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Abstract

A common contention is that more liquid financial contracts draw trading

volume from contracts for which they are close substitutes. This paper tests this

hypothesis by analyzing clustering of trading activity in DAX index options. Con-

tracts with identical maturities cluster around particular classes of strike prices.

For example, options with strikes ending on 50 are less traded than options with

strikes ending on 00. The degree of substitution between options with neighboring

strikes depends on the strike price grid and options’ characteristics. Our empirical

analysis finds a positive relation between clustering and substitutiability between

option contracts, providing support to the initial hypothesis.
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1 Introduction

A common contention is that more liquid financial contracts draw trading volume from

contracts for which they are close substitutes. Working (1953)’s famous example of

competing futures contracts illustrates this point. In 1950, the Chicago Board of Trade

introduced a contract written on Pacific Northwest soft wheat, the risk of which could

only be imperfectly hedged with an existing futures contract on hard wheat. Despite

offering a better hedge for some market participants, the contract failed because it could

not divert enough volume from the more liquid hard wheat futures market. Apparently,

the two futures contracts were sufficiently close substitutes so that the liquidity advan-

tage of the existing contract outweighed the hedging advantage that the new contract

offered to some market participants.

Despite the intuitive appeal of the above argument we are not aware of any formal

empirical analysis of the relation between trading volume and the degree of substitution

between different financial assets. This paper fills this gap by analyzing variations in

trading volume across option contracts with different strike prices. The advantage of

using options instead of futures is that many important contract characteristics such as

time to maturity as well as the underlying market can be held fixed.

On a typical day, trading activity in many index options markets follows a saw-toothed

pattern (e.g. DAX, CAC40, and DJ EURO STOXX 50). For options with the same

maturity date volume is high on one strike price, drops for the next highest strike price,

and rebounds for the second-next highest strike price, etc. If option traders indeed trade

off liquidity versus the precision of position we should be able to explain variations in

the degree of this clustering around some strike prices by changes in factors that affect

the degree of substitution between neighboring option contracts.

This paper focuses on DAX index options traded on Eurex since this market is highly

liquid and has stable institutional features. The exchange segments the market for

options with identical maturity dates into three strike classes according to their strike

prices. In the following, 200-strike options refer to the strike class containing all options

traded on the 200 index point grid, i.e. with strikes ending on 000, 200, 400, 600, or 800;
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100-strike options are traded on the 100 index point grid comprising strikes ending on

100, 300, 500, 700, or 900; 50-strike options are traded on the 50 index point grid with

strikes ending on 50. The additional hybrid 100/200-strike class contains all options

that are either 100- or 200-strike options.

Options with time to maturity exceeding one year all belong to the 200-strike class.

The exchange introduces 100-strike options with maturity up to one year and 50-strike

options with maturity up to six months. 200-strikes are more frequently traded than 100-

strikes, and 100/200-strikes are more frequently traded than 50-strikes. This clustering

of trading activity is partly due to differences in open interest. On average 200-strikes are

older than 100-strikes and, therefore, have typically accumulated higher open interest

than 100-strikes. Similarly, the open interest on 100/200-strikes is typically higher than

on 50-strikes.

Our hypothesis is that clustering of trading activity depends on the degree of substitution

between options with close strike prices. We maintain that the degree of substitution

between options not only depends on open interest but also on the level of the DAX

index, time to maturity, the volatility of DAX index returns, options’ moneyness, and

options’ deltas. When options with close strike prices are good substitutes, traders have

an interest in concentrating their trades on a subset of contracts to generate liquidity.

We hypothesize that the sequential introduction of strike prices serves as a coordination

device, making particular strike classes focal. 200-strikes are more attractive than 100-

strikes and 100/200-strikes are more attractive than 50-strikes. We define a measure of

clustering which compares the trading activity of neighboring options and estimate the

relation between clustering and the options’ characteristics to test our hypotheses.

Even though the DAX contract is highly liquid compared to other options, some con-

tracts, in particular away from the money, often are not traded on a given day. For

this reason any clustering measure will have censoring or truncation of the data. Our

empirical analysis deals with this issue by applying a Heckman (1979)-style estimation

procedure. Moreover, we ascertain the robustness of our results using an alternative

measure based on aggregate trading volume across strike classes, which does not suffer
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from truncation.

Related Literature

The trade-off between liquidity and other contract characteristics is an important is-

sue in derivatives markets, as illustrated above by Working (1953)’s famous example.

Nevertheless, only a few papers explicitly address the relation between liquidity and

substitution. Cuny (1993) analyzes financial innovation in a theoretical setup where

futures exchanges have a monopoly in their contract and compete with other exchanges

in the amount of liquidity their members are able to supply to hedgers. Economides

and Siow (1988) consider financial innovation in a model of spatial competition where

the division of markets is limited by a liquidity externality.

The paper also relates to the literature on price clustering. Even though price and

trade clustering are different phenomena, the line of reasoning for the existence of price

clustering applies partly to the context of trade clustering. In many financial markets

transaction prices cluster around round price fractions (Grossman, Miller, Cone, and

Fischel 1997, Gwilym, Clare, and Thomas 1998). Ball, Torous, and Tschoegl (1985)

argue that the amount of information available in the market could determine the market

participants’ degree of price resolution. To simplify negotiations traders might restrict

trading to a discrete price set that is coarser than the price set available (Harris 1991,

Harris 1994). In options markets for the same underlying asset and the same maturity

date there typically exist several option contracts which differ only in their strike prices.

In the spirit of Harris (1991)’s negotiation hypothesis, traders might use discrete strike

price sets which are coarser than the strike price set introduced by the exchange. This

could facilitate negotiations which are along two dimensions for options, namely prices

and strike prices. Moreover, as in Ball, Torous, and Tschoegl (1985)’s price resolution

hypothesis, traders possibly choose their desired strike price gradation depending on

how accurately they can forecast the value of the underlying asset on the maturity date

of the option. If traders use coarser strike price gradations than the exchange’s strike

price set this results in clustering of trading activity for option series with the same time
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to maturity.

Finally, Judd and Leisen (2002)’s theoretical model addresses the impact of the strike

price grid on the demand for options with different strike prices, reflected by their open

interest. However, their analysis does not include liquidity considerations.

The remainder of this paper is organized as follows. Section 2 describes the institutional

features of the DAX index options market. Section 3 explains what factors affect clus-

tering. Section 4 provides summary statistics of clustering in trading activity. Section

5 contains the econometric analysis of clustering of trading activity. Section 6 gives

robustness checks for our results. Section 7 summarizes the findings.

2 Market Description

DAX index options trade on the Eurex, which is an order driven electronic trading

system that ranks orders and quotes by their price and time precedence. Market makers

in DAX index options have to respond to at least 50 percent of quote requests during

each trading day. These have to be filled within one minute with quotes not exceeding

a maximum spread of 15 percent and with a minimum quoted depth of 20 contracts. In

exchange they face lower transaction fees (Deutsche Börse 2001b).

Options on the DAX 30 stock index are European style and have a contract value of

five Euros per index point. On every trading day the menu of available call and put

options includes eight different maturity classes. All contracts expire on the third Friday

of their respective maturity months or, if this is a holiday, on the last prior exchange

day. For options in the first three maturity classes these expiry dates are in the three

succeeding months, respectively. Contracts in maturity classes four, five, and six expire

in the succeeding three quarterly expiration months (March, June, September, and

December), respectively. Maturity classes seven and eight comprise the succeeding two

half-year expiration months (June and December).

DAX index options’ strike prices are restricted to lie on price grids with grid sizes of 50,

100, or 200 index points. The Eurex’ rules for introducing new option series mandate
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that strike prices for option series with time to maturity of more than 12 months have a

price gradation of 200 index points, options with a remaining term of six to 12 months

have a price gradation of 100 index points, and options with less than six months to

maturity have a price gradation of 50 index points (Deutsche Börse 2000a, Deutsche

Börse 2001a).

The menu of option series ranges from a minimum of five strikes for maturities longer

than six months to a minimum of nine strikes for shorter terms. New option series are

introduced if the closing level of the DAX exceeded (dropped below) the average of the

third- and second-highest (third- and second-lowest) existing exercise prices on the two

preceding trading days. An option series is only cancelled if no market participant holds

any open position (Deutsche Börse 2000a, Deutsche Börse 2001a).

In the DAX futures market contracts are valued at EUR 25 per index point. The futures’

maturities do not always match those of the DAX index options, since contracts are

available only for the succeeding three quarterly settlement dates.

3 Factors Affecting Clustering

Our hypothesis is that the degree of substitution between neighboring 50-strike and

100/200-strike options, and between neighboring 100-strike and 200-strike options de-

termines the extent of clustering. When two options with neighboring strike prices

are close substitutes, trading activity concentrates on the more attractive option. Ad-

ditionally, we argue that the sequential nature of introducing strike classes leads to

200-strikes being more attractive than 100-strikes and to 100/200-strikes being more

attractive than 50-strikes. We consider the following factors which affect the degree of

substitution between options:

Level of the DAX index

When the level of the DAX index goes up the absolute difference in strike prices be-

tween neighboring options relative to the index level decreases and, therefore, becomes
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economically less meaningful.1 The smaller the relative distance between options is (in

terms of their strike prices) the higher the degree of substitution between them. Hence,

clustering should increase when the level of the DAX index is high and decrease when

the level of the index is low, ceteris paribus.

Time to maturity and volatility of index returns

Many investors in options markets are directional traders who pursue buy-and-hold

strategies, i.e. they close their positions near maturity or exercise options. These traders

are interested in the index level at or near maturity. The accuracy with which traders

can predict the final index level decreases with increasing time to maturity and increas-

ing volatility of the index returns. If investors’ predictions become less precise, small

differences in strike prices are less important to them.2 Hence, in choosing between

neighboring options which have small strike price distances, such as 50 or 100 index

points, trading will concentrate on the more attractive strike classes. This means that

clustering should increase with volatility and time to maturity.

Options’ deltas

An option’s delta gives the sensitivity of the option’s price to changes in the index

level. Market makers usually combine options with different deltas in order to minimize

exposure to risk by keeping the delta of their total position close to zero. Other traders

also require a particular delta for their hedging needs. For these types of traders two

options with similar deltas are close substitutes. Therefore, one can expect clustering

to decrease when the distance between options’ deltas increases.

Options’ moneyness

In options markets trading tends to concentrate around the at-the-money point and

volume decreases for options that are farther away from the at-the-money point. We

1Harris (1991) uses a similar argument in the context of minimum price variation rules.
2This argument is similar to the price resolution hypothesis in Ball, Torous, and Tschoegl (1985).
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expect clustering to increase for options that are farther away from the money since

traders strive to coordinate trades to generate liquidity.

Options’ open interest

Open interest is a sign of potential future turnover in an option because it affects the

number of positions that will be closed out. If two neighboring options do not differ

much in the previous factors then traders prefer the option with higher open interest.

When options are close substitutes traders are interested in coordinating their trades

in order to increase the liquidity in the option series they hold. One way coordination

can be achieved is if some strike classes become focal. We argue that the sequen-

tial introduction of strike prices makes 200-strikes more attractive than 100-strikes and

100/200-strikes more attractive than 50-strikes.

4 Preliminary Characterization of Clustering in

Trading Activity

Our data set comprises all transactions in DAX index futures and options contracts

traded on Eurex during the period from 4 January 1999 until 31 July 2002 (908 trading

days). We restrict our analysis to the first four maturity classes for which all strike price

classes exist, and for which options are sufficiently liquid to allow estimating implied

volatilities and option deltas.

On average there are 12.00 (13.55) transactions per 200-strike call (put) option on each

trading day. The corresponding figures for 100-strike options are 13.24 (13.63) and

1.73 (1.51) for 50-strike options. Clearly, trading concentrates heavily on 100- and 200-

strike options. At first glance, it seems that trading activity clusters more strongly on

100-strike options than on 200-strike options. However, these simple averages may be

misleading because they do not account for the sequential nature of option introduction.

For example, consider 200-strikes which are introduced earlier than 100-strikes. As time

passes and the level of the index changes, some of the older 200-strike options go very
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deep in- or out-of-the-money while new 100-strike options are only introduced closer

to the at-the-money point. Therefore, usually there exist more deep-in- or out-of-the-

money 200-strikes than 100-strikes. Typically, far-away-from-the-money options witness

low transaction volume or none at all. This distorts any measure of clustering based on

the average number of transactions per option in favor of the 100-strike options. The

same argument applies when comparing the average transaction volume per option for

100/200-strikes with that for 50-strikes.

To account for the above issue we recompute the average trading activity for the subset

of options which have a ”neighbor“ belonging to the other strike class. For example, a

200- and a 100-strike option are neighbors if their strike prices are 100 index points apart.

According to the new statistics, 200-strike call (put) options have the largest average

trading volume, 18.09 (19.98), followed by the 100-strike options, 13.26 (13.69). Again

the 50-strike options have much lower trading activity: 1.72 (1.50). Table 1 gives a more

detailed breakdown of the average trading activity across options belonging to different

maturity classes and different moneyness ranges. For both call and put options, trading

concentrates around the at-the-money point and decreases with absolute moneyness.

Similarly, trading activity decreases when moving to a higher maturity class.

[TABLE 1 about here]

A simple way to see how clustering of trading activity is related to time to maturity

and moneyness is to divide the average trading volume of the higher strike class options

by that of the lower strike class options. These statistics are reported in Table 2. The

figures for both call and put options are similar. For the 200- versus 100-strike options

there is a clear pattern that clustering increases with higher maturity classes and with

larger absolute moneyness. The case of 100/200- versus 50-strike options shows less

regular behavior. Clustering appears to increase with higher maturity classes, but this

pattern is less pronounced than in the previous case. No clear-cut pattern for the impact
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of moneyness on clustering emerges.

[TABLE 2 about here]

To look at the effects of volatility and the index level on clustering we further refine our

analysis. Table 3 reports separately the ratios of average trading volumes on trading

days with high/low volatility and high/low index level. On days with volatility below

the median (low volatility) clustering tends to be lower than on days with volatility

above the median (high volatility). This is in line with the hypothesis in Section 3. The

effect is more pronounced for 100/200- versus 50-strike options than for 200- versus 100-

strike options. In contrast, for 100/200- versus 50-strike options the impact of the index

level on clustering appears to be different from that for 200- versus 100-strike options.

In the former case, clustering tends decrease with increasing index level, contrary to the

hypothesis in Section 3. In the latter case, the impact of an increase in the index level

is in line with our expectations.

[TABLE 3 about here]

The simple statistics above provide preliminary evidence for some of the hypotheses in

Section 3. In the next part we move to a formal analysis of clustering that simultaneously

gauges the effect of all factors and accounts for various econometric issues.

5 Analysis of Clustering in Trading Activity

This section introduces a measure of clustering relating daily trading activity of neigh-

boring options belonging to different strike classes. Then this measure is regressed on

variables that capture the impact of the factors described in Section 3.
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5.1 Pairwise Measure of Clustering

A natural way to measure clustering is to define a function f(T+, T−) which depends

on the trading activity in two neighboring options belonging to different strike classes,

where T+ (T−) is the trading volume in the more (less) attractive option. This function

should increase if T+ increases relative to T−. A problem is how to deal with the cases

when one or both of the options have zero trading volume. As can be seen in Table

4, roughly three quarters of all observations of pairs of 100/200- and 50-strike options,

and roughly one half of all observations of pairs of 200- and 100-strike options fall into

in this category. One way to deal with this issue is to restrict the clustering function

to take values on a finite interval [a, b]. If one of the options has non-zero volume while

the other option has zero volume then the function is set to one of the end points of

the interval, i.e. f(T+, 0) = b, T+ > 0, and f(0, T−) = a, T− > 0. If both options have

zero volume the function is set to some fixed value, e.g. f(0, 0) = (a + b)/2.

One needs to account for the mass points on a, b, and (a + b)/2 when regressing this

measure on the factors that explain clustering. Standard models for limited dependent

variables will give biased results in our setting because of the heteroscedasticity and

autocorrelation in the residuals that are typical in financial data. In principle, it is

possible to correct these biases, but this requires maximization of cumbersome likelihood

functions. In the paper we pursue a simpler approach by only using observations for

which both options have non-zero trading volume. This introduces a sample selection

bias that can be corrected in a robust manner using a Heckman (1979)-style estimation

procedure.

[TABLE 4 about here]

We consider separately clustering of 100/200- versus 50-strikes and of 200- versus 100-

strike options. The measure of clustering between the i-th pair of 200- and 100-strike

options, PC
200/100
i,t , is defined as the logarithm of the ratio of the number of transactions

on the 200-strike over the number of transactions on the 100-strike on date t. Moreover,

we define analogous measures of clustering for the open interest, PO
200/100
i,t , with the
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convention that these measures are set equal to zero when both the numerator and the

denominator are zero. Formally,

PC
200/100
i,t =

 ln
(

T 200
i,t

T 100
i,t

)
if T 200

i,t · T 100
i,t > 0,

not defined otherwise,
(1)

PO
200/100
i,t =


ln

(
O200

i,t

O100
i,t

)
if O200

i,t ·O100
i,t > 0,

0 if O200
i,t + O100

i,t = 0,

not defined otherwise,

(2)

where i ∈ N 200−100
t , t = 1, . . . , T and

N 200−100
t : set of neighboring 100- and 200-strike options,

T 100
i,t : transaction volume on the 100-strike,

T 200
i,t : transaction volume on the 200-strike,

O100
i,t : open interest in the 100-strike,

O200
i,t : open interest in the 200-strike.

Table 4 reports summary statistics for the pairwise measure of clustering. The next

section describes our econometric procedure and presents the estimation results for the

pairwise measure of clustering.

[TABLE 4 about here]

5.2 Regression Results

Regressors

We consider the pairwise measures of clustering PC
100/50
i,t and PC

200/100
i,t separately for

call and put options. As regressors we include the inverse of the DAX index level ( 1
DAXt

),

time to maturity (ttmi,t) as well as its square to account for possible non-linear maturity

effects. The daily GARCH(1,1) DAX index volatility (volt) serves as a proxy for the

impact of volatility on clustering. To gauge the effect of open interest on clustering

we include the previous trading day’s value of the appropriate measure of clustering for

open interest, POi,t−1. The interaction between ttmi,t and POi,t−1 captures whether the
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importance of open interest diminishes with shorter remaining life time of the options.

As explained in Section 3 clustering should decrease with larger difference between the

deltas of neighboring options. The natural approach to measure this effect is to use

the absolute value of the arithmetic difference between options’ deltas as a regressor.

However, this measure is sensitive to moneyness. To reduce potential moneyness effects

we scale the absolute value of the arithmetic difference by the absolute value of the

average deltas of the two options. Option deltas are computed using the Black and

Scholes (1973) formula and the implied volatility, which is obtained using the proce-

dure described in Appendix A. For near-to-maturity options implied volatilities become

very unstable and computing them from the data makes little sense. Therefore, in all

estimations we restrict the sample to options with maturity exceeding seven days.3

Clustering should increase with higher average moneyness and this impact could be

asymmetric depending on whether the option is in or out of the money. An option

pair is in (out of) the money if the average moneyness4 of the two options is positive

(negative). We use as regressors the average absolute moneyness (avmi,t) of the two

options in the pair interacted with the dummy Di,t, that takes on value one if the pair

of options is in the money on day t and zero otherwise, as well as its inverse 1 − Di,t.

To account for possible nonlinear effects, we also include avm2
i,t and avmi,t multiplied

by time to maturity.

To avoid problems due to serial correlation in the clustering measure and regressors,

which could lead to spurious results, we include the lagged value of the clustering mea-

sure as an additional regressor.

Given the choice of dependent variable, our sample is restricted to option pairs for which

the clustering measure is defined on the current and on the previous trading day. As can

be seen in Table 4, a considerable number of option pairs are not usable as observations.

Using a simple OLS estimator could potentially lead to biased results. To account for

this problem we employ a two-stage estimation procedure based on Heckman (1979).

As a first step, we estimate a probit equation for the inclusion of an option pair in the

3Using the odd days only yields virtually the same results.
4Moneyness is defined as m = 1− strike

DAX for call options and as m = strike
DAX − 1 for put options.
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sample. Then we use this estimation to correct for sample selection bias in the linear

regression.

Selection Specification

We assume there exist three latent variables, u50
i,t, u100

i,t , and u200
i,t , which take on positive

values whenever the option in the corresponding strike class is traded on the current

and on the previous trading day, and which take on non-positive values otherwise, i.e.

for k ∈ {50, 100, 200}, t = 2, . . . , T , and i ∈ Kk
t ,

uk
i,t

 > 0 if T k
i,t · T k

i,t−1 > 0,

≤ 0 otherwise,
(3)

where Kk
t is the set of k-strike options on day t.

To fix ideas, let us focus on the case of 200- versus 100-strike options. We assume that

there exists a pair of latent variables
(
yi,t, y

∗
i,t

)
defined as follows. It takes on the values

of the clustering measure on the current and on the previous trading day whenever they

are both defined; otherwise the pair is not observed. Formally, for t = 2, . . . , T and

i ∈ N 200−100
t ,

(
yi,t, y

∗
i,t

)  =
(
PC

200/100
i,t , PC

200/100
i,t−1

)
if u100

q(i),t · u200
l(i),t > 0,

not observed otherwise,
(4)

where N 200−100
t is the set of neighboring 100- and 200-strike options on day t, and q(i)

and l(i) are the corresponding indices of the 100- and 200-strike options in the i − th

pair, respectively.

The three latent variables depend on three sets of regressors, z100
i,t , z200

i,t , and xi,t:

u100
q(i),t =

(
z100

q(i),t

)′
γ100 + ε100

q(i),t, (5)

u200
l(i),t =

(
z200

l(i),t

)′
γ200 + ε200

l(i),t, i ∈ N 200−100
t , t = 2, . . . , T, (6)

yi,t = y∗
i,tβ

∗ + x′
i,tβ + νi,t. (7)
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Assumption 1

(i) The residuals ε100
q(i),t, ε200

l(i),t, and νi,t are trivariate normally distributed.

(ii) ε100
q(i),t and ε200

l(i),t are uncorrelated and their variances are normalized to one:

var(ε100
q(i),t) ≡ var(ε200

l(i),t) ≡ 1.

(iii) The conditional covariances between the residuals in Eqs. (5) and (7) and between
the residuals in Eqs. (6) and (7) are linear functions of a subset of the regressors
xi,t ∪ z100

q(i),t and xi,t ∪ z200
l(i),t, respectively:

Cov[εk
j,t, νi,t|y∗

i,t, xi,t, z
100
q(i),t, z

200
l(i),t, (yi,t, y

∗
i,t) observed] =

(
bk
i,t

)′
ξk, (8)

bk
i,t ⊂ xi,t ∪ zk

j,t, k ∈ {100, 200}, i ∈ N 200−100
t , j ∈ {q(i), l(i)}, t = 2, . . . , T.

With the above assumption we obtain the following proposition.

Proposition 1

Under Assumption 1,

PC
200/100
i,t = PC

200/100
i,t−1 β∗ + x′

i,tβ + M100
i,t

(
b100
i,t

)′
ξ100 + M200

i,t

(
b200
i,t

)′
ξ200 + ωi,t, (9)

where

ωi,t = νi,t − E
[
νi,t|u100

q(i),t > 0, u200
l(i),t > 0

]
, i ∈ N 200−100

t , (10)

Mk
i,t =

φ
((

zk
j,t

)′
γk

)
Φ

((
zk

j,t

)′
γk

) , k ∈ {100, 200}, j ∈ {q(i), l(i)}, t = 2, . . . , T, (11)

where φ() and Φ() are the pdf and cdf of the standard normal distribution, respectively.

The proof is a straightforward extension of that in Heckman (1979) and is omitted.

For 100/200- versus 50-strikes similar equations are obtained. Note that in this case

Assumption 1 has to be modified to apply separately to the set of pairs of 50-strikes

neighboring a 100-strike and the set of pairs of 50-strikes neighboring a 200-strike.5

5In an alternative approach, which is not reported in the paper, we estimate probit equations for observ-
ing volume on individual options on a single trading day. However, among the four correction terms in
the linear estimation, the two terms belonging to a single option in the pair are highly collinear. The
specification used in the paper avoids this problem.
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Probit Estimation

The dependent variable in the probit estimation is an indicator variable Ik
i,t,t−1 that takes

on the value one whenever the ith option in strike class k ∈ {50, 100, 200} witnesses

trading activity on days t and t− 1, and takes on the value zero otherwise.

The liquidity of options decreases with increasing time to maturity and moneyness.

Therefore, the set of regressors zi,t comprises time to maturity and its square: ttmi,t−1

and ttm2
i,t−1. Since out-of-the-money options are more traded than in-the-money op-

tions, we include absolute moneyness of the option |mi,t−1| interacted with the dummy

variables Di,t−1 and 1−Di,t−1. The dummy Di,t−1 takes on value one if the option is in

the money on day t − 1 and zero otherwise. To account for possible time to maturity

interaction effects, we also include |mi,t−1| ·ttmi,t−1 and |mi,t−1| ·ttm2
i,t−1, both interacted

with the dummy variables Di,t−1 and 1−Di,t−1. Since options with higher open interest

are more liquid, we add as a regressor the open interest, Oi,t−2. Moreover, we interact

Oi,t−2 with ttmi,t−1. Additionally, we include index volatility, voli,t−1, the effect of which

is explained below. To control for possible autocorrelation in the residuals of the probit

equation we also include the lagged dependent variable, Ik
i,t−2,t−3.

[TABLE 5 about here]

Table 5 reports summary statistics for the individual options in the different strike

classes. For the probit estimation we include all options for which the dependent variable

and its lagged value exist, i.e. all options that are listed on four consecutive trading

days. Moreover, to avoid that the dependent variable covers overlapping trading days

we restrict the sample to include only even days. After estimating the models including

the full set of regressors we test for joint significance of variables using a Wald test and

re-estimate the restricted specifications. For reasons of brevity we report results only

for the restricted specifications, summarized in Table 6.

[TABLE 6 about here]
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The coefficients on ttmi,t−1 and Oi,t−2 are all significant and have the expected signs. The

regressor voli,t−1 is significant with positive coefficient with the exception of 50-strike

options. We can interpret this result as follows. When the DAX index becomes more

volatile, demand for options tends to increase (demand effect) and at the same time

clustering should increase (substitution effect). The two effects unambiguously should

increase the probability of volume on 200-strikes, which is confirmed by the estimation

results. For 100-strikes the impact of substitution is ambiguous: some transactions shift

from 50- to 100-strike options, increasing the probability of observing positive volume

on 100-strikes. However, some transactions shift from 100- to 200-strike options as well,

decreasing the probability of observing positive volume on 100-strikes. Therefore, there

is no prediction for the overall effect of volatility on 100-strikes. In contrast, for 50-strike

call options the substitution effect is predicted to decrease the trading activity. The

insignificant coefficient suggests that the demand and substitution effects cancel each

other. Finally, the estimations confirm that increasing absolute moneyness negatively

impacts the probability of observing trading volume.

Second-stage Estimation

To correct for potential selection bias we include the correction terms Mk
i,t obtained

from the probit estimation. The set of regressors bk
i,t in the covariance terms

(
bk
i,t

)′
ξk

includes all of the regressors in xi,t and most of those in zk
·,t from the corresponding

probit estimations. To avoid collinearity problems we do not include lagged values of

the regressors in xi,t. For the same reason only the moneyness regressors from the linear

specification xi,t are included in bk
i,t and not the corresponding variables from the probit

equations.

Results for the second-stage regressions are reported in Tables 7 and 8. The coefficient

on ttmi,t is always significant with the expected positive sign. With the exception

of 100/200- versus 50-strike put options, the coefficient on POi,t−1 is significant with

the correct sign. The coefficient on 1
DAXt

is always significant, with the exception of

100/200- versus 50-strike call options. For 100/200- versus 50-strike put options it is
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positive, which suggests that clustering decreases when the DAX index level increases,

contrary to our predictions. In contrast, for 200- versus 100-strike options it has the

correct sign. The coefficient on voli,t is always significant with the expected sign. The

results on the impact of moneyness on clustering are ambiguous. For 100/200- versus

50-strike options our estimates indicate that clustering decreases with higher average

moneyness, contrary to our predictions. For the 200- versus 100-strike options the effect

of moneyness on clustering in out-of-the-money options is positive, while for in-the-

money options the effect is reversed. The delta regressor is always significant with a

negative sign, in line with our hypothesis.

[TABLE 7 about here]

[TABLE 8 about here]

6 Robustness Checks

Clustering may depend on the past movements of the index. For example, consider the

period when only 200-strike options exist. If the index value changes significantly during

that period then trading spreads across different 200-strike options, each of them being

near the money only for a short period of time. In this case, 200-strike options do not

have a large built-up liquidity advantage over 100- and 50-strike options when these are

introduced. Thus, all else equal, clustering should be low. In contrast, if the index does

not move much then the older 200-strike options accumulate a larger liquidity advantage

over 100- and 50-strike options. Thus, all else equal, clustering should be high. In our

regressions the lagged value of the pairwise measure and open interest control for this

effect to some degree. However, to ascertain that the above effect does not impact the

validity of our results, we re-estimate the restricted specifications of the regressions in

Tables 7 and 8 using only pairs of options which are simultaneously introduced. In this

case, no option has an initial liquidity advantage. We report the results in Table 9. The

regression coefficients do not change signs. The coefficients for the volatility and the
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delta difference become insignificant for the case of 100/200- versus 50-strike options.

Another way in which time to maturity may affect clustering is the following. Consider,

for example a newly introduced 50-strike option and its older 100-strike neighbor which

already has a built-up liquidity advantage. After the introduction of the 50-strike option,

both options compete for attracting volume and the older option’s liquidity advantage

will tend to decrease over time. Clustering may decrease with decreasing time to ma-

turity because of this or the effect in Section 3. In the regressions for pairs where both

options have the same age (see Table 9) this liquidity advantage effect is not present.

The coefficients on time to maturity are roughly the same as in the earlier regressions,

which indicates that the effect of time to maturity is as described Section 3.

To explore the robustness of the two-stage estimation procedure we use an alternative

measure of clustering. It is based on daily aggregated trading volumes and has the

advantage that it is not truncated for the first maturity class. Although this measure

does not allow us to isolate all the effects in Section 3 it can be used to obtain results

free of selection bias for some factors. The measure is defined as follows. Consider 100-

versus 200-strike options. First, we record the individual transaction volumes in every

pair of neighboring options on each day. Then for each day we separately sum up over

all option pairs the number of transactions on 200-strikes and 100-strikes, respectively.

The aggregate measure of clustering of 200- versus 100-strikes, AC
200/100
t , is defined as

the logarithm of the ratio of the transaction volume on 200-strikes over that on 100-

strikes. To account for the impact of the open interest we define a similar measure

AO
200/100
t . The measures for the case of 100/200- versus 50-strike options are computed

analogously. Since we aggregate over different strike prices the effects of moneyness

and differences in deltas can not be isolated. Moreover, clustering in the deep in- and

out-of-the-money options impacts the value of this measure much less than clustering

in the near-the-money options.

Estimation results for the first maturity class are reported in Table 10. The coefficients

for time to maturity, open interest, and volatility have the correct signs and have almost

identical patterns of significance as in the case of the pairwise measure. For the DAX
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index level the coefficients exhibit the same behavior for both the pairwise and the ag-

gregate measures. This provides evidence for the robustness of the two-stage estimation

procedure.

7 Conclusion

In the DAX index options market contracts with identical maturities cluster around

particular classes of strike prices. For example, options with strikes ending on 50 are

less traded than options with strikes ending on 00. Our main hypothesis is that this

clustering of trading activity depends on the degree of substitution between options

with neighboring strike prices. When two options with nearby strike prices are close

substitutes, trading concentrates on the option belonging to the more attractive strike

class. We maintain that 200-strikes are more attractive than 100-strikes, and that

100/200-strikes are more attractive than 50-strikes.

Our empirical analysis broadly finds a positive relation between clustering and factors

that increase the degree of substitution between options, such as differences in open

interest, time to maturity, the volatility of DAX index returns, options’ moneyness, and

differences in options’ deltas. This lends support to our narrow hypotheses about the

way in which these factors affect clustering and the attractiveness of different strike

classes. More broadly, our results provide evidence in favor of the hypothesis that more

liquid financial contracts draw trading volume from contracts for which they are close

substitutes.

The trade-off between liquidity and other contract characteristics is an important issue

in derivatives markets. In futures markets, the success of a newly introduced contract

depends to a large extent on the degree of substitution with existing contracts (e.g.,

Working (1953)). In options markets, an exchange also needs to consider this trade-off

when it decides on the grid size of strike prices for option contracts. On the one hand,

if the grid is too coarse, overall trading volume might be low because some traders do

not find a contract tailored to their needs. On the other hand, if the grid is too fine,
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overall volume on the exchange might decrease because individual contracts have too

little trading volume, since demand is spread across too many contracts. Intuitively,

if options with different strike prices are good substitutes the strike price grid can be

coarser than if they are bad substitutes. Our paper is just a first step in understanding

better empirically the trade-off between precision of position and liquidity. Further

research into this issue promises to deliver important implications for market design.

A Estimation of the Implied Volatilities

On every trading day we match DAX option prices with the nearest to maturity DAX

futures prices. Only transactions that are at most 5 minutes apart are considered. We

obtain the implied spot level of the DAX for the corresponding five minute intervals by

inverting a simple futures pricing formula. The fair price of a future is assumed to be

the continuously compounded spot price of the underlying.6 That is,

Ft,v(TF ) = St,ve
r(TF −t), (12)

where

TF : future’s maturity,
St,v : (implied) underlying index in the vth five minute interval on day t,
Ft,v : nearest to maturity futures contract in the vth five minute interval on day t,
r : risk-free rate for future’s term (TF − t).

We compute the implied spot price of the DAX index by inverting equation (12) and

using the average futures price over the respective five minute interval. The appropriate

risk-free interest rate is obtained by linearly interpolating EUR-Libor rates bracketing

the option’s maturity.7 Based on this sample of matched option prices, spot prices, strike

prices, and interest rates, we calculate the implied volatilities by inverting the Black and

6The DAX index is computed assuming reinvestment of dividends after corporate income tax on dis-
tributed gains (Deutsche Börse 2000b). German income tax law treats dividends as if they partially
include corporate income tax. Thus, the above futures pricing formula is not exactly the fair price
if the marginal investor’s personal income tax rate differs from the corporate income tax rate. For a
discussion of this issue see Hafner and Wallmeier (2001). In our data this problem appears to be a
minor one.

7The interest rate convention for Libor rates is linear and, therefore, rates have to be converted to
continuous compounding first.
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Scholes (1973) formula. Following Hafner and Wallmeier (2001), we approximate the

smile on every trading day by fitting via OLS a smooth differentiable spline function

whose segments join at the at the money point. The general specification allows for

quadratic function segments for the in- and out-of-the-money ranges, respectively. Let

M = strike/DAX. We impose

σIV = α0 + α1M + α2M
2 + D

(
β0 + β1M + β2M

2
)

+ ε, (13)

D =

 0 if if strike below the at-the-money point,

1 if if strike above the at-the-money point.

The restriction is imposed that the two segments join at the at-the-money-point (M =

1), i.e. β0 + β1 + β2 = 1. Moreover, the smile is assumed to be a smooth, differentiable

function with its minimum at M = 1, i.e.

d(β0+β1M+β2M2)
dM

∣∣∣∣
M=1

= β1 + 2β2 = 0. (14)

Hence, the final specification to be fitted to the data is given by

σIV = α0 + α1M + α2M
2 + α3D

(
1− 2M + M2

)
+ ε. (15)
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Table 1:

Average trading volume for pairs of options

Maturity class Maturity class
Moneynessa 1 2 3 4 1 2 3 4

Call options
50-strike options 100/200-strike options

m ≤ −0.2 0.31 0.78 0.46 0.43 4.24 7.42 6.46 14.58
−0.2 < m ≤ −0.15 0.85 1.13 0.83 0.50 13.61 18.08 12.82 17.89
−0.15 < m ≤ −0.1 2.15 1.74 0.51 0.39 25.50 30.73 17.10 14.76
−0.1 < m ≤ −0.05 5.33 1.90 0.53 0.26 74.16 45.10 16.75 10.22
−0.05 < m ≤ 0 15.60 1.71 0.44 0.28 173.83 45.10 10.33 7.28
0 < m ≤ 0.05 4.64 0.57 0.20 0.14 67.51 15.22 4.39 3.13

0.05 < m ≤ 0.1 0.30 0.11 0.05 0.07 9.86 3.25 1.91 1.47
0.1 < m ≤ 0.15 0.11 0.09 0.07 0.04 4.32 1.60 1.56 0.82
0.15 < m ≤ 0.2 0.07 0.07 0.09 0.02 2.74 1.08 1.08 0.61

0.2 < m 0.02 0.03 0.08 0.02 1.09 0.45 0.49 0.23

100-strike options 200-strike options

m ≤ −0.2 1.16 1.74 1.24 1.48 1.84 3.01 2.88 4.78
−0.2 < m ≤ −0.15 6.74 7.22 4.77 3.86 11.63 12.02 11.17 11.63
−0.15 < m ≤ −0.1 17.61 18.86 9.28 5.34 21.96 27.39 17.53 12.98
−0.1 < m ≤ −0.05 60.46 35.78 11.67 5.65 74.71 50.58 17.52 11.87
−0.05 < m ≤ 0 155.31 37.37 7.76 4.91 181.07 52.15 12.72 9.62
0 < m ≤ 0.05 61.30 12.49 3.00 1.79 76.18 18.37 5.57 4.33

0.05 < m ≤ 0.1 6.55 2.01 0.65 0.54 10.63 3.54 2.03 1.76
0.1 < m ≤ 0.15 2.04 0.73 0.37 0.27 4.07 1.51 1.26 0.86
0.15 < m ≤ 0.2 0.90 0.26 0.28 0.18 2.12 0.88 0.69 0.61

0.2 < m 0.40 0.08 0.07 0.05 0.83 0.41 0.43 0.27
Put options

50-strike options 100/200-strike options

m ≤ −0.2 0.30 0.55 0.30 0.09 4.32 8.67 6.66 3.27
−0.2 < m ≤ −0.15 0.93 0.73 0.44 0.14 14.15 19.96 11.30 5.64
−0.15 < m ≤ −0.1 2.09 0.90 0.54 0.23 30.45 29.36 14.03 6.06
−0.1 < m ≤ −0.05 4.31 1.20 0.34 0.27 67.53 39.00 14.18 7.60
−0.05 < m ≤ 0 11.76 1.31 0.44 0.28 157.55 41.71 11.20 8.52
0 < m ≤ 0.05 5.69 0.70 0.28 0.25 72.20 18.86 6.16 5.30

0.05 < m ≤ 0.1 0.51 0.17 0.09 0.06 13.37 5.58 2.67 2.64
0.1 < m ≤ 0.15 0.22 0.06 0.04 0.04 7.39 3.78 2.09 3.00
0.15 < m ≤ 0.2 0.16 0.09 0.03 0.01 6.43 3.24 1.77 4.21

0.2 < m 0.09 0.06 0.05 0.03 5.47 2.47 2.28 7.24

100-strike options 200-strike options

m ≤ −0.2 1.89 3.18 2.02 0.94 3.81 6.56 5.32 3.77
−0.2 < m ≤ −0.15 8.73 11.29 5.02 2.49 13.86 20.52 10.59 7.12
−0.15 < m ≤ −0.1 22.68 21.14 7.40 3.78 33.70 32.11 14.29 8.61
−0.1 < m ≤ −0.05 56.33 29.97 8.60 4.85 80.03 46.89 16.67 10.93
−0.05 < m ≤ 0 136.22 33.44 8.16 5.69 173.84 50.37 14.75 11.76
0 < m ≤ 0.05 65.49 16.11 4.43 3.48 79.00 21.49 7.48 6.94

0.05 < m ≤ 0.1 9.92 3.95 1.58 1.28 13.32 5.76 2.75 2.65
0.1 < m ≤ 0.15 4.19 1.80 1.06 0.66 6.23 3.11 1.78 1.83
0.15 < m ≤ 0.2 2.65 1.13 0.65 0.53 4.70 1.77 1.31 1.46

0.2 < m 1.46 0.69 0.51 0.42 2.69 1.18 1.01 1.25

a
Moneyness is defined as m = 1− strike

DAX
for call options and as m = strike

DAX
− 1 for put options.
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Table 2:
Clustering statistics for pairs of options

100/200- vs 50-strike options 200- vs 100-strike options
Maturity class Maturity class

Moneynessa 1 2 3 4 1 2 3 4
Call options

Ratio of average trading volumesb

m ≤ −0.2 13.49 9.54 13.97 34.14 1.59 1.73 2.32 3.23
−0.2 < m ≤ −0.15 15.93 16.02 15.35 35.68 1.72 1.67 2.34 3.01
−0.15 < m ≤ −0.1 11.86 17.63 33.46 37.73 1.25 1.45 1.89 2.43
−0.1 < m ≤ −0.05 13.92 23.73 31.74 39.55 1.24 1.41 1.50 2.10
−0.05 < m ≤ 0 11.15 26.32 23.25 25.83 1.17 1.40 1.64 1.96
0 < m ≤ 0.05 14.56 26.55 21.60 22.19 1.24 1.47 1.86 2.42

0.05 < m ≤ 0.1 33.14 30.76 35.15 20.61 1.62 1.76 3.10 3.26
0.1 < m ≤ 0.15 39.99 17.88 23.38 20.13 2.00 2.07 3.39 3.17
0.15 < m ≤ 0.2 38.03 15.50 12.19 28.70 2.36 3.35 2.50 3.33

0.2 < m 57.06 15.76 5.92 15.18 2.08 4.95 5.84 5.54
Put options

Ratio of average trading volumesb

m ≤ −0.2 14.37 15.88 21.93 34.51 2.01 2.06 2.63 4.02
−0.2 < m ≤ −0.15 15.22 27.32 25.81 40.68 1.59 1.82 2.11 2.85
−0.15 < m ≤ −0.1 14.59 32.63 26.04 26.64 1.49 1.52 1.93 2.28
−0.1 < m ≤ −0.05 15.67 32.47 41.59 27.92 1.42 1.56 1.94 2.25
−0.05 < m ≤ 0 13.40 31.93 25.56 30.41 1.28 1.51 1.81 2.06
0 < m ≤ 0.05 12.69 26.93 21.87 21.01 1.21 1.33 1.69 2.00

0.05 < m ≤ 0.1 26.26 33.48 30.18 41.40 1.34 1.46 1.74 2.07
0.1 < m ≤ 0.15 33.76 65.03 49.44 74.93 1.49 1.73 1.69 2.79
0.15 < m ≤ 0.2 40.24 36.53 61.65 407.75 1.78 1.56 2.02 2.76

0.2 < m 61.52 40.06 49.80 226.57 1.84 1.73 1.98 2.97

a
Moneyness is defined as m = 1− strike

DAX
for call options and as m = strike

DAX
− 1 for put options.

b
The average trading volume of the higher strike class options is divided by that of the lower strike class options.
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Table 3:

Clustering statistics for pairs of options

100/200- vs 50-strike options 200- vs 100-strike options
Maturity class Maturity class

Moneynessa 1 2 3 4 1 2 3 4
Call options

Ratio of average trading volumes for trading days with volatility above/below the medianb

m ≤ −0.2 13.61/10.11 10.08/5.33 13.92/ - 34.51/28.36 1.59/1.58 1.64/2.76 2.26/2.79 3.05/3.89
−0.2 < m ≤ −0.15 16.50/11.42 16.98/12.44 17.49/7.34 33.91/44.66 1.74/1.66 1.68/1.64 2.14/2.77 2.91/3.17
−0.15 < m ≤ −0.1 14.41/7.10 19.66/14.66 33.45/33.48 37.18/40.81 1.23/1.29 1.43/1.49 1.82/1.97 2.46/2.40
−0.1 < m ≤ −0.05 15.83/11.87 27.53/20.80 33.78/29.95 42.93/40.83 1.30/1.16 1.48/1.35 1.67/1.38 2.06/2.15
−0.05 < m ≤ 0 13.65/9.55 30.03/24.00 23.52/23.00 27.13/40.18 1.23/1.11 1.49/1.33 1.70/1.59 2.15/1.78
0 < m ≤ 0.05 20.69/11.28 30.71/23.62 23.91/19.34 27.96/23.34 1.27/1.22 1.61/1.36 1.92/1.79 2.70/2.11

0.05 < m ≤ 0.1 33.74/32.39 38.17/24.98 46.95/22.30 47.26/13.10 1.68/1.55 1.89/1.61 2.95/3.42 2.91/3.85
0.1 < m ≤ 0.15 61.25/24.24 27.02/10.54 31.91/10.46 34.83/23.37 1.95/2.11 2.02/2.15 3.52/2.96 3.18/3.15
0.15 < m ≤ 0.2 32.93/66.06 19.76/8.77 15.48/5.62 41.36/127.00 2.10/3.02 3.46/3.07 2.34/3.17 4.39/1.86

0.2 < m 45.6/114.33 24.47/6.50 6.16/5.14 12.36/11.55 1.60/3.76 4.06/6.85 6.03/5.28 6.44/4.02

Ratio of average trading volumes for trading days with DAX index value above/below the medianb

m ≤ −0.2 8.72/13.72 4.29/9.65 12.81/14.07 43.00/34.05 1.37/1.61 1.59/1.74 2.38/2.30 3.58/3.12
−0.2 < m ≤ −0.15 10.48/17.50 10.95/17.00 20.03/14.05 48.21/34.71 1.65/1.74 1.61/1.68 2.50/2.25 2.69/3.27
−0.15 < m ≤ −0.1 8.23/14.63 12.58/22.72 38.24/29.77 31.81/40.81 1.47/1.16 1.64/1.35 1.89/1.89 2.33/2.53
−0.1 < m ≤ −0.05 11.19/17.47 21.26/27.06 37.86/26.27 34.06/44.83 1.35/1.15 1.53/1.29 1.60/1.38 2.53/1.76
−0.05 < m ≤ 0 10.18/12.95 24.49/29.65 21.78/26.00 19.95/40.18 1.19/1.12 1.46/1.30 1.79/1.44 2.18/1.73
0 < m ≤ 0.05 14.00/15.50 23.96/32.08 21.25/22.16 21.34/23.34 1.25/1.23 1.42/1.55 1.95/1.73 2.50/2.32

0.05 < m ≤ 0.1 34.75/30.93 23.88/53.84 28.26/59.39 29.87/13.10 1.65/1.59 1.74/1.78 3.61/2.48 3.78/2.61
0.1 < m ≤ 0.15 37.16/46.19 18.04/17.67 17.78/43.68 18.37/23.77 2.03/1.96 2.22/1.89 3.72/2.96 4.21/2.11
0.15 < m ≤ 0.2 30.61/67.33 14.75/17.25 8.94/27.55 19.33/127.00 2.12/2.80 3.20/3.58 3.75/1.52 3.25/3.44

Put options

Ratio of average trading volumes for trading days with volatility above/below the medianb

m ≤ −0.2 16.53/9.83 20.98/10.13 20.64/32.25 30.15/178.50 2.09/1.77 2.15/1.88 2.90/1.98 3.75/4.59
−0.2 < m ≤ −0.15 16.20/12.75 30.11/24.30 27.23/23.31 25.96/194.77 1.67/1.40 1.93/1.66 2.29/1.90 3.07/2.59
−0.15 < m ≤ −0.1 15.26/13.25 33.64/31.51 19.93/42.01 19.69/37.78 1.53/1.40 1.68/1.37 2.03/1.84 2.31/2.25
−0.1 < m ≤ −0.05 19.62/12.14 40.90/27.31 42.06/41.08 33.82/23.85 1.42/1.42 1.63/1.51 2.01/1.87 2.45/2.09
−0.05 < m ≤ 0 17.42/11.02 35.52/29.51 30.00/22.22 33.24/27.94 1.30/1.26 1.59/1.44 1.89/1.73 2.30/1.85
0 < m ≤ 0.05 16.03/10.58 31.32/23.91 21.43/22.40 29.14/15.58 1.27/1.15 1.42/1.26 1.90/1.48 2.11/1.85

0.05 < m ≤ 0.1 31.49/19.95 36.09/29.73 32.99/25.91 52.57/27.62 1.35/1.33 1.54/1.34 1.90/1.49 1.78/2.94
0.1 < m ≤ 0.15 33.12/36.37 63.55/70.43 55.26/29.08 107.88/31.00 1.44/1.65 1.77/1.64 1.50/2.44 2.42/4.26
0.15 < m ≤ 0.2 38.95/52.71 40.17/22.47 84.33/7.20 371.50/ - 1.76/1.86 1.40/2.23 1.70/4.00 2.64/3.28

0.2 < m 63.15/31.50 41.53/22.00 51.05/- 261.00/20.00 1.77/2.84 1.56/3.06 1.92/3.70 2.92/3.47

Ratio of average trading volumes for trading days with DAX index value above/below the medianb

m ≤ −0.2 12.85/17.75 20.00/13.94 21.83/22.03 - /30.24 1.72/2.28 1.99/2.11 2.51/2.75 3.15/5.37
−0.2 < m ≤ −0.15 13.81/17.45 25.69/29.35 43.99/17.57 139.75/25.33 1.44/1.73 1.91/1.76 1.98/2.24 2.41/3.32
−0.15 < m ≤ −0.1 11.79/19.86 29.56/36.71 41.31/18.27 43.24/17.76 1.64/1.35 1.79/1.31 2.30/1.61 2.56/2.01
−0.1 < m ≤ −0.05 12.97/21.31 31.51/33.90 40.20/43.87 28.04/27.74 1.50/1.32 1.65/1.45 1.94/1.93 2.28/2.21
−0.05 < m ≤ 0 12.07/16.16 29.49/36.60 22.90/31.36 22.70/51.17 1.25/1.32 1.48/1.55 1.73/1.95 2.04/2.09
0 < m ≤ 0.05 11.14/15.25 23.97/31.40 17.83/33.92 14.75/38.30 1.25/1.16 1.35/1.31 1.78/1.57 2.01/1.98

0.05 < m ≤ 0.1 21.44/31.84 36.86/31.22 27.35/34.91 34.74/45.86 1.51/1.23 1.44/1.48 1.87/1.57 2.59/1.81
0.1 < m ≤ 0.15 32.81/34.30 74.26/61.26 109.92/32.17 50.13/88.70 1.66/1.40 1.64/1.78 1.40/2.03 2.33/3.08
0.15 < m ≤ 0.2 33.91/43.15 20.28/41.85 - /45.18 - /363.00 2.04/1.67 1.55/1.57 1.92/2.09 2.44/2.89

0.2 < m 80.14/60.64 5.20/42.39 59.50/49.31 11.50/312.60 2.26/1.79 1.96/1.70 1.86/2.00 3.33/2.92

a
Moneyness is defined as m = 1− strike

DAX
for call options and as m = strike

DAX
− 1 for put options.

b
The average trading volume of the higher strike class options is divided by that of the lower strike class options.
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Table 4:

Descriptive statistics for the pairwise measure of clustering

Maturity class 1 2 3 4 1 2 3 4
100/200- vs 50-strike call options 100/200- vs 50-strike put options

] pairs 29,046 25,790 20,273 21,395 29,046 25,790 20,273 21,395
Observations 12,153 6,914 2,506 1,639 13,285 6,684 2,338 1,650
Average PCi,t 2.57 2.51 1.63 1.40 2.64 2.54 1.56 1.27
Maximum PCi,t 6.43 5.75 4.75 4.97 6.45 5.46 5.28 5.18
Minimum PCi,t -2.61 -2.30 -3.18 -2.20 -2.64 -2.77 -2.94 -3.78
Standard deviation 1.28 1.21 1.23 1.24 1.24 1.16 1.26 1.21

] T50
i,t = 0 16,747 18,709 17,518 19,517 15,736 19,003 17,728 19,513

] T
100/200
i,t = 0 5,175 5,776 6,190 7,686 3,404 4,032 4,755 5,411

] T50
i,t = T

100/200
i,t = 0 5,029 5,609 5,941 7,447 3,279 3,929 4,548 5,179

200- vs 100-strike call options 200- vs 100-strike put options
] pairs 23,576 21,589 17,791 24,780 23,576 21,589 17,791 24,780
Observations 12,205 10,671 7,364 8,670 15,254 13,618 9,066 9,699
Average PCi,t 0.30 0.41 0.51 0.69 0.33 0.47 0.53 0.64
Maximum PCi,t 5.00 4.61 4.23 4.40 4.64 4.44 4.61 4.44
Minimum PCi,t -5.21 -3.83 -4.84 -4.20 -4.47 -4.06 -4.04 -3.85
Standard deviation 1.09 1.02 1.13 1.17 1.00 0.99 1.13 1.17

] T100
i,t = 0 10,235 9,946 9,346 14,784 7,236 6,983 7,527 13,511

] T200
i,t = 0 7,944 8,066 7,378 10,200 5,351 5,441 5,406 8,855

] T100
i,t = T200

i,t = 0 6,808 7,094 6,297 8,874 4,265 4,453 4,208 7,285
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Table 5:

Descriptive statistics for individual options (maturity classes 1− 4)

Call Options Put Options
50-strike 100-strike 200-strike 50-strike 100-strike 200-strike

Observations 47,997 44,105 72,211 47,997 44,105 72,211
Observations with ] trades> 0 12,011 21,821 34,034 12,278 26,221 40,321
Average ] trades per day 1.73 13.24 12 1.51 13.63 13.55
Maximum ] trades per day 422 577 892 302 623 905
Minimum ] trades per day 0 0 0 0 0 0
Standard deviation 8.2 40.06 38.49 6.84 36.13 37.9
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Table 6:

Probit estimations for observing trading volume on two consecutive trading days (restricted specifications)

Dependent variable: It,t−1, takes on value one if the option has positive trading volume on days t and t − 1 and zero otherwise.

Call options Put options
Variablea 50-strike 100-strike 200-strike 50-strike 100-strike 200-strike

C 0.94∗∗∗ 0.11 −0.16∗∗∗ 0.86∗∗∗ −0.46∗∗∗ −0.35∗∗∗

(0.09) (0.07) (0.06) (0.10) (0.06) (0.06)

It−2,t−3
b 0.76∗∗∗ 1.10∗∗∗ 1.33∗∗∗ 0.71∗∗∗ 1.08∗∗∗ 1.25∗∗∗

(0.04) (0.03) (0.02) (0.04) (0.03) (0.02)
ttmt−1 −0.05∗∗∗ −0.01∗∗∗ −4.85E − 3∗∗∗ −0.05∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(2.41E − 3) (5.53E − 4) (4.52E − 4) (2.79E − 3) (4.62E − 4) (5.41E − 4)

ttm2
t−1 1.90E − 4∗∗∗ 2.02E − 4∗∗∗

(1.42E − 5) (1.57E − 5)
Ot−2

c 1.50E − 4∗∗∗ 6.49E − 5∗∗∗ 2.87E − 5∗∗∗ 4.64E − 5∗∗ 1.05E − 4∗∗∗ 5.16E − 5∗∗∗

(1.34E − 5) (3.13E − 6) (1.27E − 6) (1.89E − 5) (6.93E − 6) (3.07E − 6)
ttmt−1 Ot−2 1.35E − 6∗∗∗ −3.45E − 7∗∗∗ −1.04E − 7∗∗∗

(3.78E − 7) (7.38E − 8) (3.16E − 8)
volt−1 2.13∗∗∗ 1.96∗∗∗ 2.69∗∗∗ 2.12∗∗∗

(0.18) (0.15) (0.18) (0.15)

Dt−1 |mt−1|d −45.85∗∗∗ −10.86∗∗∗ −6.76∗∗∗ −28.26∗∗∗ −6.90∗∗∗ −6.27∗∗∗

(4.29) (0.81) (0.46) (3.74) (0.30) (0.34)
(1− Dt−1) |mt−1| −10.70∗∗∗ −9.81∗∗∗ −7.99∗∗∗ −8.16∗∗∗ −6.00∗∗∗ −5.57∗∗∗

(0.77) (0.49) (0.35) (0.72) (0.32) (0.22)
Dt−1 |mt−1| ttmt−1 0.76∗∗∗ −0.09∗∗∗ −0.05∗∗∗ 0.36∗∗∗ 0.02∗∗∗

(0.12) (0.03) (0.01) (0.11) (3.21E − 3)
(1− Dt−1) |mt−1| ttmt−1 0.23∗∗∗ 0.07∗∗∗ 0.06∗∗∗ 0.17∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.03) (0.01) (0.01) (0.03) (0.01) (4.39E − 3)

Dt−1 |mt−1| ttm2
t−1 −3.53E − 3∗∗∗ 5.05E − 4∗∗∗ 3.33E − 4∗∗∗ −1.74E − 3∗∗∗

(7.30E − 4) (1.78E − 4) (6.84E − 5) (6.67E − 4)

(1− Dt−1) |mt−1| ttm2
t−1 −1.04E − 3∗∗∗ −1.98E − 4∗∗∗ −1.97E − 4∗∗∗ −1.04E − 3∗∗∗ −2.76E − 4∗∗∗ −2.05E − 4∗∗∗

(2.01E − 4) (4.64E − 5) (2.90E − 5) (1.99E − 4) (4.61E − 5) (2.21E − 5)
Wald teste 1.25 2.25 2.62 1.71 1.32 4.11

(0.53) (0.32) (0.27) (0.19) (0.72) (0.13)
N 20,972 19,618 32,602 20,972 19,618 32,602
It,t−1 = 1 18,017 11,675 20,142 18,161 9,901 17,409

a
Huber-White standard errors in parentheses; ***, **, and * indicate significance at 1 percent, 5 percent, and 10 percent level, respectively.

b
Lagged dependent variable; takes on value one if the option has positive trading volume on days t − 2 and t − 3 and zero otherwise.

c
Open interest of the corresponding option.

d
Dt−1: Dummy which takes on value one if the option is in the money on day t − 1 and zero otherwise.
|mt−1|: (absolute) moneyness on day t − 1, defined as |strike/DAXt−1 − 1|

e
p-value in parenthesis. The Wald test statistic is distributed χ2(q) under the null hypothesis that the model with q restrictions is true.
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Table 7:

Regressions for 100/200-strike options versus 50-strike options (restricted specifications)

Dependent Variable: PCt, the pairwise measure of clustering.
Call options Put options

Variablea M50b M100/200b M50b M100/200b

C 1.43∗∗∗ 0.50∗∗∗ −3.23∗∗∗ 1.15∗∗∗ 0.38∗∗∗ −0.63∗∗∗

(0.10) (0.10) (0.45) (0.13) (0.11) (0.22)
PCt−1 0.31∗∗∗ 0.34∗∗∗ −0.13∗∗∗

(0.01) (0.01) (0.04)
ttmt 0.03∗∗∗ −0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗ −0.02∗∗∗ 0.01∗∗∗

(4.12E-3) (2.59E-3) (0.01) (4.50E-3) (2.34E-3) (1.60E-3)

ttm2
t −2.31E − 4∗∗∗ 1.56E − 4∗∗∗ −1.45E − 4∗∗ −1.89E − 4∗∗∗ 1.13E − 4∗∗∗

(5.49E-5) (2.47E-5) (5.35E-5) (4.16E-5) (2.07E-5)
POt−1 0.08∗∗∗

(0.01)
ttmt POt−1 8.46E − 4∗∗∗

(2.80E-4)
1

DAXt
5, 624.03∗∗∗ 2, 206.08∗∗∗

(1,737.05) (415.90)
volt 1.74∗∗∗ −0.76∗∗∗ 1.55∗∗∗ −0.67∗∗ −1.96∗∗∗

(0.34) (0.25) (0.38) (0.30) (0.75)
Dt avmt

c −10.88∗∗∗ −16.57∗∗∗

(2.33) (1.70)
(1− Dt) avmt −5.35∗∗∗ 3.26∗∗∗ 2.44∗∗∗

(0.79) (0.73) (0.43)

Dt avm2
t 152.11∗∗∗ −17.61∗∗ 117.53∗∗∗ −15.87∗∗∗ 33.41∗∗∗

(52.77) (8.95) (12.05) (2.10) (5.48)

(1− Dt) avm2
t −4.46∗∗∗ −20.63∗∗∗

(1.55) (3.28)
Dt avmt ttmt −0.03∗ 0.12∗∗∗ −0.12∗∗∗

(0.02) (0.03) (0.03)
(1− Dt) avmt ttmt

2
|δ100/200

t −δ50
t |

|δ100/200
t +δ50

t |
d −2.67∗∗∗ −3.18∗∗∗ 8.06∗∗∗ −1.46∗∗∗ −2.29∗∗∗

(0.78) (0.94) (1.64) (0.54) (0.64)
It−2,t−3

e −0.13∗∗ −0.58∗∗∗ −0.27∗∗∗ −0.34∗∗∗

(0.05) (0.15) (0.04) (0.09)

O50
t−2

f −2.70E − 5∗∗

(1.20E-5)

O50
t−2 ttmt−1

O
100/200
t−2

f 2.96E − 5∗∗ 9.43E − 5∗∗∗

(1.23E-5) (2.14E-5)

O
100/200
t−2 ttmt−1 −8.09E − 7∗∗∗

(2.20E-7)

R2 0.35 0.36
Wald testg 32.70 30.85

(0.11) (0.08)
N 11,053 10,417

a
Variables not included in the full specification are marked by |. Newey-West standard errors in parentheses; ***, **, and * indicate significance
at 1 percent, 5 percent level, and 10 percent level, respectively.

b
This column reports the coefficients for the regressors obtained by interacting the variables with the inverse Mills ratio Mk computed from
the corresponding selection equation k = 50, 100/200.

c
Dt : Dummy which takes on value one if the pair of options is in the money on day t. avmt: average (absolute) moneyness of the pair on day

t, defined as |(strike50 + strike100/200)/(2 DAXt)− 1|.
d

δk
t : Delta of the option in strike class k = 50, 100/200 on day t.

e
Dummy which takes on value one if the option has positive trading volume on days t − 2 and t − 3 and zero otherwise.

f
Open interest of the option in the corresponding strike class on day t− 2. The variables Ok

t−2 and Ok
t−2 ttmt−1 are interacted only with the

inverse Mills ratio Mk computed from the corresponding selection equation, k = 50, 100/200.
g
p-value in parenthesis. The Wald test statistic is distributed χ2(q) under the null hypothesis that the model with q restrictions is true.
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Table 8:

Regressions for 200-strike options versus 100-strike options (restricted specifications)

Dependent Variable: PCt, the pairwise measure of clustering.
Call options Put options

Variablea M100b M200b M100b M200b

C 0.30∗∗∗ 0.84∗∗∗ −0.83∗∗∗ 0.15∗∗∗ 0.93∗∗∗ −0.99∗∗∗

(0.05) (0.09) (0.14) (0.05) (0.09) (0.10)
PCt−1 0.45∗∗∗ −0.17∗∗∗ −0.18∗∗∗ 0.34∗∗∗ −0.02∗∗∗ −0.17∗∗∗

(0.01) (0.02) (0.03) (0.01) (0.01) (0.02)
ttmt 1.38E − 3∗∗∗ −2.97E − 3∗∗∗ 2.12E − 3∗ 2.99E − 3∗∗∗ −0.01∗∗∗ 4.46E − 3∗∗∗

(4.35E-4) (8.93E-4) (1.20E-3) (4.07E-4) (9.94E-4) (9.18E-4)

ttm2
t 1.76E − 5∗∗∗

(3.57E-6)
POt−1 0.13∗∗∗ 0.24∗∗∗ −0.09∗∗∗

(0.01) (0.02) (0.02)
ttmt POt−1 −1.31E − 3∗∗∗ 4.56E − 4∗∗ −1.43E − 3∗∗∗ 7.18E − 4∗∗∗

(2.45E-4) (1.78E-4) (2.01E-4) (1.21E-4)
1

DAXt
−1, 787.84∗∗∗ −1, 249.25∗∗∗

(249.71) (206.20)
volt 0.68∗∗∗ 0.71∗∗∗ −0.16∗∗

(0.10) (0.09) (0.07)
Dt avmt

c −1.45∗∗∗ −3.56∗∗∗ −0.49∗∗ −2.80∗∗∗

(0.47) (0.87) (0.21) (0.88)
(1− Dt) avmt 1.67∗∗∗ −2.70∗∗∗ 3.14∗∗∗ 0.46∗∗∗ −2.05∗∗∗ 5.68∗∗∗

(0.28) (0.60) (0.71) (0.14) (0.37) (1.00)

Dt avm2
t 6.89∗∗∗ 8.55∗∗∗

(1.95) (2.52)

(1− Dt) avm2
t 1.90∗∗∗ −11.33∗∗∗

(0.46) (2.66)
Dt avmt ttmt −2.25E − 3∗ 0.01∗∗

(1.17E-3) (0.01)
(1− Dt) avmt ttmt −4.52∗∗∗ 0.02∗∗∗ −0.02∗∗∗ 0.01∗∗∗ −0.02∗∗∗

(1.01) (0.01) (0.01) (2.00E-3) (0.01)

2
|δ200

t −δ100
t |

|δ100
t +δ200

t |
d −0.22∗∗∗ 0.92∗∗∗ −1.48∗∗∗ −0.20∗∗∗ −0.31∗∗

(0.07) (0.18) (0.29) (0.08) (0.14)
It−2,t−3

e 0.70∗∗∗ −1.22∗∗∗ −0.02∗∗ −0.25∗∗∗

(0.06) (0.09) (0.01) (0.05)

O100
t−2

f 3.97E − 5∗∗∗

(8.15E-6)

O100
t−2 ttmt−1 −3.18E − 7∗∗∗

(9.25E-8)

O200
t−2

f

O200
t−2 ttmt−1

R2 0.27 0.19
Wald testg 30.27 28.55

(0.09) (0.05)
N 27,922 34,473

a
Variables not included in the full specification are marked by |. Newey-West standard errors in parentheses; ***, **, and * indicate significance
at 1 percent, 5 percent level, and 10 percent level, respectively.

b
This column reports the coefficients for the regressors obtained by interacting the variables with the inverse Mills ratio Mk computed from
the corresponding selection equation k = 100, 200.

c
Dt : Dummy which takes on value one if the pair of options is in the money on day t. avmt: average (absolute) moneyness of the pair on day

t, defined as |(strike100 + strike200)/(2 DAXt)− 1|.
d

δk
t : Delta of the option in strike class k = 100, 200 on day t.

e
Dummy which takes on value one if the option has positive trading volume on days t − 2 and t − 3 and zero otherwise.

f
Open interest of the option in the corresponding strike class on day t− 2. The variables Ok

t−2 and Ok
t−2 ttmt−1 are interacted only with the

inverse Mills ratio Mk computed from the corresponding selection equation, k = 100, 200.
g
p-value in parenthesis. The Wald test statistic is distributed χ2(q) under the null hypothesis that the model with q restrictions is true.
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Table 9:

Regressions for options of the same age (re-estimated restricted specifications)

Dependent Variable: PCt, the pairwise measure of clustering.
100/200- vs 50-strike options 200- vs 100-strike options

Variablea Call options Put options Call options Put options

C 1.55∗∗∗ 1.08∗∗∗ 0.37∗∗∗ 0.21∗∗∗

(0.16) (0.22) (0.06) -0.06
PCt−1 0.33∗∗∗ 0.31∗∗∗ 0.44∗∗∗ 0.33∗∗∗

(0.01) (0.02) (0.01) -0.01
ttmt 0.03∗∗∗ 0.04∗∗∗ 1.17E − 3∗∗ 2.73E − 3∗∗∗

(0.01) (0.01) (5.06E-4) -4.94E-04

ttm2
t −2.73E − 4∗∗∗ −2.47E − 4∗∗∗

(7.47E-5) (4.97E-5)
POt−1 0.08∗∗∗ 0.10∗∗∗ 0.24∗∗∗

(0.02) (0.02) -0.02
ttmt POt−1 4.84E − 4 −9.82E − 4∗∗∗ −1.44E − 3∗∗∗

(3.76E-4) (2.98E-4) -2.70E-04
1

DAXt
3, 526.80∗∗∗ −1, 877.94∗∗∗ −1, 087.98∗∗∗

(675.22) (312.09) -260.24
volt 0.66 0.30 0.64∗∗∗ 0.52∗∗∗

(0.62) (0.75) (0.13) -0.12

Dt avmt
b −11.72∗∗∗ −13.99∗∗∗ −2.77∗∗∗ -0.39

(3.11) (2.80) (0.62) -0.25
(1− Dt) avmt −6.65∗∗∗ 1.73∗∗∗ 0.15

(1.05) (0.33) -0.18

Dt avm2
t 117.20∗∗ 89.13∗∗∗

(57.55) (25.77)

(1− Dt) avm2
t −16.86∗∗∗

(4.65)
Dt avmt ttmt 0.14∗∗∗

(0.04)
(1− Dt) avmt ttmt -4.70∗∗∗

(1.09)

2
|δk

t −δl
t|

|δk
t +δl

t|
c -0.87 -0.75 −0.29∗∗∗ −0.27∗∗∗

(1.20) (0.77) (0.09) (0.09)

R2 0.35 0.35 0.24 0.16
N 5,292 4,779 19,802 23085

a
Coefficients for the regressors interacted with the inverse Mills ratios computed from the corresponding selection equations
are not reported. Newey-West standard errors in parentheses; ***, **, and * indicate significance at 1 percent, 5 percent
level, and 10 percent level, respectively.

b
Dt : Dummy which takes on value one if the pair of options is in the money on day t. avmt: average (absolute) moneyness

of the pair on day t, defined as |(strikek + strikel)/(2 DAXt)− 1|, k, l ∈ {50, 100/200, 100, 200}.
c

δk
t (δl

t): Delta of the option in the higher (lower) strike class k 6= l, k, l ∈ {50, 100/200, 100, 200} on day t.
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Table 10:

Regressions for aggregate measure of clustering (maturity class 1, restricted specifications)

Dependent Variable: ACt, the aggregate measure of clustering.
100/200- vs 50-strike options 200- vs 100-strike options

Variablea Call options Put options Call options Put options

C 0.15 −0.71∗∗∗ 0.16∗∗∗ 0.12∗∗

(0.13) (0.23) (0.06) (0.05)
ACt−1 0.37∗∗∗ 0.46∗∗∗ 0.38∗∗∗ 0.38∗∗∗

(0.04) (0.04) (0.06) (0.05)
ttmt 0.08∗∗∗ 0.11∗∗∗ 2.70E − 3∗∗

(0.01) (0.01) (1.17E − 3)

ttm2
t −1.81E − 3∗∗∗ −1.37E − 3∗∗∗

(2.44E − 4) (3.04E − 4)
AOt−1 0.17∗∗∗ 0.36∗∗∗ 0.12∗∗∗

(0.05) (0.09) (0.03)
ttmt AOt−1 −0.02∗∗∗

(4.73E − 3)
1

DAXt
2, 247.31∗∗∗ −1, 273.76∗∗∗ −570.66∗∗

(773.30) (389.46) (281.22)
volt 2.44∗∗∗ 2.27∗∗∗ 1.08∗∗∗ 0.52∗∗∗

(0.54) (0.67) (0.35) (0.18)

R2 0.57 0.60 0.22 0.16

Wald Testb 1.10 - 3.55 6.82
(0.58) - (0.32) (0.08)

N 905 903 905 905

a
Newey-West standard errors in parentheses; ***, ** and * indicate significance at 1 percent, 5 percent, and
10 percent level, respectively.

b
p-value in parenthesis. The Wald test statistic is distributed χ2(q) under the null hypothesis that the
model with q restrictions is true.
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