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Abstract

In this paper, we solve a problem by Glover and Punnen (1997) from the
context of domination analysis, where the performance of a heuristic algorithm
is rated by the number of solutions that are not better than the solution found
by the algorithm, rather than by the relative performance compared to the op-
timal value. In particular, we show that for the Asymmetric Traveling Salesman
Problem (ATSP), there is a deterministic polynomial time algorithm that finds
a tour that is at least as good as the median of all tour values. Our algorithm
uses an unpublished theorem by Higgkvist on the Hamilton decomposition of
regular digraphs.
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1 Introduction, Terminology and Notation

It is well known that most combinatorial optimization problems are N/P-hard. Due to
the lack of polynomial time algorithms to solve A"P-hard problems to optimality, the
following two approaches to deal with such problems have been developed. The first
one is the design of polynomial approximation algorithms that produce feasible solu-
tions whose value is always within a constant factor of the optimum. Unfortunately,
many important combinatorial optimization problems, including the Asymmetric Trav-
eling Salesman Problem (ATSP), cannot have such approximation algorithms unless
P = N'P. The second approach is the use of various heuristics such as local search and
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genetic algorithms that usually provide good solutions for instances that arise in prac-
tice. The fact that heuristics do not have any theoretical guarantee implies not only
that for some instances the value of heuristic solution is arbitrary far from the optimum,
but also that we should have another theoretical way (in addition to computational
experiments) to compare various heuristics using some objective measures.

With this state of affairs in mind, Glover and Punnen [9] suggested a new approach
for evaluation of heuristics that compares heuristics according to their so-called dom-
ination ratio. We define this notion only for the ATSP since its extension to other
problems is obvious. The domination number, domn(A,n), of a heuristic A for the
ATSP is the maximum integer d = d(n) such that, for every instance Z of the ATSP
on n cities, A produces a tour T" which is not worse than at least d tours in Z including
T itself. The ratio domr(A,n) = domn(A,n)/(n — 1)!, i.e., the domination number
divided by the total number of tours, is the domination ratio of A. Clearly, the dom-
ination ratio is well defined for every heuristic and, for the same problem, a heuristic
with higher domination ratio may be considered a better choice than a heuristic with
lower domination ratio. (This kind of comparison is somewhat similar to the stan-
dard comparison of approximation algorithms, which continues to be the most popular
choice of performance analysis.)

To explore the possible range of the domination ratio for the ATSP, Glover and
Punnen [9] asked whether there exists a polynomial time (in n) algorithm A with
domination ratio domr(.A,n) > 1/p for some p being a constant or even polynomial in
n. They conjectured that, unless P = NP, the answer to this question is negative.
(While the authors of [9] considered only the symmetric TSP, we will discuss here
the more general ATSP.) In [13], we proved that the answer to the Glover-Punnen
question is, in fact, positive (even for the ATSP). We showed the existence of a required
algorithm for p = n — 1. The algorithm of [13] is of domination ratio ©(-17), i.e., the
Glover-Punnen question was still open for p being constant.

In this paper we show that, if there is a constant r > 1 such that, for every suffi-
ciently large k., a k-regular digraph of order n < rk can be decomposed into Hamilton
cycles in time polynomial in n, then there exists an ATSP algorithm with the desired
properties, for a constant p. This result is of interest due to the fact that Haggkvist
[14, 15] demonstrated (not published yet) that the above Hamilton decomposition ex-
ists for every 1 < r < 2, see also Alspach et al. [2]. His approach is constructive and
implies a polynomial algorithm to find such a decomposition. Haggkvist’s very deep
graph-theoretical result and our Theorem 2.3 imply that, in polynomial time, one can
always find a tour, which is not worse than 50% of all tours. Notice that the 50%
threshold may seem to be easily achievable at first glance: just find the best in a large
sample of randomly chosen tours. A random tour has approximately a 50% chance
of being better than 50% of all tours. However, in this approach the probability that
the best tour is longer than 50% of all tours is always positive (if we consider only
polynomial size samples of random tours). The difficulty of the problem by Glover and
Punnen is well illustrated by the problem [16] to find a tournament on n vertices with
the number of hamiltonian cycles exceeding the average number of hamiltonian cycles
in a tournament of order n. This problem formulated more than 30 years ago has not
been solved yet.

Due to very complex and tedious arguments of Haggkvist [14, 15], which can only be



applied to regular digraphs with an impractically large number of vertices (much more
than one million), the algorithm that we suggest in this paper is apparently impractical.
However, our result implies that a sufficiently fast tour construction heuristic with
domination ratio ©(1) could perhaps be obtained. Taking into consideration that
widely used tour construction heuristics are proved to be of domination ratio Q(ﬁ)
[19], the new heuristic would likely be of very high quality.

Polynomial algorithms with exponentially large domination number were suggested
in a number of papers including [3, 6, 9, 10, 11, 12, 13, 17, 18, 19, 20]. The strongest
results were obtained in [13] and [19]. In [13], we introduced an ©(n?®) time heuristic
for the ATSP, which, we proved to be of domination ratio @(nlj) This algorithm
has been evaluated by A. Zverovich (personal communication) using computational
experiments. While the quality of the tours found by the algorithm was quite high
especially for TSP instances taken from TSPlib (where the algorithm outperformed
well-known construction heuristics), the time complexity of the algorithm was too high
to apply it to instances of order n > 500. Thus the algorithm of [13] is also impractical.

However, there are several ATSP heuristics with exponentially large domination
number that proved to be practical. Using one of the main results in [13], Punnen and
Kabadi [19] managed to prove that several well-known and widely used ATSP construc-
tion heuristics, such as various vertex insertion algorithms and Karp’s cycle patching
algorithm, are of domination number at least (n — 2)!. Glover et al. [8], in a series
of computational experiments with several families of instances, showed that a combi-
nation of two algorithms with exponential domination number leads to a construction
heuristic for the ATSP, which clearly outperforms well-known construction heuristics.
Interestingly enough, Punnen and Kabadi (personal communication) reported that
certain well-known TSP heuristics such as the greedy algorithm and Christofides’ al-
gorithm have domination number significantly lower than (n — 2)!. These heuristics
do not perform well for ATSP (see [8]). Thus, a large domination number may be a
necessary requirement for a construction heuristic to be of high quality.

>
The ATSP is stated as follows. Given a weighted complete digraph (K, ¢), find a
>
Hamilton cycle in K, of minimum cost. Here the cost function ¢ is a mapping from
> >
A(K,), the set of arcs in K, to the set of non-negative reals. The cost of an arc zy
>

>
of K, is ¢(x,y). The cost ¢(D) of a subdigraph D of K, is the sum of the weights
of arcs in D. In this paper, we will call a Hamilton cycle, i.e., a cycle containing all

vertices in I&t}n, a tour. A digraph D is k-regular if the in-degree and out-degree of every
vertex in D equals k. A set {Cy,...,Ci} of k tours in a k-regular digraph D is a tour
decomposition of D if A(D) = UX_| A(C;). As |A(D)| = kn, A(C;)NA(C;) = 0 for every
pair of distinct ¢ and j.

Further terminology and notation from graph theory and network flows used in this
note can be found in [1, 4, 5].

2 Results

>
We start with a brief description of our algorithm applied to (K, ¢), where n is large
enough.



1. Compute k such that every k-regular digraph of order n has a decomposition into
Hamilton cycles (see Theorem 2.3 for details).

2. Find a minimum cost k-regular spanning subgraph M of (]i}’n, c).

3. Find the minimum cost tour Z in a Hamilton cycle decomposition of M. Return

Z.
Now we shall study this algorithm.

Lemma 2.1 (Tillson [21]) For everyn > 2, n # 4, n # 6, there exists a decomposition
<~

of K,, into tours.

>
Lemma 2.2 For a positive integer k < n, a k-regular spanning subgraph of (K, ¢) of
minimum cost can be found in polynomaial time.

> >
Proof: Construct a network N from (K,,c) by replacing every vertex x of K, by

the arc (a',2") of cost zero, lower bound /(2',2") = k and upper bound (capacity)
<~

u(z’,2") = k, and every arc (z,y) of K, by the arc (2", y’) of cost ¢(x,y), lower bound

zero and capacity one. In polynomial time, one can find a minimum cost circulation

in N (due to the nature of the network N, we can use even non-strongly polynomial

algorithms)[1]. This circulation corresponds to a minimum cost k-regular spanning
>

subgraph H of (K, ¢). O

Theorem 2.3 If there exists a constant r > 1 such that for every sufficiently large k
a k-regular digraph of order n < rk can be decomposed into tours and such a decom-
position can be found in time polynomial in n, then there exists a polynomial ATSP
approzimation algorithm of domination number at least (n — [2£1])(n — 2)!.

Proof: Let there exist constants r > 1 and kg, such that each k-regular digraph
(k > ko) of order less than rk can be decomposed into tours and such a decomposition
can be found in polynomial time. Let ng be the minimum integer such that no > 7
and ng > rkg.

We may assume that n > ng (otherwise, we can solve the ATSP to optimality by
considering a restricted number of tours). Let k = [2+1]. By Lemma 2.2, we can, in

polynomial time, find a minimum cost k-regular spanning subgraph M of (I&t}n, ¢). By
our assumption we can find a tour decomposition of M in polynomial time. Choose
the cheapest tour Z in this decomposition. Clearly, we can find Z in polynomial time.
To complete our proof, it suffices to show that Z is not more expensive than at least

(n — k)(n — 2)! distinct tours (including itself) in I&t}n.

Exd
Let Dy ={C1,Cs,...,Cp_1} be a decomposition of K, into tours such that ¢(Cy) >
c(Cy) > ... > ¢(Cr-1). (Such a decomposition exists by Lemma 2.1.) Given a tour
Exd

>
H in K, clearly there is an automorphism of K, that maps Cy into H. Therefore,

>
if we consider D; together with the decompositions (Dy, ..., D,_1y) of K, obtained

>
from D; using all automorphisms of K,, which map the vertex 1 into itself, we will
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have every tour of I&t}n in one of the D;’s. Moreover, every tour is in exactly n — 1
decompositions D,’s (by mapping a tour C; into a tour C; (i,7 € {1,2,....,n — 1}) we
fix the automorphism).

Choose the (n — k) most expensive tours in each of the D; and form a set 7 from
all distinct tours obtained in this manner. Clearly, |7| > (n —k)(n —2)!. It remains to
show that ¢(Z) < ¢(T) for every T € T. Without loss of generality, it suffices to prove

that ¢(Z) < ¢(Cy—k). Since M is a minimum cost k-regular spanning subgraph of I&t}n,
>
(M) < (K, — U1 A(C))). Therefore,

(M)
k

oK, — U1 A(C))
S - =1 : < C(Cn_k).

o(2) < ; <
a

Corollary 2.4 For the ATSP, there is a deterministic polynomial time algorithm of
domination ratio at least 1/2.

Proof: Haggkvist’s result shows that the assumption of Theorem 2.3 is valid for r = 2.
If n 1s odd, we can directly use the algorithm described in Theorem 2.3. For r = 2, its
domination ratio is at least

(n—[(n+1)/2])(n —2)!
(n—1)!

1
> —.
-2

In the rest of the proof, we use the operation of contraction of an arc ¢ = xy in
K :]i’)’n . The result of this operation is the weighted complete digraph K/a :]i’)’n Ja
with vertex set V(K/a) = V(K) U {v,} — {z,y}, where v, ¢ V(K), such that the
cost ¢x/q(b) of an arc b in K/a is defined as follows: cg/q(uw) = cx(uw), cxjq(uvye) =
ci(ur), cxja(vaw) = cx(yw), where u,w € V(K) — {z,y}.

Suppose now that n is even and z is an arbitrary vertex in X’n . For every arc a
out of x, contract a and use the algorithm in Theorem 2.3 for r = 2 to find a tour
T, in X’n /a. Let C, be the tour in X’n obtained from T, by replacing v, with z,y,
where a = zy. Let C be the best of all tours C,. Observe that C is at least as good as

(n —2)!/2 tours through any given arc out of z, implying that C is at least as good as
(n—1)(n—2)!/2 = (n —1)!/2 tours. 0

3 Remarks and Further Research

It 1s worth noting that Haggkvist’s decomposition result cannot be improved, in a
sense, since the digraph of order n with two connected components isomorphic to

-Z%n/Z is an (n/2 — 1)-regular digraph. This means that to improve the 50% threshold,
another approach is needed. It would be very interesting to have a solution to the
Glover-Punnen problem with p being constant, which does not rely heavily on previous
results.

The algorithm suggested in this paper appears to be impractical due to the argu-
ments of Haggkvist, which can only be applied to digraphs with impractically large
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number of vertices. However, the authors of [8] suggested a fast and high quality
construction heuristic based on two algorithms of exponentially large domination num-
ber. This shows that investigation of heuristics of large domination number may well
yield heuristics of practical interest and indicates the necessity of further research on
domination analysis of ATSP heuristics.

It would be interesting to study the domination ratio of heuristics for other NP-
hard combinatorial optimization problems. We believe that the approaches obtained
in this paper as well as in [13, 19] can be applied to many more such problems. For
example, see certain results for the quadratic assignment problem (QAP) proved in
[13]. These results show that heuristics with exponentially large domination numbers
exist not only for the ATSP, but also for more complicated optimization problems
such as the QAP. More generally, the idea of using polynomial algorithms to find the
best among exponentially many feasible solutions of A"P-hard optimization problems!
appears to be worth investigating in various settings: for local search heuristics, genetic
algorithms, construction heuristics, exact algorithms, etc.
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