
The sizes of consecutive repeat-free
codes

Robin Hughes-Jones

Technical Report
RHUL–MA–2010–1

2 March 2010

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Royal Holloway, University of London

Ph. D.

The sizes of consecutive

repeat-free codes

Author:

Robin Hughes-Jones

Supervisor:

Prof. Simon Blackburn

August 31, 2009

Declaration of Authorship

I declare this is my own work, except as acknowledged.

Abstract

The notions of strongly consecutive repeat free code and weakly consecutive repeat

free code were introduced by Pebody in his paper in the Journal of Combinatorial

Theory Series A in 2006. This thesis aims to investigate the the maximum sizes of

such codes, in particular in the case when the length is fixed and the alphabet size

is large.

Pebody constructs a strongly consecutive repeat free code of maximal size, which

he calls the alternating code. We show that the size of an alternating code is polyno-

mial in the alphabet size, give methods for computing this polynomial and explicitly

determine the most significant coefficients of this polynomial in terms of the sequence

of ‘up/down numbers’ and related sequences.

Pebody defines a family of codes (which we call Pebody codes) that are weakly

consecutive repeat free codes. Pebody conjectures that for all parameters there

exists a member of this family that is a weakly consecutive repeat free code of

maximal size. We show that the maximal size of a Pebody code agrees closely with

the maximal size of a strongly consecutive repeat free code. We use techniques from

combinatorics and functional analysis, together with computational results, to give

estimates for the leading terms of the maximal size of a Pebody code of fixed length

when the alphabet size is large.

Contents

1 Introduction 3

1.1 Consecutive repeat-free codes and Pebody’s conjecture 3

1.2 Structure of thesis . 4

2 Preliminaries 6

3 The alternating code 9

3.1 Enumeration of the alternating code 9

3.1.1 Enumeration using a “sum of sums” method 9

3.1.2 Computing ∣An,b∣ for small values of n 14

3.2 Using the up/down numbers to calculate the three leading coefficients

of the alternating code . 16

3.2.1 Up/down permutations and up/down numbers 16

3.2.2 Collapsing the alternating code onto an up/down permutation 17

3.2.3 Computing up/down numbers and related sequences 20

3.2.4 Proving an observed result . 22

4 Pebody’s weakly consecutive repeat-free codes 29

4.1 Large weakly consecutive repeat-free codes 29

4.1.1 Pebody’s conjecture . 29

4.1.2 A result on Pebody codes . 30

4.2 Maximising Pebody codes . 30

4.2.1 On Pebody codes and strongly consecutive repeat-free codes . 31

4.2.2 Independently choosing the letters of y to maximise the Pe-

body code By . 34

5 Counting Words in the Alternating Code starting with a given

Letter 37

5.1 A recursive counting method . 37

5.1.1 Approximating the “sum of sums” method by integration . . . 37

5.1.2 Generalising the recursive counting method 41

5.1.3 Implementing the counting method on a computer 42

5.2 Convergence of the counting method 45

1

5.2.1 Background on Hilbert spaces 45

5.2.2 Assuming convergence to obtain a hypothetical family of limits 47

5.2.3 Harmonic analysis with a generalised Fourier series 53

5.2.4 Proving convergence of the recursive counting method 55

6 Bounding the size of Pebody codes 62

6.1 Approximating the number of words with a single repeat 62

6.1.1 Approximating the recursive counting method by its limit . . 62

6.1.2 Approximating the number of words with one repeat at a given

position . 66

6.2 A better approximation . 70

6.2.1 Centralising the use of the approximation 70

6.2.2 Generating simple analytic upper and lower bounds 75

7 A programmatic implementation and analysis of the bounds on

weakly consecutive repeat-free codes of the form By 81

7.1 Technical specifications of hardware and software and motivation for

their selection . 81

7.2 Computing the difference in size of alternating codes and largest Pe-

body codes . 82

7.3 Comparing the difference to the size of the alternating code 84

7.4 Discussion of algorithms used . 86

A MatLab programming code 89

B MatLab code generating Fn,1(f) and F̃n,1(f) 91

C Mathematica code for calculating and timing maximisation of Rn,l 93

D Mathematica code for calculating the three leading terms of ∣An,b∣
as a polynomial in b 97

2

Chapter 1

Introduction

For a positive integer b, let [b] := {1, 2, 3, . . . , b} be our alphabet. Let n be a positive

integer, then a code C is any subset of [b]n. An element w ∈ C shall be known as a

word (of length n) and for a positive integer i ≤ n the ith ordinate shall be denoted

wi. In other words

w = (w1, w2, w3, . . . , wn).

We say that i is an index.

Definition 1.0.1. For positive integers b and n, let w be a word in [b]n. We say

that w is up/down if, for any index i < n, we have wi < wi+1 when i is odd and

wi > wi+1 when i is even. One could write

w1 < w2 > w3 < . . . wn.

1.1 Consecutive repeat-free codes and Pebody’s

conjecture

In a private communication with Luke Pebody, János Körner and Gábor Simonyi

introduced the ideas of weakly and strongly consecutive repeat free codes and asked

how large such codes could be. We provide the definitions for these codes (taken

from [Peb06]) here but we do not deal with them directly in the thesis.

Definition 1.1.1. Let C ⊂ [b]n be a code. Then C is weakly consecutive repeat-free

if for any words v, w ∈ C and any index i such that vi ∕= wi and vi+1 ∕= wi+1, we

have that the sets {vi, wi} and {vi+1, wi+1} are not equal.

Definition 1.1.2. Let C ⊂ [b]n be a weakly consecutive repeat-free code. Then C is

a strongly consecutive repeat-free code if for any word w ∈ C and any index i we

have that wi ∕= wi+1.

Luke Pebody proves that the alternating code, defined below, is a largest strongly

consecutive repeat-free code in [Peb06].

3

Definition 1.1.3. Let b and n be positive integers. The alternating code An,b is

defined as

{w ∈ [b]n : w is up/down}.

Pebody then gives a construction of a weakly consecutive repeat-free code, which

we call a Pebody code, and makes the following conjecture.

Definition 1.1.4. Let y be a word in [b]n−1. Define the code By to be the set of all

words w ∈ [b]n such that for any index i < n, wi ≤ wi+1 if i is odd, wi ≥ wi+1 if i

is even and if wi = wi+1 then wi = yi = wi+1. We shall refer to such a code By as

a Pebody code and we shall say that it has length n.

Conjecture 1.1.5. [Pebody 2005] For any positive integers n and b there exists

y ∈ [b]n−1 such that By is a largest weakly consecutive repeat-free code.

This thesis investigates the sizes of alternating codes and Pebody codes, espe-

cially in the case where n is fixed and b is large. In particular we look at which

choices of y ∈ [b]n−1 give largest Pebody codes By and how large these weakly con-

secutive repeat-free codes can be. The aim is to find good approximations for the

sizes of alternating and Pebody codes and produce efficient methods to compute

these sizes accurately.

1.2 Structure of thesis

We commence our work in the area of strongly consecutive repeat-free codes by

analysing the size of the alternating code An,b when n is fixed. One of our first

results is Theorem 3.1.5 where we prove that ∣An,b∣ is a polynomial in b. This

motivates the following definition.

Definition 1.2.1. Let n be a fixed positive integer. For an alternating code An,b,

let �n,n, �n,n−1 and �n,n−2 be such that

∣An,b∣ = �n,nb
n + �n,n−1b

n−1 + �n,n−2b
n−2 +O(bn−3).

Chapter 3 concludes (see Corollary 3.2.12) by finding an explicit formula for �n,n

in terms of a previously studied sequence of numbers variously known as up/down

numbers (see [BR90]), zig-zag numbers (see [BR09]) and Euler numbers (see [KB67]).

Similar formulae for �n,n−1 and �n,n−2 are derived in the same corollary using se-

quences related to up/down numbers.

In Chapter 4 we focus on the Pebody code By and its size. Theorem 4.2.9 shows

us that there exist polynomials Cn,k(f) defined over the interval [0, 1] such that

∣By∣ = ∣An,b∣+
n−1∑
k=1

Cn,k(fk)b
n−2 +O(bn−3)

4

where fk := yk
b

. This allows us to give the following definition.

Definition 1.2.2. Let n and b be positive integers with b much larger than n. Define

Bn,b to be a largest Pebody code. So

∣Bn,b∣ = max
y∈[b]n−1

∣By∣.

Let us also define �n,n−2 by

∣Bn,b∣ = �n,nb
n + �n,n−1b

n−1 + �n,n−2b
n−2 +O(bn−3).

In order to determine �n,n−2 we study the maximal values of the polynomials

Cn,k(f) over [0, 1]. In Chapter 5 we introduce the recursively defined polynomial

Fn,i(f) over [0, 1] and show that we may write

Cn,i(f) = F−1,−i(f)Fn,i+1(f).

By developing a Fourier series and with techniques from the theory of Hilbert spaces,

we write down explicitly (see Theorem 5.2.14 and Theorem 5.2.19) the functions that

the polynomials Fn,i converge to in some useful sense. In Chapter 6 we use these

functions to approximate the Fn,i and so are able to approximate Cn,k and derive

upper and lower bounds for �n,n−2 and hence Pebody codes in general. Finally, we

show how these techniques can be used to efficiently compute good approximations

for �n,n−2 on a computer. A range of approximations are made available, each one

offering a different balance between accuracy and computation time.

The thesis concludes with Chapter 7 which is mostly practical in nature. We

present here tables of computation times and accuracies achieved by putting into

practice the approximations of Chapter 6 with programmes written in Mathematica.

The computational results validate our theoretical bounds on the sizes of Pebody

codes and give a practical demonstration of the trade-offs between complexity and

accuracy for our approximation methods.

5

Chapter 2

Preliminaries

This short chapter contains elementary results about binomial coefficients and sums

of polynomials, which we will need throughout the thesis.

Definition 2.0.3. We use the following standard notation for binomial expressions:(
n

i

)
:=

n!

i!(n− i)!
.

Definition 2.0.4. Let k be a nonnegative integer and n be a positive integer. Define

the function Sk(n) by

Sk(n) :=
n∑

m=1

mk.

The following lemma was proved by Pascal in [Pas54] but the proof we give here

has been adapted from the one in [Bea96].

Lemma 2.0.5. Let k and n be as in Definition 2.0.4 then

Sk(n) =
1

k + 1

(
(n+ 1)k+1 − 1−

k−1∑
r=0

(
k + 1

r

)
Sr(n)

)

6

Proof. By a “sum of differences” argument we have that

(n+ 1)k+1 − 1 =
n∑

m=1

(
(m+ 1)k+1 −mk+1

)
=

n∑
m=1

k∑
r=0

(
k + 1

r

)
mr

=
k∑
r=0

(
k + 1

r

)
Sr(n)

=

(
k + 1

k

)
Sk(n) +

k−1∑
r=0

(
k + 1

r

)
Sr(n)

= (k + 1)Sk(n) +
k−1∑
r=0

(
k + 1

r

)
Sr(n).

Solving for Sk(n) completes the proof.

As Beardon observes, one proves by induction that the function Sk(n) is a poly-

nomial of degree k + 1 and this is given in Lemma 2.0.6.

Lemma 2.0.6. Again let k and n be as in Definition 2.0.4. The function Sk(n) is

a polynomial in n of degree k + 1.

Proof. We shall prove this result by induction on k so let us first observe that the

result holds for the case where k = 0, since S0(n) = n.

Assume then that the result holds for all nonnegative integers r such that r < k.

Recall from Lemma 2.0.5 that

Sk(n) =
1

k + 1

(
(n+ 1)k+1 − 1−

k−1∑
r=0

(
k + 1

r

)
Sr(n)

)
.

By assumption, each of the functions Sr(n) in the summand are polynomials of

degree r + 1 and so the sum has degree at most k. Therefore the term of highest

degree is nk+1

k+1
, which is obtained by the binomial expansion of (n + 1)k+1. Hence

Sk(n) is a polynomial and has degree k + 1.

Lemma 2.0.7. For fixed k and as n→∞, the three leading terms of the polynomial

Sk(n) are 1
k+1

nk+1, 1
2
nk and k

12
nk−1 so

Sk(n) =
1

k + 1
nk+1 +

1

2
nk +

k

12
nk−1 +O(nk−2).

Proof. Recall from Lemma 2.0.5 that

Sk(n) =
1

k + 1

(
(n+ 1)k+1 − 1−

k−1∑
r=0

(
k + 1

r

)
Sr(n)

)
.

7

By Lemma 2.0.6 we have Sr(n) = 0 +O(nk−2) for r ≤ k − 3 and so

Sk(n) =
(n+ 1)k+1

k + 1
−
(
k + 1

k − 1

)
Sk−1(n)

k + 1
−
(
k + 1

k − 2

)
Sk−2(n)

k + 1
+O(nk−2)

=
(n+ 1)k+1

k + 1
− kSk−1(n)

2
− k(k − 1)Sk−2(n)

6
+O(nk−2). (2.1)

Again, by Lemma 2.0.5 we have

Sk−2(n) =
1

k − 1

(
(n+ 1)k−1 − 1−

k−3∑
r=0

(
k − 1

r

)
Sr(n)

)

=
(n+ 1)k−1

k − 1
+O(nk−2)

=
nk−1

k − 1
+O(nk−2)

and

Sk−1(n) =
1

k

(
(n+ 1)k − 1−

k−2∑
r=0

(
k

r

)
Sr(n)

)

=
1

k

(
(n+ 1)k −

(
k

k − 2

)
Sk−2(n)

)
+O(nk−2)

=
1

k

(
nk + knk−1 − k(k − 1)

2
Sk−2(n)

)
+O(nk−2)

=
nk

k
+ nk−1 − (k − 1)

2
Sk−2(n) +O(nk−2)

=
nk

k
+ nk−1 − nk−1

2
+O(nk−2)

=
nk

k
+
nk−1

2
+O(nk−2).

Using these formulae with (2.1) gives us

Sk(n) =
(n+ 1)k+1

k + 1
−
(
nk

2
+
knk−1

4

)
− knk−1

6
+O(nk−2)

=
nk+1

k + 1
+ nk +

knk−1

2
−
(
nk

2
+
knk−1

4

)
− knk−1

6
+O(nk−2)

=
nk+1

k + 1
+
nk

2
+
knk−1

12
+O(nk−2).

8

Chapter 3

The alternating code

3.1 Enumeration of the alternating code

For fixed n, the size of the alternating code grows as the alphabet size increases, since

An,b ⊂ An,b+1. In this section we prove this growth is polynomial and, by studying

the up/down numbers, go on to determine the degree and the three leading terms

of this polynomial.

3.1.1 Enumeration using a “sum of sums” method

Definition 3.1.1. Let w be a word of length n and l be a positive integer such that

l ≤ n. For the word w, define its head of length l as the word w1w2 . . . wl and its

tail of length l as the word wn−l+1wn−l+2wn−l+3 . . . wn.

The relatively simple structure of the words in the alternating code allows us to

count the number of distinct heads of a given length for these words. Investigating

heads of increasing length will give us some idea of how to enumerate An,b.

Lemma 3.1.2. Let b and c be indeterminates and let l and m be nonnegative

integers. The sums
∑d−1

c=1 c
lbm and

∑b
c=d+1 c

lbm are equal to bmdl+1

l+1
+ p(b, d) and

bm+l+1−bmdl+1

l+1
+q(b, d) respectively, where p and q are polynomials of combined degree

at most l +m.

Proof. Recall from Lemma 2.0.6 that Sl(d) is polynomial and so Lemma 2.0.7 implies

that, for some polynomial pl(d) of degree l,

Sl(d) =
dl+1

l + 1
+ pl(d).

9

So

d−1∑
c=1

clbm =bm

(
d∑
c=1

cl − dl
)

=bm
(
dl+1

l + 1
+ pl(d)− dl

)
=
bmdl+1

l + 1
+ p(b, d)

where p(b, d) = bm
(
pl(d)− dl

)
and

b∑
c=d+1

clbm =bm

(
b∑
c=1

cl −
d∑
c=1

cl

)

=bm
(
bl+1

l + 1
+ pl(b)−

dl+1

l + 1
− pl(d)

)
=
bm+l+1 − bmdl+1

l + 1
+ q(b, d),

where q(b, d) = bm (pl(b)− pl(d)) are polynomials of combined degree at most m +

l.

The following definition shall be used extensively throughout the thesis.

Definition 3.1.3. Let n be a positive integer. Define Pn,n := 1 and for any inte-

ger i < n recursively define

Pn,i(b, c) :=
b∑

x=c+1

Pn,i+1(b, x)

when i is odd and

Pn,i(b, c) :=
c−1∑
x=1

Pn,i+1(b, x)

when i is even. We restrict the domain of Pn,i(b, c) to be ℕ × ℕ and shall only be

interested in the case where b ≥ c.

Lemma 3.1.4. For positive i the function Pn,i(b, c) counts the number of distinct

tails of length n− i+ 1 with first letter c of the up/down words of length n. In other

words, Pn,i(b, c) enumerates the set

{v ∈ [b]n−i+1 : there exists w ∈ An,b such that wiwi+1 . . . wn = v, v1 = c}.

Proof. Throughout this proof a tail shall be a tail of a word in An,b. If i = n then

our set is just {c}. Since Pn,n(b, c) = 1 by definition, the result holds in this case.

For a proof by induction let us suppose that i < n and the result holds for i + 1.

10

Thus the number of tails of length n− i with first letter x is Pn,i+1(b, x). We want

to evaluate the number of tails of length n− i+ 1 with first letter c.

Suppose i is odd. Any tail of length n− i+ 1 with the first two letters c then x

must have c < x. Thus we are interested in summing the number of tails of length

n− i with first letter x for x from c+ 1 to b. This is

b∑
x=c+1

Pn,i+1(b, x) = Pn,i(b, c).

Similarly, for when i is even we need c > x and we sum for x from 1 to c− 1 giving

us
c−1∑
x=1

Pn,i+1(b, x) = Pn,i(b, c),

completing the induction.

Theorem 3.1.5. The size of the alternating code An,b is a polynomial of degree n

in b.

Proof. If n = 1 then An,b = [b]. As the result clearly holds in this case, let us

suppose n ≥ 2.

Let w be a word in An,b. The letter w1 cannot be b as w1 < w2 and b is the

largest letter in our alphabet. As w1 may take any other value in [b], there are b− 1

possibilities for w1. Since w ∈ An,b we may consider it to be a tail of length n (of a

word in An,b) with first letter w1. Then, by Lemma 3.1.4, for each value of w1 there

are Pn,1(b, w1) possibilities for the rest of the word. Summing for each possible value

of w1 counts all the words in An,b and we get

b−1∑
w1=1

Pn,1(b, w1).

Note that this is actually Pn,0(b, b) and so

∣An,b∣ = Pn,0(b, b).

It suffices to prove therefore that the Pn,i(b, c) are polynomials of combined de-

gree n− i in b and c.

We now use a proof by induction to show that the Pn,i are polynomials with

combined degree at most n− i. For the inductive step let us assume Pn,i+1(b, wi+1)

is a polynomial of combined degree n− (i+ 1).

For ease of notation let us define

ℕm := {(j, k) ∈ ℤ× ℤ : j ≥ 0, k ≥ 0, j + k ≤ m}

to be the set of all pairs of nonnegative integers (j, k) whose sum is at most m. We

11

can now write our polynomial Pn,i+1(b, wi+1) as
∑

(j,k)∈ℕn−(i+1)
�jkw

jbk where the �jk

are real coefficients. When i is even:

Pn,i(b, wi) =

wi−1∑
wi+1=1

Pn,i+1(b, wi+1)

=

wi−1∑
wi+1=1

∑
(j,k)∈ℕn−(i+1)

�jkw
j
i+1b

k

=
∑

(j,k)∈ℕn−(i+1)

⎛⎝�jk wi−1∑
wi+1=1

wji+1b
k

⎞⎠ .

Using Lemma 3.1.2 the above becomes:

Pn,i(b, wi) =
∑

(j,k)∈ℕn−i−1

�jk

(
bkwj+1

i

j + 1
+ pjk(b, wi)

)

where the pjk are polynomials of combined degree at most j + k. Splitting off the

terms of highest combined degree we have

Pn,i(b, wi) =
n−i−1∑
l=0

(
�l(n−i−l−1)

b(n−i−l−1)wl+1
i

l + 1

)

+
∑

(j,k)∈ℕn−i−2

(
�jk

bkwj+1
i

j + 1

)
+

∑
(j,k)∈ℕn−i−1

�jkpjk(b, wi).

Each summand of
∑

(j,k)∈ℕn−i−2

(
�jk

bkwj+1
i

j+1

)
has combined degree k + j + 1 where

(j, k) ∈ ℕn−i−2. So j + k ≤ n − i − 2 and the sum has combined degree at most

n − i − 1. Each summand of
∑

(j,k)∈ℕn−i−1
�jkpjk(b, wi) has combined degree j + k

with (j, k) ∈ ℕn−i−1 and so j + k ≤ n − i − 1 and so this sum also has combined

degree at most n− i− 1.

The remaining terms in Pn,i(b, wi) all have combined degree n−i. By assumption,

the polynomial Pn,i+1(b, c) has degree n−i−1, hence at least one of the coefficients of

the terms of combined degree n− i−1, say �l(n−i−l−1), is nonzero. The coefficient of

bn−i−l−1wl+1, which is
�l(n−i−l−1)

l+1
, is then nonzero. Therefore Pn,i(b, wi) has combined

degree n− i. This completes the inductive step for when i is even.

12

Let us assume then that i is odd. In this case:

Pn,i(b, wi) =
b∑

wi+1=wi+1

Pn,i+1(b, wi+1)

=
b∑

wi+1=wi+1

∑
(j,k)∈ℕn−i−1

�jkw
j
i+1b

k

=
∑

(j,k)∈ℕn−i−1

⎛⎝�jk b∑
wi+1=wi+1

wji+1b
k

⎞⎠ .

Again by Lemma 3.1.2 this becomes:

Pn,i(b, wi) =
∑

(j,k)∈ℕn−i−1

�jk

(
bk+j+1 − bkwj+1

i

j + 1
+ qjk(b, wi)

)

where the qjk are polynomials of combined degree at most j + k and as before we

split off the terms of combined degree n− i.

Pn,i(b, wi) =
n−i−l∑
l=0

(
�l(n−i−l−1)

bn−i − bn−i−1−lwl+1
i

l + 1

)

+
∑

(j,k)∈ℕn−i−2

(
�jk

bk+j+1 − bkwj+1
i

j + 1

)
+

∑
(j,k)∈ℕn−i−1

�jkqjk(b, wi).

Similarly to the previous case, each summand of

∑
(j,k)∈ℕn−i−2

(
�jk

bk+j+1 − bkwj+1
i

j + 1

)

has combined degree j+ k+ 1 where j+ k ≤ n− i− 2 and so the sum has combined

degree at most n− i− 1. Each summand of
∑

(j,k)∈ℕn−i−1
�jkqjk(b, wi) has combined

degree j+k and hence the sum has combined degree at most n−i−1. Again, all the

remaining terms of Pn,i(b, wi) have combined degree n−i. By assumption Pn,i+1(b, c)

has degree n− i− 1 and so for some l we have that �l(n−i−l−1) is nonzero. Therefore

the coefficient of bn−i−l−1wl+1, which is −�l(n−i−l−1)

l+1
, is nonzero and Pn,i(b, wi) has

combined degree n− i as required.

In order to complete our induction we see that, in the base case where Pn,n = 1,

the degree is zero. Hence Pn,0(b, b), and therefore ∣An,b∣, is a polynomial of degree n

in b.

13

3.1.2 Computing ∣An,b∣ for small values of n

It is often helpful, when trying to visualise or understand a series of mathematical

objects, to calculate a handful of examples and inspect them side-by-side. In the case

of enumerating our alternating code this was achieved through employing MatLab

to calculate ∣An,b∣ for successive n (for the actual MatLab code see Appendix A).

The program’s output is summarised in Table 3.1.

At the heart of Theorem 3.1.5 is the observation that for n > 1 the size of the

alternating code An,b is Pn,0(b, b). The polynomials Pn,i(b, c) are defined recursively

and so a recursive function would be a sensible way to calculate them. A perfectly

valid though somewhat näıve approach would be to define the polynomials Pn,n for

each value of n and apply the recursive step to each of these until the Pn,0 are

obtained. Fortunately, the following lemma helps us cut down on the computation

and storage required by our näıve method.

Lemma 3.1.6. Let c be some letter in our alphabet [b], n a positive integer and i an

integer with n ≥ i. The polynomials Pn,i(b, c), introduced in Definition 3.1.3, satisfy

the formula Pn,i(b, c) = Pn+2,i+2(b, c).

Proof. The recursive step in the definition of the polynomial Pn,i(b, c) depends solely

on the parity of i and so it follows that the n − i recursions to calculate Pn,i(b, c)

from Pn,n(b, c) are identical the n − i recursions to calculate Pn+2,i+2(b, c) from

Pn+2,n+2(b, c). As Pn,n(b, c) and Pn+2,n+2(b, c) are both defined to be 1, we can

see that indeed Pn,i(b, c) = Pn+2,i+2(b, c).

As previously discussed, the polynomial Pn,i(b, c) counts the number of tails of

length n− i+ 1 of up/down words of length n where each tail starts with the letter

c. If i is odd then the tails will be up/down, otherwise they will be down/up. The

number of such tails only depends on the tail length, the first letter c and whether

the tails we are counting are up/down or down/up. It is not affected therefore if

i is any larger or smaller as long as the parity of i is preserved and this is what

Lemma 3.1.6 is telling us.

Let us suppose that n is even and that the polynomial Pn−2,0(b, c) has been

calculated. In order to obtain Pn,0(b, c) we need only notice:

Pn,0(b, c) =
c−1∑
w1=1

Pn,1(b, w1)

=
c−1∑
w1=1

b∑
w2=w1

Pn,2(b, w2)

=
c−1∑
w1=1

b∑
w2=w1

Pn−2,0(b, w2).

14

T
ab

le
3.

1:
T

h
e

co
effi

ci
en

ts
of

th
e

p
ol

y
n
om

ia
ls
P
n
,0

(b
,b

)
an

d
th

ei
r

re
le

va
n
t

co
d
es
A
n
,b

C
o
d
e

1
b

b2
b3

b4
b5

b6
b7

b8
b9

b1
0

A
1
,b

−
1

1

A
2
,b

0
−

1 2
1 2

A
3
,b

0
1 6

−
1 2

1 3

A
4
,b

0
−

1
1
2

7 2
4

−
5

1
2

5 2
4

A
5
,b

0
1 3
0

−
1 6

1 3
−

1 3
2 1
5

A
6
,b

0
−

1
6
0

4 4
5

−
1
1

4
8

4
7

1
4
4

−
6
1

2
4
0

6
1

7
2
0

A
7
,b

0
1

1
4
0

−
1
7

3
6
0

1
3

9
0

−
1
9

7
2

5
3

1
8
0

−
1
7

9
0

1
7

3
1
5

A
8
,b

0
−

1
2
8
0

2
4
7

1
0
0
8
0

−
2
5

2
8
8

7
3

3
8
4

−
4
9

1
8
0

2
4
1

9
6
0

−
2
7
7

2
0
1
6

2
7
7

8
0
6
4

A
9
,b

0
1

6
3
0

−
4

3
1
5

5
7
1

1
1
3
4
0

−
2
3

1
8
0

1
1
9

5
4
0

−
4
7

1
8
0

3
8
9

1
8
9
0

−
3
1

3
1
5

6
2

2
8
3
5

A
1
0
,b

0
−

1
1
2
6
0

4
1

6
3
0
0

−
5
1
8
3

1
8
1
4
4
0

1
4
8
2
1

1
8
1
4
4
0

−
5
6
5
3

3
4
5
6
0

4
0
4
5
3

1
7
2
8
0
0

−
2
8
7
2
3

1
2
0
9
6
0

1
9
8
1
1

1
2
0
9
6
0

−
5
0
5
2
1

7
2
5
7
6
0

5
0
5
2
1

3
6
2
8
8
0
0

15

The MatLab code in Appendix A uses this formula to compute Pn,0(b, b) effi-

ciently. The results of which are displayed in Table 3.1, where the nth row gives the

coefficients of Pn,0(b, b) as a polynomial in b next to the alternating code of length

n. We mentioned earlier, in the proof of Theorem 3.1.5, that for a word w in An,b,

the first letter w1, could not take the value b as w1 < w2 and w2 ≤ b. This is of

course not true if n takes the value 1, as there is no second letter to impinge upon w1

taking the value b and it should be quite clear that A1,b is exactly [b] and therefore

∣A1,b∣ is b. This is the only circumstance where ∣An,b∣ is not Pn,0(b, b).

The leading coefficient in the polynomials depicted in Table 3.1 are the most

significant when b is large. The denominators of these (fractional) coefficients suggest

that they could have been n! before cancellation and they are certainly consistent

with that idea. This observation motivated us to investigate the integer sequence

obtained by multiplying the nth leading coefficient by n! and then search for it in

“The On-Line Encyclopedia of Integer Sequences” [Slo]. Fortunately, the sequence

was there and it was under the definition of, amongst others, the number of up/down

permutations on n letters. This finding is largely responsible for motivating the rest

of this chapter.

3.2 Using the up/down numbers to calculate the

three leading coefficients of the alternating

code

Now that we know the size of the alternating code is a polynomial we shall prove its

connection with the number of up/down permutations. We shall then investigate

the consequences of this connection with an aim to actually finding the first few

coefficients of highest degree in the polynomials ∣An,b∣.

3.2.1 Up/down permutations and up/down numbers

Definition 3.2.1. Let n be a positive integer. We define the set of up/down per-

mutations, Un, as

{w ∈ An,n : all wi are distinct}

The up/down numbers, un, are precisely the number of up/down permutations,

so un := ∣Un∣. The use of the word permutation here comes from the requirement

that each word w ∈ Un has n distinct letters, i.e. that w is a permutation of [n].

We are certainly interested in such up/down permutations, but we shall also need

to consider words that are up/down “near permutations” — where all but a few

letters of w are distinct. We shall therefore require a way of counting the number

of distinct letters that make up a word.

16

Definition 3.2.2. Let w be a word in [b]n, then define the set Sw as:

{w1, w2, w3, . . . , wn} .

In order to qualify the term “near permutations”, we must also introduce the

idea of frequencies of letters in words.

Definition 3.2.3. Let w be a word of length n and suppose that s ∈ Sw, so s is a

letter of w. We define the w-frequency of s, Freqw(s), as

∣{i ∈ [n] : wi = s}∣

We are now finally in a position to give a tangible idea of what a “near permu-

tation” is.

Definition 3.2.4. Let n be a positive integer. Let the set of up/down words where

n− 2 letters occur once and one letter occurs twice be U
[2]
n , so

U [2]
n := {w ∈ An,n−1 : ∣Sw∣ = n− 1}.

The set of up/down words where n− 4 letters occur once and two letters occur twice

each is denoted U
[2,2]
n , so

U [2,2]
n := {w ∈ An,n−2 : ∣Sw∣ = n− 2;∀wi Freqw(wi) ≤ 2}.

Finally, the set of up/down words where n − 3 letters occur once and one letter

occurs thrice is denoted U
[3]
n , so

U [3]
n := {w ∈ An,n−2 : ∣Sw∣ = n− 2;∃i Freqw(wi) = 3}.

3.2.2 Collapsing the alternating code onto an up/down per-

mutation

The mapping we are about to define is the key to establishing the connection between

the leading coefficients observed earlier in this chapter in Table 3.1 and the up/down

numbers. Let us loosely define the shape of a word to be what we would get if we

were to “plot” the word (with wi against i) and then remove the axes so that we

ignore any sense of scale. In effect, we can only see that points are “higher”, “lower”

or the same height as others and not by how much. If we then take the distance

between vertically adjacent points to be 1 and then also take the height of the lowest

point to be 1, we have encapsulated the essence of Definition 3.2.5.

The elegance of the mapping lies in that up/down words in the alternating code

that share the same shape can be thought of as coming from the element with that

17

same shape in one of the up/down “near permutation” sets (e.g. U
[2]
n). Furthermore,

the frequency of these up/down words in the alternating code is the first thing one

is taught when one is learning combinatorics — nCr.

Definition 3.2.5. Let Φ : [b]n → [n]n be defined as follows. Let m := ∣Sw∣ so that

we can order the elements of Sw, smallest to largest, and label them s1, s2, s3, . . . , sm,

in other words si < si+1. Now define Φ(w) := v where vi = j ⇐⇒ wi = sj.

With Φ defined in this way we have, position-wise, the smallest letter of w being

mapped to a 1, the second smallest to a 2 etc. and in the case of there being multiple

joint ith smallest letters, they are all mapped to i. For example, the word 35263

would be mapped to 23142.

Lemma 3.2.6. The following disjoint union gives us An,b:

Φ−1(Un) ∪ Φ−1(U [2]
n) ∪ Φ−1(U [3]

n) ∪ Φ−1(U [2,2]
n) ∪ {w ∈ An,b : ∣Sw∣ < n− 2}

Proof. It should be noted that Φ preserves up/down-ness, so the images of the words

in An,b are up/down and the pre-image of any up/down word in [n]n is also up/down.

Suppose w is a word in the above union. If w is a member of the set on the

far right then w ∈ An,b so suppose this is not the case. The image Φ(w) is then a

member of one of Un,U
[2]
n ,U

[3]
n or U

[2,2]
n and therefore is up/down. So w is up/down

and, because w ∈ [b]n we have w ∈ An,b.
Now let w ∈ An,b. If ∣Sw∣ = n, then clearly w ∈ Φ−1(Un). Similarly if ∣Sw∣ = n−1

then w ∈ Φ−1(U
[2]
n). When ∣Sw∣ = n − 2 there are two possibilities: either a letter

in w occurs in w three times or two different letters in w occur twice each. Either

way, w lies in Φ−1(U
[3]
n) or Φ−1(U

[2,2]
n) respectively.

Lemma 3.2.7. For w ∈ An,b, if we are given Sw and Φ(w) then we can determine

w.

Proof. Let u = Φ(w) and in order of size, smallest first, let s1, s2, . . . , s∣Sw∣ be the

elements of ∣Sw∣. The image u is defined in terms of w by ui = j ⇐⇒ wi = sj for

i = 1, 2, . . . , n, so when u and Sw are known we can find w.

Lemma 3.2.8. For any up/down word w ∈ An,b the size of the pre-image Φ−1(Φ(w))

is
(

b
∣Sw∣

)
.

Proof. Take any word w ∈ An,b and let u = Φ(w). By Lemma 3.2.7, we can

determine w given only u and Sw. Suppose we are, instead of necessarily Sw, given

some set S ⊂ [b] such that ∣S∣ = ∣Sw∣. The word we would determine, v say, is

still an up/down word and thus in An,b; moreover for each such set S we necessarily

generate a new word v, in An,b, such that Φ(v) = u. Finally, because each set S lets

us generate a unique v, we can see that Φ−1(u) contains as many words as there are

sets S ⊂ [b]. There are of course
(

b
∣Sw∣

)
such sets available to us and so this amount

also enumerates the pre-image.

18

Lemma 3.2.9. The number of words w in An,b with ∣Sw∣ ≥ n− 2 is(
b

n

)
∣Un∣+

(
b

n− 1

)
∣U [2]

n ∣+
(

b

n− 2

)(
∣U [2,2]

n ∣+ ∣U [3]
n ∣
)
.

Proof. Let us consider a word w in An,b with ∣Sw∣ ≥ n − 2. From Lemma 3.2.6 we

can see that the image u = Φ(w) will belong to one of Un, U
[2]
n , U

[2,2]
n or U

[3]
n and as

∣Sw∣ = ∣Su∣, the word u has pre-image size
(
n
∣Su∣

)
. Of course, each element of the sets

Un, U
[2]
n , U

[2,2]
n and U

[3]
n has a distinct disjoint pre-image of that size and so adding

the relevant products yields the desired result.

Let X be the set {w ∈ An,b : ∣Sw∣ < n− 2} so that we may enumerate the rest of

An,b. If x ∈ X then x has at most n− 3 distinct letters. Let i1 > 1 be the smallest

integer such that there exists an integer j1 < i1 with xj1 = xi1 . Define x′ to be the

word of length n−1 obtained by removing from x the letter at position i1. The pair

(i1, j1) then encodes the first occurrence of a letter appearing more than once in x

in such a way that we may use it to recover x from x′.

In the same way, determine the pairs (i2, j2) and (i3, j3) from x′ and x′′ respec-

tively, so as to leave us with x′′′ — a word of length n− 3.

For example, consider the word y = 132312 then Sy = {1, 2, 3}. Here n = 6 and

so, since y is up/down, we have y ∈ X. The first letter to appear a second time in

y is 3 and so j1 = 2 and i1 = 4 and y′ = 13212. From the pair (4, 2) and the word

13212 we are able to reconstruct y by inserting a copy of the letter at position 2 into

position 4.

In the word y′ the first letter to appear a second time is 1 and so (i2, j2) = (4, 1)

and y′′ = 1322. Finally, we have that (i3, j3) = (4, 3) and y′′′ = 132.

Each of our pairs of integers belongs to [n]×[n], so this process defines a mapping,

say Φ : X → [b]n−3 × [n]6. Since we may use the pairs to eventually recover x from

x′′′, Φ must be injective. The range of Φ is easily enumerated as n6bn−3; this together

with the injectivity of Φ shows that ∣X∣ ≤ n6bn−3. Hence ∣X∣ = O(bn−3). This now

proves the following.

Theorem 3.2.10. For fixed n, the size of the alternating code is(
b

n

)
∣Un∣+

(
b

n− 1

)
∣U [2]

n ∣+
(

b

n− 2

)(
∣U [2,2]

n ∣+ ∣U [3]
n ∣
)

+O(bn−3).

Lemma 3.2.11. For fixed n, the expression n!
(
b
n

)
can be written as

bn − n(n− 1)

2
bn−1 +

n(n− 1)(n− 2)(3n− 1)

24
bn−2 +O(bn−3).

Proof. Express n!
(
b
n

)
as b(b− 1)(b− 2) . . . (b− (n− 1)). The bn term is obtained by

taking a b from each bracket. If then from the ith bracket we take i and a b from

19

all the others we get
∑n−1

i=0 −ibn−1 which is −n(n−1)
2

bn−1. Finally, we wish to count

the ways to take −i and −j from the ith and jth brackets with i < j, in order to

find the bn−2 coefficient. This is
∑n−1

i=0

∑n−1
j=i+1 ij, but may be more easily evaluated

by summing ij with i and j independently from 0 to n− 1 and then discounting the

products where i ≥ j.

We have
∑n−1

i=0

∑n−1
j=0 ij =

(∑n−1
k=0 k

)2
=
(
n(n−1)

2

)2

. Firstly, we shall discount

the cases where i = j, a contribution of
∑n−1

i=0 i
2, evaluating to 1

6
n(n − 1)(2n − 1).

Secondly, we notice that for each contribution of ij where i < j to the sum, there

is one of ij with i > j; we need only halve the remainder. So, the bn−2 coefficient is

1
2

((
n(n−1)

2

)2

− 1
6
n(n− 1)(2n− 1)

)
, which simplifies to the desired n(n−1)(n−2)(3n−1)

24
.

Corollary 3.2.12. For fixed n, the size of the alternating code is as follows:

∣An,b∣ =bn
∣Un∣
n!

+ bn−1

(
∣U [2]

n ∣
(n− 1)!

− ∣Un∣
2(n− 2)!

)

+ bn−2

(
∣U [2,2]

n ∣+ ∣U [3]
n ∣

(n− 2)!
− ∣U [2]

n ∣
2(n− 3)!

)

+ bn−2

(
∣Un∣(3n− 1)

24(n− 3)!

)
+O(bn−3).

Proof. Upon expanding
(
b
n

)
,
(

b
n−1

)
and

(
b

n−2

)
, we obtain(

b

n

)
=

1

n!

(
bn − n(n− 1)

2
bn−1 +

n(n− 1)(n− 2)(3n− 1)

24
bn−2

)
+O(bn−3),(

b

n− 1

)
=

1

(n− 1)!

(
bn−1 − (n− 1)(n− 2)

2
bn−2

)
+O(bn−3) and(

b

n− 2

)
=

1

(n− 2)!
bn−2 +O(bn−3)

respectively. Bringing this all together, with the result of Theorem 3.2.10 gives the

required result.

3.2.3 Computing up/down numbers and related sequences

Recall Definition 1.2.1 where we said that for the alternating code An,b:

∣An,b∣ = �n,nb
n + �n,n−1b

n−1 + �n,n−2b
n−2 +O(bn−3).

20

T
ab

le
3.

2:
C

al
cu

la
ti

on
s

of
∣U

n
∣,
∣U

[2
]

n
∣,
∣U

[2
,2

]
n
∣+
∣U

[3
]

n
∣a

n
d

h
ow

th
ei

r
m

ag
n
it

u
d
es

co
m

p
ar

e
to

ea
ch

ot
h
er

n
∣U

n
∣

∣U
[2

]
n
∣

∣U
[2
,2

]
n
∣+
∣U

[3
]

n
∣
∣U

[2
]

n
∣

∣U
n
∣

∣U
[2
,2
]

n
∣+
∣U

[3
]

n
∣

∣U
n
∣

−
3
n
2
−

1
7
n

+
2
5

2
4

3
2

1
0

1/
2

−
1

2
4

4
5

5
1

1
−

2
2
4
0

5
16

24
10

3/
2

0

6
61

12
2

79
2

3.
41

53
e(

-3
)

7
27

2
68

0
60

2
5/

2
4.

90
20

e(
-3

)

8
13

85
41

55
46

82
3

5.
50

54
e(

-3
)

9
79

36
27

77
6

38
07

2
7/

2
5.

71
24

e(
-3

)

10
50

52
1

20
20

84
32

65
70

4
5.

71
13

e(
-3

)

20
3.

70
37

e(
14

)
3.

33
33

e(
15

)
1.

36
59

e(
16

)
9

4.
05

82
e(

-3
)

40
1.

48
51

e(
40

)
2.

82
17

e(
41

)
2.

56
50

e(
42

)
19

2.
30

66
e(

-3
)

60
1.

81
09

e(
70

)
5.

25
16

e(
71

)
7.

39
83

e(
72

)
29

1.
59

73
e(

-3
)

80
1.

86
23

e(
10

3)
7.

26
29

e(
10

4)
1.

38
62

e(
10

6)
39

1.
22

00
e(

-3
)

10
0

2.
90

35
e(

13
8)

1.
42

27
e(

14
0)

3.
42

68
e(

14
1)

49
9.

86
55

e(
-4

)

12
0

2.
48

84
e(

17
5)

1.
46

82
e(

17
7)

4.
27

02
e(

17
8)

59
8.

27
94

e(
-4

)

14
0

5.
98

74
e(

21
3)

4.
13

13
e(

21
5)

1.
40

82
e(

21
7)

69
7.

13
21

e(
-4

)

16
0

2.
50

72
e(

25
3)

1.
98

07
e(

25
5)

7.
74

15
e(

25
6)

79
6.

26
39

e(
-4

)

18
0

1.
27

73
e(

29
4)

1.
13

68
e(

29
6)

5.
01

17
e(

29
7)

89
5.

58
39

e(
-4

)

20
0

5.
99

55
e(

33
5)

5.
93

55
e(

33
7)

2.
91

34
e(

33
9)

99
5.

03
71

e(
-4

)

21

For each alternating code An,b, Corollary 3.2.12 gives the coefficients �n,n, �n,n−1

and �n,n−2 in terms of the up/down numbers, ∣Un∣, and the related sequences ∣U [2]
n ∣,

∣U [2,2]
n ∣ and ∣U [3]

n ∣. We can easily solve these simultaneous equations to give us the

sequences ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣+∣U [3]
n ∣. The simultaneous equations do not however

give us enough information to solve individually for the sequences ∣U [2,2]
n ∣ and ∣U [3]

n ∣.
We generated these coefficients computationally and substituted the results into

the solutions for the simultaneous equations to compute the sequences ∣Un∣, ∣U [2]
n ∣

and ∣U [2,2]
n ∣ + ∣U [3]

n ∣ for n up to 200. These are given in Table 3.2 along with two

other columns, present to help us better understand how the sequences relate to

each other. The code used for the computations was written in Mathematica and is

given in Appendix D. A more detailed discussion of the code and the optimisations

it exploits is given in 7.4.

The ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣+ ∣U [3]
n ∣ all grow faster than exponential, the dominant

value being the latter. Probably the most striking column of Table 3.2 is however

the column for ∣U
[2]
n ∣
∣Un∣ . It is telling us that ∣U [2]

n ∣ = n−2
2
∣Un∣. Although not depicted,

for obvious reasons, the ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣+ ∣U [3]
n ∣ were all calculated to infinite

precision (symbolically) and so the fifth column does not represent any process that,

say, merely tends to n−2
2

. This observed result is proved later in Corollary 3.2.20.

On inspection of the sequence ∣U
[2,2]
n ∣+∣U [3]

n ∣
∣Un∣ it was clear that it resembles a parabola.

Using the 200 or so terms calculated for it a least square fit was performed on them

to the terms n2, n and 1 and to several decimal places the values 3
24

, −17
24

and 25
24

were

returned. Upon taking this quadratic away from the sequence, we are left with the

last column of Table 3.2. This column tells us that, although the aforementioned

parabola is dominant in the quotient ∣U
[2,2]
n ∣+∣U [3]

n ∣
∣Un∣ , there is an additional factor to be

considered. However, upon inspection of this factor, it appears to gradually decay.

Conjecture 3.2.13. As n→∞∣∣∣∣∣ ∣U [2,2]
n ∣+ ∣U [3]

n ∣
∣Un∣

− 3n2 − 17n+ 25

24

∣∣∣∣∣→ 0.

3.2.4 Proving an observed result

Recall that in Table 3.2 we observed rather strong evidence for the quotient ∣U
[2]
n ∣
∣Un∣

taking the value n−2
2

. In this section we develop some terminology and tools to prove

this observation.

Definition 3.2.14. Let w be some word and i and j some indices. Say that wi and

wj are neighbours if ∣i− j∣ = 1.

Definition 3.2.15. Let x and n be positive integers with 1 < x ≤ n and w a word

in Un. Suppose that for some integer i we have wi = x. Define the pair (x,w) to

be an x-adjacency if wi−1 = x− 1 or wi+1 = x− 1, in other words x and x− 1 are

neighbours in the word w. We shall also refer to an x-adjacency as an adjacency.

22

Definition 3.2.16. Define Adjn to be the set of all adjacencies associated with Un

and Adjn[x] to be the set of all words w ∈ Un with an x-adjacency. So

Adjn := {(x,w) ∈ {2, 3, . . . , n} × Un : (x,w) is an x-adjacency} and

Adjn[x] := {w ∈ Un : (x,w) is an x-adjacency} .

Recall Definition 3.2.2 where, for some word w of length n, we defined

Sw := {w1, w2, w3, . . . , wn} .

In Definition 3.2.3 we defined, for some letter s and some word w, the integer

Freqw(s) to be the frequency that the letter s occurs in the word w. Finally, recall

Definition 3.2.4:

U [2]
n := {w ∈ An,n−1 : ∣Sw∣ = n− 1} .

Definition 3.2.17. Let x and n be positive integers such that x ≤ n − 1. Define

then U
[2]
n [x] to be the set of words w in U

[2]
n such that Freqw(x) = 2. So

U [2]
n [x] :=

{
w ∈ U [2]

n : Freqw(x) = 2
}
.

Lemma 3.2.18. Let x and n be positive integers such that 1 < x ≤ n. Then the set

Un∖Adjn[x] has twice as many elements as U
[2]
n [x− 1]. So

∣U [2]
n [x− 1]× {0, 1}∣ = ∣Un∣ − ∣Adjn[x]∣.

Equivalently

∣U [2]
n [x− 1]∣ = ∣Un∣ − ∣Adjn[x]∣

2
.

Proof. We shall prove this result by defining a bijection between Un∖Adjn[x] and

U
[2]
n [x− 1]× {0, 1}. Let Φ be a mapping so that

Φ : Un∖Adjn[x]→ U [2]
n [x− 1]× {0, 1}.

Let w be any word in Un∖Adjn[x] and define Φ(w) := (v, a) where, for any index i

vi =

⎧⎨⎩wi if wi < x,

wi − 1 if wi ≥ x

and a = 0 if x− 1 comes before x in w, 1 otherwise. Firstly, we must show that Φ

is well defined and to do this we need to show that our v is up/down, v ∈ [n− 1]n,

∣Sv∣ = n− 1 and Freqv(x) = 2.

If for any index i less than n we can show that wi+1 − wi has the same sign as

vi+1 − vi then we have proved Φ preserves up/downness. Suppose that i is an odd

23

index, then wi+1−wi is positive. The only way vi+1− vi can be less than wi+1−wi
is if wi < x and wi+1 ≥ x. This only causes vi+1− vi not to be positive if wi = x− 1

and wi+1 = x, but this case is an x-adjacency and hence not in our domain. The

even case is proved in an identical way therefore v is up/down.

Any letter wi is between 1 and n inclusively. Since 1 < x ≤ n, wi will not get

mapped to anything less than 1 and the most vi can be is n − 1. Therefore v is a

member of [n− 1]n.

The set of letters of w is Sw and this is always [n]. Since the letters at least as

large as x will be mapped to themselves less one, the only case where two letters

are mapped to the same letter will be x − 1 7→ x − 1 and x 7→ x − 1. Therefore

∣Sv∣ = n− 1 and Freqv(x− 1) = 2. Hence Φ is well defined.

Secondly, we show that Φ is injective. So suppose then that we have Φ(w) =

(v, a) = Φ(w′). The letters in v less than x − 1 were unchanged by the application

of Φ on w and w′ so w and w′ must agree in those positions. Similarly, the letters

larger than x− 1 in v were all greater by one in w and w′, so again w and w′ agree

in those positions. The two positions in v containing the letter x − 1 came from x

and x− 1 in the words w and w′ and the value of a fixes this order to be the same

for both w and w′. So w = w′ and Φ is injective.

Finally, we prove that Φ is surjective. Let (v, a) be some element in the codomain

of Φ. We can generate a w such that wi = vi where vi < x − 1, wi = vi + 1 where

vi > x − 1. We then use a to determine which of the positions in v containing the

letter x − 1 to put x − 1 and which to put x: the first occurrence is x − 1 if a = 0

and the second otherwise.

Again, let i be an positive odd integer less than n. Then vi+1− vi is positive and

we need to show wi+1 − wi is also positive. However, the difference between wi+1

and wi can only be more than that of vi+1 and vi, so wi+1 − wi ≥ vi+1 − vi > 0.

Since there is an identical argument for an even index i less than n, w is up/down.

If x − 1 < n then the letters 1 to x − 2 in v remain as they are in w and the

letters x to n− 1 are increased by one. One of the occurrences of x− 1 remains and

the other is mapped to x. Therefore w is a permutation of [n] and hence a member

of Un. In the case where x− 1 = n, each of the letters 1 to n− 2 in v remain as they

are in w and one of the occurrences of n− 1 is mapped to n and again w ∈ Un.

Since v is up/down, we do not have the two occurrences of x − 1 next to each

other. Therefore (x,w) is not an x-adjacency. This w is then a member of Un∖Adjn[x]

and Φ is surjective.

Hence Φ is bijective and the result follows.

Lemma 3.2.19. Let n be an integer larger than 1. Then

∣Adjn∣ = ∣Un∣.

24

Proof. Let Ψ be a mapping from Adjn to Un. So

Ψ : Adjn → Un.

Let (x,w) be any adjacency in Adjn and define Ψ((x,w)) := v where, for any index

i

vi =

⎧⎨⎩
wi if wi < x,

n if wi = x,

wi − 1 if wi > x.

The word w is a member of Un, so for x = n we have that v = w and so then

v is also in Un. Let us assume then that x < n. All the letters of w are distinct

and Ψ cyclically permutes the letters x, x + 1, x + 2, . . . , n so the letters of v are

also distinct. In order to show that v ∈ Un we therefore only need show it to be

up/down.

If we can show that, for any even index i, vi is larger than its neighbours, it

follows that, for any odd index j, vj is less than its neighbours. Also, since (x,w) is

an x-adjacency, x is next to an x − 1 so if wk = x then k must be even because w

is up/down.

So, let i be an even index, then wi is greater than wi−1 and wi+1, because w is

up/down. If wi < x then vi−1 = wi−1, vi = wi and vi+1 = wi+1 so vi is larger than its

neighbours. If wi = x then vi = n and so larger than its neighbours. Suppose then

that wi > x and that the letter y is one of its neighbours. Then vi = wi− 1. Since x

only occurs in w at a position with an even index, we have that y ∕= x. If y < x then

y remains unchanged in v, but the smallest vi can be is x, so vi > y. If y > x then

y is replaced by y− 1 and since y < wi we have that y− 1 < wi− 1 = vi. Therefore

vi is larger than its neighbours and v is up/down. Hence Ψ is well defined.

To prove injectivity, suppose that for some adjacencies (x,w) and (x′, w′) we

have that Ψ((x,w)) = v = Ψ((x′, w′)). Suppose that vi = n. Since all other letters

in the word v are less than vi, we have that vi is larger than its neighbours (or

neighbour if it is the last letter, in which case i = n). Therefore i is even. Let y be

the larger of these neighbours vi−1 and vi+1 (or just vi−1 if i = n).

When Ψ maps some z-adjacency to an up/down permutation, the only letter

that ends up being n is z and the neighbours to z, which are smaller than z (the

larger being z − 1), remain unchanged. It follows that both adjacencies must be

(y + 1)-adjacencies and so x = y + 1 = x′. Indeed wi = y + 1 = w′i.

If, for some index j, vj < y + 1 then wj = vj = w′j, since Ψ left all letters less

than y+ 1 unchanged. Lastly, all letters vj that are at least y+ 1 and at most n− 1

must have been vj + 1 before Ψ was applied hence wj = vj + 1 = w′j. All letters

have now been accounted for and so (x,w) = (x′, w′) and Ψ is injective.

For surjectivity, take any word v in Un. Let i be the index such that vi = n. Let

25

y be the larger (or only) neighbour of vi. Construct the word w so that

wi =

⎧⎨⎩
vi if vi < y + 1,

y + 1 if vi = n,

vi + 1 if y + 1 ≤ vi < n.

Since w is constructed so that when Ψ is applied to it it yields v, it suffices to show

that w is a member of Un.

Again, let i be an even index. If wi < y+ 1 then wi = vi. Since i is even and v is

up/down, any neighbour of vi will be less than vi and so are unchanged in w. Thus

wi is larger than its neighbours. If wi = y+ 1 then vi = n and the largest neighbour

of n in v is y. Since all neighbours of n in v are at most y, they remain unchanged

in w and so wi is larger than its neighbours. If wi > y + 1 then vi = wi − 1 and

any neighbour z of vi in v is such that vi − z > 0. Since wi = vi + 1 and a letter is

increased by at most one when generating w from v, it follows that wi is larger than

the neighbour corresponding to z in v. Since z is a general neighbour, wi is larger

than all of its neighbours in w and hence w is up/down.

Our construct for w cyclically permutes the letters y+1, y+2, y+3, . . . , n. Since

all the letters of v are distinct, so are the ones of w. Therefore w ∈ Un. This proves

surjectivity.

Therefore Ψ is bijective and the result follows.

Corollary 3.2.20. For n > 2 we have that

∣U [2]
n ∣ = ∣Un∣

n− 2

2
.

Proof. Let x be an integer such that 2 ≤ x ≤ n. If w ∈ Adjn[x] then by definition

(x,w) ∈ Adjn. Also, if (y, v) ∈ Adjn then by definition v ∈ Adjn[y]. Therefore

∣Adjn∣ =
n∑
x=2

∣Adjn[x]∣ .

Indeed, we can also write

Adjn =
∪

x∈{2,3,4,...,n}

{x} × Adjn[x].

Recall also that in Lemma 3.2.19 we showed that

∣Adjn∣ = ∣Un∣ .

If w ∈ U [2]
n then for some letter x ∈ [n − 1] we have that Freqw(x) = 2 and so

26

w ∈ U [2]
n [x]. By definition U

[2]
n [x] ⊂ U

[2]
n and so

U [2]
n =

∪
x∈[n−1]

U [2]
n [x].

Therefore, since this is a disjoint union,

∣∣U [2]
n

∣∣ =
n−1∑
x=1

∣∣U [2]
n [x]

∣∣ .
Applying Lemma 3.2.18 to this gives us

∣∣U [2]
n

∣∣ =
n−1∑
x=1

∣Un∣ − ∣Adjn[x+ 1]∣
2

=
(n− 1) ∣Un∣ −

∑n−1
x=1 ∣Adjn[x+ 1]∣

2

=
(n− 1) ∣Un∣ −

∑n
x=2 ∣Adjn[x]∣

2

=
(n− 1) ∣Un∣ − ∣Adjn∣

2

=
(n− 1) ∣Un∣ − ∣Un∣

2

= ∣Un∣
n− 2

2
.

If Conjecture 3.2.13 is correct then, together with Corollary 3.2.20, we can give

a more explicit and greatly simplified version of Corollary 3.2.12. For the remainder

of this chapter let us assume that Conjecture 3.2.13 is true. We may therefore find

a nonnegative function �(n) such that �(n)→ 0 as n→∞ and

∣U [2,2]
n ∣+ ∣U [3]

n ∣ = ∣Un∣
(

3n2 − 17n+ 25

24
+ �(n)

)
.

Recall that in Corollary 3.2.12 we showed that

∣An,b∣ =bn
∣Un∣
n!

+ bn−1

(
∣U [2]

n ∣
(n− 1)!

− ∣Un∣
2(n− 2)!

)

+ bn−2

(
∣U [2,2]

n ∣+ ∣U [3]
n ∣

(n− 2)!
− ∣U [2]

n ∣
2(n− 3)!

)

+ bn−2

(
∣Un∣(3n− 1)

24(n− 3)!

)
+O(bn−3)

27

and in Corollary 3.2.20 we showed that

∣U [2]
n ∣ = ∣Un∣

n− 2

2
.

Therefore

∣An,b∣ = bn
∣Un∣
n!

+ bn−1

(∣Un∣n−2
2

(n− 1)!
− ∣Un∣

2(n− 2)!

)

+ bn−2

⎛⎝ ∣Un∣
(

3n2−17n+25
24

+ �(n)
)

(n− 2)!
−
∣Un∣n−2

2

2(n− 3)!

⎞⎠
+ bn−2

(
∣Un∣(3n− 1)

24(n− 3)!

)
+O(bn−3)

= bn
∣Un∣
n!

+ bn−1∣Un∣
(

n− 2

2(n− 1)!
− n− 1

2(n− 1)!

)
+ bn−2∣Un∣

(
3n2 − 17n+ 25

24(n− 2)!
− 6(n− 2)2

24(n− 2)!
+

�(n)

(n− 2)!

)
+ bn−2

(
∣Un∣(3n− 1)(n− 2)

24(n− 2)!

)
+O(bn−3)

= bn
∣Un∣
n!
− bn−1 ∣Un∣

2(n− 1)!
+ bn−2 ∣Un∣ (1 + 8�(n))

8(n− 2)!
+O(bn−3).

28

Chapter 4

Pebody’s weakly consecutive

repeat-free codes

4.1 Large weakly consecutive repeat-free codes

4.1.1 Pebody’s conjecture

Recall Definition 1.1.4 where, for a word y ∈ [b]n−1, we defined the Pebody code

By ⊂ [b]n to be the set of all words w ∈ [b]n such that for any index i < n, wi ≤ wi+1

if i is odd, wi ≥ wi+1 if i is even and if wi = wi+1 then wi = yi = wi+1.

As we discussed in Chapter 1, Pebody conjectured in [Peb06] that for each n,

there is some y ∈ [b]n−1 such that By is a largest weakly consecutive repeat-free

code. He then gives without proof the values of y that generate largest Pebody

codes for n ≤ 5.

Even for these first few values of n however, patterns in the choice of such y

emerge. This chapter shows us why these patterns exist and describes properties

of large and largest Pebody codes. For example, the first letter of y can always be

exchanged for the letter b without decreasing the size of By.

Lemma 4.1.1. Let By be any Pebody code of length n and let the word y′ be

by2y3 . . . yn−1 then ∣By∣ ≤ ∣By′∣.

Proof. Define the map Ψ : By → By′ so that for any word w in By we have Ψ(w) = w

if w1 ∕= w2 and Ψ(w) = bbw3w4 . . . wn otherwise. Observe that Ψ is well defined since

Ψ(By) ⊆ By′ . We shall show that Ψ is injective to complete the proof.

Let us suppose then that for some v, w ∈ By that Ψ(v) = Ψ(w). If we can then

prove that v = w, we will have shown that Ψ is injective. For ease of notation, say

u = Ψ(v). If u1 ∕= b then v = u and w = u hence v = w as required.

Let us suppose then that u1 = b. The code By′ is Pebody and so by definition

we have that u1 ≤ u2 hence u2 is also b. If it were the case that v1 ∕= v2 then,

by definition of Ψ, we would have that u1 ∕= u2 and so we must have that v1 = v2

and by the same reasoning also that w1 = w2. As By is a Pebody code, and the

29

first two letters of v are the same, we must have that v1 = y1 = v2 and also that

w1 = y1 = w2. The words v and w therefore agree in the first two letters and, as Ψ

does not change any but the first two letters, v and w agree in the rest of the letters

also. Hence v = w, Ψ is injective and so ∣By∣ ≤ ∣By′ ∣.

4.1.2 A result on Pebody codes

This section proves a small result on Pebody codes, as an aside.

Definition 4.1.2. Let w be a word of length n and define the reverse of w to be the

word wnwn−1wn−2 . . . w1 and let us denote it by wR.

Corollary 4.1.3. Let By be any Pebody code of length n then ∣By∣ ≤ ∣By′ ∣ where y′

is y1y2y3 . . . yn−2b if n is odd and y1y2y3 . . . yn−21 if n is even.

Proof. For the case where n is odd there is a natural (self-inverse) bijection between

the codes By and ByR defined by reversing the words. By application of Lemma 4.1.1

to ByR and reflecting the changes in By we find that ∣By∣ ≤ ∣By′∣.
Let us suppose then that n is even. Reversing the words of By leaves us with

a set that is not a Pebody code, but if in addition to reversing the words we then

relabel the letters 1, 2, 3, . . . , b to b, b− 1, b− 2, . . . , 1 then our set is a Pebody code,

Bx say, and we can once again apply Lemma 4.1.1.

Consider for example the word w = 2311 ∈ B321. The reverse of this word,

wR = 1132 has wR2 < wR3 and so is not a member of any Pebody code. If we now

relabel 1, 2, 3 to 3, 2, 1 then we get 3312 which is in B321.

To clarify this process we shall describe the word x in terms of y. Recall that

the word y is of length n−1. Take then any index i of x, this will relate to an index

n− i of y because of the reversing step. Let c be a letter in [b], the relabelling step

may then be described as c 7→ b+ 1− c. We can now write xi = b+ 1− yn−i. Let x′

be bx2x3 . . . xn−1 as the application of Lemma 4.1.1 changes x1 to be b. This forces

yn−1 to become 1.

Both the reversing and relabelling steps of this process are self-inverse (even

commutative) and so reapplying them to the Pebody code Bx′ yields By′ . This

completes the proof since ∣By∣ = ∣Bx∣, ∣Bx∣ ≤ ∣Bx′ ∣ and ∣Bx′∣ = ∣By′ ∣.

4.2 Maximising Pebody codes

Immediately below, we see that the alternating code is a subset of any Pebody

code By. For fixed n, we then show that the number of words in By∖An,b is O(bn−2).

This is far fewer than the number of words in the alternating code which, as Corol-

lary 3.2.12 states, is ∣Un∣
n!
bn +O(bn−1). Therefore the sizes of a Pebody code and the

alternating code agree in the coefficients of the bn and bn−1 terms. We go on to give

30

a way of calculating the coefficient of the bn−2 term in ∣By∖An,b∣ by extending the

definition of the polynomial Pn,i, thus allowing us to estimate the size of Pebody

codes. In particular, we note a special implication for maximal Pebody codes.

4.2.1 On Pebody codes and strongly consecutive repeat-free

codes

Lemma 4.2.1. Let n be a positive integer and y be a word of length n − 1. The

alternating code An,b is a subset of the Pebody code By.

Proof. The result follows since any word in An,b is up/down and this is a stronger

than the condition for membership of By.

Definition 4.2.2. Let n be a positive integer, w ∈ [b]n and i an index of w such

that i < n. If wi = wi+1 then we say that w has a repeat at position i.

Any word w in a Pebody code By that is not also up/down must then have a

repeat, at position i say, such that wi = yi = wi+1. Since we have already seen

results on the sizes of alternating codes, we shall explore the words in By which are

not in An,b. These are the words which have at least one repeat and hence are not

up/down.

Lemma 4.2.3. Let By be a Pebody code. The number of words with at least two

repeats is O(bn−3) and the number of words with exactly one repeat is O(bn−2).

Proof. Suppose w is a word in By with repeats at positions i and j where i < j.

From Definition 4.2.2 we can see that wi = yi = wi+1 and wj = yj = wj+1.

If i+ 1 = j then this forces wi, wi+1 and wi+2 to all take the value yi. There are

at most bn−3 choices for the other letters in w and i may take any value from 1 to

n− 2. Therefore there are at most (n− 2)bn−3 possibilities for w in this case.

Suppose then that i + 1 ∕= j. Since i < j the repeats do not overlap. This

determines four of the letters of w and so there are bn−4 choices for the remaining

ones. The positions of our repeats may take the values from 1 to n− 1. The value(
n−1

2

)
will give us the number of suitable choices for i and j once we discount from

it the adjacent cases since i + 1 ∕= j. For the pair (i, j) then, we must discount all

cases (1, 2), (2, 3), . . . , (n− 2, n− 1). We now have a total of
((
n−1

2

)
− (n− 2)

)
bn−4

choices for words in By with at least two nonadjacent repeats. In either case there

are at most O(bn−3) words with at least two repeats.

Suppose now that w is word in By with exactly one repeat. If the position of

that repeat is i then wi = yi = wi+1, leaving at most bn−2 choices for the other

letters in w. There are n− 1 possibilities for i and so there are at most (n− 1)bn−2

possibilities for w, which is O(bn−2).

31

The purpose of Lemma 4.2.3 is to draw our attention more to words with exactly

one repeat. If we can show that there are more than O(bn−3) of these words then this

would indicate that they make up the most significant portion of the non-up/down

words in a Pebody code By for large enough alphabet size b. Perhaps then, this

can help us say more about choices for the letters of y that generate large Pebody

codes By.

Definition 4.2.4. Let b, n and i be integers with b > 0, n ≥ i. Recall the definition

of Pn,i(b, wi) for n > 0 given in Definition 3.1.3. Recall also that in Lemma 3.1.6

we proved that Pn,i = Pn+2,i+2 for n > 0.

Let us extend the definition of Pn,i for n > 0 to the case where n can be any

integer. As Pn,i is already defined for n > 0, suppose that n ≤ 0. Let r =
⌊
n−1

2

⌋
.

Define Pn,i = Pn−2r,i−2r. Since n− 2r is positive, Pn,i is well defined.

Lemma 4.2.5. Let n and i be any integers with n ≥ i then the equality Pn,i =

Pn+2,i+2 proved for positive n in Lemma 3.1.6 holds now for any integer n.

Proof. Note that the result already holds for positive n. Suppose then that n ≤ 0.

Again, let r =
⌊
n−1

2

⌋
. By definition Pn,i = Pn−2r,i−2r.

If n < −1 then n + 2 ≤ 0 so Pn+2,i+2 is defined as P(n+2)−2(r+1),(i+2)−2(r+1) =

Pn−2r,i−2r, hence Pn,i = Pn+2,i+2.

If n = −1 or n = 0 then r = −1 so Pn,i = Pn−2r,i−2r = Pn+2,i+2.

Lemma 4.2.6. Let n and i be integers such that n ≥ i. The combined degree of the

polynomial Pn,i(b, c) is n− i.

Proof. In Theorem 3.1.5 we showed that for positive n, the combined degree of the

polynomial Pn,i(b, c) is n− i. Suppose then that n is not positive. Certainly −n+ 2

is positive and so, since Pn,i = P−n+2,i−2n+2, the combined degree is −n + 2 − (i −
2n+ 2) = n− i.

Let us start to investigate how to enumerate the words with exactly one repeat

in Pebody codes. So let By be a Pebody code of length n. Suppose w is a word in

By and has only one repeat. Suppose also that this repeat is at position i. Hence

wi = yi = wi+1.

It is important to notice at this point that unless i is 1 or n−1, the extreme values

that i may take, it is not possible for wi to take the value b or 1. To demonstrate this,

let u and v be the words w1w2w3 . . . wi and wi+1wi+2wi+3 . . . wn respectively. Since

w has only one repeat, the word u is up/down. If i is even then v is up/down and if

i is odd then v is down/up. The word uR, the reverse of u, is up/down or down/up

if i is odd or even respectively. This means that one of v and uR is up/down and

the other is down/up.

The lengths of v and uR are both more than 1 as i is not 1 or n−1 by assumption.

Both v and uR start with the same letter (they both have first letter equal to yi).

32

Words that are up/down and words that are down/up may not start with b and 1

respectively. Since one of v and uR is up/down and the other down/up we have that

if yi were to take the value 1 or b then there could be no such word w.

We already have the mechanism in place to succinctly describe the frequency of

words such as u and v as introduced in this latest observation. This can be seen in

the following two results.

Lemma 4.2.7. Let i be a positive integer and c a letter in [b]. The number of

up/down words of length i with final letter c is P−1,−i(b, c)

Proof. Suppose that i is odd and recall the bijective self-inverse in the proof of

Corollary 4.1.3 defined by reversing words. The word w ∈ Ai,b is an up/down word

ending in the letter c if and only if wR is an up/down word with first letter c.

There are Pi,1(b, c) words in Ai,b with first letter c and so it follows that there are

Pi,1(b, c) up/down words ending with the letter c. Since i+ 1 is even, application of

Lemma 4.2.5 yields Pi,1(b, c) = P−1,−i(b, c).

Suppose then that i is even and let S be the set of words w ∈ Ai,b with last

letter c. Define SR to be the set of reverses of the words in S so that the operation

of reversing words maps S to SR. Since this operation is bijective ∣S∣ = ∣SR∣.
Consider now the set of up/down words of length i+ 1. Let T be the set of tails

of length i with first letter c of these words. Then ∣T ∣ = Pi+1,2(b, c). Suppose t is

an element of T , then t is an down/up word with first letter c. Since i is even tR is

up/down. Therefore tR ∈ S, so t ∈ SR and T ⊆ SR.

So that we may show that T = SR, suppose t is an element of SR. Since i is even

and positive, we have that the length of t is at least two. As t is down/up, we also

have that t1 > t2. So t1 > 1. Define w to be the word 1t1t2 . . . ti. The word w has

length i+ 1 and is up/down. The tail of length i of w is t and so SR ⊆ T . Therefore

∣T ∣ = ∣SR∣ and so ∣S∣ = Pi+1,2(b, c). Since i + 2 is even, we apply Lemma 4.2.5 to

get Pi+1,2(b, c) = P−1,−i(b, c) as required.

Theorem 4.2.8. Let By be a Pebody code of length n. The number of words in By

with a repeat at position i and no other repeats is P−1,−i(b, yi)Pn,i+1(b, yi).

Proof. Let U be the set of up/down words of length i that end with the letter yi, so

U := {u ∈ Ai,b : ui = yi} .

Let V be the set of tails of length n− i with first letter yi of the up/down words

of length n, so

V :=
{
v ∈ [b]n−i : v1 = yi and v is a tail of a word in An,b

}
.

Let W be the set of words in By with a single repeat where the position of that

33

repeat is i, so

W := {w ∈ By : wi = wi+1 and w only has one repeat} .

We shall now find a bijection between U × V and W . Define

Φ : U × V → W

such that Φ maps the pair (u, v) to the concatenated word

w = u1u2u3 . . . uiv1v2v3 . . . vn−i.

Let j be any integer from 1 to n − 1. If j is odd we need wj ≤ wj+1, wj ≥ wj+1

if j is even and wj = yj = wj+1 in the cases where wj = wj+1 to prove that w is a

word in By. Suppose then that j is odd. If j < i then, since uj < uj+1, wj = uj

and wj+1 = uj+1, we have that wj < wj+1. Suppose then that j > i. Since v is the

tail of an up/down word of length n, x say, xj < xj+1. We have wj = vj−i = xj

and wj+1 = vj−i+1 = xj+1 so wj < wj+1. As wi = ui = yi and wi+1 = v1 = yi we

have w ∈ By and also that w has only one repeat and that this repeat has position

i. Therefore w ∈ W and Φ is well defined.

Now let w be a word inW . Then w may be split into two words u = w1w2w3 . . . wi

and v = wi+1wi+2wi+3 . . . wn. Since w has only one repeat and that the position of

this repeat is i, the word u will be up/down. The word w ∈ By has a repeat at

position i and so wi = yi. Hence u ∈ U . Define the word x so that for every integer

j from 1 to i− 1 and from i+ 1 to n, xj = wj. If i is odd set xi = 1 and if i is even

set xi = b. The word x is up/down and its tail of length n− i is v therefore v ∈ V .

Therefore Φ is surjective.

Obviously Φ is injective, so it is a bijection and so ∣U × V ∣ = ∣W ∣. Lemma 3.1.4

tells us that ∣V ∣ = Pn,i+1(b, yi) and Lemma 4.2.7 tell us that ∣U ∣ = P−1,−i(b, yi).

Since ∣U × V ∣ = ∣U ∣∣V ∣, the result follows.

4.2.2 Independently choosing the letters of y to maximise

the Pebody code By

In the remainder of this chapter we shall describe a method for estimating the size

of a largest Pebody code for fixed n and sufficiently large b. In order to do this we

introduce a new variable fk, so that yk = bfk for k from 1 to n− 1. Note that since

1 ≤ yk ≤ b we have that fk ∈ [0, 1].

Theorem 4.2.9. Let n be fixed. For 1 ≤ k ≤ n− 1 there exist polynomials Cn,k(fk)

such that

∣By∣ = ∣An,b∣+
n−1∑
k=1

Cn,k(fk)b
n−2 +O(bn−3)

34

where yk = bfk.

Proof. There are only O(bn−3) words in By with more than one repeat. Words in

By that have no repeats are up/down and hence are contained in An,b. Therefore we

need only account for words that have a single repeat. If the position of a repeat is k

then k may take the values 1, 2, 3, . . . , n− 1 and by the definition of a Pebody code,

the letter being repeated is necessarily yk. By Theorem 4.2.8 there are therefore

n−1∑
k=1

P−1,−k(b, yk)Pn,k+1(b, yk) (4.1)

words in By with a single repeat. Substituting bfk for yk in (4.1) we define Cn,k(fk)

as the coefficient of bn−2. This coefficient is a polynomial in fk.

Recall that in Lemma 4.2.6 we proved that the combined degree of Pn,i(b, c) is

n − i. The combined degrees of P−1,−k(b, yk) and Pn,k+1(b, yk) are therefore k − 1

and n− k− 1 respectively so their product has combined degree n− 2. This means

that when we make the substitution yk = bfk we are left with a polynomial in b of

degree n− 2 whose coefficients are polynomials in fk. The number of words with a

repeat at position k and no other repeats is therefore

P−1,−k(b, bfk)Pn,k+1(b, bfk) = Cn,k(fk)b
n−2 +O(bn−3).

Summing over the possible values of k completes the proof.

Corollary 4.2.10. Fix n to be a positive integer. Let ȳ and ŷ be words in [b]n−1

such that ȳk = bf̄k, where f̄k maximises Cn,k(f) over [0, 1], and ŷ maximises the

Pebody code By. Then

∣Bŷ∣ = ∣Bȳ∣+O(bn−3).

Proof. For any Pebody code By let Ψ(y, b) be the number of words with more than

one repeat. Clearly Ψ(y, b) is a positive function and by Lemma 4.2.3 we have that

Ψ(y, b) = O(bn−3). Using similar reasoning to the proof of Theorem 4.2.9, we can

see that

∣By∣ = ∣An,b∣+
n−1∑
k=1

P−1,−k(b, yk)Pn,k+1(b, yk) + Ψ(y, b). (4.2)

Let us define the polynomial Cn,k,l(f) to be the coefficient of bl in the summand

P−1,−k(b, bf)Pn,k+1(b, bf). This definition is just an extension of the ideas employed

in Theorem 4.2.9 and Cn,k,n−2(f) is simply Cn,k(f). We now rewrite (4.2) as

∣By∣ = ∣An,b∣+
n−1∑
k=1

n−2∑
l=0

Cn,k,l(
yk
b

)bl + Ψ(y, b).

35

Recall that we chose the f̄k to maximise Cn,k(f), so Cn,k(
ŷk
b

) ≤ Cn,k(f̄k). Hence

∣Bŷ∣ − ∣Bȳ∣ =
n−1∑
k=1

n−2∑
l=0

(
Cn,k,l(

ŷk
b

)− Cn,k,l(f̄k)
)
bl + Ψ(ŷ, b)−Ψ(ȳ, b)

=
n−1∑
k=1

(
Cn,k(

ŷk
b

)− Cn,k(f̄k)
)

+
n−1∑
k=1

n−3∑
l=0

(
Cn,k,l(

ŷk
b

)− Cn,k,l(f̄k)
)
bl + Ψ(ŷ, b)−Ψ(ȳ, b)

≤
n−1∑
k=1

n−3∑
l=0

(
Cn,k,l(

ŷk
b

)− Cn,k,l(f̄k)
)
bl + Ψ(ŷ, b)−Ψ(ȳ, b)

≤
n−1∑
k=1

n−3∑
l=0

(
Cn,k,l(

ŷk
b

)− Cn,k,l(f̄k)
)
bl + Ψ(ŷ, b).

Each of the polynomials Cn,k,l(f) are bounded above and below over the interval

[0, 1] and so we can find a positive real number �n,k,l at least as big as the difference

between these bounds. I.e. for any f, g ∈ [0, 1] we have

�n,k,l ≥ ∣Cn,k,l(f)− Cn,k,l(g)∣ .

Define Δn,l to be
∑n−1

k=0 �n,k,l. The difference between the number of words in Bȳ

and Bŷ is therefore

∣Bŷ∣ − ∣Bȳ∣ ≤

∣∣∣∣∣
n−1∑
k=1

n−3∑
l=0

Cn,k,l(
ŷk
b

)− Cn,k,l(f̄k)bl + Ψ(ŷ, b)

∣∣∣∣∣
≤

n−1∑
k=1

n−3∑
l=0

∣∣Cn,k,l(ŷkb)− Cn,k,l(f̄k)
∣∣ bl + Ψ(ŷ, b)

≤
n−3∑
l=0

n−1∑
k=1

�n,k,lb
l + Ψ(ŷ, b)

=
n−3∑
l=0

Δn,lb
l + Ψ(ŷ, b).

Therefore ∣Bŷ∣ − ∣Bȳ∣ = O(bn−3) and the result follows.

In Theorem 4.2.9 we showed that the difference between the sizes of the alter-

nating code and the Pebody code is
∑n−1

k=1 Cn,k(fk)b
n−2 + O(bn−3). So far we have

demonstrated, in the proof of Theorem 4.2.9, that the degree of the polynomials

P−1,−k(b, bf)Pn,k+1(b, bf) is n − 2 and we defined Cn,k(f) to be its leading coeffi-

cient. For a better understanding of the nature of the functions Cn,k(f), we study

them in detail in the following chapters with the aims of calculating and eventually

approximating them.

36

Chapter 5

Counting Words in the

Alternating Code starting with a

given Letter

Up to this point we have seen the importance of the polynomial Pn,i(b, c) in under-

standing the size of Pebody codes. In particular, the coefficient of the highest power

of b in Pn,i(b, bf) is a polynomial, which we shall call Fn,i(f), that plays a crucial

rôle. We now represent the function Cn,i(f), discussed at the end of the previous

chapter, in terms of this new polynomial so that

Cn,i(f) = F−1,−i(f)Fn,i+1(f).

In the next section we uncover properties of this polynomial that help simplify the

way we treat it. For example, we discover that we need only consider the polynomial

Fn,1(f) in order to understand the polynomial Fn,i(f). We then observe that the

first few polynomials in the sequence {Fn,1}∞n=1, which we generate computationally,

suggest convergence as n→∞. The chapter concludes by proving this result.

5.1 A recursive counting method

5.1.1 Approximating the “sum of sums” method by inte-

gration

Recall the definition of the polynomials Pn,i(b, c) given in Definition 4.2.4. Since we

are mostly interested in the terms of highest combined degree, let us consider the

substitution c = fb. This allows the terms of highest combined degree in Pn,i(b, c)

to be succinctly represented by the coefficient of bn−i in Pn,i(b, bf) as described in

the following definition.

37

Definition 5.1.1. Define the polynomial Fn,i(f) to be the coefficient of the highest

power of b in Pn,i(b, bf).

Definition 5.1.2. Let b, n and i be integers with b > 0 and n > i. Define In,n := 1

and, for c ∈ [0, b], recursively define

In,i(b, c) :=

∫ b

c

In,i+1(b, x) dx

when i is odd and

In,i(b, c) :=

∫ c

0

In,i+1(b, x) dx

when i is even.

Note that In,i(b, c) defined as above is a polynomial in b and c.

Theorem 5.1.3. The polynomial In,i(b, bf) agrees with Pn,i(b, bf) in the highest

power of b, so In,i(b, bf) = Pn,i(b, bf) +O(bn−i−1) with equality when n = i.

Proof. By definition In,n = Pn,n. Suppose that In,i+1(b, wi+1) and Pn,i+1(b, wi+1)

agree in all the terms of highest combined degree. The polynomial Pn,i+1(b, wi+1)

has combined degree n − (i + 1). Consider a term �brwsi+1 of Pn,i+1(b, wi+1); using

the recursive definition of Pn,i(b, wi), the contribution of �brwsi+1 to this polynomial

when i is even is
wi−1∑
wi+1=1

�brwsi+1 = �br
wi−1∑
wi+1=1

wsi+1.

Applying Lemma 2.0.7 to this sum gives us

� br
(
ws+1
i+1

s+ 1
+ ps(w

s
i+1)

)∣∣∣∣
wi+1=wi−1

where ps is some polynomial of degree at most s. After evaluating this expression

at wi+1 = wi − 1 and expanding the (wi−1)s+1

s+1
term, we can see the contribution is

�br
(
ws+1
i

s+ 1
+ lower order terms

)
.

The lower order terms are polynomial in wi and have degree at most s.

When i is odd then the limits of the sum are wi + 1 and b, so in this case the

38

contribution is

b∑
wi+1=wi+1

�brwsi+1 =
b∑

wi+1=1

�brwsi+1 −
wi∑

wi+1=1

�brwsi+1

= �br
[
ws+1
i+1

s+ 1
+ ps(wi+1)

]b
wi

= �br
(
bs+1 − ws+1

i

s+ 1
+ lower order terms

)
.

Here the lower order terms are polynomial in wi and b but still have combined degree

at most s.

So, a term of combined degree r + s in Pn,i+1(b, wi+1) makes a contribution of

combined degree r+s+1 to Pn,i(b, wi). Hence only terms of highest combined degree

in Pn,i+1(b, wi+1) contribute to terms of highest combined degree in Pn,i(b, wi).

Similarly for In,i+1(b, wi+1), only terms of highest degree contribute to the terms

of highest degree of In,i(b, wi). In fact, In,i(b, wi) is homogeneous. The contribution

to In,i(b, wi) of the term �brwsi+1 is �br
ws+1
i

s+1
and �br

bs+1−ws+1
i

s+1
when i is even and

odd respectively, which agrees in the terms of highest combined degree with the

contribution this term would have made to Pn,i(b, wi).

By assumption, the polynomials Pn,i+1(b, wi+1) and In,i+1(b, wi+1) agree in the

terms of highest degree, so the polynomials In,i(b, wi) and Pn,i(b, wi) also agree in the

terms of highest degree. Therefore the polynomial In,i(b, bf) agrees with Pn,i(b, bf)

in the highest power of b.

Corollary 5.1.4. We have Fn,i(f) = In,i(1, f).

Proof. We saw in the proof of Theorem 5.1.3 that the contribution to In,i(b, wi) from

the term �brwsi+1 was homogenous and of degree r+ s+ 1. Therefore if In,i+1(b, wi)

is homogenous then In,i(b, wi) is homogenous. As In,n = 1 is homogenous, by in-

duction, In,i(b, wi) is homogenous. This means that In,i(b, bf) = bn−iFn,i(f) and so

In,i(1, f) = Fn,i(f).

The consequence of Corollary 5.1.4 is that, by definition of In,i(f), we can say

Fn,i(b, wi) :=

∫ b

wi

Fn,i+1(b, wi+1) dwi+1

when i is odd and

Fn,i(b, wi) :=

∫ wi

0

Fn,i+1(b, wi+1) dwi+1

when i is even.

Now that we actually have a recursive definition of the polynomials Fn,i we can

start to describe them more fully.

39

Theorem 5.1.5. The coefficients of Fn,i(f) may themselves be defined recursively.

Proof. The polynomial Fn,i+1(f) has degree n− (i+ 1), so let us represent it by

n−(i+1)∑
j=0

�jf
j.

Then, when i is even,

Fn,i(f) =

∫ f

0

n−(i+1)∑
j=0

�jf
j df

=

n−(i+1)∑
j=0

�j

∫ f

0

f j df

=

n−(i+1)∑
j=0

�j
j + 1

f j+1

=
n−i∑
j=1

�j−1

j
f j,

and when i is odd

Fn,i(f) =

∫ 1

f

n−(i+1)∑
j=0

�jf
j df

=

n−(i+1)∑
j=0

�j

∫ 1

f

f j df

=

n−(i+1)∑
j=0

�j
j + 1

(1− f j+1)

=

n−(i+1)∑
j=0

�j
j + 1

+
n−i∑
j=1

−�j−1

j
f j.

Just as we proved in Lemma 4.2.5 that Pn,i = Pn+2,i+2, it follows by definition

that the same holds for the polynomials Fn,i.

Lemma 5.1.6. Let n and i be integers with n ≥ i, then Fn,i = Fn+2,i+2.

A simple corollary of this lemma is that for even n we have Fn,i = F0,i−n and

when n is odd Fn,i = F1,i−n+1. Any polynomial Fn,i is therefore contained in one of

the following two families of polynomials

{F1,1, F1,0, F1,−1, . . . } or {F0,0, F0,−1, F0,−2, . . . } .

So we may restrict our attention to just these polynomials.

40

5.1.2 Generalising the recursive counting method

Recall the two families of polynomials mentioned at the end of the previous section.

Let n be a positive integer and consider the polynomials F1,1−n(f) and F0,−n(f ′).

These polynomials are the coefficients of the highest power of b in the polynomials

P1,1−n(b, bf) and P0,−n(b, bf ′) respectively. We therefore may write:

P1,1−n(b, bf) = F1,1−n(f)bn +O(bn−1),

P0,−n(b, bf ′) = F0,−n(f ′)bn +O(bn−1).

Let c and c′ be integers between 1 and b and set f = c/b and f ′ = c′/b. Suppose

for the moment that n is even, then P1,1−n(b, c) counts the number of up/down

words of length n with first letter c and P0,−n(b, c′) counts the number of down/up

words of length n with first letter c′. Take this set of up/down words of length n

with first letter c and relabel the letters 1, 2, 3, . . . , b to b, b − 1, b − 2, . . . , 1 in all

the words. This relabelling is clearly self-inverse and therefore bijective. Note that

our relabelled words are now down/up and all have first letter b− c+ 1. Therefore

P0,−n(b, b − c + 1) must be at least P1,1−n(b, c). By the same relabelling argument

P1,1−n(b, c) ≥ P0,−n(b, b− c+ 1) hence

P1,1−n(b, c) = P0,−n(b, b− c+ 1).

This relationship can also be shown for odd n and is mimicked in the polynomials

Fn,i as is detailed in the following theorem.

Theorem 5.1.7. Let n and i be integers with i ≤ n and f a real number in the

interval [0, 1], then Fn,i(1− f) = Fn+1,i+1(f).

Proof. By definition Fn,n = 1 = Fn+1,n+1, so let us suppose that for all integers j

such that n ≥ j > i we have

Fn,j(1− f) = Fn+1,j+1(f).

Using the integral definition of Fn,i, we have that, when i is even:

Fn,i(1− f) =

∫ 1−f

0

Fn,i+1(f ′) df ′

=

∫ 1−f

0

Fn+1,i+2(1− f ′) df ′

by applying the inductive hypothesis. If we now perform the substitution g = 1−f ′

41

we have

Fn,i(1− f) = −
∫ f

1

Fn+1,i+2(g) dg

=

∫ 1

f

Fn+1,i+2(g) dg

= Fn+1,i+1(f).

When i is odd

Fn,i(1− f) =

∫ 1

1−f
Fn,i+1(f ′) df ′

=

∫ 1

1−f
Fn+1,i+2(1− f ′) df ′.

Once again we make the substitution g = 1− f ′, thus

Fn,i(1− f) = −
∫ 0

f

Fn+1,i+2(g) dg

=

∫ f

0

Fn+1,i+2(g) dg

= Fn+1,i+1(f).

We may now focus our attention on just one of the families of polynomials, given

that they are so simply related, but this still is fairly awkward. Either family at

each recursion alternately generates a polynomial that describes up/down words or

down/up words, the coefficients of which bear no resemblance to each other. We

would do better to look at the sequence of functions {Fn,1(f)}∞n=1, since this sequence

describes polynomials counting only up/down words; moreover, once we understand

this sequence determining a general Fn,i(f) is trivial.

5.1.3 Implementing the counting method on a computer

The purpose of this section is to calculate and inspect the first few terms of the

aforementioned sequence of functions {Fn,1(f)}∞n=1. The analysis that follows mo-

tivates the rest of the chapter. Firstly we shall use the result in Theorem 5.1.7 to

derive a useful relation between the functions Fn,1(f).

Lemma 5.1.8. Let n be a nonnegative integer then

Fn+1,1(f) =

∫ 1−f

0

Fn,1(f ′) df ′.

42

Proof. By definition we have

Fn+1,1(f) =

∫ 1

f

Fn+1,2(g) dg.

If we apply Theorem 5.1.7 and substitute f ′ = 1− g we find

Fn+1,1(f) =

∫ 1

f

Fn,1(1− g) dg

= −
∫ 0

1−f
Fn,1(f ′) df ′

=

∫ 1−f

0

Fn,1(f ′) df ′.

We make use of Lemma 5.1.8 to calculate the functions Fn,1(f), the first ten of

which are shown in Table 5.1. The MatLab code used to generate the polynomials

is given in Appendix B.

As n increases, the coefficients of the polynomials in Table 5.1 appear to tend to

zero. Unfortunately, this does not readily allow us to draw any conclusions about the

behaviour of the functions over the interval [0, 1], but does motivate the following

definition.

Definition 5.1.9. Let Fn,1(f) be as in Definition 5.1.1. The “normalised” polyno-

mial F̃n,1(f) is defined

F̃n,1(f) :=
Fn,1(f)

Fn,1(0)
.

The purpose of normalising our sequence of polynomials in this way, as opposed

to say making them monic, is two fold. Firstly, since we are only interested in

the polynomials over the domain (0, 1], the constant coefficient will have a greater

relative effect than higher order terms. Secondly, we expect Fn,1(f) to be a non-

strictly decreasing function since when b is fixed the following lemma shows this to

be the case for Pn,1(b, c).

Lemma 5.1.10. Let b, n and c be positive integers with n > 1 and c < b. Then

Pn,1(b, c) ≥ Pn,1(b, c+ 1).

Proof. This proof is very much along the lines of the proof of Lemma 4.1.1. Let D

and E be the sets of words in An,b with first letters c and c+ 1 respectively. Define

the map Ψ : E → D by e 7→ d, where d1 = c and for i from 2 to n, di = ei.

Let e be an element of E, then e has first letter c + 1 and is up/down. Let

d = Ψ(e), then d1 = c. Therefore d1 < d2 since e1 < e2 and e1 = c and e2 = d2.

43

T
ab

le
5.

1:
T

h
e

co
effi

ci
en

ts
of

th
e

p
ol

y
n
om

ia
ls

in
th

e
se

q
u
en

ce
{F

n
,1

(f
)}

1
0
n

=
1

f
9

f
8

f
7

f
6

f
5

f
4

f
3

f
2

f
1

F
1
,1

0
0

0
0

0
0

0
0

0
1

F
2
,1

0
0

0
0

0
0

0
0

-1
1

F
3
,1

0
0

0
0

0
0

0
-.

50
00

0
0

.5
00

00
F

4
,1

0
0

0
0

0
0

.1
66

67
-.

50
00

0
0

.3
33

33
F

5
,1

0
0

0
0

0
.4

16
67

e-
1

0
-.

25
00

0
0

.2
08

33
F

6
,1

0
0

0
0

-.
83

33
3e

-2
.4

16
67

e-
1

0
-.

16
66

7
0

.1
33

33
F

7
,1

0
0

0
-.

13
88

9e
-2

0
.2

08
33

e-
1

0
-.

10
41

7
0

.8
47

22
e-

1
F

8
,1

0
0

.1
98

41
e-

3
-.

13
88

9e
-2

0
.1

38
89

e-
1

0
-.

66
66

7e
-1

0
.5

39
68

e-
1

F
9
,1

0
.2

48
02

e-
4

0
-.

69
44

4e
-3

0
.8

68
06

e-
2

0
-.

42
36

1e
-1

0
.3

43
50

e-
1

F
1
0
,1

-.
27

55
7e

-5
.2

48
02

e-
4

0
-.

46
29

6e
-3

0
.5

55
56

e-
2

0
-.

26
98

4e
-1

0
.2

18
69

e-
1

44

Since e and d agree in their tails of length n − 1 and e is up/down, d must be

up/down. Therefore Ψ is well defined.

Let e and e′ be words in E. Suppose Ψ(e) = Ψ(e′), then since e and Ψ(e) agree

in all letters but the first one, as do e′ and Ψ(e′), e and e′ must agree in at least all

letters but the first one. However, by definition e1 = c + 1 = e′1, so we must have

that e = e′; hence Ψ is injective and ∣D∣ ≥ ∣E∣. Since Pn,1(b, c) and Pn,1(b, c + 1)

enumerate D and E respectively, the result follows.

We now give the normalised functions F̃n,1(f) in Table 5.2. This time the co-

efficients strongly suggest some sort of convergence and this is our motivation for

looking at what function if any they converge to.

5.2 Convergence of the counting method

5.2.1 Background on Hilbert spaces

Throughout the remainder of this chapter we shall be talking of convergence of

sequences of functions and will use the theory of functions as set out in [Hal57],

[Lar73] and [Tit39]. We shall be working in the Hilbert space L2 with the standard

inner product and it is to be taken that we are referring to convergence over the

metric derived from the inner product norm.

Definition 5.2.1. Let F and G be two functions on ℝ and let � be the Lebesgue

measure. Let S be the set of points s such that F (s) ∕= G(s). If S has zero measure,

i.e. if �(S) = 0, then we say F and G are equal almost everywhere and write

F =
ae
G.

Remark 5.2.2. Titchmarsh provides us with the tools we need in measure theory

and Lebesgue integration with [Tit39], though we should explicitly observe that the

binary relation =ae is an equivalence relation.

Definition 5.2.3. Let c, d ∈ ℝ, the space L2[c, d] (also written L2
ℂ[c, d]) is the set

of equivalence classes of functions F (f) over [c, d] such that the Lebesgue integral
1
d−c

∫ d
c
F (f)F (f) df is defined. The equivalence classes are of course determined

by =ae.

There is a standard practice of “abuse of notation” in this field whereby the

statement

F ∈ L2[c, d]

is taken to mean that F is a representative of its equivalence class, which in turn

is a member of L2[c, d]. One of the consequences of this is as follows: when we

say F ∈ L2[c, d], we do not mean that F evaluated at a point is representative of

45

T
ab

le
5.

2:
T

h
e

co
effi

ci
en

ts
of

th
e

n
or

m
al

is
ed

p
ol

y
n
om

ia
ls

in
th

e
se

q
u
en

ce
{F̃

n
,1

(f
)}

1
0
n

=
1

f
9

f
8

f
7

f
6

f
5

f
4

f
3

f
2

f
1

F̃
1
,1

0
0

0
0

0
0

0
0

0
1

F̃
2
,1

0
0

0
0

0
0

0
0

-1
1

F̃
3
,1

0
0

0
0

0
0

0
-1

0
1

F̃
4
,1

0
0

0
0

0
0

.5
00

00
-1

.5
00

0
0

1

F̃
5
,1

0
0

0
0

0
.2

00
00

0
-1

.2
00

0
0

1

F̃
6
,1

0
0

0
0

-.
62

50
0e

-1
.3

12
50

0
-1

.2
50

0
0

1

F̃
7
,1

0
0

0
-.

16
39

3e
-1

0
.2

45
90

0
-1

.2
29

5
0

1

F̃
8
,1

0
0

.3
67

65
e-

2
-.

25
73

5e
-1

0
.2

57
35

0
-1

.2
35

3
0

1

F̃
9
,1

0
.7

22
02

e-
3

0
-.

20
21

7e
-1

0
.2

52
71

0
-1

.2
33

2
0

1

F̃
1
0
,1

-.
12

60
1e

-3
.1

13
41

e-
2

0
-.

21
16

9e
-1

0
.2

54
03

0
-1

.2
33

9
0

1

46

the values other functions equivalent to F take when evaluated at the same point.

Moreover, F is identified with functions that take every conceivable value at this

point and as such F evaluated at a point is not considered well defined.

Definition 5.2.4. For two functions F (f) and G(f) in L2[c, d], we denote their

inner product, 1
d−c

∫ d
c
F (f)G(f) df , as ⟨F (f), G(f)⟩, or more simply ⟨F,G⟩.

Definition 5.2.5. For a function F in L2[c, d] define the norm of F to be the

nonnegative square root of ⟨F, F ⟩ and denote it by ∣∣F ∣∣. This is indeed a norm; see

[Hal57] for a treatment of this.

We define normality and orthogonality in the standard way with the above defi-

nitions. So F and G are orthogonal if and only if ⟨F,G⟩ = 0 and we say F is normal

when ∣∣F ∣∣ = 1.

Definition 5.2.6. A set S of functions is an orthogonal set when its elements are

pairwise orthogonal and we say S is an orthonormal set when, in addition, the

members are all normal.

Definition 5.2.7. An orthonormal basis of a vector space V over a field Φ is an

orthonormal set B = {ei : i ∈ I} such that for any vector v in V , we may write

v =
∑
i∈I

�iei

where the �i are in Φ.

Definition 5.2.8. A complete orthonormal set is a maximal orthonormal set.

Theorem 5.2.9. In a Hilbert space, a set is an orthonormal basis if and only if it

is a complete orthonormal set.

Proof. Larsen proves this in [Lar73].

5.2.2 Assuming convergence to obtain a hypothetical family

of limits

We shall have need of the following lemmata for Theorem 5.2.14.

Lemma 5.2.10. Consider a sequence of functions {Gn(f)}∞n=1, each with domain

[0, 1]. Suppose G1(f) = 1 and that Gn+1(f) =
∫ 1−f

0
Gn(f ′) df ′, then each of the

functions in the sequence is bounded above by 1 and is nonnegative over [0, 1].

Proof. Clearly each of the functions Gn(f) is real over [0, 1]. Now, the function

G1(f) is bounded above by 1 and is nonnegative over [0, 1], so let us suppose that

Gn(f) is also. Therefore

0 =

∫ f−1

0

0 df ′ ≤
∫ f−1

0

Gn(f ′) df ′ df = Gn+1(f).

47

The upper bound is found similarly, thus

1 ≥
∫ f−1

0

1 df ′ ≥
∫ f−1

0

Gn(f ′) df ′ = Gn+1(f).

Lemma 5.2.11. Let {Gn(f)}∞n=1 be defined as in Lemma 5.2.10. Each of the func-

tions is strictly decreasing over [0, 1] except for G1(f).

Proof. Recall Lemma 5.2.10 which proves that each of the functions is nonnegative.

Let f1 and f2 be two points in [0, 1] such that f1 < f2. Let n be an integer such

that n ≥ 2 and let us assume that Gn(f) is a strictly decreasing function over [0, 1].

Let g be a point in (1− f2, 1− f1) then Gn(g) > Gn(1− f1), so∫ 1−f1

1−f2
Gn(g) dg > (f2 − f1)Gn(1− f1)

≥ 0.

By definition of Gn+1(f) we have

Gn+1(f1) =

∫ 1−f1

0

Gn(g) dg

=

∫ 1−f1

1−f2
Gn(g) dg +

∫ 1−f2

0

Gn(g) dg

>

∫ 1−f2

0

Gn(g) dg

= Gn+1(f2).

Therefore Gn+1(f) is a strictly decreasing function over [0, 1]. It is not hard to

see that G2(f) is 1 − f and that it is also strictly decreasing. This completes the

induction.

A rather simple consequence of Lemma 5.2.10 and Lemma 5.2.11 is that each

function Gn(f) described in the lemmata is positive over the interval [0, 1] apart

from at the point 1 where Gn(1) = 0 for n ≥ 2.

Lemma 5.2.12. Let � be the Lebesgue measure and H be a function in L2[0, 1]

that is real almost everywhere. Define Z := {f ∈ [0, 1] : H (f) ∈ ℝ,H (f) < 0}.
If �(Z) > 0 then we can find an � > 0 and a set Y ⊆ Z such that �(Y) > 0 and

inff∈Y {H (f)2} > �.

Proof. For all positive � define

Z� := {f ∈ Z : H (f)2 > �}.

48

Since H is a measurable function, Z� is a measurable set. If now for some � we

have that �(Z�) > 0 then the proof is complete with Y := Z� and � := �.

Suppose then that all Z� have zero measure. Since � is a measure and Z� and

Z∖Z� are disjoint

�(Z) = �(Z�) + �(Z∖Z�),

and so ∫
Z

H 2 =

∫
Z�

H 2 +

∫
Z∖Z�

H 2.

An integral over a set of zero measure is always zero so we need only consider the

integral over Z∖Z�. Now, H 2(f) < � for all f ∈ Z∖Z� so∫
Z

H 2 =

∫
Z∖Z�

H 2 ≤
∫
Z∖Z�

� = ��(Z∖Z�) = ��(Z).

Let �Z(f) be the characteristic function of Z over [0, 1] so that it takes the value

1 when f ∈ Z and 0 otherwise. We may now write

∣∣�ZH ∣∣2 =

∫
Z

H 2 ≤ ��(Z).

This means that �ZH must be zero almost everywhere. Our function H is nonzero

on Z and so it must follow that Z has zero measure.

Lemma 5.2.13. Let {Hn}∞n=1 be a sequence of real and nonnegative functions on

the interval [0, 1] that converges inside L2[0, 1] to a function H , then H is real and

nonnegative almost everywhere.

Proof. Suppose that H is not nonnegative almost everywhere. Firstly we show

that indeed H is real almost everywhere. Suppose that the imaginary part of H ,

Im(H), is not almost everywhere zero. Then ∣∣Im(H)∣∣ ∕= 0 and since the functions

Hn are real

∣H −Hn∣2 = ∣Re(H) + Im(H)−Hn∣2

= (Re(H)−Hn)2 + (Im(H))2 .

Hence

∣∣H −Hn∣∣2 =

∫
∣H −Hn∣2

=

∫
(Re(H)−Hn)2 +

∫
(Im(H))2

≥
∫

(Im(H))2

= ∣∣Im(H)∣∣2 .

This is preposterous as {Hn}∞n=1 converges in L2[0, 1] to H .

49

Let � be the Lebesgue measure and define Z as in Lemma 5.2.12, then �(Z) > 0

and so by Lemma 5.2.12 there exists an � > 0 and a set Y ⊆ Z such that �(Y) > 0

and H (y)2 > � for all y ∈ Y . Let y be a point in Y , then

∣Hn(y)−H (y)∣ = Hn(y)−H (y)

≥ −H (y)

≥
√
�.

Now, proceeding in a similar fashion to the first half of this proof,

∣∣Hn −H ∣∣2 =

∫
∣Hn −H ∣2

≥
∫
Y

∣Hn −H ∣2

≥
∫
Y

H 2

≥
∫
Y

�

= ��(Y).

This is also preposterous and for the same reason.

Theorem 5.2.14. If the normalised sequence of polynomials {F̃n,1(f)}∞n=1 converges

in L2[0, 1] to a function F (f) that is nontrivial (i.e. ∣∣F ∣∣ ∕= 0), then F (f) = cos �f
2

.

Proof. Recall Lemma 5.1.8 which states that

Fn+1,1(f) =

∫ 1−f

0

Fn,1(f ′) df ′.

We normalise the Fn,1(f) by dividing through by the constant coefficient of the

polynomial (or equivalently the value the polynomial takes at f = 0). As we men-

tioned earlier, Lemma 5.2.10 and Lemma 5.2.11 tell us that for n ≥ 2, the Fn(f)

are nonnegative, strictly decreasing functions and from their definition we can see

that Fn(1) = 0. This means that they are positive for the rest of the interval over

which they are defined, in particular they are always positive at the origin. Our

normalised polynomials are defined thus

F̃n,1(f) =
Fn,1(f)

Fn,1(0)

=

∫ 1−f
0

Fn−1,1(f ′) df ′∫ 1

0
Fn−1,1(f ′) df ′

=

∫ 1−f
0

F̃n−1,1(f ′) df ′∫ 1

0
F̃n−1,1(f ′) df ′

.

50

Of course F̃1,1(f) is still 1(f) as this function is already normalised. For ease of

notation let us define

� :=
1∫ 1

0
F (f) df

.

Appealing to Lemma 5.2.13, F (f) is nonnegative almost everywhere and by as-

sumption is nontrivial. The value � is therefore well defined, real and positive. By

assuming our sequence converges in L2[0, 1] to F (f), in the limit we have F (f)

satisfying

F (f) =
ae
�

∫ 1−f

0

F (f ′) df ′.

We cannot hope for F to be differentiable as, since it is a general member of

L2[0, 1] and hence representative of its equivalence class, it may be discontinuous

everywhere! What we shall prove however is that it is equal almost everywhere to a

function that is. Let us then define this function thus:

F (f) := �

∫ 1−f

0

F (f ′) df ′.

Certainly F is equal almost everywhere to F , but in order to show that it is also

differentiable we first prove that it is bounded, continuous and monotonically de-

creasing.

Since F is nonnegative almost everywhere, its integral is nonnegative and so F

is nonnegative. Let f1 and f2 be two points in the interval [0, 1] such that f1 < f2.

Since

F (f1)− F (f2) =

∫ 1−f1

0

F (f ′) df ′ −
∫ 1−f2

0

F (f ′) df ′

=

∫ 1−f1

1−f2
F (f ′) df ′

≥ 0,

the function F is monotonically decreasing. From the definition of F however, it is

clear that F (0) is 1, therefore F is bounded above by 1.

The functions F and F are equal almost everywhere, so their integrals over any

set will be identical. Let � be any positive real and let f and g be two points in the

interval [0, 1] such that f < g and

∣f − g∣ < �

�
.

51

Then

∣F (f)− F (g)∣ =
∣∣∣∣�∫ 1−f

1−g
F (f ′) df ′

∣∣∣∣
= �

∣∣∣∣∫ 1−f

1−g
F (f ′) df ′

∣∣∣∣
= �

∣∣∣∣∫ 1−f

1−g
F (f ′) df ′

∣∣∣∣
≤ � ∣f − g∣

< �.

This proves that F is continuous and we are now in a position to prove differen-

tiability. Let f be a point in [0, 1] and let � be a nonzero real number such that

f + � ∈ [0, 1]. Consider the quotient

F (f + �)− F (f)

�
=
�
∫ 1−(f+�)

0
F (f ′) df ′ − �

∫ 1−f
0

F (f ′) df ′

�

= �

∫ 1−(f+�)

1−f F (f ′) df ′

�

= �

∫ 1−(f+�)

1−f F (f ′) df ′

�

= −�

∫ 1−f
1−(f+�)

F (f ′) df ′

�
.

Recall that F is a monotonically decreasing function. When � is positive, the integral

is bounded above and below by �F (1− f) and �F (1− (f + �)) and the quotient by

−�F (1− (f + �)) and −�F (1− f) respectively. When � is negative, the integral is

bounded above and below by �F (1− (f + �)) and �F (1− f) but still the quotient

is bounded by −�F (1− (f + �)) and −�F (1− f) respectively. Furthermore by the

continuity of F , as � tends to 0 the bounds of the quotient come together and the

differential of F , which we shall write as F ′, is −�F (1− f).

Note that, since F is differentiable in [0, 1], −�F (1− f) is also differentiable. In

other words, F is twice differentiable. Therefore

−F ′(1− f) = �F (f)

F ′′ = �F ′(f)

= −�2F (1− f),

so F ′′(f) = −�2F (f). This gives us the auxiliary equation �2 + �2 = 0, which has

roots � = ±i�. Recall that � is nonzero and so the general solution for F (f) is

Aei�f +Be−i�f , for some constants A and B.

Of course, our function F is real and so, by equating imaginary parts, we have

52

for any f

0 = Im(Aei�f +Be−i�f)

= A sin(�f) +B sin(−�f)

= (A−B) sin(�f) .

This is only possible if A = B since � is positive and unchanged by our choice of f .

We may now write

F (f) = 2A cos(�f) .

As mentioned earlier, F (0) = 1 by definition of F . This proves that 2A = 1. Also

from the definition of F we can see that F (1) = 0 and so cos� = 0. This means

that � = n� + �
2

for some integer n, so the family of possible solutions are

F (f) = cos
(
�(n+ 1

2
)f
)
.

We know that F (f) is monotonically decreasing over [0, 1] and so cannot oscillate.

When n > 0 we can see that the solutions oscillate (go from being positive to negative

or viceversa) precisely n times and so n ≤ 0.

For n negative let us write m = −n, then some simple trigonometry yields

F (f) = cos
(
�(n+ 1

2
)f
)

= cos
(
�(−m+ 1

2
)f
)

= cos
(
�(m− 1

2
)f
)

= cos
(
�((m− 1) + 1

2
)f
)

and so the solution given by a negative n is the same one as given by −n − 1, a

nonnegative integer. Hence we discard solutions for negative n. This leaves only the

solution given by n = 0 and so

F (f) = cos
(
�
2
f
)
.

Recall that F and F are equal almost everywhere and so our sequence of nor-

malised polynomials
{
F̃n,1(f)

}∞
n=1

converges in L2[0, 1] to cos
(
�
2
f
)
.

5.2.3 Harmonic analysis with a generalised Fourier series

Towards the end of the proof of Theorem 5.2.14 we came across the following family

of functions as potential solutions for our limit:

{
cos
(
�(n+ 1

2
)f
)

: n a nonnegative integer
}
.

53

These functions are special for two reasons: firstly, when operated upon by our

recursive procedure for the polynomials Fn,1(f) (as given in Lemma 5.1.8) the result

is a scalar multiple of itself; secondly, they strongly resemble the cos(nf) functions

from the Fourier series of harmonic analysis.

Lemma 5.2.15. The set of functions

{sin
(
(n+ 1

2
)f
)
, cos

(
(n+ 1

2
)f
)

: n ∈ ℕ}

is a set of orthogonal functions over [−�, �].

Proof. Firstly, we shall show that
∣∣∣∣sin((n+ 1

2
)f
)∣∣∣∣ and

∣∣∣∣cos (n+ 1
2
)f
∣∣∣∣ are both

nonzero.

∣∣∣∣sin((n+ 1
2
)f
)∣∣∣∣2 =

1

2�

∫ �

−�

(
sin
(
(n+ 1

2
)f
))2

df

=
1

2�

∫ �

−�

1− cos((2n+ 1)f)

2
df

=
1

2
.

∣∣∣∣cos
(
(n+ 1

2
)f
)∣∣∣∣2 =

1

2�

∫ �

−�

(
cos
(
(n+ 1

2
)f
))2

df

=
1

2�

∫ �

−�
1−

(
sin
(
(n+ 1

2
)f
))2

df

= 1−
∣∣∣∣sin((n+ 1

2
)f
)∣∣∣∣2

=
1

2
.

Secondly, we must prove that the inner product of any two distinct functions

from our set is zero. We break this part of the proof down into two parts: sines with

sines and cosines with cosines; cosines with sines.

In order to do this we shall deduce some trigonometric identities. So, for no

obvious reason consider the following integrals:∫ �

−�
cos((n+m+ 1)f) df =

∫ �

−�
cos((n+ 1

2
)f) cos((m+ 1

2
)f) df

−
∫ �

−�
sin((n+ 1

2
)f) sin((m+ 1

2
)f) df ;∫ �

−�
cos((n−m)f) df =

∫ �

−�
cos(((n+ 1

2
)− (m+ 1

2
))f) df

=

∫ �

−�
cos((n+ 1

2
)f) cos((m+ 1

2
)f) df

+

∫ �

−�
sin((n+ 1

2
)f) sin((m+ 1

2
)f) df.

54

When n and m are different then∫ �

−�
cos((n−m)f) df = 0.

Also ∫ �

−�
cos((n+m+ 1)f) df = 0

since n+m+ 1 > 0. Therefore∫ �

−�
cos((n+ 1

2
)f) cos((m+ 1

2
)f) df −

∫ �

−�
sin((n+ 1

2
)f) sin((m+ 1

2
)f) df

and ∫ �

−�
cos((n+ 1

2
)f) cos((m+ 1

2
)f) df +

∫ �

−�
sin((n+ 1

2
)f) sin((m+ 1

2
)f) df

are both zero. This gives us∫ �

−�
cos((n+ 1

2
)f) cos((m+ 1

2
)f) df = 0

and ∫ �

−�
sin((n+ 1

2
)f) sin((m+ 1

2
)f) df = 0.

Finally, notice that sin((m+ 1
2
)f) cos((n+ 1

2
)f) is an odd function and so gives

us 0 when integrated over an interval that is symmetric about the origin.

5.2.4 Proving convergence of the recursive counting method

Larsen shows in [Lar73] that the set of functions {einf : n ∈ ℤ} is a complete

orthonormal set in L2[−�, �]. This together with Theorem 5.2.9 shows us that such

a set is equivalently a basis. We shall manipulate this set of functions until we can

show that the functions sin((n + 1
2
)f) and cos((n + 1

2
)f), for nonnegative n, also

form a basis.

Theorem 5.2.16. The set of functions B = {sin((n+ 1
2
)f), cos((n+ 1

2
)f) : n ∈ ℕ}

is a complete orthogonal set over [−�, �].

Proof. Firstly we will show that S := {ei(n+ 1
2

)f : n ∈ ℤ} is a complete orthogonal

set in L2[−�, �]. Certainly S forms an orthogonal set, as〈
ei(n+ 1

2
)f , ei(m+ 1

2
)f
〉

= 0 if and only if n ∕= m.

Let F ∈ L2[−�, �] be such that
〈
F, ei(n+ 1

2)f
〉

= 0 for all integers n. Consider the

55

function F (f)e−if/2.

〈
F (f)e−if/2, F (f)e−if/2

〉
=

∫ �

−�
F (f)e−if/2F (f)e−if/2 df

=

∫ �

−�
F (f)e−if/2F (f)eif/2 df

=

∫ �

−�
F (f)F (f) df

= ⟨F, F ⟩

which is real since F ∈ L2[−�, �] and so F (f)e−if/2 ∈ L2[−�, �]. Recall that〈
F, ei(n+ 1

2)f
〉

= 0 means that
∫ �
−� F (f)ei(n+ 1

2) df = 0, so

〈
F (f)e−if/2, einf

〉
=

∫ �

−�
F (f)e−if/2einf

=

∫ �

−�
F (f)e−if/2e−inf

=

∫ �

−�
F (f)e−if(n+ 1

2)

=

∫ �

−�
F (f)eif(n+ 1

2)

= 0.

Therefore Fe−if/2 is orthogonal to einf for all integers n, but because {einf : n ∈ ℤ}
is a maximal orthogonal set it must be the case that F (f)e−if/2 =ae 0. The function

e−if/2 is never zero however, so our function F must be zero almost everywhere.

This proves that S is also a complete orthogonal set.

Recall that in Lemma 5.2.15 we showed that B is an orthogonal set. Suppose

that G ∈ L2[−�, �] is such that

〈
G(f), cos

((
n+ 1

2

)
f
)〉

= 0 and (5.1)〈
G(f), sin

((
n+ 1

2

)
f
)〉

= 0 (5.2)

for all nonnegative integers n. Then linear combinations of (5.1) and (5.2) are also

zero. In particular

0 =
〈
G(f), cos

((
n+ 1

2

)
f
)〉
− i
〈
G(f), sin

((
n+ 1

2

)
f
)〉

=
〈
G(f), cos

((
n+ 1

2

)
f
)

+ i sin
((
n+ 1

2

)
f
)〉

=
〈
G(f), eif(n+ 1

2)
〉

56

and

0 =
〈
G(f), cos

((
n+ 1

2

)
f
)〉

+ i
〈
G(f), sin

((
n+ 1

2

)
f
)〉

=
〈
G(f), cos

((
n+ 1

2

)
f
)
− i sin

((
n+ 1

2

)
f
)〉

=
〈
G(f), e−if(n+ 1

2)
〉

=
〈
G(f), eif(−n−

1
2)
〉

=
〈
G(f), eif(−(n+1)+ 1

2)
〉
.

Therefore, since S is a complete orthogonal set and we have shown that G is orthogo-

nal to every element of it, G must be zero almost everywhere and so the orthonormal

set B is maximal. That is, B is a complete orthonormal set.

Now that we have shown {sin((n + 1
2
)f), cos((n + 1

2
)f) : n ∈ ℕ} is a complete

orthogonal set in L2[−�, �], we appeal to [Car66] where Carleson proved that the

Fourier series of a function in L2[−�, �] converges in L2[−�, �] to the function, i.e.

the function and its Fourier series are equal almost everywhere.

The function F1,1(f) is only defined over the interval [0, 1] and our complete

orthogonal system is over the interval [−�, �]. In order to overcome this, we shall

look at generating the generalised Fourier series for the function 1 over the interval

[−�, �] and then shrink it to one over [−1, 1]. When necessary, there will be an

implicit restriction of this function to the interval [0, 1].

The function 1(f) is obviously in L2[−�, �], so there exists a generalised Fourier

series for it using our basis {sin((n + 1
2
)f), cos((n + 1

2
)f) : n ∈ ℕ}. Hence we may

write

1 =
∞∑
n=0

(
�n cos((n+ 1

2
)f) + �n sin((n+ 1

2
)f)
)
.

If we take the inner product of this function with the basis element cos((m+ 1
2
)f)

say, we find

⟨1, cos((m+ 1
2
)f)⟩ = ⟨

∞∑
n=0

(
�n cos((n+ 1

2
)f) + �n sin((n+ 1

2
)f)
)
,

cos((m+ 1
2
)f)⟩

=
∞∑
n=0

�n⟨cos((n+ 1
2
)f), cos((m+ 1

2
)f)⟩

+
∞∑
n=0

�n⟨sin((n+ 1
2
)f), cos((m+ 1

2
)f)⟩

= �m⟨cos((m+ 1
2
)f), cos((m+ 1

2
)f)⟩.

57

Hence we may determine the constant �m:

�m =
⟨1, cos((m+ 1

2
)f)⟩

⟨cos((m+ 1
2
)f), cos((m+ 1

2
)f)⟩

=

∫ �
−� cos((m+ 1

2
)f) df∫ �

−� cos2((m+ 1
2
)f) df

=

[
sin((m+ 1

2
)f)

m+ 1
2

]�
−�∫ �

−�
cos((2m+1)f)+1

2
df

=
2 sin((m+ 1

2
)�)

(m+ 1
2
)
[

sin((2m+1)f)
2(2m+1)

+ f/2
]�
−�

=
2(−1)m

(m+ 1
2
)�
.

Note that the coefficients �m are all zero as the function 1(f) is symmetric about

the origin — this can also be seen by calculating the inner product of the function

with our sine functions:
∫ �
−� sin((m+ 1

2
)f) df = 0.

Lemma 5.2.17. We may write the function 1(f) over [−1, 1] as the sum

∞∑
n=0

2(−1)n cos(�(n+ 1
2
)f)

(n+ 1
2
)�

.

Proof. We have just shown the coefficients, �n and �n, of our generalised Fourier

series over the interval [−�, �] to be 2(−1)n

�(n+ 1
2

)
and zero respectively, so:

1 =
∞∑
n=0

2(−1)n cos((n+ 1
2
)f)

(n+ 1
2
)�

.

It follows that, shrinking the function 1 to the interval [−1, 1], we may write:

1 =
∞∑
n=0

2(−1)n cos(�(n+ 1
2
)f)

(n+ 1
2
)�

.

Lemma 5.2.18. The function Fn,1(f) has the following representation for any point

f in [0, 1]:

Fn,1(f) =
∞∑
m=0

2(−1)mn

(�(m+ 1
2
))n

cos
(
�(m+ 1

2
)f
)
.

58

Proof. Consider the following integral:

∫ 1−f

0

cos
(
�(m+ 1

2
)f
)
df =

[
sin
(
�(m+ 1

2
)f
)

�(m+ 1
2
)

]1−f

0

=
sin
(
�(m+ 1

2
)(1− f)

)
�(m+ 1

2
)

=
sin
(
m� + �

2
− �(m+ 1

2
)f
)

�(m+ 1
2
)

=
(−1)m sin

(
�
2
− �(m+ 1

2
)f
)

�(m+ 1
2
)

=
(−1)m

�(m+ 1
2
)

cos
(
�(m+ 1

2
)f
)
.

From Lemma 5.2.17 we may write:

F1,1(f) =
∞∑
m=0

2(−1)m

�(m+ 1
2
)

cos
(
�(m+ 1

2
)f
)
.

Since we perform an integration, from 0 to 1− f , a total of n− 1 times to generate

Fn,1(f) from 1(f), we obtain

Fn,1(f) =
∞∑
m=0

2(−1)m

�(m+ 1
2
)

(
(−1)m

�(m+ 1
2
)

)n−1

cos
(
�(m+ 1

2
)f
)

=
∞∑
m=0

2(−1)mn(
�(m+ 1

2
)
)n cos

(
�(m+ 1

2
)f
)
.

Theorem 5.2.19. The normalised sequence of polynomials {F̃n,1(f)}∞n=1 completely

converges to cos(�f
2

).

Proof. From Lemma 5.2.18 we know that

Fn,1(f) =
∞∑
m=0

2(−1)mn

(�(m+ 1
2
))n

cos
(
�(m+ 1

2
)f
)
.

Recall from Definition 5.1.9 the definition of our normalised polynomial is

F̃n,1(f) :=
Fn,1(f)

Fn,1(0)
.

Let us define another type of normalised polynomial, F̂n,1(f), to be

F̂n,1(f) :=
�n

2n+1
Fn,1(f).

Firstly, we shall show that {F̂n,1(f)}∞n=1 completely converges to cos(�f
2

). Then we

59

show that {F̂n,1(f)− F̃n,1(f)}∞n=1 completely converges to zero and the theorem will

follow.

Let n be at least 2. Then

∣∣∣F̂n,1(f)− cos(
�

2
f)
∣∣∣ =

∣∣∣∣∣ �n2n+1

∞∑
m=0

2(−1)mn

(�(m+ 1
2
))n

cos
(
�(m+ 1

2
)f
)
− cos(

�

2
f)

∣∣∣∣∣
=

∣∣∣∣∣ 1

2n

∞∑
m=0

(−1)mn

(m+ 1
2
)n

cos
(
�(m+ 1

2
)f
)
− cos(

�

2
f)

∣∣∣∣∣
=

∣∣∣∣∣2−n
∞∑
m=1

(−1)mn

(m+ 1
2
)n

cos
(
�(m+ 1

2
)f
)∣∣∣∣∣

≤ 2−n
∞∑
m=1

∣∣∣∣ (−1)mn

(m+ 1
2
)n

cos
(
�(m+ 1

2
)f
)∣∣∣∣

≤ 2−n
∞∑
m=1

(m+ 1
2
)−n.

If we can show that
∑∞

m=1(m+1
2
)−n is bounded, we will have shown that {F̂n,1(f)}∞n=1

completely converges to cos(�f
2

).

Now consider the difference between the two types of normalised polynomials.

Again let n be at least 2. Then

∣∣∣F̂n,1(f)− F̃n,1(f)
∣∣∣ =

∣∣∣∣∣Fn,1(f)
2n+1

�n

− Fn,1(f)

Fn,1(0)

∣∣∣∣∣
=

∣∣∣∣∣Fn,1(f)
Fn,1(0)− 2n+1

�n

2n+1

�n
Fn,1(0)

∣∣∣∣∣
=

�n

2n+1

∣∣∣∣Fn,1(f)

Fn,1(0)

∣∣∣∣
∣∣∣∣∣
∞∑
m=0

2(−1)mn

(�(m+ 1
2
))n
− 2n+1

�n

∣∣∣∣∣
=
�n

2n

∣∣∣F̃n,1(f)
∣∣∣ ∣∣∣∣∣
∞∑
m=1

(−1)mn

(�(m+ 1
2
))n

∣∣∣∣∣
≤ 2−n

∣∣∣F̃n,1(f)
∣∣∣ ∞∑
m=1

∣∣∣∣ (−1)mn

(m+ 1
2
)n

∣∣∣∣
= 2−n

∣∣∣F̃n,1(f)
∣∣∣ ∞∑
m=1

(m+ 1
2
)−n.

Recall that Lemma 5.2.10 and Lemma 5.2.11 tell us, for n > 1, the Fn,1(f) are

nonnegative and strictly decreasing. Therefore 0 ≤ F̃n,1(f) ≤ 1 and so

∣∣∣F̂n,1(f)− F̃n,1(f)
∣∣∣ ≤ 2−n

∞∑
m=1

(m+ 1
2
)−n.

To prove the result then, it suffices to show that
∑∞

m=1(m + 1
2
)−n is bounded.

60

Clearly

(m+ 1
2
)−n > (m+ 1

2
)−(n+1),

so
∞∑
m=1

(m+ 1
2
)−n >

∞∑
m=1

(m+ 1
2
)−(n+1).

Therefore we only need that
∑∞

m=1(m + 1
2
)−2 exists, since it is also clear that∑∞

m=1(m + 1
2
)−n > 0. Dunham gives Euler’s proof of

∑∞
m=1(m + 1

2
)−2 = �2

6
in

[Dun99].

61

Chapter 6

Bounding the size of Pebody codes

So far we have methods for obtaining the polynomial Pn,1(b, c), which counts the

number of words in An,b with first letter c. Setting f = c/b so that our polynomial

becomes Pn,1(b, bf) provides us with a way of “isolating” the most significant term

in the polynomial, Fn,1(f)bn−1. This makes it possible for us to maximise and bound

expressions such as Pn,i(b, c) +O(bn−i−1).

Recall that at the end of Chapter 4 we said that the difference in the bn−2 term

between the sizes of the Peboy code and the alternating code is

n−1∑
k=1

Cn,k(fk)b
n−2.

At the start of the following chapter we translated this notation from the language

of Chapter 4 to what we currently use. We now express this difference as

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)b
n−2.

By the end of this chapter we shall have upper bounds, lower bounds and approxi-

mations for the product F−1,−i(f)Fn,i+1(f) so that we can estimate how much larger

the Pebody code is than the alternating code.

6.1 Approximating the number of words with a

single repeat

6.1.1 Approximating the recursive counting method by its

limit

Shortly, we shall give a way of approximating the polynomials Fn,1(f) and the errors

will be given in terms of the Hurwitz zeta function. Lang tells us that the Hurwitz

zeta function as it is defined here is absolutely convergent in [Lan99].

62

Definition 6.1.1. Let s and a be complex numbers such that Re(s) > 1 and Re(a) >

0. Define the Hurwitz zeta function thusly:

�(s, a) :=
∞∑
m=0

(a+m)−s.

Except for the case where n = 1, we may approximate the function Fn,1(f) by
2n+1

�n
cos
(
�
2
f
)

as we show below. For the case n = 1, recall that by definition F1,1 = 1.

Lemma 6.1.2. Let f be in [0, 1] and let n be an integer such that n > 1. The

following inequality then holds:∣∣∣∣∣Fn,1(f)−
2n+1 cos

(
�f
2

)
�n

∣∣∣∣∣ ≤ 2�(n, 3
2
)

�n
.

Proof. From Lemma 5.2.18 we have the following representation for Fn,1(f):

Fn,1(f) =
∞∑
m=0

2(−1)mn

(�(m+ 1
2
))n

cos
(
�(m+ 1

2
)f
)
.

Thus we may bound the error in our approximation as so:∣∣∣∣∣Fn,1(f)−
2n+1 cos

(
�f
2

)
�n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
m=1

2(−1)mn

(�(m+ 1
2
))n

cos
(
�(m+ 1

2
)f
)∣∣∣∣∣

≤ 2

�n

∞∑
m=1

∣∣∣∣ (−1)mn

(m+ 1
2
)n

cos
(
�(m+ 1

2
)f
)∣∣∣∣

≤ 2

�n

∞∑
m=1

(m+ 1
2
)−n

≤ 2

�n

∞∑
m=0

(m+ 3
2
)−n

=
2�(n, 3

2
)

�n
.

Definition 6.1.3. Let s be a complex number such that Re(s) > 1. The Riemann

zeta function �(s) is defined by

�(s) :=
∞∑
k=1

k−s.

The Hurwitz zeta function is a generalisation of the Riemann zeta function �(s).

63

This is clear to see with a relabelling of the dummy variables k = m+ 1.

�(s, 1) =
∞∑
m=0

(1 +m)−s

=
∞∑
k=1

k−s

= �(s).

The absolute convergence of the Hurwitz zeta function is therefore enough to reas-

sure us that the Riemann zeta function is likewise convergent. There is a further

link between the two zeta functions that we shall need to exploit for the case where

a = 1
2
. This is given in the following lemma.

Lemma 6.1.4. Let s again be a complex number with real component larger than 1.

Then

�(s, 3
2
) = (2s − 1) �(s)− 2s.

Proof. A small amount of manipulation on the definition yields the result:

�(s, 3
2
) =

∞∑
m=0

(m+ 3
2
)−s

=
∞∑
m=1

(m+ 1
2
)−s

=
∞∑
m=0

(m+ 1
2
)−s − 2−s

= 2s
∞∑
m=0

(2m+ 1)−s − 2−s

= 2s

(
∞∑
k=1

k−s −
∞∑
k=1

(2k)−s

)
− 2−s

= 2s
(
�(s)− 2−s�(s)

)
− 2−s

= (2s − 1) �(s)− 2−s.

Although Lemma 6.1.4 provides us with another way of thinking about �(s, 3
2
),

any feeling for how the function behaves, say for large integers s, remains somewhat

intangible. We shall only be interested in the case where s is a positive integer larger

than 2 and so this enables us to form a simple bound.

Lemma 6.1.5. Let n be an integer greater than 1. Then we may bound �(n, 3
2
)

above by
(

2
3

)n−2
�(2, 3

2
).

Proof. Trivially, the bound holds for the case where n = 2. Assume then that n > 2.

64

Recall the definition of the Hurwitz zeta function, then

�(n, 3
2
) =

∞∑
m=0

(
m+ 3

2

)−n
.

For each value the dummy variable m takes, the summand satisfies m + 3
2
≥ 3

2
.

Hence
(
m+ 3

2

)−1 ≤ 2
3

and so

∞∑
m=0

(
m+ 3

2

)−n ≤ ∞∑
m=0

2
3

(
m+ 3

2

)−n+1
.

Therefore �(n, 3
2
) ≤ 2

3
�(n− 1, 3

2
). If we exploit this inequality n− 2 times the result

follows.

Lemma 6.1.6. [The Basel problem] The Riemann zeta function evaluated at 2 is

∞∑
m=0

(1 +m)−2 = �2

6
.

Proof. In [Dun99], Dunham provides us with detailed accounts of both Euler’s first,

though somewhat questionable, proof and his alternative which is fully accepted by

the mathematical community.

The following corollary simply ties together some of the above results in order to

provide us with a palpable analytic bound for the error in approximation introduced

in Lemma 6.1.2.

Corollary 6.1.7. Let n be an integer greater than 1 and f a point of the interval

[0, 1]. The error in approximating Fn,1(f) by 2n+1

�n
cos
(
�
2
f
)

is as such:∣∣∣∣∣Fn,1(f)−
2n+1 cos

(
�f
2

)
�n

∣∣∣∣∣ ≤
(

2

3�

)n−2
�2 − 8

�2
.

Proof. Recall that Lemma 6.1.6 tells us that �(2) = �2

6
. Let us apply Lemma 6.1.5

65

and then Lemma 6.1.4 to the inequality derived in Lemma 6.1.2.∣∣∣∣∣Fn,1(f)−
2n+1 cos

(
�f
2

)
�n

∣∣∣∣∣ ≤ 2�(n, 3
2
)

�n

≤
(

2

3

)n−2 2�(2, 3
2
)

�n

=

(
2

3

)n−2
2(22 − 1)�(2)− 23

�n

=

(
2

3�

)n−2
6�(2)− 8

�2

=

(
2

3�

)n−2 6�
2

6
− 8

�2

=

(
2

3�

)n−2
�2 − 8

�2
.

6.1.2 Approximating the number of words with one repeat

at a given position

In this section we shall take the approximation proved in Corollary 6.1.7 and use

it to derive a similar approximation for the number of words with one repeat at a

given position. Firstly, however, we will need to generalise our approximation to any

polynomial Fn,i(f). In order to facilitate this process, we introduce the following

notation.

Definition 6.1.8. Let i be an integer. Define Fi(f) over [0, 1] by

Fi(f) := cos
(
�f
2

)
when i is odd,

Fi(f) := cos
(
�(1−f)

2

)
when i is even.

Lemma 6.1.9. Let n and i be integers such that n > i and let f be a point in the

interval [0, 1]. Then∣∣∣∣Fn,i(f)− 2n−i+2Fi(f)

�n−i+1

∣∣∣∣ ≤ (2

3�

)n−i−1
�2 − 8

�2
.

Proof. If i is odd then define g := f and if i is even then define g := 1 − f . In

both cases g belongs to the interval [0, 1]. Recall that repeated applications of

Theorem 5.1.7 yields

Fn−i+1,1(g) = Fn,i(f).

By definition it is clear that Fi(f) = cos
(
�g
2

)
. This information together with

66

Corollary 6.1.7 tells us that∣∣∣∣Fn,i(f)− 2n−i+2Fi(f)

�n−i+1

∣∣∣∣ =

∣∣∣∣∣Fn−i+1,1(g)−
2n−i+2 cos

(
�g
2

)
�n−i+1

∣∣∣∣∣
≤
(

2

3�

)n−i−1
�2 − 8

�2
.

We shall have the need for bounds on the sizes of the functions Fi and Fn,i over

our interval [0, 1]. From its definition we can see that Fi is nonnegative and at most

1. Recall Lemma 5.2.10 states Fn,i is nonnegative over [0, 1].

Lemma 6.1.10. Let n and i be integers with n > i then

Fn,i(f) ≤ 2n−i+2

�n−i+1

(
1 +

�2 − 8

8× 3n−i−1

)
.

Proof. Recall that in Lemma 5.2.18 we showed that for any positive integer N

FN,1(f) =
∞∑
m=0

2(−1)mN

(�(m+ 1
2
))N

cos
(
�(m+ 1

2
)f
)
.

Again let us define g to be f when i is odd and 1− f when i is even. Then

Fn,i(f) = Fn−i+1,1(g)

=
∞∑
m=0

2(−1)m(n−i+1)

(�(m+ 1
2
))n−i+1

cos
(
�(m+ 1

2
)g
)

≤
∞∑
m=0

∣∣∣∣ 2(−1)m(n−i+1)

(�(m+ 1
2
))n−i+1

cos
(
�(m+ 1

2
)g
)∣∣∣∣

≤ 2

�n−i+1

∞∑
m=0

(m+ 1
2
)−n+i−1

=
2

�n−i+1

(
2n−i+1 +

∞∑
m=1

(m+ 1
2
)−n+i−1

)
=

2

�n−i+1

(
2n−i+1 + �(n− i+ 1, 3

2
)
)
.

Recall that in the proof of Corollary 6.1.7 we showed, for any integer m larger

than 1, that
2�(m, 3

2
)

�m
≤
(

2

3�

)m−2
�2 − 8

�2
.

67

Since n > i, we have that n− i+ 1 is larger than 1. So

Fn,i(f) ≤ 2n−i+2

�n−i+1
+

(
2

3�

)n−i−1
�2 − 8

�2

=
2n−i+2

�n−i+1

(
1 +

�2 − 8

8× 3n−i−1

)
.

Recall that towards the end of Chapter 4, in the proof of Theorem 4.2.9, we

employed the product P−1,−i(b, yi)Pn,i+1(b, yi) to count the number of words in By

with a single repeat at position i, which is a polynomial. We shall soon be requiring

estimates for the product F−1,−i(f)Fn,i+1(f) when we talk more about the leading

term of this polynomial.

Although we have somewhat optimised the calculation of the polynomials Fn,i ,

generating them is computationally expensive. So, we now extend the approximation

given in Lemma 6.1.9 to an approximation for the product F−1,−i(f)Fn,i+1(f).

Theorem 6.1.11. Let n and i be integers with n − i > 1 and i > 1. Let f be a

point in [0, 1]. The polynomial F−1,−i(f)Fn,i+1(f) can be approximated by

2n+1

�n
sin(�f)

and the error in approximating is at most

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)
.

Proof. Let a1, a2, �1 and �2 be reals such that

∣a1 − �1∣ ≤ �1 and (6.1)

∣a2 − �2∣ ≤ �2 (6.2)

for some reals �1 and �2. Then

∣a1a2 − �1�2∣ = ∣a1a2 − a1�2 + a1�2 − �1�2∣

≤ ∣a1a2 − a1�2∣+ ∣a1�2 − �1�2∣

= ∣a1∣∣a2 − �2∣+ ∣�2∣∣a1 − �1∣

≤ ∣a1∣�2 + ∣�2∣�1. (6.3)

68

Lemma 6.1.9 gives us the following two inequalities:∣∣∣∣F−1,−i(f)− 2i+1F−i(f)

�i

∣∣∣∣ ≤ (2

3�

)i−2
�2 − 8

�2
and (6.4)∣∣∣∣Fn,i+1(f)− 2n−i+1Fi+1(f)

�n−i

∣∣∣∣ ≤ (2

3�

)n−i−2
�2 − 8

�2
. (6.5)

In the same way we derived (6.3) from (6.1) and (6.2), we derive from (6.4) and

(6.5) the following:∣∣∣∣F−1,−i(f)Fn,i+1(f)− 2n+2F−i(f)Fi+1(f)

�n

∣∣∣∣ (6.6)

≤ F−1,−i(f)

(
2

3�

)n−i−2
�2 − 8

�2
+

2n−i+1Fi+1(f)

�n−i

(
2

3�

)i−2
�2 − 8

�2
.

Recall that Lemma 6.1.10 tells us

F−1,−i(f) ≤ 2i+1

�i

(
1 +

�2 − 8

8× 3i−2

)
.

Bringing these last two inequalities together (along with the observation made earlier

that Fi+1 < 1) we see that (6.6) is

≤2i+1

�i

(
1 +

�2 − 8

8× 3i−2

)(
2

3�

)n−i−2
�2 − 8

�2

+
2n−i+1Fi+1(f)

�n−i

(
2

3�

)i−2
�2 − 8

�2

≤ 2n−1

�n

(
1 +

�2 − 8

8× 3i−2

)
�2 − 8

3n−i−2
+

2n−1(�2 − 8)

�n3i−2

=
2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)
.

Now, certainly −i and i+ 1 are of opposite parity, so

F−i(f)Fi+1(f) = cos
(
�f
2

)
cos
(
�(1−f)

2

)
= cos

(
�f
2

)
sin
(
�f
2

)
=

sin(�f)

2
.

This observation then gives us that

2n+2F−i(f)Fi+1(f)

�n
=

2n+1

�n
sin(�f)

and so the result follows.

The error bound given in Theorem 6.1.11 depends only on n and i and the

69

approximation is best when i is close to n
2
. However, when i is close to 1 or n

the approximation is poor and so in these cases we require a better method. This

motivates the rest of this chapter.

6.2 A better approximation

6.2.1 Centralising the use of the approximation

Consider the difference in the bn−2 terms of the Pebody code and the alternating

code as discussed at the start of this chapter:

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi). (6.7)

It is possible to exactly determine this value, since we have already given an efficient

way of calculating the Fn,i(f). However, as we have already pointed out, this is still

computationally expensive. Here we look at using the various approximations given

earlier in this chapter to efficiently obtain bounds on this difference for some fixed

tolerance.

Let l be an integer between 1 and n− 1 inclusively. We consider the above sum

term by term and approximate Fm,j(f) when m − j ≥ l. Depending on i and the

choice of l we may approximate F−1,−i , Fn,i+1 , the product of these polynomials or

we may not approximate the ith term at all. The following definition gives us the

function Rn,l(f1, f2, . . . , fn−1) with which we shall approximate (6.7).

Definition 6.2.1. Let n and l be positive integers so that 1 ≤ l ≤ n − 1. Define

Rn,n−1(f1, f2, . . . , fn−1) as:

Rn,n−1 :=
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi).

Suppose n−1
2
< l < n− 1, then define Rn,l(f1, f2, . . . , fn−1) to be

Rn,l =
n−l−1∑
i=1

F−1,−i(fi)
2n−i+1Fi+1(fi)

�n−i

+
l∑

i=n−l

F−1,−i(fi)Fn,i+1(fi)

+
n−1∑
i=l+1

2i+1F−i(fi)

�i
Fn,i+1(fi).

Note that, since l > n − l − 1 we have that l ≥ n − l and so the limits of the sums

(in particular the central sum) are in the usual order of size.

70

Suppose now that l < n−1
2

. Define then Rn,l(f1, f2, . . . , fn−1) to be

Rn,l =
l∑

i=1

F−1,−i(fi)
2n−i+1Fi+1(fi)

�n−i

+
n−l−1∑
i=l+1

2n+1

�n
sin(�fi)

+
n−1∑
i=n−l

2i+1F−i(fi)

�i
Fn,i+1(fi).

Again note that the limits of the sums are in the usual order.

Finally, suppose that l = n−1
2

. Here l = n− l − 1 so then we define

Rn,l :=
n−l−1∑
i=1

F−1,−i(fi)
2n−i+1Fi+1(fi)

�n−i

+
n−1∑
i=l+1

2i+1F−i(fi)

�i
Fn,i+1(fi).

Lemma 6.2.2. Let l ≥ n−1
2

. Then the error in approximating the sum

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)

by the function Rn,l(f1, f2, . . . , fn−1) is at most

2n−1(�2 − 8)

�n3n−4

(
(n− l − 1)

�2 − 8

4
+ 3n−l−2 − 1

3

)
.

Proof. Evaluating the above formula at l = n− 1 gives us 0. By definition

Rn,n−1(f1, f2, . . . , fn−1) =
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)

so there is no error in approximating in this case and the result is trivially true for

l = n− 1. For the rest of this proof we shall assume then that l < n− 1.

Using the triangle inequality we can see that∣∣∣∣∣
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)−Rn,l(f1, f2, . . . , fn−1)

∣∣∣∣∣ (6.8)

71

is at most

n−l−1∑
i=1

F−1,−i(fi)

∣∣∣∣Fn,i+1(fi)−
2n−i+1Fi+1(fi)

�n−i

∣∣∣∣
+

l∑
i=n−l

∣F−1,−i(fi)Fn,i+1(fi)− F−1,−i(fi)Fn,i+1(fi)∣

+
n−1∑
i=l+1

Fn,i+1(fi)

∣∣∣∣F−1,−i(fi)−
2i+1F−i(fi)

�i

∣∣∣∣
when l > n−1

2
and at most

n−l−1∑
i=1

F−1,−i(fi)

∣∣∣∣Fn,i+1(fi)−
2n−i+1Fi+1(fi)

�n−i

∣∣∣∣
+

n−1∑
i=l+1

Fn,i+1(fi)

∣∣∣∣F−1,−i(fi)−
2i+1F−i(fi)

�i

∣∣∣∣
when l = n−1

2
. Recall that Lemma 6.1.9 tells us that∣∣∣∣Fn,i(f)− 2n−i+2Fi(f)

�n−i+1

∣∣∣∣ ≤ (2

3�

)n−i−1
�2 − 8

�2
.

Then (6.8) is at most

n−l−1∑
i=1

F−1,−i(fi)

(
2

3�

)n−i−2
�2 − 8

�2

+
n−1∑
i=l+1

Fn,i+1(fi)

(
2

3�

)i−2
�2 − 8

�2
.

Lemma 6.1.10 gives us

Fn,i(f) ≤ 2n−i+2

�n−i+1

(
1 +

�2 − 8

8× 3n−i−1

)
,

72

so (6.8) is at most

n−l−1∑
i=1

2i+1

�i

(
1 +

�2 − 8

8× 3i−2

)(
2

3�

)n−i−2
�2 − 8

�2

+
n−1∑
i=l+1

2n−i+1

�n−i

(
1 +

�2 − 8

8× 3n−i−2

)(
2

3�

)i−2
�2 − 8

�2

=
2n−1(�2 − 8)

�n3n−4

(
n−l−1∑
i=1

(
3i−2 +

�2 − 8

8

)
+

n−1∑
i=l+1

(
3n−i−2 +

�2 − 8

8

))

=
2n−1(�2 − 8)

�n3n−4

(
�2 − 8

8
2(n− l − 1) +

n−l−1∑
i=1

3i−2 +
n−1∑
i=l+1

3n−i−2

)
.

By a change of dummy variable (j = n−i) we can see that the two sums
∑n−l−1

i=1 3i−2

and
∑n−1

j=l+1 3n−j−2 are equal. Summing the geometric series we have that

n−l−1∑
i=1

3i−2 =
3n−l−2 − 1

3

3− 1
=

3n−l−2 − 1
3

2
,

and so (6.8) is at most

2n−1(�2 − 8)

�n3n−4

(
(n− l − 1)

�2 − 8

4
+ 3n−l−2 − 1

3

)
.

Lemma 6.2.3. Let l < n−1
2

. Then the error in approximating the sum

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)

by the function Rn,l(f1, f2, . . . , fn−1) is at most

2n−1(�2 − 8)

�n3n−4

(
(n− 1)

�2 − 8

8
+ 3n−l−2 − 1

3

)
.

Proof. Using the triangle inequality we can see that∣∣∣∣∣
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)−Rn,l(f1, f2, . . . , fn−1)

∣∣∣∣∣ (6.9)

73

is at most

l∑
i=1

F−1,−i(fi)

∣∣∣∣Fn,i+1(fi)−
2n−i+1Fi+1(fi)

�n−i

∣∣∣∣
+

n−l−1∑
i=l+1

∣∣∣∣F−1,−i(fi)Fn,i+1(fi)−
2n+1

�n
sin(�fi)

∣∣∣∣
+

n−1∑
i=n−l

Fn,i+1(fi)

∣∣∣∣F−1,−i(fi)−
2i+1F−i(fi)

�i

∣∣∣∣ .
Recall that Lemma 6.1.9 tells us that∣∣∣∣Fn,i(f)− 2n−i+2Fi(f)

�n−i+1

∣∣∣∣ ≤ (2

3�

)n−i−1
�2 − 8

�2

and Theorem 6.1.11 tells us that 2n+1

�n
sin(�fi) approximates F−1,−i(fi)Fn,i+1(fi) with

an error of at most

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)
.

Then (6.9) is at most

l∑
i=1

F−1,−i(fi)

(
2

3�

)n−i−2
�2 − 8

�2

+
n−l−1∑
i=l+1

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)

+
n−1∑
i=n−l

Fn,i+1(fi)

(
2

3�

)i−2
�2 − 8

�2
.

Lemma 6.1.10 gives us

Fn,i(f) ≤ 2n−i+2

�n−i+1

(
1 +

�2 − 8

8× 3n−i−1

)
,

74

so (6.9) is at most

l∑
i=1

2i+1

�i

(
1 +

�2 − 8

8× 3i−2

)(
2

3�

)n−i−2
�2 − 8

�2

+
n−l−1∑
i=l+1

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)

+
n−1∑
i=n−l

2n−i+1

�n−i

(
1 +

�2 − 8

8× 3n−i−2

)(
2

3�

)i−2
�2 − 8

�2

=
l∑

i=1

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8

)

+
n−l−1∑
i=l+1

2n−1(�2 − 8)

�n3n−4

(
3i−2 +

�2 − 8

8
+ 3n−i−2

)

+
n−1∑
i=n−l

2n−1(�2 − 8)

�n3n−4

(
3n−i−2 +

�2 − 8

8

)

=
2n−1(�2 − 8)

�n3n−4

(
(n− 1)

�2 − 8

8
+

n−l−1∑
i=1

3i−2 +
n−1∑
i=l+1

3n−i−2

)
.

By the same change of dummy variable as previously we can see that the two sums∑n−l−1
i=1 3i−2 and

∑n−1
i=l+1 3n−i−2 are equal. Summing the geometric series we have

that
n−l−1∑
i=1

3i−2 =
3n−l−2 − 1

3

3− 1
=

3n−l−2 − 1
3

2
,

and so (6.9) is at most

2n−1(�2 − 8)

�n3n−4

(
(n− 1)

�2 − 8

8
+ 3n−l−2 − 1

3

)

When l approaches n−1
2

we see the bounds in the above lemmata come together.

Indeed it is a simple task to represent them both as a single bound for all possible

values of l (that is 1 ≤ l ≤ n− 1):

2n−1(�2 − 8)

�n3n−4

((
(n− 1) + (n−1

2
− l)−

∣∣n−1
2
− l
∣∣) �2 − 8

8
+ 3n−l−2 − 1

3

)
.

6.2.2 Generating simple analytic upper and lower bounds

Up to now, we have given a method for calculating
∑n−1

i=1 F−1,−i(fi)Fn,i+1(fi) pre-

cisely and another for approximating it. This approximation, together with the

bounds given for our approximations, enables us to calculate upper bounds for our

75

sum, trading computation time for precision as required. However, short of delv-

ing into mathematical software and computing these calculations we have no simple

tangible formula of an upper bound for our sum. Our aim therefore is to derive such

a bound.

We shall be referring again to the bound introduced at the end of the previous

section, so let us give it a name.

Definition 6.2.4. Let n and l be positive integers such that 1 ≤ l ≤ n− 1. Define

�n,l to be

�n,l :=
2n−1(�2 − 8)

�n3n−4

((
3(n− 1)

2
− l −

∣∣n−1
2
− l
∣∣) �2 − 8

8
+ 3n−l−2 − 1

3

)
.

As was proved in the last section, with Lemma 6.2.2 and Lemma 6.2.3, we have

that �n,l bounds the following:∣∣∣∣∣
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)−Rn,l(f1, f2, . . . , fn−1)

∣∣∣∣∣ ≤ �n,l.

Obviously then

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi) ≤ Rn,l + �n,l (6.10)

for all l such that 1 ≤ l ≤ n− 1. If we pick l = 1 then we shall need no calculations,

since by definition F−1,−1(f) and Fn,n(f) are both 1 for all f ∈ [0, 1] and we shall

approximate everything else.

Lemma 6.2.5. Let n be an integer greater than or equal to 3. Then the sum∑n−1
i=1 F−1,−i(fi)Fn,i+1(fi) is at most(

2

�

)n (
2n+ c1 + c2n3−n − c33−n

)
,

where the constants c1, c2 and c3 are:

c1 = 2� − 6 +
3(�2 − 8)

2
;

c2 =
81(�2 − 8)2

16
;

c3 =
27(�2 − 8)(3�2 − 16)

16
.

Proof. To prove this result, we shall simply evaluate (6.10) at l = 1. Since we have

76

already a formula for �n,1 we shall obtain one for Rn,1. Recall that by definition

Rn,1 =
1∑
i=1

F−1,−i(fi)
2n−i+1Fi+1(fi)

�n−i

+
n−2∑
i=2

2n+1

�n
sin(�fi)

+
n−1∑
i=n−1

2i+1F−i(fi)

�i
Fn,i+1(fi)

=
2n

�n−1
(F2(f1) + F−n+1(fn−1)) +

2n+1

�n

n−2∑
i=2

sin(�fi)

≤ 2n

�n−1

(
1 + 1 +

2

�
(n− 3)

)
=

(
2

�

)n
(2n+ 2� − 6) .

Now, since n ≥ 3, we have that 1 ≤ n−1
2

and so
∣∣n−1

2
− 1
∣∣ = n−1

2
− 1. Hence �n,1

is

�n,1 =
2n−1(�2 − 8)

�n3n−4

((
3(n− 1)

2
− 1−

∣∣n−1
2
− 1
∣∣) �2 − 8

8
+ 3n−3 − 1

3

)
=

2n−1(�2 − 8)

�n3n−4

(
(n− 1)

�2 − 8

8
+ 3n−3 − 1

3

)
=

(
2

�

)n(
3(�2 − 8)

2
+

(�2 − 8)2

16

n− 1

3n−4
− �2 − 8

2× 3n−3

)
=

(
2

�

)n(
3(�2 − 8)

2
+

81(�2 − 8)2

16

n

3n
− 81(�2 − 8)2

16× 3n
− 27(�2 − 8)

2× 3n

)
=

(
2

�

)n(
3(�2 − 8)

2
+

81(�2 − 8)2

16

n

3n
− 27(�2 − 8)(3�2 − 24 + 8)

16× 3n

)
=

(
2

�

)n(
3(�2 − 8)

2
+

81(�2 − 8)2

16

n

3n
− 27(�2 − 8)(3�2 − 16)

16
3−n
)
.

Bringing the formulae for Rn,1 and �n,1 together, we have

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi) ≤
(

2

�

)n (
2n+ c1 + c2n3−n − c33−n

)
.

If we try to obtain a lower bound for
∑n−1

i=1 F−1,−i(fi)Fn,i+1(fi) then the best we

can do is 0, since the fi could be chosen to be alternately 0 and 1. This corresponds

to the Pebody code B1b1b... which is just An,b.

More usefully, we shall look at a lower bound for
∑n−1

i=1 F−1,−i(fi)Fn,i+1(fi) once

it has been maximised for (f1, f2, f3, . . . , fn−1) over [0, 1]n−1. Let us say for each i

77

that f̂i maximises F−1,−i(f̂i)Fn,i+1(f̂i) over [0, 1]. Then we want a lower bound for

n−1∑
i=1

F−1,−i(f̂i)Fn,i+1(f̂i).

Lemma 6.2.6. Let n be an integer greater than or equal to 3. The sum

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)

when it is maximised for (f1, f2, f3, . . . , fn−1) over [0, 1]n−1 is at least(
2

�

)n (
2n+ c′1 − c2n3−n + c33−n

)
,

where the constants c′1, c2 and c3 are:

c′1 = 2� − 6− 3(�2 − 8)

2
;

c2 =
81(�2 − 8)2

16
;

c3 =
27(�2 − 8)(3�2 − 16)

16
.

Proof. Firstly note that, since [0, 1]n−1 is a closed set in the complete space ℝn−1 and

the polynomial
∑n−1

i=1 F−1,−i(fi)Fn,i+1(fi) is continuous, such a maximising point,

(f̂1, f̂2, f̂3, . . . , f̂n−1) say, exists.

We may certainly start in a similar fashion to obtaining the upper bound, in

that for all (n− 1)-tuples (f1, f2, f3, . . . , fn−1) in [0, 1]n−1 we have

n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi) ≥ Rn,l(f1, f2, f3, . . . , fn−1)− �n,l.

Since
∑n−1

i=1 F−1,−i(f̂i)Fn,i+1(f̂i) is maximum, we have

n−1∑
i=1

F−1,−i(f̂i)Fn,i+1(f̂i) ≥
n−1∑
i=1

F−1,−i(fi)Fn,i+1(fi)

≥ Rn,l(f1, f2, f3, . . . , fn−1)− �n,l,

for all fi ∈ [0, 1]. We shall proceed then to maximise Rn,l(f1, f2, f3, . . . , fn−1). Again,

78

selecting l to be 1, recall that Rn,1 is by definition

Rn,1 =
1∑
i=1

F−1,−i(fi)
2n−i+1Fi+1(fi)

�n−i

+
n−2∑
i=2

2n+1

�n
sin(�fi)

+
n−1∑
i=n−1

2i+1F−i(fi)

�i
Fn,i+1(fi)

=
2n

�n−1
(F2(f1) + F−n+1(fn−1)) +

2n+1

�n

n−2∑
i=2

sin(�fi) .

Recall that in Definition 6.1.8 Fi(f) is defined as cos
(
�f
2

)
when i is odd and

cos
(
�(1−f)

2

)
when i is even. Let f1 = 1, let fn−1 = 0 when n is even and fn−1 =

1 when n is odd and let fi = 1
2

for all i from 2 to n − 2. Now, F2(f1) = 1,

F−n+1(fn−1) = 1 and sin(�fi) = 1 for all i from 2 to n− 2. So

Rn,1 =
2n

�n−1

(
2 +

2

�
(n− 3)

)
=

(
2

�

)n
(2n+ 2� − 6).

In the proof of Lemma 6.2.5 we showed that �n,1 is(
2

�

)n(
3(�2 − 8)

2
+

81(�2 − 8)2

16

n

3n
− 27(�2 − 8)(3�2 − 16)

16
3−n
)
.

So

n−1∑
i=1

F−1,−i(f̂i)Fn,i+1(f̂i) ≥Rn,1(f1, f2, f3, . . . , fn−1)− �n,1

=

(
2

�

)n (
2n+ c′1 − c2n3−n + c33−n

)
.

Theorem 6.2.7. The difference in the bn−2 coefficients of the maximised Pebody

code and the alternating code, Rn,n−1, is(
2

�

)n
(2n+O(1)).

Proof. The result follows immediately from lemmata 6.2.5 and 6.2.6

A natural question to ask is: how does the difference Rn,n−1 compare with the

original bn−2 coefficient of the alternating code? Recall that in Corollary 3.2.12 we

79

showed that this coefficient is

1

(n− 2)!

(
∣U [2,2]

n ∣+ ∣U [3]
n ∣ −

∣U [2]
n ∣(n− 2)

2
+
∣Un∣(n− 2)(3n− 1)

24

)
.

We shall tackle this question in the next chapter.

80

Chapter 7

A programmatic implementation

and analysis of the bounds on

weakly consecutive repeat-free

codes of the form By

Chapters 5 and 6 proposed and justified a method for approximating the size of a

Pebody code (replacing an exact component Rn,n−1 by an approximation Rn,l for

some 1 ≤ l < n− 1). This chapter reports on computer experiments to verify that

our error bounds on ∣Rn,n−1 − Rn,l∣ are reasonable and to demonstrate that a good

approximation for Rn,l may be computed significantly faster than the corresponding

exact value Rn,n−1. The computer experiments also generate data on the sizes of

alternating codes and maximised Pebody codes, so we get a feel for how quickly

they grow and their relative sizes.

7.1 Technical specifications of hardware and soft-

ware and motivation for their selection

All of the tabulated data provided in this chapter was generated by Mathematica

code executed in the Wolfram Mathematica environment version 7.0.0. The platform

for this environment was Microsoft Windows XP Professional with Service Pack 3

applied and nothing else was installed. The operating system was installed on a vir-

tual machine using the open source virtualisation package VirtualBox version 3.0.2

developed by Sun Microsystems. The host operating system was again Microsoft

Windows XP Professional with Service Pack 3 applied running on an AMD Athlon

64 X2 dual core 2.21GHz processor with 2GB of RAM. The guest operating system

had 1GB of RAM and one of the cores dedicated to it.

The decision to perform the measurements on a virtual machine was twofold: cpu

81

intensive processes such as automatic software updates, virus scans and file indexing

could be safely turned off or simply would not be present; and since execution states

of virtual machines can be saved, they can be reloaded for each set of experiments.

This should have provided more consistent conditions for our observations. It is

also important to underline that RAM usage was closely monitored for the duration

of the code’s execution and the 1GB available was comfortably in excess of what

Mathematica’s kernel requested. This means that there was no need to use virtual

memory which would have involved reading and writing to disk for some of the

calculations and most likely would have distorted the execution times measured.

7.2 Computing the difference in size of alternat-

ing codes and largest Pebody codes

Recall that in Definition 1.2.2 we said for fixed n and b → ∞, a largest Pebody

code, Bn,b, has magnitude

∣Bn,b∣ = �n,nb
n + �n,n−1b

n−1 + �n,n−2b
n−2 +O(bn−3).

We also said, in Definition 1.2.1, that the alternating code An,b has magnitude

∣An,b∣ = �n,nb
n + �n,n−1b

n−1 + �n,n−2b
n−2 +O(bn−3).

Let us define

Δn = �n,n−2 − �n,n−2.

In Chapter 4 we develop theory that enables us to calculate Δn and in Chapter 6

we give a range of approximations to Δn, with error bounds, that are theoretically

quicker to compute.

We pick two approximations to Δn from the range offered to us by Chapter 6, let

us call them Δ̂n and Δ̄n, to illustrate the tradeoff between precision and computation

time in practice. Table 7.1 shows that significant savings in computation time are

gained by using our approximation, without losing too much accuracy. The table also

vindicates the claims of the previous chapter by validating that our approximations

indeed lie within the theoretical error bounds. We note that, since the theoretical

error bounds are reasonably close to the actual errors, further work in this area is

unlikely to produce significant improvements to our approximations.

At this point we enter a more technical discussion of what Δn, Δ̂n and Δ̄n are.

Recall that in Definition 6.2.1 we defined Rn,l(f1, f2, . . . , fn−1) as an approximation

to the difference in the bn−2 terms between the alternating code and a Pebody code.

The higher the integer l the better the approximation is and for l = n−1 we have the

difference exactly. When we maximise the function Rn,n−1 over its domain [0, 1]n−1

82

T
ab

le
7.

1:
C

al
cu

la
ti

on
s

of
Δ
n
,

th
e

ac
tu

al
m

ea
su

re
d

er
ro

rs
in

cu
rr

ed
b
y

ap
p
ro

x
im

at
in

g
it

,
th

e
th

eo
re

ti
ca

l
m

ax
im

u
m

su
ch

er
ro

rs
an

d
re

le
va

n
t

co
m

p
u
ta

ti
on

ti
m

es
of

ap
p
ro

x
im

at
io

n
in

se
co

n
d
s

n
Δ
n

C
om

p
u
te

ti
m

e
in

se
co

n
d
s

A
ct

u
al

er
ro

r
m

ea
su

re
d

Δ
n
−

Δ̂
n

T
h
eo

re
ti

ca
l

m
ax

im
u
m

er
ro

r
fo

r
∣Δ

n
−

Δ̂
n
∣

C
om

p
u
te

ti
m

e
in

se
co

n
d
s

A
ct

u
al

er
ro

r
m

ea
su

re
d

Δ
n
−

Δ̄
n

T
h
eo

re
ti

ca
l

m
ax

im
u
m

er
ro

r
fo

r
∣Δ

n
−

Δ̄
n
∣

C
om

p
u
te

ti
m

e
in

se
co

n
d
s

20
4.

76
94

e(
-3

)
2.

12
3

-2
.0

08
4e

(-
9)

1.
70

45
e(

-8
)

1.
08

2
-1

.2
89

7e
(-

6)
1.

24
19

e(
-5

)
0.

35
0

40
1.

14
21

e(
-6

)
8.

87
3

-4
.0

99
8e

(-
18

)
3.

44
94

e(
-1

7)
3.

10
4

-1
.8

67
7e

(-
11

)
1.

64
98

e(
-1

0)
0.

61
1

60
2.

04
92

e(
-1

0)
24

.6
45

-8
.3

01
7e

(-
27

)
6.

98
44

e(
-2

6)
6.

57
0

8.
01

90
e(

-1
6)

6.
57

54
e(

-1
5)

0.
79

2

80
3.

26
76

e(
-1

4)
49

.7
91

-1
.6

81
0e

(-
35

)
1.

41
42

e(
-3

4)
12

.0
27

-3
.0

61
5e

(-
20

)
2.

62
06

e(
-1

9)
0.

91
2

10
0

4.
88

43
e(

-1
8)

89
.9

09
-3

.4
03

7e
(-

44
)

2.
86

36
e(

-4
3)

19
.6

48
-4

.1
12

7e
(-

25
)

3.
48

15
e(

-2
4)

1.
28

2

12
0

7.
00

85
e(

-2
2)

14
9.

69
6

-6
.8

91
9e

(-
53

)
5.

79
83

e(
-5

2)
31

.4
85

-4
.9

17
4e

(-
29

)
4.

16
26

e(
-2

8)
1.

28
2

14
0

9.
77

70
e(

-2
6)

23
1.

10
0

-1
.3

95
5e

(-
61

)
1.

17
41

e(
-6

0)
45

.3
64

1.
97

89
e(

-3
3)

1.
65

90
e(

-3
2)

1.
50

3

16
0

1.
33

60
e(

-2
9)

35
0.

76
2

-2
.8

25
7e

(-
70

)
2.

37
73

e(
-6

9)
58

.8
92

-7
.8

41
7e

(-
38

)
6.

61
19

e(
-3

7)
1.

73
2

18
0

1.
79

72
e(

-3
3)

65
1.

66
7

-5
.7

21
5e

(-
79

)
4.

81
36

e(
-7

8)
80

.0
34

3.
13

62
e(

-4
2)

2.
63

52
e(

-4
1)

1.
95

3

20
0

2.
38

76
e(

-3
7)

11
68

.7
60

-1
.1

58
5e

(-
87

)
9.

74
68

e(
-8

7)
10

6.
95

5
-1

.2
47

3e
(-

46
)

1.
05

02
e(

-4
5)

2.
16

3

83

we have Δn. If we choose l to be
⌊
n
2

⌋
then Rn,l maximised over [0, 1]n−1 gives us Δ̂n

and, with l = ⌊
√
n⌋, we obtain Δ̄n when Rn,l is maximised over [0, 1]n−1.

Recall also that we proved the theoretical maximum error in approximating our

Rn,n−1(f1, f2, . . . , fn−1) by Rn,l(f1, f2, . . . , fn−1) is at most �n,l which was defined in

Definition 6.2.4. The motivation behind this approximation is that it is far easier

to compute the functions cos(�f
2

) or cos(�(1−f)
2

) than the recursively defined Fn,i(f).

Furthermore, in the cases where l < n−1
2

and l + 1 ≤ i ≤ n − l − 1, when trying

to maximise the part of Rn,l involving fi over [0, 1] there is an analytic solution of
2n+1

�n
. For Rn,n−1 we are still faced with maximising F−1,−i(fi)Fn,i+1(fi).

Note that the points at where the functions Rn,n−1, R
n,⌊n2 ⌋ and Rn,⌊√n⌋ are

maximised are most likely not the same. Their respective maxima are still of course

within their error bounds as can be seen from the following short lemma.

Lemma 7.2.1. Let F and G be real functions over some domain. Suppose that their

maxima exist and are at points f and g respectively. If for some � we may write

∣∣F −G∣∣∞ < �, then ∣F (f)−G(g)∣ < �.

Proof. Suppose the result is false. Without loss of generality suppose that F (f) ≥
G(g). Then

F (f) ≥ G(g) + �

≥ G(f) + �.

This contradicts that ∣∣F −G∣∣∞ < �.

7.3 Comparing the difference to the size of the

alternating code

In studying the difference Δn in the bn−2 term between the alternating code and

a largest Pebody code, a natural question is: how does this difference compare to

�n,n−2? In other words by what proportion can a Pebody code be larger than the

alternating code of the same length? Table 7.2, describes the size of the alternating

code alongside Δn for comparison. The last two columns of the table give us the

ratios �n,n−2

Δn
and �n,n−2

nΔn
in order to show us how �n,n−2 and Δn relate in size for large

n.

In our measurements Δn is smaller than �n,n−2, but the rate at which the ratio
�n,n−2

Δn
grows is far slower than that at which �n,n−2 and Δn shrink. The right hand

column, �n,n−2

nΔn
, seems convergent. Thus, for some � ≈ 0.0795, it appears we have

Δn ≈
�n,n−2

�n

84

T
ab

le
7.

2:
C

al
cu

la
ti

on
s

of
co

effi
ci

en
ts

of
A
n
,b

=
�
n
,n
bn

+
�
n
,n
−

1
bn
−

1
+
�
n
,n
−

2
bn
−

2
+
O

(b
n
−

3
),

Δ
n

an
d

h
ow

it
s

m
ag

n
it

u
d
e

co
m

p
ar

es
to
�
n
,n
−

2

n
�
n
,n

�
n
,n
−

1
�
n
,n
−

2
Δ
n

�
n
,n
−
2

Δ
n

�
n
,n
−
2

n
Δ
n

20
1.

52
23

4e
-4

-1
.5

22
34

e-
3

7.
46

58
9e

-3
4.

76
81

1e
-3

1.
56

58
0

0.
07

82
89

9

40
1.

82
01

8e
-8

-3
.6

40
37

e-
7

3.
61

48
5e

-6
1.

14
20

6e
-6

3.
16

52
0

0.
07

91
30

1

60
2.

17
62

9e
-1

2
-6

.5
28

88
e-

11
9.

75
31

6e
-1

0
2.

04
92

3e
-1

0
4.

75
94

2
0.

07
93

23
7

80
2.

60
20

8e
-1

6
-1

.0
40

83
e-

14
2.

07
57

0e
-1

3
3.

26
76

1e
-1

4
6.

35
23

6
0.

07
94

04
5

10
0

3.
11

11
6e

-2
0

-1
.5

55
58

e-
18

3.
88

04
5e

-1
7

4.
88

43
0e

-1
8

7.
94

47
3

0.
07

94
47

3

12
0

3.
71

98
5e

-2
4

-2
.2

31
91

e-
22

6.
68

39
0e

-2
1

7.
00

85
2e

-2
2

9.
53

68
2

0.
07

94
73

5

14
0

4.
44

76
2e

-2
8

-3
.1

13
33

e-
26

1.
08

80
6e

-2
4

9.
77

69
7e

-2
6

11
.1

28
8

0.
07

94
91

2

16
0

5.
31

77
7e

-3
2

-4
.2

54
22

e-
30

1.
69

95
3e

-2
8

1.
33

60
4e

-2
9

12
.7

20
6

0.
07

95
03

8

18
0

6.
35

81
7e

-3
6

-5
.7

22
35

e-
34

2.
57

21
9e

-3
2

1.
79

71
8e

-3
3

14
.3

12
4

0.
07

95
13

2

20
0

7.
60

21
2e

-4
0

-7
.6

02
12

e-
38

3.
79

73
0e

-3
6

2.
38

76
2e

-3
7

15
.9

04
1

0.
07

95
20

6

85

as n → ∞. So when n is large we may approximate (the three leading terms of)

the the size of a largest Pebody code by that of the alternating code and incur only

small error in just the third term.

7.4 Discussion of algorithms used

For Table 7.1 we needed to calculate Rn,l and measure the computation time for each

calculation. The code was broken down into the following three functions:getF (n, i),

getMaximisedR(n, l) and getEpsilon(n, l).

The simplest of these is getEpsilon(n, l) which used relatively low precision float-

ing point arithmetic (called machine precision in Mathematica — about 16 signifi-

cant figures) to give us an idea of the magnitude of the error we could expect from the

approximation Rn,l. It computes �n,l from the formula as defined in Definition 6.2.4

and is very quick to evaluate.

The function getF (n, i) returns Fn,i(f), defined in Definition 5.1.1. The definition

is a recursive one and so Fn,i(f) must be calculated from Fn,i+1(f) and so on from

Fn,n(f) = 1(f). However, getF (n, i) makes use of the identities

Fn,i(f) = Fn−2,i−2(f),

Fn+1,1(f) =

∫ 1−f

0

Fn,1(g)dg,

Fn,i+1(f) = Fn,i(1− f),

proved in Theorem 5.1.7 and Lemma 5.1.8. By using these results, getF (n, i) would

only calculate Fn−i,0(f) or Fn−i+1,1(f) if i is odd or even respectively. We shall

therefore only talk in terms of getF (n, 0 and getF (n, 1). In calculating getF (n, 1),

for all positive integers m < n one gets Fm,1(f) for free. Each of these values is stored

for (nearly) immediate future retrieval. Any future request for, say, getF (m, 0) is

then calculated by computing the substitution f 7→ 1− f on the result of getF (m+

1, 1), which is already stored. Again, getF (m, 0) would be stored for future retrieval.

Although we did not wipe these results between each successive calculation of

Rn,l, getF actually times itself and stores this time along with the one-time computed

value. Fresh experiments then have their computation times artificially corrected

with the relevant stored times. This means the displayed computation times are as if

the results from previous experiments had been wiped but the experiments actually

take considerably less time to perform.

Finally, getMaximisedR(n, l) returns the function Rn,l(f1, f2, . . . , fn−1) max-

imised over [0, 1]n−1. The first thing this function does is determine the accuracy it

must work to and does this by calling getEpsilon(n, l). Mathematica then doubles

the number of decimal places to get the number it decides to work to (this is the

default in Mathematica). This ensures that we calculate our answer to a suitably

86

high precision and so can rely on the output for the Rn,n−1 − Rn,l (referred to as

“Actual error measured”) columns in Table 7.1.

The function then follows the definition of Rn,l given in Definition 6.2.1 by using

the approximation for getF (n, i) when n − i ≥ l. The function is maximised using

Mathematica’s built-in tools to a suitably high precision with reasonably large cap on

the maximum number of iterations allowed until the answer lies within our tolerance.

This tolerance is set to be a few decimal places within the maximum error �n,l (this

varies, but about 3 or 4). As previously discussed, if any of the getF (n, i) values

were used from earlier experiments, the computation time is corrected. This is not

a matter for concern since the times for these calculation do not vary between runs

by more than a couple of milliseconds. The Mathematica code for these functions

is given in Appendix C.

The columns of coefficients in Table 7.2 are generated by the recursive function

scrfull(n, i, parity), which calculates some of the polynomial Pn,i(b, c) as defined

in Definition 3.1.3. This is again recursively defined and as with getF (n, i), results

are stored for future retrieval and similar identities are used to prevent duplicate

calculation of identical polynomials.

If scrfull(n, 0, parity) were to calculate the entire polynomial Pn,0, which is a

polynomial in b and c with combined degree n, it would be dealing with coefficient

for each term bjck where 0 ≤ j + k ≤ n− i. There are

n∑
j=0

(n− j) = n(n+ 1)−
n∑
j=0

j

= n(n+ 1)− n(n+ 1)

2

=
n(n+ 1)

2

such terms. As such, calculation to values of n = 200 would have been impractical

to compute with the hardware outlined at the beginning of this chapter.

Since we only need the terms bjck where j+k ≥ n−2 there is some optimisation

we can do. From Definition 3.1.3 we have that, for even i,

Pn,i(b, wi) :=

wi−1∑
wi+1=1

Pn,i+1(b, wi+1).

Apply to that Lemma 2.0.7 and we see that a term �j,kb
jwki+1 will contribute

�j,kb
j

(
1

k + 1
(wi − 1)k+1 +

1

2
(wi − 1)k +

k

12
(wi − 1)k−1 +O(wk−2

i)

)
to Pn,i(b, wi). Thus, if we are only interested in the polynomial with terms with

combined degree (n−i), (n−i−1) or (n−i−2) then we need only store and compute

87

these terms. Rather than computing the entire sum, using say Mathematica’s built-

in Sum function, we use Lemma 2.0.7. This means that we need only manage

the three homogenous polynomials that we are interested in. So, for Pn,0 we are

computing polynomials with n + 1, n and n − 1 terms. This is only 3n terms,

which is significantly quicker to compute than the aforementioned n(n+1)
2

terms and

requires a great deal less memory to store it. Using this method we were (finally)

about to compute the coefficient columns in Table 7.2. The other columns are just

quotients of these numbers and so were simple to compute. The code for the function

scrfull(n, i, parity) is given in Appendix D.

The columns for Table 3.2 were similarly easy to compute once the three leading

coefficients for the polynomial ∣An,b∣ had been determined. The formulae linking

the coefficients to the values ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣+ ∣U [3]
n ∣ given in Corollary 3.2.12

were solved to give ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣+ ∣U [3]
n ∣. The values of the coefficients were

then substituted into the new formulae to generate the results for Table 3.2.

88

Appendix A

MatLab programming code

The following MatLab code details the recursive function scrf(n, parity, c) that was

used to calculate the polynomial ∣An,b∣ for n from 1 to 10. The output is shown in

Table 3.1.

The variable parity takes the values 0 or 1 and scrf(n, parity, c) gives the poly-

nomial in b and c counting the number of down/up or up/down words respectively

of length n with first letter c. Thus scrf(n, 1, c) counts the number of up/down

words of length n with first letter c.

We are interested in ∣An,b∣, the total number of up/down words of length n.

There is however a simple bijection between the up/down words of length n and the

number of down/up words of length n − 1 with first letter b. In order to calculate

the polynomial ∣An,b∣ therefore, we need only to make the substitution c = b on the

polynomial scrf(n+ 1, 0, c).

function sym_poly=scrf(n,parity,c)

%returns number of words of length n that start with the letter c and that

%are up/down, if parity=1, and down/up, if parity=0

%scrf_poly_table(:,parity+1) is a col of polys for increasing

%n with parity ’parity’

global scrf_poly_table;

known_rows=size(scrf_poly_table,1);

if known_rows==0

scrf_poly_table=sym([1 1 1 1]);

known_rows=1;

end

syms d b;

if n==1

sym_poly=sym(1);

return

end

if known_rows>=n

if scrf_poly_table(n,parity+3)==1

sym_poly=scrf_poly_table(n,parity+1);

return

end

end

%we don’t know this poly yet

if parity==1

89

sym_poly=subs(symsum(scrf(n-1,1-parity,c),c,d+1,b),d,c);

else

sym_poly=subs(symsum(scrf(n-1,1-parity,c),c,1,d-1),d,c);

end

scrf_poly_table(n,parity+1)=sym_poly;

scrf_poly_table(n,parity+3)=1;

return

%Declare variables used in the calculations

syms b c;

scrf(10,0,c);

scrf(11,0,c);

%access global variable scrf_poly_table

global scrf_poly_table;

%Display calculated polynomials

subs(scrf_poly_table(:,1),c,b);

90

Appendix B

MatLab code generating Fn,1(f)

and F̃n,1(f)

The code here generates the data for Table 5.1 and Table 5.2 showing the polynomials

Fn,1(f) and the normalised F̃n,1(f) respectively, for n from 2 to 10. When n = 1 we

have F1,1(f) = 1 = F̃1,1(f) by definition.

Most of the complicated computation is done in scrf(n, parity, c), which was

described in Appendix A. By definition 5.1.1, Fn,1(f) is the coefficient of the highest

power of b in Pn,1(b, bf). This is precisely how we generate the Fn,1(f) for Table 5.1.

We employ the function lcoef(poly, variable), which obtains the leading coefficient

of the polynomial poly in the variable variable, to perform this task.

The normalised polynomials F̃n,1(f) were obtained by dividing the Fn,1(f) by

Fn,1(0) as per Definition 5.1.9. They are displayed in Table 5.2.

%Populate the variable scrf_poly_table with polynomials P_{n,1}(b,c).

global scrf_poly_table;

syms b c f;

scrf(10,0,c);

scrf(11,0,c);

%Substitute c=bf so we can extract leading coefficient: a polynomial in f.

polys=subs(scrf_poly_table(:,2),c,b*f);

%print out in scientific notation

format short e;

for i=2:n

%Coefficients of F_{n,1}(f).

%(not normalised)

sym2poly(lcoef(polys(i,1),b))

end for i=2:n

%Coefficients of \tilde{F}_{n,1}(f)

%(normalised)

sym2poly(lcoef(polys(i,1),b))/subs(lcoef(polys(i,1),b),f,0)

end

%Function that returns the leading coefficient of a symbolic polynomial

91

function coefficient=lcoef(poly,variable)

%variable must be positive for log to work, so substitute for it ’pos’

pos=sym(’pos’,’positive’);

poly=subs(poly,variable,pos);

%the next few lines gets the leading coefficient

poly=expand(poly);

poly=collect(poly,pos);

[coeffs_row,terms_row]=coeffs(poly,pos);

terms_row=eval(simplify(log(terms_row)/log(pos)));

[c,i]=max(terms_row);

coefficient=coeffs_row(1,i);

return

92

Appendix C

Mathematica code for calculating

and timing maximisation of Rn,l

The code given here was written for Mathematica and was used to demonstrate the

effectiveness, in terms of accuracy versus computation time, of the approximations

Rn,l to the difference in size between the alternating code and largest Pebody codes.

The values approximated, errors in approximation and compute times are shown in

Table 7.1. Each of the functions is described in some detail in 7.4 and it is here the

reader is referred for further discussion.

getF[n_, i_] := (

(*

Return {integrationTime, substitutionTime,

the polynomial F_ {n,i}(f) as defined in 4.1.1}.

Justification for storing two times:

For each getF[n,i] where i==1 we perform an integration but for

each subsequent getF[m,i] with m<n there is no additional

computation required.

For i==0 a fresh substitution must be made for each value of n.

Therefore we want to sum the substitutionTimes but only use the

largest integrationTime.

*)

Module[{

parity = Mod[i, 2],

prevIntegrationTime, prevResult,

integrationTime = 0, substitutionTime = 0, result

},

If[i != parity,

(*

We will only store getF[m,0] and getF[m,1] for some integer m.

*)

getF[n - i + parity, parity],

(*

We now have i==parity.

*)

If[i == 1,

(*Using 4.1.8*)

(*

The substitutionTime will be 0, so just get elements {1,3}

*)

93

{prevIntegrationTime, prevResult} = getF[n - 1, 1][[{1, 3}]];

{integrationTime, result} = Timing[Expand[

Integrate[prevResult, {f, 0, 1 - f}]

]];,

(*

No sense in recalculating, since a substitution of "f->1-f"

is much quicker; we shall however store the result for

future use.

*)

(*

The substitutionTime will be 0, so just get elements {1,3}

*)

{prevIntegrationTime, prevResult} = getF[n + 1, 1][[{1, 3}]];

{substitutionTime, result} = Timing[Expand[

prevResult /. f -> 1 - f

]];

];

getF[n, i] = {prevIntegrationTime + integrationTime,

substitutionTime, result}

]

]

)

(*

{IntegrationTime=0,substitutionTime=0, F_ {1,1}(f):=1}

*)

getF[1,1] = {0, 0, 1};

getMaximisedR[n_, l_] := (

(*

Return R_ {n,l}, as defined in 5.2.1,

maximised over f_ 1,f_ 2,...,f_ {n-1}

*)

If[l < 1 || l > n || n < 2,

Print["Bad input parameters. n=" <> ToString[n]

<> " l=" <> ToString[l]

];

Interrupt[];

];

Clear[f];

Module[

{

total = 0,

(*

Accuracy to be number of decimal places of error plus

extra error incurred due to summing n times. If l==n-1 then

we are not approximating, so use getEpsilon[n,l-1], the

smallest error for this n.

*)

accuracyGoal = Max[6,

If[l == n - 1,

Ceiling[-Log[10, getEpsilon[n, l - 1]] + Log[10, n]],

Ceiling[-Log[10, getEpsilon[n, l]] + Log[10, n]]

]

],

substitutionTimes = Table[0, {temp1, n}, {temp2, 2}],

substitutionTime = 0,

integrationTime = 0,

94

maxIntegrationTime = 0,

totalTime = 0

},

totalTime = First[Timing[

Do[

(*

We can optimise here for when i-1>=l and n-i-1>=l:

just use f_i=1/2. Hence total+=2ˆ{n+1}/piˆn.

*)

If[i - 1 >= l && n - i - 1 >= l,

total += N[2ˆ(n + 1)/Piˆn, 2*accuracyGoal],

(*

Calculate lhs of summand of R_ {n,l} given in 5.2.1.

*)

If[i - 1 < l,

{integrationTime, substitutionTime, lhs} = getF[-1, -i],

lhs = 2ˆ(i + 1)/Piˆ(i) Cos[Pi f/2];

If[EvenQ[i], lhs = lhs /. f -> 1 - f];

];

maxIntegrationTime = Max[maxIntegrationTime, integrationTime];

(*

Record substitutionTime for (i-1,Mod[-i,2]). We actually

use (i-1+1,Mod[-i,2]+1) because Mathematica starts arrays

at 1 not 0.

*)

substitutionTimes[[i, Mod[-i, 2] + 1]] = substitutionTime;

(*

Calculate rhs of summand of R_ {n,l} given in 5.2.1.

*)

If[n - i - 1 < l,

{integrationTime, substitutionTime, rhs} = getF[n, i + 1],

rhs = 2ˆ(n - i + 1)/Piˆ(n - i) Cos[Pi f/2];

If[OddQ[i], rhs = rhs /. f -> 1 - f];

];

maxIntegrationTime = Max[maxIntegrationTime, integrationTime];

(*

Record substitutionTime for (n-i-1,Mod[i+1,2]). We actually

use (n-i,Mod[i+1,2]+1) because Mathematica starts arrays

at 1 not 0.

*)

substitutionTimes[[n - i, Mod[i + 1, 2] + 1]] = substitutionTime;

total += NMaxValue[

{

lhs*rhs,

0 <= f && f <= 1

}, {f},

AccuracyGoal -> accuracyGoal,

PrecisionGoal -> Infinity,

MaxIterations -> 999,

WorkingPrecision -> 2*accuracyGoal

];

],

(*

Do this for i=1..n-1.

95

*)

{i, n - 1}

];

]];

totalTime += maxIntegrationTime + Total[substitutionTimes, 2];

Return[{totalTime, total}];

]

)

getEpsilon[n_, l_] := (

(*

A fast/rough estimate of epsilon_ {n,l}.

*)

If[l == n - 1, Return[0];];

N[

2ˆ(n - 1) (Piˆ2 - 8)/Piˆn/3ˆ(n - 4) (

(3 (n - 1)/2 - l - Abs[(n - 1)/2 - l]) (Piˆ2 - 8)/8

+ 3ˆ(n - l - 2)

- 1/3

), 5

]

)

96

Appendix D

Mathematica code for calculating

the three leading terms of
∣∣An,b∣∣ as

a polynomial in b

The function scrfull(n, i, level), written for Mathematica, calculates parts of the

polynomial Pn,i(b, c). It returns the homogenous polynomial who’s terms are those

in Pn,i(b, c) with combined degree n − i − level. With level = 0, for example, we

obtain the terms of highest combined degree. Since ∣An,b∣ = Pn,0(b, b), we can use this

polynomial to give us the three leading terms of the alternating code. This is how we

generated these coefficients in Table 7.2. Furthermore, one can use Corollary 3.2.12

to calculate the values ∣Un∣, ∣U [2]
n ∣ and ∣U [2,2]

n ∣ + ∣U [3]
n ∣. We give the results for these

values in Table 3.2. A more thorough discussion of how this recursive function

works, and why it is such an improvement on scrf(n, parity, c) in Appendix A, is

given in 7.4.

%Clear[scrfull];(*Remove any previous data*)

%(*

%level (=0,1 or 2) tells us which of the top 3 homogeneous polynomials

%we are referring to:

% 0 - poly in P_{n,i}(b,c) of highest combined degree.

% 1 - poly in P of second highest combined degree.

% 2 - poly in P of third highest combined degree.

%*)

%scrfull[n_, i_, level_] := (

% Clear[b, c];

% If[n < i,

% Print["’n’(" <> ToString[n] <> ") is less than ’i’(" <>

% ToString[i]];

% Interrupt[]

%];

% parity = Mod[i, 2];

% If[i != parity,

% Return[scrfull[n - i + parity, parity, level]]

%];

% If[level == 0,

% Return[

% scrfull[n, i, 0] =

97

% If[i == 1,

% Integrate[scrfull[n - 2, 0, 0], {c, c, b}],

% Integrate[scrfull[n, 1, 0], {c, 0, c}]

%]

%]

%];

% If[level == 1,

% Return[

% scrfull[n, i, 1] =

% If[i == 1,

% (Integrate[scrfull[n - 2, 0, 1], {c, c, b}]

% + 1/2 (

% Replace[scrfull[n - 2, 0, 0], c -> b, {-1}]

% - scrfull[n - 2, 0, 0]

%)

%),

% (Integrate[scrfull[n, 1, 1], {c, 0, c}]

% - 1/2 (

% scrfull[n, 1, 0]

% + Replace[scrfull[n, 1, 0], c -> 0, {-1}]

%)

%)

%]

%]

%];

% If[level == 2,

% Return[

% scrfull[n, i, 2] =

% If[i == 1,

% (Integrate[scrfull[n - 2, 0, 2], {c, c, b}]

% + 1/2 (

% Replace[scrfull[n - 2, 0, 1], c -> b, {-1}]

% - scrfull[n - 2, 0, 1]

%)

% + 1/12 (

% Replace[D[scrfull[n - 2, 0, 0], c], c -> b, {-1}]

% - D[scrfull[n - 2, 0, 0], c]

%)

%),

% (Integrate[scrfull[n, 1, 2], {c, 0, c}]

% - 1/2 (

% scrfull[n, 1, 1]

% + Replace[scrfull[n, 1, 1], c -> 0, {-1}]

%)

% + 1/12 (

% D[scrfull[n, 1, 0], c]

% - Replace[D[scrfull[n, 1, 0], c], c -> 0, {-1}]

%)

%)

%]

%]

%];

%)

%scrfull[0, 0, 0] = 1;

%scrfull[0, 0, 1] = 0;

%scrfull[0, 0, 2] = 0;

%scrfull[1, 1, 0] = 1;

%scrfull[1, 1, 1] = 0;

98

%scrfull[1, 1, 2] = 0;

99

Bibliography

[Bea96] Alan F Beardon. Sums of powers of integers. The American Mathematical

Monthly, 1996.

[BR90] Bruce Bauslaugh and Frank Ruskey. Generating alternating permutations

lexicographically. BIT, 30(1):17–26, March 1990.

[BR09] Yuliy Baryshnikov and Dan Romik. Enumeration formulas for Young

tableaux in a diagonal strip. Israel Journal of Mathematics, 2009. forth-

coming.

[Car66] Lennart Carleson. On convergence and growth of partial sums of Fourier

series. Acta Mathematica, 116(1):135–157, December 1966.

[Dun99] William Dunham. Euler: the master of us all. Mathematical Association

of America, 1999.

[Hal57] Paul Richard Halmos. Introduction to Hilbert space and the theory of spec-

tral multiplicity. Chelsea publishing company, second edition, 1957.

[KB67] Donald E Knuth and Thomas K Buckholtz. Computation of tangent, Euler

and Bernoulli numbers. Mathematics of Computation, 21(100):663–688,

October 1967.

[Lan99] Serge Lang. Complex analysis. Springer, fourth edition, 1999.

[Lar73] Ronald Larsen. Functional analysis an introduction. Marcel Dekker, 1973.

[Pas54] Blaise Pascal. Sommation des puissances numeriqués. 1654.

[Peb06] Luke Pebody. The largest strongly consecutive repeat-free code. Journal

of Combinatorial Theory, Series A, 113(3):551–555, Apr 2006.

[Slo] N J A Sloane. An on-line version of the encyclopedia of integer sequences.

Website. http://www.research.att.com/˜njas/sequences/.

[Tit39] Edward Charles Titchmarsh. The theory of functions. Oxford University

Press, second edition, 1939.

100

