
Enhancing User Authentication in Claim-Based Identity Management

Waleed A. Alrodhan and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
{W.A.Alrodhan, C.Mitchell}@rhul.ac.uk

http://www.isg.rhul.ac.uk

Abstract

In claim-based identity management (CBIM) systems,
users identify themselves using security tokens that contain
personally identifiable information, and that are signed by
an identity provider. However, a malicious identity provider
could readily impersonate any user by generating appro-
priate tokens. The growing number of identity theft tech-
niques raises the risk of service providers being deceived
by untrustworthy identity providers. We show how this vul-
nerability can be mitigated by adding an authentication
layer, between the user and the service provider, to a CBIM
system. We propose two possible implementations of this
layer. The first approach requires a user to perform an
additional step before the service provider completes the
authentication process. That is, the user must present to
the service provider certain information sent to the user
by the service provider during the most recent successful
use of the scheme. A proof-of-concept implementation of
this scheme has been produced. The second approach in-
volves a challenge-response exchange between the user and
the service provider. This requires a minor modification to
the service provider XML-based security policy declaration
message.

1 Introduction

Identity management is one of the fundamental building
blocks for collaborative environments. Collaborative appli-
cations like Wiki, for example, rely on identity management
schemes to identify users and protect their personally identi-
fiable information (PII), as a preparatory step for user autho-
risation. However, it has become common, or even neces-
sary, for Internet users to possess multiple digital identities.
Managing these identities and protecting the corresponding
credentials is a difficult problem because of the threats of
identity theft and phishing techniques, and also the growing
number of such identities.

User-centric identity management [9, 11] has been pro-
posed as a means of easing the user task of managing digital
identities, by providing users with more control over their
identities. Such systems have been developed primarily
from the perspective of end-users, enabling a user to main-
tain control over how PII is both created and used, thereby
enhancing user privacy. Examples of user-centric systems
include OpenID1 and Windows CardSpace2 (henceforth ab-
breviated to CardSpace). Claim-based systems [1, 12] are
one particular class of such systems.

In this paper we aim to enhance user authentication
within claim-based identity management systems. We pro-
pose two possible ways in which such an enhancement
could be provided. In the first approach, a user must
present certain information obtained during the last inter-
action with a service provider in order to be authenticated
to that provider. The second approach involves a challenge-
response procedure between the user platform and the ser-
vice provider, requiring a minor modification to the service
provider XML-based security policy declaration.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of claim-based identity man-
agement. In section 3 we propose two methods for enhanc-
ing user authentication. In section 4 we describe a prototype
implementation of one of the proposed techniques, and sec-
tion 5 discusses their effectiveness. Finally, section 6 con-
cludes the paper.

2 Claim-based identity management

In this section we provide a brief overview of claim-
based identity management. We then discuss the notion of
‘user consent’.

1http://openid.net
2http://www.microsoft.com/net/cardspace.aspx

1

2.1 Overview

Many Internet identity management systems are de-
signed to be cost effective from the perspective of ser-
vice providers rather than users. For example, many ser-
vice providers manage digital identities using automated
systems, whereas users are required to manage their dig-
ital identities manually. Also, in most identity manage-
ment systems, service providers authenticate users using an
application layer technique (e.g. username and password),
whereas users authenticate service providers using a lower
layer technique (such as SSL/TLS). Hence, managing mul-
tiple digital identities and protecting the associated creden-
tials can become very difficult for users. Moreover, most
such systems are isolated, i.e. there is no co-operation be-
tween systems for user authentication purposes [11]. As
shown in figure 1, when using isolated systems, users must
manage multiple identifiers manually, and must maintain a
distinct identifier for each service provider.

Figure 1. Isolated identity management
model

Claim-based identity management (CBIM) has been de-
signed to make identity management easier for Internet
users. As shown in figure 2, every human user has spe-
cific PII. The idea is to enable users to use their PII to iden-
tify themselves to service providers, instead of using service
provider specific identifiers (e.g. usernames) and access cre-
dentials (e.g. passwords).

In a CBIM system, each individual has an associated set
of claims, where a claim is an assertion of the truth of some
piece of PII for the associated user. In order to authenti-
cate the user, the service provider can demand a security
token that asserts the truth of values for certain pieces of
user PII. This security token must be signed by a trusted
identity provider. Figure 3 shows the claim-based identity

Figure 2. The relationship between entities
and identifiers

management model.

Figure 3. Claim-based identity management
model

The most widely discussed example of a CBIM system
is CardSpace. CardSpace is designed to satisfy the require-
ments of the Laws of Identity [3, 4]. The CardSpace frame-
work is based on the identification process we experience
in the real world using physical identification cards. Within
the CardSpace framework, an identity provider issues In-
ternet users with virtual cards called Information Cards
(or InfoCards), that hold (relatively) non-sensitive meta-
information related to them, including a list of the supported
claims. Subsequently, the Internet user selects one of the
InfoCards that supports the claims that the service provider
wishes to have assurance of, and requests a signed security
token from the identity provider that issued this InfoCard.

2

The request sent to the identity provider specifies the types
of the claims sought by the service provider. The provided
security token lists the values of the requested claims and,
after receiving it, the CardSpace-enabling component on the
user machine forwards it to the service provider. InfoCards
can also be self-issued by the Internet users themselves.

Other CBIM systems include OpenInfoCard3, Higgins,
and DigitalMe4. Higgins and DigitalMe are supported by
the Bandit Project5. We focus here on CardSpace because
of its ubiquity as part of Windows Vista; however, many
of the observations made below also apply to other CBIM
systems, since they have strong similarities to one another.

2.2 User consent

In the currently deployed implementations of CBIM, ser-
vice providers are not provided with a proof of the legit-
imacy of the user that wishes to log in. Instead, service
providers are given a proof of rightful possession of the se-
curity token (i.e. a proof that the user who forwarded the
security token has the right to possess it). However, all the
implemented “proof of rightful possession” techniques are
based on information included within the security token it-
self [20]. Moreover, the only means for the service provider
to judge the validity of a security token is by verifying the
identity provider’s digital signature. This means that, if the
identity provider is lying, then the ‘proof of rightful posses-
sion’ will be false.

The first of the Laws of Identity is to provide a high
degree of ‘user control and consent’; we therefore suggest
that support for user consent in systems that adhere to these
laws, such as CardSpace, needs to be enhanced. Also, there
is a potential vulnerability because of the lack of robust ev-
idence of user consent.

We believe that our proposed schemes will enhance the
service provider ability to make more accurate decisions
about the legitimacy of the user by adding an additional au-
thentication layer. This layer could be deemed as providing
implicit indication that the log-in attempts are initiated by
the legitimate users.

Finally, we observe that the problem we have described
is less significant for self-issued InfoCards.

3 Enhancing user authentication in CBIM
systems

In this section we propose two methods for enhancing
user authentication in CBIM systems. The proposed meth-
ods are independent, and can be combined if desired. We

3http://code.google.com/p/openinfocard
4More implementations are listed at: http://www.osis.idcommons.net
5http://bandit-project.org

describe the techniques as they apply to CardSpace; how-
ever, we believe that they could also be applied to other
CBIM systems.

3.1 The CardSpace framework

CardSpace provides a way to represent identities using
claims, and a means to bridge technology and organisational
boundaries using claims transformations [13]. It is a CBIM
system, and is not a single sign-on system. It aims to reduce
the reliance on passwords for Internet user authentication by
service providers (or Relaying Parties (RPs) in Microsoft
terminology), and to improve the privacy of personal infor-
mation.

The CardSpace identity management architecture is de-
signed to provide the user with control over his digital
identities in a user friendly manner, and to tackle iden-
tity management security problems such as breaches of pri-
vacy and identity theft, with no single identity authority
control. CardSpace works with Internet Explorer browsers
(CardSpace plug-ins for browsers other than Microsoft In-
ternet Explorer have also been developed, such as the Fire-
fox Plug-in6).

Digital identities in CardSpace are represented as claims
made by one digital subject (e.g. an Internet user) about it-
self or another digital subject. A claim is an assertion that
certain identifying information (e.g. given name, social se-
curity number, credit card number, etc.) belongs to a given
digital subject [4, 13]. Under this definition, user identifiers
(e.g. a username) and user attributes (e.g. user gender) are
both treated as claims.

CardSpace requires users to install an enabling compo-
nent on their machines called the Identity Selector [14].
This component performs several important tasks includ-
ing: providing a user-friendly interface for Information
Card management and security token viewing, negotiating
the security requirements of the RPs and identity providers
(IdPs), supporting identity provider discovery, controlling
and managing user authentication to the IdP, and generating
self-issued security tokens. These tokens contain assertions
made by the users about themselves, and are generated by
the Self-issued Identity Provider (SIP), part of the Identity
Selector.

The Security Token Service (STS) is a software compo-
nent in the CardSpace framework, responsible for security
policy and token management at the IdP and, optionally, at
the RP [10].

The framework is based on the identification process we
experience in the real world using physical ID cards. In-
foCards are issued either by an IdP or by the SIP on the
user machine (in which case they are referred to as self-
issued cards). Infocards are stored on the user machine,

6http://xmldap.blogspot.com/2006/05/firefox-identity-selector.html

3

and are XML files with the extension ‘*.crd’. An InfoCard
is signed by the IdP, and contains (relatively) non-sensitive
meta-information, such as: the name of the IdP that has is-
sued it, a list of the claims that can be asserted by the IdP,
the types of security tokens that can be requested from this
IdP (e.g. a SAML 2.0 assertion), and the InfoCard creation
and expiry times.

When a user tries to log-in to a CardSpace-enabled RP,
the RP declares its security policy to the Identity Selec-
tor. The RP security policy can be retrieved using the
WS-MetadataExchange protocol [7], and is expressed us-
ing the WS-SecurityPolicy [17] and WS-Trust [18] proto-
cols. The policy includes: the claims to be asserted, the
requested security token type, a list of IdPs trusted to is-
sue the requested token, and the required proof-of-rightful-
possession method. The RP security policy also specifies
constraints on the retrieved security token (e.g. the maxi-
mum token age).

After processing that policy, the Identity Selector checks
which InfoCards satisfy it, and prompts the user to select
one of them. The Identity Selector retrieves the IdP security
policy from the IdP that issued the selected InfoCard. This
policy specifies how the Identity Selector must be authenti-
cated, and how to retrieve a security token from the IdP. The
policy is contained within a WSDL description [6], speci-
fying the protocol messages to be used to access the IdP-
STS. The policy contains details of the security measures
that should be applied to the request token (e.g. whether the
security token should be encrypted by the IdP using a short-
term symmetric session key, or if the encryption provided
by SSL/TLS is sufficient) [5]. The IdP security policy must
always contain the IdP’s X.509 public key certificate.

The security token is then requested from the issuer IdP.
After receiving the request, and prior to authenticating the
user and generating the token, the IdP checks its policy to
decide how it should authenticate the user, what claims it
can assert, and whether its policy permits it to generate the
requested security token. On receipt of the token from the
IdP, the Identity Selector optionally shows its contents to
the user (the displayed information is deleted from the sys-
tem after the user has given consent to proceed). Finally,
the Identity Selector forwards the security token to the RP,
which will deem the user authenticated if the received token
is valid and meets its requirements.

Figure 4 provides a simplified sketch of the CardSpace
framework. In the figure it is assumed that the user has al-
ready been issued an InfoCard by an IdP, and has retrieved
the RP web page that offers a CardSpace-based log-in. In
step 1, the user clicks on the CardSpace icon in the RP
web page using a CardSpace-Enabled User Agent (CEUA),
also known as the Service Requester, which is essentially
a CardSpace-enabled web browser. In step 2, the RP iden-
tifies itself using a public key certificate (e.g. a certificate

Figure 4. CardSpace Framework.

used for SSL/TLS), and triggers the Identity Selector us-
ing XHTML code or HTML object tags. After the Identity
Selector has been triggered, it retrieves the RP’s security
policy from the RP-STS in step 3 [20].

In step 4 the Identity Selector matches the RP’s secu-
rity policy against the InfoCards possessed by the user in
order to find one that satisfies the policy. If one or more
suitable InfoCards are found, the user is prompted to se-
lect one of them. After the user has selected an InfoCard,
the Identity Selector initiates a connection with the IdP that
issued that InfoCard, and retrieves the IdP security policy
in step 5. In step 6, the user performs an authentication
process with the IdP via the Identity Selector. The current
version of the Identity Selector supports four authentica-
tion methods, namely: username/password, Kerberos V5
ticket, X.509 certificate (either software-based or using a
smart card), or self-issued SAML 1.1 assertion (generated
by the SIP) [20].

Then, in step 7, the Identity Selector requests the IdP to
provide a security token that asserts the truth of the claims
whose types are listed in the selected InfoCard; this request
is sent in a request security token (RST) message. The IdP
then checks whether its security policy permits it to generate
the requested security token. If so, the IdP replies by send-
ing a security token within a request security token response
(RSTR) message. Finally, the Identity Selector forwards
the security token to the RP-STS in step 8 (after, optionally,
showing its contents to the user) and, if the RP verifies it
successfully, the service is granted in step 9.

The RP will get an assertion from the IdP that the se-

4

curity token was issued to a particular user. This asser-
tion is bound to the user by a secret ‘proof-key’, where a
user asserts ownership of a security token by demonstrating
knowledge of the proof-key included in the token [15]. This
helps to prevent token replay attacks, i.e. where an attacker
‘steals’ a token for another user. The RP can select one
of three types of proof of rightful possession techniques,
namely: bearer, symmetric and asymmetric [14].

The CardSpace identity metasystem relies on a number
of Web Services protocols and SOAP [16]. Most of these
protocols require the SP to have an STS server in order to
process the messages [2, 10, 19]. The CardSpace message
flows are as follows:

1. CEUA→ RP : User clicks on the CardSpace logo on the
RP log-in web page

2. RP→ CEUA : InfoCard Tags (XHTML or HTML object
tags), to trigger the Identity Selector

3. Identity Selector ↔ RP-STS : Identity Selector re-
trieves the RP security policy via WS-MetadataExchange

4. Identity Selector↔ User : User picks an InfoCard

5. Identity Selector ↔ IdP-STS : Identity Selector re-
trieves the IdP security policy

6. Identity Selector↔ IdP : User Authentication

7. Identity Selector ↔ IdP-STS : Identity Selector re-
trieves security token via WS-MetadataExchange

8. Identity Selector → RP-STS : Identity Selector for-
wards the security token (after, optionally, showing its con-
tents to the user)

9. RP→ CEUA : Welcome, you are now logged in!

The messages in steps 3, 5, 7 and 8 are carried over
SOAP, and must be transmitted over an SSL/TLS channel
to preserve their confidentiality. If the SP does not have an
STS server, then the messages in steps 3 and 8 will be car-
ried using HTTP over an SSL/TLS channel. The security
token must be encapsulated in a WS-Trust message [18],
and its integrity is preserved using an XML-Signature, as
part of the WS-Security protocol [19].

3.2 A proof-of-authenticity method

We now describe an approach to the provision of an ad-
ditional layer of authentication which we call a ‘proof-of-
authenticity’ method. It requires the user platform to store a
secret proof-of-authenticity value (known only to the client
and the RP), that is sent to the RP during the authentica-
tion process. Provision of this secret value proves to the
RP that the genuine user is involved, and hence implicitly
gives indication that the log-in attempt was initiated by the
legitimate user.

The proof-of-authenticity value is randomly generated by
the RP, and a new value is sent to the user platform after
every successful authentication (e.g. in the form of HTTP
cookie). That is, when a user inaugurates a log in proce-
dure using the CBIM system, the RP will request the current
proof-of-authenticity value from the user platform. The RP
will verify that the provided value is as expected and, if so,
will continue with the authentication process of the CBIM
system. If a value is not available to the user platform (e.g.
because this is the first occasion that the system has been
used from this platform), or the provided value is incor-
rect (e.g. because the user has switched platforms), then the
CBIM system authentication procedure will be aborted; the
user will then be requested to authenticate him/herself by
some other means (e.g. user name and password). This lat-
ter means should involve the use of information not known
to the identity provider. Once the user has been authenti-
cated (using the CBIM system or by some other means), the
RP will generate a new random proof-of-authenticity value,
store it, and send it to the user via a secure channel.

The provision of the proof-of-authenticity value should
be transparent to the user, and hence will not affect the us-
ability of the system. To demonstrate this fact, a prototype
implementation of this scheme has been developed (see sec-
tion 4 below).

3.3 Challenge-response method

The second approach requires the user platform to either
share a secret key with the RP or possess a signature key
pair for which the RP has a trusted copy of the public key.
The key is used as the basis of a challenge-response authen-
tication of the user to the RP.

This method requires modifying the XML-based secu-
rity policy declaration message sent from the RP to the user
platform (i.e. the CardSpace enabled web browser) during
security policy negotiation. Apart from presenting the re-
quested token, the user platform is required to provide a
valid response to a challenge sent by the RP. This response
is computed using either a secret key shared by the user
and the RP, or a private signature key belonging to the user.
We now describe the operation of these two possibilities in
greater detail.

3.3.1 MACed-response mechanism

This mechanism requires the RP and the user to share a se-
cret key. This key can be issued by the RP during the reg-
istration phase (i.e. when the user first registers an account
with the RP). It can be replaced if lost or compromised, and
can be stored on the user machine or on a security token
such as a smartcard. We assume that the user establishes
the shared secret key with the RP before any attempt at user
impersonation by a malicious IdP.

5

Use of the mechanism also requires the RP and the user
platform to agree on the use of a Message Authentication
Code (MAC) algorithm, where we write MAC k(x) to de-
note the MAC computed on data x using the key k.

The RP must also have the ability to request a user-
consent assertion. This request can be embedded within
its security policy declaration message. This requires
certain minor modifications to be made to the the WS-
SecurityPolicy message that contains the RP security policy.
To achieve this we propose the introduction of a new tag.
This new tag, which we call <UserConsentRequest>,
contains three data fields. The first holds the mechanism
to be used, the second holds a boolean value that indicates
whether or not the SP requires a user-participation assertion,
and the third holds the challenge value (explained below).

Figure 5 shows an XML Schema for the added tags, and a
Document Type Definition (DTD) of these tags is as follows.

<!ELEMENT UserConsentRequest (Type,
AssertionRequested, Challenge)>

<!ATTLIST Type Method (MACed | Signed)
"MACed">

<!ATTLIST AssertionRequested Enhanced (True |
False) "False">

<!ELEMENT Challenge (]PCDATA)>

Figure 6 gives an example of an XML message declar-
ing an RP security policy expressed using the WS-
SecurityPolicy standard. The policy states that the security
token to be received must be issued by a specific identity
provider (contoso.com), and that the desired proof of right-
ful possession method is the Symmetric method [20]. The
policy also lists the claims to be asserted (i.e. by listing their
values in the security token). In this example, the requested
claims are the given name and the surname, and each claim
is defined using a specific URI. The novel tags are marked
by inclusion within a box.

After processing the security policy of the RP, the
CardSpace enabling component on the user machine checks
whether or not the RP is requesting a user-consent assertion
by checking the value of the <AssertionRequested>
field. If the value is true, then the enabling component ex-
tracts the value of the <Challenge> field, which is es-
sentially a randomly generated nonce (i.e. a Number used
ONCE). If the value of the <Method> field is MACed, then
the user agent (or the enabling component) uses this nonce
to generate a MAC:

MAC k(idRP ‖n)

where || denotes concatenation; idRP is an identifier for
the RP, e.g. the RP’s domain name; n is the nonce; and k is
the shared key.

The generated response is then sent to the RP along with
the security token. Finally, the RP checks the response us-
ing the shared key k. If the MACed-response is correct, then

Figure 5. XML schema for the new tags

this acts as an implicit assertion of user-consent. The use of
a nonce as a challenge helps to prevent replay attacks.

3.3.2 Signed-response mechanism

To use this mechanism, the user platform must have access
to a key pair for a digital signature scheme. The user and RP
must also agree on the use of a particular such scheme; we
write Suser(x) to denote the user signature on data x. The
key pair can be issued to the user either by the RP during
the registration phase (i.e. when the user first registers an
account with the RP), or by a trusted Certification Authority
(in this case the user must provide its public key certificate
to the RP before this mechanism can be used). The key pair
can be replaced if lost or compromised, and can be stored on
the user machine or on a security token such as a smartcard.

An obvious question would be: Why use CardSpace if
there is already a PKI in use? The answer is simple: be-
cause the user and/or the RP might wish to use CardSpace to
retrieve attributes from the IdP for authorisation purposes.

This mechanism works in exactly the same way as the

6

Figure 6. Modified RP security policy

MACed-response mechanism, except that, instead of MAC-
ing the challenge value, the user platform signs the value us-
ing its private key. The value of the <Method> field must
be Signed. The response will be as follows:

Suser(idRP ‖n)

where idRP is an identifier for the RP, e.g. the RP’s do-
main name; and n is the nonce.

4 Implementing a proof-of-authenticity
method

A proof of concept implementation of the proof-of-
authenticity method has been successfully tested. The pro-
totype was built on the Pamela Project’s7 implementation
of the RP CardSpace component. The implementation in-
volved modifying the component by creating two software
modules to be held on the RP server; the two modules
were written using the PHP programming langauge (version
5). The implementation has been successfully tested on an
Apache web server (version 2.2.8) running on the Linux-
Fedora operating system.

7http://pamelaproject.com/

The proof-of-authenticity (PoA) is stored on the user
machine in the form of an HTTP cookie. The PoA value
is generated by hashing a combination of a random value
and transaction-specific information, to minimise the possi-
bility of accidental re-use of the same value.

The two software modules that perform the required
operations for the proof-of-authenticity method are called
PoASet and PoACheck. These two modules are integrated
with the CardSpace-enabling software on the RP’s server.
PoASet operates after the user has been authenticated using
a mechanism that does not rely on information known by the
identity provider (e.g. using username/password). PoASet
creates a PoA, stores it in a server database, and sends it
to the user in the form of an HTTP cookie. PoACheck de-
cides whether or not the user can use the CardSpace authen-
tication system. It first checks whether or not the user plat-
form possesses the valid PoA. If not, then PoACheck denies
the user request to use the CardSpace system and informs
the user that it will need to be authenticated using another
authentication mechanism. If the supplied PoA is correct,
PoACheck creates a new PoA, stores it in its database, and
sends a copy of it to the user in the form of an HTTP cookie.
Finally, it redirects the user’s browser to a web page where
the user can perform the authentication process using the
CardSpace framework8.

Figure 7. Initial login using the proof-of-
authenticity method

Figure 7 shows the message flow for the first user login
(i.e. where the user does not have a correct PoA). The mes-
sage flow steps are:

1. User→ RP : Login request using CardSpace.

2. User ↔ RP : RP checks whether or not the user has got
the correct PoA.

3. User← RP : Sorry you cannot use CardSpace this time!

4. User ↔ RP : Authentication of the user using another
mechanism (e.g. username/password).

8The source code of the two modules is given in an appendix to this
paper.

7

5. User← RP : You have been authenticated, Welcome!

6. User← RP : PoA to be presented next time.

After being issued with a PoA, the user will be able to
use CardSpace in subsequent login attempts from this host
machine.

5 Discussion

The proposed methods have the capability to increase the
privacy level of CBIM systems. They can also help to make
the RP’s judgement regarding the validity of the security
token less critical.

If one of the proposed method is deployed, then dis-
honest identity providers are prevented from impersonat-
ing users. This will not only enhance the reliability of the
system from the perspective of service providers, but will
also indirectly benefit users by reducing the risk to informa-
tion held by service providers on their behalf. The proposed
methods will also reduce the significance of ‘token-stealing’
attacks, such as those described in [8].

One possible disadvantage of the proposed methods is
that they have an impact on user mobility. This can be ad-
dressed by storing the PoA or the user keys on a portable
security token such as a smart card, or by storing them at a
trusted third party. The latter solution would, however, add
complexity to the system.

One obvious limitation of the proof-of-authenticity
method is that it requires the user to be authenticated at least
once using another authentication system before the CBIM
system can be used. However, we believe that the security
risk of this limitation is not significant, especially if the user
is a frequent visitor to the RP’s web site.

The proposed challenge-response method is built on the
WS-SecurityPolicy standard, which is widely used in CBIM
systems. Hence, integrating the method into currently de-
ployed CBIM systems should be straightforward.

A limitation of the challenge-response method is that it
requires modifications to the CBIM-enabling components
on the user machine and the RP server (including the RP
Security Token Service, an RP server based component re-
sponsible for declaring the RP security policy and manag-
ing received security tokens). A further limitation is the key
management overhead. However, if the shared key is com-
promised or stolen by an attacker, then it would not by itself
give immediate access to the RP, since it only provides an
additional layer of authentication. That is, the key manage-
ment process is arguably less security-critical than in many
other applications.

6 Concluding remarks

Since collaborative environments rely on identity man-
agement to securely identify and authenticate the users, we
believe that enhancing the user authentication in CBIM sys-
tems, as one of the most prominent identity management
solutions, will open the door for more reliable collaborative
applications.

In this paper we have proposed two independent meth-
ods to enhance user authentication in CBIM systems,
namely the proof-of-authenticity method and the challenge-
response method. These methods, if implemented correctly,
provide the RP with an implicit indication that the log-in
attempts are initiated by the legitimate users. A proof-of-
concept implementation of the first method has been de-
scribed.

The proposed techniques do add a certain degree of com-
plexity and overhead to the system. However, we believe
that implementing them should help to increase user accep-
tance of CBIM systems, and also help to enhance the accu-
racy of the RP judgement of the legitimacy of the user.

References

[1] V. Bertocci, G. Serack, and C. Baker. Understanding
Windows CardSpace. Addison-Wesley, 2008.

[2] K. Beznosov, D. J. Flinn, S. Kawamoto, and B. Hart-
man. Introduction to Web services and their secu-
rity. Information Security Technical Report, 10:2–14,
2005.

[3] K. Cameron. The laws of identity, May 2005. Mi-
crosoft Corporation.

[4] K. Cameron and M. B. Jones. Design rationale behind
the identity metasystem architecture, February 2006.
Microsoft Corporation.

[5] D. W. Chadwick. Federated identity management. In
International School on Foundations of Security Anal-
ysis and Design (FOSAD’08), volume 5705 of Lecture
Notes in Computer Science, pages 96–120. Springer-
Verlag, 2008.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language
(WSDL) — version 1.1, March 2001. The World Wide
Web Consortium (W3C).

[7] F. Curbera, S. Parastatidis, and J. Schlimmer (ed-
itors). Web services metadata exchange (WS-
MetadataExchange) — version 1.1, August 2006.
BEA Systems, Computer Associates, IBM, Microsoft,
SAP AG, Sun Microsystems, and webMethods.

8

[8] S. Gajek, J. Schwenk, and C. Xuan. On the insecurity
of Microsoft’s identity metasystem. Technical Report
TR-HGI-2008-003, Horst Görtz Institute for IT Secu-
rity, Ruhr-Universität Bochum, June 2008.

[9] International Organization for Standardization,
Genève, Switzerland. ISO/IEC FCD 24760, In-
formation technology — Security techniques — A
framework for identity management, July 2009.

[10] M. B. Jones. A guide to supporting InfoCard v1.0
within web applications and browsers, March 2006.
Microsoft Corporation.

[11] A. Jøsang and S. Pope. User centric identity manage-
ment. In Proceedings of Australian Computer Emer-
gency Response Team Conference (AusCERT 2005),
2005.

[12] Microsoft Corporation. Microsoft’s vision for an iden-
tity metasystem, May 2005.

[13] Microsoft Corporation. A technical reference for In-
foCard v1.0 in windows, August 2005.

[14] Microsoft Corporation. A Guide to Using the Iden-
tity Selector Interoperability Profile V1.5 within Web
Applications and Browsers, July 2008.

[15] Microsoft Corporation and Ping Identity Corporation.
A guide to integrating with InfoCard v1.0, August
2005.

[16] N. Mitra and Y. Lafon (editors). SOAP — version 1.2,
April 2007. The World Wide Web Consortium (W3C).

[17] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and
H. Granqvist (editors). WS-SecurityPolicy — version
1.2, July 2007. OASIS Standard.

[18] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and
H. Granqvist (editors). WS-Trust — version 1.3,
March 2007. OASIS Standard.

[19] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-
Baker (editors). Web services security: SOAP mes-
sage security — version 1.1, February 2006. OASIS
Standard Specification.

[20] A. Nanda. Identity selector interoperability profile
v1.0, April 2007. Microsoft Corporation.

Appendix
A Source code for the proof-of-authenticity

method

This appendix contains the source code for the proof-
of-concept implementation of the proof-of-authenticity
method.

A.1 Initialisation module

<?

/* ISSUES
1: if the user deleted the cookie and then tried to
log-in again, the previous record in the session DB
will not be deleted and a new session record will
be created.

*/

$server = "DB server"; $db_user = "DB user"; $db_pass = "DB
password"; $database = "DB name";

###
function fetch_substr_ip($ip)
{
/*
ipcheck
0|255.255.255.255
1|255.255.255.0
2|255.255.0.0

*/
$ipcheck = 1;
return implode(’.’, array_slice(explode(’.’, $ip), 0,
4 - $ipcheck));

}
###

function fetch_ip()
{

return $_SERVER[’REMOTE_ADDR’];
}

##

function vbrand($min, $max) {
$seed = (double) microtime() * 1000000;
mt_srand($seed);
return mt_rand($min, $max);

}

###

Function ReDirectPage($message, $To){
echo ("

<html> <head> <meta http-equiv=\"refresh\" content=\"6;
URL=$To\"></head> <body>

 <div
align=\"center\"><center>
<table border=\"1\" cellpadding=\"0\" cellspacing=\"0\"
style=\"border-collapse: collapse\" bordercolor=\"#111111\"
width=\"80%\"
id=\"AutoNumber1\" bgcolor=\"$tcolor1\">

9

<tr>
<td width=\"100%\" align=\"center\">

$message
</td>
</tr>

</table>
</center>

</div> </body></html>"); } ?>

A.2 PoASet module

<?php

include(’init.php’);

$HOST = $_SERVER[’REMOTE_ADDR’];
$USERAGENT = $_SERVER[’HTTP_USER_AGENT’];
$SESSION_IDHASH = sha1($USERAGENT .
fetch_substr_ip($HOST));
$SESSION_HOST = substr(fetch_ip(), 0, 15);
$TIMENOW = time();

#
$sessionhash = sha1($TIMENOW . $SESSION_IDHASH .
$SESSION_HOST . vbrand(1, 1000000));

#
$connection = @mysql_connect($server, $db_user,
$db_pass) or die("Database Connection Error #
: 100");

// $query = "INSERT INTO session (’sessionhash’,
// ’userid’, ’host’, ’idhash’, ’lastactivity’,
// ’useragent’, ’loggedin’)
// VALUES (’$sessionhash’, ’1’,’$HOST’,
// $SESSION_IDHASH’, ’$TIMENOW’, $USERAGENT’,
// ’$TIMENOW’);";

$query = "INSERT INTO session VALUES
(’$sessionhash’, ’1’,
’$HOST’, ’$SESSION_IDHASH’, ’$TIMENOW’,
’$USERAGENT’, ’$TIMENOW’);";

// echo $query. ’
’;
@mysql_db_query($database, $query) or
die("ERROR DB on Create New Session D#101");
@mysql_close($connection);

#
setcookie("sessionhash", "$sessionhash", $TIMENOW
+ 3600, ’/’);

#
ReDirectPage("Please Wait ...", "Homepage.php");

?>

A.3 PoACheck module

<?php include(’init.php’);
if (!isset($_COOKIE["sessionhash"]))
{
echo (’Sorry you cannot use CardSpace this time,
we have to ask you to enter your username and
password’);

ReDirectPage($messege, "passwdcheck.php");
}
else
{
$OLD_sessionhash = $_COOKIE["sessionhash"];
$HOST = $_SERVER[’REMOTE_ADDR’];
$USERAGENT = $_SERVER[’HTTP_USER_AGENT’];
$SESSION_IDHASH = sha1($USERAGENT .
fetch_substr_ip($HOST));
$SESSION_HOST = substr(fetch_ip(), 0, 15);
$TIMENOW = time();

#
$connection = @mysql_connect($server, $db_user,
$db_pass) or die("Database Connection
Error #: 100");
$result = @mysql_db_query($database, "SELECT *
FROM session WHERE sessionhash =
’$OLD_sessionhash’") or die("ERROR on Find
Session DB#102");
if (@mysql_num_rows($result) > 0){
$db = mysql_fetch_array($result);

if ($db[idhash] != $SESSION_IDHASH){
setcookie("sessionhash", "", time()-3600, ’/’);
$messege = "Uncorrect PoA! (Found in DB but from
different host). Sorry you cannot use
CardSpace this time, we have to ask you to enter
your username and password";
ReDirectPage($messege, "passwdcheck.php");
}

else{//Update old session
#

$NEW_sessionhash = sha1($TIMENOW . $SESSION_IDHASH .
$SESSION_HOST . vbrand(1, 1000000));

#
$connection = @mysql_connect($server, $db_user,
$db_pass) or die("Database Connection Error #:
100");

// $query = "INSERT INTO session (’sessionhash’,
// ’userid’, ’host’, ’idhash’, ’lastactivity’,
// ’useragent’, ’loggedin’) VALUES (’$sessionhash’,
// ’1’, ’$HOST’, ’$SESSION_IDHASH’, ’$TIMENOW’,
// ’$USERAGENT’, ’$TIMENOW’);";

$query = "UPDATE session SET sessionhash =
’$NEW_sessionhash’,
lastactivity = ’$TIMENOW’ WHERE sessionhash =
’$OLD_sessionhash’;";

// echo $query;
@mysql_db_query($database, $query) or
die("ERROR DB on Update New Session D#101");
@mysql_close($connection);
#

setcookie("sessionhash", "$NEW_sessionhash",
$TIMENOW + 3600, ’/’);

#
echo "Correct PoA! We will proceed using
CardSpace...";
ReDirectPage($messege, "CardSpace.php");

}}
else{

setcookie("sessionhash", "", time()-3600, ’/’);
$messege = "Uncorrect PoA! (Not Found in DB).
Sorry you cannot use CardSpace this time, we have
to ask you to enter your username and password";
ReDirectPage($messege, "passwdcheck.php");

}}?>

10

