|(4328t+ 270)fr,J,Γ,κ,C(t)

≤ (47608t+ 2970)fr,J,Γ,κ,C(t)

as |C| ≤ 11.

Finally

1

Q(i)

(
q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)√n ≤ 2

q(t)

(
q(t)fr,J,Γ,κ,C(t)

sσ

)
nf2(r,J)

n3/2

≤
2fr,J,Γ,κ,C(t)

sσ

nf2(r,J)

n3/2
.

Define h+(t) = h+
1 (t) + h+

2 (t) + h+
3 (t) + 2fr,J,Γ,κ,C(t) and note that

h+(t) ≤ (600(2t)8 + 550kmax + 47608t+ 2970)fr,J,Γ,κ,C(t)

and that we have shown that

X+
φ,J,Γ,κ,C(i) =

(
x+
φ,J,Γ,κ,C(t)± h+(t)

sσ

)
nf2(r,J)

n3/2
.

Now for X−φ,J,Γ,κ,C(i). We have that

E(X−φ,J,Γ,κ,C(i)) =
1

Q(i)

∑
f∈E(Γ)\E(J)

∑
g∈Ξφ,J,Γ,κ,C(i)

(
Cg(f)(i) +Ag(f)(i)

)
+

1

Q(i)

∑
c∈C

∑
g∈Ξφ,J,Γ,κ,C(i)

∑
φ:r→g(c)

∑
r,e∈E(K3)

r 6=e

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

± 1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

(
fr,J,Γ,κ,C(t)

sσ

)√
nnf2r,J

where the last term is the usual error term for counting the same open pair multiple

times. Note that from this point on we will not consider the terms resulting from

overlaps as we are in the eventHi, we have that the total error caused by them is at

most fr,J,Γ,κ,C(t)
√
nnf2(r,J)/n1/11 and that we have to consider at most log2 n pairs,

thus the last term already takes them into account.
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Fix f ∈ E(Γ)\E(J). Now we examine each term in the sum separately. The first

term is

1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

Ag(f)(i)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xr,J,Γ,κ,C(t)±

fr,J,Γ,κ,C(t)

sσ

)
(

2(2t)2q(t)± 6f(t)

sσ

)
nf2(r,J)

n3/2

=

(
1

q(t)
xr,J,Γ,κ,C(t)2(2t)2q(t)±

h−a,f (t)

sσ

)
nf2(r,J)

n3/2

where

h−a,f (t) =
6f(t)

q(t)
xr,J,Γ,κ,C(t)2(2t)2 + fr,J,Γ,κ,C(t)2(2t)2

+ xr,J,Γ,κ,C(t)
6f(t)

q(t)
+ o(βr,J,Γ,κ,C(t))

≤ (144((2t)9 + 1)(2t) + 8t+ 36((2t)9 + 1))fr,J,Γ,κ,C(t).

The second one is

1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

Cg(f),1(i)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xr,J,Γ,κ,C(t)±

fr,J,Γ,κ,C(t)

sσ

)
(

1

3
(2t)92q(t) exp(−(2t)2)6(9 + ξ(t))± 216

sσ
f(t)

)
nf2(r,J)

n3/2

=

(
xr,J,Γ,κ,C(t)

(
1

3
(2t)92 exp(−(2t)2)6(9 + ξ(t))

)
±
h−1,f (t)

sσ

)
nf2(r,J)

n3/2

where

h−1,f (t) =
6f(t)

q(t)
xr,J,Γ,κ,C(t)

1

3
(2t)92 exp(−(2t)2)6(9 + ξ(t))

+
1

3
(2t)92 exp(−(2t)2)6(9 + ξ(t))fr,J,Γ,κ,C(t)

+
1

q(t)
xr,J,Γ,κ,C(t)216f(t) + o(βr,J,Γ,κ,C)

≤ (36 + 1 + 217e((2t)9 + 1))fr,J,Γ,κ,C(t)

≤ 220((2t)9 + 1)fr,J,Γ,κ,C(t).
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The third term is
1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

Cg(f),2(i)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xr,J,Γ,κ,C(t)±

fr,J,Γ,κ,C(t)

sσ

)
(

2(2t)72q(t)(1− (exp(−(2t)2))6)± 29f(t)

sσ

)
±
fr,J,Γ,κ,C(t)

sσ

nf2(r,J)

n3/2

=

(
1

q(t)
xr,J,Γ,κ,C(t)2(2t)72q(t)(1− (exp(−(2t)2))6)±

h−2,f (t)

sσ

)
nf2(r,J)

n3/2

where

h−2,f (t) = 6
f(t)

q(t)
xr,J,Γ,κ,C(t)2(2t)72(1− (exp(−(2t)2))6)

+ fr,J,Γ,κ,C(t)2(2t)72(1− (exp(−(2t)2))6)

+ 29 f(t)

q(t)
xr,J,Γ,κ,C(t) + o(βr,J,Γ,κ,C)

≤ (211((2t)16 + 1))fr,J,Γ,κ,C(t).

The fourth term is:
1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

Cg(f),3(i)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xr,J,Γ,κ,C(t)±

fr,J,Γ,κ,C(t)

sσ

)
(

6κ(f)2(2t)(2q(t))± 18κ(f)f(t)

sσ

)
nf2(r,J)

n3/2

=

(
1

q(t)
xr,J,Γ,κ,C(t)6κ(f)2(2t)(2q(t))±

h−3,f (t)

sσ

)
nf2(r,J)

n3/2

where

h−3,f (t) = 6
f(t)

q(t)
xr,J,Γ,κ,C(t)6κ(f)4(2t)

+ fr,J,Γ,κ,C(t)6κ(f)4(2t) + 18κ(f)
f(t)

q(t)
xr,J,Γ,κ,C(t) + o(βr,J,Γ,κ,C(t))

Note that if κ(f) ≥ 1 then

xφ,J,Γ,κ,C(t)f(t) ≤ 2e((2t)9 + 1)(2t)8 exp(−(2t)2)6fr,J,Γ,κ,C(t)/4

and (7.7) implies that

h−3,f (t) ≤ (972κ(f) + 96κ(f)t)fr,J,Γ,κ,C

≤ (972kmax + 96kmaxt)fr,J,Γ,κ,C .
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Finally fix c ∈ C and note that for every g ∈ Ξφ,J,Γ,κ,C(i) we might not be count-

ing a constant number of these, when the edges which would create the mutual

neighbour are also required for the completion of Γ. Therefore

1

Q(i)

∑
g∈Ξφ,J,Γ,κ,C(i)

∑
φ:r→g(c)

∑
r,e∈E(K3)

r 6=e

Xφ,(K3){r,e},(K3)r,∅(i)

aut(K3)

=
1

q(t)

(
1± 6f(t)

q(t)sσ

)(
xr,J,Γ,κ,C(t)±

fr,J,Γ,κ,C(t)

sσ

)(
2(2t)2q(t)± 6f(t)

sσ

)
nf2(r,J)

n3/2

=

(
4(2t)xr,J,Γ,κ,C(t)± h−c (t)

sσ

)
nf2(r,J)

n3/2

where

h−c (t) =
6f(t)

q(t)
xr,J,Γ,κ,C(t)4(2t) + fr,J,Γ,κ,C(t)4(2t) + 6

f(t)

q(t)
xr,φ,J,Γ,κ,C(t)

≤ (144((2t)9 + 1)(2t) + 8t+ 36((2t)9 + 1))fr,J,Γ,κ,C(t).

Define h−(t) =
∑

f∈E(Γ)\E(J) h
−
a,f + h−1,f + h−2,f + h−3,f +

∑
c∈C h

−
c + 2ff,J,Γ,κ,C(t)

and note that

h−(t) ≤ 1000kmaxt+ 10000kmax

and that we have shown that

E(X−φ,J,Γ,κ,C(i)) =

(
x−φ,J,Γ,κ,C(t)± h−(t)

sσ

)
nf2(r,J)

n3/2
.

Define h(t) = 1000kmaxt + 10000kmax and note that h+(t), h−(t) ≤ h(t). We also

have that

2h(t) ≤ f ′r,J,Γ,κ,C(t) = (1 + o(1))(24W (2kmaxt+ kmax))

as W = 420 completing the proof. �

Now for the last set of random variables Zφ,J,Γ,κ,C,S(i).

Lemma 7.13

For all 0 ≤ i ≤ m and (φ, J,Γ, κ, C, S) ∈ Iz , whenever Gi∩Hi holds there exists a smooth

function hr,J,Γ,κ,C,S(t) such that

E(Z±φ,J,Γ,κ,C,S(i)|Fi) =

(
0±

hr,J,Γ,κ,C,S(t)

sσ

)
nf2(r,J)

n3/2

and

fr,J,Γ,κ,C,S(t) ≥ 2

∫ t

o
hφ,J,Γ,κ,C,S(τ)dτ + βr,J,Γ,κ,C,S .
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PROOF Note that the expected decrease in this random variable is 0. Similarly to

the previous Lemma we have an increase from 3 cases. The first is the expected

change when an edge is added:∑
e∈E(J)

(1 + o(1))
1

q(t)

∑
k≥0

fr,Je,Γ,κe,k,C,S(t)

sσ

nf2(r,J)

n3/2
.

We also have that for fixed e ∈ E(J) the expected change is

1

q(t)

∑
k≥0

fr,Je,Γ,κe,k,C,S(t)

sσ
≤ 1

q(t)

(
kmax∑
k=0

2q(t)fr,Je,Γ,κe,k,C,S(t)

k!sσ
+
fr,Je,Γ,κ,C,S∪e(t)

sσ

)

≤ 1

q(t)

(
kmax∑
k=0

2q(t)fr,J,Γ,κe,k,C,S(t)

k!sσ
+

2q(t)fr,J,Γ,κ,C,S(t)

sσ

)

≤
(2e)fr,J,Γ,κ,C,S(t)

sσ
.

The second is when the last copy of (r, (K3,3)r) rooted at f is completed. There are

two cases based on the size of S. When S = {f} then

(1 + o(1))
1

q(t)
2(2t)7(2q(t)) exp(−(2t)2)6xφ,J,Γ,κf,kmax ,C(t)

nf2(r,J)

n3/2

≤
q(t)e(Γ)−e(J)βr,J,Γ,κ,C,S

kmax!

nf2(r,J)

n3/2

≤
fr,J,Γ,κ,C,S(t)

sσ

nf2(r,J)

n3/2
.

On the other hand if |S| > 1 then for a fixed f ∈ S we have that the expected

change is

(1 + o(1))
1

q(t)
2(2t)7(2q(t)) exp(−(2t)2)6

fr,J,Γ,κf,kmax,C,S\f
sσ

nf2(r,J)

n3/2

≤
fr,J,Γ,κ,C,S(t)

kmax!sσ

nf2(r,J)

n3/2
≤
fr,J,Γ,κ,C,S(t)

s2
σ

nf2(r,J)

n3/2
.

Finally the expected change for completing an element c ∈ C

(1 + o(1))
1

q(t)
2(2t)(2q(t))

fr,J,Γ,κ,C\c,S(t)

sσ

nf2(r,J)

n3/2
(1 + o(1))8t

fr,J,Γ,κ,C,S(t)

sσ

nf2(r,J)

n3/2
.

Since in Lemma 7.11 we have established that all other contributions are small we

have that

E(Z+
φ,J,Γ,κ,C,S(i)) =

(
0± h+(t)

sσ

)
nf2(r,J)

n3/2

where

h+(t) = (e(J)2e + |S|+ |C|8t)fr,J,Γ,κ,C,S(t) = o(f ′r,J,Γ,κ,C,S(t))

completing the proof. �
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Corollary 7.14

For every σ ∈ I whenever Gi ∩ Hi hold then there exists a smooth non-negative function

hσ(t) such that

E(X±σ (i)) =

(
x±σ ±

hσ(t)

sσ

)
Sσ
s
,

and

fσ(t) ≥
∫ t

0
hσ(τ)dτ + βσ.

7.2.5 Boundedness hypothesis

Note that the boundedness hypothesis holds wheneverHi and Gi hold as the event
Ei ⊇ Hi guarantees it. Next we verify the initial conditions.

7.2.6 Initial conditions
Lemma 7.15

For all σ ∈ I we have that:

Xσ(0) =

(
xσ(0)± βσ

3sσ

)
Sσ

PROOF Note if Xσ(0) = 0 then xσ(0) = 0 and we are done. In the remaining cases

either σ ∈ Iq in which case we are considering Q0(0) and we have that

Q0(0) =

(
n

2

)
=
n2

2
+O(n) =

(
1

2
±O

(
1

n

))
n2.

Note that q0(0) = 1/2 and that n−1 = o(1/sσ) = o(β0/sσ). Otherwise we have

to consider σ ∈ Ix where σ is a quintuple (φ, J,Γ, κ, C) where e(J) = 0, κ is the

constant 0 function and C = ∅. In these cases we have that Xφ,J,Γ,κ,C(0) = [n]v(Γ)−2

and recall that J is a spanning graph of Γ and thus f2(r, J) = v(Γ)− 2. Since

|nv(Γ)−2 − [n]v(Γ)−2| = O(n−1) = o

(
βr,J,Γ,κ,C

sσ

)
hence the boundedness condition holds. �

7.2.7 Bounded number of variables
Lemma 7.16

For all j ∈ V and σ ∈ Ij we have

max{|V|, |Ij |} ≤ euσ

PROOF Note that uσ = log2 n and thus euσ = nlogn. Also note that |V| = 4 and that

|Ij | ≤ O(n2 loge(Γ) n) ≤ nlogn. �
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7.2.8 High probability events

For the following proofs we will need the following result of Spencer [41].

Theorem 7.17 ([41])

Let (R,F ) be a strictly balanced rooted graph where R forms an independent set and fix

ε, δ > 0. Fix S ⊆ V (Gn,p) such that |S| = |R| and let XS,F denote the number of copies of

(R,F ) rooted at S in Gn,p. Then there exists a K such that if p satisfies E(XS,F ) > K lnn

then

P(|XS,F − E(XS,F )| > εE(XS,F )) ≤ o(n−δ).

Actually we will only need the following corollary.

Corollary 7.18

Let (R,F ) be a strictly balanced rooted graph where R forms an independent set and con-

siderGn,p with p = n−1/2+o(1). Define a = max{0, f2(R,F )}. Then for every fixed δ > 0

we have with probability 1− o(n−δ) that the maximum number of copies of (R,F ) rooted

at any S ⊆ V (Gn,p) such that |S| = |R| is na+o(1).

PROOF Let XS,F denote the number of copies of (R,F ) rooted at S in Gn,p when

p = n−1/2+o(1) and fix δ > 0. Note that E(XS,F ) = nf2(R,F )+o(1).

First consider the case when E(XS,F ) = ω(log n). Note that this holds when

f2(R,F ) > 0. Applying Theorem 7.17 gives us that

P(XS,F ≥ 2E(XS,F )) = o(n−δ−2)

since ω(log n) > K log n for every K > 0 assuming n is sufficiently large. Note that

2E(XS,F ) = nf2(R,F )+o(1).

Otherwise let X ′S,F be the number of copies of (R,F ) rooted at S in Gn,p′ where

p′ = n−1/d(R,F ) log2 n. We have that p ≤ p′ as

E(X ′S,F ) = Θ(nv(F )−|R|pe(F )) = Θ(log2e(F ) n).

Clearly

P(XS,F ≥ 2E(X ′S,F )) ≤ P(X ′S,F ≥ 2E(X ′S,F )).

Applying Theorem 7.17 implies that P(XS,F ≥ 2E(X ′S,F )) ≤ o(n−δ−2) and note that

2E(X ′S,F ) = no(1). The statement follows by applying the union bound. �

Note that this Corollary also applies to graphs as graphs are rooted graphs with
empty roots.

Lemma 7.19

The event Bi satisfies

P[∃i ≤ m : Gi ∩ ¬Bi] = o(1).
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PROOF Let (r, F ) be the rooted graph composition described in Lemma 7.5 and

note that is is strictly balanced with d(F ) = 2. Instead of counting the total number

of these graphs rooted at some open pair in Gf (K−3,4)n,j we will consider the num-

ber of copies of F found in Gf (K−3,4)n,m. Denote by UF the number of copies of F

found in Gf (K−3,4)n,m. Since G(m) implies that Q(m) > n2−o(1) thus

P(∃i ≤ m : Gi ∩ ¬Bi) ≤
m∑
i=1

P(Gi ∩ ¬Bi)

≤
m∑
i=1

P({Q(i) > n2−o(1)} ∩ ¬Bi)

≤ mP({Q(m) > n2−o(1)} ∩ ¬Bm)

≤ mP({Q(m) > n2−o(1)} ∩ {UF > no(1)}).

Note that UF > no(1) is a decreasing property and thus we may apply Theorem

4.6 in order to determine this probability. Select λ =
(
n
2

)
/Q(m) = no(1) and thus

applying Theorem 4.6 gives us that it is enough to have a bound on the probability

that Gn,p has more than no(1) copies of F , when p = n−1/2+o(1). Corollary 7.18 gives

us that this is smaller than n−δ for any δ > 0. The statement follows by setting

δ = 2. �

The proofs of the remaining events Ci, Di and Ei will be similar, however in
these cases we will have to consider rooted graphs which are not strictly balanced.
In order to manage these cases, similarly to Bohman and Keevash [6] we define the
extension series of a rooted graph. Let (R,F ) be a rooted graph. Then the extension
series R = B0 ( B1 ( B2 ( ... ( Bυ = V (F ) is created in the following way.
If (Bi, F ) is not strictly balanced, then let Bi+1 be a minimal set which minimises
f2(Bi, FBi [Bi+1]) otherwise let Bi+1 = V (F ). Bohman and Keevash [6] noted that
the rooted graphs (Bi, FBi [Bi+1]) are strictly balanced and that for i ≥ 1 we have
that f2(Bi, FBi [Bi+1]) ≥ 0. Also we have that

f2(R,F ) =

υ−1∑
i=0

f2(Bi, FBi [Bi+1]).

The following results follow from the proofs of Bohman and Keevash [6] which
were necessary for the strictly 2-balanced case. We need to extend their results
slightly as we have a 2-balanced graph and thus we will include a simplified ver-
sion of the proofs.

Lemma 7.20

Let (R,F ) be a rooted graph where R forms an independent set and let B0, B1, ..., Bυ be

its extension series. Assume υ ≥ 1. Define a = max{f2(B0, FB0), f2(B1, FB1)}. Then

we have with probability 1 − o(n−2) that for any S ⊆ V (Gn,p) with |S| = |R| and

p = n−1/2+o(1) that the number of copies of (R,F ) rooted at S in Gn,p is at most na+o(1).
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PROOF Note that Corollary 7.18 is a special case when B1 = V (F ). Note that

according to Corollary 7.18 we have with probability 1 − o(n−2) that for any 0 ≤
i ≤ υ − 1 and any S ⊆ V (Gn,p) with |S| = |Bi| that the number of copies of

(Bi, FBi [Bi+1]) rooted at S in Gn,p is at most nmax{f2(Bi,FBi [Bi+1]),0}+o(1). Note that

f2(Bi, FBi [Bi+1]) ≥ 0 for i ≥ 1. Also since
∑υ−1

i=1 f2(Bi, FBi [Bi+1]) = f2(B1, FB1)

thus the total number of copies of (R,F ) rooted at any set S with |S| = |R| in

V (Gn,p) it at most

nmax{f2(B0,FB0
[B1]),0}+o(1)nf2(B1,FB1

)+o(1) = na+o(1)

as f2(B0, FB0 [B1]) + f2(B1, FB1) = f2(B0, FB0). �

Lemma 7.21

Let (R,F ) be a rooted graph such that R forms an independent set and for every R ⊆
B ( V (F ) we have that f2(B,F ) ≤ a for some a ≥ 0. Then we have with probability

1− o(n−2) that for any S ⊆ V (Gn,p) with |S| = |R| and p = n−1/2+o(1) that the number

of copies of (R,F ) rooted at S in Gn,p is at most na+o(1).

PROOF Let B0, B1, ..., Bυ be the extension series of (R,F ). We have to consider 3

cases when B0 = V (F ) when B1 = V (F ) and when neither of these hold. The

case B0 = V (F ) is trivial as there can be only O(1) copies of F rooted at S which

is less than no(1). In case B1 = V (F ) then we can apply Lemma 7.20 and since

f2(B1, FB1) = 0 there are at most nmax{f2(B0,FB0
),0}+o(1) ≤ na+o(1) copies. The

final case also follows from applying Lemma 7.20 as both f2(B0, FB0) ≤ a and

f2(B1, FB1) ≤ a. �

Lemma 7.22

Let (R,F ) be a rooted graph such that R forms an independent set and for every R ⊆ B (
V (F ) we have that f2(B,F ) ≤ a for some a ≥ 0. Let Ui denote the event that for every

j ≤ i we have that for every S ⊆ V (Gf (K−3,4)n,i) the number of copies of (R,F ) rooted at

S in Gf (K−3,4)n,i is at most na+o(1). Then we have that

P(∃i ≤ m : Gi ∩ ¬Ui) = o(1).

PROOF Note that Gm implies that Q(m) > n2−o(1) thus

P(∃i ≤ m : Gi ∩ ¬Ui) ≤
m∑
i=1

P(Gi ∩ ¬Ui)

≤
m∑
i=1

P({Q(i) > n2−o(1)} ∩ ¬Ui)

≤ mP({Q(m) > n2−o(1)} ∩ ¬Um).
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Note that Um is a decreasing property and thus we may apply Theorem 4.6 in order

to determine this probability. Let p = n−1/2+o(1) and let Ui denote the event that

for every S ⊆ V (Gn,p) the number of copies of (R,F ) rooted at S in Gn,p is at most

na+o(1).

Select λ =
(
n
2

)
/Q(m) = no(1) and thus applying Theorem 4.6 gives us that

P({Q(m) > n2−o(1)} ∩ ¬Um) ≤ P(¬U) + o(n−2).

Lemma 7.21 gives us that P(¬U) = o(n−2) and the statement follows. �

Lemma 7.23

Let (r1, F1) and (r2, F2) be strictly balanced non-trivial rooted graphs, such that r1 and r2

are non-edges and d(r1, F1) = d(r2, F2) = 2. Let (g1, g2, F ) ∈ (r1, F1)⊕ (r2, F2) and let

Sg1,g2,F ⊆ B ( V (F ). Then we have that

f2(B,FB) < 0.

PROOF Define B1 as the maximal subset of V (F1) such that g1(B1) ⊆ B and sim-

ilarly let B2 be the maximal subset of V (F2) such that g2(B2) ⊆ B. Also define

T1 ⊆ V (F1), T2 ⊆ V (F2) as the maximal subsets such that g1(T1) ⊆ V (Tg1,g2,F ) and

g2(T2) ⊆ V (Tg1,g2,F ). Let e(B1\T1, T1) denote the number of edges between B1\T1

and T1 and e(B2\T2, T2) is defined analogously

Note that

f2(B,FB) ≤ f2(B1, (F1)B1) + f2(B2 ∪ T2, (F2)B2∪T2)− e(B2\T2, T2)/2

f2(B,FB) ≤ f2(B1 ∪ T1, (F1)B1∪T1) + f2(B2, (F2)B2)− e(B1\T1, T1)/2

as the first inequality might ignore some edges in E(F2[B2 ∪ T2]) and the second

some edges in E(F1[B1 ∪ T1]).

Note that since (R1, F1) and (R2, F2) are strictly balanced rooted graphs we

have that for i=1,2 and every Ri ⊆ S ⊆ V (Fi) that f2(S, (Fi)S) ≤ 0 where equal-

ity holds only if S = Ri or S = V (Fi). It is enough to consider the case when

each of f2(B1, (F1)B1),f2(B2 ∪T2, (F2)B2∪T2), f2(B1 ∪T1, (F1)B1∪T1), f2(B2, (F2)B2),

e(B1\T1, T1), and e(B2\T2, T2) is zero.

Note that we have that B ( V (F ) thus either B1 ( V (F1) or B2 ( V (F2) and

without loss of generality we may assume that B1 ( V (F1). Since f2(B1, (F1)B1) =

0 we have that B1 = r1. Since f2(B2, (F2)B2) = 0 we have that either B2 = r2 or

B2 = V (F2). However the second contradicts the assumption that e(Tg1,g2,F ) > 0

as in this case no edge in g1(E(F1)) is spanned by B and every edge in g2(E(F2)) is

spanned by B.
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Thus we have that B1 = r1 and B2 = r2. Note that neither B1 or B2 spans any

edges and thus we have that T1 6⊆ B1 and T2 6⊆ B2. We also have that B1 ∪ T1 =

V (F1) and B2 ∪ T2 = V (F2). Since e(B1\T1, T1) = 0 and because (r1, F1) is non-

trivial we have that T1 = V (F1) and similarly T2 = V (F2). Therefore the two copies

overlap on every vertex and g1(r1) = g2(r2) = B. However this means that the

graph we are considering is a copy of (r1, F1) with an additional edge added, and

the statement holds. �

Lemma 7.24

The event Ci satisfies

P[∃i ≤ m : Gi ∩ ¬Ci] = o(1).

PROOF Recall that Ci was the event that for every j ≤ i we have that

• for any pair of vertices u, v ∈ V (Gf (K−3,4)n,j) with u 6= v and for any rooted

graph (r, F ) ∈ {(r1, (K
−
3,4)r1), (r, (K3)r), (r, (K3,3)r)}we have that the number

of edges which when inserted into Gf (K−3,4)n,j would create multiple copies

of (r, F ) rooted at u, v is at most f(t)
√
n/n1/11

• for any four vertices u1, u2, v1, v2 ∈ V (Gf (K−3,4)n,j), with u1 6= v1, u2 6= v2

and for (r1, F1), (r2, F2) ∈ {(r1, (K
−
3,4)r1), (r, (K3)r), (r, (K3,3)r)} the number

of edges which when inserted into Gf (K−3,4)n,j would create both a copy of

(r1, F1) at {u1, v1} and (r2, F2) at u2, v2 is at most f(t)
√
n/n1/11.

Note that inserting this last edge would not only create a copy of (r1, F1) rooted

at f1 and a copy of (r2, F2) at f2, but also it would create a copy of a rooted graph

(Rg1,g2,F , F ) for some (g1, g2, F ) ∈ (r1, F1) ⊕ (r2, F2) rooted at f1 ∪ f2. A similar

argument holds for creating multiple copies of (r1, F1) at f1.

We will show that the maximal number of copies of (Rg1,g2,F , Fe) for any e ∈
E(F ) rooted at any set S ⊆ V (Gf (K−3,4)) such that |S| = |Rg1,g2,F | is no(1).

Note that f2(B, (Fe)B) ≤ f2(B,FB) + 1/2. We also have by Lemma 7.23 that

f2(B,FB) < 0 for Rg1,g2,F ⊆ B ( V (F ) and note that f2(B,FB) < 0 is equivalent to

f2(B,FB) ≤ −1/2 and the result follows by applying Lemma 7.22. �

Lemma 7.25

Let (r1, F1), (r2, F2) be strictly balanced non-trivial rooted graphs such that r1 and r2 are

non-edges and let (g1, g2, F ) ∈ F1 ⊗ F2 such that the following hold

• g1(E(F1)) ∩ g2(E(F2)) 6= ∅

• g2(r2) ⊆ g1(V (F1))
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• g2(E(F2)) 6⊆ g1(E(F1))

Then for any g1(r1) ⊆ B ( V (F ) we have that f2(B,FB) < 0.

PROOF Define B1 as the maximal subset of V (F1) such that g1(B1) ⊆ B and sim-

ilarly let B2 be the maximal subset of V (F2) such that g2(B2) ⊆ B. Also define

T2 ⊆ V (F2) as the maximal subset such that g2(T2) ⊆ g1(V (F1)) ∩ g2(V (F2)). Let

e(B2\T2, T2) denote the number of edges between B2\T2 and T2. Note that

f2(B,FB) ≤ f2(B1, (F1)B1) + f2(B2 ∪ T2, (F2)B2∪T2)− e(B2\T2, T2)/2.

Note that when r2 ⊆ B2 then this is equivalent to Lemma 7.23. So we will

assume that B2 ∩ r2 ( r2. Again it is enough to concentrate on the case when

each of f2(B1, (F1)B1), f2(B2 ∪ T2, (F2)B2∪T2), e(B2\T2, T2) is zero. We have that

f2(B1, (F1)B1) = 0 only if either r1 = B1 or V (F1) = B1. However this second case

is ruled out as g2(r2) ⊆ g1(V (F1)) and g2(r2) 6⊆ B. Clearly r2 ⊆ T2 and since it

spans no edges we have that r2 ( T2. Therefore since f2(B2∪T2, (F2)B2∪T2) = 0 we

have that B2 ∪ T2 = V (F2). Note that if (r2, F2) is strictly balanced it is connected.

Therefore since e(B2\T2, T2) = 0 and V (F2) = B2 ∪ T2 we have that B2\T2 = ∅.
Thus we have that V (F2) = T2 thus g2(V (F2)) ⊆ g1(VF1). However this implies

that (g1(r1), F ) is just a copy of (r1, F1) with some additional edges added. The

statement follows. �

Lemma 7.26

The event Di satisfies

P[∃i ≤ m : Gi ∩ ¬Di] = o(1).

PROOF Recall that the event Di holds if for every j ≤ i we have the following.

Select (r,Γ) ∈ {(r, (K3)r), (r, (K3,3)r), (r1, (K
−
3,4)r1)} and let (r, J) be a proper span-

ning subgraph of (r,Γ). Also let (r2, F2) ∈ {(r, (K3)r), (r, (K3,3)r), (r1, (K
−
3,4)r1)}.

Then for any (g1, g2, F ) ∈ (J⊗F2) such that g2(r2) ⊆ g1(E(J)) and g1(E(Γ)\E(J))∩
g2(E(F2)) = ∅ we have that for any pair of distinct vertices u, v ∈ V (Gf (K−3,4)n,j)

the number of edges which when inserted into the graph would create a copy of

(g1(r), F ) rooted at {u, v} in Gf (K−3,4)n,j is O(nf2(r,J)nε).

Fix (r2, F2) ∈ {(r, (K3)r), (r, (K3,3)r), (r1, (K
−
3,4)r1)} and we will show that there

are at most nf2(r,J)+o(1) such edges. We are looking for the number of copies of

(g1(r), Fe) rooted at {u, v} in Gf (K−3,4)n,j for some fixed e ∈ E(Tg1,g2,F ). Lemma

7.22 implies the result if we have that f2(B,FB) ≤ f2(r, J) for every g1(r) ⊆ B (
V (F ).
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Note that for the same g1, g2 we have that (g1, g2, F
′) ∈ Γ ⊗ F2 such that all

the conditions of Lemma 7.25 apply as in case the last condition did not hold there

would be an edge in E(Γ)\E(J), a case which is not considered. Note that any

g1(r) ⊆ B ( V (Fe) that f2(B, (Fe)B) ≤ f2(B, (F ′)B) + (e(Γ) − e(J) + 1)/2 =

f2(B, (F ′)B) + f2(r, J) + 1/2. Lemma 7.25 gives us that f2(B, (F ′)B) ≤ −1/2. �

Lemma 7.27

Let (r1, F1), (r2, F2) be strictly balanced non-trivial rooted graphs such that r1 and r2 are

non-edges and let (g1, g2, F ) ∈ F1 ⊗ F2 such that the following hold

• g2(r2) ⊆ g1(V (F1))

• g2(E(F2)) 6⊆ g1(E(F1))

Then for any g1(r1) ( B ( V (F ) we have that f2(B,FB) ≤ 0 and equality holds only if

B = V (F1) and g1(V (F1)) ∩ g2(V (F2)\r2) = ∅.

PROOF Define B1 as the maximal subset of V (F1) such that g1(B1) ⊆ B and simi-

larly letB2 be the maximal subset of V (F2) such that g2(B2) ⊆ B. Lemma 7.25 gives

us that the statement holds when g1(E(V (F1))) ∩ g2(E(V (F2))) 6= ∅. Otherwise let

T = g1(V1) ∩ g2(V2\r2). We have that

f2(B,FB) ≤ f2(B1, (F1)B1) + f2(r2 ∪B2, (F2)B2)− |T\B|.

Next we examine the cases when all of these terms are zero. As always we have

that f2(B1, (F1)B1) = 0 if B1 = r1 and when B1 = V (F1). In case B1 = r1 then

r2 ∩ B2 = ∅ and B2 6= ∅, thus f2(r2 ∪ B2, (F2)B2) < 0. On the other hand if B1 =

V (F1) then B2 6= V (F2) so we only have to consider the case when B2 = r2, in

which case T\B = ∅ completing the proof. �

Lemma 7.28

Let (r,Γ) be a strictly balanced rooted graph with density 2 such that r is a non-edge.

Let (g1, g2, g3, F ) ∈ Γ ⊗ (K3,3)r ⊗ (K3)r,e such that g2(r) ⊆ g1(V (J)), g2(E(F2)) 6⊆
g1(V (F1)), and g3((K3)r,e)∩ g2(V ((K3,3)r)) = g3(r). Then we have that for any g1(r)∪
g3(e) ⊆ B ( V (F ) we have that

f2(B,FB) < 0.

PROOF Let V ′ = g1(V (Γ)) ∪ g2(V ((K3,3)r)). Note that

f2(B,FB) ≤ f2(B ∩ V ′, FB[V ′]).
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Lemma 7.27 gives us that f2(B ∩ V ′, FB[V ′]) = 0 only if B ∩ V ′ = g1(V (Γ)) and

g1(V (Γ)) ∩ g2(V ((K3,3)r)) = g2(r). Let V ′′ = g2(V ((K3,3)r)) ∪ g3(V ((K3)r,e)).

For the remainder of the proof assume that B ∩ V ′ = g1(V (Γ)) and g1(V (Γ)) ∩
g2(V ((K3,3)r)) = g2(r). Then we have that

f2(B,FB) = f2(B ∩ V ′′, FB[V ′′]).

Note that g2(r) ( B∩V ′′. Therefore Lemma 7.27 implies that f2(B∩V ′′, FB[V ′′]) < 0

as B ∩ V ′′ 6= g2(V ((K3,3)r)) completing the proof. �

Lemma 7.29

The event Ei satisfies

P[∃i ≤ m : Gi ∩ ¬Ei] = o(1).

PROOF Recall that Ei is the event that the boundedness hypothesis holds i.e.

X±σ ≤
β2
σ

s2
σλστσ

Sσ
uσ

=
βσn

εSσ

n1/11 log3 n
.

We will show that these bounds hold on a case by case basis. In every case

we will need an upper bound on the number of some rooted graphs (R,F ) rooted

at any S ⊆ V (Gf (H)n,j) such that |S| = |R|. Similarly to the previous cases our

aim is to determine an upper bound for f2(B,FB) and then apply Lemma 7.22 to

determine the upper bound.

We start by analysing the case when our random variable is Qk(i) and Yo(i).

Assume that the edge inserted in step i is f . Then the change in these variables

is determined by the number of copies of (r, (K3,3)r,e) rooted at f , the number of

copies of (r1, (K
−
3,4)r1,e) rooted at f and the number of copies of (r, (K3)r,e) rooted

at some non-edge of some copy of (r, (K3,3)r) rooted at f . Note that for any strictly

balanced rooted graph (r,Γ) such that d(r,Γ) = 2 we have that for every r ⊆ B (
V (Γ) that f2(B,ΓB) ≤ 0 and thus after removing an edge from it we have that

f2(B, (Γe)B) ≤ 1/2. Since there are at most no(1) copies of (r, (K3,3)r) rooted at any

pair of vertices Lemma 7.22 implies that the maximal change is at most n1/2+o(1),

which satisfies the conditions.

Now for Xφ,J,Γ,κ,C(i) and Zφ,J,Γ,κ,C,S(i). In these cases we aim to show that the

maximal change can be bounded by Sσno(1)/
√
n which implies the result. Let (r, J)

be a subgraph of a strictly balanced rooted graph (r,Γ). The first case considered is

when inserting an edge creates the last edge needed in (r, J). We bound the number

of such copies created by inserting an edge, by giving bounds on the number of

rooted graphs (r ∪ e, Je) rooted at any set S ⊆ V (Gn,p) with |S| = |r ∪ e| and
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p = n−1/2+o(1). We have that for any r∪ e ⊆ B ( V (J) that f2(B, Je) ≤ f2(B,ΓB) +

(e(Γ)−e(J))/2 = f2(B,ΓB)+f2(r, J) as e ⊆ B. Also since (r,Γ) is a strictly balanced

rooted graph we have that f2(B,ΓB) ≤ −1/2 for any r1 ∪ e ⊆ B ( V (Γ) and the

statement follows from Lemma 7.22.

The second case we consider is when a mutual neighbour of a non-edge of a

copy of (r, (K3,3)r) rooted at a specific non-edge of a copy of (r, J) rooted with

respect to φ is completed. In order to estimate the maximal change caused by com-

pleting such a construction we aim to bound the number of copies of the rooted

graphs (g1(r) ∪ g3(e), F ) rooted at any set S ⊆ Gn,p such that |S| = |g1(r) ∪
g3(e)| where (g1, g2, g3, F ) ∈ J ⊗ (K3,3)r ⊗ (K3)r,e such that g2(r) ⊆ g1(V (J)),

g2(E((K3,3)r)) 6⊆ g1(E(J)) and g3(V ((K3)r,e)) ∩ g2(V ((K3,3)r)) = g3(r). This fol-

lows in the usual way from Lemma 7.28 and Lemma 7.22.

In the remaining cases let (r,Γ) ∈ {(r, (K3,3)r), (r, (K3)r), (r1, (K
−
3,4)r1)} and

consider (g1, g2, F ) ∈ J ⊗ Γe such that g2(r) ⊆ g1(V (J)) and g2(E(Γe)) 6⊆ g1(E(J)).

Note that the maximal number of copies of (g1(r) ∪ g2(e), F ) rooted at any set of

vertices S ⊆ V (Gn,p) with |S| = {g1(r) ∪ g2(e)} is an upper bound on the maximal

change in these cases. Note that B 6= g1(V (J)), as g2(e) ⊆ B and g2(e) 6⊆ V (J).

Therefore the result follows from Lemma 7.27 and Lemma 7.22. �

Corollary 7.30

The eventHi satisfies

P[∃i ≤ m : Gi ∩ ¬Hi] = o(1).

PROOF Follows trivially from the fact thatHi = Bi ∩ Ci ∩ Di ∩ Ei and that

P[∃i ≤ m : Gi ∩ ¬Hi] ≤
∑

S∈{A,B,C,D,E}

P[∃i ≤ m : Gi ∩ ¬Si] = o(1).

�

7.2.9 Additional technical assumptions

Lemma 7.31

The additional technical assumptions hold.

PROOF Note that uσ = ω(1). Also note that by definition λσ/βσ = nε therefore

s = n3/2 ≥= 15 log2 n log n(n1/22−εnε)2 = 15uστσ(sσλσ/βσ)2.

also

s = n3/2 ≥ 9n1/22−εnε = 9sσλσ/βσ.
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We also have that

sβσ
18sσλσ

=
n3/2

18n1/22
< m = µn3/2

√
log log n ≤ n3/2 log n

1944
=

sτσ
1944

Also

sup
0≤t≤m/s

q±k (t) = O(kmax(t)qk(t)) = O(kmaxtβk) = o(βkn
ε)

sup
0≤t≤m/s

x±σ (t) = O(kmaxtβσ) = βσn
ε.

We also have that ∫ m/s

0
|x′′σ(t)|dt ≤ λσ.

Clearly we may set hσ(t) = f ′σ(t)/2 and thus

hσ(0) = O(kmax)βσ ≤ n1/22βσ = sσλσ.

Finally: ∫ m/s

0
|h′σ(t)|dt ≤ hσ(m/s) ≤ f ′σ(m/s) ≤ n1/22βσ = sσλσ.

�
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[9] BOLLOBÁS, B., AND RIORDAN, O. Constrained graph processes. Elec-
tron. J. Combin. 7 (2000), Research Paper 18, 20 pp. (electronic). Avail-
able from: http://www.combinatorics.org/Volume_7/Abstracts/
v7i1r18.html. 8, 23
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[16] ERDÖS, P., AND STONE, A. H. On the structure of linear graphs. Bull. Amer.
Math. Soc. 52 (1946), 1087–1091. 38
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