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Abstract. We prove that a virtually soluble group G of type FP∞ admits a

finitely dominated model for EG of dimension the Hirsch length of G. This
implies in particular that the Brown conjecture is satisfied for virtually torsion-

free elementary amenable groups.

1. Introduction

A group is said to be of type FP∞ if the trivial ZG-module Z has a resolution
with finitely generated projective ZG-modules. Kropholler has shown that soluble
groups of type FP∞ are virtually torsion-free [17]. Torsion-free nilpotent groups
of finite cohomological dimension equal to their Hirsch length, denoted by hG, are
finitely generated and in fact of type FP∞, see [12, §8.8]. Gildenhuys and Strebel
posed the question whether a similar result holds for soluble groups, which they
partially answered [10]. The following result was then proved by Kropholler [15].

Theorem 1.1. [10, 15, 17] Let G be a soluble group. Then the following are equiv-
alent:

(i) G is of type FP∞
(ii) G is a virtual duality group
(iii) G is virtually torsion-free and vcdG = hG <∞
(iv) G is virtually torsion-free and constructible.

Here vcdG denotes the virtual cohomological dimension of G. A virtually torsion-
free group has finite virtual cohomological dimension if there exists a finite-index
subgroup of finite cohomological dimension. The class of constructible groups is
the smallest class of groups containing the trivial group, which is closed under
finite extensions and under HNN-extensions in which the base group and associated
subgroups are constructible. Groups satisfying the conditions of the theorem are
minimax, i.e. have a finite series of normal subgroups such that each factor has
either min or max, see for example [2, 7.16] and are finitely presented [1]. Finite
presentability of soluble groups of type FP∞ implies in particular that these are of
type VF: groups of type VF are those having a finite-index subgroup admitting a
finite K(G, 1). With increased interest in classifying spaces for proper actions, new
questions about soluble groups of type FP∞ emerged. Let X be a G-CW-complex.
X is called a classifying space for proper actions, or a model for EG, if XH is
contractible if H is a finite subgroup of G and empty otherwise. It has been known
for a while that virtually soluble groups of type FP∞ admit a finite dimensional
model for EG [18]. Results in [9] imply that we are able to bound the Bredon
cohomological dimension cdG of G in terms of the Hirsch length. In particular, for
countable virtually soluble groups we have the following inequalities:

hG ≤ cdG ≤ hG+ 1.
1
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The Bredon-cohomological dimension is equal to the minimal dimension of a model
for EG unless cdG = 2, see [21]. There is however, an example [5] of a virtually
torsion-free group G for which cdG = 2, but which does not admit a 2-dimensional
model for EG. Hence, bar the possibility of such an Eilenberg-Ganea phenomenon,
for a countable virtually soluble group there is always a model for EG of dimension
equal to hG or equal to hG + 1. As above, one wonders whether virtually soluble
groups of type FP∞ have a finite type model for EG. Lück [22] gave an algebraic
criterion for a group G to admit a finite type model for EG:

Theorem 1.2. [22] 4.2 A group G admits a finite type model for EG if and only
if the two following conditions are satisfied:

(i) G has finitely many conjugacy classes of finite subgroups.
(ii) For every finite subgroup F of G, the normalizer NG(F ) is finitely presented

and of type FP∞
For every group G of finite virtual cohomological dimension, Serre’s construction
yields a finite dimensional model for EG [7, VIII.11.2], but, except in trivial cases,
the dimension is strictly greater that vcdG. It was conjectured by K.S. Brown [6]
that there is always a model for EG of dimension equal to vcdG. Furthermore,
even if G was of type VF, Serre’s construction does not give a finite type model
for EG. It turns out [19], that there are examples of groups of type VF, which
do not admit a finite type model for EG. Some of these groups also provide a
counterexample to Brown’s conjecture. The construction used in [19] produces
groups of type VF, which have either infinitely many conjugacy classes of finite
subgroups or normalizers of finite subgroups, which are not of type FP∞. If there is
no restriction on the finite-index torsion-free subgroup, then the question regarding
the number of conjugacy classes of finite subgroups has been completely answered.
A result of Brown [7, IX.13.2] implies that any group of type VF has finitely many
conjugacy classes of subgroups of prime power order. Leary [20] constructed, for any
finite group Q not of prime power order, a group of type VF, which has infinitely
many conjugacy classes of subgroups isomorphic to Q.

In this note we show that a virtually soluble group of type VF, i.e., a virtually
soluble group of type FP∞ indeed admits a finitely dominated model for EG. In
Section 2 we will show that such a group has only finitely many conjugacy classes
of finite subgroups. Most of the remainder of this paper is then devoted to proving
that centralizers of finite subgroups are also of type FP∞. These centralizers are
finitely presented [1] and have finite index in the corresponding normalizers hence
the conditions of Theorem 1.2 are satisfied. Furthermore, since a virtually soluble
group of type FP∞ also admits a finite dimensional model for EG, the claim that
it admits a finitely dominated model for EG now follows from [22, 5.1,6.3].

To prove the result on the centralizers of finite subgroups we only have to consider
finite group actions on groups which are nilpotent-by-abelian-by-finite, see part (a)
of the proof of [25, 10.38]. We can therefore apply Bieri and Strebel’s criterion for
such a group to be of type FP∞ [3, 5.2]. Let Q be a group acting on an abelian
group A, we denote by ΣcA(Q) the associated invariant, which will be defined in
Section 3 below. Now let G be a nilpotent-by-abelian-by finite group, that is there
is an extension N ↪→ G � Q with N nilpotent and Q abelian-by-finite. To apply
Theorem 5.2. of [3] it is sufficient to consider ΣcA(Q), where A = N/N ′.

As nice applications of our theorem we show that for virtually torsion-free ele-
mentary amenable groups Brown’s conjecture is satisfied and that the property of
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admitting a finitely dominated EG is a quasi-isometry invariant within the class of
virtually soluble groups.

Also note that our main result can be extended to elementary amenable groups
of type FP∞. A result of Hillman and Linnell [14] shows that elementary amenable
groups of finite Hirsch length are locally finite-by -virtually soluble. In case these
are of type FP∞ they also have a bound on the orders of the finite subgroups [17]
so we can reduce the above questions to questions on virtually soluble groups.

2. Conjugacy classes of finite subgroups

Lemma 2.1. Let V be an abelian minimax group. Then any bounded section of V
is finite.

Proof: As any section of an abelian minimax group is again abelian minimax, we
only have to see that a bounded abelian minimax group is finite, which follows
immediately as any abelian minimax group is an extension of an abelian finitely
generated group by a finite product of quasicyclic groups. �

Lemma 2.2. Let F be a finite group acting on an abelian minimax group V . Then
H1(F, V ) is finite.

Proof: As F is finite, |F | annihilates H1(F, V ) so this is a bounded group. Moreover,
we may choose a projective ZF -resolution of Z with second term a finite sum ⊕ZF .
Therefore H1(F, V ) is a section of the group

HomZF (⊕ZF, V ) = ⊕HomZF (ZF, V ) = ⊕V.

Now it suffices to apply Lemma 2.1. �

Proposition 2.3. Let F be a finite group acting on a soluble minimax group G.
Then there is only a finite number of complements of G in the semidirect product
Go F .

Proof: Assume first that G is abelian. Then by Lemma 2.2 the group H1(F,G) is
finite and this implies the result, see [24, 11.13, 11.46].

Next we argue by induction on the derived length of the group. Let Γ = Go F
with G nonabelian and choose an F -invariant K EG with derived length of G/K
and K both > 0 and put

Ω1 = {representatives of the conj. classes of complements of G/K in Γ/K}.

By inductive hypothesis Ω1 is finite. Put also

Ω2 =
⋃
S∈Ω1

{representatives of the conj. classes of complements of K in S}.

Note that for each S ∈ Ω1 either the previous set is empty or there is a complement
of K in S and in this case S is isomorphic to the semidirect product of S/K and
K so by the inductive hypothesis Ω2 is also finite.

Now let M be a complement of G in Γ. Since

|MK/K| = |F | = |Γ/G| = |MK/G ∩MK| <∞,

we deduce that KM/K is a complement of G/K in Γ/K and therefore for some
S ∈ Ω1, g ∈ Γ, KMg = S. HenceMg is a complement ofK in S implyingMgh ∈ Ω1
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for some h ∈ Γ. Therefore Ω2 contains a representative of each conjugacy class of
complements of G in Γ. �

Theorem 2.4. Let Γ be a virtually soluble group of type FP∞. Then there is only
a finite number of conjugacy classes of finite subgroups in Γ.

Proof: There is a subgroup G / Γ which is soluble and of type FP∞ and such that
the index |Γ : G| is finite. Therefore G is virtually-(torsion free soluble) so we may
assume G itself is torsion free soluble. G is minimax.

Each finite subgroup F ≤ Γ is a complement of G in the group Go F ≤ Γ. We
may apply the previous result to the group GoF ≤ Γ and deduce that there is only
a finite number of complements of G. The claim follows from the following: There
are only finitely many subgroups S such that G < S ≤ Γ. Proposition 2.3 implies
that for each S there are only finitely many conjugacy classes of finite subgroups
F of Γ such that GoF = S. Now let F be any finite subgroup of Γ, then GoF is
one of the subgroups counted before and F therefore falls into one of finitely many
conjugacy classes of finite subgroups. �

Martin Hamilton has also shown this result for locally polycyclic-by-finite groups
of finite virtual cohomological dimension [13, Lemma 1.2.].

3. Centralizers of finite subgroups

We will need the following definitions and notation, which can be found in [3]. A
valuation of a finitely generated abelian group Q is a homomorphism

ν : Q→ (R,+).

The valuation sphere of Q is defined to be

S(Q) = {[ν] : 0 6= ν valuation of Q},
where [ν] denotes the equivalence class of ν with respect to the relationship “to
be a positive scalar multiple of one another”. This sphere is homeomorphic to the
unit sphere in Rn with n the torsion-free rank of Q. Each q ∈ Q defines an open
hemisphere given by

Hq = {[ν] ∈ S(Q) : ν(q) > 0},
which is empty if q has finite order. For a subgroup S ≤ Q we denote

S(Q,S) = {[ν] ∈ S(Q) : ν|S = 0}.
Now let A be a ZQ-module, i.e. an abelian group with a Q-action. Put

ΣA(Q) =
⋃

λ∈CZQ(A)

{[ν] : ν(q) > 0 for any q ∈ suppλ}

ΣcA(Q) = S(Q) \ ΣA(Q).
A valuation is discrete if ν(Q) ⊆ Z and for any subset Ω ⊆ ΣcA we denote by disΩ
the set of equivalence classes in Ω containing a discrete valuation.

Let G be a nilpotent-by-abelian-by-finite group. It follows from [3, Theorem 2.3]
that for all normal subgroups N and H/G, such that G/H is finite, H/N is abelian
and N nilpotent, ΣcNab

(H/N) is invariant up to homeomorphism of S(H/N) (with
Nab = N/N ′ the abelianization of N). Denote

σ(G) = ΣcNab
(H/N).
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Theorem 5.2 of [3] can be restated as follows:

Theorem 3.1. [3, 5.2] Let G be a finitely generated soluble group. Then the fol-
lowing conditions are equivalent:

(i) G is constructible.
(ii) G is nilpotent-by-abelian-by-finite and σ(G) is contained in an open hemi-

sphere.
(iii) G is nilpotent-by-abelian-by-finite and disσ(G) is contained in an open

hemisphere.

We shall use this characterization to prove that centralizers of finite subgroups of
a virtually soluble group of type FP∞ are also of type FP∞.

Lemma 3.2. Let S / Q be a normal subgroup which acts trivially on A. Then
ΣcA(Q) is contained in some open hemisphere if and only if ΣcA(Q/S) is contained
in an open hemisphere.

Proof: For any q ∈ S, q, q−1 ∈ CZQ(A). Hence the definition of ΣcA(Q) implies

ΣcA(Q) ⊆ S(Q,S).

Let π : Q→ Q/S be the projection and consider

π∗ : S(Q/S)→ S(Q)

[ν] 7→ [νπ]

as in [3, 1.1]. Now [3, 1.4] implies π∗(ΣcA(Q/S)) ⊆ ΣcA(Q). Together with the fact
that ΣcA(Q) ⊆ S(Q,S) this yields the result. �

Lemma 3.3. Assume Q = Q1 × Q2 with both Q1, Q2 acting non trivially on A.
Then for any [v] ∈ disΣcA(Q), v = v1 +v2 with [vi] ∈ disΣcA(Qi). Moreover, for any
[v1] ∈ disΣcA(Q1) there is some [v2] ∈ disΣcA(Q2) with [v1 + v2] ∈ disΣcA(Q).

Proof: Consider
ιi : Qi → Q,

π : Q→ Q1

the inclusions and the first projection. They induce maps

ι∗i : S(Q)→ S(Qi)
ν 7→ νιi,

π∗ : S(Q1)→ S(Q)
ν 7→ νπ

and by Proposition [3, 1.2]

ι∗i (disΣcA(Q) ∩ S(Q,Qi)c) = disΣcA(Qi),

π∗i ( disΣcA(Q1) ∩ S(Q,Q1)c) = disΣcA(Q).
�

Let F be a group acting on Q and on A so that this action is compatible with
that of Q on A, i.e.

(aq)t = (at)q
t
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for any a ∈ A, q ∈ Q, t ∈ F . The group F acts also on Hom(Q,R) via

vt(q) = v(qt
−1

)

for v : Q→ R, t ∈ F , q ∈ Q. Clearly this yields also an action of F on the valuation
sphere S(Q).

Lemma 3.4. ΣcA(Q) is F -invariant.

Proof: Consider λ ∈ CZQ(A). Then λa = a for any a ∈ A and therefore for each
t ∈ F and a ∈ A, a = (at

−1
)t = (λat

−1
)t = λta. So we deduce that CZQ(A) is

F -invariant. Now let v ∈ ΣcA(Q). Note that by definition

ΣcA(Q) =
⋂

λ∈CZQ(A)

{[v]|v(q) ≤ 0 for some q ∈ suppλ}.

Let [v] ∈ ΣcA(Q), λ ∈ CZQ(A). Then λt
−1 ∈ CZQ(A) so for some qt

−1 ∈ suppλt
−1

,
vt(q) = v(qt

−1
) ≤ 0. Thus [vt] ∈ ΣcA(Q). �

For the next results we fix a finite group F and let

e :=
∑
t∈F

t ∈ ZF.

If F acts on an abelian group V (we use multiplicative notation) we put, for v ∈ V ,

AnnV e := {v ∈ Q : ve =
∏
t∈F

vt = 1}.

Lemma 3.5. Assume F acts on an abelian group V and let C = CV (F ). Then

V |F | = C1T

for certain subgroups T ≤ AnnV e and C1 ≤ C. Moreover if V is minimax, V/V |F |,
C/C1 and C ∩ T are finite.

Proof: Put

T = V (|F |−e) = {v(|F |−e) : v ∈ V } = {
∏
t∈F

v(v−1)t : v ∈ V },

C1 = V e = {ve : v ∈ V }.

The first assertion is a consequence of

|F | = e+ (|F | − e)

and the fact that V e ≤ C. As
(|F | − e)e = 0

we also have T ≤ AnnV (e). For the rest use 2.1. �

Lemma 3.6. Assume Q = C × T and F acts on Q so that the action is trivial
on C and T ≤ AnnQ(e). Suppose disΣcA(Q) is contained in some open hemisphere.
Then so is disΣcA(C).
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Proof: By 3.2 we may assume that the action of Q on A has trivial kernel. We have
Hom(Q,R) = Hom(C,R) ⊕ Hom(T,R) and both abelian groups are F -invariant.
Moreover, F acts trivially on Hom(C,R) and Hom(T,R) ≤ AnnHom(Q,R)e. Note
also that the result is trivial if disΣcA(Q) = ∅. Assume ∅ 6= disΣcA(Q) is contained
in some open hemisphere. This means that for some q ∈ Q, v(q) > 0 for any v ∈
disΣcA(Q). We may put q = q1q2 with q1 ∈ C and q2 ∈ T . Now let [v1] ∈ disΣcA(C).
By 3.3 there is some [v2] ∈ disΣcA(T ) with [v1 + v2] ∈ disΣcA(Q). As disΣcA(Q) is
F -invariant by 3.4, we get [v1 + vt2] ∈ disΣcA(Q) for any t ∈ F . Therefore

v1(q1) + vt2(q2) > 0.

Now, if vt2(q2) ≤ 0 for some 1 6= t ∈ F , then v1(q1) > 0. And in other case,

v2(q2) = −
∑

1 6=t∈F

vt2(q2) < 0

and again we get v1(q1) > 0. This means that also disΣcA(C) is contained in some
open hemisphere. �

Lemma 3.7. Let N1, N2 / G be subgroups such that G/N1, G/N2 are abelian-by-
finite. Then the same holds for N1 ∩N2.

Proof: Consider H1, H2 /G such that Ni ≤ Hi and G/Hi is finite, Hi/Ni is abelian
for i = 1, 2. Then clearly H = H1 ∩H2 / G and G/H is finite. So we may assume
G/Ni is abelian for i = 1, 2. Then G′ = [G,G] ≤ N1, N2 so G′ ≤ N1 ∩ N2 thus
G/N1 ∩N2 is also abelian. �

From now on we fix a soluble group G of type FP∞ and consider a finite group
F acting on G. Then by part (a) of the proof of [25, 10.38] there is some nilpotent
N / G such that the group G/N is finitely generated abelian-by-finite. Moreover
using the Lemma above and by considering

⋂
t∈F N

t we may assume that N is
F -invariant. We also fix A = Nab = N/N ′.

Lemma 3.8. A subgroup C of G with N ≤ C ≤ G is finitely generated if and only
if A is finitely generated as C/N -module.

Proof. If C is finitely generated, then so is C/N ′. As in the proof of [10, Corollary
A2] we deduce that N/N ′ is a Noetherian ZC/N -module so it is in fact finitely
generated.

Conversely, assume that A is finitely generated as C/N -module and consider the
i-th central factor γiN/γi+1N of the central series of N . There is a C-epimorphism

A⊗ i. . . ⊗A→ γiN/γi+1N

which implies that also γiN/γi+1N is finitely generated as C/N -module. As N is
nilpotent we deduce that C is finitely generated. �

Proposition 3.9. Let C/N = CG/N (F ). Then C is of type FP∞.

Proof: Let Q = G/N . There is a finite index subgroup H such that H/N is free
abelian and we may assume that H is normal and F -invariant. As a group is of
type FP∞ if and only if a finite index subgroup is also, we may assume that Q is
free abelian. So we have an action of F on a free abelian group. Then by 3.5 there
is a finite index subgroup of G, say G1 such that G1/N = C1/N × T/N with F
acting trivially on C1/N and T/N ≤ AnnQ(e). Moreover C1 has finite index in C.
So we may assume that Q = C/N × T/N and T/N ≤ AnnQ(e). The hypothesis
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that G is of type FP∞ implies by [3, 5.2] that disΣA(Q) is contained in some open
hemisphere. Hence by 3.6 also

disΣA(C/N)

is contained in some open hemisphere. Moreover, the proof of 3.6 implies that there
is some q1 ∈ C/N with υ1(q1) > 0 for any υ1 ∈ disΣcA(C/N) thus also υ(q1) > 0
for any υ ∈ disΣcA(Q). This means that

S(Q,C/N) ⊆ ΣA(Q).

Therefore using [4, Theorem A] one deduces that A is finitely generated as a C-
module. By Lemma 3.8, C is finitely generated. The result now follows by [3, 5.2].
�

Lemma 3.10. Assume V / G is an abelian minimax F -invariant subgroup of G.
Put C/V = CG/V (F ). Then

|C : V CG(V )| <∞.

Proof: Let g ∈ C. For any t ∈ F ,

gt = gδg(t)

with δg(t) ∈ V . Furthermore, for all t1 ∈ F :

gδg(tt1) = gtt1 = gt1δg(t)t1 = gδg(t1)δg(t)t1 .

Hence δg is a derivation
δg : F → V.

So we have a map
C → Der(F, V )
g 7→ δg,

which is not a group homomorphism. In fact for g1, g2 ∈ C, t ∈ F
g1g2δg1g2(t) = (g1g2)t = gt1g

t
2 = g1δg1(t)g2δg2(t) = g1g2δg1(t)g2δg1(t).

Now, note that we may define an action of C on Der(F, V ) via

δg(t) = δ(t)g.

Thus the formula above can be written

δg1g2 = δg2g1 δg1 .

We claim that this action leaves the set Inn(F, V ) of inner derivations setwise in-
variant. To see this, let δ ∈ Inn(F, V ) such that δ(t) = vtv−1 for certain v ∈ V .
Then for any g ∈ C and any t ∈ F

δg(t) = (vt)g(v−1)g = (vt)g
t

(vg)−1 = (vg)t(vg)−1.

Therefore δg ∈ Inn(F, V ).
Finally note that for g ∈ C, δg ∈ Inn(F, V ) if and only if there is some v ∈ V

such that
gt = gvtv−1.

This is equivalent to
(gv−1)t = gt(v−1)t = gv−1,

i.e. equivalent to g belonging to V CG(V ).
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This all implies that for g1, g2 ∈ C, g1g
−1
2 ∈ V CG(V ) if and only if δg1g−1

2
∈

Inn(F, V ). We have
δg1 = δg1g−1

2 g2
= δg2

g1g
−1
2
δg2 .

Thus δg1g−1
2
∈ Inn(F, V ) if and only if δg1 = δδg2 for some inner derivation δ.

Therefore the map at the beginning of the proof induces a well defined injective
map

C/V CG(V )→ H1(F, V )
where C/V CG(V ) denotes the set of cosets of V CG(V ) in C. The result now follows
from the finiteness of H1(F, V ), see Lemma 2.2.

�

Proposition 3.11. Let G, N , F be as above. The group NCG(F ) has finite index
in C with C/N = CG/N (F ). Therefore NCG(F ) is of type FP∞.

Proof: We argue by induction on the nilpotency length of N . Let V / N be the
last term in the lower central series of N . Then V is minimax and as this series is
characteristic, V is F -invariant. Then by the inductive hypothesis NCG/V (F )/N
has finite index in C/N = CG/N (F ), i.e.

|C : NCG/V (F )| <∞.
Now, by Lemma 3.10

|CG/V (F ) : V CG(F )| <∞
so

|NCG/V (F ) : NCG(F )| <∞
and the result follows. �

Lemma 3.12. Let S ≤ G with G = SN . Then S is of type FP∞.

Proof: Note that S∩N is nilpotent and Q = G/N ∼= S/S∩N . Recall that A = N/N ′

and put B = S ∩N/(S ∩N)′. If s is the nilpotency length of N and

1 = γsN / γ1N / . . . / γ0N = N

is the lower central series of N then B has a composition series with factors
B1, . . . , Bs such that each Bi is a subsection of ⊗iA. Therefore if we consider
the Bieri-Strebel invariants ΣcA(Q), ΣcB(Q), [3, Lemma 1.1 (c)] implies that

ΣcB(Q) = ΣcB1
(Q) ∪ . . . ∪ ΣcBs

(Q)

and
ΣcBi

(Q) ⊆ Σc⊗iA(Q).
We also have by [3, Theorem 1.3]

disΣc⊗iA(Q) ⊆ disΣcA(Q)+ i. . . +disΣcA(Q)

(convex sum as in [3, 1.1]). Now, if G is of type FP∞,

disΣcA(Q)

is contained in some open hemisphere and we deduce that also

disΣcB(Q)

is. Thus S is of type FP∞. �

Putting it all together yields:
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Theorem 3.13. The group CG(F ) is of type FP∞.

Proof: It suffices to use Proposition 3.11 and Lemma 3.12. �

4. The main result

Theorem 4.1. Let G be a virtually soluble group of type FP∞. Then G admits a
finited dominated model for EG.

Proof: As remarked in the introduction, constructible groups are finitely presented
(see [1]) so also G and all its Weyl groups are. All that remains to prove is that
for any finite subgroup F of G, the centralizer CG(F ) and therefore the normalizer
NG(F ) is of type FP∞. The result will then follow from Theorem [22, 5.1, 6.3].
Now let H be a finite-index torsion-free soluble subgroup of type FP. To show that
CG(F ) is of type FP∞ it suffices to show that CH(F ) is of type FP∞. This is a
consequence of Theorem 3.13. �

Corollary 4.2. Let G be an elementary amenable group of type FP∞. Then G
admits a finited dominated model for EG.

Proof: Hillman and Linnell [14] have shown that elementary amenable groups are lo-
cally finite-by-virtually soluble. Furthermore, by a result of Kropholler [17], groups
of type FP∞ have a bound on the orders of the finite subgroups and hence G is
finite-by-virtually soluble. By Theorem 4.1 this implies that the virtually soluble
quotient admits a finitely dominated model for EG. An application of [22, Theorem
3.2] yields the claim. �

We say a property P is geometric, if for any group G with property P and any
group H quasi-isometric to G, it implies that H also has property P.

Corollary 4.3. In the class of virtually soluble groups, admitting a finitely domi-
nated model for EG is a geometric property.

Proof: Let H be quasi-isometric to G and let G admit a finitely dominated model
for EG. In particular, G is of type F∞ . By Gromov, [11, 1C2], F∞ is a geometric
property. Now apply Theorem 4.1. �

5. Brown’s conjecture

As mentioned in the introduction, Theorem 4.1 also implies that Brown’s conjecture
holds for soluble groups. To apply the algebraic criteria of [9] we only need to show
that an Eilenberg-Ganea type phenomenon as in [5] cannot happen for virtually
(torsion-free soluble) groups.

Proposition 5.1. Let G be a virtually (torsion-free soluble) group of cdG = 2.
Then G admits a 2-dimensional model for EG.

Proof: First, let G be of type FP∞. This implies that G is nilpotent-by-abelian-by
finite, which means there is a short exact sequence

N ↪→ G� Q,

where N is nilpotent and Q is finitely generated abelian-by-finite. Suppose cdN =
2. Then, by [23, Remark 6.4] it follows that N is finitely generated and hence, G is
polycyclic-by-finite and has a 2-dimensional model for EG. Now suppose cdN = 1.
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Since N is virtually torsion-free, it implies that N has an infinite cyclic subgroup
of finite index and again, N is finitely generated. The condition cdN = 0 implies
N finite and the claim follows, too.
This leaves the case when G is not of type FP∞ . By Corollary 5.3 cdG = 2 yet
hG = 1. Hence G has a torsion-free subgroup H of finite index with homological
dimension hdH = 1. Hence H is isomorphic to a subgroup of Q and therefore
is locally (infinite cyclic)-by-finite. Any (infinite cyclic)-by-finite group admits a
1-dimensional model for EG. Since G is virtually torsion-free we can apply [8,
Theorem 2.4] implying there is a 2-dimensional model for EG finishing the proof.
�

Corollary 5.2. Virtually torsion-free elementary amenable groups satisfy the Brown
conjecture.

Proof: Let us first assume that G is soluble-by-finite of finite virtual cohomological
dimension. By the above, we only need to show that cdG = vcdG. For soluble
groups of type FP∞ this is a consequence of Theorem 4.1. Also note that virtually
torsion-free soluble groups of finite Hirsch length are countable [2, Lemma 7.9]. If
G is not of type FP∞, then hdG = hG = n− 1 where n = cdG. But let H denote a
torsion-free subgroup of finite index. Then hH = hG = hdH = n− 1 and cdH = n
as H is not of type FP∞ either. Hence the claim follows for soluble-by-finite groups.

Let G now be virtually torsion-free elementary amenable. By [14] there is an
extension

T ↪→ G� Q

with T locally finite and Q virtually soluble. Since G is virtually torsion-free, T
is finite and Q is virtually torsion free of vcdQ = vcdG. Now [22, Theorem 3.1]
implies that G and Q both have models for EG of the same dimension. �

Note finally that we can add one more equivalent algebraic condition to Kropholler’s
Theorem, see 1.1:

Corollary 5.3. Let G be a virtually soluble group. Then the following are equiva-
lent:

(i) G is of type FP∞.
(ii) G is virtually torsion-free and cdG = hG <∞.
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