
Securing Mobile Ubiquitous Services
using Trusted Computing

Adrian Ho Yin Leung

Technical Report
RHUL–MA–2009–17

10 July 2009

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Securing Mobile Ubiquitous Services
using Trusted Computing

by

Adrian Ho Yin Leung

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2009

To my daughters,

Louisa and Lavigne

Declaration

These doctoral studies were conducted under the supervision of Professor Chris J.
Mitchell.

The work presented in this thesis is the result of original research carried out by my-
self, in collaboration with others, whilst enrolled in the Information Security Group,
Department of Mathematics, Royal Holloway, University of London as a candidate
for the degree of Doctor of Philosophy. The research presented in Chapter 5 is my
own work, although I received many constructive comments from Liqun Chen and
Chris J. Mitchell. The results presented in Chapter 6 are joint work with Raphael
Phan. The weaknesses described in Section 6.4 of the SSB Scheme were jointly
identified by both of us, while the suggested solutions in Section 6.5 are my work.
The results in Chapter 7 and 8 were research carried out by myself with constructive
comments from Chris J Mitchell. The protocol described in Chapter 9 was jointly
developed with Geong Sen Poh. However, the idea to use trusted computing to solve
the problem was mine.

This work has not been submitted for any other degree or award in any other uni-
versity or educational establishment.

Adrian Ho Yin Leung
June, 2009

3

Acknowledgements

My heartfelt thanks to my supervisor Professor Chris J. Mitchell for his guidance,
encouragement, motivation, advice, patience and dedication. Chris you are an ex-
cellent teacher and mentor; I have learnt a great deal from you in the last few years.

I would like to thank my examiners, Professor Bruce Christianson and Professor
Peter Wild for taking the time to examine my thesis and for their constructive
comments.

I would like to thank the British Foreign and Commonwealth Office (FCO) and
Royal Holloway for awarding the British Chevening/Royal Holloway Scholarship to
me. This research would not have been possible without this very generous financial
support. Many thanks also to the EU-funded ECRYPT network of excellence for
providing conference and travel support. I am also grateful to the Virtual Centre of
Excellence in Mobile and Personal communications (Mobile VCE) for inviting me
to participate in this exciting research programme on ubiquitous services.

I would like to thank my co-authors Roderick Bloem, Liqun Chen, Haitham Cruick-
shank, Karin Greimel, Raphael Phan, Geong-Sen Poh, Yingli Sheng, Ronald Toegl
and Po-Wah Yau. I am particularly grateful to Liqun Chen for patiently answering
my numerous queries on DAA. It has been a pleasure working with and learning
from all of you.

And not forgetting the ISG for (i) the very supportive and friendly research environ-
ment, (ii) the very approachable academic/research staff (in particular John Austen,
Shane Balfe, Jason Crampton, Hilary Ganley, Kenny Paterson, Fred Piper, Hoon
Wei Lim, Keith Martin, Scarlet Schwiderski-Grosche, Allan Tomlinson, Stephen
Wolthusen, and Po-Wah Yau) with whom I have had the honour of interacting, (iii)
the helpful and ever smiling support staff, in particular Pauline Stoner, Jenny Lee,
Lisa Nixon, and Jon Hart, and (iv) my fellow PhD students, especially my office
mates from McCrea 255.

My deepest gratitude goes to my parents for all their years of unwavering support
and love. Thanks also to my wife for taking this journey with me, and my dear
daughters Louisa and Lavigne for keeping me motivated, and for making everything
worthwhile.

4

Abstract

This thesis examines how trusted computing technology can be used to enhance the
security of ubiquitous services in mobile environments.

It is envisaged that, in a mobile ubiquitous environment, users (through one of their
mobile devices and using a range of network access technologies) will be able to
seamlessly discover, select, and access a rich offering of services and content from a
range of service providers. To realise this vision, it is important that security and
privacy issues are addressed from the outset.

Initially we introduce the model of mobile ubiquitous computing that underlies the
discussions in the remainder of the thesis. We then identify the security requirements
for ubiquitous service provision arising in the context of this model.

In Part II of the thesis we examine the technology of trusted computing. We consider
the effectiveness of a recently proposed attack on one of the trusted computing
primitives, namely the Direct Anonymous Attestation protocol, and also examine
ways in which the attack can be prevented. We further cryptanalyse a trusted
computing based protocol designed to secure the storage and distribution of secrets.

In the final part of the thesis, we propose three novel schemes for mobile services
security, all using trusted computing as the primary building block. Firstly, we de-
scribe a Secure and Private Service Discovery Protocol in which, during the service
discovery process, the trustworthiness of a user platform is anonymously authenti-
cated to a service provider, whilst a service provider is simultaneously authenticated
to the user. The novel scheme possesses the following desirable properties: user
anonymity, service information confidentiality, unlinkability, and rogue blacklisting.

We next present a Device Management Framework for Secure Service Delivery.
Apart from providing secure service interactions between the service provider and
user devices, the framework is designed to reduce the complexity of device security
management tasks for users. The framework also protects the interests of service
providers by preventing unauthorised credential sharing amongst user devices. One
other novel feature of the framework is that compromised devices are self-revoking,
hence removing the need for a cumbersome revocation infrastructure.

Finally, we construct a Privacy-Preserving Content Watermarking Scheme. Our
scheme minimises the reliance on a TTP for privacy protection, as the buyer can

5

generate verifiable pseudonyms on its own. As a result, we are able to reduce
communication overheads, and hence improve the overall efficiency compared to
existing schemes. In addition, the content provider is able to obtain assurance
that a buyer-generated watermark is well-formed. The scheme also provides the
following security features: framing resistance, user anonymity, content information
confidentiality, unlinkability (even against the TTP), and transaction linkability.

6

Contents

1 Introduction 15
1.1 Motivation and Challenges . 15
1.2 Contributions . 17
1.3 Organisation of Thesis . 19
1.4 List of Publications . 20

I Background 23

2 Security Preliminaries 24
2.1 Introduction . 24
2.2 Security Threats . 25
2.3 Security Services . 26
2.4 Security Mechanisms . 28

2.4.1 Symmetric Encryption . 28
2.4.2 Cryptographic Hash Functions 29
2.4.3 Message Authentication Codes 29
2.4.4 Asymmetric Encryption . 30
2.4.5 Digital Signatures . 31
2.4.6 Key Agreement . 31
2.4.7 Public Key Infrastructures 32

3 Mobile Ubiquitous Computing 34
3.1 Introduction . 34
3.2 A Mobile Ubiquitous Environment 36
3.3 Personal Distributed Environments 39

3.3.1 PDE scenario . 39
3.3.2 PDE management . 40

3.4 A Ubiquitous Services Scenario . 42
3.5 Ubiquitous Services Security Issues 44

3.5.1 User Perspective . 44
3.5.2 Service Provider Perspective 46

3.6 Security Requirements . 47
3.6.1 General Security Requirements 47
3.6.2 Specific User and Service Provider Security Requirements . . 47

3.7 Summary . 49

7

CONTENTS

II Security Issues in Trusted Computing 50

4 Trusted Computing 51
4.1 Introduction . 52

4.1.1 The Trusted Computing Group 53
4.1.2 What is a Trusted Platform? 54

4.2 Trusted Platform Architecture . 55
4.2.1 Roots of Trust . 55
4.2.2 TPM Functional Components 56
4.2.3 TPM Keys and Identities . 59
4.2.4 TPM Credentials . 61

4.3 Trusted Computing Functionality . 63
4.3.1 Integrity Measurement, Storage and Reporting (IMSR) . . . 63
4.3.2 Protected Message Exchange and Storage 65
4.3.3 Authenticated Boot and Secure Boot 67
4.3.4 Isolated Execution Environments 68

4.4 Trusted Computing and Privacy . 70
4.4.1 Privacy CA . 71
4.4.2 Direct Anonymous Attestation 72

4.5 Applications of Trusted Computing 78
4.5.1 Commercial Applications . 78
4.5.2 Client Applications . 79
4.5.3 Distributed Computing Environments 81
4.5.4 Other Applications . 83

4.6 Summary . 84

5 A Possible Privacy Flaw in DAA 85
5.1 Introduction . 86
5.2 A Privacy Attack on DAA . 87
5.3 How Realistic is the Rudolph Attack? 89

5.3.1 Scenario 1: Linking large numbers of users 89
5.3.2 Scenario 2: Linking a small set of users 91

5.4 Preventing the Rudolph Attack . 92
5.4.1 Modifying the TCG Specifications 92
5.4.2 Using a Trusted Auditor . 93
5.4.3 A User-Centric Approach . 96

5.5 Summary . 96

6 Analysis of a Secret Distribution and Storage Scheme 98
6.1 Introduction . 99
6.2 Preliminaries . 99

6.2.1 Notation . 100
6.2.2 TPM Commands . 100
6.2.3 Assumptions . 101

6.3 A TPM-based Secret Distribution and Storage Scheme 102
6.4 Analysis of the Scheme . 104

6.4.1 Absence of Server-to-Client Authentication 105

8

CONTENTS

6.4.2 Preventing the Client from Receiving the Secret 105
6.4.3 Exploiting the TPM as an (Signing) Oracle 106

6.5 Discussion . 106
6.6 Summary . 107

III Applications of Trusted Computing to Secure Ubiquitous
Services 108

7 Secure and Private Service Discovery 109
7.1 Introduction . 110
7.2 Service Discovery Security & Privacy Issues 112

7.2.1 Adversary Model . 112
7.2.2 Security and Privacy Threat Model 113
7.2.3 Specific Security and Privacy Requirements 114
7.2.4 Challenges . 115

7.3 Related Work . 115
7.4 Building Blocks . 116

7.4.1 Diffie-Hellman Key Agreement 117
7.4.2 Trusted Computing . 117

7.5 The Ninja Authentication Scheme 117
7.5.1 The Entities . 117
7.5.2 Working Assumptions . 118
7.5.3 The Scheme . 119

7.6 Security Analysis . 125
7.7 Summary . 128

8 A Framework for Secure Ubiquitous Service Delivery 129
8.1 Introduction . 130
8.2 Service Delivery Security Issues . 131

8.2.1 Security Threats . 131
8.2.2 Security Requirements . 132

8.3 Building Blocks . 133
8.3.1 Device Management Entity (DME) 134
8.3.2 Manual Authentication (MANA) Protocols 134
8.3.3 Ninja: A Secure Service Discovery Protocol 135
8.3.4 Trusted Computing . 135

8.4 A Framework for Secure Device Management 136
8.4.1 The Entities . 136
8.4.2 Working Assumptions . 137
8.4.3 The SDMF . 138

8.5 Security Analysis . 144
8.6 Summary . 147

9 Privacy Preserving Content Distribution Protection 148
9.1 Introduction . 149
9.2 Background and Related Work . 151

9

CONTENTS

9.2.1 Digital Watermarking Overview 151
9.2.2 Related Work . 152

9.3 CDP Security Issues . 154
9.3.1 CDP Threat Model . 154
9.3.2 CDP Security Requirements 155

9.4 Building Blocks . 156
9.4.1 Homomorphic Encryption Functions 156
9.4.2 Permutation Function . 157
9.4.3 Trusted Computing . 157

9.5 A Novel CDP Scheme . 158
9.5.1 The Entities . 158
9.5.2 Working Assumptions . 158
9.5.3 The Scheme . 160

9.6 Security Analysis . 166
9.7 Comparison with Related Work . 168

9.7.1 Security . 169
9.7.2 Efficiency . 171

9.8 Summary . 172

10 Conclusions 174
10.1 Summary of Contributions . 174
10.2 Directions for Future Work . 177

Bibliography 179

10

List of Figures

3.1 A Mobile Ubiquitous Computing Environment 37
3.2 Balancing Security, QoS and Mobility 38
3.3 A Personal Distributed Environment 40
3.4 A Ubiquitous Services Scenario . 43

4.1 The TPM Design . 57
4.2 An Authenticated Boot Process . 67
4.3 A Virtualisation Scenario . 69
4.4 The DAA Scheme . 74

5.1 The Rudolph Attack . 88

6.1 TPM-based secret distribution and storage scheme 104

7.1 The Ninja Authentication Scheme 120
7.2 Join Phase . 121
7.3 Mutual Authentication Phase . 124

8.1 SDMF Operational Phases . 138

9.1 The CDP Watermarking Scheme Phases of Operation 161
9.2 Buyer Registration Phase . 162
9.3 Watermarking and Content Acquisition Phases 165

11

List of Tables

2.1 Security Threats and Security Services 27

5.1 Communications and computation costs for honest and colluding en-
tities. 91

5.2 Mapping of EKs to a PKI for individual Issuers 95

6.1 Notation . 100

7.1 Threats and Adversary Matrix . 114
7.2 Notation . 119

8.1 Notation . 138

9.1 Notation . 160
9.2 Security Properties . 170
9.3 Efficiency . 172

12

Abbreviations
AIK: Attestation Identity Key
API: Application Program Interface
BBB: BIOS Boot Block
CA: Certification Authority
CDP: Content Distribution Protection
CRL: Certificate Revocation List
CRTM: Core Root of Trust for Measurement
DAA: Direct Anonymous Attestation
DH: Diffie-Hellman
DME: Device Management Entity
DoS: Denial of Service
DRM: Digital Rights Management
EK: Endorsement Key
GSM: Global System for Mobile Communications
IOI: Items of Interest
ISO: International Organization for Standardization
MAC: Message Authentication Code
OAEP: Optimal Asymmetric Encryption Padding
OCSP: Online Certificate Status Protocol
P3P: Platform for Privacy Preferences
PCR: Platform Configuration Register
PDA: Personal Digital Assistant
PDE: Personal Distributed Environment
PII: Personally Identifiable Information
PKI: Public Key Infrastructure
RFID: Radio Frequency Identification
RSA: Rivest-Shamir-Adleman
RTM: Root of Trust for Measurement
RTR: Root of Trust for Reporting
RTS: Root of Trust for Storage
SHA: Secure Hash Algorithm
SML: Stored Measurement Log
SRK: Storage Root Key
TC: Trusted Computing
TCG: Trusted Computing Group
TPM: Trusted Platform Module
TTP: Trusted Third Party
VM: Virtual Machine
VMM: Virtual Machine Monitor
W3C: World Wide Web Consortium

13

Notation

|| The concatenation operator
(Apk ,Ask) A public/private key pair of a principal A

(Kpk ,Ksk) A public/private key pair for an asymmetric cryptographic algorithm
A → B: X The transmission of data X from principal A to principal B

CertA A public key certificate for a principal A

CertKpk
A public key certificate for the public key Kpk

DK(X) The symmetric decryption of ciphertext X, using the secret key K

D̄Ksk
(X) The asymmetric decryption of ciphertext X, using the private key Ksk

EK(X) The symmetric encryption of plaintext X, using the secret key K

ĒKpk
(X) The asymmetric encryption of plaintext X, using the public key Kpk

H A cryptographic hash-function
IDA An identifier for a principal A

MACK(X) The message authentication code (MAC) of data X, computed using the key K

N A nonce (a random value)
SigK (X) A signature computed on data X using the private signature key K

tA A timestamp generated by principal A

14

Chapter 1

Introduction

Contents

1.1 Motivation and Challenges 15

1.2 Contributions . 17

1.3 Organisation of Thesis . 19

1.4 List of Publications . 20

This chapter gives an overview of the thesis. We begin the chapter by outlining the

motivation for the research. We next describe the contributions of this thesis. The

overall structure of the thesis is then presented, and the chapter concludes with a list

of publications covering some of the results described in this thesis.

1.1 Motivation and Challenges

In his seminal paper published in 1991 [157], Weiser provided a glimpse of what

to expect of computers in the 21st century. He envisaged that computers would

disappear into the background, integrating seamlessly into the world and being

woven into the fabric of our daily lives so that we are not even aware of their

existence. He termed this new computing paradigm Ubiquitous Computing. Today,

the evolution of wireless networking technologies has enabled a revolution in markets

for network access and service delivery. Furthermore, it is no longer infeasible to

embed computation and communication capabilities into virtually all manufactured

objects. This means that the Weiser vision is fast becoming a reality.

The Mobile VCE Core 4 Research Programme on Ubiquitous Services1 is designed
1see http://www.mobilevce.com/

15

1.1 Motivation and Challenges

to play a part in realising this vision. This project is based on the premise that,

in future mobile ubiquitous environments, users (using their mobile devices and

available network access technologies) will be able to seamlessly discover, select, and

access a rich offering of services and content from a range of service providers. One

of the aims of this research programme is to remove some of the barriers to the

widespread adoption of such services. Until recently, relatively little attention has

been given to the security challenges associated with delivering ubiquitous services

over heterogeneous mobile wireless devices and networks, as most of the research

effort has been devoted to addressing the challenges of physical layer connectivity.

To truly realise the vision of ubiquitous services, it is vital that security and privacy

issues are addressed from the outset, alongside other technological innovations.

In parallel with recent developments in mobile ubiquitous computing, a series of

specifications have been produced by the Trusted Computing Group2 (TCG), with

the aim of enhancing the security of computing platforms. Trusted Computing

involves incorporating trusted hardware functionality, including so called ‘roots of

trust’, into computing platforms. Users can thereby gain greater assurance that a

platform is behaving in the expected manner [11, 100, 151]. The trusted hardware

involves a hardware component called the Trusted Platform Module (TPM) being

integrated into a host platform during manufacture. The TPM provides the platform

with a foundation of trust, as well as the basis on which a suite of Trusted Computing

security functionality can be built. The TPM and its host are collectively referred

to as a Trusted Platform.

Trusted Computing offers a collection of powerful security functionality which can be

exploited to enhance the security and privacy of mobile ubiquitous environments or

to secure mobile ubiquitous services. It is widely anticipated that trusted computing

functionality will become ubiquitous in the not too distant future. This assumption

is not unreasonable, as trusted computing functionality is increasingly being incor-

porated into computing platforms (mobile or otherwise). The aim of of this thesis

is therefore to examine and identify ways in which trusted computing can be used

to help secure ubiquitous services in dynamic and mobile environments.
2http://www.trustedcomputinggroup.org/

16

1.2 Contributions

1.2 Contributions

The application of trusted computing to secure mobile ubiquitous computing and

services is, to the best of our knowledge, a relatively new research area, in which

very little prior research has been conducted. The main contributions of this thesis

involve exploring ways in which trusted computing can be used to help provide

security for ubiquitous services. These contributions can be summarised as follows.

• We analyse a possible privacy flaw in the TCG implementation of the Direct

Anonymous Attestation (DAA) protocol, discovered by Rudolph. We argue

that, in typical usage scenarios, this weakness is not likely to lead to a feasible

attack; specifically we argue that the attack is only feasible if honest DAA

signers and verifiers never check the behaviour of DAA issuers. We also suggest

possible ways of avoiding the attack.

• We analyse a protocol proposed by Sevinç, Strasser and Basin, which uses

Trusted Computing functionality to secure the distribution and storage of

secrets from a server to a client. We identify two inherent security weaknesses

in the protocol, namely, the absence of server-to-client authentication and the

unauthenticated encryption of secrets sent from the server to the client. We

show how, as a result of these weaknesses, the TPM could be exploited as a

signing oracle, undermining the overall security of the scheme. We also propose

possible ways of making the protocol more secure.

• We propose Ninja: a non-identity based, privacy preserving, mutual authenti-

cation scheme, designed to address the service discovery security and privacy

challenges arising in a mobile ubiquitous environment. In this scheme, instead

of authenticating the user identity to a service provider, the user’s trustwor-

thiness is anonymously authenticated. We also carry out a service discov-

ery threat analysis and identify a corresponding set of security requirements.

We use trusted computing functionality to develop the Ninja authentication

scheme, and show how it achieves desirable security and privacy properties

such as: user anonymity, service information confidentiality, unlinkability and

rogue blacklisting.

• We propose the Secure Device Management Framework (SDMF), designed to

17

1.2 Contributions

securely deliver ubiquitous services to end user devices, whilst also hiding secu-

rity management complexity from users. We conduct a service delivery threat

analysis and identify a set of corresponding security requirements. Apart from

providing secure service interactions, the framework is also designed to reduce

the complexity of device security management tasks for users. Furthermore,

the framework protects the interests of service providers by preventing unau-

thorised credential sharing amongst user devices. One other novel feature of

the framework is that compromised devices are self-revoking, hence removing

the need for a cumbersome revocation infrastructure. We achieve these objec-

tives by incorporating Trusted Computing functionality into an entity known

as the Device Management Entity (DME), and then integrating it with a num-

ber of other security mechanisms (such as the MANA protocol [75] and the

Ninja service discovery protocol described in Chapter 7).

• We propose a privacy preserving, content distribution protection (CDP) wa-

termarking scheme using trusted computing functionality. Our scheme, apart

from being suited for a mobile environment, is designed to allow a buyer to

anonymously purchase digital content, whilst enabling the content provider to

blacklist the buyers that are distributing content in unauthorised ways. We

also carry out a threat and requirements analysis. Our scheme minimises the

reliance on a TTP for privacy protection, as the buyer can generate verifiable

pseudonyms on its own. A second important feature of our CDP scheme is

the ability for the content provider to obtain assurance that a buyer-generated

watermark is well-formed. The scheme also provides the following security fea-

tures: framing resistance, user anonymity, content information confidentiality,

unlinkability (even against the TTP), and transaction linkability. We compare

the security and performance of our CDP scheme against two other recently

proposed schemes.

Although the Mobile VCE architecture provides the context for much of the work

described in this thesis, the results are of much wider relevance. The security ar-

chitectures and protocols are intended to be applicable to any analogous mobile

ubiquitous system architecture.

18

1.3 Organisation of Thesis

1.3 Organisation of Thesis

The remainder of this thesis is divided into three main parts, and is organised as

follows.

Part I — Background: This part consists of Chapters 2 and 3. Chapter 2 intro-

duces the security concepts that are used throughout this thesis. We begin

with an overview of the security threats that commonly apply to communica-

tion systems. We then list security services (or security objectives) that can

be used to address these threats, and finally we introduce security mechanisms

and cryptographic primitives that can be used to provide the various security

services.

Chapter 3 introduces the concepts of Ubiquitous Computing, a Mobile Ubiq-

uitous Environment, and Ubiquitous Services, and we describe a ubiquitous

services scenario. We also identify the security threats that can arise in such

environments. We then derive a set of security requirements that may be used

to address the identified threats.

Part II — Security Issues in Trusted Computing: This part consists of Chap-

ters 4, 5 and 6. Chapter 4 provides an overview of Trusted Computing tech-

nology. We introduce the concept of a trusted platform and describe its com-

ponents and architecture. We then explain what the key features of trusted

computing are, and how they work. We also discuss how trusted computing

can be used to support user privacy. Finally we review some possible applica-

tions of trusted computing.

Chapter 5 analyses a possible privacy flaw in the Direct Anonymous Attesta-

tion (DAA) protocol. We briefly describe the flaw, and we then analyse the

feasibility of attacks exploiting this flaw in a number of different scenarios. We

also propose three possible ways in which such attacks could be prevented.

Chapter 6 analyses a TPM-based Secret Distribution and Storage Scheme. We

briefly describe the scheme and then outline certain security weaknesses in it.

We also propose possible modifications to the scheme designed to address the

identified weaknesses.

19

1.4 List of Publications

Part III — Applications of Trusted Computing to Ubiquitous Services:

This part, consisting of Chapters 7, 8 and 9, describes three novel security

schemes. Chapter 7 presents Ninja, a secure and private service discovery

scheme. We discuss service discovery security issues arising in a mobile ubiqui-

tous environement, and we also review related research work. We then describe

the operation of the scheme, and give an analysis of its security.

Chapter 8 presents SDMF: a framework for secure ubiquitous services delivery.

We first review the security issues associated with service delivery. We next

introduce the various building blocks that are used to develop the framework.

We then describe the operation of the scheme and give an analysis of its security

properties.

Chapter 9 presents a privacy preserving, content distribution watermarking

scheme. We begin with an overview of digital watermarking technology and

related research work, and discuss security issues arising from content distri-

bution. We then introduce the building blocks employed in the scheme. We

describe the novel watermarking scheme, analyse its security, and compare it

with two previously proposed schemes.

Conclusions: In Chapter 10, the final chapter of this thesis, we provide concluding

remarks and summarise the findings of this thesis. We also provide suggestions

for possible future work.

1.4 List of Publications

Some of the results described in this thesis have previously been published. Relevant

publications are listed below in chronological order.

1. Adrian Leung and Chris J. Mitchell. Towards Secure Zero Configuration.

In Proceedings of Western European Workshop on Research in Cryptography

(WeWoRC 2005), Leuven, Belgium, July 5–7, 2005. pp. 34–36.

2. Adrian Leung and Chris J. Mitchell. A Service Discovery Threat Model for

Ad Hoc Networks. In Proceedings of the International Conference of Security

20

1.4 List of Publications

and Cryptography (SECRYPT 2006), Setubal, Portugual, August 7–10, 2006.

INSTICC Press, pp. 167–174.

3. Adrian Leung and Geong Sen Poh. An Anonymous Watermarking Scheme for

Content Distribution Protection using Trusted Computing. In Proceedings of

the International Conference on Security and Cryptography (SECRYPT 2007),

Barcelona, Spain, August 28–31, 2007. INSTICC Press. pp. 319–326

4. Adrian Leung and Chris J. Mitchell. Ninja: Non Identity Based, Privacy

Preserving Authentication for Ubiquitous Environments. In J. Krumm et

al. (Eds): 9th International Conference on Ubiquitous Computing (UbiComp

2007), Innsbruck, Austria, September 16–19, 2007. Proceedings, volume 4717

of Lecture Notes in Computer Science, pp. 73–90. Springer-Verlag, Berlin,

Heidelberg, 2007.

5. Adrian Leung, Yingli Sheng and Haitham Cruickshank. The Security Chal-

lenges for Mobile Ubiquitous Services. Information Security Technical Report,

Elsevier, vol 12, no 3. pp. 162–171, 2007.

6. Adrian Leung, Liqun Chen and Chris J. Mitchell. On a Possible Privacy Flaw

in Direct Anonymous Attestation (DAA). In P. Lipp, A.-R. Sadeghi, and K.-

M. Koch(Eds): Trust 2008, Villach, Austria, March 11–12, 2008. Proceedings,

volume 4968 of Lecture Notes in Computer Science, pp. 179–190. Springer-

Verlag, Berlin, Heidelberg, 2008.

7. Adrian Leung and Chris J. Mitchell. A Device Management Framework for

Ubiquitous Service Delivery. In Proceedings of the Fourth International Con-

ference on Information Assurance and Security (IAS 2008), Naples, Italy,

September 8–10, 2008. IEEE Computer Society Press, Los Alamitos, CA,

pp. 267–274.

8. Ronald Toegl, Georg Hofferek, Karin Greimel, Adrian Leung, Raphael C-W.

Phan and Roderick Bloem. Formal Analysis of a TPM-Based Secret Distribu-

tion and Storage Scheme. In Proceedings of the 2008 International Symposium

on Trusted Computing (TrustCom 2008), Hunan, China, November 18–21,

2008. IEEE Computer Society Press, Los Alamitos, CA, pp. 2289–2294.

9. Adrian Leung. A Mobile Device Management Framework for Secure Service

Delivery. Information Security Technical Report, Elsevier, vol 13, no 3. pp.

21

1.4 List of Publications

118–126, 2008.

10. Adrian Leung, Po-Wah Yau and Chris J. Mitchell. Using Trusted Computing

to Secure Mobile Ubiquitous Environments. In Security and Privacy in Wire-

less Networking (Troubador Publishing Ltd., Leicester, UK, 2009), edited by

S. Gritzalis, T. Karygiannis and C. Skianis.

22

Part I

Background

23

Chapter 2

Security Preliminaries

Contents

2.1 Introduction . 24
2.2 Security Threats . 25
2.3 Security Services . 26
2.4 Security Mechanisms . 28

2.4.1 Symmetric Encryption . 28
2.4.2 Cryptographic Hash Functions 29
2.4.3 Message Authentication Codes 29
2.4.4 Asymmetric Encryption . 30
2.4.5 Digital Signatures . 31
2.4.6 Key Agreement . 31
2.4.7 Public Key Infrastructures 32

This chapter introduces the security concepts and techniques used throughout the

thesis. We begin by introducing security threats arising from open communication

systems. We proceed to identify corresponding security services, and, finally, we

describe security mechanisms that can be used to provide these services.

2.1 Introduction

In this chapter we provide definitions of fundamental security concepts and tech-

niques used throughout the thesis.

Before providing the definitions, we first establish the meanings of certain funda-

mental terms, namely security threats, security services and security mechanisms.

As given in Dent and Mitchell [45]:

24

2.2 Security Threats

“a security threat is something that poses a danger to the security of a system. A

security service is selected to meet an identified threat, and a security mechanism

is the means by which a service is provided or implemented.”

2.2 Security Threats

In this section, using the STRIDE threat model developed by Swiderski and Sny-

der [145], we describe six of the most common types of security threats affecting

open communication systems.

1. Spoofing: This involves an entity masquerading as another entity, often as-

suming the identity of the masqueraded entity. One commonly occurring ex-

ample of spoofing involves unauthorised use of another individual’s username

and password to engage in online transactions.

2. Tampering: Data tampering involves the malicious modification of data.

Examples include unauthorised changes made to persistent data (e.g. data

held in a database), or the alteration of data in transit (e.g. data flowing

between two computers over an open network, such as the Internet).

3. Repudiation: A repudiation threat involves entities denying that they per-

formed an action after having performed that action. For example a user may

instruct his/her broker to sell shares, but after the share price has gone up

he/she denies having given the instruction.

4. Information Disclosure: Information disclosure threats involve the expo-

sure of information to unauthorised entities. For example, an unauthorised

third party might eavesdrop on and capture data exchanged between two end-

points over a wireless communication link.

5. Denial of Service: A Denial of Service (DoS) threat or attack involves pre-

venting access to services by legitimate users. For example, a malicious entity

may mount a DoS attack on a web server by making numerous requests to the

web site. This may prevent legitimate users from making transactions, as the

attack may cause the web site to experience delays or even become unavailable.

25

2.3 Security Services

6. Elevation of Privilege: In this type of threat, an unprivileged (or unau-

thorised) user gains privileged access to a system or network. As a result the

entity may be able to mount a variety of attacks on the system, or even com-

promise the entire system if sufficient privileges are gained. For example, if an

unauthorised user gains root access to a system, then almost any threat could

be realised to that system and its data.

2.3 Security Services

In this section we define security services that can be used to counter the threats out-

lined in Section 2.2. The definitions below are adapted from Dent and Mitchell [45]

and ISO 7498-2 [71].

1. Authentication: this service can be sub-divided into two types, namely entity

authentication and data origin authentication:

• entity authentication is defined as the corroboration that the entity at

the other end of a communications channel is the one claimed;

• data origin authentication is the corroboration that the source of data

received is as claimed.

2. Data Confidentiality: this service is concerned with preventing the disclo-

sure of data to unauthorised entities.

3. Data Integrity: this service is concerned with preventing unauthorised alter-

ation or destruction of data by an unauthorised entity (in other words unau-

thorised tampering with data).

4. Non-Repudiation: this service is concerned with preventing denial by an

entity that it has taken a particular action, e.g. sending or receiving a message.

5. Access Control: this service is concerned with preventing unauthorised use

of a resource.

6. Availability: this service ensures that computer system assets are available

to authorised parties when needed.

26

2.3 Security Services

Table 2.1 shows which of the defined security services can be used to address the

security threats listed in Section 2.2.

Table 2.1: Security Threats and Security Services

Security Threats Security Services
Spoofing Entity Authentication
Tampering Data Origin Authentication and Data Integrity
Repudiation Non-Repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Access Control

Whilst there exist a number of other security services that are defined elsewhere in

the literature, these six categories of security services are the ones most relevant to

this thesis.

We next introduce a number of other terms relating to privacy and anonymity. We

use the definitions of Pfitzmann and Hansen [117]:

1. Privacy: Privacy is the right of individuals to control or influence what infor-

mation related to them may be collected and stored by whom, and to whom

that information may be disclosed [71].

2. Anonymity: Anonymity of a subject means that the subject is not identifiable

within a set of subjects, known as the anonymity set.

3. Unlinkability: Two or more items of interest (IOIs), e.g. subjects, messages,

actions, etc., are unlinkable for a subject if that subject cannot distinguish

whether or not the IOIs are related (where the meaning of the term ‘related’

will depend on the context).

4. Pseudonym: A pseudonym is an identifier for a subject with no semantic

content, i.e. with no relation to any of the other identifiers for that subject. The

subject to which the identifier refers is known as the holder of the pseudonym.

A subject is said to be pseudonymous if a pseudonym is used to identify it.

27

2.4 Security Mechanisms

2.4 Security Mechanisms

In this section, we introduce security mechanisms that can be used to provide the

security services outlined in Section 2.3. Many of the definitions are taken from

Menezes, van Oorschot and Vanstone [99].

2.4.1 Symmetric Encryption

Symmetric, or secret key, encryption mechanisms can be used to provide confiden-

tiality services, and can be defined as follows. We define an encryption scheme to

consist of a set of encryption transformations {Ee : e ∈ K} and a corresponding

set of decryption transformations {Dd : d ∈ K}, where K is the keyspace. The

encryption scheme is symmetric if, for each associated encryption/decryption key

pair (e, d), it is computationally easy to determine both e from d and d from e [99].

In most practical symmetric systems, e is essentially the same as d. In other words,

in a symmetric encryption system, the same key is used to encrypt and decrypt

messages.

Commonly used symmetric encryption schemes can be divided into two main types,

namely block ciphers and stream ciphers:

• A block cipher has the property that the encryption algorithm operates on a

block of plaintext, i.e. a string of bits of a defined length, to yield a block of

ciphertext. Examples of block ciphers include the Data Encryption Standard

(DES) [105], and the Advanced Encryption Standard (AES) [44, 106].

• A stream cipher is an encryption scheme in which the plaintext is encrypted

bit by bit [120] using a pseudorandom sequence of bits known as a keystream,

generated as a function of a secret key. Examples of stream ciphers include the

RC4 algorithm [129] and the A5 family of algorithms used in GSM systems [1,

2, 156].

One major problem associated with symmetric encryption schemes, as with all sym-

metric cryptographic algorithms, is how to agree upon keys securely and efficiently.

28

2.4 Security Mechanisms

This key management problem can be made somewhat simpler by adopting asym-

metric cryptographic schemes, for which there is no requirement to maintain the

secrecy of distributed keys (although guaranteeing their integrity and origin remains

fundamentally important).

2.4.2 Cryptographic Hash Functions

A cryptographic hash function (or simply a hash function), also often referred to as

a one-way hash function, can be used to help provide integrity and authentication

services. The use of a hash function does not involve any secret keys, and such

functions are typically used in conjunction with other security mechanisms. A hash

function is a computationally efficient function mapping arbitrary length binary

strings to fixed length binary strings [99]. The fixed length output of a hash function

is often referred to as a message digest, hash code, or hash value.

Cryptographic hash functions must possess the following three properties [99]:

1. Pre-image resistance: for any pre-specified output, it is computationally

infeasible to find an input which maps to that output.

2. Second pre-image resistance: for any pre-specified input, it is computa-

tionally infeasible to find a second input which yields the same output.

3. Collision resistance: it is computationally infeasible to find two inputs which

map to the same output.

Examples of cryptographic hash functions include MD5 [128] (16-byte output), SHA-

1 [107] (20-byte output), SHA-256 [107] (32-byte output), and the RIPEMD fam-

ily [74, 122].

2.4.3 Message Authentication Codes

Messages Authentication Code (MAC) functions, also known as keyed hashed func-

tions, can be used to simultaneously provide data origin authentication and integrity

29

2.4 Security Mechanisms

services.

A MAC function takes as input a message and a secret key, and outputs a fixed

length binary string commonly referred to as the MAC value (or simply the MAC).

This MAC value is then sent or stored with the message. When the origin and

integrity of a message are to be checked, the verifier recomputes the MAC using

the message and the secret key as input, and accepts the message as valid if the

newly computed MAC agrees with the value sent or stored with the message. The

verifier is thereby assured that (i) the message has not been tampered with, and (ii)

it originates from the claimed sender.

In order to achieve confidentiality, integrity and origin protection for a message,

it is common practice to first encrypt the message using one secret key, and then

compute a MAC on the encrypted data using a second secret key. The order of the

two operations (i.e. encryption prior to MAC computation) is important to achieve

protection against side channel attacks.

Examples of MAC functions include CBC-MACs [72] (based on block ciphers) and

HMAC [73] (based on hash functions).

2.4.4 Asymmetric Encryption

Asymmetric, or public key, encryption can be used to provide confidentiality ser-

vices. An asymmetric encryption scheme is defined to consist of a set of encryption

transformations {Ee : e ∈ K} and a corresponding set of decryption transformations

{Dd : d ∈ K}, where K is the keyspace. For any encryption/decryption key pair (e,

d), it is computationally infeasible to compute d from e (unlike symmetric schemes,

where d and e are essentially the same). In practice, the encryption keys e are made

widely available (i.e. they are public keys), whereas the decryption (private) keys

are kept secret by their owners.

One practical issue with the use of asymmetric encryption schemes, as with any

asymmetric cryptographic scheme, is the problem of distributing public keys in such

a way that the recipients can verify that they are genuine. The most widely used way

30

2.4 Security Mechanisms

of addressing this problem is to use public key certificates, discussed in Section 2.4.7.

Examples of asymmetric encryption schemes include the RSA-OAEP scheme [22, 76],

which is based on the Rivest-Shamir-Adleman (RSA) scheme [127, 131], and the

ElGamal encryption scheme [49].

2.4.5 Digital Signatures

A digital signature can be used to provide authentication, non-repudiation, and

integrity services. A digital signature scheme involves two transformations, a signing

procedure and a verification procedure. The signing procedure takes as input the

message and secret information held by the signer A, and outputs a signature. If

M is the set of messages to be signed, and S is the set of signatures, then a signing

transformation SA maps M to S. SA is kept secret by A, and is only used for the

purpose of creating signatures. VA is the corresponding verification transformation,

which maps the setM×S to the set {true, false}. VA is typically widely disseminated

and can be used by other entities to verify signatures created by A.

In practice, SA and VA are determined by a private and public key, respectively. That

is, SA is determined by a private key sk which is kept secret, and VA is determined

by a public key pk which is made public.

Examples of digital signature schemes include the RSA signature scheme (p.433

of [99]), the Digital Signature Algorithm (p.451 of [99]), and the Fiat-Shamir signa-

ture schemes (p.447 of [99]).

2.4.6 Key Agreement

A third class of asymmetric cryptographic schemes is provided by the key agreement

schemes; one well known example of such a scheme is the Diffie-Hellman (DH)

protocol [47]. This protocol is designed to establish a shared secret between two

principals who share no information with each other in advance. We provide a brief

description of the protocol (the interested reader is referred to Chapter 5 of Boyd

31

2.4 Security Mechanisms

and Mathuria [26] for a more comprehensive discussion).

1. Two principals, A and B, publicly agree on two elements g and p, where p is a

large prime chosen such that p− 1 has a large prime factor q (e.g. p = 2q +1),

and g is chosen to have multiplicative order q. Thus q generates a multiplicative

subgroup of Z∗p of prime order q. This step is typically performed once prior

to practical use of the scheme, and the values can be shared across a broad

domain (for example, the values may be built into the implementation of the

scheme).

2. A and B generate random values a and b, respectively (1 < a < q; 1 < b < q).

3. A computes ga mod p and B independently computes gb mod p.

4. A and B exchange ga mod p and gb mod p, and can thereby independently

derive the shared key KAB = (ga)b mod p = (gb)a mod p.

Unless additional security mechanisms are used, the Diffie Hellman protocol is sus-

ceptible to man-in-the-middle attacks, as the messages exchanged between the prin-

cipals are not authenticated. In other words, an attacker, C, could masquerade as A

to B, and simultaneously masquerade as B to A, agreeing different keys with each.

2.4.7 Public Key Infrastructures

As discussed briefly in Section 2.4.4, one fundamental problem for the use of asym-

metric cryptography is the reliable distribution of public keys. One way of addressing

this problem is through the deployment of a Public Key Infrastructure (PKI).

In a PKI, a trusted third party known as a Certification Authority (CA) is respon-

sible for issuing (digitally signing) public key certificates, which bind a public key

to the name of its owner (together with other relevant information). The user of a

certificate (the relying party) must have access to a trusted copy of the public key of

the CA that issued the certificate in order to verify the signature on the certificate.

Such CA public keys are often referred to as root public keys (since they are the root

for the trust derived from the use of certificates).

32

2.4 Security Mechanisms

A widely used standard format for such certificates is contained in ITU-T Recom-

mendation X.509 [77]; the most recent version of this document specifies what are

known as version 3 (v3) certificates. Such a certificate contains the following data

fields:

• Certificate

– Version

– Serial Number

– Algorithm ID

– Issuer Name (i.e. name of certificate issuer)

– Validity

– Subject (i.e. user name or ID)

– Subject Public Key

• Certificate Signature Algorithm

• Certificate Signature

Certificates may need to be revoked before their expiry for a variety of reasons, e.g.

because the private key has been compromised or because the subject has left the

relevant organisation. Certificate users (so called relying parties) need to have access

to current information regarding which certificates have been revoked, and this can

be achieved in two main ways. A CA can regularly issue a Certificate Revocation

List (CRL) listing all the certificates which it has issued that have been revoked —

relying parties would then need to ensure they have the most recent CRL before

relying on a certificate. Alternatively, an online trusted third party can answer

queries regarding the status of a certificate, e.g. using a protocol such as the Online

Certificate Status Protocol (OCSP) [104].

Two CAs may cross-certify one another, i.e. issue public key certificates for each

other’s public keys. This will enable the holder of a trusted copy of one CA’s public

key to obtain a trusted copy of the public key of another CA. For further details

regarding the use and management of PKIs, see, for example, [8, 142].

33

Chapter 3

Mobile Ubiquitous Computing

Contents

3.1 Introduction . 34
3.2 A Mobile Ubiquitous Environment 36
3.3 Personal Distributed Environments 39

3.3.1 PDE scenario . 39
3.3.2 PDE management . 40

3.4 A Ubiquitous Services Scenario 42
3.5 Ubiquitous Services Security Issues 44

3.5.1 User Perspective . 44
3.5.2 Service Provider Perspective 46

3.6 Security Requirements . 47
3.6.1 General Security Requirements 47
3.6.2 Specific User and Service Provider Security Requirements . 47

3.7 Summary . 49

This chapter introduces the concepts of a mobile ubiquitous environment and a ubiq-

uitous service, as envisaged within the Mobile VCE Research Programme. The chap-

ter also explores and discusses the various security issues and challenges that are

associated with a mobile ubiquitous environment. We conclude by identifying possible

security requirements for ubiquitous services.

3.1 Introduction

In 1991, Weiser provided a radical new vision of computing in the 21st Century [157].

He envisaged that computers would disappear into the background, integrating

seamlessly into the world and being woven into the fabric of our daily lives so much

34

3.1 Introduction

that we are not even aware of their existence [157]. He termed this new paradigm

Ubiquitous Computing. In his seminal paper [157], he identified three key techno-

logical requirements for the realisation of Ubiquitous Computing. They are: (a)

cheap, low power computers that include equally convenient displays; (b) a net-

work that ties them all together; and (c) software systems implementing ubiquitous

applications.

Eighteen years on, the notion of Ubiquitous Computing is still very much alive, es-

pecially amongst the research and academic community. Almost every university

and research facility around the world is conducting research on ubiquitous com-

puting or on other closely related, if not identical, topics (e.g. pervasive computing,

calm computing, or ambient computing). The number of conferences and workshops

devoted to this field has also increased considerably, including Ubicomp, Pervasive,

IEEE Percom, etc. On the technological front, low cost, low power mobile devices

are very rapidly proliferating. This is fuelled by the fact that Moore’s law, i.e. that

computing power will double every eighteen months [103], is still holding true, cou-

pled with advances in wireless networking technologies (such as Bluetooth, 802.1x,

Zigbee, Ultra-Wideband, etc.). As a result, it is no longer infeasible to embed

computation and communication capability into virtually all manufactured objects.

Furthermore, we are also seeing a growing number of software systems (increasingly

from the open source community) capable of performing a variety of sophisticated

and complex tasks. These facts together mean that Weiser’s requirements are now

achievable.

Despite Weiser’s requirements being met, there is still some way to go before the

vision of ubiquitous computing can be realised. The Mobile VCE research consor-

tium1, through its Core 4 Research Programme on Ubiquitous Services, aims to

help realise the Weiser vision. It is undertaking a three-year research programme

aimed at enabling the widespread adoption of ubiquitous services amongst end users

and consumers in the future digital and highly mobile market place. This research

programme has identified trends and issues which must be addressed before ubiq-

uitous computing can become a reality. Firstly, it was noted that much existing

research focuses solely on enhancing computing power, network infrastructure and

device capabilities; very little focus has been given to the needs of the end user. Sec-
1http://www.mobilevce.com/

35

3.2 A Mobile Ubiquitous Environment

ondly, there has been a gradual shift from a device and network-centric paradigm

to a service-oriented and user-centric paradigm. Lastly, in a user-centric and service

oriented environment, security is paramount. End-users are likely to want assurance

that their interactions are secure before they will adopt new technology. For secu-

rity solutions to be truly effective, they must be addressed from the outset alongside

any technological innovations, and not be added as an afterthought. Experience

suggests that addressing security breaches can be very costly; prevention is almost

always better than cure. The objective of the project is therefore to remove the

barriers to the commercialisation and deployment of ubiquitous applications and

services in a simple and secure manner. Of the various aspects of the project, we

focus here on the secure delivery of ubiquitous services to end users.

The remainder of this chapter is organised as follows. The notions of a mobile

ubiquitous environment and a personal distributed environment are introduced in

Sections 3.2 and 3.3 respectively. We then describe a simple ubiquitous services

scenario in Section 3.4. In Section 3.5 we identify the security threats applying to

the delivery of ubiquitous services, and in Section 3.6 we derive a set of ubiquitous

services security requirements. These requirements provide the context for much of

the work described in the remainder of this thesis.

3.2 A Mobile Ubiquitous Environment

The Mobile VCE Ubiquitous Services project envisages that in a mobile ubiquitous

environment, users (via their mobile devices and using available network access tech-

nologies) will be able to seamlessly discover and access a rich offering of services and

content from a wide variety of service and content providers (as shown in Figure 3.1).

As shown in Figure 3.1, a mobile ubiquitous computing environment has the follow-

ing characteristics:

• users own multiple devices of varying capabilities,

• users (and their devices) are highly mobile, and

• users communicate using a variety of different wireless network access tech-

36

3.2 A Mobile Ubiquitous Environment

Fixed

Satellite

3G/GPRS

Broadcast

WLAN

Network

TechnologiesDevices
Service and Content

Providers

User

?
IP Backbone?

Pervasive User Environment

WiMAX

Bluetooth

Figure 3.1: A Mobile Ubiquitous Computing Environment

nologies.

Such an environment can be considered from three key perspectives, namely: the

User perspective, the Network perspective and the Service Provider perspective.

One of the aims of the Ubiquitous Services project is to address the ubiquitous

services security issues arising from these three perspectives. We briefly introduce

each of the perspectives below in relation to the relevant security issues. Note that,

in the rest of this thesis, very little attention will be given to the security issues

emanating from the network perspective. Instead we focus on the application layer

security issues, that is security issues concerning the two classes of end-parties,

namely users and service providers.

1. User Perspective: From the user perspective, the fundamental requirement

is a simple and consistent means for service access. The Internet today is

heterogeneous, with network components having widely varying capabilities

(bandwidth, interface speed, edge-to-edge latency and connection type). Also,

the use of laptops, palmtops and mobiles has increased, and so has the va-

riety of operating systems. This has led to a great diversity in end system

capabilities. This diversity, combined with the huge amounts of information

and services available via these technologies, results in an undesirable level of

complexity. Inevitably, in this new environment users are exposed to a wide

variety of security threats and attacks. It is therefore imperative that the

security and privacy of users are protected in this landscape.

37

3.2 A Mobile Ubiquitous Environment

2. Network Perspective: From the network perspective, providing high levels

of security, quality of service (QoS) and mobility to participating networks are

all important, along with maintaining an acceptable level of network perfor-

mance. Heterogeneity has made simultaneously maintaining security, QoS, and

mobility management a complex issue. These three requirements inherently

conflict, since they compete for system resources. For example, increasing se-

curity, e.g. by using stronger encryption techniques, will potentially increase

resource usage. Better mobility management mechanisms, such as providing

more frequent paging and routing updates, will also increase resource usage.

Similarly, providing a good QoS is likely to have a similar effect on resource al-

location. A balance must therefore be struck between the three requirements.

Limitations on resources mean that conflicts between security, QoS, and mo-

bility management will always be present. Determining the optimal service

point is crucial, and remains a challenge (see Figure 3.2). One aim of the

Mobile VCE research programme is to devise a common network framework

which will efficiently integrate security, QoS and mobility functions.

Figure 3.2: Balancing Security, QoS and Mobility

3. Service Provider Perspective: From the content and service provider per-

spectives, multiple co-operating networks promise the possibility of a range of

new ubiquitous services, including context-aware services. The need for con-

tent and service providers to support multimedia applications over a range of

access network technologies (including ad hoc), each with its own capabilities,

represents a particular challenge to service delivery. Security is also important

38

3.3 Personal Distributed Environments

to protect the interests of the service provider against malicious users and

other adversaries. One particular issue that will be dealt with in greater detail

in this thesis is content distribution protection.

3.3 Personal Distributed Environments

A personal distributed environment (PDE) [10] is an overlay networking concept that

allows a user to form a ‘virtual network’ consisting of the networked devices that

the user owns, or is authorised to use. The capabilities of these devices will typically

vary in terms of computational power, energy source, mobility, communication and

network interfaces, and they may reside in different physical locations. Other overlay

architectures, similar to the PDE concept, include those described in [101, 109, 110].

3.3.1 PDE scenario

Figure 3.3 illustrates an example of a PDE consisting of devices that the user owns,

‘home devices’, and also third-party devices that the user may or may not have pre-

established rights to access — these are called ‘foreign devices’ in PDE terminology.

For example, a user may have a home network consisting of a desktop computer,

a printer and an ADSL connection for Internet access. Also at home might be the

user’s digital set-top box and satellite receiver used to receive digital broadcasts.

At work, the user might also have a desktop computer connected to the corporate

network, allowing access to foreign devices such as corporate servers, applications,

etc., that the user is authorised to access and use, possibly remotely.

In addition to the home and work environments, a user may also have a number of

mobile environments. The user’s car may have an intelligent networking capability

enabling it to retrieve satellite navigation data and traffic news via satellite or ad hoc

network communications. A user may also carry smaller devices, such as a mobile

phone, PDA, and laptop — these home devices might be able to communicate to

form a Personal Area Network (PAN). It is further envisaged that additional foreign

devices could connect to the PAN on an ad hoc basis. These could, for example,

39

3.3 Personal Distributed Environments

The shaded ovals represent user subnetworks, and the ovals
with dashed outlines show foreign devices that are connected
to the user’s PDE.

Figure 3.3: A Personal Distributed Environment

include a display monitor on a train, allowing a user to view content on a larger

screen, a printer in an airport lounge, or the devices of another user’s PDE used to

transfer data or play computer games.

These example illustrate how heterogenous networks and devices can be integrated to

form a PDE. While this results in additional complexity, the diversity of technologies

can be used to deliver ubiquitous services to the user, where the most capable devices

and communications means available are selected.

3.3.2 PDE management

Given the potential complexity of a PDE, users need a simple and intuitive means

to manage it. This is achieved through a semi-distributed, logical construct called

40

3.3 Personal Distributed Environments

the Device Management Entity (DME) [10]. The primary task for the DME is

to intelligently select the most appropriate device for service delivery, acting as a

Session Initiation Protocol (SIP) [130] proxy to redirect session setup requests. The

DME is also designed to abstract the technical complexities faced by users (especially

non-expert users) in managing (i.e. configuring and operating) their devices in a

mobile ubiquitous environment. The DME acts as an interface between user devices

and external entities. In order to perform this task, the DME requires the following

functional components:

• The Features Register maintains information about the capabilities (stor-

age capabilities, screen resolution, processing power, battery life, networking

functions, operating system, installed software, etc.) of each device in a user’s

Personal Distributed Environment. This information assists the DME when

deciding which device is most appropriate for use in accessing specific services

or content.

• The Location Register maintains location information about user devices. It

can be used to determine whether devices are reachable via the access service.

• The Security Register maintains security credentials on behalf of users.

These credentials could include cryptographic keys, access tokens, and public

key certificates. The security register also stores information used to support

PDE security functionality.

As stated previously, a user’s PDE may consist of a number of subnetworks in dis-

parate locations. For reasons of efficiency and scale, DME functions are distributed

to a ‘local DME’ within a subnetwork or a user’s personal area network. Local

DMEs then report to a root DME. This effectively creates a two-layer management

hierarchy [10].

It is suggested that the root DME should normally reside on the most capable device

in a static subnetwork, such as the user’s home desktop or, perhaps preferably,

an online PDE service provider that the user has subscribed to [137]. Since the

DME provides the features that enable a PDE, ensuring its availability is extremely

important.

41

3.4 A Ubiquitous Services Scenario

Within each PDE subnetwork, the most capable device is chosen as the local DME.

In the case of mobile subnetworks the local DME selection process is dynamic, since

one of the fundamental factors influencing capability is residual energy. Atkinson et

al. [10] have proposed a broadcast-based protocol to discover the local, home, DME-

capable device with the most residual energy — also included in their proposal is a

handover protocol to move control of the local DME between devices.

3.4 A Ubiquitous Services Scenario

We now describe a simple ubiquitous services scenario, showing how a ubiquitous

services consumer, Jose, is able to receive digital content while he is on the move.

This scenario serves to illustrate the security threats and requirements applying to

the delivery of ubiquitous services.

The sequences of events are as follows (also depicted in Figure 3.4):

1. Liverpool and AC Milan are playing in the finals of the 2005 UEFA Champions

League. Jose, a diehard Liverpool fan, wants to watch the finals live, but he

also has another appointment, and needs to be on the move while the match

is taking place.

2. While at home, he contacts his content provider (Sky TV). The content (i.e.

the football match) is streamed to his set-top box. After twenty minutes,

Liverpool are 2-0 down. Jose then has to leave home for his appointment. He

is also a subscriber to mobile broadcast content so that he is able receive both

broadcast and 3G football content.

3. He takes a taxi to the train station. On the way to the station, he books

a train ticket using his mobile device, and pays for it using his credit card.

Jose arrives at the train station and immediately boards the train. On the

train, he uses his mobile device (via UMTS or 3G connection) to access the

football content (or goals). This connectivity is enabled by his mobile network

subscription. AC Milan scores another goal, and Jose is able to watch a clip

of the goal. Liverpool are 3-0 down at half time.

42

3.4 A Ubiquitous Services Scenario

Figure 3.4: A Ubiquitous Services Scenario

4. Jose reaches his destination, and meets his friend Alex (also a Liverpool fan)

at a café. The game resumes. Jose continues watching the game with Alex,

using the free WiFi service provided by the café (a WiFi hotspot). Liverpool

then score a goal, followed by another, and yet another. The score is now 3-3.

Jose and Alex are ecstatic. The scores are level at full-time, and there will

now be a period of extra-time. Jose receives a call from his wife asking him to

book flight tickets and a hotel for a planned trip to Portugal. He books the

flight and hotels online using his mobile device (via GPRS). Liverpool go on

to win the match in a penalty shootout. Jose and Alex are delirious.

43

3.5 Ubiquitous Services Security Issues

3.5 Ubiquitous Services Security Issues

In this section, we examine the security threats from two of the previously discussed

perspectives of a mobile ubiquitous environment, namely, the User and the Service

Provider Perspectives. To better illustrate the cause and effect of these security

threats, they are also discussed, whenever possible, in relation to the ubiquitous

services scenario described in Section 3.4.

3.5.1 User Perspective

The ubiquitous services security threats relevant to a user are as follows:

1. Spoofing. A malicious entity may masquerade as a legitimate service provider

with the aim of luring a user into a bogus service interaction. For example,

in the above scenario, Jose may wish to be sure that he is indeed interacting

with his “real” service provider, the SKY TV, and not some bogus entity.

2. Information Disclosure. A user’s personally identifiable information (PII)

(e.g. identity, credit card information, physical location, etc.) may be disclosed

to a service provider or passive eavesdropper whilst the user is interacting with

a service provider. Possible consequences of this threat include loss of privacy

for a user or identity theft. In our scenario, an adversary may steal Jose’s

credit card details when he is buying the train or flight tickets.

3. Profiling. From service interactions that a user has previously had with a

service provider, this service provider may be able to learn valuable information

about the user (e.g. age, gender, income, habits, spending patterns, etc.), and

build up a profile of the user. This might then be used for future targeted

marketing purposes. This could compromise user privacy. For example, Jose

may frequent a particular supermarket and use a loyalty card when making

purchases. The loyalty card allows the supermarket to build up a profile of

Jose’s spending habits.

4. Profile Linking. Service providers may collude to link the profiles and ac-

tivities/transactions of a user, in order to build a more complete user profile.

44

3.5 Ubiquitous Services Security Issues

The information may subsequently be used to infer the future behaviour of

a user. User privacy may hence be compromised. In our scenario, the hotel,

airlines and car-hire company might exchange information about Jose.

5. Framing. A variety of content distribution protection (CDP) (e.g. watermark-

ing, fingerprinting, etc.) and digital rights management (DRM) mechanisms

are employed by content providers to deter (or prevent) users from redistribut-

ing proprietary content. Most of the existing CDP or DRM solutions, however,

do not protect an honest content user from being falsely accused (or framed)

by a content provider of unauthorised content distribution.

6. Malware Infection. Unbeknownst to Jose, malicious software (e.g. Spyware,

Keystroke Loggers, Trojans, etc.) may be running on his device and harvesting

his personal information, such as passwords, PINs, and credit card information.

7. Information Overloading. A user may be deluged with a huge amount of

service information (in the form of service advertisements) from prospective

service providers or spammers. This could lead to two sub-threats:

(a) Denial of Service: A user’s device may be flooded with service adver-

tisements (both legitimate and bogus), which may in turn prevent the

user from having genuine service interactions.

(b) Service Selection Dilemma. It is highly likely that a sought service

may be offered by more than one service provider. When presented with

many choices, and having had no prior interactions with any of the service

providers, a user may not be in a position to select a service that best

suits his/her needs. For example, suppose Jose arrives in a city that he

has never visited before and he wishes to find a restaurant. There may be

more than twenty restaurants in the vicinity, and he will not know which

to choose.

8. Configuration Complexity.

(a) Device and Application Settings: A user can own many different

types of devices (e.g. laptop, PDA, mobile phone, iPod, etc.). Differ-

ent devices may be used to access a service, depending on the situa-

tion/context, the physical location that the user is in, and/or the type of

45

3.5 Ubiquitous Services Security Issues

service that he/she intends to use. Before a service can be used, the ac-

cess device will first have to be appropriately configured. For a non-expert

user this can be an extremely daunting task. A wrongly configured device

may even pose a security risk to both the user and the service providers.

For example, Jose may unknowingly or accidentally disable the virus pro-

tection services on his device.

(b) Security parameters: More often than not, a user will pick passwords

that are memorable. These passwords are usually very weak. Further-

more, for simplicity, a user may use the same set of user names and/or

passwords/PINs for many different services. This makes it far more likely

that a user password will fall into malicious hands, and the end user’s se-

curity could be seriously compromised as a result.

3.5.2 Service Provider Perspective

The threats that may affect a service provider are listed below:

1. Spoofing. A malicious entity may masquerade as a legitimate user and inter-

act with a service provider. For example, a hacker may use Jose’s account (e.g.

username and password) and purchase digital content without the knowledge

and permission of Jose.

2. Service Repudiation. The payment process (or other business process) may

be damaged if a service user can later deny having used a service or consumed

content.

3. Non-Payment. Service providers will typically be concerned about the re-

ceipt of correct payment from a service user. Mobile payment systems are

not yet widely available, as many issues (both legal and technical) still exist.

At the time of writing, practical anonymous payment schemes are still not

available.

4. Unauthorised Content Distribution. Unauthorised distribution of pro-

prietary content (e.g. music, films, etc.) poses a major challenge for the digital

content industries. This directly translates to a loss of revenue for the content

46

3.6 Security Requirements

providers. The mobile and dynamic nature of a ubiquitous environment makes

it easier to redistribute content in unauthorised ways.

5. Rogue Behaviour. Privacy enhancing technologies may be employed by

users to protect their privacy when they are interacting with service providers.

If these users misbehave (e.g. by redistributing proprietary content), then ser-

vice providers may not be able to trace them.

3.6 Security Requirements

Building on the threat analysis in Section 3.5, we next derive a set of ubiquitous ser-

vices security requirements. We first identify general security requirements, followed

by specific security requirements for the User and Service Provider perspectives.

3.6.1 General Security Requirements

The ‘standard’ set of general security requirements, also described in Section 2.3,

are:

1. Authentication;

2. Data Confidentiality;

3. Data Integrity;

4. Non-Repudiation;

5. Access Control, and

6. Availability.

3.6.2 Specific User and Service Provider Security Requirements

Since user and service provider interactions occur at the application layer, the user

and service provider security requirements are described together, as follows:

47

3.6 Security Requirements

1. Secure Service Selection/Recommendation. When more than one ser-

vice provider is offering a service, a selection or recommendation (e.g. reputa-

tion, ranking) mechanism may be employed by a user to assist in the decision-

making process. The selection agent may take as input a user’s preferences

and habits, along with context information. This process should be secured

to prevent a malicious entity (e.g. a competing service provider) manipulating

the rankings.

2. Secure Zero Configuration. Device or network settings (e.g. IP address,

DNS) may automatically be configured on behalf of a user through a process

known as Zero Configuration [159]. This process needs to be secured.

3. Secure Service Discovery. Before a service can be used, it needs to be

located through a process known as service discovery. It is important that the

process of service discovery (between a user and a service provider) is secured,

or otherwise the security and privacy of a user and the service provider could

be compromised (e.g. an eavesdropper may be able to determine the services

that a user is looking for).

4. Secure Service Provision. The delivery of a service to an end user is known

as service provision. It is imperative that this process is secured in order to

guarantee that the correct (unmanipulated) service is being delivered to the

intended recipient (user).

5. Privacy Preserving (Mutual) Authentication. The above-mentioned se-

curity requirements normally involve interactions between a user and a service

provider. These two entities will need to be mutually authenticated to prevent

possible spoofing threats (in either direction). However, if privacy is desired by

the user, then privacy preserving (or anonymous) authentication mechanisms

may be required by the user. A service provider can still be authenticated to a

user in the conventional way, as service providers do not normally require pri-

vacy/anonymity, and, for obvious reasons, would typically want to be known

by as many users as possible.

6. Content Distribution Protection (CDP). A service provider may wish

to prevent and/or detect unauthorised distribution of content. For example,

a service providers may employ content distribution protection mechanisms

48

3.7 Summary

(e.g. watermarking, fingerprinting, or other DRM solutions) to prevent or de-

ter users from distributing proprietary content (which may have been legally

purchased earlier) in unauthorised ways. To prevent a content buyer from be-

ing accused of unauthorised content distribution, Buyer-Seller watermarking

schemes (which requires the content buyer to contribute a watermark) may be

used.

7. Anonymous Payment Schemes. Users may wish to pay for services anony-

mously.

8. Privacy and Anonymity. Significant number of users are likely to be con-

cerned about their privacy while transacting online. In general, the above-

mentioned security requirements should collectively provide users with assur-

ance that their privacy is not being compromised. Privacy is often achieved

through anonymity, for example through the use of pseudonyms when inter-

acting with other entities. This leads us to another sub-requirement, that of

Unlinkability; that is, users may not want their transactions with different

service providers to be linkable.

3.7 Summary

In this chapter we introduced the concept of mobile ubiquitous computing. In so

doing, we introduced the notions of a mobile ubiquitous environment, a personal

distributed environment and a ubiquitous service. We also identified the security

threats that may arise in a mobile ubiquitous environment. We then derived the

security requirements for such an environment.

49

Part II

Security Issues in Trusted
Computing

50

Chapter 4

Trusted Computing

Contents

4.1 Introduction . 52

4.1.1 The Trusted Computing Group 53
4.1.2 What is a Trusted Platform? 54

4.2 Trusted Platform Architecture 55

4.2.1 Roots of Trust . 55
4.2.2 TPM Functional Components 56
4.2.3 TPM Keys and Identities 59
4.2.4 TPM Credentials . 61

4.3 Trusted Computing Functionality 63

4.3.1 Integrity Measurement, Storage and Reporting (IMSR) . . 63
4.3.2 Protected Message Exchange and Storage 65
4.3.3 Authenticated Boot and Secure Boot 67
4.3.4 Isolated Execution Environments 68

4.4 Trusted Computing and Privacy 70

4.4.1 Privacy CA . 71
4.4.2 Direct Anonymous Attestation 72

4.5 Applications of Trusted Computing 78

4.5.1 Commercial Applications 78
4.5.2 Client Applications . 79
4.5.3 Distributed Computing Environments 81
4.5.4 Other Applications . 83

4.6 Summary . 84

This chapter provides an overview of Trusted Computing technology. We begin with

a description of the motivation for Trusted Computing, and introduce the concept of

a Trusted Platform. We examine the various building blocks that make up a Trusted

Platform and then study the features and functionality of Trusted Computing. We

51

4.1 Introduction

show how user privacy is supported by Trusted Computing, and conclude the chapter

with a review of current research into, and possible applications of, Trusted Com-

puting.

4.1 Introduction

The current computing landscape is one which is plagued by security issues and

threats. Moreover, security incidents and breaches are on the rise. According

to statistics complied by the Computer Emergency Response Team1 (CERT) and

Symantec2, the number of new security threats that are reported is increasing every

year [146]. Attacks are also becoming more sophisticated and diverse. For example,

security vendor McAfee3 reported that, as of January 2008, there were a total of

457 different types of mobile malware [84]. Mobile malware was virtually unheard

of before 2004. As a consequence of the wide variety of security issues, companies

as well as individuals are suffering financial and productivity losses.

Over the years, organisations have gained competence in protecting their networks

(e.g. using firewalls and intrusion prevention and detection systems); today’s attack-

ers are instead turning their attention to what they perceive as the weakest point in

these systems, i.e. client machines. That is, attacks are increasingly being directed

at client machines and devices, since end users are usually not particularly skilled

at defending against security threats and vulnerabilities.

Challener et al. [35] identify six of the most significant security threats that are

affecting end users and their devices today:

1. Vulnerable programs: such as programs allowing buffer overflows and parsing

errors;

2. Malicious programs: including viruses, spyware and adware;

3. Misconfigured programs: i.e. programs that may have adequate security fea-

tures, but which are not turned on or configured properly;
1http://www.cert.org/
2http://www.symantec.com/
3http://www.mcafee.com/

52

4.1 Introduction

4. Social engineering: phishing and pharming attacks;

5. Physical theft of user devices: e.g. laptops, PDAs, mobile phones, etc.;

6. Electronic eavesdropping: e.g. capturing email.

Challener et al. [35] attribute the proliferation of such security threats to the fact

that it is extremely difficult to develop software that is completely secure. Hence

software bugs simply remain dormant until they are discovered and exploited. Three

main reasons have been identified for this phenomenon. Firstly, modern software

systems are extremely complex, usually consisting of millions of lines of source code.

It is therefore highly likely that there will be bugs in the code. Secondly, it is non-

trivial to replace older systems which do not have the necessary security features

with those which can handle modern threats. Hence new systems are integrated

with these older systems. Compatibility issues often arise as a result of integra-

tion. Finally, most existing defence mechanisms are software-based. Challener et

al. argue that a purely software-based approach may not be adequate, and advo-

cate a hardware-based approach. Schell and Thompson [136] express a similar view,

and were amongst the first to recognise that the lack of (hardware-based) platform

defences could impede the growth and adoption of potential applications.

This was exactly the mission of the Trusted Computing Platform Alliance4 (TCPA)

and its successor the Trusted Computing Group5 (TCG), i.e. enhancing the security

of computing platforms using a hardware-based approach.

4.1.1 The Trusted Computing Group

Trusted computing platform specifications were first published by the TCPA (which

included IBM, Intel, HP and Microsoft) in January 1999. The alliance expanded

rapidly, and by 2002 it had more than 150 members. In April 2003, the TCPA was

succeeded by the Trusted Computing Group (TCG), who adopted the work and the

specifications of the TCPA. The TCG is a not-for-profit industry standards organi-

sation, formed to develop, define, and promote open standards for hardware-enabled
4http://www.trustedcomputing.org/
5http://www.trustedcomputinggroup.org/

53

4.1 Introduction

trusted computing and security technologies, across multiple platforms, peripherals,

and devices. The TCG specifications are intended to enable the construction of more

secure computing environments without compromising functional integrity, privacy,

or individual rights. One of the primary goals of the TCG is to help users protect

their information assets (data, passwords, keys, etc.) from compromise arising from

external software attacks or physical theft.

4.1.2 What is a Trusted Platform?

In their seminal paper [96], McKnight and Chervany established that trust is a

very complex notion which means different things to different people, in different

contexts, and in different environments. We first look at the definition of “trust” or

“trusted” used by the TCG. According to the TCG:

“A trusted system or component is one that behaves in the expected manner for a

particular or intended purpose.”

Using the notions of behavioural trust and social trust, Balacheff et al. [11] distin-

guish between whether a platform can be trusted and whether a platform should be

trusted (we refer the interested reader to Chapter 1 of [11] for further details).

Trusted Computing, as developed by the Trusted Computing Group, is a technology

designed to enhance the security of computing platforms. It involves incorporating

trusted hardware functionality, or so called “roots of trust”, into platforms. Users

can thereby gain greater assurance that a platform is behaving in the expected

manner [11, 100, 151]. Trusted hardware, in the form of a hardware component

called the Trusted Platform Module (TPM), is built into a host platform. The

TPM provides the platform with a foundation of trust, as well as the basis on which

a suite of Trusted Computing security functionality is built. The TPM and its host

are collectively referred to as a Trusted Platform. A trusted platform should support

the following functionalities (described below): Attestation, Integrity Measurement,

Storage and Reporting, Protected Capabilities, and Protected Message Exchange.

54

4.2 Trusted Platform Architecture

4.2 Trusted Platform Architecture

In this section we introduce the functional components of a Trusted Platform, fo-

cussing in particular on the TPM. This provides the basis for understanding the

functionality provided by a TPM, discussed in the following section.

4.2.1 Roots of Trust

Trust in any computing platform must be based on a sound foundation, or ‘root of

trust’. In other words, any platform which might be called a ‘trusted platform’ must

contain some trustworthy functionality that acts as a starting point for building trust

in its operation. As described below, a TCG-compliant trusted platform has three

roots of trust, namely the root of trust for measurement (RTM), the root of trust

for storage (RTS), and the root of trust for reporting (RTR).

4.2.1.1 The RTM

The RTM is a computing engine that is trusted to provide accurate integrity mea-

surements [151], i.e. measurements of software that has been executed on the plat-

form. On a PC, the RTM is actually the platform itself (i.e. the normal computing

engine in the platform, and not the TPM). Since, the measurement process must

commence as soon as a platform is powered on (i.e. the RTM must be the first pro-

gram to execute on the platform), it is logical to place the RTM instruction set in the

BIOS, or, more specifically, in the BIOS Boot Block (BBB). This set of instructions

is often referred to as the Core Root of Trust for Measurement (CRTM).

It is important to note that the CRTM resides in the BBB, and it may be infeasible

to make the BIOS resistant to physical attacks. However, the TCG specifications

do not require the CRTM to be tamper-resistant, but only tamper-evident [11].

55

4.2 Trusted Platform Architecture

4.2.1.2 The RTS

At an abstract level, and as noted by Gallery in Chapter 3 of [100], the TPM is

basically the realisation of the RTS and the RTR. The RTS has the following three

main functions.

• It must accurately (i) store the integrity measurements made by the RTM in a

log file, (ii) condense the integrity measurements made by the RTM in a way

that preserves the values and order of measurements made, and (iii) store the

results in registers residing in the TPM (details of exactly how this is done are

given in Section 4.3.1).

• It must protect a variety of types of keys and data. Certain of these keys

are used to support the Protected Message Exchange Mechanism, described

in Section 4.3.2.

• It must support the migration (allowing the transfer of migratable objects

from one TPM to another), and maintenance (allowing the transfer of non-

migratable objects from one TPM to another) capabilities of a Trusted Plat-

form.

4.2.1.3 The RTR

The RTR is primarily responsible for reporting the current integrity measurements

for a trusted platform (as stored by the RTS) to external ‘challengers’. The RTR

is used to support the Integrity Measurement, Reporting, and Storage functionality

(described in Section 4.3.1).

4.2.2 TPM Functional Components

As discussed in the previous section, the TPM incorporates the RTS and the RTR.

In this section we introduce the components that make up the TPM, and briefly

explain the function of each component. A TPM which conforms to the TCG TPM

56

4.2 Trusted Platform Architecture

specifications should contain all the components shown in Figure 4.1. This discussion

will also help to explain the functionality that is provided by a TPM.

Figure 4.1: The TPM Design

1. Input/Output (I/O): The I/O component provides an interface between

a TPM and the other components of a host platform. It manages all infor-

mation flows (e.g. the TPM commands) over the communications bus, and is

responsible for the following [100, 151]:

(a) encoding/decoding of communications over internal and external buses,

(b) routing messages to the appropriate TPM component,

(c) enforcing access control policies within a TPM.

2. Execution Engine: Upon receipt of a TPM command, the execution engine

parses the command, locates the program associated with the command (in the

program code component), and then executes it. It ensures that (i) operations

are segregated, and (ii) shielded locations are protected [100].

3. Program Code: Program code contains firmware for measuring platform

devices [151]. It is also responsible for the validation of (i) the entire command

bit stream, (ii) the parameters of the code, and (iii) the command authorisation

information (further information can be found in Chapter 8 of Grawrock [66]).

57

4.2 Trusted Platform Architecture

4. Non-Volatile Storage: Certain data and information must be available to a

TPM upon power up, and not be affected by power cycles. These must reside

in the non-volatile storage, which is used to store persistent data such as the

Endorsement Key (EK) and the Storage Root Key (SRK) (the EK and SRK

are described in the next section).

5. Volatile Storage: The volatile storage area is used by the TPM to store the

keys that are in use by the TPM (but not the EK or the SRK).

6. Platform Configuration Registers (PCRs): PCRs are registers in the

TPM used primarily to store integrity measurements. Each PCR is 20 bytes

long, and the TCG TPM specification requires that a TPM possesses a mini-

mum of sixteen PCRs. Registers 0-7 are reserved for TPM use, while registers

8-15 are available for use by the operating system and applications [151]. In

Section 4.3.1 we describe how PCRs are used to support the Integrity Mea-

surement, Storage and Reporting mechanism.

7. RSA Engine: The RSA Engine is used for:

(a) signing data using private signing keys,

(b) encryption/decryption of data using storage keys,

(c) decryption using the Endorsement Key.

The implementation of the RSA algorithm must comply with the PKCS #1

v2.1 standards [131]. In most cases it is recommended (and in some instances

mandated) that 2048-bit RSA keys are used for the above operations. However,

for backward compatibility and other reasons, other key lengths (e.g. 512, 768

and 1024 bits) are also supported by the TPM.

8. RSA Key Generation: The RSA Key Generation engine is capable of gen-

erating signing keys and storage keys of up to 2048 bits in length for use by

the RSA Engine.

9. Opt-In: A TPM is an opt-in device, meaning that a platform owner must take

specific steps in order to activate it. The opt-in component must incorporate

a mechanism to detect physical presence (of a human, usually the owner of the

platform) [66]. This may be in the form of a simple button or switch.

58

4.2 Trusted Platform Architecture

10. SHA-1 Engine: A TPM must incorporate a SHA-1 hash engine where, as

described in Section 2.4.2, SHA-1 takes as input an arbitrary length data string

and gives as output a 20-byte hash code.

11. Random Number Generator (RNG): A TPM must incorporate a true

random bit generator, which is used to seed a pseudorandom number generator.

The RNG is also used for key generation, nonce creation, and to strengthen

pass phrase entropy [151]. Further details of the TPM RNG can be found in

Chapter 3 of [100].

12. Attestation Identity Key (AIK): AIKs must be persistent. Since a TPM

may generate an arbitrary number of AIKs (as described below), it may not be

feasible to store all of them inside the TPM. It is therefore recommended that

AIKs be stored as Blobs (i.e. bit-strings in the format output by the TPM)

in persistent external storage (i.e. outside the TPM). AIKs are described in

greater detail in Section 4.2.3.

4.2.3 TPM Keys and Identities

In this section we describe the various types of key used by a TPM.

4.2.3.1 Endorsement Key (EK)

Every TPM has a unique 2048-bit RSA key pair called the Endorsement Key (EK).

The EK is likely to be generated by the TPM manufacturer before the platform

is shipped to end users. The EK private key, together with a certificate for the

corresponding public key, can be used to prove that a genuine TPM is contained in

a platform. As discussed in the previous section, the EK private key resides in the

non-volatile storage of a TPM, and is never revealed outside of the TPM. Although

the EK public key may be exposed outside of the TPM, it is only used to interact

with external entities in special circumstances, because a TPM can be uniquely

identified by its EK (as a TPM only has one such key pair).

59

4.2 Trusted Platform Architecture

4.2.3.2 Attestation Identity Keys (AIKs)

A TPM can generate an arbitrary number of 2048-bit RSA Attestation Identity Key

(AIK) key pairs, which are used for interacting with other entities. AIKs function

as identities or pseudonyms for a trusted platform, and platform privacy can be

achieved by using a different AIK to interact with different entities. AIKs are used

to:

1. sign certain data, to prove that they are stored in, or originate from, a TPM;

2. certify other keys originating from the TPM.

Since AIKs (instead of an EK) are used to interact with external entities, a TPM

must therefore convince an external entity that a particular AIK has originated from

a genuine TPM. This is addressed by assocating an AIK with an EK in such a way

that an external entity is unable to learn the exact EK. The TCG has specified two

approaches to support this association, and we examine them in greater detail in

Section 4.4.

4.2.3.3 Storage Root Key (SRK)

The Storage Root Key (SRK) is a 2048-bit RSA key pair which is generated by a

TPM. The primary function of an SRK is to protect (i.e. by encrypting) other keys

that are stored externally to the TPM. For example, if an AIK private key is to

be stored outside of the TPM, it must be encrypted using the SRK before it leaves

the TPM. The SRK resides in the non-volatile storage in a TPM, and functions as

a master key for all secret information stored externally to a TPM. When a TPM

owner is established, an SRK pass phrase is also established, so that no one else

(apart from the owner) has access to the SRK. This pass phrase is encrypted using

the EK.

60

4.2 Trusted Platform Architecture

4.2.3.4 Key Attributes

Every key associated with a TPM can be defined as either Migratable or Non-

Migratable. A non-migratable key (usually the private portion of it) cannot leave

the TPM in cleartext form. Migration of a non-migratable key would have the

serious disadvantage of allowing one platform to masquerade as another [151]. For

this reason, AIKs must always be non-migratable.

On the other hand, there may be cases where a user wishes his/her data or keys

to be accessible on other platforms. The TPM supports this through the use of

migratable keys.

4.2.3.5 Other Key Types

The following additional key types are defined [11]:

1. Storage keys are used to wrap (i.e. protect using encryption) externally

stored keys and data, and must be RSA keys of length at least 2048 bits.

2. Signature keys are used to sign application data and messages. Such keys

can be either migratable or non-migratable. These restrictions can be imposed

either by the TPM or its owner.

3. Bind keys are keys that are intended to be used to encrypt small strings of

data (e.g. a secret key for a symmetric algorithm).

4. Legacy keys are keys created outside the TPM. Such keys are supported

for backwards compatibility, e.g. to enable data from legacy applications to be

decrypted.

4.2.4 TPM Credentials

There are four defined types of credential [151].

61

4.2 Trusted Platform Architecture

1. Endorsement Credential: An Endorsement Credential is issued to a TPM

by an entity known as the Trusted Platform Module Entity (TPME). The

TPME is the entity (likely to be the TPM manufacturer) that generates and

embeds the EK pair into the TPM. This credential is a digitally signed state-

ment containing the following information: (i) a statement that it is an en-

dorsement credential, (ii) the public EK, (iii) the TPM type and its properties,

and (iv) the name of the TPME. It is important to note that an endorsement

credential uniquely identifies a particular platform for the reasons discussed in

the previous section.

2. Conformance Credential: A Conformance Credential can be issued by any

entity which has the standing to make credible statements about TPMs and

the platforms containing them. The credential vouches for the fact that a

particular TPM conforms to the TCG specifications, and that the TPM is

properly incorporated into the platform. A conformance credential typically

contains the following information: (i) evaluator name, (ii) platform manufac-

turer name, (iii) platform model number and version, (iv) TPM manufacturer

name, and (v) TPM model number and version. Note that a conformance

credential does not contain information that could be used to uniquely iden-

tify a platform. Also a platform may have multiple conformance credentials

attesting to the various components used to build a platform.

3. Platform Credential: A Platform Credential is issued by the platform man-

ufacturer; apart from describing the properties of a platform, it asserts that a

particular platform contains a TPM of the type described in the Endorsement

Credential. It also makes references to the Endorsement Credential and the

Conformance Credential(s), and, as a result, a Platform Credential uniquely

identifies a platform. A Platform Credential contains: (i) the name of the plat-

form manufacturer, (ii) the platform model and version, (iii) a reference to the

endorsement credential, and (iv) a reference to the conformance credential(s).

4. Identity or AIK Credential: AIK credentials are issued by Privacy CAs.

Such a credential is used to certify that an AIK public key belongs to a TPM

with particular properties, without identifying that platform. An AIK creden-

tial contains: (i) the AIK public key, (ii) the TPM model number, (iii) the

name of the TPM manufacturer, (iv) the platform type, (v) the name of the

platform manufacturer, and (vi) a reference to the conformance credential.

62

4.3 Trusted Computing Functionality

For further information on TPM Credentials, see Chapter 3 of [100] and the TCG

Architecture Overview Specification [151].

4.3 Trusted Computing Functionality

In this section we describe four key features of trusted computing, namely Integrity

Measurement, Storage and Reporting (IMSR), Protected Message Exchange (some-

times also referred to as Protected Storage), Authenticated Boot, and Virtualisation.

4.3.1 Integrity Measurement, Storage and Reporting (IMSR)

Integrity Measurement, Storage and Reporting (IMSR) is a key feature of Trusted

Computing that builds on the three Roots of Trust in a trusted platform (as de-

scribed in Section 4.2.1). Together, these roots of trust allow a verifier to learn the

operational state of a platform, and hence obtain evidence of a platform’s behaviour.

This functionality is extremely important, as a platform may potentially enter a wide

range of operational states, including those that are insecure and undesirable.

4.3.1.1 Integrity Measurement

Integrity measurement involves the RTM measuring a platform’s operational state

and characteristics. The measured values, known as integrity metrics, convey infor-

mation about the platform’s current state (and hence trustworthiness).

4.3.1.2 Integrity Storage

Details of exactly what measurements have been performed are stored in a file called

the Stored Measurement Log (SML). Using the RTS, a digest (i.e. a cryptographic

hash computed using SHA-1) of the integrity metrics is saved in one of the TPM’s

PCRs. The SML contains sequences of measured events, and each sequence shares

a common measurement digest. Since an SML may become fairly large, it does

63

4.3 Trusted Computing Functionality

not reside in the TPM. Integrity protection for the SML is not necessary, since it

functions as a means to interpret the integrity measurements in the PCRs, and any

modifications to the SML will cause subsequent PCR verifications to fail.

There are only a limited number of PCRs in the TPM. Thus, in order to ensure that

previous and related measured values are not ignored/discarded, and the order of

operations is preserved, new measurements are appended to a previous measurement

digest, re-hashed, and then put back into the relevant PCR. This technique is known

as extending the digest, and operates as follows:

PCRi [n] ← SHA-1 (PCRi−1 [n] ||New integrity metric),

where PCRi[n] denotes the content of the nth PCR after i extension operations,

and || denotes the concatenation of bit strings.

4.3.1.3 Integrity Reporting

The final phase of the IMSR process is Integrity Reporting. The RTR has two main

responsibilities during Integrity Reporting:

1. to retrieve and provide a challenger with the requested integrity metrics (i.e. the

relevant part of the SML and the corresponding PCR values); and

2. to attest to (prove) the authenticity of the integrity metrics to a challenger by

signing the PCR values using one of the TPM’s AIK private keys.

To verify the integrity measurements, the verifier computes the measurement di-

gest (using the relevant portion of the SML), compares it with the corresponding

PCR values, and checks the signature on the PCR values. The process of integrity

reporting is also often referred to as Platform Attestation.

64

4.3 Trusted Computing Functionality

4.3.2 Protected Message Exchange and Storage

The TCG specification include three types of Protected Message Exchange mecha-

nisms, namely Binding, Signing, Sealing, which we now describe. We also describe

how the TPM supports the Protected Storage mechanism.

4.3.2.1 Binding

Binding uses asymmetric encryption, as introduced in Chapter 2. If a private de-

cryption key is labelled as non-migratable, then only the TPM that owns it will

ever have access to this key. Hence, if a message is encrypted using a public key

corresponding to a non-migratable private key, then the message is deemed to be

‘bound’ to the TPM that owns the key pair, since no other platform can decrypt it.

On the other hand, if a message is encrypted with a public key whose corresponding

private key is migratable, then the encrypted message is not bound to a platform,

since it might be possible to decrypt it on other platforms.

4.3.2.2 Signing

Keys that are labelled as signing keys (discussed in Section 4.2.3.5) can only be used

for the purpose of signing data, i.e. they are not permitted to be used for encryption.

4.3.2.3 Sealing

Sealing, an enhanced form of binding, is one of the key features of Trusted Com-

puting. A sealed message, apart from being bound to a platform, is also associated

with a set of platform metrics specified by the message sender. The platform metrics

serve as additional requirements that must be satisfied before the decryption of a

sealed message can take place.

The sealing process operates as follows:

65

4.3 Trusted Computing Functionality

1. The sender symmetrically encrypts the message M to be sealed using a key K

to produce EK(M).

2. The encrypted message EK(M) is sealed to a particular platform state by

computing EPK (K ||PCR), where PCR contains PCR values specified by the

sender and PK is a public key whose corresponding private key SK is non-

migratable.

3. The encrypted message EK(M) can only be unsealed on a TPM which has the

decryption key SK corresponding to PK , and the TPM will only do so if the

platform configuration matches the PCR values specified by the sender.

Sealing associates a message with a set of PCR values and a non-migratable asym-

metric key. Sealing is a powerful feature of the TPM, as it gives assurance that

sealed data can only be decrypted when the platform is in a particular state. Arbi-

trary data, including keys, can be sealed. If a private signature key is sealed, i.e. so

that the process of signing using this key is linked to a particular set of PCR values,

then the signing process is known as Sealed-Signing.

4.3.2.4 Protected Storage

The TPM can protect stored data of any form, including keys. The TPM achieves

this not by performing bulk encryption of data or keys on the TPM itself, but

through key management via the SRK (described in Section 4.2.3.3). The SRK

resides in the TPM, and is used to protect (i.e. encrypt) child keys, including identity

keys, bulk encryption keys (also referred to as storage keys), and signing keys. These

encrypted ‘key blobs’ are stored outside the TPM. The function of each type of key

is described in Section 4.2.3.5. A key hierarchy is thereby created, with the SRK as

the root key. For further details of the TPM key hierarchy and protected storage in

general, see Chapter 7 of [11].

66

4.3 Trusted Computing Functionality

4.3.3 Authenticated Boot and Secure Boot

Trusted computing functionality can be used to support two distinct types of security-

enhanced platform boot process, known as Authenticated boot and Secure boot.

4.3.3.1 Authenticated Boot

In an authenticated boot process, the RTM, the measurement agents, and the TPM

cooperate to measure and record the boot sequence in the PCRs and the measure-

ment log (i.e. the SML). We briefly describe the sequence of events during a typical

authenticated boot process (see also Figure 4.2):

Figure 4.2: An Authenticated Boot Process

1. The CRTM, which resides in the BIOS Boot Block (BBB), measures itself and

the rest of the BIOS, computes a cryptographic hash (using SHA-1) of the

measurements, and stores the output integrity metric in the first PCR (i.e.

PCR 0). The CRTM passes control to the measured entity, i.e., the BIOS.

2. The BIOS measures the next component, i.e. the Operating System, computes

a cryptographic hash of the measurements, stores the output integrity metrics

in the next PCR (i.e. PCR 1), and then passes control to the Operating System.

3. The Operating System measures the next component, e.g., the code of an

application, computes a cryptographic hash of the measurements, stores the

integrity metrics in the next PCR, and then passes control to the application.

67

4.3 Trusted Computing Functionality

4. This process of measuring the next entity, storing the measurement, and pass-

ing control to the measured entity continues indefinitely, enabling the platform

at any time to attest to its current configuration.

The authenticated boot process is sometimes also known as the process for estab-

lishing transitive trust [66].

4.3.3.2 Secure Boot

Whilst the authenticated boot process enables the boot process to be measured, it

does not control what is booted; secure boot takes this one step further by both

measuring and controlling the boot process. That is, a secure boot process will be

aborted if, at any stage, the actual boot process differs from the expected process.

Secure boot involves the RTM, the measurement agents, the PCRs, and another

type of internal register in the TPM known as a data integrity register (DIR).

Before a trusted platform boots, the platform owner writes integrity metric values

(the reference or expected values) to the DIRs. When the platform boots, the RTM

measures the operational state of the platform, hashes the measurements, and stores

the results in the PCRs. At each stage, the PCR values are compared to the values

in the DIRs, and, if there is a discrepancy, the boot process is suspended.

If the secure boot process completes successfully, then the platform must have booted

into the desired state.

4.3.4 Isolated Execution Environments

It may be necessary for a sensitive application (e.g. a banking application) to be

protected from external interference (e.g. eavesdropping or even active manipulation)

or from other processes that are running on the same platform. In order to achieve

this, a number of logical compartments or execution environments can be created

within a single platform. As discussed by Peinado, England and Chen [115], an

isolated execution environment must possess the following properties:

68

4.3 Trusted Computing Functionality

• No interference: the program/software in the isolated execution environment

must be isolated from external interference.

• No observation: the program’s data and computation should not be observable

by other entities.

• Trusted paths: a secure channel must exist between the program and its input

(i.e. keyboard and mouse) and output devices (i.e. video).

• Secure communication: the program should be able to securely exchange data

with other programs in a way that ensures the data’s confidentiality and in-

tegrity.

These requirements can be supported through the use of virtualisation technology.

Virtualisation provides a platform with the ability to run multiple ‘virtual machines’

on one physical platform, managed by a ‘hypervisor’ or Virtual Machine Monitor

(VMM), as shown in Figure 4.3.

Virtual machines (VMs) are isolated from each other, and one VM cannot access

memory space allocated to another VM — the VMM ensures this with assistance

from the hardware. For example, Intel’s Trusted Execution Technology (TXT)6 [66]

provides hardware support to help enable the creation of secure (and measurable)

compartments in which virtual machines can operate.

Figure 4.3: A Virtualisation Scenario

6formerly known as Intel LaGrande Technology

69

4.4 Trusted Computing and Privacy

The use of virtualisation slightly alters the authenticated boot process, as the VMM

will also need to be attested to. This may be advantageous, because it could make

the use of attestation more manageable. A detailed description of virtualisation

technologies is beyond the scope of this thesis; the interested reader is referred

to [66, 115].

4.4 Trusted Computing and Privacy

Trusted computing can help to protect the privacy of platform users by hiding the

identity of the platform. The TCG adheres closely to the guiding principles of

the World Wide Web Consortium (W3C) Platform for Privacy Preference (P3P)7

working group [121]. One of these principles addresses the confidentiality of users’

personal information, i.e. that personally identifiable information (PII) should al-

ways be protected with appropriate security safeguards.

One of the goals of trusted computing is to allow an external entity which is inter-

acting with a trusted platform to recognise that the platform is indeed a trusted

platform (i.e. it contains a genuine TPM), but not to uniquely identify the platform.

The Endorsement Key (along with the EK Credential described in Section 4.2.4)

could, in theory at least, be used to prove that a platform contains a genuine TPM.

However, since there is only one EK key pair per TPM, it could also be used to

identify it. The EK is therefore considered as PII, and its use is hence restricted.

To further protect the EK, a TPM owner may also associate authorisation data

with the EK, so that the release of the EK public key or use of the EK private key

becomes an authorised command.

As mentioned in Section 4.2.3.2, instead of using the EK, a trusted platform uses

AIK pairs to interact with external entities, although an external entity must be able

to verify that a particular AIK has originated from a genuine TPM. This is solved

by associating an AIK with an EK is such a way that the external entity is unable

to learn the exact EK. The TCG specifications support two ways of managing such

associations, namely the use of a Privacy CA and the DAA protocol. We describe

both approaches in greater detail below.
7See http://www.w3.org/TR/P3P/

70

4.4 Trusted Computing and Privacy

4.4.1 Privacy CA

A Privacy Certification Authority, or Privacy CA, is a trusted computing specific

trusted third party. Its primary role is to create an Identity Credential, or AIK

Credential, which attests to the fact that a particular AIK public key originates

from a platform containing a TPM of a particular type. A Privacy CA is able to

ascertain whether a platform contains a genuine TPM by inspecting its platform,

conformance and endorsement credentials. If the credentials are accepted by the

Privacy CA, it issues the TPM with an AIK Credential. We now describe the steps

involved in obtaining an AIK Credential from a Privacy CA [11].

1. The TPM owner instructs the TPM to generate a new identity (i.e. a new

AIK). The TPM then creates an identity-binding, i.e. a signature that links

together the following:

(a) the newly generated AIK public key,

(b) a name (for the AIK key) chosen by the TPM owner, and

(c) the identifier of the Privacy CA chosen by the TPM owner to attest to

the new identity.

2. The TPM assembles the data required by the Privacy CA in order to issue the

AIK Credential, including the identity-binding in step 1, and the endorsement,

platform and conformance credentials.

3. The platform owner encrypts the data assembled in step 2 using the Privacy

CA’s public key, and sends the encrypted data to the Privacy CA.

4. On receiving the above message, the Privacy CA decrypts it, and examines the

credentials to determine whether they meet the requirements of the Privacy

CA’s issuing policy.

5. The Privacy CA now performs the following steps:

(a) creates an AIK credential,

(b) encrypts the AIK credential with a newly generated secret key K,

(c) encrypts K using the EK public key specified in the Endorsement Cre-

dential, and

71

4.4 Trusted Computing and Privacy

(d) sends the encrypted AIK credential and the encrypted key to the TPM.

6. On receiving the above encrypted messages, the TPM uses its EK private key

to decrypt K. TPM then uses the key K to extract the AIK credential.

In the above process, the EK is divulged to the Privacy CA, and the Privacy CA

therefore has full knowledge of EK-AIK associations. The privacy of platform users

therefore rests on the trustworthiness of Privacy CAs, and this may not be desirable.

The Direct Anonymous Attestation protocol, discussed next, has been proposed to

avoid this dependency.

4.4.2 Direct Anonymous Attestation

Direct Anonymous Attestation (DAA) [27, 100] is a special type of group signa-

ture scheme that can be used to anonymously authenticate a TCG v1.2 compliant

platform to a remote verifier. DAA has been adopted by the Trusted Computing

Group in version 1.2 of the Trusted Computing Trusted Platform Module (TPM)

Specifications [151]. The key features that DAA provides are the capability for a

TPM (a prover) to anonymously convince a remote or external verifier that:

• it is in possession of a DAA Certificate obtained from a specific DAA Issuer,

without having to reveal the DAA Certificate (or any unique identifiers, e.g.

the EK) to a verifier, and hence it is indeed a genuine TPM (and that it will

therefore behave in a trustworthy manner);

• a DAA Signature computed by a prover on a message m has been generated

using a valid DAA Certificate issued by a specific DAA Issuer; colluding ver-

ifiers are unable to link two different DAA Signatures created by the same

prover, and, in particular, verifiers are not given the DAA Certificate.

Therefore, if an AIK public key is signed using DAA, a verifer can be convinced that

it is held by a TPM with the specified properties. The DAA scheme also provides

a flexible way of achieving a number of different levels of ‘linkability’. Subject to

agreement between the prover and verifier, DAA Signatures can be either ‘random-

base’ or ‘name-base’. Two random-base signatures signed by the same prover (TPM)

72

4.4 Trusted Computing and Privacy

for the same verifier cannot be linked. However, name-base signatures are associated

with the verifier’s name; as a result, two name-base signatures signed by the same

prover (TPM) for the same verifier can be linked.

These features help to protect the privacy of a TPM user. Another important

privacy-preserving feature of DAA is that the powers of the supporting Trusted

Third Party (the DAA Issuer) are minimised, as it cannot link the actions of users

even if it colludes with a verifier.

DAA allows a prover to anonymously convince a remote verifier that it has obtained

an anonymous attestation credential, or DAA Certificate (a Camenisch-Lysyanskaya

(CL) signature [32]), from a specific DAA Issuer (Attester). The DAA Certificate

can also be used to provide an implicit “link” between an EK and an AIK.

We first provide a high level description of the DAA protocol. We then describe

the two sub-protocols: DAA Join and DAA Sign. After which we explain how the

variable anonymity capability is achieved. We conclude our discussion by briefly

reviewing some proposed variants of DAA; we also mentioned two possible short-

comings of the protocol.

4.4.2.1 High Level Overview

We first introduce the entities involved in the DAA protocol and the roles they play.

• The Certification Authority (CA) acts as a trusted third party. Its role is to

certify the authenticity of the DAA Issuer’s longer-term public key, CKI . It

does not directly participate in the DAA protocol.

• The DAA Issuer (or just the Issuer) is a third party that issues DAA Certifi-

cates (i.e. anonymous credentials) to provers. It must be trusted to perform

its role in a trustworthy manner by the other protocol participants. A DAA

Issuer must possess two types of public key: a longer-term public key CKI , and

a shorter-term public key PKI . The reason for this multi-level key hierarchy

is to provide an issuer with flexibility in choosing the frequency with which

it changes its (shorter term) key pair, and also to simplify key update in the

73

4.4 Trusted Computing and Privacy

event that its shorter term key pair is compromised. Further discussion of this

feature can be found in Chapter 5 of [100].

• The Prover (or the User) generates DAA Signatures. In the context of Trusted

Computing, the prover is the TPM.

• The Verifier verifies DAA Signatures computed by provers.

Note that, apart from the CA, all the entities listed above take direct part in the

DAA protocol. Also, in normal circumstances, the numbers of CAs and DAA Issuers

are likely to be very small by comparison with the number of provers.

The DAA Scheme consists of two sub-protocols (or phases), namely the DAA Join

Protocol and the DAA Sign Protocol. In the Join Protocol (shown in Figure 4.4), a

prover interacts with a DAA Issuer I in order to obtain an anonymous credential on

a secret value f (also referred to as the DAA Secret), known only to the prover. This

anonymous credential, known as a DAA Certificate, is jointly computed by the DAA

Issuer and the prover as a function of a blinded value of f , the shorter-term public

key of I, PKI , and other parameters. The DAA Certificate is later used by a prover

during the DAA Sign Phase to compute a DAA Signature. As part of the DAA Join

protocol, the prover is authenticated to the DAA Issuer using its Endorsement Key.

The Issuer authenticates itself to the prover using its shorter-term public key PKI ,

which the prover verifies using a certificate signed by the Issuer with its longer-term

public key CKI , which is in turn certified by the CA.

Figure 4.4: The DAA Scheme

74

4.4 Trusted Computing and Privacy

In the DAA Sign Phase, the prover DAA-signs a message m, using its DAA Secret

f , the DAA Certificate, and other public parameters. The output of the DAA-

signing process is known as the DAA Signature. This DAA Signature enables the

prover to prove to a verifier (using a signature-based proof of knowledge) that (i)

it is in possession of a DAA Certificate, and (ii) the DAA Signature on message m

was computed using its DAA Secret f , the DAA Certificate in (i), and other public

parameters. Verifying a DAA Signature requires knowledge of the DAA Issuer’s

public key PKI (i.e. the public key of the DAA Issuer that was used to create the

DAA Certificate). Hence, prior to running the DAA Sign protocol, a verifier must

have obtained an authentic copy of PKI .

The DAA Sign Protocol has the property that colluding verifiers are unable to link

different DAA Signatures originating from the same prover (as shown in Figure 4.4).

This property applies even if a DAA Issuer colludes with a verifier. If the DAA Issuer

and the verifier is the same entity, then an attack is possible [140].

4.4.2.2 DAA Join Protocol

As described above, the Join protocol enables the TPM to obtain a DAA Certificate

(also known as an anonymous attestation credential) from the DAA Issuer. The

Join protocol is based on the CL signature scheme [32].

Let (n, S, Z, R) be the DAA Issuer public key, where n is an RSA modulus and S,

Z, and R are integers modulo n. We assume that the platform (TPM) is already

authenticated to the DAA Issuer via its Endorsement Credential (which contains

the EK public key).

The platform (TPM) first generates a DAA secret value f and makes a commitment

to it by computing U = RfSv′ mod n, where v′ is a value chosen randomly to “blind”

f . The platform (TPM) also computes NI = ζf
I mod Γ, where ζI is derived from

the DAA Issuer’s name and Γ is a large prime. The platform then sends (U,NI) to

the DAA Issuer, and convinces the DAA Issuer that U and NI are correctly formed

(using a zero knowledge proof [61, 64]). If the DAA Issuer accepts the proof, it signs

the hidden message U by computing A = (Z
USv′′)

1/e mod n, where v′′ is a random

75

4.4 Trusted Computing and Privacy

integer and e is a random prime. The DAA Issuer then sends the platform (i.e. the

TPM) the triple (A, e, v′′), and proves that A was computed correctly. The DAA

Certificate is then (A, e, v = v′ + v′′).

4.4.2.3 DAA Sign Protocol

As described above, the Sign protocol allows a platform to prove to a verifier that

it is in possession of a DAA Certificate, and, at the same time, to sign a message.

The platform signs a message m using its DAA Secret f , its DAA Certificate, and

the public parameters of the system. The message m may be an AIK public key

generated by the TPM, or an arbitrary message. The platform also computes NV =

ζf mod Γ as part of the signature computation (the selection of ζ is discussed in the

next section). The output of the Sign protocol is known as the DAA Signature, σ.

The verifier verifies the DAA Signature σ, and, if the verification succeeds, is con-

vinced that:

1. the platform has a DAA Certificate (A, e, v) issued by a specific DAA Issuer,

and hence it incorporates a genuine TPM containing a legitimate EK; this is

accomplished by a zero-knowledge proof of knowledge of a set of values f, A, e,

and v such that AeRfSv ≡ Z (mod n);

2. a message m was signed by the TPM using its DAA secret f , where f is the

same as the value in the DAA Certificate (used in step 1); if m includes an

AIK public key, then it originates from a genuine TPM.

In summary, once a platform (TPM) has obtained a DAA Certificate (which only

needs to be done once), it is able to subsequently DAA-Sign as many AIKs as it

wishes, without involving the DAA Issuer.

4.4.2.4 Variable Anonymity

Anonymity and unlinkability are provided to a user through the use of two param-

eters: ζ, also referred to as the Base, and the AIK. The choice of the base directly

76

4.4 Trusted Computing and Privacy

affects the degree of anonymity afforded to a TPM user. If perfect anonymity is

desired, then a different, random, base value should be used for every interaction

with a verifier. Conversely, if the same base value is used for every interaction with

a verifier, then the verifier can link these interactions. In addition, if the same base

value is used to interact with different verifiers, then they are able to correlate the

activities of a particular TPM. (A more detailed discussion of the effects of choices

of base values is given in [150]).

As discussed in Section 4.2.3.2, a TPM is capable of generating multiple platform

identities by generating different AIKs. This unlinkability will be preserved if a

TPM uses different AIKs to interact with different verifiers (provided the base is

also different).

4.4.2.5 Developments of and Issues with DAA

DAA [151] is based on a protocol proposed by Brickell, Camenisch and Chen [27] in

2004. A number of variants have since been proposed, three of which we now briefly

introduce.

1. Revoking a DAA credential issued to a compromised TPM is problematic pre-

cisely because of the anonymity features provided by DAA. Brickell and Li [30]

extended the DAA Scheme to include an enhanced revocation capability, which

aims to overcome this limitation whilst still maintaining full unlinkability. One

limitation of this scheme is the requirement for an extra trusted third party

to act as an revocation manager.

2. Ge and Tate [58] recently proposed a more efficient variant of DAA which

retains its security and privacy features. This scheme has sign and verify pro-

tocols that are more efficient than DAA’s, and is thus more suited for deploy-

ment on resource-constrained platforms, such as mobile devices. It is unclear

whether the scheme will be incorporated into future TCG specifications.

3. A new protocol with the same properties as DAA but using elliptic curve

cryptography and bilinear maps, has been proposed by Brickell, Chen and

Li [28, 29]. This scheme has the advantage of having significantly shorter key

77

4.5 Applications of Trusted Computing

and signature lengths than DAA, whilst giving a similar level of security and

computational complexity.

Despite the advantages offered by the above schemes, they have yet to have an

impact on the TCG standards, and so they are not yet relevant in practice.

The privacy features of DAA have a wide range of potential uses. For example,

Balfe et al. [17] have proposed using DAA to provide stable identities in peer-to-

peer networks, thereby preventing Sybil attacks [48]. In chapters 7 and 9 of this

thesis we show how DAA can be used as the basis of security schemes supporting

mobile ubiquitous computing.

Finally we note that two possible security issues with DAA have recently been

described. Smyth, Ryan and Chen [140] point out that the unlinkability property

may be compromised if the DAA Issuer and the Verifier are the same entity. They

also propose a simple modification that prevents the attack. Rudolph [132] shows

that a DAA Issuer is able to embed covert identifying information into its public

keys, enabling user anonymity to be compromised. The feasibility of this latter

attack is analysed in Chapter 5, and possible countermeasures are also proposed. It

should be noted that neither of these attacks are attacks on the DAA protocol itself,

but rather on the specific use of DAA in the TCG specifications.

4.5 Applications of Trusted Computing

Applications of trusted computing have been proposed in a wide variety of contexts

and settings, either to enhance the security of existing systems or to provide new

security features. In this section we briefly review a range of such applications.

4.5.1 Commercial Applications

One of the relatively few applications of trusted computing technology in existing

commercial products is the BitLocker disk drive encryption feature in Microsoft’s

Windows Vista Operating System and Windows Server 2008. Bitlocker is a full

78

4.5 Applications of Trusted Computing

volume encryption feature designed to: (i) protect against the compromise of data

on machines that are stolen or lost; and (ii) to provide secure data deletion when

BitLocker-protected computers are decommissioned [55]. Furthermore, Bitlocker

ensures that stored data is accessible only if the computer’s boot components are

unaltered and the encrypted disk resides in the original computer. Bitlocker sup-

ports three modes of operation (for further details see, for example, Gallery and

Mitchell [55]).

Hewlett-Packard8 PCs come equipped with a suite of tools called ProtectTools Em-

bedded Security. These tools can be used to provide authentication of a TPM-enabled

PC to an enterprise network, and to support various file and folder encryption capa-

bilities. Other PC manufacturers which support use of trusted computing technology

include Dell9, Sony10 and IBM11. More generally, it seems that there is a dearth of

commercial off the shelf applications of trusted computing technology. This con-

trasts with the wide range of published proposals for applications of the technology,

a selection of which we now describe.

4.5.2 Client Applications

The use of trusted computing has been proposed to enhance the security of a range

of client applications. We discuss some of these proposals below.

E-commerce. Balfe and Paterson [19] described how trusted computing can be

used to enhance the security of Internet-based Card Not Present (CNP) transac-

tions. Their proposals rely on using the TPM to bind a platform, and hence its

owner, to a particular card. Balfe and Paterson [20] also proposed a system (called

e-EMV) that emulates EMV smart cards on trusted computing enabled platforms.

The e-EMV scheme supports both the demonstration of card ownership and card-

holder authentication, as well as defending against threats posed by malware (in

particular, transaction generators). Using a combination of virtualisation and attes-

tation mechanisms, Stumpf, Eckert and Balfe [143], proposed an architecture and
8http://www.hp.com/
9http://www.dell.com/

10http://www.sony.com/
11http://www.ibm.com/

79

4.5 Applications of Trusted Computing

client application for securing e-commerce transactions. Their scheme is resistant

to client compromise and man-in-the-middle attacks on SSL.

Gaming. Final Fantasy, proposed by Balfe and Mohammed [18], is a trusted com-

puting based security framework designed to be incorporated into gaming consoles,

with the objective of preventing players from cheating during network gaming. Final

Fantasy also provides a secure platform for players to engage in online auctions of

in-game items.

Preventing Phishing Attacks and Crimeware. Gajek et al. [52] and Alsaid

and Mitchell [9] investigated how trusted computing can be used to prevent various

forms of phishing attacks. Balfe et al. [14] also examine how trusted computing can

be used to address the threats that are posed by various forms of crimeware (e.g.

keystroke loggers, viruses, worms, rootkits, and trojan horses).

Privacy Enhancing Applications. Chen, Pearson and Vamvakas [37] describe

how trusted computing could be used to enhance the security and privacy of a

biometric authentication process. Trusted computing functionality can be used to

give a user assurance that the biometric authentication system will not compromise

biometric information, by attesting to the trustworthiness (i.e. state) of the system

to the user. Gajparia and Mitchell [53], proposed a scheme to preserve user privacy

by allowing a user to determine the state of a destination platform before he/she

decides whether to send it private data.

Client-Server Applications. Single Sign-On (SSO) systems provide a user with

the ability to log on to a variety of different applications without the user having to

maintain separate authentication credentials for each application [112]. Pashalidis

and Mitchell [112] proposed a way of using trusted computing to enhance existing

SSO systems. Sevinç, Strasser and Basin [138] describe how trusted computing could

be used to secure the access, distribution and storage of confidential documents in

a networked enterprise environment for mobile workers.

80

4.5 Applications of Trusted Computing

4.5.3 Distributed Computing Environments

In this section we review possible applications of trusted computing in three differ-

ent distributed computing environments, namely ad hoc and sensor networks, grid

computing, and peer-to-peer (P2P) networks.

Ad Hoc and Sensor Networks. Jarrett and Ward [78] proposed using trusted

computing to prevent selfish or malicious nodes from participating in network activ-

ities (e.g. routing) by incorporating remote attestation mechanisms into the Ad Hoc

On Demand Distance Vector (AODV) routing protocol [116]. Yan and Cofta [160]

explored the possibility of using trusted computing to sustain the trust relationships

established between entities, and hence build a trusted community over a period of

time. This model is especially suited for an ad hoc network because a node would

have assurance that the other nodes are carrying out their assigned tasks in a trust-

worthy manner. In sensor networks, nodes are often organised in clusters, and the

nodes acting as cluster heads can be a target for attacks. Using trusted comput-

ing attestation mechanisms, Krauß, Stumpf and Eckert [82] describe two techniques

whereby cluster nodes can check the integrity of a cluster head and thereby detect

whether it has been compromised by an adversary. A working prototype of a secure

mobile tele-therapeutic system for deployment in ad hoc environments was devel-

oped and implemented by Grossmann et al. [67]. Atmel TPMs were incorporated

into mobile devices, which were built into mobile infusion pumps (for pain therapy)

to allow secure remote control. The TPMs were also used to secure communications,

e.g. between a patient’s medical device and a hospital’s webserver. Grossman et al.

claim that the use of TPMs did not impose significant computational overheads on

the system.

Grid Computing. Cooper and Martin [40], and Löhr et al. [88] both propose

running grid services and grid user jobs in Virtual Machine (VM) compartments, and

having the state of the virtualisation layer attested to the users. Users can thereby

gain assurance regarding the security properties of the services and the execution

environment. Löhr et al. [88] also propose an offline attestation scheme whereby grid

resource providers distribute attestation tokens. An attestation token contains the

81

4.5 Applications of Trusted Computing

provider’s public key and the platform states to which the corresponding private key

have been sealed. By examining the configuration information in attestation tokens,

grid users can select a provider with which to interact. When a user decides to

interact with a resource provider, the provider will only be able to unseal the private

key if it is in the state specified in the attestation token. Sharing the philosophy

that trust should flow in both directions between grid user and grid resource, Yau

and Tomlinson [161] describe how trusted computing can be used to establish trust

between a grid user and a grid resource in a variety of environments.

A concrete framework for securing grid workflows was proposed by Yau et al. [162].

This framework supports the following security services: (i) trusted resource provider

selection; (ii) confidentiality and integrity of job information; and (iii) data auditing

for process provenance. In a grid, it is often necessary to share resources and content

amongst virtual organisation (VO) members. If the content is encrypted, then it

may not be desirable to share the content decryption key amongst multiple mem-

bers, given that some of them may not be trustworthy. This problem is addressed in

the Daonity system, developed by Mao et al. [36, 90], in which a relocatable key is

established to allow controlled group sharing of encrypted content. This is achieved

using the credential migration capability of TPMs, allowing a group key to be se-

curely transferred to only those group members that can attest to their platform

states, and hence prove that they are trustworthy.

For a more detailed discussion of the application of trusted computing to grid com-

puting, see Martin and Yau [91].

Peer-to-Peer (P2P) Networks. As discussed in section 4.4.2, Balfe, Lakhani

and Paterson [16, 17] describe the possible use of trusted computing, in particular

DAA, to provide stable addresses and pseudonymous authentication between nodes

in a peer-to-peer environement, hence avoiding Sybil attacks. Kinateder and Pear-

son [80] presented a trusted computing based distributed reputation system, with

enhanced privacy and security features. This system uses trusted computing to al-

low a peer node to derive confidence in the recommendations provided by other peer

nodes. Using trusted computing functionality, Sandhu and Zhang [135] proposed a

peer-to-peer based access control architecture, which uses the trustworthiness of user

82

4.5 Applications of Trusted Computing

platforms and applications as part of its access control decision-making process. In

this architecture, access to an object can be restricted to platforms with applications

in specified valid states.

4.5.4 Other Applications

Abbadi [5, 6, 7] has proposed several schemes which use trusted computing for Dig-

ital Rights Management (DRM), i.e. protecting proprietary digital content against

unauthorised access. Gallery [54] has also investigated how trusted computing can

be used to help meet the DRM requirements for a mobile environment. Using trusted

computing functionality, Gallery and Tomlinson [56], proposed two protocols to en-

able the secure delivery of conditional access applications to mobile receivers.

The use of Radio Frequency Identification (RFID) technology poses a number of

privacy issues [57]; for example, RFID tagged items and products can easily be

tracked. As a result, individuals in possession of such items could be tracked without

their knowledge. Molnar, Soppera and Wagner [102] introduce a trusted computing

based RFID architecture that addresses some of these privacy concerns. Remote

attestation mechanisms are used in RFID readers to prove that they are running

specific trustworthy software. Individuals interacting with the readers can thereby

verify both that the readers comply with privacy regulations and also that they have

not been compromised.

The use of trusted computing to provide privacy and security for mobile agents has

been proposed by a number of authors [13, 42, 113, 114, 123]. Dietrich et al. [46]

described a generic approach for establishing trust relationships between remote

platforms using trusted computing. Finally, Li et al. [86, 87] have also provided a

glimpse of how trusted computing can be used in pervasive computing environments

to enforce trust, and hence protect the services and data of a critical information

infrastructure.

83

4.6 Summary

4.6 Summary

In this chapter we introduced trusted computing technology. We introduced the con-

cept of a trusted platform and described some of the capabilities of such a platform.

We also looked at how end user privacy can be supported using Trusted Computing.

We then reviewed some proposed applications of Trusted Computing.

Trusted computing technology is still evolving, and open issues and challenges re-

main. One such issue, highlighted by McCune et al. [95], is the turtle problem,

i.e. the problem of establishing the first point of trust for user-based attestation in

a network environment. Another area of considerable recent interest involves pos-

sible means of generalising the attestation mechanism. Such work includes Shi et

al.’s [139] fine grained code attestation, and property-based attestation [70, 133].

Balfe et al. [15] highlighted some of the challenges that need to be overcome in order

for the potential of Trusted Computing to be fully realised.

Indeed, trusted computing could become a ubiquitous security infrastructure, used

routinely in the provision of almost every security service; indeed, this would appear

to be part of the vision of the TCG (see, for example, [124]). It therefore would

seem prudent to further explore ways in which such technology can be exploited

to solve some of the most difficult problems facing users and designers of ubiqui-

tous computing systems, not least in addressing such issues as user privacy and

trust establishment. In this thesis, we examine a number of ways in which trusted

computing could be used to secure mobile ubiquitous services.

84

Chapter 5

A Possible Privacy Flaw in DAA

Contents

5.1 Introduction . 86

5.2 A Privacy Attack on DAA 87

5.3 How Realistic is the Rudolph Attack? 89

5.3.1 Scenario 1: Linking large numbers of users 89
5.3.2 Scenario 2: Linking a small set of users 91

5.4 Preventing the Rudolph Attack 92

5.4.1 Modifying the TCG Specifications 92
5.4.2 Using a Trusted Auditor . 93
5.4.3 A User-Centric Approach 96

5.5 Summary . 96

A possible privacy flaw in the TCG implementation of the Direct Anonymous At-

testation (DAA) protocol has recently been discovered by Rudolph. This flaw allows

a DAA Issuer to covertly include identifying information within DAA Certificates,

enabling a DAA Issuer that colludes with one or more verifiers to link and uniquely

identify users, compromising user privacy and thereby invalidating the key feature

provided by DAA. In this chapter we argue that, in typical usage scenarios, the

weakness identified by Rudolph is not likely to lead to a feasible attack; specifically

we argue that the attack is only likely to be feasible if honest DAA signers and veri-

fiers never check the behaviour of issuers. We also suggest possible ways of avoiding

the threat posed by Rudolph’s observation.

85

5.1 Introduction

5.1 Introduction

As discussed in Chapter 4, Direct Anonymous Attestation (DAA) is a special type of

group signature scheme that can be used to anonymously authenticate a principal,

also referred to as a prover, to a remote verifier. DAA was adopted by the Trusted

Computing Group in version 1.2 of the Trusted Computing Trusted Platform Module

(TPM) Specifications [151]. The key features provided by DAA are the capability

for a prover (a group member) to anonymously convince a remote verifier that:

• it is in possession of a DAA Certificate obtained from a specific DAA Issuer,

without having to reveal the DAA Certificate (as would be necessary for a

signature-based proof of knowledge);

• a DAA Signature on a message m has been generated using a valid DAA

Certificate issued by a specific DAA Issuer; colluding verifiers are unable to link

two different DAA Signatures created by the same prover, and, in particular,

verifiers are not given the DAA Certificate.

The DAA scheme also provides a flexible way of achieving a number of different

levels of ‘linkability’. Subject to agreement between the prover and verifier, DAA

Signatures can be either ‘random-base’ or ‘name-base’. Two random-base signatures

signed by the same prover (TPM) for the same verifier cannot be linked. However,

name-base signatures are associated with the verifier’s name; as a result, two name-

base signatures signed by the same prover (TPM) for the same verifier can be linked.

These features help to protect the privacy of a prover. Another important feature

of DAA (distinguishing it from other types of group or ring signature schemes) is

that the powers of the supporting Trusted Third Party (i.e. the DAA Issuer in its

role as the group manager) are minimised, as it cannot link the actions of users (i.e.

provers) and hence compromise user privacy, even if it colludes with a verifier. This

unlinkability property is the key feature of DAA.

However, an attack was recently discovered by Rudolph [132] which potentially

compromises the unlinkability property of DAA. The attack could allow a DAA

Issuer to embed covert identifying information into DAA Certificates (of provers)

86

5.2 A Privacy Attack on DAA

and to subsequently link the transactions of the users/provers to whom the DAA

Certificates belong [132]. As a result, DAA Signatures originating from the same

users would become linkable, and user devices could thereby be uniquely identified.

In this chapter, we argue that Rudolph’s attack may be infeasible in practice, and

we discuss why an attempt to launch such an attack could easily be discovered in an

environment where there is at least one honest verifier. We also propose approaches

which could prevent the attack from taking place.

The remainder of this chapter is organised as follows. In Section 5.2 we briefly

outline the privacy attack. In Section 5.3 we explain why the attack is likely to

be unrealistic in many practical scenarios, and, in Section 5.4, we discuss possible

modifications to the use of DAA in the TCG specifications that can prevent the

attack. Finally, conclusions are drawn in Section 5.5.

5.2 A Privacy Attack on DAA

In this section, we briefly describe how and under what assumptions the Rudolph

attack works.

The privacy breaching attack on DAA proposed by Rudolph [132] operates under

an assumption about the use of DAA, which we first describe. Specifically, it is

assumed that the DAA Issuer’s longer-term public key CKI , as well as the (shorter-

term) public key PKI (along with its certificate chain) used to compute the DAA

Certificate, are communicated to the verifier via the prover during the DAA Sign

Phase (as shown in Figure 5.1). Whether or not this is a realistic assumption is not

clear; other possibilities include use of a publicly accessible certificate repository. In

any event, as we describe below, the verifier will need to know which of the DAA

Issuer’s shorter-term keys has been used to create the DAA Certificate on which the

DAA Signature is based.

The attack works as follows. As shown in Figure 4.4, during the DAA Join Phase

the DAA Certificate is computed using the DAA Issuer’s public key PKI and other

parameters. The key PKI is a shorter-term public key which is certified using the

longer-term public key CKI , which in turn is certified by a trusted CA (as shown

87

5.2 A Privacy Attack on DAA

Figure 5.1: The Rudolph Attack

in Figure 4.4). This key hierarchy is an intentional design feature of DAA, chosen

to make the TPM and Issuer key life cycles independent. This is because the TPM

computes its DAA private key as a digest of a secret seed and the Issuer’s longer-

term public key. This ensures that the TPM uses the Issuer key that matches its

DAA private key. If the Issuer had only a single key, then, when the Issuer changed

its key, every TPM would also have to update its key. To avoid this problem, the

Issuer is given the two types of key described above.

Unfortunately, this flexibility can potentially be exploited by a curious DAA Issuer

to compromise the privacy properties of DAA. As observed by Rudolph, a DAA

Issuer could embed covert identifying information into a public key without the

knowledge of an honest prover. The Issuer simply uses a different public key PKI

to generate DAA Certificates for each prover with which it interacts. As a result,

the Issuer will be able to compile a table mapping between a prover’s public EK (its

unique key) and the public key used to generate the DAA Certificate for this prover.

Suppose a verifer has obtained the Issuer’s public key PKI from the prover. When-

ever a prover executes the DAA Sign protocol with a colluding verifier (i.e. one that

colludes with the Issuer to identify a prover), and assuming that the public key PKI

used to generate its DAA Certificate is communicated to a verifier via the prover,

the DAA Issuer and the colluding verifier can easily link the transactions of a prover

and uniquely identify it. A verifier needs only inform the DAA Issuer of the value of

PKI . The DAA Issuer can then consult the EK-PKI mapping it has compiled, and

determine the prover’s EK. Similarly, with the aid of the Issuer, colluding verifiers

88

5.3 How Realistic is the Rudolph Attack?

are able to uniquely identify a particular prover.

5.3 How Realistic is the Rudolph Attack?

We now consider how the Rudolph attack might work in practice, and in particular

we examine two possible attack scenarios.

5.3.1 Scenario 1: Linking large numbers of users

In this scenario, the aim of the DAA Issuer is to identify large numbers of provers.

We believe that this attack scenario is infeasible in practice. We demonstrate (i)

why this attack scenario is unrealistic (even if all the verifiers collude) because of

the communications and computation burden involved in performing such an attack;

and (ii) how the attack can easily be detected if there is at least one honest verifier:

(i) Suppose we have a scenario in which there is one DAA Issuer, n provers (all

joining the network or system at different times), and k verifiers. Suppose all

the k verifiers are colluding with the Issuer in an attempt to link or uniquely

identify the provers. For the attack to work, the colluding verifiers have to

shoulder an additional communication and computational burden (see Ta-

ble 5.1 for a summary of the communication and computational overheads).

First and foremost, to be able to link all the n provers, the DAA Issuer needs

to use n different public keys PKI , one for each prover. These n public keys

will also need to be communicated to each of the verifiers. If a trusted di-

rectory is used to hold copies of the public keys, then the Issuer would need

to upload a total of n different public keys to this directory (if the provers

join at different times then this may involve sending up to n separate upload

messages). If the verifiers obtain the public keys from the Issuer directly, then

the total communications overhead for an Issuer may be up to nk messages

(as compared to k messages if the Issuer only uses one key).

A verifier, regardless of the mechanism used to retrieve Issuer public keys,

will need to obtain up to n Issuer public keys for the n provers. This means

89

5.3 How Realistic is the Rudolph Attack?

that the communications overhead for a verifier may be up to n messages.

Furthermore, whenever there is a new prover, the verifiers might need to obtain

the new public key for this prover.

We now point out why launching the Rudolph attack also has a significant

computational overhead. Firstly, the generation of the DAA Issuer public key

PKI involves performing a non-interactive zero knowledge proof (using the

Fiat-Shamir heuristic) [27]. This potentially involves the DAA Issuer per-

forming at least 160 modular exponentiations (which could go up to 6× 160,

one for each of the public key components g, h, S, Z, R0 and R1). This contra-

dicts Rudolph’s claim that the process of generating a large number of public

keys can be performed efficiently [132].

Secondly, the work to be performed by the verifier in trying to identify

the prover may become infeasibly large, depending on how Issuer public keys

are distributed. If the prover sends the Issuer-signed certificate for the Issuer

public key PKI to the verifier as part of the DAA Sign protocol, as assumed

by Rudolph, then there is no problem. However, if the key is obtained from a

directory, then significant computational problems arise. This is because the

verifier will have no way of knowing which of the n Issuer public keys have

been used to create the DAA certificate, and hence which of them should be

used to attempt to verify the DAA Signature. The only solution would be for

the verifier to attempt to verify the signature using every possible key, which

would involve up to n verifications. Given the ubiquity of trusted computing

hardware, a typical value of n might be 105 or 106, which would make such a

process computationally infeasible.

(ii) The attack will easily be discovered if there is at least one honest verifier or if

Issuer public keys are stored in public directories, as we now describe.

• Consider first an environment in which there is at least one honest verifier.

When the honest verifier attempts to verify a DAA Signature, it first

needs to retrieve the Issuer’s public key, either directly from the Issuer or

from a trusted directory. If the Issuer (or the trusted directory) submits

a large number of public keys to the verifier, then suspicions about its

trustworthiness will immediately be aroused. Even if the honest verifier

is given the Issuer public key by the prover rather than retrieving it from

a directory, then it could still detect misbehaviour if it keeps a log of all

90

5.3 How Realistic is the Rudolph Attack?

Table 5.1: Communications and computation costs for honest and colluding entities.

Costs Incurred By
Type of Costs Honest Honest Colluding Colluding

Issuer Verifier Issuer Verifier

Communication 1 1 nk n
(no. of messages)

Computation - 1 - n
(no. of DAA Sign

Verifications)

the Issuer public keys that it has been passed. If one particular Issuer is

using large numbers of different public keys then this will quickly become

obvious to such a verifier.

• Suppose an Issuer uploads multiple public keys to a directory or other

repository. This will immediately be obvious both to the operator of the

directory (which may report suspicious behaviour) as well as to any user

of the directory.

5.3.2 Scenario 2: Linking a small set of users

If the aim of the DAA Issuer is to link all transactions involving a single user (e.g.

a high-profile user or one that makes high value transactions), or a very small set of

users, then the attack is much more likely to succeed in a way that is hard to detect.

For example, if a DAA Issuer only wants to distinguish transactions involving one

user, then the Issuer only needs to have two public keys PKI . In such a case, the

communication and computation problems discussed in the previous section would

not be an issue, nor would there be a large number of Issuer public keys in circulation

to arouse suspicions.

Nevertheless, if a verifier deals with many provers who are clients of the same Issuer,

then the suspicions of an honest verifier might be aroused if one Issuer public key, or

some small set of such keys, is used much less than others. In particular, if the DAA

91

5.4 Preventing the Rudolph Attack

Signatures are of the name-base type, allowing a verifier to link DAA Signatures

signed by the same prover (TPM) for the same verifier, then the verifier will be able

to observe significant differences in the numbers of clients for an Issuer’s public keys.

5.4 Preventing the Rudolph Attack

Despite the issues raised in the previous section, the Rudolph attack will work if a

verifier obtains the Issuer’s public key from a prover (as described in [132]), and if

no honest verifier keeps track of the Issuer public keys it has received or if the goal of

the attackers is only to track a few users. Even worse, a prover would be completely

oblivious to such an attack, as there is no way for a prover to tell if a DAA Issuer is

embedding covert identity information into the public key that is used to generate

its DAA Certificate (e.g. by using a different public key for each prover).

We now examine a number of possible ways of preventing the Rudolph attack. We

also discuss the limitations of these approaches.

5.4.1 Modifying the TCG Specifications

We first observe that addressing the root cause of the problem would involve chang-

ing the TCG specifications to prevent a DAA Issuer from self-certifying an arbitrary

number of public keys. This could be achieved by requiring the Issuer to use a pri-

vate key for which the public key has been directly certified by a third party CA (in

the notation used above, this would mean that the issuer key CKI would be used to

generate DAA certificates).

There are two problems with such a approach. Firstly, the CA would then need to

be trusted not to generate large numbers of certificates for an Issuer. Whilst this

could be supported by requiring any CA that generates Issuer certificates to adhere

to an appropriate Certification Practice Statement, it still means that a significant

amount of trust is placed in a single third party, a situation which the design of

DAA seeks to avoid.

92

5.4 Preventing the Rudolph Attack

Secondly, as explained above, this means that the key life cycle of the TPM and the

Issuer become linked. Addressing this issue would require further changes in the

operation of the TPM.

An alternative approach would retain the two levels of Issuer public keys, but would

require both types to be certified by a CA. As in the existing scheme, the first level

key would be used to compute the DAA secret, and the second level key would be

used to create the DAA Certificate. Certificates for second level keys could reference

the first level key to link the two together. This could address the Rudolph attack

without causing a key life cycle issue.

5.4.2 Using a Trusted Auditor

We next explore another possible approach which does not involve modifying the

TCG specifications too much (or at all). We propose that a prover obtains DAA

Certificates only from DAA Issuers that use the same public key for a very large

set of users. Thus the challenge is to enable a prover to determine the key usage

behaviour of a DAA Issuer.

If a prover is able to obtain assurance that a specific Issuer’s public key has being

used more than a certain number of times (i.e. to generate a certain number of

DAA Certificates), then it is immediately able to derive confidence that it will not

be uniquely identified, and at the same time gain information about the level of

anonymity that it is being afforded. For example, if a prover knows that the public

key used to generate its DAA Certificate has been used to generate a thousand other

DAA Certificates, then it knows that it cannot be distinguished from a thousand

other entities. On the other hand, if it knows that a particular public key has only

been used to generate three other DAA Certificates, then the level of anonymity

afforded to it is potentially very limited.

We now suggest two possible approaches designed to give a prover this type of

assurance. We also discuss the possible limitations of the suggested approaches.

93

5.4 Preventing the Rudolph Attack

5.4.2.1 A modification to the use of DAA.

This approach requires the introduction of a new type of trusted third party, which

we refer to as a Trusted Auditor (TA). We make use of the TA (which is not nec-

essarily unique) to give provers assertions about the “trustworthiness” of individual

DAA Issuers. Since the CA needs to be trusted by the protocol participants, and

since it is already employed to certify the longer-term public key CKI of the Issuer,

a CA could act as a TA, although this does need to be the case.

We propose that the following additional steps be performed by a prover during

the DAA Join protocol. During the Join phase, and after a DAA Certificate has

been successfully created, the prover establishes a secure channel with the TA. This

can be achieved by the prover first establishing a unilaterally authenticated secure

channel with the TA using a public key certificate for the TA, e.g. using SSL/TLS.

The prover can then send its EK credential to the TA via this channel, and use this

credential to authenticate itself, e.g. by decrypting data sent to it encrypted using

the EK. Finally, the prover uses this channel to send a statement that a specific

DAA Issuer has used a particular public key PKI to derive its DAA Certificate, i.e.

Prover → TA : IDIssuer ,CKI ,PKI

Using these messages, the TA can compile a list of the form given in Table 5.2. A

copy of this list signed by the TA (to prove authenticity) can then be communicated

to a prover prior to the Join Phase. Since it is desirable not to publicise the public

EK values of individual trusted platforms, this information can be removed from

the list before it is distributed. The list of public EKs can be replaced by the total

number of different EKs for which credentials have been generated using a particular

Issuer public key.

This approach suffers from one problem. The public part of the Endorsement Key

(EK) of every prover is revealed to the TA. Since the EK pair for a trusted platform

is fixed, the public EK functions as a fixed identifier for a platform, and hence

revealing it is not desirable. Indeed, DAA was introduced to avoid the need to

reveal the link between the public EK and other prover public keys to a Privacy

CA. Nevertheless, this scheme does not pose the same threat to user privacy as the

94

5.4 Preventing the Rudolph Attack

Table 5.2: Mapping of EKs to a PKI for individual Issuers

No. Issuer Name Longer-term CKI Shorter-term PKI Users
EK1

PKA1
I

...
1. Alice CKA

I EK2000

EK1

PKA2
I

...
EK10

EK1

2. Bob CKB
I PKB1

I

...
EK200

use of a Privacy CA, since the TA does not learn the link between the EK and any

other prover keys.

5.4.2.2 An alternative approach.

A possible alternative to the above approach avoids revealing the EK to a third party,

although it still relies on a TA to provide assertions regarding the trustworthiness

of the DAA Issuer (i.e. reporting on the number of DAA Certificates generated

for a particular public key for a specific Issuer). A prover and DAA Issuer run

the DAA Join protocol as normal, thereby obtaining a DAA Certificate (for the

prover’s unique DAA Secret f). The prover then conducts an instance of the DAA

Sign protocol with the TA, which acts as the verifier. The prover DAA-signs the

following information sent to the TA (acting as verifier), so that the TA can compile

a table similar to that shown in Figure 5.2.

Prover → TA : IDIssuer ,CKI ,PKI

One possible problem with this approach is that, because no use is made of the

EK, a malicious Issuer could fabricate DAA-signed messages of the above form, and

send them to the TA. The DAA signature signed for the TA could be of the name-

base type, which will guarantee that each DAA secret can only provide one piece

of evidence. However, the messages could be based on any number of ‘fake’ DAA

Certificates, that are valid in that they have been created by the DAA Issuer, but

have never been sent to a genuine prover. Such messages will be indistinguishable

95

5.5 Summary

from messages sent from genuine provers, and hence the number of uses of a key can

be artificially inflated.

Nevertheless, a table created in this way will still reveal if an Issuer has created more

public keys than would be expected in ‘normal’ behaviour; this may be sufficient to

deter an Issuer from using the Rudolph attack on a large scale.

5.4.3 A User-Centric Approach

To determine the trustworthiness of an Issuer, two or more users could collaborate

to compare the PKI values that they have obtained from a particular Issuer. If

all of them have the same key PKI , then there is good chance that the Issuer is

using the same PKI for a large set of users. However, if the users find that two or

more different keys PKI have been used, then the trustworthiness of the issuer is

immediately called into question. This approach is suited to a distributed or peer-

to-peer environment, and does not require the involvement of a trusted third party.

Clearly, the effectiveness of the technique will depend on the number of cooperating

users.

5.5 Summary

A privacy flaw in DAA was recently pointed out by Rudolph [132]. In this chapter we

have analysed the feasibility of attacks exploiting this property. We then examined

possible approaches which could be used to prevent (or reveal) the attack as well as

the limitations of these approaches. These approaches could make a successful attack

very difficult to perform; however, all of the suggestions have certain drawbacks. It

remains an open problem to find a ‘perfect’ solution to the Rudolph attack. Indeed,

the DAA scheme itself cannot stop an issuer from using a different key with each

TPM, no matter whether the key is certified by the Issuer’s longer-term key or by

another CA. It is a very tough challenge for any application to completely avoid

such a threat.

It should be noted that the Rudolph Attack is not an attack on the DAA protocol

96

5.5 Summary

itself, but is rather a weakness introduced in the particular use of DAA. In fact, an

implementation of an arbitrary group signature scheme might have a similar problem

if the size of a group is very small, e.g. for groups containing just a single member.

However, in other implementations of group signatures, a group manager might not

have any motivation to break the anonymity of its members, because the manager

has the ability to determine the identity of a signer from its signature.

97

Chapter 6

Analysis of a Secret Distribution and
Storage Scheme

Contents

6.1 Introduction . 99

6.2 Preliminaries . 99

6.2.1 Notation . 100
6.2.2 TPM Commands . 100
6.2.3 Assumptions . 101

6.3 A TPM-based Secret Distribution and Storage Scheme 102

6.4 Analysis of the Scheme . 104

6.4.1 Absence of Server-to-Client Authentication 105
6.4.2 Preventing the Client from Receiving the Secret 105
6.4.3 Exploiting the TPM as an (Signing) Oracle 106

6.5 Discussion . 106

6.6 Summary . 107

In this chapter we analyse a protocol proposed by Sevinç, Strasser and Basin, which

uses trusted Computing functionality to secure both the storage of secrets and their

distribution from a server to a client. We identify two security weaknesses in the

protocol design, namely the absence of server-to-client authentication and the unau-

thenticated encryption of secrets sent from the server to the client. As a result of

these weaknesses, we show how the TPM could be exploited as an oracle, hence un-

dermining the security of the scheme. We also propose modifications designed to

make the protocol more secure.

98

6.1 Introduction

6.1 Introduction

As was discussed in Chapter 4, trusted computing provides many innovative security

features such as the protected message exchange mechanism and the remote attes-

tation service. These features have attracted the attention of a number of security

protocol designers, who have used them to help to address a variety of security chal-

lenges and issues (some of these applications have been described in Section 4.5).

Like any other security technology, trusted computing does not remove every secu-

rity issue. Best practices for protocol design must still be followed to minimise the

risk that vulnerabilities are present.

In this chapter we consider a protocol proposed by Sevinç, Strasser and Basin [138],

which uses trusted computing functionality to secure both the storage of secrets

and their distribution from a server to a client. We describe security weaknesses in

this protocol. Specifically, because messages are not authenticated, attackers could

exploit the TPM as an oracle for signing arbitrary messages. We go on to suggest

possible protocol enhancements which will both prevent the attack and improve the

overall security of the scheme.

The remainder of the chapter is organised as follows. In Section 6.2 we introduce

the notation used in this chapter, and also describe the commands employed in

the Sevinç-Strasser-Basin (SSB) Scheme. Section 6.3 describes the operation of the

TPM-based secret distribution and storage scheme, and in Section 6.4 we analyse

its security. In the penultimate section we propose protocol modifications designed

to improve the security of the scheme. Finally, we provide concluding remarks in

Section 6.6.

6.2 Preliminaries

In this section we briefly introduce certain notation, and review the TPM commands

used in the SSB protocol. We also state the assumptions upon which the scheme is

based.

99

6.2 Preliminaries

6.2.1 Notation

The notation used in the protocol descriptions is summarised in Table 6.1.

Table 6.1: Notation

Notation Description
C The Client
S The Server
ds Secret data generated by Server S which is to be transferred

to the client C
fa A flag, which may be set or cleared, used to specify whether

a particular key is an AIK key
fb A flag, which may be set or cleared, used to specify whether

a particular key is a binding key
fn A flag, which may be set or cleared, used to specify whether

a particular key is a non-migratable key
hK A Handle to key K
CredAIKpk

An AIK Identity Credential (as described in Section 4.2.4)
PCRInfo PCRInfo consists (i) a set of PCR indices; and (ii) their

respective PCR values.
SeReq Secret Request Message
(Apk ,Ask) The public/private key pair of a principal A
(BKpk ,BKsk) A pair of public/private Binding Keys
(CApk ,CAsk) The public/private key pair of a CA
(MKpk ,MKsk) The pair of public/private Master Storage Keys

6.2.2 TPM Commands

The SSB Scheme uses the following TPM commands.

• (BKpk , B̃K sk) ← TPM_CreateWrapKey(hMK , fb , fn ,PCRInfo): This command

generates and outputs an encryption/decryption key pair (BKpk ,BKsk). It

takes as input (i) a key handle hMK to the master storage key MK that is used

to encrypt the newly generated secret key, (ii) a flag that specifies whether the

newly generated key is to be used for signing or binding (encrypting), (iii) a

flag that specifies whether the key is migratable or non-migratable, and (iv) if

it is a binding key, whether the key is to be sealed to a specified set of PCR

values. The public key BKpk is returned unencrypted, while the private key

100

6.2 Preliminaries

BKsk is returned in encrypted form, i.e.

B̃Ksk = EMKpk
(fb, fn,PCRInfo,BKsk)

where EMKpk
(fb , fn , PCRInfo,BKsk) denotes the encryption of the private

binding key BKsk (and associated information) using the (non-migratable)

master storage key MKpk , and where BKsk is a non-migratable, binding key

sealed to the PCR values specified in PCRInfo.

• hBKsk
← TPM_LoadKey2(BKpk , B̃K sk , hMK): This command loads a private

decryption key BKsk into the TPM for subsequent use within the TPM. It

takes as input (i) the public (encryption) key BKpk , (ii) the corresponding

private key in encrypted form B̃Ksk, and (iii) a handle hMK to the master

storage key MK . A handle hBK pointing to the loaded key BKsk is returned

by the TPM.

• Cert ← TPM_CertifyKey(hBK , hAIK ,N): This command produces a certificate

for a TPM public key, where the certificate specifies the properties of the

key. It takes as input (i) a handle to the loaded private key BKsk (assuming

the previous command has previously been executed), (ii) a handle to the

certifying/signing key AIK , and (iii) a nonce N . The command then returns

a certificate

CertBKpk
= SigAIKsk

(fb , fn ,PCRInfo,N ,BKpk)

The certificate states that the public key BKpk is the public part of a non-

migratable binding key pair.

• P ← TPM_UnBind(T, hBK): This command decrypts the input ciphertext. It

takes as input (i) ciphertext T , and (ii) a handle hBK which points to the

decryption key BKsk . The command then outputs P , the decrypted version

of T .

6.2.3 Assumptions

Use of the SSB scheme has the following prerequisites:

1. The server has prior knowledge of:

101

6.3 A TPM-based Secret Distribution and Storage Scheme

• the secret data ds which is possessed by the server prior to the protocol

run (only the server has knowledge of ds prior to the protocol run) and

which is to be transferred to C;

• the certification authority’s public key CApk , that can be used to verify

the AIK identity credential;

• a set of PCR values (and associated indices) that correspond to a trusted

state on the client platform.

2. The client TPM has:

• generated an AIK key pair and has obtained an identity credential (AIK

public key certificate) for AIKpk , the public part of the AIK, from a

certification authority trusted by the server;

• generated a master storage key pair (MKpk ,MKsk);

• loaded the private key MKsk of the non-migratable master storage key

pair MK ;

• loaded the AIK private key, AIKsk .

3. The client is in possession of:

• the handle hMK to, and the authorisation data for, the non-migratable

master storage key MK for the client TPM;

• the handle hAIK to, and the authorisation data for, an AIK;

• an AIK identity credential CredAIKpk
, which enables external entities to

verify that an AIK is authentic and belongs to a genuine TPM with the

specified properties.

4. The operator of the client platform has the authorisation data for the AIK key

pair.

6.3 A TPM-based Secret Distribution and Storage Scheme

The scheme proposed by Sevinç, Strasser and Basin (SSB) [138] uses the binding

and sealing functions of trusted computing to help securely distribute secrets from

a server to a client. The server is not required to trust the client platform, although

102

6.3 A TPM-based Secret Distribution and Storage Scheme

the server must trust the trusted platform module (TPM) in the client machine to

behave in the expected manner. With the aid of this TPM, the server is able to learn

the operational state of the platform, and gain assurance that a transferred secret

will only be released (decrypted) if the operational state of the client platform is a

particular specified trustworthy state. The server is also given assurance that the

platform is not in a compromised state before the secret is released to the platform.

We now describe this scheme in greater detail (see also Figure 6.1).

1. The client C sends a secret request message SeReq to the server S requesting

the transfer of secret data.

2. On receiving the above message, S replies with PCRInfo and a nonce N .

PCRInfo specifies the operational state in which the client platform must be,

in order for the secret data to be released.

3. C generates a non-migratable encryption/decryption binding key pair (BKpk ,

BKsk) by invoking the TPM_CreateWrapKey command. The command takes as

input the handle to the master storage key hMK and PCRInfo (received from

step 2), and outputs (BKpk , B̃K sk). Note that the output private key B̃K sk

is sealed to the PCR values specified in PCRInfo and is also encrypted under

the master storage key MK .

4. C loads the sealed private key BKsk into the TPM so that it is available within

the TPM. This is achieved using the TPM_LoadKey2 command, taking as input

(i) the encrypted sealed private key B̃K sk , (ii) its corresponding public key

BKpk , and (iii) the handle to the master storage key hMK . The TPM returns

a handle hBKsk
to the loaded private key.

5. C creates a certificate for the non-migratable binding public key BKpk , using

the TPM_CertifyKey command. This command takes as input (i) the handle

hBKsk
to the loaded private key BKsk , (ii) a handle hAIK to the AIK key, and

(iii) a freshly generated nonce N . The command then returns a certificate

CertBKpk
. The certificate contains (i) the public key BKpk , and (ii) a descrip-

tion of the properties of BK (including whether the key is a binding key and/or

a non-migratable key, and also the PCR values to which the private key was

sealed).

103

6.4 Analysis of the Scheme

6. On successful completion of steps 3–5, C sends S the public key certificate

CertBKpk
(obtained in the previous step), and the AIK credential CredAIKpk

.

7. On receiving the above message, S verifies the two certificates. On successful

verification, S is convinced that (i) the public AIK is authentic, and (ii) BK

is a non-migratable binding key originating from a genuine TPM, and that it

is sealed to the PCR values that the server specified in step 2. S is now happy

to send the secret to C.

8. S extracts the encryption key BKpk from CertBKpk
, and uses it to encrypt the

secret data ds. S then sends the encrypted secret EBKpk
(ds) to C.

9. On receiving the above message, C decrypts the encrypted secret by invoking

the TPM_UnBind command. This command takes as input (i) the encrypted

secret EBKpk
(ds), and (ii) the handle hBK pointing to the decryption key BKsk .

Before performing the decryption, the TPM checks whether the current op-

erational state of the client platform matches the state specified in PCRInfo.

If the outcome is positive, the encrypted secret is decrypted (unsealed) and

returned to C.

1. C→ S SeReq
2. C← S PCRInfo, N
3. TPM ← C invokes TPM_CreateWrapKey(hMK ,PCRInfo)

TPM: generates non-migratable binding key (BKpk ,BKsk)

TPM → C ouputs (BKpk ,gBK sk)
4. TPM ← C invokes TPM_LoadKey2(hgBK sk

, hBKpk
, hMK)

TPM → C outputs hBKsk

5. TPM ← C invokes TPM_CertifyKey(hBKsk
, hAIK ,N)

TPM → C outputs CertBKpk

6. C→ S CertBKpk
,CredAIKpk

7. S: verifies AIKpk

asserts BK is binding
asserts BK is sealed to PCRInfo

8. C← S EBKpk
(ds)

9. TPM ← C TPM_UnBind(EBKpk
(ds), hBK)

TPM: asserts C is in same state as specified in PCRInfo
TPM → C outputs ds

Figure 6.1: TPM-based secret distribution and storage scheme

6.4 Analysis of the Scheme

We now identify three significant weaknesses in the SSB scheme.

104

6.4 Analysis of the Scheme

6.4.1 Absence of Server-to-Client Authentication

The protocol does not provide any authentication of the server to the client; in

particular, the client has no means of verifying the origin of messages 2 and 8. This

means that the client will be issuing commands to the TPM on the basis of an

unauthenticated request (message 2), and receiving ‘secret data’ (in message 8) of

unknown provenance and without any integrity guarantees. Whilst server to client

authentication is not a specified design goal for the scheme, its absence could have

serious implications for practical uses of the protocol.

6.4.2 Preventing the Client from Receiving the Secret

The main design goal of the scheme is to provide assurance to the server that the

provided secret remains confidential and can only be accessed by a client platform

operating in a specified trustworthy software state.

Since no security assurance is provided to the client by the server (i.e. in the form

of server to client authentication), a malicious entity can eavesdrop on message 6,

obtain the key BKpk , use it to encrypt an arbitrary message d′s and then send it

to C in step 8. C will decrypt the message, believing it to originate from S. An

adversary could also mount a denial of service and cause C and its TPM to perform

a large number of decryptions. An adversary could also replay an old encrypted

secret, which C will accept as fresh.

The scheme’s designers [138] argue that the SSB scheme achieves information theo-

retic security because, of the four messages (steps 1, 2, 6 and 8) exchanged over a

public communications channel (which is assumed to be insecure), only message 8

is a function of the secret. Hence there is no way for an adversary to obtain any in-

formation regarding the secret from the first three messages. However, the fact that

the message sent in step 8 cannot be linked to the other three messages or to any

value representing the current protocol run helps to cause the identified problems.

105

6.5 Discussion

6.4.3 Exploiting the TPM as an (Signing) Oracle

TPMs are designed to enhance the security of computing platforms and systems,

and in the setting of the SSB scheme only the client C has direct access to it. This

greatly restricts the ability of an adversary to exploit the TPM via its applications

program interface (API). Indeed, access to a tamper-resistant device’s API may

give an adversary unintended access to secret information, as shown by the work of

Bond [25] in attacking the IBM 4758 cryptoprocessor API to recover ATM PINs.

However, the SSB scheme allows the TPM to be exploited as an oracle to generate

signatures on values (namely the PCRInfo) of an adversary’s choosing. To see this,

observe that the message in step 2 is sent unencrypted, without integrity or origin

authentication protection; thus an adversary could replace it with arbitrary value.

In step 6, C responds with a message containing the signature of the TPM on the

value sent in message 2, i.e. a value that could have been chosen by an adversary.

The exact consequences of this signing oracle are unclear, but are potentially very

damaging.

6.5 Discussion

We now consider how the SSB scheme could be modified to address the identified

issues.

1. As discussed in the previous section, the TPM can be exploited by an ad-

versary as a signing oracle because the message in step 2 is unauthenticated.

As a countermeasure, the message sent in step 2 could be signed by S. We

additionally suggest the inclusion of a timestamp ts so that the client can also

verify that the message is fresh. Message 2 would then have the form:

S → C : PCRInfo, N, ts,SigSsk
(PCRInfo,N , ts),CertS

where Ssk denotes the private key of S, and CertS is the public key certificate

of S. Note that C will need a copy of the public key of the CA which signed

CertS .

106

6.6 Summary

2. Authentication of the encrypted secret sent in step 8 can be provided by adding

a server signature, so that the message becomes:

S → C : EBKpk
(ds), N, ts,SigSsk

(EBKpk
(ds),N , ts).

3. In the SSB scheme, the server forces the client (via PCRInfo in step 2) to be

in a specific trusted software state before it can decrypt the secret. However,

in practice it is very difficult for a device to arrange to be in a specific soft-

ware state; the slightest variations in the sequence of measured software will

cause a non-matching PCRInfo. A more practical alternative would be for the

client to seal a newly produced key to its current state, and the server could

then ascertain if this particular state is to be trusted. This could be done by

checking against a list of known trustworthy states, for example as produced

by the device manufacturer.

This would also make the protocol more efficient, as the message in step 2

would no longer need to be sent.

The above modifications only make the SSB scheme resistant to the attacks we have

identified; a more comprehensive analysis using a formally defined security model

would clearly be highly desirable.

6.6 Summary

In this chapter we considered the SSB Scheme, designed to secure the distribution

of secrets from a server to a client. We have highlighted a number of security issues

in this scheme which may prevent it from achieving its objectives. We have also

suggested several minor modifications to the scheme which may prevent the security

attacks from being realised.

107

Part III

Applications of Trusted Computing
to Secure Ubiquitous Services

108

Chapter 7

Secure and Private Service Discov-
ery

Contents

7.1 Introduction . 110

7.2 Service Discovery Security & Privacy Issues 112

7.2.1 Adversary Model . 112
7.2.2 Security and Privacy Threat Model 113
7.2.3 Specific Security and Privacy Requirements 114
7.2.4 Challenges . 115

7.3 Related Work . 115

7.4 Building Blocks . 116

7.4.1 Diffie-Hellman Key Agreement 117
7.4.2 Trusted Computing . 117

7.5 The Ninja Authentication Scheme 117

7.5.1 The Entities . 117
7.5.2 Working Assumptions . 118
7.5.3 The Scheme . 119

7.6 Security Analysis . 125

7.7 Summary . 128

Most authentication schemes are based on authenticating the identity of a princi-

pal in one way or another. This method of authentication is commonly known as

entity authentication. In emerging computing paradigms, which are highly dynamic

and mobile in nature, entity authentication alone may not be sufficient or even ap-

propriate, especially if a principal’s privacy is to be protected. In order to preserve

the privacy of a principal, other attributes (such as location or trustworthiness) of a

principal may need to be authenticated to a verifier. In this chapter we propose Ninja,

an authentication scheme for use in a mobile ubiquitous environment. Ninja is a

109

7.1 Introduction

non-identity based authentication scheme, in which the trustworthiness of a user’s

device is authenticated anonymously to a remote Service Provider (verifier) during

the service discovery process. The scheme relies on the use of Trusted Computing

functionality.

7.1 Introduction

As discussed in Chapter 3, in the Mobile VCE1 Core 4 research programme on

Ubiquitous Services, it is envisaged that, in a mobile ubiquitous environment (as

shown in Figure 3.1), users (using their mobile devices and and available network

access technologies) will be able to seamlessly discover, select, and access a rich

offering of services and content from a range of service providers. To realise this

vision, security and privacy issues must be addressed from the outset, alongside

other technological innovations. Only if users are confident that their security and

privacy will not be compromised will ubiquitous services be widely adopted.

As shown in Figure 3.1, one of the primary aims for a user is to access the services

that are offered. But, before any services can be accessed and consumed, they must

first be found via a process known as service discovery. Many service discovery

schemes [34, 51, 148, 164] have been proposed for ubiquitous environments; unfortu-

nately, very few address security and privacy issues from the outset (one exception

being the scheme of Zhu et al. [166, 167]), despite the fundamental importance of

such issues. It is imperative that the process of service discovery is conducted in a

secure and private way, in order to protect the security and privacy of both users and

service providers. One fundamental security requirement is mutual authentication

between a user and service provider.

Authentication is important for several reasons. Firstly, it is a basic security ser-

vice upon which a range of other security services (e.g. authorisation) can be built.

Secondly, it gives users and service providers assurance that they are indeed inter-

acting with the intended parties, and not with a malicious entity. Unfortunately,

conventional entity authentication [65] may not be adequate for a ubiquitous environ-

ment [43], because an identity may be meaningless in such a setting. Instead, other
1http://www.mobilevce.com/

110

7.1 Introduction

user attributes [43] may need to be authenticated to a service provider. Furthermore,

consumers are becoming increasingly concerned about their privacy [21, 24] and the

potential risks (such as identity theft) of leaving any form of digital trail when

making electronic transactions. Given a choice, users may prefer to interact with

service providers anonymously (or pseudonymously). Under these circumstances, it

may, in fact, be undesirable to authenticate the identity of a user. We also note

that preserving user privacy can be particularly challenging in a ubiquitous environ-

ment [33, 158].

If, on the other hand, privacy is preserved (through user anonymity), how can a

service provider be convinced that an anonymous user is trustworthy? This is the

challenge addressed in this chapter.

We propose Ninja, a non-identity based, privacy preserving, mutual authentication

scheme designed to address the service discovery security and privacy challenges

arising in a mobile ubiquitous environment. During service discovery, a service

user and service provider are mutually authenticated in a way that preserves user

privacy. Instead of authenticating the user identity to a service provider, the user’s

trustworthiness is authenticated. The scheme employs two key functionalities of

Trusted Computing (TC) technology [11, 100], namely, the Integrity Measurement,

Storage and Reporting Mechanism (IMSR), and the Direct Anonymous Attestation

(DAA) Protocol (discussed in Sections 4.3.1 and 4.4.2, respectively). We therefore

implicitly assume that a user device is equipped with TC functionality; current

trends suggest that this is a reasonable assumption for the near future. Ninja is

an application layer solution, and possesses many desirable security and privacy

properties such as user anonymity, service information confidentiality, unlinkability,

and rogue blacklisting.

The remainder of the chapter is organised as follows. In Section 7.2, we discuss

service discovery security and privacy issues. Section 7.3 reviews related work, and

Section 7.4 introduces the building blocks of the Ninja Scheme. In Section 7.5, we

present the Ninja authentication scheme, and in Section 7.6 we analyse its security.

Finally, conclusions are drawn in Section 7.7.

111

7.2 Service Discovery Security & Privacy Issues

7.2 Service Discovery Security & Privacy Issues

In this section we focus on the security and privacy issues arising from the service

discovery process in a ubiquitous computing environment.

7.2.1 Adversary Model

Service discovery typically involves interactions between a user, the user’s device, a

service provider, and, at times, a trusted third party. Unfortunately, these entities

may be malicious, and pose a variety of threats to the service discovery process and

to the participating entities. Against this backdrop, we identify eight adversarial

settings, covering both active and passive adversaries. They are as follows:

1. Innocent User with Malicious Device (IUMD). Unbeknownst to the

user, his/her device has been compromised (e.g. with malware, keystroke-

logger, etc).

2. Malicious User with Trustworthy Device (MUTD). An MUTD is a

malicious user who has taken physical control of (e.g. stolen) another entity’s

device.

3. Malicious User with Malicious Device (MUMD). The combination of

IUMD and MUTD.

4. Malicious Service Provider(s) (MSP). An MSP’s main motive is to mas-

querade to a user as a legitimate service provider.

5. Curious Service Provider(s) (CSP). A CSP is not malicious, but seeks

only to learn more about the behaviour of its users.

6. Malicious Man-in-the-Middle (MitM). A MitM’s actions are intended to

disrupt the proper operation of the service discovery process.

7. Curious Trusted Third Party (CTTP). A CTTP performs its role cor-

rectly, but also seeks to learn about the activities and habits of a user.

8. Passive Eavesdropper (PE). A PE does not disrupt the communication,

but monitors it to learn the content and the entities involved.

112

7.2 Service Discovery Security & Privacy Issues

7.2.2 Security and Privacy Threat Model

We now consider possible service discovery threats. We also consider what threats

are posed by each of the above adversarial settings, and present them in a Threats

versus Adversary Matrix (in Table 7.1). The service discovery threats are as follows:

1. Spoofing. A malicious entity may masquerade as a legitimate service provider

or service user by sending false service advertisements/requests, through re-

play, or by man-in-the-middle attacks.

2. Information Disclosure.

(a) User’s Personally Identifiable Information (PII): During the pro-

cess of service discovery, a user’s PII, such as his/her identity (e.g. in the

form of a long lived key) or physical location, might be revealed (either

willingly or unwillingly) to a service provider or passive eavesdropper.

(b) Service Information (SI): By observing the service information ex-

changed by a user and service provider (e.g. the service request types),

a passive adversary may build up a profile of the user. This information

could later be used to predict future patterns and habits of the user. The

privacy of the user is potentially compromised as a result.

3. Profile Linking. Colluding service providers may buy, sell or exchange in-

formation about their users or customers. This could not only provide service

providers with monetary benefits, but also enhance their business intelligence

and gain competitive advantage, e.g. if they are able to build more comprehen-

sive user profiles (with or without user permission). Finally, the consequences

for user privacy could be even more serious if a trusted third party colludes

with service providers.

4. Encouragement of Rogue Behaviour. With the knowledge that privacy

enhancing technologies are employed to protect their identities, users might be

tempted to “misbehave” or act maliciously, since it may be difficult or even

impossible for service providers to determine who is misbehaving.

113

7.2 Service Discovery Security & Privacy Issues

Table 7.1: Threats and Adversary Matrix

Threats vs Adversary IUMD MUTD MUMD MSP CSP MitM CTTP PE
Spoofing X X X X X
User Identity Disclosure X X X X X X X X
SI Disclosure X X X X X
User Profile Linking X X X
Rogue Behaviour Denial X X

7.2.3 Specific Security and Privacy Requirements

From the above threat analysis, we can derive the corresponding security and privacy

requirements:

1. Mutual Authentication. This is one of the most important requirements, as

it can prevent spoofing (by malicious users or service providers). The mutual

authentication scheme should also be designed to prevent replay and man-in-

the-middle attacks. To protect privacy, a user may want to remain anonymous

to a service provider. So, instead of authenticating his identity to a service

provider, the user may want to somehow prove or authenticate his “trustwor-

thiness” to the service provider.

2. User Anonymity. Unique user identifying information (e.g. an identifier or

a long lived key) should not be divulged to a service provider during service

discovery. For example, a user may wish to interact with service providers

using a pseudonym.

3. Service Information Confidentiality. To preserve the privacy of the user,

it may be desirable to protect the confidentiality of the service information,

e.g. by encrypting part or all of certain messages.

4. Unlinkability. Colluding service providers should not be able to link the

activities of a user. Similarly, if a trusted third party colludes with a service

provider, they should not be able to correlate the actions of a particular user.

In other words, it should be impossible for colluding service providers to tell if

two sets of prior service transactions (made with different providers) involved

the same or different user(s).

114

7.3 Related Work

5. Transaction Linkability/History. For billing or other purposes, it may

be necessary for a service provider to maintain the transaction histories of its

users. A service provider may thus need to be able to determine whether a

particular user is a repeat user (and, if so, which one) or a first time user,

whilst still being unable to determine the unique identity of the user. This is

not always a requirement, and providing it may require user consent.

6. Rogue Blacklisting. Service providers should be able to identify and/or

blacklist malicious and untrustworthy hosts.

7.2.4 Challenges

We need to devise a mutual authentication scheme that meets all the above require-

ments. This is particularly challenging for several reasons. Conventional mutual

authentication schemes normally require the user identity to be authenticated to a

verifier. But here user privacy is a priority, and so user anonymity is required during

authentication. How then can we convince a service provider that an anonymous

user is trustworthy? Also, if user anonymity is provided, how can we detect mali-

cious or illegitimate users? We are, in fact, trying to achieve security and privacy

concurrently, whilst protecting the interests of both users and service providers. This

is the challenge addressed here.

Ninja allows a user to authenticate the service provider, whilst simultaneously al-

lowing a service provider to anonymously authenticate a user’s trustworthiness. The

scheme is so called because the process is to some extent analogous to the process

of a ninja assassinating a person in Japanese folklore2.

7.3 Related Work

Apart from being unsuitable for ubiquitous computing environments [164], existing

service discovery approaches (such as Java Jini [144], UPnP [153], IETF’s Service
2A ninja is asked to assassinate someone (Bob) whom he has never met; he is only given Bob’s

photograph. When they meet, the ninja authenticates Bob physically. Bob, on seeing a ninja with
a sword, knows (trusts) that the ninja wishes to kill him, but does not need to know the ninja’s
real identity, whose anonymity is preserved.

115

7.4 Building Blocks

Location Protocol (SLP) [68, 69], DEAPspace [108] and Salutation [134]) do not

address the privacy issues raised here. Zhu et al. [165, 166] describe a privacy pre-

serving service discovery protocol, in which users and service providers progressively

reveal Personally Identifiable Information (PII) to each other. A user’s PII is even-

tually divulged to a service provider, and so service providers could still collude to

link user activities. Abadi and Fournet [3] proposed a private authentication scheme

which protects two communicating principals (i.e. their identity and location) from

third parties. This only protects the privacy of a user’s PII against eavesdropping

third parties, and not from the service providers. Ren et al.’s privacy preserving

authentication scheme [126] uses blind signatures and hash chains to protect the

privacy of service users. This scheme requires a mobile user and service provider to

authenticate each other via out of band mechanisms, prior to a privacy-preserving

service interaction. This may not be a realistic approach for a mobile ubiquitous

environment.

In the k-Times Anonymous Authentication scheme [147], a user can anonymously ac-

cess a service a predetermined number of times (as decided by the service provider).

This approach is extremely inflexible for a ubiquitous environment. For example,

a service provider cannot prevent a user found to be malicious from having future

service interactions. In the Anonymous Authentication scheme due to Chowdhury

et al. [39], users interact with different service providers using different surrogates

(one-time values) on every occasion, to preserve user anonymity. However, the

trusted ‘Issuing Authority’, can still link user activities. Similarly, in v1.1 of the

TCG specifications [11, 152], a user’s activities are unlinkable by different service

providers, but if the trusted ‘Privacy CA’ colludes with the service providers then

the activities of a user can be linked and his/her privacy compromised (as discussed

in Section 4.4.1). In the Ninja authentication scheme (described in Section 7.5), the

trusted third party, i.e. the DAA Issuer, is unable to link the activities of a user,

even if it colludes with service providers.

7.4 Building Blocks

In this section, we introduce techniques that are used to help build the Ninja Au-

thentication Scheme.

116

7.5 The Ninja Authentication Scheme

7.4.1 Diffie-Hellman Key Agreement

The scheme we describe makes use of the Diffie-Hellman key agreement protocol,

described in Section 2.4.6.

7.4.2 Trusted Computing

To achieve the security objectives set out in Section 7.2.3, Ninja uses two Trusted

Computing functions, namely the Integrity, Storage, and Reporting Mechanism

(IMSR), and the Direct Anonymous Attestation (DAA) Protocol. Together, they al-

low a platform to anonymously authenticate its operational state to a remote service

provider. A detailed description of these mechanisms can be found in Chapter 4.

7.5 The Ninja Authentication Scheme

In this section, we present the Ninja authentication scheme, designed to mutually

authenticate a user (via his platform) and a service provider, whilst preserving the

privacy of the user. The Ninja scheme is intended to be used during the service

discovery process, immediately prior to service provisioning. It is designed to meet

the security and privacy requirements set out in Section 7.2.3.

We first introduce the entities participating in the protocol. We then state the

assumptions upon which the scheme is based. Finally, we describe the operation of

the scheme.

7.5.1 The Entities

The entities involved in the protocol are as follows:

• the Service User, often a human, is the end consumer of a service;

117

7.5 The Ninja Authentication Scheme

• the trusted platform, or Platform, is the device which a service user uses to

interact with other entities;

• the DAA Issuer issues DAA Certificates to legitimate platforms;

• the Service Provider is an entity that provides service(s) or content (e.g.

music, videos, podcasts) to service users via the platforms. A service provider

also acts as the verifier of a platform’s DAA Signatures.

7.5.2 Working Assumptions

The correct working of the scheme relies on a number of assumptions.

• The service user is already authenticated to the platform.

• The platform running the Ninja protocol is equipped with TC functionality

conforming to v1.2 of the TCG specifications (see Chapter 4).

• Service users and service providers have agreed on the cryptographic functions

to be used as part of the protocol. These are as follows.

– A hash-function H.

– A symmetric encryption algorithm E, where EK(X) is used to denote

the encryption of data X using the secret key K.

– A MAC algorithm, where MACK(X) denotes a MAC computed on data

X using the key K.

– A digital signature algorithm, where SigK (X) is used to denote a signa-

ture computed on data X using the private signature key K.

• Service users only obtain DAA Certificates from trustworthy DAA Issuers (i.e.

those that use the same public key for a very large set of users in order to

avoid the Rudolph attack discussed in Chapter 5).

• Each service provider possesses one or more X.509v3 public key certificates

(described in Section 2.4.7), issued by Certification Authorities (CAs) which

it trusts. The platform is equipped with the public keys of these CAs, and

is capable of periodically receiving Certificate Revocation List (CRL) updates

issued by these CAs.

118

7.5 The Ninja Authentication Scheme

• Service users and service providers have loosely synchronised clocks (e.g. within

an hour of each other). This enables service users and service providers to check

that a service advertisement or service reply message is sufficiently fresh.

• All parties must agree on Diffie-Hellman parameters p and g, subject to the

constraints listed in Section 2.4.6.

Finally note that the scheme is independent of the underlying transport and network

layer protocols, as it is purely an application layer solution.

7.5.3 The Scheme

The notation used in the protocol descriptions below is summarised in Table 7.2.

Table 7.2: Notation

Notation Description
P The Platform

SP The Service Provider
I The DAA Issuer
f A non-migratable DAA secret value generated by the TPM

v′, v′′, e DAA parameters (described in Section 3.2)
σ A DAA Signature

p, g System parameters for DH–key agreement
SrvAdv Service Advertisement Message
SrvRep Service Reply Message
SrvInfo Service Information
AdvID An Advertisement ID number

(Apk ,Ask) The public/private key pair of a principal A
(AIKpk ,AIKsk) A pair of public/private Attestation Identity Keys

(EKpk ,EKsk) The pair of public/private Endorsement Keys

As shown in Figure 7.1, the Ninja authentication scheme involves three distinct

phases, namely, the Join Phase, the Mutual Authentication Phase and the Verifica-

tion Phase. We now describe the workings of each phase.

119

7.5 The Ninja Authentication Scheme

Figure 7.1: The Ninja Authentication Scheme

7.5.3.1 Join Phase

The Join Phase enables a platform to obtain a DAA Certificate from a DAA Is-

suer. The platform uses this DAA Certificate in the mutual authentication phase

to anonymously authenticate itself to a service provider. The entities involved are

the Platform, P , and the DAA Issuer, I. Note that the Join Phase is identical to

the DAA Join Protocol specified in [27]; it may have taken place before a device is

shipped to the user. The sequence of events is as follows (see also Figure 7.2).

1. The TPM in the user platform generates its DAA Secret value f and a random

value v′. It computes U and NI (as described in Section 4.4.2), and then sends

U , NI , and its Endorsement Public Key, EKpk to the DAA Issuer.

2. To verify that U originates from the TPM in the platform that owns EKpk , the

DAA Issuer engages in a simple challenge-response protocol with the platform.

It generates a random message m, and encrypts m using EKpk . It sends the

challenge, Chl = ĒEKpk
(m), to the platform.

3. If the platform owns EKpk , it should have the corresponding EKsk , and hence

is able to decrypt ĒEKpk
(m), to retrieve m. The TPM in the platform then

computes and sends the response r = H(U ||m) to the DAA Issuer.

120

7.5 The Ninja Authentication Scheme

4. The DAA Issuer computes H(U ||m) using the value of m sent in step 2, and

compares the result with the value of r received from the platform. If the

two values agree then the DAA Issuer is convinced that U originated from the

TPM that owns EKpk .

5. Finally, the DAA Issuer generates v′′ and e and computes A (as described in

Section 4.4.2). The DAA Issuer then sends (A, e, v′′) to the platform.

6. The DAA Certificate is (A, e, v), where v = v′ + v′′. The DAA Issuer does not

have full knowledge of the DAA Certificate, since the certificate was jointly

created by the platform and the DAA Issuer. This property helps preserve the

anonymity of the user/platform.

Platform DAA Issuer

1. generates f, v′

U ⇐ Rf Sv′ , NI ⇐ ζf
I

EKpk ,U ,NI−−−−−−−−−−−−−−−→
2. generates m

Chl ⇐ ĒEKpk
(m)

Chl←−−−−−−−−−−−−−−−
3. m′ ⇐ DEKsk

(Chl)
r ⇐ H(U ||m′)

r−−−−−−−−−−−−−−−→
4. If: r = H(U ||m)

5. Then: generates v′′ & e
A ⇐ (Z

USv′′)
1/e mod n

(A, e, v′′)←−−−−−−−−−−−−−−−
6. DAA Cert:=(A, e, v)

where v = v′ + v′′

Figure 7.2: Join Phase

7.5.3.2 Mutual Authentication Phase

Service discovery typically involves the exchange of service advertisement and service

reply messages between a user and a service provider. To avoid increasing the

communication overheads, we incorporate the authentication mechanisms into these

messages. In other words, service discovery and mutual authentication take place

concurrently. We now examine how the messages are constructed to achieve mutual

authentication.

The service provider, SP, initiates the service discovery and mutual authentication

121

7.5 The Ninja Authentication Scheme

processes by constructing and sending an authenticated service advertisement mes-

sage, as follows (see also Figure 7.3).

S1. SP generates a random number b and computes gb mod p. These values are

used later as part of a Diffie-Hellman key agreement to establish a shared key

with the user.

S2. SP constructs the service advertisement message as follows:

SrvAdv = (IDSP ,SrvInfo,AdvID , N, tsp, g, p, gb mod p),

where SrvInfo contains information about the offered service and AdvID is an

advertisement identifier chosen so that it is unique within the lifetime of SPpk .

N is a nonce chosen so that the probability of an SP ever using the same nonce

twice during the lifetime of a signature key pair (i.e. SPpk and SPsk) should be

negligible. That is, if the number of possible nonces is s, (and assuming that

nonces are chosen uniformly at random from the set of all possible values) then

the number of times that a key pair should be used should be significantly less

than s0.5.

S3. Service provider SP signs SrvAdv using its private key, SPsk , to obtain the

signature SigSPsk
(SrvAdv). SP then broadcasts SrvAdv , SigSPsk

(SrvAdv), and

CertSP to the platforms of prospective service users:

SP → platforms : SrvAdv ,SigSPsk
(SrvAdv),CertSP .

Suppose that a prospective user receives the above service advertisement (via his/her

platform), and is interested in the advertised service. The user’s platform then

authenticates the service provider by retrieving SPpk from CertSP , using it to verify

SigSPsk
(SrvAdv), and checking to see if the timestamp is valid. If the verification

outcome is satisfactory, then, the service provider is deemed authenticated to the

user.

The platform now anonymously authenticates itself (i.e. its trustworthiness) to the

service provider, as follows (see also Figure 7.3).

P1. The platform generates an AIK key pair (AIKpk ,AIKsk).

122

7.5 The Ninja Authentication Scheme

P2. The platform assembles PCR, the set of PCR values to be supplied to the

service provider; the platform also extracts SML, the part of its Stored Mea-

surement Log necessary to interpret the PCR values in PCR. To prove that

the PCR values originate from the TPM, the TPM signs the PCR values along

with the nonce N (obtained from SrvAdv), using AIKsk (as generated on the

previous step), to create:

SigAIKsk
(PCR||N).

The Nonce N is included to prevent replay attacks.

P3. The platform computes ζ = H(IDSP). It then creates a pseudonym, Nv = ζf

(where f is the DAA Secret generated during the join phase) for use when

interacting with the service provider.

P4. To prove that the AIK (from steps P1 and P2) originates from a genuine TPM,

the platform DAA-Signs AIKpk using f , DAA Certificate, and the other public

parameters of the system. The output is the DAA Signature σ (which also

includes ζ and Nv).

P5. To complete the Diffie-Hellman key agreement, the platform generates a ran-

dom number a, and computes:

ga mod p and K = (gb)a mod p.

P6. The platform constructs the Service Reply message as:

SrvRep = (AdvId ,SrvInfo,AIKpk , SML,SigAIKsk
(PCR||N), σ, tp).

P7. The platform encrypts SrvRep using the key K1 and computes a MAC on the

encrypted SrvRep using the key K2, where K = K1||K2, to give:

EK1 (SrvRep) and MACK2 (EK1 (SrvRep)).

P8. The platform sends EK1 (SrvRep), MACK2 (EK1 (SrvRep)), and ga mod p to the

service provider.

P → SP : EK1 (SrvRep),MACK2 (EK1 (SrvRep)), ga mod p.

123

7.5 The Ninja Authentication Scheme

Platform Service Provider

S1. generates b, x ⇐ gb mod p

S2. constructs SrvAdv :=(IDSP ,
SrvInfo,AdvID , N, tsp , g, p, x)

S3. Sx ⇐ SigSPsk
(SrvAdv)

SrvAdv , Sx,CertSP←−−−−−−−−−−−−−−−−−
P1. generates AIKpk ,AIKsk

P2. retrieves SML & PCR,
Sy ⇐ SigAIKsk

(PCR||N)

P3. ζ ⇐ H(IDSP), Nv ⇐ ζf

P4. σ ⇐ DAA-Signs (AIKpk)

P5. generates a, y ⇐ ga mod p
K ⇐ (gb)a mod p

P6. constructs
SrvRep:=(AdvId ,SrvInfo,Sy ,
SML,AIKpk , σ, tp)

P7. Ex ⇐ EK1 (SrvRep),
MACK2 (Ex)

P8.
Ex, MACK2 (Ex), y−−−−−−−−−−−−−−−−−→

Figure 7.3: Mutual Authentication Phase

7.5.3.3 Verification Phase

On receiving a service reply message from a platform, the service provider SP per-

forms the following steps to verify its trustworthiness.

1. SP computes K = (ga)b mod p and hence obtains K1 and K2 (where K =

K1||K2). SP then checks the integrity of the received value of EK1 (SrvRep)

by recomputing the MAC using K2 and comparing it with the received value.

2. SP extracts SrvRep by decrypting EK1 (SrvRep) using K1. SP also checks the

validity of the timestamp tp extracted from SrvRep.

3. SP verifies the DAA Signature σ, and is thus convinced that the platform is in

possession of a legitimate DAA Certificate from a specific DAA Issuer, which

implies that a genuine TPM is contained in the platform.

4. SP is also convinced that AIKpk was signed using the platform’s DAA Secret

f . Even though the value of f is never revealed to SP, SP knows that the

value is related to a genuine DAA Certificate.

5. SP checks that the nonce N is the same as that sent in SrvAdv.

124

7.6 Security Analysis

6. SP verifies the trustworthiness of the platform by examining the platform

integrity measurements. This involves recursively hashing the values contained

in SML, and comparing them with the corresponding PCR values.

7. If SP is satisfied with the integrity measurements, then the platform (and

hence the user) is authenticated to SP.

To authenticate to another service provider, the user platform should generate a

new AIK key pair, but only needs to repeat the mutual authentication phase, i.e. it

does not need to perform the join phase again. The user platform should also use a

different Nv value.

7.6 Security Analysis

We now assess the Ninja scheme against the security and privacy requirements out-

lined in Section 7.2.3.

Mutual Authentication

Mutual authentication is achieved in the following way. A service provider is first

authenticated to a prospective service user through a service advertisement mes-

sage, protected using conventional cryptographic mechanisms (e.g. as supported by

a PKI). If a prospective user is interested in the service, then the trustworthiness of

the user platform is anonymously authenticated to the service provider via a service

reply message using DAA.

The scheme is resistant to the following attacks.

• Replay: The use of the timestamps tsp and tp in the SrvAdv and SrvRep

messages allows the recipients to check that they are sufficiently fresh. An

adversary which knows an old session key K might be able to decrypt an

old SrvRep message, and could try to use the corresponding old signature

SigAIKsk
(PCR||N) to reply to a new SrvAdv message. This will fail because

125

7.6 Security Analysis

the signature is computed as a function of the nonce N from SrvAdv, and a

replayed signature will have been computed using a different value of N .

• Man-in-the-Middle (MitM): Since SrvAdv is authenticated, a MitM can-

not masquerade as a service provider to a user. A MitM can make a response

on its own behalf (as can anyone receiving SrvAdv). However, a MitM cannot

masquerade as a legitimate user by manipulating the SrvRep message. If it

tries to generate a SrvRep with a different Diffie-Hellman parameter y, then it

can only generate a completely new response, since it cannot decrypt a SrvRep

generated by another user. If it leaves y unchanged, then any modifications to

SrvRep will be detected by the service provider, since it is integrity protected

using a MAC computed as a function of the Diffie-Hellman key.

User Anonymity

The public part of the Endorsement Key, EKpk , is never disclosed to a service

provider, since it would function as a permanent identifier for the platform. Users

instead interact with service providers using AIKs, which act as pseudonyms. Since

it is computationally infeasible for service providers, or even the DAA Issuer, to link

two AIK public keys from the same platform (see Section 4.4.2), users will remain

anonymous to service providers (i.e. the case of curious service providers), as well

as curious DAA Issuers (i.e. the case of curious trusted third parties) and passive

eavesdroppers.

Service Information (SI) Confidentiality

A SrvRep message contains service information which, if disclosed, could reveal a

user’s service preferences and habits, thereby compromising user privacy. To prevent

such a disclosure (e.g. to eavesdroppers or a malicious man-in-the middle), SrvRep is

encrypted using a secret key known only to the service user and the service provider.

Whilst there is nothing to prevent a malicious service provider from divulging the

service information of an anonymous user, the confidentiality of the user’s service

information is still preserved, as the malicious service provider is unable to determine

which service information corresponds to which user.

126

7.6 Security Analysis

Unlinkability/Collusion Resistance

User platforms should interact with different service providers using different AIK

public keys and Nv values. It is computationally infeasible for colluding service

providers to link these keys (see Section 4.4.2), and as a result a user’s service

activities with different service providers are unlinkable. This remains true even if

a DAA Issuer (i.e. a curious trusted third party) colludes with one or more service

providers, again as discussed in Section 4.4.2. Our scheme is therefore resistant to

two or more colluding service providers (i.e. the curious service providers case), as

well as a DAA Issuer colluding with one or more service providers (i.e. the curious

trusted third party case).

Transaction History

For business reasons (e.g. to support customer loyalty rewards or discounts), it may

be necessary for service providers to link services originating from the same user.

This can be achieved without compromising a user’s privacy or anonymity if a service

user always uses the same value of Nv to interact with a particular service provider.

A service user will not need to store Nv, as it will be recovered during re-computation

(since ζ and f should remain unchanged).

Blacklisting malicious parties

A detected rogue service provider can be added to the appropriate CRLs, enabling

users to avoid known fraudulent service providers. Similarly, a service provider may

want to blacklist a misbehaving or malicious user, in order to bar this user from

future service interactions. This requires a means for the service provider to recog-

nise a malicious platform, whilst it remains anonymous. This can be achieved by

blacklisting platform pseudonyms, i.e. the Nv values of such platforms. Blacklisting

the AIK will not work, as a rogue user can simply generate a new AIK, DAA-Sign

it, and then interact with the service provider again.

A rogue user could only avoid detection by obtaining a new pseudonym, Nv. This

127

7.7 Summary

would involve using a new value for f (the DAA secret). Although a TPM could

generate a new f value, it is unlikely that it will be able to obtain a DAA Certificate

for it. DAA certificate issue is expected to be subject to careful checks, and a

platform is not expected to possess more than one DAA Certificate from a DAA

Issuer. Also, if a DAA Certificate (i.e. a triple of values A,e,v) and the value f are

found in the public domain (e.g. on the Internet), then they should be sent to all

potential service providers for blacklisting. The service providers can then add them

to privately maintained lists of rogue keys.

7.7 Summary

We identified security and privacy threats that may arise during service discov-

ery in a ubiquitous computing environment; we also derived corresponding security

and privacy requirements. We presented the Ninja mutual authentication scheme,

that uses Trusted Computing functionality and which preserves user privacy. Apart

from being communications-efficient (only two messages are required), the scheme

also satisfies all the identified security requirements. To a service user and service

provider, security and privacy are both desirable. However, they are potentially

conflicting requirements, and it is challenging to achieve them both. However, this

is achieved by the scheme presented here, enabling services to be discovered securely

and privately.

The Ninja scheme is flexible and could easily be adapted and applied to other con-

texts and environments (e.g. Mobile Ad Hoc Networks or P2P Networks) to fulfil

similar security requirements. Alternatively, if there are requirements for two way

(mutual) anonymous authentication between two communicating entities, then the

scheme could also be adapted to meet this need.

128

Chapter 8

A Framework for Secure Ubiquitous
Service Delivery

Contents

8.1 Introduction . 130

8.2 Service Delivery Security Issues 131

8.2.1 Security Threats . 131
8.2.2 Security Requirements . 132

8.3 Building Blocks . 133

8.3.1 Device Management Entity (DME) 134
8.3.2 Manual Authentication (MANA) Protocols 134
8.3.3 Ninja: A Secure Service Discovery Protocol 135
8.3.4 Trusted Computing . 135

8.4 A Framework for Secure Device Management 136

8.4.1 The Entities . 136
8.4.2 Working Assumptions . 137
8.4.3 The SDMF . 138

8.5 Security Analysis . 144

8.6 Summary . 147

In a mobile ubiquitous environment, service interactions between a user device and

a service provider should be secure, regardless of the type of device used to access

a service. In this chapter, we present the Secure Device Management Framework

(SDMF), designed to securely deliver services to user devices, whilst also hiding

(some of) the complexity of security management from users. Key to this frame-

work is the Device Management Entity (DME), that manages a user device’s security

credentials, and interacts with service providers on its behalf. This framework also

provides users with assurance that a compromised device cannot consume the de-

livered service, and, at the same time, prevents users from illegally sharing their

129

8.1 Introduction

credentials with other users. We achieve these objectives using Trusted Computing

functionality and certain other security mechanisms.

8.1 Introduction

In a mobile ubiquitous environment (such as the one shown in Figure 1), users typ-

ically own disparate devices (e.g. PDAs, laptops, mobile phones, etc.) with varying

form factors and computation capabilities, which are attached to a range of network

access technologies and used to consume a variety of content and services offered

by service providers. It is extremely important to secure the service interactions

between user devices and service providers. However, achieving this presents many

interesting challenges. For instance, a user may own many different types of device,

and the type of device used to access a service may depend on the user’s physical

location or context. The user wishes to be able to access a service in a simple and

secure manner using an appropriate device without being burdened with (too much)

technical complexity. A service provider may be happy to allow user access to ser-

vices provided that they have a legitimate subscription (i.e. using a properly issued

credential) and that the user device is not in a compromised state. The latter task

is further complicated by the current landscape, where security threats (e.g. viruses,

malware, trojans, spam, etc.) abound. In this chapter, we aim to address these

challenges collectively; to the best of our knowledge, there is no prior published

work with precisely this focus.

In this chapter we propose the SDMF, a Device Management Framework for the

secure delivery of ubiquitous services to end user devices. Apart from providing

secure service interactions amongst the players, the framework is also designed to

reduce the complexity of device security management tasks for users. Furthermore,

the framework protects the interests of service providers by preventing unauthorised

credential sharing amongst user devices. One other novel feature of the framework

is that compromised devices are self-revoking, hence removing the need for a cum-

bersome revocation infrastructure. We achieved these objectives by incorporating

Trusted Computing functionality into an entity known as the Device Management

Entity (DME), and then integrating it with a number of other security mechanisms

(such as the MANA protocol [75], and the Ninja service discovery protocol described

130

8.2 Service Delivery Security Issues

in Chapter 7).

The remainder of this chapter is organised as follows. In Section 8.2 we identify the

major challenges to providing secure service delivery. Section 8.3 gives an overview

of the building blocks that we employ to develop the secure device management

framework. In Section 8.4 we present our secure device management framework,

and Section 8.5 analyses its security. Finally, in Section 8.6, we draw conclusions.

8.2 Service Delivery Security Issues

In this section we first identify the security threats that users and service providers

may be exposed to during the delivery of services in a mobile ubiquitous environment.

We then specify a corresponding set of security requirements designed to mitigate

these threats.

8.2.1 Security Threats

The security threats can be summarised as follows:

1. Spoofing. Malicious entities may masquerade as legitimate service providers

by broadcasting fraudulent service messages to users in an attempt to initiate

a bogus service interaction. Similarly, malicious entities may masquerade as

service users by replaying old service messages (captured earlier) to service

providers.

2. Tampering. Service messages (e.g. service advertisements, registration mes-

sages, or reply messages) exchanged between users and service providers over

wireless communication channels, may be overheard by a passive adversary,

and modified or deleted by an active adversary. In addition, an adversary

may tamper with the service or content information requested by a user whilst

the data is in transit. Tampering includes sending (injecting) false service

messages or malicious content to users.

3. Information Disclosure.

131

8.2 Service Delivery Security Issues

(a) During Communications: Service messages may be overheard whilst

in transit (the risk is particularly high when using a wireless communica-

tions channel). This may reveal sensitive information about the user (e.g.

the type of service being requested, the service providers a user interacts

with, the exact times or dates when services are being accessed, etc.).

A user’s privacy may thus be compromised. Similarly, an eavesdropper

may attempt to intercept the transmitted service/content for his/her own

consumption.

(b) Physical Loss of Device: Sensitive personal information (such as con-

tact information, emails, etc.) may be stored in user devices. The devices

may also hold the security credentials that are used to access subscribed

services. Thus, if a user device is lost or stolen, an adversary may be able

to both obtain sensitive information about a user and gain unauthorised

access to services.

4. Malicious software attack on user devices. A user device, although still

in the physical possession of the user, may be infected with malicious software

(e.g. viruses, trojans, etc.). Such software could perform a variety of attacks,

including infecting a device, stealing a user’s credentials or personal informa-

tion, or encrypting user data on the device and then demanding payment for

the release of the decryption key. A user might be oblivious to such an attack,

as his/her device may still appear to be functioning “as normal”.

5. Unauthorised Credential Sharing/Distribution. Having legitimately

obtained the access tokens or security credentials necessary to access a ser-

vice or content, a user could share the credentials (e.g. with friends or family)

in an unauthorised way, possibly for financial gain.

8.2.2 Security Requirements

Building on the threat analysis in the previous section, we now give a corresponding

set of security requirements designed to address the identified threats.

1. Entity Authentication. In general, if they use an insecure channel, commu-

nicating entities need to authenticate each other to prevent potential spoofing

132

8.3 Building Blocks

attacks. First, users should authenticate themselves to their devices, e.g. us-

ing a PIN or password, to address the threat of information disclosure arising

from physical loss of a device. Secondly, devices and service providers should

be mutually authenticated to each other.

2. Integrity Protection. Any message exchanges (either service management

messages or the actual service/content) between communicating entities should

be integrity protected in order to address data manipulation attacks. Possi-

ble integrity protection mechanisms include MACs and digital signatures (see

Sections 2.4.3 and 2.4.5).

3. Service Confidentiality. This requirement aims to address potential infor-

mation disclosure threats. Messages (either service management messages or

the service itself) exchanged between entities need to be protected against

eavesdroppers and active attackers. Symmetric encryption algorithms using a

shared secret key (as discussed in Section 2.4.1) can be used to provide this

service.

4. Device Integrity Assurance. Preventing software attacks on a device is

a particularly challenging problem. A viable alternative to prevention would

be to detect whether a device has deviated from specific trustworthy software

states to untrustworthy states. It would be even better if access to service could

be prevented if the device has been compromised. This could be achieved using

the attestation mechanisms provided by Trusted Computing technology.

5. Credential Sharing Prevention. Service and content providers could lose

significant revenue if users share their access credentials in an unauthorised

way, e.g. for monetary gain. Digital Rights Management (DRM) mechanisms

can be employed to prevent unauthorised credential sharing.

8.3 Building Blocks

In this section we introduce the building blocks used to meet the security require-

ments and objectives identified in Section 8.2.2. We first introduce the Device Man-

agement Entity, followed by Manual Authentication (MANA) protocols, the Ninja

Service Discovery Protocol, and, finally, Trusted Computing technology.

133

8.3 Building Blocks

8.3.1 Device Management Entity (DME)

As discussed in Section 3.3.2, the Device Management Entity (DME) is a semi-

distributed, logical construct designed to abstract the technical complexities faced

by users (especially non-expert users) in managing (i.e. configuring and operating)

their devices in a mobile ubiquitous environment. The DME acts as an interface

between user devices and external entities. In this chapter we specify additional

security functionality for the security register of a DME, in order to offer users a

richer and more comprehensive set of security services.

8.3.2 Manual Authentication (MANA) Protocols

Manual entity authentication (MANA) protocols allow two devices to authenticate

one another using a combination of an insecure wireless channel and manual data

transfer. MANA protocols are particulary useful in situations where it is necessary to

establish a security association (e.g. in the form of a shared key) between two devices

in close physical proximity, while minimising the amount of user intervention (e.g.

pressing buttons or reading data from a display). MANA protocols are resistant to

Man-in-the-Middle (MitM) attacks on the wireless channel. The basic requirements

for MANA protocols are that the devices must possess user interfaces capable of

data input (e.g. buttons) and data output (e.g. a display). ISO has standardised

four MANA protocols in ISO/IEC 9798-6 [75], designed for use with devices with

differing interface capabilities. The properties of the four MANA protocols can be

summarised as follows:

• Mechanisms using a short check value:

– One device with simple input, and one device with simple output;

– Both devices with simple input capabilities.

• Mechanisms using a Message Authentication Code (MAC):

– Both devices with simple output capabilities;

– One device with simple input, and one device with simple output.

134

8.3 Building Blocks

There is a growing literature on such mechanisms [12, 81, 83, 93, 94, 141]; we choose

to use the MANA protocols in our framework because they have been adopted by

ISO, which implies that this set of protocols has been subjected to close scrutiny by

the security community.

8.3.3 Ninja: A Secure Service Discovery Protocol

Service discovery is an important pre-cursor to the process of service delivery. As

discussed in Chapter 7, many service discovery protocols have been proposed, al-

though very few of them address security and privacy issues. It is imperative that

service discovery is conducted in a secure and private manner in order to protect

the security and privacy interests of the users and service providers.

The Ninja service discovery scheme described in Chapter 7 is used to achieve the

objective of secure service discovery. The Ninja protocol offers a number of secu-

rity features specifically designed for a mobile ubiquitous environment. It provides

mutual authentication between user and service provider, preserves the privacy of

users, is efficient (has a low communications overhead), and establishes a shared key

between the user and service provider. It is therefore well suited to our requirements.

8.3.4 Trusted Computing

To achieve the security objectives set out in Section 8.2.2, the device management

framework uses the Trusted Computing protected message exchange mechanism;

namely the binding and the sealing functionalities. As described in Chapter 4,

binding involves encrypting data with a non-migratable public key, i.e. a public key

stored by the TPM and for which the private key will never leave the TPM. As

a result, bound data is available only to the TPM. Sealing involves binding data

to integrity metrics representing a particular platform state. The TPM will only

make the data available to the platform if the current values in the PCRs are equal

to those bound to the data, i.e. only if the platform is in the pre-specified state.

Note that arbitrary data as well as keys can be bound or sealed to a TPM and to

particular platform states.

135

8.4 A Framework for Secure Device Management

8.4 A Framework for Secure Device Management

We now present the Secure Device Management Framework (SDMF), designed to

secure the process of service provisioning to end user devices. At the heart of this

framework is the Device Management Entity (DME), that manages a user device’s

security credentials on its behalf and interacts with service providers. This frame-

work also provides users with assurance that a compromised device is unable to

consume the delivered service, and, at the same time, prevents users from sharing

their credentials with other users in unauthorised ways. We achieve these security

objectives using Trusted Computing functionality.

We first introduce the entities in the SDMF framework. We then state the assump-

tions upon which this framework is based. Finally, we describe the operation of the

framework.

8.4.1 The Entities

The entities participating in the Secure Device Management Framework are as fol-

lows:

• the User, often a human, who is the end consumer of a service or application;

• the User Devices (such as PDAs, laptops, smartphones) which are used by

the user to access the available services;

• the Device Management Entity (DME) performs a number of functions

(as discussed in section 3.3.2). In the framework, its main roles are to securely

interact with service providers on behalf of user devices and to manage the

security credentials of user devices;

• the Service Provider provides end users with a range of service offerings

(e.g. music, videos, software applications, etc.).

136

8.4 A Framework for Secure Device Management

8.4.2 Working Assumptions

The operation of the SDMF relies upon a number of assumptions:

• User devices are equipped with Trusted Computing functionality conforming

to version 1.2 of the TCG TPM specifications (see Chapter 4).

• User devices have a (possibly very simple) interface capable of data input and

data output.

• User devices and the DME have agreed on the MANA protocol to be used in

the Initialisation phase.

• User devices and the DME have agreed on the cryptographic functions to be

used in the Enrolment and Secure Service Re-Distribution phases, i.e. a hash

function H, a symmetric encryption algorithm E, and a MAC function.

• The DME is trusted by both the user and service provider to perform its tasks

correctly.

• The DME and the service providers have agreed on the cryptographic func-

tions to be used during the Secure Service Delivery phase, i.e. a symmetric

encryption algorithm E and a MAC function.

• The user has ownership control of the TPM in the device. The user therefore

possesses an authorisation secret that can later be used to authenticate to the

TPM.

• User devices and the DME have loosely synchronised clocks. This enables the

user devices and the DME to check that a received message is sufficiently fresh.

• Prior to the enrolment phase, the TPM within the User Device has gener-

ated a pair of Attestation Identity Keys (AIKpk ,AIKsk), and has obtained a

Certificate CertAIKpk
for the public key AIKpk from a Privacy CA (a trusted

computing specific trusted third party, as described in Section 4.4.1).

Finally note that our framework is independent of the underlying transport and

network layer protocols, as it is purely an application layer solution.

137

8.4 A Framework for Secure Device Management

8.4.3 The SDMF

The notation used in the description of the framework is summarised in Table 8.1.

Table 8.1: Notation

Notation Description
U The User
D The User Device
M The Device Management Entity (DME)
S The Service Provider

EnReq Enrolment Request Message
EnRep Enrolment Reply Message
EnMsg Enrolment Message
EnAck Enrolment Acknowledgement Message
DevID A Unique Device ID number
SessID A Unique Session ID number

Srv A Service
KSrv The Service Encryption Key

SKEK Service Key Encrypting Key

As shown in figure 8.1, the SDMF involves five phases. We now describe the workings

of each phase in greater detail.

Figure 8.1: SDMF Operational Phases

138

8.4 A Framework for Secure Device Management

8.4.3.1 Initialisation Phase

This phase involves the user preparing a device for the subsequent phases. One of

the primary aims of this phase is for the user device and the DME to establish a

shared key, which is subsequently used to secure communications. The user U , the

user device D, and the DME M are required to be in close physical proximity. The

user performs the following steps:

1. The user authenticates himself/herself to the TPM in the device D using the

authorisation secret (obtained earlier when the user took ownership of the

TPM). This enables the user to access the TPM functionality.

2. The user instructs D and the DME M to engage in one of the MANA protocols

(as described in Section 8.3.2). The choice of protocol will depend on the

types of interface (input and display) that the device possesses. The user

is required to take part in the protocol and to perform his/her role in the

protocol correctly (e.g. reading data from the display accurately and pressing

the correct buttons). At the end of the protocol execution, D and M will

have securely established a shared secret key KDM . This is a long lived master

key, used primarily to establish subsequent session keys, and should be stored

securely when not in use.

The user will need to repeat this initialisation procedure for every device he/she

owns (or intends to use for service consumption).

8.4.3.2 Enrolment Phase

In this phase, a user device D is securely enrolled with the DME M , which involves

M being given D’s security credentials. This phase may take place at any time after

the Initialisation phase, and does not require the participating entities to be in close

physical proximity. If necessary this phase can be performed at regular intervals, or

even for every ‘session’, without repeating the Initialisation phase. It involves the

following steps.

139

8.4 A Framework for Secure Device Management

1. D constructs an Enrolment Request message, EnReq , which includes a Device

Identifier DevID , a Session Identifier SessID , and a timestamp tD:

EnReq = (DevID ,SessID , tD).

Note that SessID should be chosen such that it is unique during the lifetime

of key KDM . Using the shared key KDM (established in the Initialisation

Phase), D derives two session keys as follows: K1 = H(0||KDM ||SessID) and

K2 = H(1||KDM ||SessID), where H is a cryptographic hash function. Note

that K1 and K2 will be discarded at the end of the enrolment phase, and must

not be reused. D then computes a MAC on EnReq using K2, and sends the

EnReq and the MAC to M :

D → M : (EnReq ,MACK2 (EnReq)).

2. On receiving the above message, M retrieves SessID , and computes K1 and

K2 in the same way as D. M checks tD to ensure that EnReq is a fresh

(or recent) message. M then verifies the integrity of the received message by

recomputing the MAC using K2, and (if the outcome is satisfactory) prepares

an Enrolment Reply message EnRep for D:

EnRep = (IDM ,DevID ,SessID ,N , tM ,PCRInfo),

where N is a nonce chosen by M such that the probability of M ever using

the same nonce twice during the lifetime of a key KDM is negligible. That is,

if the number of possible nonces is s, (and assuming that nonces are chosen

uniformly at random from the set of all possible values) then the number of

times that a key pair should be used should be significantly less than s0.5.

PCRInfo contains the indices of the PCR registers that M wishes to inspect.

M computes a MAC on EnRep using K2, and then sends EnRep and the MAC

to D :

M → D : (EnRep, MACK2(EnRep)).

3. On receiving the above message, D inspects tM to ensure that the message is

fresh. D then checks the integrity of the above message by recomputing the

MAC and, if it verifies correctly, instructs its TPM to attest to its current

software state. This involves D’s TPM signing the concatenation of PCR,

140

8.4 A Framework for Secure Device Management

made up of the PCR values requested by M , with the nonce N supplied by

M :

SigAIK sk
(PCR||N).

Note that the nonce N is included to prevent possible replay attacks.

4. Using the TPM_CreateWrapKey command, the TPM in D generates a non-

migratable Service Key Encrypting Key pair (SKEKpk ,SKEKsk) which is

bound to this TPM and sealed to D’s current software state (i.e. the PCR val-

ues used in the previous step). The TPM then uses AIKpk to sign a certificate

CertSKEKpk
for SKEKpk using the TPM_CertifyKey command. CertSKEKpk

contains a digest of SKEKpk , and also describes the properties of the key, in-

cluding the key type (bind, identity, signing, or storage), whether the key is

migratable, and the PCRs to which the key is sealed. M will later use SKEKpk

to encrypt services destined for this device.

5. D constructs an Enrolment Message EnMsg as follows:

EnMsg = (DevID ,SKEKpk ,CertSKEKpk
, tD ,SML,

SigAIK sk
(PCR||N),AIKpk , CertAIK),

where SML represents the set of values taken from D’s Stored Measurement

Log necessary to interpret the PCR values given in PCR.

D then encrypts EnMsg using K1, and computes a MAC on the encrypted

EnMsg using K2 to give:

EK1(EnMsg) and MACK2 (EK1 (EnMsg)).

D sends the following to M :

D → M : (DevID ,EK1 (EnMsg),MACK2 (EK1 (EnMsg))).

6. On receiving the above message, M checks the integrity of the received mes-

sage using K2, and then decrypts the encrypted EnMsg using K1. M next

verifies the signature on the PCR values using AIKpk , and assesses the “trust-

worthiness” of D by comparing the reported integrity metrics (i.e. the PCR

values and the accompanying SML) against a list of known trustworthy states.

M also checks that the nonce N is the same as that sent to D in step 2. If the

device is deemed to be in a trustworthy state, M creates a new entry for this

141

8.4 A Framework for Secure Device Management

device in its security register. The security register holds information associ-

ated with this device, i.e. DevID , KDM , AIKpk , and SKEKpk . At this point,

the user device D is successfully enrolled with the DME M .

7. M creates an Enrolment Acknowledgement message, EnAck , to inform D of

the enrolment outcome EnOut (i.e. Success or Failure):

EnAck = (IDM ,DevID ,EnOut , tM).

M computes a MAC on EnAck using K2, and sends the following to D:

D → M : (EnAck , MACK2(EnAck)).

It should be noted that, at any subsequent time, the user device D must be in the

state indicated by the values of its PCRs in order to be able to access services via

the DME.

8.4.3.3 Secure Service Discovery Phase

In this phase, the Ninja service discovery protocol (described in Chapter 7) is used

to secure the process of service discovery between the DME (acting on behalf of the

user devices) and a service provider. Prospective service providers advertise their

service offerings via authenticated service advertisement messages. If a user is inter-

ested in a particular advertised service, the DME M (on behalf of the user devices)

can then respond to the service advertisement with a service reply message. Service

interactions between the DME and service provider are secured. At the end of the

Ninja protocol run, a shared secret key KMS has been established between the DME

and the service provider. This shared key is used to secure the delivery of the sought

services in the Secure Service Delivery phase, described immediately below.

8.4.3.4 Secure Service Delivery Phase

In this phase, the service provider securely delivers a requested service, Srv , to the

DME.

142

8.4 A Framework for Secure Device Management

1. The service provider generates a secret service encryption key, KSrv , and uses

it to encrypt the service:

EKSrv (Srv).

The service provider encrypts KSrv using K3 to obtain EK3 (KSrv), and com-

putes a MAC on the encrypted service and the encrypted copy of KSrv using

K4, where KMS = K3||K4, to obtain:

MACK4 (EKSrv (Srv)||EK3 (KSrv)||tS).

2. The service provider sends the following to the DME:

S → M : (EKSrv (Srv),EK3 (KSrv),MACK4 (EKSrv (Srv)||EK3 (KSrv)), tS).

3. On receiving the above message, the DME checks its integrity by recomputing

the MAC using K4 , and then comparing it with the received value. If the two

values agree, the DME proceeds to the next step.

4. The DME decrypts EK3 (KSrv) using K3 to obtain KSrv . Key KSrv will be

securely stored by the DME.

8.4.3.5 Secure Service Re-Distribution Phase

In this phase, the DME M securely redistributes the service (received from the

service provider in the Secure Service Delivery phase) to a specific device D.

1. M consults its security register, retrieves the corresponding device public key

SKEKpk (which was sealed to a trustworthy platform state), and re-encrypts

KSrv using SKEKpk :

ĒSKEKpk
(KSrv).

2. M chooses a new SessID which is unique for the lifetime of key KDM . M

derives a new session key K5 by hashing the concatenation of DevID , KDM

(from the Initialisation phase), and the newly generated SessID , i.e. K5 =

143

8.5 Security Analysis

H (DevID ||KDM ||SessID). M then computes a MAC on the encrypted service

and the re-encrypted service key using K5 to obtain:

MACK5(EKSrv
(Srv)||ĒSKEKpk

(KSrv)).

3. M sends the secured service (i.e. the encrypted service) and the MAC to D:

M → D : (SessID , EKSrv (Srv), ĒSKEKpk
(KSrv),

MACK5 (EKSrv (Srv)||ĒSKEKpk
(KSrv))).

To consume the service, the user device performs the following steps:

1. On receiving the above message, the user device first computes K5 and then

uses it to check the integrity of the received message by recomputing the MAC.

2. If the outcome of the previous step is satisfactory, the user device unseals

SKEKsk using the TPM_Unseal command. Note that this step is only possible

if the TPM in the device is in the same state as it was when the key was

created and sealed.

3. If the previous step is successful, the user device decrypts ĒSKEKpk
(KSrv) using

SKEKsk to obtain KSrv.

4. The User Device decrypts EKSrv
(Srv) using KSrv to obtain the service Srv .

The service can now be consumed on device D.

8.5 Security Analysis

We now evaluate the security of the proposed framework against the security re-

quirements identified in Section 8.2.2.

Entity Authentication

Entity authentication takes place between the following pairs of entities:

144

8.5 Security Analysis

• User-to-Device: During the initialisation phase, the user is authenticated by

the TPM in the device using an authorisation secret. Only the user (i.e.

the authorised custodian of the TPM and the device) knows this secret. An

attacker who has stolen the device would therefore be unable to access the

TPM functionality required to unlock and access a service.

• Device-to-DME: During the enrolment and secure service re-distribution phases,

the use of a shared secret key, known only to the device and DME (i.e. KDM

and the keys that are derived from it), to compute a MAC on the service mes-

sages, allows the device and the DME to mutually authenticate each other.

• DME-to-Service Provider: The DME and the service provider are mutually

authenticated during the service discovery phase.

Timestamps and nonces are included in the service messages to provide freshness

guarantees to prevent potential replay attacks.

Integrity Protection

All message exchanged during the various phases are integrity protected.

In the Enrolment and Secure Service Re-Distribution phases, the integrity of the

EnReq , EnRep, EnMsg , and EnAck messages, the Service Srv , and the encrypted

service key KSrv , are protected with MACs that are computed using a shared key

known only to the device and the DME (i.e. K2 and K5).

In the Secure Service Delivery phase, the Service Srv and the service encryption key

KSrv are integrity protected with MACs that are computed using a shared secret

key known only to the DME and the service provider. Data origin authentication is

also achieved for the service that is delivered to the DME by the service provider.

145

8.5 Security Analysis

Service Confidentiality

During the Enrolment Phase, the Enrolment message EnMsg is encrypted before it

is sent to the DME. This prevents eavesdroppers from learning its contents. In the

Service Delivery and Service Re-distribution phases, the service, Srv , as well as the

service encryption key, KSrv , are encrypted whilst in transit. Eavesdroppers are thus

unable to learn the types of service a user is consuming by observing the messages.

An active attacker is also unable to capture the encrypted service and consume it.

Device Integrity Assurance

If a user device has been compromised (e.g. by malicious software), its software (as

recorded in the PCR values) will differ from the expected value, and hence the device

will be prevented from accessing a service, since it will now be unable to perform

the UnSeal operation to retrieve the necessary secret key. If the device is unable

to access a service, a user will be able to deduce that the device may have been

compromised.

Since a compromised (or untrustworthy) device is “automatically” prevented from

accessing a service, the requirement for a revocation infrastructure (for distributing

and maintaining up to date CRLs) may no longer be necessary.

Unauthorised Credential Sharing Prevention

Depending on the type of service plans that a user subscribes to, service providers

may, for example, allow a user to access a service on a maximum of (say) three of

his own personal devices. These three devices are enrolled with the DME. As a

service is encrypted with an service encryption key, and the service encryption key

is encrypted using a key which is bound to the TPM in the device, a service can

therefore be consumed only on the device to which the key is bound. The private

part of the Service Key Encrypting Key SKEKsk never leaves the platform, and

hence a user is unable to share it. Even if he is able to extract it, it may not be

possible to unseal it in another device, as the PCR values will probably differ.

146

8.6 Summary

8.6 Summary

We have introduced SDMF, a framework for the secure delivery of ubiquitous services

in a mobile environment. Using Trusted Computing and a combination of other

security mechanisms, the framework supports the secure delivery of services to user

devices, whilst removing the complexities of security management from the users. A

user need not be worried if his/her device has been compromised. Service providers

are also assured that unauthorised credential sharing is prevented. Our security

analysis shows that the framework meets all the identified security objectives.

147

Chapter 9

Privacy Preserving Content Distri-
bution Protection

Contents

9.1 Introduction . 149

9.2 Background and Related Work 151

9.2.1 Digital Watermarking Overview 151
9.2.2 Related Work . 152

9.3 CDP Security Issues . 154

9.3.1 CDP Threat Model . 154
9.3.2 CDP Security Requirements 155

9.4 Building Blocks . 156

9.4.1 Homomorphic Encryption Functions 156
9.4.2 Permutation Function . 157
9.4.3 Trusted Computing . 157

9.5 A Novel CDP Scheme . 158

9.5.1 The Entities . 158
9.5.2 Working Assumptions . 158
9.5.3 The Scheme . 160

9.6 Security Analysis . 166

9.7 Comparison with Related Work 168

9.7.1 Security . 169
9.7.2 Efficiency . 171

9.8 Summary . 172

A variety of Content Distribution Protection (CDP) schemes (e.g. Buyer-Seller

Watermarking and Asymmetric Fingerprinting) have been proposed to address the

problem of unauthorised distribution of copyrighted content. All the existing CDP

schemes rely heavily on a Trusted Third Party to achieve the desired security objec-

tives. In this chapter we present a Privacy Preserving CDP Watermarking Scheme

148

9.1 Introduction

which uses trusted computing functionality and minimises the reliance on a Trusted

Third Party. Our scheme, apart from being suited for a mobile environment, also

allows a buyer to anonymously purchase digital content, whilst enabling the content

provider to blacklist the buyers that are distributing content in unauthorised ways.

9.1 Introduction

A mobile ubiquitous environment provides content providers with the ideal platform

with which to reach a large pool of potential customers. This new distribution

medium has the potential to dramatically increase a provider’s revenue from content

sales. On the other hand, the ease with which digital content can be delivered,

duplicated, and distributed amongst end consumers also presents the digital content

industry with a major problem, namely the unauthorised distribution of proprietary

digital content. Hence, the challenge for content providers is how to prevent or deter

unauthorised distribution of proprietary material, whilst embracing the business

opportunity presented by digital distribution.

One technical means for deterring unauthorised content distribution is for the con-

tent provider to embed a unique watermark into every piece of content. If unau-

thorised copies of the content are found, the content provider can potentially use

the watermark to trace the copy of the content back to the original buyer. This

approach suffers from two problems. Firstly, an honest buyer could be wrongly ac-

cused (framed) of unauthorised distribution (e.g. if the content provider matches the

wrong identity to the unauthorised copies of the content). Secondly, it may also be

possible for a malicious buyer plausibly to claim that an unauthorised copy was in

fact leaked by the content provider.

To address these problems, two types of content distribution protection (CDP)

schemes have been proposed, with the goal of protecting the interests of both buyers

and sellers. These are the Buyer-Seller Watermarking (BSW) schemes [98] and the

Asymmetric Fingerprinting (AF) schemes [118]. These schemes require the inclu-

sion of a buyer watermark in content, in addition to a watermark generated by the

seller. Further, in order to preserve buyer privacy, a number of anonymous BSW

and AF schemes [31, 38, 79, 85, 119] have subsequently been proposed.

149

9.1 Introduction

In BSW schemes, a Trusted Third Party (TTP) typically has responsibility for gener-

ating buyer watermarks, while in AF schemes a buyer generates its own watermark,

which is then proven to be well-formed to the content provider (using zero-knowledge

proofs). In general, both of these approaches prevent an honest buyer from being

framed, as well as a malicious buyer from denying that he/she has distributed pro-

prietary content without authorisation. If buyer privacy is required, then a TTP

can be employed to provide buyers with certified pseudonyms.

The requirement for an (online) trusted third party in existing BSW and AF schemes,

either to generate the buyer watermarks or to provide pseudonyms for buyers, repre-

sents a major constraint, especially in a mobile ubiquitous environment where online

trusted third parties are not necessarily readily available. Our goal is to remove this

constraint, so that the resulting schemes are both inherently scalable and suitable

for use in distributed and mobile environments. Trusted Computing technology

offers a range of relevant security functionality, in particular a privacy preserving

mechanism, which can be used to meet this objective.

Tomsich and Katzenbeisser [149] proposed a watermarking framework that uses

tamper-proof hardware to protect proprietary content. Using Trusted Computing

functionality, we take their approach a step further by proposing a concrete con-

struction of a privacy preserving (i.e. anonymous) CDP scheme.

That is, in this chapter, we propose a privacy preserving, CDP watermarking scheme

using two TC functionalities, namely the Direct Anonymous Attestation (DAA) pro-

tocol, and the Integrity Measurement, Storage and Reporting (IMSR) mechanism.

By using DAA, our scheme minimises reliance on a TTP for privacy protection, as

the buyer can generate verifiable pseudonyms on its own. As a result, we are able to

reduce the communication overheads, and hence improve overall efficiency by com-

parison with existing BSW and AF schemes. A second contribution of our scheme

is that, through the use of IMSR, the content provider is able to obtain assurance

that a buyer-generated watermark is well-formed. The scheme also provides the

following security features: framing resistance, user anonymity, content information

confidentiality, unlinkability (even against the TTP), and transaction linkability. To

the best of our knowledge, this is the first CDP scheme based on Trusted Computing

functionality.

150

9.2 Background and Related Work

The remainder of this chapter is organised as follows. In Section 9.2, we provide an

overview of digital watermarking technology, and discuss related work. Section 9.3

highlights the various CDP watermarking security issues. Section 9.4 describes the

building blocks used to construct the novel scheme. In Section 9.5 we present the

novel privacy preserving anonymous CDP watermarking scheme, and then analyse

its security in Section 9.6. In the penultimate section, we compare our scheme

against two other recent CDP watermarking schemes, and, finally, conclusions are

drawn in Section 9.8.

9.2 Background and Related Work

In this section we briefly review digital watermarking technology. We then discuss

related work.

9.2.1 Digital Watermarking Overview

The relative ease with which digital content can be duplicated and then distributed

poses a major problem to the digital content industries. To address this problem,

a variety of Digital Watermarking methods [41, 89, 92, 154] catering to different

content types (e.g. audio, image, video) have been proposed. As defined by Memon

and Wong [98]:

“a watermark is a secret key dependent signal added to digital data (e.g. audio, video,

or an image), which can later be extracted or detected to make an assertion about

the data [98].”

According to Cox et al. [41], an effective watermark should possess the following

seven properties: Unobtrusiveness, Robustness, Common Signal Processing, Com-

mon Geometric Distortion, Collusion and Forgery Attack Resistance, Universality,

and Unambiguity (the interested reader is referred to [41] for a detailed explanation

of these properties). A digital watermarking method provides a means of embedding

a watermark into a piece of digital content. In this thesis we are not concerned with

the watermarking embedding techniques themselves; instead, we focus on secure wa-

151

9.2 Background and Related Work

termarking protocols, i.e. the steps whereby buyers and sellers of digital copyrighted

content interact with each other whilst trying to protect their individual interests.

We simply assume that the underlying watermarking method (often referred to as

the embedding operation) is secure.

The earliest digital watermarking protocols appeared in the late 1990s, notably in

the work of Memon and Wong [97], and Voyatzis and Pitas [155]. Traditionally,

the watermarking process is only carried out by the content seller, i.e. only the

seller is responsible for inserting the watermark into the content. Although this

protects the interest of the content seller by allowing the content seller to trace

unauthorised copies of content found in the public space, it does not protect the

interests of the buyer. This is because a buyer has no control over what is done

to the watermarked content, and, as was noted by Qiao and Nahrestedt [125], the

buyer is susceptible to a framing attack. That is, an honest buyer could be falsely

accused by an dishonest content seller of illegally duplicating or distributing content.

To overcome this problem, Qiao and Nahrestedt [125], and Memon and Wong [98]

proposed watermarking protocols which involve the contribution of a watermark

from a buyer, in addition to a seller’s watermark. Such protocols are commonly

referred to as Buyer-Seller Watermarking protocols.

Further, in order to preserve the privacy of a buyer, a variety of anonymous or

privacy preserving buyer-seller watermarking protocols have subsequently been pro-

posed. We observe that, in order for these protocols to achieve the desired security

objectives, and to protect the interests of both the buyers and sellers, one or more

online trusted third parties are required as active participants. Since one of our

aims is to design a protocol for use in mobile environments, such a requirement for

an online trusted third party may not be realistic. In the next section we briefly

review existing work, and, in particular, we examine the role that a trusted third

party plays in each of the protocols considered.

9.2.2 Related Work

Memon and Wong [98] proposed the first buyer-seller watermarking protocol in 2001.

This scheme is the basis upon which many other schemes have subsequently been

152

9.2 Background and Related Work

built.

Ju et al. [79], were one of the first, in 2002, to recognise the importance of preserving

a buyer’s privacy during a content purchase transaction. In their scheme, a buyer is

able to purchase content anonymously. A buyer’s transactions are also unlinkable.

Three trusted third parties are involved. Firstly, it is assumed that all participants

have a pair of public and private key pairs certified by a Certification Authority

prior to the protocol run. Secondly, a Watermark Certification Authority (WCA) is

also involved in generating the buyer’s watermark on his/her behalf, and certifying

his/her anonymous credential. A judge (i.e. another trusted third party) is also

required to arbitrate in the event of a dispute. Shortly after the publication of [79],

Choi, Sakurai, and Park [38] discovered that the scheme of Ju et al. remains sus-

ceptible to the framing problem if the content seller colludes with the WCA and/or

the judge. They also proposed a new protocol which requires only one trusted third

party, called a WCA, that has the role of generating a buyer’s watermark as well as

providing the buyer with the anonymous credential. Not long after the publication

of [38], both of the above mentioned schemes were cryptanalysed by Goi et al. [60],

revealing serious security issues which could potentially compromise user privacy.

Independently, Lei et al. [85] proposed an anonymous scheme which binds an instance

of a content purchase transaction to the watermarking protocol. They argued that

this is a more efficient process. This scheme involves three trusted third parties.

Firstly, a CA is responsible for issuing anonymous certificates to buyers, and, sec-

ondly, a WCA is responsible for the generation of buyer’s watermarks. Finally an

arbiter is necessary to resolve disputes in the event of an infringement of the rights

of content owners.

More recently, Zhang, Kou and Fan [163], proposed a scheme which involves only

one trusted third party, i.e. a CA responsible for issuing anonymous credentials to

buyers. A buyer’s watermark is generated by the buyer without the assistance of

a watermark authority. We will show later (in Section 9.7) that this scheme is not

secure, as a buyer can easily remove his portion of the watermark.

In summary, all of the above mentioned schemes, apart from possessing security is-

sues, are neither scalable nor suitable for use in environments where a online Trusted

153

9.3 CDP Security Issues

third party is not guaranteed to be available.

9.3 CDP Security Issues

In this section we examine the security and privacy issues associated with digital

content distribution in a mobile ubiquitous environment.

9.3.1 CDP Threat Model

The potential security and privacy threats that may be posed to content buyers and

content providers are as follows.

1. Unauthorised Content Distribution. A malicious user could without au-

thorisation distribute proprietary content (which may have earlier been legally

purchased from a content provider), resulting in the content being used by oth-

ers without the appropriate payment being made to the content provider. This

translates to a potential loss of revenue for the content provider.

2. Framing. To deter unauthorised content distribution, the content provider

could employ a digital watermarking scheme to embed a unique seller-generated

watermark into every piece of content bought by the buyer. Such a scheme,

however, does not prevent an honest buyer from being falsely accused (framed)

of unauthorised content distribution. This is a problem if there is no way for

the buyer to challenge the decision and prove his/her innocence.

3. Information Disclosure.

• Buyer’s Personally Identifiable Information: During the process

of content purchase, a buyer’s PII, such as his/her identity or physical

location, may be revealed (either willingly or unwillingly) to a content

provider or passive eavesdropper.

• Content Information: By observing the type of content that a buyer

purchases, a passive adversary may gradually build up a profile of the

buyer. This information may later be used to predict future patterns

154

9.3 CDP Security Issues

and habits of the buyer. The privacy of the buyer could potentially be

compromised as a result.

4. Conspiracy Attacks. Colluding content providers may buy, sell or exchange

information about their customers. Such collusion could not only provide

content providers with monetary benefits, but also enhance their business in-

telligence by building a more comprehensive profile of their clients. With the

aid of a TTP, buyers can employ privacy enhancing mechanisms to protect

their identity when they interact with content providers. The consequences

for buyer privacy could be even more serious if a TTP decides to collude with

content providers.

9.3.2 CDP Security Requirements

We now give a set of security requirements designed to address the identified threats.

1. Traceability. The most fundamental requirement for any content protection

or watermarking scheme is the ability for a content seller to determine (via

some means) that content it has sold is being duplicated and/or distributed

in an unauthorised way.

2. Framing Resistance. It should not be possible for the content provider to

falsely accuse an honest buyer of unauthorised content distribution.

3. Buyer Anonymity. Unique identifying information for a buyer (such as a

long lived key) should not be divulged to a content provider during the content

purchasing process. If required, a buyer should be able to interact with content

providers using pseudonyms.

4. Content Information Confidentiality. Eavesdroppers (listening to the

communications between a buyer and content provider) should not be able to

determine the type of content that is being purchased by the buyer.

5. Conspiracy Attack/Collusion Resistance. Colluding content providers

should not be able to link the activities of the same buyer. Similarly, when

a TTP colludes with a content provider, they should not be able to correlate

155

9.4 Building Blocks

the actions of a particular buyer. In other words, it should be impossible

for colluding content providers to tell if two sets of prior content purchase

transactions (made with different providers) had originated from the same or

different buyers.

6. Transaction History. For billing or other purposes (e.g. loyalty rewards), it

may be necessary for a content provider to maintain the transaction histories

of its customers. That is, a content provider may need to be able to identify

whether a particular client is a repeat customer (and, if so, which one) or a

first time buyer, whilst still being unable to determine his/her unique identity.

7. Blacklisting of Rogue Buyers. In the event that unauthorised copies of

proprietary content are found (e.g. on the Internet), content providers should

be able to blacklist the buyers of these copies of the content.

9.4 Building Blocks

In this section we briefly introduce and describe the building blocks used to develop

the privacy preserving CDP watermarking scheme described later in the chapter.

9.4.1 Homomorphic Encryption Functions

We first provide a brief description of a homomorphic encryption function. Let

EK : M → C be an encryption function, where M is the set of plaintexts, C is the

set of ciphertexts, and K is the set of keys. Then E is said to be homomorphic if,

for every m1, m2 ∈M, and k ∈ K:

Ek(m1)¯C Ek(m2) = Ek(m1 ¯M m2),

where ¯C is an operator on C, and ¯M is an operator on M. We usually consider

operators to be either additive or multiplicative. We can therefore regard an encryp-

tion scheme as additively homomorphic if the operator is additive, and a encryption

scheme as multiplicatively homomorphic if the operator is multiplicative.

Examples of homomorphic encryption schemes include the schemes of Rivest, Shamir

156

9.4 Building Blocks

and Adelman [127], ElGamal [49], Goldwasser and Micali [62], Benaloh [23], and

Pallier [111]. The interested reader is referred to Fontaine and Galand’s survey on

homomorphic encryption [50].

9.4.2 Permutation Function

According to Memon and Wong [98], a Watermark W can be considered as a se-

quence of individual elements, i.e.:

W = (w1, w2, w3,, wn).

If the watermark W is encrypted using a key K, it simply means that the individual

elements are encrypted, i.e.:

EK(W) = (EK(w1), EK(w2), EK(w3),, EK(wn)).

A random permutation function ρ can be used to randomise an encrypted watermark

EK(W). This has the effect of randomising the order of the individual encrypted

elements of the watermark, i.e.:

ρ(EK(W)) = EK(ρ(W))

Thus the permutation and encryption processes commute.

9.4.3 Trusted Computing

To achieve the security objectives set out in Section 9.3.2, the CDP watermark-

ing scheme utilises two Trusted Computing functionalities, namely the Integrity,

Storage, and Reporting (IMSR) mechanism, and the Direct Anonymous Attestation

(DAA) protocol. IMSR is employed to provide a content seller with assurance that

a reliable watermarking method was used to generate the buyer watermark. DAA

is used to provide privacy and anonymity properties to a content buyer. A detailed

description of these two functionalities can be found in Chapter 4.

157

9.5 A Novel CDP Scheme

9.5 A Novel CDP Scheme

In this section, we present a novel privacy-preserving content distribution protection

watermarking scheme. The primary objective of the scheme is to allow the buyer to

anonymously purchase digital content, whilst allowing a seller to blacklist any buyer

platforms that are distributing content in unauthorised ways. Using the aforemen-

tioned Trusted Computing functionalities, the scheme also allows a buyer to generate

verifiable pseudonyms and to convince a content provider that the buyer generated

watermark is well-formed, without the involvement of an (online) TTP. The scheme

is also designed to meet all the security requirements set out in section 9.3.2.

We first introduce the entities participating in the protocol. Next, we state the

assumptions upon which the scheme is based. Finally, we describe the operation of

the scheme.

9.5.1 The Entities

The entities participating in the scheme are as follows:

• the Content Buyer of digital content (e.g. music, video, podcasts, etc.);

• the Platform (or device), which consists of the TPM and its host; the platform

is also the device which a buyer will use to interact with other entities;

• the Content Seller (also referred to as the content provider) of digital content;

• the DAA Issuer, which is also the authority that issues DAA Certificates to

legitimate platforms.

9.5.2 Working Assumptions

The proper operation of the scheme relies upon the following assumptions:

• The buyer is already authenticated to the platform (via some out-of-band

158

9.5 A Novel CDP Scheme

mechanism such as the one given in [59]) that is used for the CDP scheme. We

refer to the combination of the buyer and the platform as the Buyer Platform

(BP).

• The buyer and seller are already authenticated to each other prior to content

distribution, for example as part of an authenticated service discovery process

(such as that described in Chapter 7).

• The device/platform running the CDP scheme is equipped with TCG function-

ality conforming to v1.2 of the TCG specifications (as described in Chapter 4).

• Content buyers and content sellers have loosely synchronised clocks (e.g. within

an hour of each other). This enables content sellers to check that a content

request message is sufficiently fresh.

• Buyers only obtain DAA Certificates from trustworthy DAA Issuers (i.e. those

that use the same public key for a very large set of users in order to avoid the

Rudolph attack discussed in Chapter 5).

• The parties involved have agreed on the cryptographic functions to be used as

part of the protocol. These are as follows.

– A hash-function H.

– A homomorphic encryption algorithm E , where EK(X) is used to denote

the homomorphic encryption of data X using the secret key K.

– A digital signature algorithm, where SigK(X) is used to denote a signa-

ture computed on data X using the private signature key K.

• The watermark embedding operation ⊗ is public knowledge, and the security

of this embedding relies only on the secrecy of the key used to embed the

watermark W . (In our case this key is a secret random permutation ρ). In

addition, the watermark W embedded using ⊗ is collusion resistant, which

means that it is computationally infeasible for attackers to remove W or cause

W to be undetectable even if they have access to multiple copies of the content

containing different watermarks.

159

9.5 A Novel CDP Scheme

9.5.3 The Scheme

Table 9.1 gives the notation used in describing the scheme.

Table 9.1: Notation

Notation Description
BP The Buyer Platform

S The Seller or Content Provider
I The DAA Issuer
f A DAA secret value generated by the TPM

v′, v′′, e DAA parameters (described in Section 3.2)
σ A DAA Signature
ρ A random permutation function

X ′ Watermarked Content
X ⊗W Embedding of W into X using the embedding opera-

tion, ⊗
(AIKpk ,AIKsk) A pair of public/private Attestation Identity Keys

(EKpk ,EKsk) The pair of public/private Endorsement Keys

As shown in figure 9.1, the proposed CDP scheme involves three distinct phases,

namely the Buyer Registration Phase, the Watermarking Phase, and the Content

Acquisition Phase. We now describe the workings of each phase in greater detail.

9.5.3.1 Buyer Registration Phase

The objective of the Buyer Registration Phase is to enable a buyer platform to obtain

a DAA Certificate from a DAA Issuer. Note that the Buyer Registration Phase of

this scheme is identical to the DAA Join Protocol (as described in Chapter 4), and

may have taken place before the device is shipped to the content buyer. This is a

typically a one-off process. We now describe the sequence of events (also depicted

in Figure 9.2)

1. The TPM in the buyer platform generates its DAA Secret value f and a

random value v′. It computes U and NI (as described in Section 4.4.2), and

then sends U , NI , and its Endorsement Public Key, EKpk to the DAA Issuer.

160

9.5 A Novel CDP Scheme

Figure 9.1: The CDP Watermarking Scheme Phases of Operation

2. To verify that U originates from the TPM in the platform that owns EKpk ,

the DAA Issuer engages in a simple Challenge-Response protocol with the

platform. It generates a random message m, and encrypts m using EKpk . It

sends the challenge, Chl = ĒEKpk
(m) to the platform.

3. If the platform owns EKpk , it should have the corresponding EKsk and hence is

able to decrypt ĒEKpk
(m) to retrieve m. The platform (TPM) then computes

and sends the response r = H(U ||m) to the DAA Issuer.

4. The DAA Issuer computes H(U ||m) using the value of m it sent in step 2,

and compares the result with the value of r received from the platform. If the

two values agree, then the DAA Issuer is convinced that U originated from the

TPM that owns EKpk .

5. Finally, the DAA Issuer generates v′′ and e, and then computes A (as described

in Section 4.4.2). The DAA Issuer then sends (A, e, v′′) to the platform.

6. The DAA Certificate is (A, e, v), where v = v′ + v′′. The DAA Issuer does not

have full knowledge of the DAA Certificate, since the certificate was jointly

created by the platform and the DAA Issuer. This property helps preserve the

anonymity of the user/platform.

161

9.5 A Novel CDP Scheme

Platform DAA Issuer

1. generates f, v′

U ⇐ Rf Sv′ , NI ⇐ ζf
I

EKpk, U, NI−−−−−−−−−−−−−−−→
2. generates m

Chl ⇐ ĒEKpk
(m)

Chl←−−−−−−−−−−−−−−−
3. m′ ⇐ D̄EKsk

(Chl)
r ⇐ H(U ||m′)

r−−−−−−−−−−−−−−−→
4. If: r = H(U ||m)

5. Then: generates v′′ & e
A ⇐ (Z

USv′′)
1/e mod n

(A, e, v′′)←−−−−−−−−−−−−−−−
6. DAA Cert:=(A, e, v)

where v = v′ + v′′

Figure 9.2: Buyer Registration Phase

9.5.3.2 Watermarking Phase

The purpose of this phase is to enable a buyer to contribute a watermark (finger-

print), and for the seller to embed this buyer watermark into the proprietary content

before it is distributed to the buyer. The embedding is performed in such a way

that the watermark embedded into the content is ‘invisible’ to both the buyer and

seller, i.e. neither the buyer nor the seller is able to determine what the watermark

is. The entities involved in this phase are the Buyer Platform B and the Seller S.

The sequence of events is as follows (also depicted in Fig. 9.3):

B1. B generates a watermark W using the generation function of a reliable water-

marking algorithm (e.g. the spread spectrum watermarking algorithm given

in [41]).

B2. B generates an encryption key pair (BEKpk ,BEKsk) for the chosen homomor-

phic encryption scheme, and then encrypts the watermark W using BEKpk ,

to create:

EBEKpk
(W).

B3. The TPM in B generates a non-migratable signing key pair (BSKpk ,BSKsk),

and then uses the private key to sign the encrypted watermark EBEKpk
(W)

162

9.5 A Novel CDP Scheme

(from step B2), and BEKpk, to obtain:

SigBSKsk
(EBEKpk

(W),BEKpk).

B4. The TPM in B generates an AIK key pair (AIK pk ,AIK sk).

B5. B retrieves the Stored Measurement Log (SML), and the corresponding Plat-

form Configuration Register (PCR) values from the TPM (denoted by PCR).

The TPM in B then signs the PCR values and a newly generated timestamp

tb using AIK sk (from step B4):

SigAIKsk
(PCR||tB).

The SML and PCR values provide evidence that a particular watermarking

algorithm was used (by the buyer B) to generate the watermark (in step 1).

B6. The TPM in B computes ζ = H(IDS). It then creates a pseudonym Nv = ζf

(where f is the DAA Secret generated during the Buyer Registration Phase)

for use when interacting with the Seller.

B7. To prove to the Seller that the AIK (from step B4) originates from a genuine

TPM, the TPM in B now DAA-Signs AIKpk using f , the DAA Certificate,

and the other public parameters of the system. The output of the DAA-sign

operation is the DAA Signature, σ (which also includes ζ and Nv).

B8. To prove that BSK originates from the TPM, the TPM signs BSKpk and the

timestamp tB using AIKsk , i.e. it computes:

SigAIKsk
(BSKpk ||tB).

B9. B sends the following to the Seller S:

B → S : EBEKpk
(W),AIKpk ,BSKpk ,BEKpk , σ, tB,SML, SigAIKsk

(PCR||tB),
SigBSKsk

(EBEKpk
(W),BEKpk),SigAIKsk

(BSKpk ||tB).

On receiving this message from the buyer, and to incorporate the buyer’s watermark

into a piece of content, the seller S performs the following steps:

S1. Checks to see if the timestamp tB is valid (i.e. successfully close to its current

clock value), and verifies the DAA Signature σ; on successful verification, S is

convinced that:

163

9.5 A Novel CDP Scheme

(i) B is in possession of a legitimate DAA Certificate from a specific DAA

Issuer, which implies that a genuine TPM is held by B.

(ii) AIKpk was signed using the DAA Secret f contained in B’s TPM. Even

though the value of f is never revealed to the seller, S knows that the

value is related to the one in the DAA Certificate.

S2. Examines the integrity metrics of the buyer platform. This is achieved by

recursively hashing the values indicated in the SML, and then comparing them

with the corresponding PCR values. If the outcome is satisfactory, and if the

software state indicated by the SML is a state that S trusts, S is convinced

that a reliable watermarking algorithm was used by the buyer platform to

generate its buyer watermark W , and that the platform is in a trustworthy

state.

S3. Verifies SigAIKsk
(BSKpk ||tB) and SigBSKsk

(EBEKpk
(W),BEKpk).

S4. Generates a seller watermark V , and then embeds it into the Content X, to

obtain:

X ′ = X ⊗ V.

S5. Encrypts X ′ (from step 4) using BEKpk to obtain:

EBEKpk
(X ′).

S6. Permutes EBEKpk
(W) (received from buyer in step B9) with a secret random

permutation ρ to get EBEKpk
(ρW) by computing:

ρ(EBEKpk
(W))= EBEKpk

(ρW)).

S7. The encrypted permuted watermark (from step S6) is then embedded (while

still in the encrypted domain) into the encrypted watermarked content X ′

(from step S5) by computing:

EBEKpk
(X ′ ⊗ ρW) = EBEKpk

(X ′)⊗ EBEKpk
(ρW).

This follows from the homomorphic property of the encryption algorithm.

S8. The encrypted, dual watermarked content (from step S7) is then distributed

to the buyer platform B.

S → B : EBEKpk
(X ′ ⊗ ρW).

164

9.5 A Novel CDP Scheme

Buyer Platform B Content Seller S

B1. generates W .

B2. generates BEKpk ,BEKsk ,
Eb1 ⇐ EBEKpk

(W).

B3. generates BSKpk ,BSKsk ,
Sb1 ⇐ SigBSKsk

(Eb1 ,BEKpk).

B4. generates AIKpk ,AIKsk .

B5. retrieves SML & PCR,
Sb2 ⇐ SigAIKsk

(PCR||tB).

B6. ζ ⇐ H(IDS), Nv ⇐ ζf .

B7. σ ⇐ DAA-Signs (AIKpk).

B8. Sb3 ⇐ SigAIKsk
(BSKpk ||tB).

B9. constructs
Mb := (Eb1 ,AIKpk ,BSKpk , σ
BEKpk ,SML, tB ,Sb1 ,Sb2 ,Sb3).

Mb−−−−−−−−−−−−−−−−−→
S1. verifies σ.

S2. checks PCR and SML values.

S3. verifies Sb1 & Sb3.

S4. generates V , then X′ ⇐ X ⊗ V .

S5. Es1 ⇐ EBEKpk
(X ′).

S6. permutes Eb1 to get EBEKpk
(ρW).

S7. computes EBEKpk
(X ′ ⊗ ρW).

S8.
EBEKpk

(X′ ⊗ ρW)
←−−−−−−−−−−−−−−−−−

1. decrypts EBEKpk
(X′ ⊗ ρW),

to retrieve (X′ ⊗ ρW).

Figure 9.3: Watermarking and Content Acquisition Phases

9.5.3.3 Content Acquisition Phase

When the buyer platform B receives the encrypted, watermarked content EBEKpk
(X ′⊗

ρW), it decrypts it using BEKsk to retrieve the watermarked content:

X ′′ = DBEKsk
(EBEKpk

(X ′ ⊗ ρ(W))) = X ′ ⊗ ρW.

The (final) watermarked content X ′′ is now ready for buyer consumption (e.g. view-

ing or listening).

9.5.3.4 Summary

In summary, and with reference to Figure 9.3:

165

9.6 Security Analysis

• steps B1–B3, and S4–S8, collectively allow both the seller’s watermark V and

a secret function ρ(W) of the buyer’s watermark W to be embedded into the

content X;

• steps B4–B8 allow the TPM and its host B to use the IMSR functionality to

attest to the watermark generation process on the platform, and, using DAA,

they also allow B to create a certifiable pseudonym (i.e. the AIK) for use when

interacting with the Seller;

• Steps S1–S3 allow the seller to verify both the integrity of the buyer’s platform

and the authenticity of the buyer’s pubic encryption key pair BEKpk .

9.6 Security Analysis

We now discuss how the proposed scheme meets the security requirements outlined

in Section 9.3.2.

Framing Resistance

It is not possible for a malicious content provider to falsely accuse an honest buyer of

unauthorised content distribution, since neither the buyer nor seller know the final

effective watermark ρ(W) that is embedded into the distributed content X ′′. This

is because a seller knows ρ and not W , while the buyer knows W and not ρ.

Buyer Anonymity

The scheme preserves buyer privacy by allowing the buyer to interact anonymously

with content providers through the use of certified pseudonyms. Anonymity is in-

herently provided by the DAA functionality of the buyer’s TPM. The Endorsement

Key (EK), which is also the long-lived and unique identity of the TPM in the buyer

platform, is never disclosed to the seller during content purchase or distribution.

Buyers interact with sellers using AIKs and Nv values, which act as pseudonyms.

Since it is computationally infeasible for sellers to link a specific EK and an AIK

166

9.6 Security Analysis

from the same platform, buyers will remain anonymous to sellers. Similarly, since

the DAA Secret f is never revealed outside the TPM, a seller with only Nv is not

able to determine f .

Collusion Resistance

Unlinkability is another feature provided by the DAA functionality. To prevent col-

lusion attacks amongst malicious content sellers and curious Trusted Third Parties,

buyers should interact with different sellers using different AIKs and Nv values.

Since, it is computationally infeasible for colluding sellers to link these keys and

values to each other, a buyer’s content purchasing activities with different sellers

remain unlinkable.

As a DAA Issuer knows which TPMs possess valid DAA Certificates, it could collude

with a seller in an attempt to link EKs with AIKs. To make such a link, the DAA

Issuer would require knowledge of the TPM’s DAA Secret value, f . Again this is

computationally infeasible because of the way in which a DAA Certificate is created,

and since f never leaves the TPM.

The scheme is therefore resistant to colluding sellers as well as sellers colluding with

a DAA Issuer (the trusted third party).

Rogue Blacklisting

Seller security is provided by the ability to perform rogue blacklisting. This feature

is offered by the DAA functionality of the TPM. A seller may blacklist malicious

content buyers (i.e. those found to be distributing content illegally), to prevent them

from purchasing content in future. In other words, if a malicious buyer revisits the

seller, it should be possible for the seller to recognise that this buyer platform is

malicious, whilst remaining anonymous. This can be achieved by blacklisting the

pseudonyms, i.e. the Nv values of all known platforms of rogue buyers. The only way

in which a rogue buyer could avoid detection would be to obtain a new pseudonym

Nv. This would require the buyer to have a new value for f . Although it is possible

167

9.7 Comparison with Related Work

for a TPM to generate a new value for f , it is unlikely that the buyer platform will

be able to obtain a new DAA Certificate for this value from a DAA Issuer.

Furthermore, if a DAA Certificate and the value f are found in the public domain

(e.g. on the Internet), then they should be distributed to all potential sellers, who

should add them to their lists of rogue keys. This rogue platform identification

method has the advantage of eliminating the need for a centralised revocation au-

thority.

Transaction History

This is an additional usability feature that is not explicitly treated in previous CDP

schemes, and is made possible by the variable anonymity feature available in DAA.

That is, it may be necessary for sellers to link a repeat content buyer (e.g. for cus-

tomer loyalty rewards or discounts). This can be achieved without any compromise

of a buyer’s privacy or anonymity if a content buyer uses the same Nv value to

interact with a particular seller. Note that it is not necessary for a content buyer to

store the value Nv, as the same value will be recovered during re-computation (since

the values of ζ and f should remain unchanged).

Content Information Confidentiality

Content is encrypted with the buyer’s public encryption key, BEKpk . Content con-

fidentiality is thus protected from eavesdroppers whilst in transit (e.g. whilst being

distributed to the buyer over public networks). This also protects the privacy of a

buyer, as malicious or curious entities are unable to determine the type of content

that is being consumed.

9.7 Comparison with Related Work

In this section we compare the novel scheme with two other recently proposed CDP

schemes, i.e. the schemes of Lei et al. [85], and Zhang, Kou and Fan [163]. To the

168

9.7 Comparison with Related Work

best of our knowledge, there are no known attacks on these two schemes in the open

literature. Note that the schemes of Choi, Sakurai and Park [38], and Ju et al [79],

are not included in the comparison, as they have been broken by Goi et al. [60].

Our scheme adopts a similar approach to that adopted by Lei et al. [85], and Zhang,

Kou and Fan [163], in the way that a watermark is embedded into content (i.e.

through the use of homomorphic encryption scheme). Our scheme, however, is

different from these two schemes in the following ways: (i) how and by whom (or

where) the buyer’s watermark is generated, (ii) the way in which buyer privacy is

preserved. These differences provide our scheme with certain security and efficiency

advantages over the other schemes. We next discuss these issues in greater detail.

9.7.1 Security

The key security features of our scheme are the provision of true anonymity (to

the buyer), and the infeasibility of mounting collusion attacks between the content

provider and one of more TTPs, e.g. a Watermark Authority. The scheme also

prevents a malicious content buyer from repudiating the fact that he has distributed

content without authorisation.

We first review how the three schemes generate the buyer’s watermark, as this

is often the source of possible collusion attacks, and highlight any shortcomings.

Following which, we discuss how buyer privacy is preserved in each of the approaches.

9.7.1.1 Watermark Generation

The three schemes have the following approaches to watermark generation.

• In the scheme of Lei et al. [85], a Watermark Authority (a TTP) is employed to

generate the content buyer’s watermark. A collusion attack is possible, since

the content provider can collude with the Watermark Authority to obtain the

content buyer’s watermark. The security of this scheme rests heavily on the

trustworthiness of the Watermark Authority.

169

9.7 Comparison with Related Work

• Although not vulnerable to collusion, the scheme of Zhang, Kou and Fan [163]

suffers from another problem. In this scheme, the buyer’s watermark is jointly

generated by the content buyer and the content provider. Specifically, the con-

tent buyer’s watermark is computed by adding two partial watermarks, one

generated by the content buyer, the other generated by the content provider.

Since the buyer generates part of the watermark, and no special authority is

required to generate watermarks, a collusion attack is not possible. However,

the watermarking process simply involves adding two partial watermarks to-

gether and then embedding the result into the piece of content; it is therefore

possible for the content buyer to remove his/her (partial) watermark from the

content by subtracting it from the marked content. A content buyer can thus

repudiate a claim that he/she has distributed content without authorisation.

• The scheme presented in this chapter does not suffer from the two problems

mentioned above. Firstly, since the buyer’s watermark is generated on the

content buyer’s trusted platform, and no TTP is involved in watermark gen-

eration, there is no TTP for the content seller to collude with. Hence our

scheme is not vulnerable to a collusion attack. Also, using the IMSR function-

ality, a content seller is able to gain assurance that the watermark is generated

correctly and had not been tampered with. Furthermore, a buyer is unable

to remove his/her watermark W from the content, since the watermark is

permuted with a random function ρ known only to the seller.

Table 9.2: Security Properties

Properties Lei et al. Zhang et al. Our Scheme
Traceability Yes Yes Yes
Framing Resistance Yes Yes Yes
Security against Collusion No Yes Yes
Privacy Preservation without TTP No No Yes

Table 9.2 summarises the main security features of the three schemes. All the

schemes provide traceability for the seller of copyrighted content, as well as framing

resistance for the buyer. The other two properties, i.e. collusion resistance and

privacy preservation, have been discussed above.

170

9.7 Comparison with Related Work

9.7.1.2 Privacy Preservation

We now discuss how a buyer’s privacy is preserved by each of the schemes during

content distribution.

• The schemes of Lei et al. [85] and Zhang, Kou and Fan [163] use the same

method to preserve a buyer’s privacy. A buyer generates an arbitrary number

of key pairs (acting as pseudonyms), for use when interacting with different

content sellers. These key pairs are then certified by a CA. The certificate

obtained from the CA does not contain any identifying information about the

buyer. A buyer can hence anonymously purchase content from content sellers

using these certificates. Only the CA knows the association between keys and

users; hence, if a CA is not trustworthy, the scheme may be vulnerable to

collusion attack.

• In the scheme presented in this chapter, the Trusted Third Party is the DAA

Issuer. The main role of the DAA Issuer is to issue the buyer with a DAA

Certificate. From then on, a buyer (via his/her trusted platform) is able to

generate an arbitrary number of self-certifiable pseudonyms using the DAA

protocol (as discussed in Chapter 4), without the assistance of the DAA Issuer.

DAA provides two levels of anonymity to a buyer. Firstly, two colluding

content sellers are unable to identify whether two or more content purchase

transactions have originated from the same buyer. Secondly, even when the

DAA Issuer colludes with a seller, they are unable to identify a buyer based

on his prior transactions. This property is the main distinguishing feature of

our scheme, i.e. security against a malicious or curious Trusted Third Party.

Hence, our scheme provides a buyer with true anonymity.

9.7.2 Efficiency

The watermarking scheme presented here is more efficient than the other two schemes

in the following respects (see also Table 9.3):

• Firstly, there is no need for the buyer to interact with a TTP (CA) to obtain

171

9.8 Summary

a pseudonym every time the buyer wishes to buy content, unlike the two other

schemes. Once the buyer platform has obtained a DAA Certificate from the

DAA Issuer, it is able to generate an arbitrary number of verifiable pseudonyms

(AIKs) using the DAA Sign Protocol (as discussed in Chapter 4).

• Secondly, there is also no need for the content provider to interact with a TTP

(e.g. a Watermark Authority) to obtain an encrypted watermark, unlike the

Lei et al. scheme in which the Watermark Authority must always be online.

All the content provider needs is the public key of the DAA Issuer.

• Finally, during the content distribution phase, there are only two message

passes between the content buyer and the content provider, making it one of

the most communications efficient schemes available. This feature makes the

scheme well suited for deployment in mobile environments.

Table 9.3: Efficiency

Properties Lei et al. Zhang et al. Our Scheme
Online TTP Requirement for:
Watermark Generation Yes No No
Privacy Yes Yes No

Message Passes (between)
Buyer - Seller 3 2 2
Seller - TTP 2 2 0

9.8 Summary

In this chapter we have provided the motivation for a novel privacy preserving CDP

watermarking scheme. We identified the security threats that may arise during the

process of content purchase and distribution, and derived a corresponding set of

security requirements for such a setting. We then presented a privacy preserving

CDP watermarking scheme which makes use of trusted computing functionality. To

the best of our knowledge, this is the first trusted computing based CDP scheme.

Our subsequent security analysis has shown that this scheme is able to satisfy all the

identified security requirements, and a comparison with two other recently proposed

schemes also shows that the novel scheme has significant advantages. The attractive

172

9.8 Summary

security and efficiency features of our scheme also make it suitable for use in mobile

environments.

173

Chapter 10

Conclusions

Contents

10.1 Summary of Contributions 174

10.2 Directions for Future Work 177

This chapter concludes the thesis by summarising the issues examined and the results

achieved. We also provide suggestions for future work.

10.1 Summary of Contributions

We now summarise the contributions of this thesis. The main focus of the thesis is

on ways in which trusted computing can be used to enhance the security of a mobile

ubiquitous environment, in particular in securing service interactions.

In Chapter 3 we introduced the concepts of a mobile ubiquitous environment and

a ubiquitous service. We motivated the need for security in a mobile ubiquitous

environment, and also the need for secure service interactions. We then identified a

set of ubiquitous services security requirements. The concepts of trusted computing

and trusted platforms were introduced in Chapter 4, and its key functionalities were

described. We also discussed related research work in trusted computing. Building

on the assessment of the security issues that need to be addressed, we proposed

three novel protocols for securing mobile ubiquitous services. All three of these

protocols use trusted computing as the main building block. The main features of

these protocols, described in detail in Chapters 7, 8 and 9, are summarised below.

174

10.1 Summary of Contributions

In Chapter 7 we proposed Ninja, a privacy-preserving mutual authentication scheme

for securing a service discovery process. The scheme is designed to address the

security and privacy challenges arising in a mobile ubiquitous environment. Instead

of authenticating the user identity to a service provider, the user’s trustworthiness

is anonymously authenticated, thereby preserving the privacy of the service user.

A service discovery threat analysis was also provided and a corresponding set of

security requirements was identified. The Ninja scheme exploits trusted computing

functionality and achieves desirable security and privacy properties including: user

anonymity, service information confidentiality, unlinkability and rogue blacklisting.

The scheme is also communications-efficient, as only two message passes are required.

In Chapter 8 we proposed SDMF, a secure device management framework designed

to deliver ubiquitous services to end users, whilst also hiding security management

complexity from users. We conducted a service delivery threat analysis and iden-

tified a set of corresponding security requirements. Apart from providing secure

service interactions, the framework helps minimise the complexity of device security

management tasks for users. The framework also protects the interests of service

providers by preventing unauthorised credential sharing amongst user devices. A fur-

ther novel feature of the framework is that compromised devices are self-revoking,

hence removing the need for cumbersome revocation infrastructure. These security

objectives are achieved by assuming the presence of trusted computing functional-

ity in the Device Management Entity (part of the ubiquitous system architecture

in the context of which the novel schemes are presented), and using it in conjunc-

tion with certain other security mechanisms (e.g. the MANA protocol). Apart from

the one TPM command which uses asymmetric cryptography, the SDMF employs

less computationally intensive symmetric cryptographic algorithms to meet its secu-

rity objectives. This makes SDMF suitable for deployment in a mobile ubiquitous

environment where most of the devices are expected to be resource-constrained.

In Chapter 9 we proposed a privacy-preserving content distribution protection (CDP)

watermarking scheme. The scheme allows a buyer to anonymously purchase digital

content, whilst enabling the content provider to blacklist buyers that distribute con-

tent in an unauthorised manner. A CDP security threat and requirements analysis

was provided. Unlike existing CDP schemes, the novel scheme minimises the reliance

on a TTP for privacy protection, as a buyer can generate verifiable pseudonyms on

175

10.1 Summary of Contributions

its own. Another important feature of the scheme is that the content provider can

obtain assurance that a buyer-generated watermark is well-formed. The scheme also

provides the following security features: framing resistance, user anonymity, content

information confidentiality, unlinkability (even against a TTP), and transaction link-

ability. A comparison of the scheme with two other recently proposed schemes shows

that it is both more efficient (in terms of the number of message passes) and relies

less on TTPs to provide the necessary security properties.

Although the Mobile VCE architecture provides the context for much of the work

described in this thesis, the results are of much wider relevance. The security ar-

chitectures and protocols are intended to be applicable to any analogous mobile

ubiquitous system architecture.

Apart from the three novel protocols, we also analysed two trusted computing re-

lated research contributions, namely Rudolph’s observation of a privacy flaw in the

Direct Anonymous Attestation Protocol (DAA), and a secret distribution protocol

of Sevinç, Strasser and Basin. Chapter 5 considers the privacy flaw in the TCG

implementation of the Direct Anonymous Attestation (DAA) protocol, described

by Rudolph. This analysis showed that, in typical usage scenarios, the weakness

is not likely to lead to a feasible attack; specifically we argued that the attack is

only feasible if honest DAA signers and verifiers never check the behaviour of DAA

issuers. We also proposed possible ways of avoiding the attack. We pointed out that

it is not an attack on the DAA protocol itself, but rather a weakness introduced

in the particular use of DAA. Establishing the robustness of DAA is particularly

important to this thesis, because DAA is employed in two of the proposed protocols.

In Chapter 6 we analysed a protocol due to Sevinc, Strasser and Basin. The pro-

tocol uses trusted computing functionality to secure the distribution and storage of

secrets from a server to a client. We identified two inherent security weaknesses in

the protocol, namely the absence of server-to-client authentication and the unau-

thenticated encryption of secrets sent from the server to the client. We showed how,

as a result of these weaknesses, the TPM could be exploited as a signing oracle, un-

dermining the overall security of the scheme. We proposed possible ways of making

the protocol more secure.

176

10.2 Directions for Future Work

10.2 Directions for Future Work

The protocols described in this thesis would appear to be the first proposed appli-

cation of trusted computing to the secure delivery of ubiquitous services. However,

this thesis has by no means addressed all the security issues arising in this domain.

We now briefly review some examples of other possible security issues for ubiquitous

service delivery which might benefit from the use of trusted computing technology.

• Secure Service Selection/Recommendation. As briefly discussed in Sec-

tion 3.6, when more than one service provider is offering a service, a selection

or recommendation (e.g. reputation or ranking) mechanism could be employed

by a user to assist in the decision-making process. Whilst many reputation

schemes have been proposed, they are typically prone to manipulation by ma-

licious entities, e.g. competing service providers. Trusted computing could

potentially be applied in this context to provide a degree of trustworthiness

to reputation/ranking values. A user or selection agent would thereby gain

assurance that the reputation system is trustworthy.

• Secure Zero Configuration. Device or network settings (e.g. an IP address,

DNS settings) can be configured automatically on behalf of a user through a

process known as Zero Configuration [159]. One known problem with zero con-

figuration is that malicious devices can frequently change their IP addresses.

This makes it difficult to identify and track malicious devices. The process of

obtaining an IP address thus needs to be made secure, and trusted computing

could potentially be used to enforce stable identities [17].

• Anonymous Payment. A secure service discovery scheme is given in Chap-

ter 7. After a user has discovered a suitable service, it may be necessary to

arrange for payment to the service provider. The majority of payment schemes

require a user to reveal his/her identity to the service provider or to a third

party. It would be desirable to integrate an anonymous payment mechanism

into the Ninja service discovery process.

• Formal Analysis. A formal security analysis of the proposed schemes would

provide a useful validation of their security properties. Well-established ap-

177

10.2 Directions for Future Work

proaches include the complexity-theoretic approach, also known as provable se-

curity [63], and a variety of formal methods approaches, such as pi-calculus [4].

178

Bibliography

[1] 3rd Generation Partnership Project, Technical Specication Group Services and

System Aspects, 3G Security, Valbonne, France. 3GPP TS 33.102 V7.1.0 —

Security Architecture (Release 7), December 2006.

[2] 3rd Generation Partnership Project, Technical Specification Group Services

and System Aspects, 3G Security, Valbonne, France. 3GPP TS 35.202 V7.0.0

— Specfication of the 3GPP Confidentiality and Integrity Algorithms, Docu-

ment 2: KASUMI Specification (Release 7), June 2007.

[3] M. Abadi and C. Fournet. Private authentication. Theoretical Computer

Science, 322(3):427–476, 2004.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the

spi calculus. In Proceedings of the 4th ACM Conference on Computer and

Communications Security (CCS ’97), Zurich, Switzerland, April 1–4, 1997,

pages 36–47, New York, NY, USA, 1997. ACM Press.

[5] I. Abbadi. Authorised domain management using location based services. In

Proceedings of the 4th International Conference on Mobile Technology, Ap-

plications & Systems (Mobility’07), Singapore, September 10–12, 2007, pages

288–295. ACM Press, 2007.

[6] I. Abbadi. Digital rights management using a master control device. In

I. Cervesato, editor, 12th Annual Asian Computing Science Conference Focus-

ing on Computer and Network Security (ASIAN’07), Doha, Qatar, December

9–11, 2007. Proceedings, volume 4846 of Lecture Notes in Computer Science,

pages 126–141. Springer-Verlag, Berlin, 2007.

179

BIBLIOGRAPHY

[7] I. Abbadi and C. J. Mitchell. Digital rights management using a mobile phone.

In Proceedings of the Ninth International Conference on Electronic Commerce

(ICEC 2007), Minneapolis, MN, USA, August 19–22, 2007, pages 185–194.

ACM Press, 2007.

[8] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and De-

ployment Considerations. Addison Wesley, second edition, 2002.

[9] A. Alsaid and C. J. Mitchell. Preventing phishing attacks using trusted com-

puting technology. In Proceedings of the Sixth International Network Confer-

ence (INC 2006), Plymouth, UK, July 11–14, 2006, pages 221–228, 2006.

[10] R. C. Atkinson, J. Irvine, J. Dunlop, and S. Vadagama. The personal dis-

tributed environment. IEEE Wireless Communications, 14(2):62–69, April

2007.

[11] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted

Computing Platforms: TCPA Technology in Context. Prentice Hall PTR,

Upper Saddle River, New Jersey, 2003.

[12] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talking to strangers:

Authentication in ad hoc wireless networks. In Proceedings of Network and

Distributed Systems Security Symposium 2002 (NDSS’02), San Diego, Cali-

fornia, Feburary 6–8, 2002. The Internet Society, Reston, Virgina, 2002.

[13] S. Balfe and E. Gallery. Mobile agents and the deus ex machina. In Proceedings

of the 21st International Conference on Advanced Information Networking and

Applications (AINA 2007): 2007 IEEE Symposium on Ubisafe Computing

(UBISAFE 2007), Niagara Falls, Canada, May 21-23, 2007, volume 2, pages

486–492. IEEE Computer Society, 2007.

[14] S. Balfe, E. Gallery, C. J. Mitchell, and K. G. Paterson. Crimeware and trusted

computing. In M. Jakobsson and Z. Ramzan, editors, Crimeware: Understand-

ing New Attacks and Defenses, chapter 15, pages 457–472. Addison-Wesley,

2008.

[15] S. Balfe, E. Gallery, K. G. Paterson, and C. J. Mitchell. Challenges for trusted

computing. Technical Report RHUL-MA-2008-14, Department of Mathemat-

ics, Royal Holloway, University of London, Feburary 2008.

180

BIBLIOGRAPHY

[16] S. Balfe, A. D. Lakhani, and K. G. Paterson. Securing peer-to-peer networks

using trusted computing. In C. J. Mitchell, editor, Trusted Computing, chap-

ter 10, pages 271–298. IEE Press, London, 2005.

[17] S. Balfe, A. D. Lakhani, and K. G. Paterson. Trusted computing: Providing

security for peer-to-peer networks. In Proceedings of the Fifth International

Conference on Peer-to-Peer Computing (P2P’05), Konstanz, Germany, Au-

gust 31–September 2, 2005, pages 117–124. IEEE Computer Society, Aug-Sep

2005.

[18] S. Balfe and A. Mohammed. Final fantasy: Securing on-line gaming with

trusted computing. In B. Xiao, L. T. Yang, J. Ma, C. Muller-Schloer, and

Y. Hua, editors, 4th International Conference on Autonomic and Trusted Com-

puting (ATC 2007), Hong Kong, China, July 11–13, 2007. Proceedings, volume

4610 of Lecture Notes in Computer Science, pages 123–134. Springer-Verlag,

Berlin, 2007.

[19] S. Balfe and K. G. Paterson. Augmenting internet-based card not present

transactions with trusted computing. Technical Report RHUL-MA-2006-9v2,

Department of Mathematics, Royal Holloway, University of London, 2006.

[20] S. Balfe and K. G. Paterson. e-EMV: Emulating EMV for internet payments

using trusted computing technology. Technical Report RHUL-MA-2006-10 v2,

Department of Mathematics, Royal Holloway, University of London, 2006.

[21] F. Bao and R. H. Deng. Privacy protection for transactions of digital goods.

In S. Qing, T. Okamoto, and J. Zhou, editors, Third International Conference

on Information and Communications Security (ICICS2001), Xian, China,

November 13–16, 2001. Proceedings, volume 2229 of Lecture Notes in Com-

puter Science, pages 202–213. Springer-Verlag, Berlin, 2001.

[22] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In R. Ruep-

pel, editor, Advances in Cryptology — EUROCRYPT 94, 13th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Perugia, Italy, May 9–12, 1994. Proceedings, volume 950 of Lecture

Notes in Computer Science, pages 92–111. Springer-Verlag, Berlin, 1994.

[23] J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University,

Department of Computer Science, New Haven, Conn, USA, 1988.

181

BIBLIOGRAPHY

[24] B. Berendt, O. Günther, and S. Spiekermann. Privacy in e-commerce: Stated

preferences vs. actual behavior. Communications of the ACM, 48(4):101–106,

2005.

[25] M. Bond. Attacks on cryptoprocessor transaction sets. In C. K. Koç, D. Nac-

cache, and C. Paar, editors, Third International Workshop on Cryptographic

Hardware and Embedded Systems (CHES 2001), Paris, France, May 14–16,

2001. Proceedings, volume 2162 of Lecture Notes in Computer Science, pages

220–234. Springer-Verlag, Berlin, 2001.

[26] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establish-

ment. Springer-Verlag, 2003.

[27] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In

Proceedings of the 11th ACM Conference on Computer and Communications

Security, Washington DC, USA, October 25–29, 2004, pages 132–145. ACM

Press, 2004.

[28] E. Brickell, L. Chen, and J. Li. A new direct anonymous attestation scheme

from bilinear maps. In P. Lipp, A. R. Sadeghi, and K. M. Koch, editors,

Trust 2008, Villach, Austria, March 11–12, 2008. Proceedings, volume 4968

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008.

[29] E. Brickell, L. Chen, and J. Li. Simplified security notions of direct anonymous

attestation and a concrete scheme from pairings. Cryptology ePrint Archive,

Report 2008/104, International Association for Cryptologic Research, 2008.

http://eprint.iacr.org/2008/104.pdf.

[30] E. Brickell and J. Li. Enhanced privacy ID: A direct anonymous attestation

scheme with enhanced revocation capabilities. In Proceedings of the 2007 ACM

Workshop on Privacy in Electronic Society (WPES ’07), Alexandria, Virginia,

USA, October 29, 2007, pages 21–30. ACM Press, 2007.

[31] J. Camenisch. Efficient anonymous fingerprinting with group signatures. In

T. Okamoto, editor, Advances in Cryptology — ASIACRYPT 2000, 6th In-

ternational Conference on the Theory and Application of Cryptology and In-

formation Security, Kyoto, Japan, December 3–7, 2000, Proceedings, volume

1976 of Lecture Notes in Computer Science, pages 415–428. Springer-Verlag,

2000.

182

BIBLIOGRAPHY

[32] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.

In S. Cimato, C. Galdi, and G. Persiano, editors, Third Conference on Security

in Communication Networks (SCN 2002), Amalfi, Italy, September 12–13,

2002. Proceedings, volume 2576 of Lecture Notes in Computer Science, pages

268–289. Springer-Verlag, Berlin, 2003.

[33] R. Campbell, J. Al-Muhtadi, P. Naldurg, and G. S. Mickunas. Towards secu-

rity and privacy for pervasive computing. In M. Okada, B. Pierce, A. Scedrov,

H. Tokuda, and A. Yonezawa, editors, International Symposium on Software

Security (ISSS 2002), Tokyo, Japan, November 8–10, 2002. Proceedings, vol-

ume 2609 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,

Berlin, 2002.

[34] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service

discovery in pervasive computing environments. IEEE Transactions on Mobile

Computing, 5(2):97–112, 2006.

[35] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. V. Doorn. A

Practical Guide to Trusted Computing. IBM Press, Pearson plc, Upper Saddle

River, NJ, USA, 2008.

[36] H. Chen, J. Chen, W. Mao, and F. Yan. Daonity — Grid security from two

levels of virtualization. Information Security Technical Report, 12(3):123–138,

2007.

[37] L. Chen, S. Pearson, and A. Vamvakas. On enhancing biometric authentica-

tion with data protection. In R. J. Howlett and L. C. Jain, editors, Fourth

International Conference on Knowledge-Based Intelligent Information Engi-

neering Systems & Allied Technologies (KES 2000), Brighton, UK, August

30–September 1, 2000, Proceedings, volume 1 of 2, pages 249–252. IEEE, 2000.

[38] J.-G. Choi, K. Sakurai, and J.-H. Park. Does it need trusted third party?

Design of buyer-seller watermarking protocolwithout trusted third party. In

J. Zhou, M. Yung, and Y. Han, editors, First International Conference on

Applied Cryptography and Network Security (ACNS 2003), Kunming, China,

October 16–19, 2003. Proceedings, volume 2846 of Lecture Notes in Computer

Science, pages 265–279. Springer-Verlag, Berlin, 2003.

183

BIBLIOGRAPHY

[39] P. D. Chowdhury, B. Christianson, and J. Malcolm. Anonymous authenti-

cation. In B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe, editors,

The 12th International Security Protocols Workshop, Cambridge, UK, April

26–28, 2004. Proceedings, volume 3957 of Lecture Notes in Computer Science,

pages 299–305. Springer-Verlag, Berlin, 2006.

[40] A. Cooper and A. Martin. Towards a secure, tamper-proof grid platform. In

Proceedings of the 6th IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2006), Singapore, May 16–19, 2006, pages 373–380.

IEEE Computer Society Press, 2006.

[41] I. J. Cox, J. Killian, T. Leighton, and T. Shamoon. Secure spread spec-

trum watermarking for multimedia. IEEE Transactions on Image Processing,

6(12):1673–1687, 1997.

[42] S. Crane. Privacy preserving trust agents. Technical Report HPL-2004-197,

Hewlett-Packard Laboratories, Bristol, UK, November 2004.

[43] S. Creese, M. Goldsmith, B. Roscoe, and I. Zakiuddin. Authentication for

pervasive computing. In D. Hutter, G. Muller, W. Stephan, and M. Ullmann,

editors, First International Conference on Security in Pervasive Computing,

Boppard, Germany, March 12–14, 2003. Proceedings, volume 2802, pages 116–

129. Springer-Verlag, Berlin, 2004.

[44] J. Daemen and V. Rijmen. The Design of Rijndael: AES — The Advanced

Encryption Standard. Springer-Verlag, Berlin, 2002.

[45] A. W. Dent and C. J. Mitchell. User’s Guide to Cryptography and Standards.

Artech House, 2004.

[46] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp. A prac-

tical approach for establishing trust relationships between remote platforms

using trusted computing. In G. Barthe and C. Fournet, editors, Trustwor-

thy Global Computing (TGC 2007), Sophia-Antipolis, France, November 5–6,

2007. Proceedings, volume 4912 of Lecture Notes in Computer Science, pages

156–168, 2007.

[47] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans-

actions on Information Theory, 22(6):644–654, 1976.

184

BIBLIOGRAPHY

[48] J. R. Douceur. The sybil attack. In P. Druschel, F. Kaashoek, and A. Row-

stron, editors, The 1st International Workshop on Peer-to-Peer Systems

(IPTPS 2002), Cambridge, MA, USA, March 7–8, 2002. Proceedings, volume

2429 of Lecture Notes in Computer Science, pages 251–260. Springer-Verlag,

Berlin, 2002.

[49] T. El Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. In G. R. Blakley and D. Chaum, editors, Advances in

Cryptology — CRYPTO’84, The 4th Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 19–22, 1984, Proceedings,

volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer,

New York, USA, 1985.

[50] C. Fontaine and F. Galand. A survey of homomorphic encryption for nonspe-

cialists. EURASIP Journal on Information Security, 2007:1–10, 2007.

[51] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink. Supporting

service discovery, querying and interaction in ubiquitous computing environ-

ments. Wireless Networks, 10(6):631–641, 2004.

[52] S. Gajek, A.-R. Sadeghi, C. Stüble, and M. Winandy. Compartmented se-

curity for browsers - or how to thwart a phisher with trusted computing. In

Proceedings of the Second International Conference on Availability, Reliabil-

ity and Security (ARES 2007), Vienna, Austria, April 10–13, 2007, pages

120–127, 2007.

[53] A. S. Gajparia and C. J. Mitchell. Enhancing user privacy using trusted

computing. In C. J. Mitchell, editor, Trusted Computing, chapter 8, pages

239–250. IEE Press, London, 2005.

[54] E. Gallery. Authorisation Issues for Mobile Code in Mobile Systems. PhD

thesis, RHUL-MA-2007-3, Department of Mathematics, Royal Holloway, Uni-

versity of London, 2007.

[55] E. M. Gallery and C. J. Mitchell. Trusted computing: Security and applica-

tions. Cryptologia, 2009. to appear.

[56] E. M. Gallery and A. Tomlinson. Secure delivery of conditional access ap-

plications to mobile receivers. In C. J. Mitchell, editor, Trusted Computing,

chapter 7, pages 195–237. IEE Press, London, 2005.

185

BIBLIOGRAPHY

[57] S. L. Garfinkel, A. Juels, and R. Pappu. RFID privacy: An overview of

problems and proposed solutions. IEEE Security and Privacy, 3(3):34–43,

2005.

[58] H. Ge and S. R. Tate. A direct anonymous attestation scheme for embedded

devices. In T. Okamoto and X. Wang, editors, 10th International Conference

on Practice and Theory in Public-Key Cryptography (PKC 2007), Beijing,

China, April 16–20, 2007. Proceedings, volume 4450 of Lecture Notes in Com-

puter Science, pages 16–30. Springer Verlag, Berlin, 2007.

[59] C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual authentication for

wireless devices. Cryptobytes, 7(1):29–37, 2004.

[60] B.-M. Goi, R. C.-W. Phan, Y. Yang, F. Bao, R. H. Deng, and M. U. Siddiqi.

Cryptanalysis of two anonymous buyer-seller watermarking protocols and an

improvement for true anonymity. In M. Jakobsson, M. Yung, and J. Zhou,

editors, Second International Conference on Applied Cryptography and Net-

work Security (ACNS 2004), Yellow Mountain, China, June 8–11, 2004, Pro-

ceedings, volume 3089 of Lecture Notes in Computer Science, pages 369–382.

Springer-Verlag, Berlin, 2004.

[61] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of

the ACM, 38(3):690–728, 1991.

[62] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270–299, 1984.

[63] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28:279–299, 1984.

[64] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[65] D. Gollmann. What do we mean by entity authentication? In Proceedings

of the IEEE Symposium on Security and Privacy, Oakland, California, May

6–8, 1996, pages 46–54. IEEE Computer Society, 1996.

[66] D. Grawrock. The Intel Safer Computing Initiative: Building Blocks for

Trusted Computing. Intel Press, 2006.

186

BIBLIOGRAPHY

[67] U. Grossmann, E. Berkhan, L. C. Jatoba, J. Ottenbacher, W. Stork, and

K. D. Mueller-Glaser. Security for mobile low power nodes in a personal area

network by means of trusted platform modules. In F. Stajano, C. Meadows,

S. Capkun, and T. Moore, editors, 4th European Workshop on Security and

Privacy in Ad-hoc and Sensor Networks (ESAS 2007), Cambridge, UK, July

2–3, 2007. Proceedings, volume 4572 of Lecture Notes in Computer Science,

pages 172–186. Springer-Verlag, Berlin, 2007.

[68] E. Guttman. Service Location Protocol: Automatic discovery of IP network

services. IEEE Internet Computing, 4(3):71–80, 1999.

[69] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,

Version 2. Request for Comments 2608, The Internet Engineering Task Force

(IETF), June 1999.

[70] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation — A

virtual machine directed approach to Trusted Computing. In Proceedings of

the 3rd USENIX Virtual Machine Research & Technology Symposium (VM

’04), San Jose, CA, USA, May 6–7, 2004, pages 29–41. USENIX, May 2004.

[71] International Organization for Standardization, Geneva, Switzerland. ISO

7498–2, Information processing systems — Open systems Interconnection —

Basic reference model —Part 2: Security Architecture, 1989.

[72] International Organization for Standardization, Geneva, Switzerland.

ISO/IEC 9797–1, Information technology — Security techniques — Message

Authentication Codes (MACs) — Part 1: Mechanisms using block cipher,

1999.

[73] International Organization for Standardization, Geneva, Switzerland.

ISO/IEC 9797–2, Information technology — Security techniques — Message

Authentication Codes (MACs) — Part 2: Mechanisms using a dedicated hash-

function, 2002.

[74] International Organization for Standardization, Geneva, Switzerland.

ISO/IEC 10118–3, Information technology — Security techniques — Hash

functions — Part 3: Dedicated hash functions, 2004.

187

BIBLIOGRAPHY

[75] International Organization for Standardization, Geneva, Switzerland.

ISO/IEC 9798–6, Information technology — Security techniques — Entity

authentication — Part 6: Mechanisms using manual data transfer, 2005.

[76] International Organization for Standardization, Geneva, Switzerland.

ISO/IEC 18033–2, Information technology — Security techniques — Encryp-

tion algorithms — Part 2: Asymmetric ciphers, 2006.

[77] International Telecommunications Union (ITU-T). Recommendation X.509

Information technology — Open Systems Interconnection — The Directory:

Public-key and attribute certificate frameworks, November 2008.

[78] M. Jarrett and P. Ward. Trusted computing for protecting ad hoc routing. In

Proceedings of the 4th Annual Communication Networks and Services Research

Conference (CNSR 2006), Moncton, New Brunswick, Canada, May 24–25,

2006, pages 61–68. IEEE Computer Society, 2006.

[79] H. S. Ju, H. J. Kim, D. H. Lee, and J. I. Lim. An anonymous buyer-seller

watermarking protocol with anonymity control. In P. J. Lee and C. H. Lim,

editors, 5th International Conference on Information Security and Cryptology

(ICISC 2002), Seoul, Korea, November 28–29, 2002. Proceedings, volume 2587

of Lecture Notes in Computer Science, pages 421–432. Springer-Verlag, Berlin,

2002.

[80] M. Kinateder and S. Pearson. A privacy-enhanced peer-to-peer reputation

system. In K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, editors, 4th Inter-

national Conference on Electronic Commerce and Web Technologies (EC-Web

2003), Prague, Czech Republic, September 2–5, 2003. Proceedings, volume

2738 of Lecture Notes in Computer Science, pages 206–215. Springer-Verlag,

Berlin, 2003.

[81] T. Kindberg and K. Zhang. Secure spontaneous device association. In A. Dey,

A. Schmidt, and J. F. McCarthy, editors, 5th International Conference on

Ubiquitous Computing (Ubicomp’03), Seattle, Washington, USA, October 12–

15, 2003. Proceedings, volume 2864 of Lecture Notes in Computer Science,

pages 124–131. Springer-Verlag, Berlin, 2003.

[82] C. Krauß, F. Stumpf, and C. Eckert. Detecting node compromise in hybrid

wireless sensor networks using attestation techniques. In F. Stajano, C. Mead-

188

BIBLIOGRAPHY

ows, S. Capkun, and T. Moore, editors, 4th European Workshop on Security

and Privacy in Ad-hoc and Sensor Networks (ESAS 2007), Cambridge, UK,

July 2–3, 2007. Proceedings, volume 4572 of Lecture Notes in Computer Sci-

ence, pages 203–217. Springer-Verlag, Berlin, 2007.

[83] S. Laur and K. Nyberg. Efficient mutual data authentication using manually

authenticated strings. In D. Pointcheval, Y. Mu, and K. Chen, editors, 5th

International Conference on Cryptology and Network Security (CANS 2006),

Suzhou, China, December, 8–10, 2006. Proceedings, volume 4301 of Lecture

Notes in Computer Science, pages 90–107. Springer-Verlag, Berlin, 2006.

[84] G. Lawton. Is it finally time to worry about mobile malware. IEEE Computer,

41(5):12–14, 2008.

[85] C.-L. Lei, P.-L. Yu, P.-L. Tsai, and M.-H. Chan. An efficient and anonymous

buyer-seller watermarking protocol. IEEE Transactions on Image Processing,

13(12):1618–1626, 2004.

[86] S. Li, S. Balfe, J. Zhou, and K. Chen. Enforcing trust in pervasive computing

with trusted computing technology. In J. Lopez, editor, First International

Workshop on Critical Information Infrastructure Security (CRITIS 2006),

Samos, Greece, August 31–September 1, 2006. Proceedings, volume 4347 of

Lecture Notes in Computer Science, pages 195–209. Springer-Verlag, Berlin,

2006.

[87] S. Li, S. Balfe, J. Zhou, and K. Chen. Enforcing trust in pervasive computing.

International Journal of System of Systems Engineering, 1(1-2):96–110, 2008.

[88] H. Löhr, H. V. Ramasamy, A.-R. Sadeghi, S. Schulz, M. Schunter, and

C. Stüble. Enhancing grid security using trusted virtualization. In B. Xiao,

L. T. Yang, J. Ma, C. Muller-Schloer, and Y. Hua, editors, 4th International

Conference on Autonomic and Trusted Computing (ATC 2007), Hong Kong,

China, July 11–13, 2007. Proceedings, volume 4610 of Lecture Notes in Com-

puter Science, pages 372–384. Springer-Verlag, Berlin, 2007.

[89] B. M. Macq and J. J. Quisquater. Cryptology for digital TV broadcasting.

Proceedings of the IEEE, 83(6):944–957, 1995.

[90] W. Mao, F. Yan, and C. Chen. Daonity — Grid security with behaviour con-

formity from trusted computing. In Proceedings of the First ACM Workshop

189

BIBLIOGRAPHY

on Scalable Trusted Computing (STC’06), Fairfax, Virginia, US, November 3,

2006, pages 43–46. ACM Press, 2006.

[91] A. Martin and P.-W. Yau. Grid security: Next steps. Information Security

Technical Report, 12(3):113–122, 2007.

[92] K. Matsui and K. Tanaka. Video-steganography: How to secretly embed a

signature in a picture. IMA Intellectual Property Project Proceedings, 1(1):187–

205, 1994.

[93] R. Mayrhofer and H. Gellersen. Shake well before use: Authentication based on

accelerometer data. In A. LaMarca, M. Langheinrich, and K. N. Truong, edi-

tors, 5th International Conference on Pervasive Computing (Pervasive 2007),

Toronto, Ontario, Canada, May 13–16, 2007. Proceedings, volume 4480 of

Lecture Notes in Computer Science, pages 144–161. Springer-Verlag, Berlin,

2007.

[94] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera

phones for human-verifiable authentication. In Proceedings of the 2005 IEEE

Symposium of Security and Privacy (SP’05), Oakland, California, USA, May

8–11, 2005, pages 110–124. IEEE Computer Society, 2005.

[95] J. M. McCune, A. Perrig, A. Seshadri, and L. van Doorn. Turtles all the way

down: Research challenges in user-based attestation. In Proceedings of the

2nd USENIX Workshop on Hot Topics in Security (HotSec ’07), Boston, MA,

USA, August 7, 2007, 2007.

[96] D. H. McKnight and N. L. Chervany. The meanings of trust.

Technical report, University of Minnesota, Minneaplois, MN, 1996.

http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf.

[97] N. Memon and P. W. Wong. Protecting digital media content. Communica-

tions of the ACM, 4(7):11–24, 1998.

[98] N. Memon and P. W. Wong. A buyer-seller watermarking protocol. IEEE

Transactions on Image Processing, 10(4):643–649, 2001.

[99] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, Boca Raton, FL, USA, 1997.

[100] C. J. Mitchell, editor. Trusted Computing. IEE Press, London, 2005.

190

BIBLIOGRAPHY

[101] W. Mohr. The wireless world research forum — WWRF. Computer Commu-

nications, 26(1):2–10, Jan 2003.

[102] D. Molnar, A. Soppera, and D. Wagner. Privacy for RFID through trusted

computing. In Proceedings of the 2005 ACM Workshop on Privacy in the

Electronic Society (WPES ’05), Alexandria, VA, USA, November 7, 2005,

pages 31–34. ACM Press, 2005.

[103] G. E. Moore. Cramming more components onto integrated circuits. Electronics

Magazine, 38(8):114–117, 1965.

[104] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet

public key infrastructure online certificate status protocol (OCSP). Request

for Comments 2560, Internet Engineering Task Force (IETF), June 1999.

[105] National Institute of Standards and Technology (NIST). Federal Information

Processing Standards: Data Encryption Standard (DES). FIPS Publication

46-3, National Institute of Standards and Technology, U.S. Department of

Commerce, Gaithersburg, MD, USA, October 1999.

[106] National Institute of Standards and Technology (NIST). Federal Information

Processing Standards: Advance Encryption Standard (AES). FIPS Publica-

tion 197, National Institute of Standards and Technology, U.S. Department of

Commerce, Gaithersburg, MD, USA, November 2001.

[107] National Institute of Standards and Technology (NIST). Federal Information

Processing Standards: Secure Hash Standard. FIPS Publication 180-2, Na-

tional Institute of Standards and Technology, U.S. Department of Commerce,

Gaithersburg, MD, USA, 2002.

[108] M. Nidd. Service discovery in DEAPspace. IEEE Personal Communications,

8(4):39–45, 2001.

[109] N. Niebert, A. Schieder, H. Abramowicz, G. Malmgren, J. S. C. Prehofer, and

H. Karl. Ambient networks: An architecture for communication beyond 3G.

IEEE Wireless Communications, 11(2):14–22, April 2004.

[110] I. G. Niemegeers and S. M. H. de Groot. Research issues in ad-hoc distributed

personal networking. Wireless Personal Communications, 26(2–3):149–167,

2003.

191

BIBLIOGRAPHY

[111] P. Paillier. Public-key cryptosystems based on composite degree residuos-

ity classes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT

1999, 18th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Prague, Czech Republic, May 2–6, 1999. Pro-

ceedings, volume 1592 of Lecture Notes in Computer Science, pages 223–238.

Springer-Verlag, Berlin, 1999.

[112] A. Pashalidis and C. J. Mitchell. Single Sign-On using TCG-conformant plat-

forms. In C. J. Mitchell, editor, Trusted Computing, chapter 6, pages 175–193.

IEE Press, London, 2005.

[113] S. Pearson. Trusted agents that enhance user privacy by self-profiling. Tech-

nical Report HPL-2002-196, Hewlett-Packard Laboratories, Bristol, UK, July

2002.

[114] S. Pearson. How trusted computers can enhance for privacy preserving mobile

applications. In Proceedings of the 2005 International Conference on a World

of Wireless, Mobile and Multimedia Networks (WOWMOM 2005): First In-

ternational IEEE WoWMoM Workshop on Trust, Security and Privacy for

Ubiquitous Computing, Taormina, Italy, June 13–16, 2005, pages 609–613.

IEEE Computer Society, 2005.

[115] M. Peinado, P. England, and Y. Chen. An overview of NGSCB. In C. J.

Mitchell, editor, Trusted Computing, chapter 4, pages 115–141. IEE Press,

London, 2005.

[116] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector

(AODV) routing. Request for Comments 3561, Internet Engineering Task

Force (IETF), July 2003.

[117] A. Pfitzmann and M. Hansen. Anonymity, unlinkability, unobservabil-

ity, pseudonymity, and identity management: A consolidated proposal

for terminology. Version v0.31, Privacy and Data Security, Faculty of

Computer Science, Institute of Systems Architecture, Technische Univer-

sität Dresden, Germany, Feburary 2008. Available at: http://dud.inf.tu-

dresden.de/Anon Terminology.shtml.

[118] B. Pfitzmann and M. Schunter. Asymmetric fingerprinting. In U. M. Maurer,

editor, Advances in Cryptology — EUROCRYPT 1996, 15th Annual Inter-

192

BIBLIOGRAPHY

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Zaragoza, Spain, May 12–16, 1996. Proceedings, volume 1070 of Lec-

ture Notes in Computer Science, pages 84–95. Springer-Verlag, Berlin, 1996.

[119] B. Pfitzmann and M. Waidner. Anonymous fingerprinting. In W. Fumy,

editor, Advances in Cryptology — EUROCRYPT 1997, 16th Annual Inter-

national Conference on the Theory and Applications of Cryptographic Tech-

niques, Konstanz, Germany, May 11–15, 1997. Proceedings, volume 1233 of

Lecture Notes in Computer Science, pages 88–102. Springer-Verlag, Berlin,

1997.

[120] F. Piper and S. Murphy. Cryptography: A Very Short Introduction. Oxford

University Press, 2002.

[121] Platform for Privacy Preferences (P3P) Working Group. Platform for Privacy

Preferences (P3P) Specifications. Version 1.1, World Wide Web Consortium

(W3C), MIT, Cambridge, MA, USA, ERCIM, Sophia-Antipolis, France, Keio,

Kanagawa, Japan, November 13 2006. http://www.w3.org/TR/P3P11.

[122] B. Preneel, A. Bosselaers, and H. Dobbertin. The cryptographic hash function

RIPEMD-160. Cryptobytes, 3(2):9–14, 1997.

[123] A. Pridgen and C. Julien. A secure modular mobile agent system. In Pro-

ceedings of the 2006 International Workshop on Software Engineering for

Large-Scale Multi-Agent Systems (SELMAS ’06), Shanghai, China, May 22–

23, 2006, pages 67–74. ACM Press, New York, NY, USA, 2006.

[124] G. J. Proudler. Concepts of trusted computing. In C. J. Mitchell, editor,

Trusted Computing, chapter 2, pages 11–27. IEE Press, London, 2005.

[125] L. Qiao and K. Nahrstedt. Watermarking schemes and protocols for protecting

rightful ownership and customer’s rights. Journal of Visual Communication

and Image Representation, 9(3):194–210, 1998.

[126] K. Ren, W. Luo, K. Kim, and R. Deng. A novel privacy preserving authenti-

cation and access control scheme for pervasive computing environments. IEEE

Transactions on Vehicular Technology, 55(4):1373–1384, 2006.

193

BIBLIOGRAPHY

[127] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978.

[128] R. L. Rivest. The md5 message digest algorithm. Request for Comments 1321,

Internet Engineering Task Force (IETF), April 1992.

[129] R. L. Rivest. The RC4 encryption algorithm. Technical report, RSA Data

Security Inc, Redwood City, CA, USA, 1992.

[130] J. Rosenburg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session initiation protocol.

RFC 3261, Internet Engineering Task Force, Jun 2002.

[131] RSA Laboratories. PKCS #1: RSA Cryptography Standard. Version 2.1,

RSA Security, Bedford, MA, USA, 2002.

[132] C. Rudolph. Covert identity information in direct anonymous attestation

(DAA). In H. Venter, M. Eloff, L. Labuschagne, J. Eloff, and R. von

Solms, editors, 22nd IFIP TC-11 International Information Security Con-

ference (SEC2007) on “New Approaches for Security, Privacy and Trust in

Complex Environments”, Sandton, South Africa, May 14–16, 2007. Proceed-

ings, volume 232 of IFIP International Federation for Information Processing,

pages 443–448. Springer, Boston, 2007.

[133] A.-R. Sadeghi and C. Stüble. Property-based attestation for computing plat-

forms: Caring about properties, not mechanisms. In Proceedings of the 2004

Workshop on New Security Paradigms (NSPW ’04), Nova Scotia, Canada,

September 20–23, 2004, pages 67–77. ACM Press, 2004.

[134] Salutation Consortium. Salutation Architecture Specification, June 1999.

http://www.salutation.org/.

[135] R. Sandhu and X. Zhang. Peer-to-peer access control architecture using trusted

computing technology. In Proceedings of the Tenth ACM Symposium on Access

Control Models and Technologies (SACMAT ’05), Stockholm, Sweden, June

01–03, 2005, pages 147–158. ACM Press, New York, NY, USA, 2005.

[136] R. R. Schell and M. F. Thompson. Platform security: What is lacking? In-

formation Security Technical Report, 5(1):26–41, 2000.

194

BIBLIOGRAPHY

[137] S. Schwiderski-Grosche, A. Tomlinson, and D. B. Pearce. Towards the secure

initialisation of a personal distributed environment. Technical Report RHUL–

MA–2005–9, Mathematics Department, Royal Holloway, University of London,

July 2005.

[138] P. E. Sevinç, M. Strasser, and D. A. Basin. Securing the distribution and stor-

age of secrets with trusted platform modules. In D. Sauveron, K. Markanton-

akis, A. Bilas, and J.-J. Quisquater, editors, First International Workshop in

Information Security Theory and Practices: Smart Cards, Mobile and Ubiqui-

tous Computing Systems (WISTP 2007), Heraklion, Crete, Greece, May 9–11,

2007. Proceedings, volume 4462 of Lecture Notes in Computer Science, pages

53–66. Springer-Verlag, Berlin, 2007.

[139] E. Shi, A. Perrig, and L. V. Doorn. BIND: A fine-grained attestation service

for secure distributed systems. In Proceedings of the 2005 IEEE Symposium

on Security and Privacy, Oakland, CA, USA, May 8–11, 2005, pages 154–168.

IEEE Press, 2005.

[140] B. Smyth, M. Ryan, and L. Chen. Direct anonymous attestation (DAA):

Ensuring privacy with corrupt administrators. In F. Stajano, C. Meadows,

S. Capkun, and T. Moore, editors, 4th European Workshop on Security and

Privacy in Ad hoc and Sensor Networks (ESAS 2007) Cambridge, UK, July

2–3, 2007. Proceedings, volume 4572 of Lecture Notes in Computer Science,

pages 218–231. Springer-Verlag, Berlin, 2007.

[141] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-enabled device as-

sociation. In Proceedings of UbiComp 2007 Workshops: First International

Workshop on Security for Spontaneous Interaction (IWSSI 2007), Innsbruck,

Austria, September 16, 2007, pages 443–449, 2007.

[142] W. Stallings. Network Security Essentials: Applications and Standards. Pear-

son Prentice Hall, Upper Saddle River, New Jersey, USA, third edition, 2007.

[143] F. Stumpf, C. Eckert, and S. Balfe. Towards secure e-commerce based on

virtualization and attestation techniques. In Proceedings of the The Third In-

ternational Conference on Availability, Reliability and Security (ARES 2008),

Barcelona, Spain, March 4–7, 2008, pages 376–382. IEEE Computer Society,

2008.

195

BIBLIOGRAPHY

[144] Sun Microsystems. Jini Architecture Specification. Version

1.2, Sun Microsystems, Palo Alto, CA, USA, December 2001.

http://www.sun.com/software/jini/specs/.

[145] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, Redmond,

Washington, 2004.

[146] Symantec Enterprise Security. Symantec Global Internet Security Threat Re-

port: Trends for July–December 07. Volume XIII, Symantec Corporation,

Cupertino, CA, USA, April 2008.

[147] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication. In

P. J. Lee, editor, Advances in Cryptology — ASIACRYPT 2004, 10th Interna-

tional Conference on the Theory and Application of Cryptology and Informa-

tion Security, Jeju Island, Korea, December 5–9, 2004. Proceedings, volume

3329 of Lecture Notes in Computer Science, pages 308–322. Springer-Verlag,

Berlin, 2004.

[148] M. S. Thompson and S. F. Midkiff. Service description for pervasive ser-

vice discovery. In Proceedings of the 25th IEEE International Conference on

Distributed Computing Systems Workshops: First International Workshop on

Services and Infrastructure for the Ubiquitous and Mobile Internet (SIUMI)

(ICDCSW’05), Columbus, Ohio, USA, June 6–10, 2005, pages 273–279. IEEE

Computer Society, 2005.

[149] P. Tomsich and S. Katzenbeisser. Towards a robust and de-centralized dig-

ital watermarking infrastructure for the protection of intellectual property.

In K. Bauknecht, S. K. Madria, and G. Pernul, editors, First International

Conference on Electronic Commerce and Web Technologies (EC-Web 2000),

London, UK, September 4–6, 2000. Proceedings, volume 1875 of Lecture Notes

in Computer Science, pages 38–47. Springer-Verlag, Berlin, 2000.

[150] Trusted Computing Group (TCG). TPM v1.2 Specification Changes. A sum-

mary of changes, Trusted Computing Group, Portland, Oregon, USA, October

2003.

[151] Trusted Computing Group (TCG). TCG Specification Architecture Overview.

Version 1.2, The Trusted Computing Group, Portland, Oregon, USA, April

2004.

196

BIBLIOGRAPHY

[152] Trusted Computing Platform Alliance (TCPA). TCPA Main Specification.

Version 1.1b, Trusted Computing Group, Portland, Oregon, USA, February

2002.

[153] Universal Plug and Play (UPnP) Forum. UPnP Device Architecture. version

1.0, December 2003. http://www.upnp.org/.

[154] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osbourne. A digital watermark. In

Proceedings of the IEEE Conference on Image Processing (ICIP’94), Austin,

Texas, USA, November 13–16, 1994, pages 86–90. IEEE Press, 1994.

[155] G. Voyatzis and I. Pitas. The use of watermarks in the protection of digital

multimedia products. IEEE Proceedings, 87:1197–1207, 1999.

[156] M. Walker and T. Wright. Security. In F. Hillebrand, editor, GSM and UMTS:

The Creation of Global Mobile Communication, chapter 15, pages 385–406.

John Wiley & Sons, New York, 2002.

[157] M. Weiser. The computer for the twenty-first century. Scientific American,

265(3):94–104, 1991.

[158] M. Wu and A. Friday. Integrating privacy enhancing services in ubiquitous

computing environments. In Proceedings of the 4th International UbiComp

Workshop (UBICOMP 2002): Security in Ubiquitous Computing, Goteborg,

Sweden, September 29 – October 1, 2002, pages 1–5, 2002.

[159] E. D. Yan. Zero configuration networking. The Internet Protocol Journal,

5(4):20–26, 2002.

[160] Z. Yan and P. Cofta. A mechanism for trust sustainability among trusted

computing platforms. In S. Katsikas, J. Lopez, and G. Pernul, editors, First

International Conference on Trust and Privacy in digital Business (TrustBus

2004), Zaragoza, Spain, August 30 – September 1, 2004. Proceedings, volume

3184 of Lecture Notes in Computer Science, pages 11–19. Springer-Verlag,

Berlin, 2004.

[161] P.-W. Yau and A. Tomlinson. Using trusted computing in commercial grids.

In U. Priss, S. Polovina, and R. Hill, editors, 15th International Conference

197

BIBLIOGRAPHY

on Conceptual Structures (ICCS 2007), Sheffield, UK, July 22–27, 2007, Pro-

ceedings, volume 4604 of Lecture Notes in Computer Science, pages 31–36.

Springer-Verlag, Berlin, 2007.

[162] P.-W. Yau, A. Tomlinson, S. Balfe, and E. M. Gallery. Securing grid workflows

with trusted computing. In M. Bubak, G. dick van Albada, P. M. A. Sloot,

and J. J. Dongarra, editors, 8th International Conference on Computer Science

(ICCS ’08), Kraków, Poland, June 23–25, 2008, Proceedings, Part III, volume

5103 of Lecture Notes in Computer Science, pages 510–519. Springer-Verlag,

Berlin, 2008.

[163] J. Zhang, W. Kou, and K. Fan. Secure Buyer-Seller Watermarking Protocol.

IEE Proceedings on Information Security, 153(1):15–18, 2006.

[164] F. Zhu, M. Mutka, and L. Li. Service discovery in pervasive computing envi-

ronments. IEEE Pervasive Computing, 4(4):81–90, 2005.

[165] F. Zhu, M. Mutka, and L. Ni. Prudent Exposure: A private and user-centric

service discovery protocol. In Proceedings of the Second IEEE Conference on

Pervasive Computing and Communications (PerCom’04), Orlando, Florida,

March 14–17, 2004, pages 329–328. IEEE Computer Society, 2004.

[166] F. Zhu, M. Mutka, and L. Ni. A private, secure and user-centric information

exposure model for service discovery protocols. IEEE Transactions on Mobile

Computing, 5(4):418–429, 2006.

[167] F. Zhu, W. Zhu, M. W. Mutka, and L. Ni. Expose or not? A progressive expo-

sure approach for service discovery in pervasive computing environments. In

Proceedings of the Third IEEE International Conference on Pervasive Com-

puting and Communications (PerCom 2005), Kauai Island, Hawaii, March

8–12, 2005, pages 225–234. IEEE Computer Society, 2005.

198

