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HAUSDORFF DIMENSION, PRO-p GROUPS,

AND KAC-MOODY ALGEBRAS

YIFTACH BARNEA AND ANER SHALEV

Abstract. Every finitely generated profinite group can be given the structure
of a metric space, and as such it has a well defined Hausdorff dimension func-
tion. In this paper we study Hausdorff dimension of closed subgroups of finitely
generated pro-p groups G. We prove that if G is p-adic analytic and H ≤c G is
a closed subgroup, then the Hausdorff dimension of H is dimH/ dimG (where
the dimensions are of H and G as Lie groups). Letting the spectrum Spec(G)
of G denote the set of Hausdorff dimensions of closed subgroups of G, it follows
that the spectrum of p-adic analytic groups is finite, and consists of rational
numbers.

We then consider some non-p-adic analytic groups G, and study their spec-
trum. In particular we investigate the maximal Hausdorff dimension of non-
open subgroups of G, and show that it is equal to 1 − 1

d+1
in the case of

G = SLd(Fp[[t]]) (where p > 2), and to 1/2 if G is the so called Nottingham
group (where p > 5). We also determine the spectrum of SL2(Fp[[t]]) (p > 2)
completely, showing that it is equal to [0, 2/3] ∪ {1}.

Some of the proofs rely on the description of maximal graded subalgebras
of Kac-Moody algebras, recently obtained by the authors in joint work with
E. I. Zelmanov.

1. Introduction

The concept of Hausdorff dimension, which plays a key role in fractal geometry
[F], was originally defined over the reals, but can be defined in exactly the same
manner over any metric space. We give the exact definition in section 2 below.
Recall that every subset S of a metric space has a well-defined Hausdorff dimension,
which is denoted by dimH(S).

In this paper we focus on metric spaces arising from profinite groups. The
study of Hausdorff dimension in profinite groups has recently been initiated by
Abercrombie [A]. It is worthwhile mentioning that, while there is a canonical
measure on profinite groups (namely, the Haar measure), there is no canonical
metric. In fact, every filtration (namely, a descending chain of normal subgroups
which form a base for the neighborhoods of the identity) Gn of G gives rise to an
invariant metric on G, by setting d(x, y) = inf{|G : Gn|−1 : xy−1 ∈ Gn}. It turns
out that the Hausdorff dimension of a closed subgroup H of G with respect to this
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metric is given by

dimH(H) = lim inf
n→∞

log |HGn/Gn|
log |G/Gn| .(1)

See Theorem 2.4 below, whose proof relies heavily on a result of Abercrombie [A,
Proposition 2.6]. Using (1) it is easy to see that the different metrics on G, while
defining the same topology, can give rise to different Hausdorff dimension functions
(see Example 2.5 below).

However, for finitely generated pro-p groups G, there is a rather natural way
to define the metric, by using the filtration Gn = Gpn = 〈xpn : x ∈ G〉. In the
theorems below, the Hausdorff dimension is computed relative to this filtration. It
can be shown, however, that our main results remain valid with respect to other
natural filtrations, such as the lower p-series, or various congruence filtrations when
available.

Given an infinite profinite group G (equipped with a metric induced by a pre-
scribed filtration), we define the dimension spectrum (or simply the spectrum) of
G by

Spec(G) = {dimH(H) : H is a closed subgroup of G}.
Then the Hausdorff dimension of any open subgroup of G is 1, and finite subgroups
of G have Hausdorff dimension 0. In particular we have

{0, 1} ⊆ Spec(G) ⊆ [0, 1].

The main goal of this paper is to investigate the spectrum of pro-p groups lying
in some important classes, such as p-adic analytic groups, more general analytic
groups, and the so-called Nottingham group. We shall be particularly interested
in groups G whose subgroup structure is far from clear. Thus, instead of finding
all closed subgroups of G, we shall at least shed light on their possible ‘sizes’. We
shall also pose some problems which we consider natural, in the hope that they will
stimulate further research in this area.

Our first result determines the Hausdorff dimension of subgroups of p-adic ana-
lytic groups (for background, see [DDMS]). Note that, if G is a p-adic analytic pro-p
group, then any closed subgroup H of G is also p-adic analytic. The dimension of
G as a p-adic analytic group is denoted by dimG. The following result indicates
that the concept of Hausdorff dimension generalizes (up to scaling) the concept of
dimension for Lie groups.

Theorem 1.1. Let G be a p-adic analytic pro-p group, and let H ≤c G be a closed
subgroup. Then

dimH(H) =
dimH

dimG
.

Corollary 1.2. Let G be as above. Then Spec(G) ⊆ {0, 1/d, 2/d, . . . , 1}, where
d = dimG. In particular, G has a finite spectrum which consists of rational num-
bers.

It is natural to ask whether the converse holds.

Problem 1. Let G be a finitely generated pro-p group such that Spec(G) is finite.
Does it follow that G is p-adic analytic?

Even the case of a particularly small spectrum is not well understood.
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Problem 2. Let G be a finitely generated pro-p group, and suppose Spec(G) =
{0, 1}. Does it follow that G is virtually pro-cyclic?

Using Theorem 1.1, it is easy to see that a positive answer to Problem 1 implies
a positive answer to Problem 2.

Though we were not able to solve Problem 1, we can still obtain a characteriza-
tion of p-adic analytic groups in terms of Hausdorff dimension. Indeed, combining
Theorem 1.1 with the theory of p-adic analytic groups and with Zelmanov’s theorem
on the local finiteness of torsion pro-p groups [Z], we prove the following.

Theorem 1.3. The following are equivalent for a finitely generated pro-p group G.
(i) The Hausdorff dimension of a closed subgroup H of G is zero if and only if

H is finite.
(ii) G is p-adic analytic.

Thus, a non-p-adic analytic pro-p group must contain an infinite subgroups whose
Hausdorff dimension is 0.

Let us now turn to another family of pro-p groups, namely those with analytic
structure over the power series ring Fp[[t]]. Background on such groups can be
found in [S] and [LSh]. Focusing on the typical example of SLd(Fp[[t]]) (or its first
congruence subgroup), we prove the following:

Theorem 1.4. Let G = SLd(Fp[[t]]), where d > 1. Then
(i) Spec(G) contains intervals; in fact

Spec(G) ⊇ [0,
d(d+ 1)− 2

2(d2 − 1)
].

(ii) If p > 2 then 1 is an isolated point in Spec(G); in fact

Spec(G) ∩ (1− 1

d+ 1
, 1) = ∅.

Part (ii) above is best possible in the sense that there exists a closed subgroup
H <c G (namely, a suitable parabolic subgroup) such that dimH(H) = 1−(d+1)−1.
As for part (i), it can be shown that, asymptotically, Spec(G) contains a larger
interval of the form [0, 1−O(d−1/2)], but this does not matter for our purpose here.

Theorem 1.4 enables us to determine Spec(G) completely in the case d = 2,
p > 2.

Corollary 1.5. Let G = SL2(Fp[[t]]) (p > 2). Then

Spec(G) = [0, 2/3] ∪ {1}.
Note that SLd(Fp[[t]]) is not a pro-p group, though it contains open pro-p sub-

groups, such as the first congruence subgroup which we denote by SL1
d(Fp[[t]]).

The results mentioned above are valid with respect to the congruence subgroups
filtration on SLd(Fp[[t]]), but they are also valid for G = SL1

d(Fp[[t]]) with respect

to our usual pro-p filtration Gpn .
Our final result on Hausdorff dimensions concerns the so-called Nottingham

group, namely the group of normalized automorphisms of the power series ring
Fp[[t]]. This group, which we denote by Aut1Fp[[t]], has some remarkable proper-
ties and plays important role in the theory of pro-p groups; see, for instance, [J],
[Yo], [Sh2], [C]. While we have not been able to determine its spectrum completely,
we can prove the following.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5076 YIFTACH BARNEA AND ANER SHALEV

Theorem 1.6. Let G = Aut1(Fp[[t]]), where p ≥ 5. Then
(i) 1 is an isolated point in Spec(G); in fact

Spec(G) ∩ (1/2, 1) = ∅ if p > 5,

and Spec(G) ∩ (3/5, 1) = ∅ if p = 5.
(ii)

{1/n : n ≥ 1} ⊆ Spec(G) ⊆ [0, 3/p] ∪ {1/n : n ≥ 1}.
For p > 5 part (i) is best possible, in that there is a subgroup H of G whose

Hausdorff dimension is 1/2. Part (ii) suggests the following.

Problem 3. Does the spectrum of the Nottingham group coincide with the har-
monic series {1/n : n ≥ 1}?

In the context of Theorems 1.4 and 1.6, it is natural to associate with a finitely
generated pro-p group G a parameter l(G), defined by

l(G) = sup{dimH(H) : H <c G is not open}.
To determine l(G) it suffices to compute dimH(H) for all closed non-open subgroups
H of G which are maximal with respect to these properties. This is because every
closed non-open subgroup of a finitely generated pro-p group is contained in such
a subgroup.

Several fundamental problems in pro-p groups could be solved if one could de-
termine the maximal non-open subgroups of groups such as SL1

d(Fp[[t]]); however,
this seems an incredibly difficult task, and Aschbacher type theorems (like those
describing the maximal subgroups of finite groups of Lie type) seem out of reach
here. Our approach to the determination of l(G) is therefore more Lie-theoretic
than group-theoretic. The main idea is to associate with G a graded Lie algebra
L(G) (using the given filtration Gn or some related series), and to note that non-
open subgroups H of G give rise to graded subalgebras L(H) of L(G) which have
infinite codimension, such that the Hausdorff dimension of H can be reconstructed
from the Lie subalgebra L(H).

For the groups under consideration L(G) turns out to be the positive part of an
affine (possibly twisted) Kac-Moody algebra associated with some finite simple Lie
algebra G over Fp. More specifically, if G = SL1

d(Fp[[t]]), then L(G) ∼= sld(Fp) ⊗
tFp[t], and if G = Aut1(Fp[[t]]) then L(G) coincides with the positive part of a
loop algebra associated with the first Witt algebra W1 over Fp. We therefore need
a description of the graded subalgebras of the positive part of affine Kac-Moody
algebras which have infinite codimension and which are maximal with respect to
these properties. Subalgebras of this kind – as well as maximal graded subalgebras
of affine Kac-Moody algebras – are described in the recent work [BShZ]. This
description plays a useful role in the proof of 1.4(ii) and 1.6. In particular, we show
that l(SL1

d(Fp[[t]])) = 1−(d+1)−1 if p > 2, and that l(Aut1(Fp[[t]])) = 1/2 if p > 5.
The proof of part (ii) of 1.6 is somewhat more subtle, and involves successive use
of the results of [BShZ].

In order to prove part (ii) of Theorem 1.4, we also need information on maximal
Lie subalgebras of sld(Fp). In his classical works [D1] and [D2], Dynkin gave a
complete description of maximal subalgebras of semisimple Lie algebras over an
algebraically closed field F of characteristic 0. It would be interesting to obtain a
characteristic p version of Dynkin’s theorem. Here we prove a less ambitions result,
which suffices for our purpose.
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Theorem 1.7. Let F be a field of characteristic 6= 2. Then the maximal dimension
of a proper Lie subalgebra of sld(F ) is d2 − d.

We are not sure about the novelty of this result; for completeness, we give an
elementary and self-contained proof of Theorem 1.7 in the appendix.

We note that, while l(G) < 1 for the groups discussed above, there exist finitely
generated pro-p groups for which l(G) = 1. For example, if G is a free pro-p group
of rank d > 1, and N is a closed normal subgroup such that G/N is infinite p-adic
analytic (e.g. N = G′), then it is not difficult to check that dimH(N) = 1, though
N is not open.

We conclude the introduction with somewhat related problems.

Problem 4. What is the spectrum of the free pro-p group on d generators?

Problem 5. Is there a finitely generated pro-p groupG such that Spec(G) = [0, 1]?

This paper is organized as follows. Basic notions such as Hausdorff dimension
and box dimension are discussed in Section 2, where formula (1) is established.
Theorems 1.1-1.3 are proved in Section 3, which deals with p-adic analytic groups.
In Section 4 we turn to Fp[[t]]-analytic groups, and prove part (i) of Theorem 1.4.
The rest of our results except Theorem 1.7 are proved in Section 5, where the rele-
vant descriptions of subalgebras of Kac-Moody algebras are presented. Theorem 1.7
is proved in the appendix.

2. Fractal dimensions

In this section we provide some background and basic definitions concerning
Hausdorff dimension, and related fractal dimensions. See Chapters 2 and 3 of
Falconer [F] for more details.

We start with some general notation. Unless otherwise stated, all profinite groups
are assumed to be infinite. For profinite groups H,G we write H ≤c G if H is a
closed subgroup of G. Group commutators are denoted by (x, y) = x−1y−1xy,
to be distinguished from Lie products [x, y]. For subgroups H,K ≤c G, (H,K)
denotes the closed subgroup generated by all commutators (x, y) (x ∈ H, y ∈ K).
We denote by Gn the closed subgroup generated by all nth powers in G. A filtration
of G is a descending chain of open normal subgroups G = G0 ≥ G1 ≥ · · · ≥ Gn ≥
· · · which form a base for the neighborhoods of the identity. Note that we have⋂∞
n=0Gn = {1} for such a series. A filtration Gn of G is said to be p-central if it

satisfies (Gn, Gm) ≤ Gn+m and Gp
n ≤ Gn+1 for all n,m. If the latter condition is

replaced by Gp
n ≤ Gpn then Gn is said to be an Np-series. We denote by Zp the ring

of p-adic integers, and by F [[t]] the ring of formal power series over the field F . By a
graded algebra we usually mean an N-graded algebra, where N denotes the positive
integers. The rank of a profinite group G is defined to be the minimal r (possibly
infinity) such that every closed subgroup of G can be generated (topologically) by
at most r elements. Additional notation will be introduced when required.

Let (X, d) be a metric space, let Y ⊆ X and let α, ρ be positive numbers. Define

Hα
ρ (Y ) = inf

∑
i

(diam Si)
α,

where {Si}∞i=0 is a cover of Y by sets of diameter at most ρ, and the infimum is
taken over all such covers. Note that Hα

ρ (Y ) is non-increasing with ρ, and so the
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limit

Hα(Y ) = lim
ρ→∞Hα

ρ (Y )

exists. It is easy to verify that Hα is an outer measure on X ; it is usually referred
to as the α-dimensional Hausdorff measure on X . The following can be readily
verified.

Lemma 2.1. If Hα(Y ) <∞ and α < α′, then Hα′(Y ) = 0.

We can now define the Hausdorff dimension of a set Y ⊆ X , as follows:

dimH(Y ) = sup{α|Hα(Y ) = ∞} = inf{α|Hα(Y ) = 0}.
Clearly, if Y ⊆ Y ′ then dimH(Y ) ≤ dimH(Y ′). It can also be shown that

dimH

( ∞⋃
n=0

Yn

)
= sup dimH(Yn)

for subsets Yn ⊆ X .
Let us define additional fractal dimensions, which we shall call the lower and

upper box dimensions. For ρ > 0 define Nρ(Y ) to be the minimal number of sets of
diameter at most ρ needed to cover Y . Now set

dimB(Y ) = lim inf
ρ→0

logNρ(Y )

− log ρ
, dimB(Y ) = lim sup

ρ→0

logNρ(Y )

− log ρ
.

The connection between the Hausdorff dimension and the box dimensions is given
by

Lemma 2.2. For every Y ⊆ X, dimH(Y ) ≤ dimB(Y ).

See [F, p. 43]. We point out that, in general, equality need not hold.
Now, let G be a profinite group, equipped with a filtration Gn. Define an invari-

ant metric d on G by

d(x, y) = inf{ |G : Gn|−1 | xy−1 ∈ Gn}.
The balls in G, with respect to this metric, are the left (right) cosets of Gn, and the
diameter of such a ball is |G : Gn|−1. Moreover, every set of diameter |G : Gn|−1

is contained in some coset of Gn.
Let H ≤c G be a closed subgroup. It follows from the above remarks that, if

ρ = |G : Gn|−1, then Nρ(H) = |HGn : Gn| = |H : H ∩ Gn|. By the definition of
the box dimensions we obtain

dimB(H) = lim inf
n→∞

log |HGn/Gn|
log |G/Gn| , dimB(H) = lim sup

n→∞
log |HGn/Gn|

log |G/Gn| .

In [A, Proposition 2.6] Abercrombie proved that the Hausdorff dimension of H is

bounded below by lim infn→∞
log |HGn/Gn|

log |G/Gn| . We therefore have

Lemma 2.3. Let H,G be as above. Then dimH(H) ≥ dimB(H).

Combining this result with Lemma 2.2, we can derive our main tool in this paper.

Theorem 2.4. Let G be a profinite group with a filtration {Gn}∞n=0 and let H ≤c G
be a closed subgroup. Then

dimH(H) = dimB(H) = lim inf
n→∞

log |HGn/Gn|
log |G/Gn| = lim inf

n→∞
log |H : H ∩Gn|

log |G : Gn| ,
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where the Hausdorff dimension is computed with respect to the metric associated
with the filtration {Gn}.

It is now clear that G and its open subgroups have Hausdorff dimension 1, and
that finite subgroups of G have Hausdorff dimension zero (assuming G is infinite).
As shown below, the Hausdorff dimension does depend on the filtration.

Example 2.5. Let G = Zp ⊕ Zp and H = {0} ⊕ Zp. Then if the Hausdorff
dimension is computed relative to the filtration Gn = pnZp ⊕ pnZp we obtain
dimH(H) = 1

2 , while if the Hausdorff dimension is computed relative to the filtration

Gn = p2nZp ⊕ pnZp we obtain dimH(H) = 1
3 .

Unless otherwise stated, if G is a pro-p group, it is considered as a metric space
with respect to the filtration Gn = Gpn .

3. p-adic analytic groups

This section is devoted to the proof of Theorems 1.1 and 1.3. The reader is
referred to [DDMS] for background on p-adic analytic pro-p groups and powerful
pro-p groups.

We need some ad-hoc notation. For a group G and a positive integer n let G{n}

denote the set of all nth powers of elements of G (thus Gpn = 〈G{pn}〉). We need
the following somewhat technical result.

Lemma 3.1. Let G be a finitely generated powerful pro-p group and let H ≤c G be
a closed subgroup. Let Gn = Gpn , Hn = Hpn . Then

(i) There exists a constant c > 0 such that H ∩ Gn = (H ∩ Gc)
{pn−c} for all

n ≥ c.
(ii) There exists a constant c > 0 such that H ∩Gn ≤ Hn−c for all n ≥ c.

Proof. Let Un = Gn/Gn+1 (n ≥ 1). Since G is powerful, the sections Un are
elementary abelian, and can be regarded as linear spaces over Fp. The map x 7→ xp

gives rise to well defined linear epimorphisms φn : Un → Un+1, which will play a
useful role in the proof. Since dimUn are bounded above by the rank, say r, of G,
we see that dimUn stabilizes and that φn is an isomorphism for all large n.

Define Vn = (H ∩ Gn)Gn+1/Gn+1. Then Vn ≤ Un and φn(Vn) ≤ Vn+1. Since
φn are injective for large n, the series dimVn is non-decreasing for large n. But
dimVn ≤ r for all n. Hence the series {dimVn} stabilizes. It follows that there is
a constant c such that, if n ≥ c, then φn induces an isomorphism from Vn to Vn+1.
In particular, φn(Vn) = Vn+1 for all n ≥ c.

Claim. Let n ≥ c. Then the map x 7→ xp from H∩Gn to H∩Gn+1 is surjective.
Let h ∈ H ∩Gn+1. Since n ≥ c there exist hn ∈ H ∩Gn and gn+2 ∈ Gn+2 such

that h = hpngn+2. Note that gn+2 ∈ H ∩Gn+2.
We shall now show by induction on k ≥ 0 that

h = (hnhn+1 · · ·hn+k)
pgn+k+2,(2)

where hn+m ∈ H ∩Gn+m (0 ≤ m ≤ k), and gn+k+2 ∈ H ∩Gn+k+2.
The case k = 0 has already been proved. Suppose (2) holds for k and let us prove

it for k + 1. Since n+ k + 2 > c there are elements hn+k+1 ∈ H ∩Gn+k+1 and g̃ ∈
H ∩Gn+k+3 such that gn+k+2 = hpn+k+1g̃. Hence h = (hnhn+1 · · ·hn+k)

phpn+k+1g̃.
Since G is powerful we have

h̃ = (hn+k+1, hnhn+1 · · ·hn+k) ∈ (Gn+k+1, G) ≤ Gn+k+2.
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Furthermore, if p = 2 we even have h̃ ∈ Gn+k+3. It follows that, in G/Gn+k+3, the

image of h̃ commutes with the images of hn+k+1 and of hnhn+1 · · ·hn+k.
Applying the well known formula

(xy)k = xkyk(y, x)k(k−1)/2 ,

which holds whenever (x, y) commutes with x and y, we see that

h = (hnhn+1 · · ·hn+khn+k+1)
ph̃p(p−1)/2g′g̃,

where g′ ∈ H ∩ Gn+k+3. Since h̃ ∈ Gn+k+2 and h̃ ∈ Gn+k+3 if p = 2, we obtain

that, in any case, h̃p(p−1)/2 ∈ Gn+k+3. Hence we may write

h = (hnhn+1 · · ·hn+khn+k+1)
pgn+k+3,

where hn+m ∈ H ∩Gn+m for 0 ≤ m ≤ k and gn+k+3 ∈ H ∩Gn+k+3.
This completes the proof of (2).
Clearly, the series {hnhn+1 · · ·hn+k}∞k=0 is a Cauchy series, so it converges to

some h′ ∈ H ∩Gn. On the other hand it follows from (2) that

h = lim
k→∞

(hnhn+1 · · ·hn+k)
p,

and since x 7→ xp is continuous we have h = (h′)p.
Since h was an arbitrary element of H∩Gn+1 we obtain H∩Gn+1 = (H∩Gn){p}.

By repeated use of this equality we obtain H ∩Gn = (H ∩Gc)
{pn−c} for all n ≥ c.

This proves part (i).
Part (ii) follows from part (i). Indeed

H ∩Gn = (H ∩Gc)
{pn−c} ≤ Hpn−c = Hn−c.

Applying part (ii) of the above result, we obtain the following ‘Artin-Rees type’
result for p-adic analytic groups.

Corollary 3.2. Let G be a p-adic analytic pro-p group and let H ≤c G be a closed
subgroup. Let Gn = Gpn and Hn = Hpn . Then there exists a constant c such that
H ∩Gn ≤ Hn−c for all n ≥ c.

Proof. Since G is p-adic analytic, there exists an integer a > 0 such that Ga is
powerful. Applying 3.1(ii) for H ∩ Ga inside Ga, we see that for some constant b
and for all n ≥ b we have

H ∩Ga+n = H ∩Ga
pn ≤ (H ∩Ga)

pn−b ≤ Hn−b.

The result follows with c = a+ b.

We can now prove our main results on the Hausdorff dimension in p-adic analytic
pro-p groups. Recall that the Hausdorff dimension is computed relative to the
filtration Gn = Gpn .

Proof of Theorem 1.1. It is was shown by Lazard [La, p. 95] that

dimG = lim
n→∞

logp |G : Gpn |
n

, dimH = lim
n→∞

logp |H : Hpn |
n

.

By definition Hpn ≤ H ∩Gn, and hence

logp |H : H ∩Gn|
logp |G : Gn| ≤ logp |H : Hpn |/n

logp |G : Gn|/n
n→∞−→ dimH

dimG
.
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By Theorem 2.4 we have

dimH(H) = lim inf
n→∞

logp |H : H ∩Gn|
logp |G : Gn| ≤ dimH

dimG
.

On the other hand, by Corollary 3.2 we have H ∩Gn+c ≤ Hpn = Hn for all n, and
hence

dimH(H) = lim inf
n→∞

logp |H : H ∩Gn+c|
logp |G : Gn+c| ≥ lim

n→∞
logp |H : Hn|/n

logp |G : Gc+n|/n =
dimH

dimG
.

The result follows.

Proof of Theorem 1.3. Obviously, if H is a finite subgroup of the infinite pro-p
group G, then dimH(H) = 0. Suppose now that G is p-adic analytic, and that H
is a closed subgroup satisfying dimH(H) = 0. Applying Theorem 1.1 we obtain
dimH = 0 (as a p-adic Lie group), and this implies that H is finite. Therefore
condition (ii) implies condition (i).

To prove the converse, suppose G is not p-adic analytic. Then G is a finitely
generated infinite pro-p group, and so by Zelmanov’s Theorem [Z], it cannot be

periodic. So let h ∈ G be an element of infinite order. Define H = 〈h〉 ∼= Zp.
We will show that dimH(H) = 0, so that condition (i) fails to hold. Suppose, by
contradiction, that dimH(H) > 0. Then, by 2.4, there is ε > 0 such that

lim inf
n→∞

log |H : H ∩Gn|
log |G : Gn| > ε.

Since Hn = Hpn ≤ H ∩Gn, we obtain

lim inf
n→∞

log |H : Hn|
log |G : Gn| > ε.

Note that |H : Hn| = pn; hence, if n is sufficiently large, then

n

logp |G : Gn| > ε.

This implies |G : Gn| ≤ pcn for all n, where c = 1/ε. It now follows from [La, p.
591] (see also [Sh1, Theorem B]) that G is p-adic analytic.

This contradiction completes the proof of Theorem 1.3.

Remark. Theorems 1.1 and 1.3 remain valid if the Hausdorff dimension function is
replaced by the upper box dimension function.

4. Fp[[t]]-analytic groups

Let Fp be the field with p elements, and let Fp[[t]] denote the local ring of
formal power series over Fp. Recently there has been some interest in certain pro-p
groups which have an analytic structure over Fp[[t]] (see [LSh]). In this section we
study Hausdorff dimension in such groups. Though our main interest is in finitely
generated pro-p groups, it is necessary to consider certain groups which are not
finitely generated, such as the additive and the multiplicative groups of Fp[[t]]. For

such groups G the subgroups Gpn are not open anymore, and so other filtrations
have to be considered.

Define G+ = tFp[[t]], considered as an additive group, and let G+
n = tnFp[[t]]

(n ≥ 1). Then {G+
n } is a filtration of G+.
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Lemma 4.1. Spec(G+) = [0, 1] with respect to the above filtration.

Proof. Given α ∈ [0, 1], choose a subset S ⊆ N of density α. Then the closed
subgroup generated by tn (n ∈ S) is easily seen to have Hausdorff dimension α.

A similar result holds for the direct sum of k copies of G+.
Next, define G∗ = 1+tFp[[t]], considered as a multiplicative group. Let G∗n = 1+

tnFp[[t]] (n ≥ 1). Then {G∗n} is a filtration of G∗. Let B = N\pN, the set of positive
integers which are not divisible by p. The following result is straightforward.

Lemma 4.2. The elements 1 + tn (n ∈ B) form a minimal generating set for G∗

as a pro-p group.

Using the above observation and density arguments, it is easy to obtain the
following.

Lemma 4.3. Spec(G∗) = [0, 1] with respect to the above filtration.

A similar result holds for a direct product of k copies of G∗.
Let us now turn to G = SLd(Fp[[t]]) (where p > 2) and its congruence subgroups

Gn = SLnd (Fp[[t]]) = Ker(G→ SLd(Fp[[t]]/t
nFp[[t]])) (n ≥ 1).

Note that G1 is a pro-p group, G/G1
∼= SLd(p), and for n ≥ 1, Gn/Gn+1 is

elementary abelian of order pd
2−1. In fact G2 coincides with the Frattini subgroup

of G1, and so d(G1) = d2 − 1. In particular, G and G1 are finitely generated
profinite groups.

Since (Gn, Gm) ≤ Gn+m, we can associate with G1 a graded Lie algebra L(G1) =⊕
n≥1Gn/Gn+1, where the Lie product of homogeneous elements is induced by

commutation in G. Moreover, since Gp
n ≤ Gpn, the pth power map in G induces

on L(G) the structure of a restricted Lie algebra. It is known that

L(G) ∼= G ⊗Fp tFp[t],(3)

as restricted Lie algebras, where G = sld(Fp). See [LSh] for this and for more
details.

It is easy to see that G = G[p], namely, G is spanned by the pth powers of its
elements. Using the isomorphism (3), it follows that pth powers of elements of Gn

generateGpn modulo Gpn+1. However, any subset of Gm which generates it modulo
Gm+1 generates Gm as a normal subgroup of G. The normality of Gp

n now implies

that Gp
n = Gpn for all n. In particular, Gpn

1 = Gpn , so the filtration {Gpn

1 } is a
sub-filtration of the congruence filtration {Gn} on G1. This remark enables us to

replace our canonical filtration Gpn

1 by the congruence filtration Gn, which is easier
to work with. The reader can now easily verify that all results below that deal with

Spec(G) with respect to Gn are also valid for G1 with respect to the filtration Gpn

1 .
We need some notation. Let I denote the identity n×n matrix. For k < d define

Tk = {I + (aij)1≤i,j≤d : aij ∈ tFp[[t]] and aij = 0 if j − i < d− k} .
Define

T = {I + (aij)1≤i,j≤d ∈ G1 : aij = 0 if j < i} .
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Then

Tk =



1 0 · · · · · · 0

0
. . .

. . .
...

. . .

...
0 · · ·

k︷ ︸︸ ︷
∗ · · · ∗
. . .

. . .
...

. . . ∗
0
...

. . .
...

. . .
. . . 0

· · · 0 1


and

T =


1 + ∗ ∗ · · · ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 · · · 0 1 + ∗

 ,

where the stars stand for arbitrary elements of the maximal ideal tFp[[t]]. The
congruence filtration Gn induces on the additive subgroups I+ tFp[[t]eij ∼= G+ (i <
j) the filtration G+

n mentioned above. Similarly, Gn induces on the multiplicative
subgroups (1 + tFp[[t]])eii ∼= G∗ the filtration G∗n mentioned above.

Combining this observation with Theorem 2.4 and the equality |G1 : Gn| =

p(n−1)(d2−1), we see that

dimH(Tk) =
(k + 1)k

2(d2 − 1)
and dimH(T ) =

d(d+ 1)− 2

2(d2 − 1)
.

We can now show that Spec(G) contains intervals. Indeed we have

Proposition 4.4. For every 0 ≤ ξ ≤ d(d+1)−2
2(d2−1) there is a closed subgroup Hξ ≤c G

(contained in T ) such that dimH(Hξ) = ξ. Consequently, Spec(G) contains the

closed interval [0, d(d+1)−2
2(d2−1) ].

Proof. Suppose first that ξ ≤ d(d−1)
2(d2−1) , and choose k such that k(k−1)

2(d2−1) ≤ ξ ≤ (k+1)k
2(d2−1) .

We will construct Hξ so that Tk−1 ≤c Hξ ≤c Tk. Since Tk/Tk−1
∼= G+ ⊕ · · · ⊕G+︸ ︷︷ ︸

k

,

this can be done using Lemma 4.1 and the remark following it.

Suppose now that d(d−1)
2(d2−1) ≤ ξ ≤ d(d+1)−2

2(d2−1) . Since T/Td−1
∼= G∗ ⊕ · · · ⊕G∗︸ ︷︷ ︸

d−1

, we

can construct (using 4.3 and the remark following it) Hξ such that Td−1 ≤c Hξ ≤c

T , whose Hausdorff dimension is ξ.

This proves part (i) of Theorem 1.4.
Using similar constructions inside parabolic subgroups, it is possible to show

that Spec(G1) contains a closed interval of the form [0, 1 − c · d−1/2], where c > 0
is some absolute constant.
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5. Subalgebras of Kac-Moody algebras

Fix a filtration Gn of a pro-p group G, and suppose Gn is a central p-series.
Then the associated Lie ring L = L(G) =

⊕
Gn/Gn+1 is an infinite dimensional

graded Lie algebra over Fp. Let H be a closed subgroup of G. Then H gives rise
to the graded subalgebra

⊕
n≥1(H ∩ Gn)Gn+1/Gn+1 of L(G), which (by a slight

abuse of notation) we denote by L(H). If |G : H | = ∞ then L(H) has infinite
codimension in L(G).

Theorem 2.4 enables us to reconstruct the Hausdorff dimension of H from the
dimensions of the homogeneous components of L(G) and L(H). We need some
notation. Let Ln = Ln(G) = Gn/Gn+1 and Ln(H) = (H ∩Gn)Gn+1/Gn+1. Define
the (lower) density of a graded subalgebra K =

⊕
n≥1Kn of L(G) by

D(K) = lim inf
m→∞

∑
n≤m dimKn∑
n≤m dimLn

.

Then we clearly have

Lemma 5.1. With the above notation,

dimH(H) = D(L(H)),

where the Hausdorff dimension is computed in G with respect to the filtration Gn.

Denoting by Spec(L) the set of densities of graded subalgebras of L, we see that
Spec(G) ⊆ Spec(L(G)). Equality need not hold, since in general not every graded
subalgebra of L(G) arises from some closed subgroup H ≤ G. Similarly, it fol-
lows that l(G) is bounded above by the maximal density of a graded subalgebra of
infinite codimension in L, though equality need not hold. Anyhow, Lemma 5.1 in-
dicates that the study of graded subalgebras of infinite codimension in N-graded Lie
algebras may be relevant for the computation of Spec(G) and of l(G) in particular.

For the groups in question (where p does not divide d), the Lie algebras L(G)
take a rather simple form. They can be regarded as the positive part of (possibly
twisted) Kac-Moody algebras, namely, of loop algebras associated with some finite-
dimensional simple Lie algebras over Fp.

Let us first recall some definitions. Let G be a simple finite-dimensional Lie
algebra over a field F . Let F [t, t−1] denote the ring of Laurent polynomials and set

L(G) = G ⊗ F [t, t−1]. Let m ≥ 1 and let α be a Z/kZ-grading of G, G =
⊕k−1

i=0 Gi.
Then the Z-graded Lie subalgebra of L(G) defined by

L(G, k, α) =
⊕
n∈Z

Gnmodk ⊗ tn

is said to be a loop algebra associated with G (with respect to k and α). Its positive
part is defined by

L+(G, k, α) =
⊕
n≥1

Gnmodk ⊗ tn.

Note that L(G) itself is a loop algebra on G, and that L+(G) = G ⊗ tF [t]. Similar
notation will be used for any (not necessarily simple) finite-dimensional Lie algebras
G.

It is known that, for G simple, any graded subalgebra of infinite codimension in
L+(G, k, α) can be extended to a subalgebra which is maximal with respect to these
properties (see [BShZ, §4]). Therefore, in order to compute the maximal density
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of a graded subalgebra of infinite codimension in L+(G, k, α) it suffices to compute
the density of the maximal ones. In [BShZ, Theorem 4.2] those subalgebras are
determined, under the assumption that G is central simple over F (i.e. its centroid
coincides with F ). In order to formulate the result, we associate with a graded

subalgebra H =
⊕k−1

i=0 Hi of G =
⊕k−1

i=0 Gi, a graded subalgebra of L+(G, k, α),
defined by

L+(H, k, α) =
⊕
n≥1

Hnmodk ⊗ tn ⊆ L+(G, k, α).

Theorem 5.2. Let G be a central simple finite-dimensional Lie algebra over a field
F . Let M be a graded subalgebra of infinite codimension in L = L+(G, k, α) which
is maximal with respect to these properties. Then one of the following holds:

(i) M = L+(H, k, α), where H =
⊕m−1

i=0 Hi is a maximal graded subalgebra of G.
(ii) M = L+(G, qk, β) for some prime q and a Z/qkZ-grading β of G.

Note that the average dimension of a homogeneous component of a loop algebra
of period k on G is 1

k dimG. It follows that the density (in L) of the subalgebra of
type (i) above is dimH/ dimG, and that the density of the subalgebra of type (ii)
above is 1/q. We therefore have the following.

Corollary 5.3. Let L = L+(G, k, α) be as above, and let M be a graded subalgebra
of L, maximal with respect to having infinite codimension. Then either D(M) = 1/q
for some prime q, or D(M) = dimH/ dimG for some maximal graded subalgebra
H of G.

In particular, we see that D(M) is always rational.
Given the simple Lie algebra G and its cyclic grading α, define

l(G, α) = max{dimH/ dimG : H is a proper graded subalgebra of G}.
Note that, if k = 1 – that is, if L = L+(G) – then l(G, α) = max{dimH/ dimG},
where H ranges over all maximal subalgebras of G; we denote this invariant by
l(G). Applying the preceding results, we obtain our main tool in the investigation
of l(G).

Corollary 5.4. Let L = L(G, k, α) be as above. Then the density of a graded sub-
algebra M of L of infinite codimension is at most max{l(G, α), 1/2}. Consequently,
if G is a pro-p group satisfying L(G) ∼= L+(G, k, α), then

l(G) ≤ max{l(G, α), 1/2}.
Now, let G = SL1

d(Fp[[t]]) (where p is odd), and let Gn be the congruence
filtration. As mentioned in the preceding section, the associated Lie algebra L(G)
is isomorphic to L+(G), where G = sld(Fp). Suppose first that p does not divide d.
Then sld(Fp) is central simple over Fp, and so the above results are applicable. We
assume that p > 2. Then Theorem 1.7 yields

l(sld(Fp)) =
d2 − d

d2 − 1
= 1− 1

d+ 1
.

It follows from 5.4 that

l(G) ≤ 1− 1

d+ 1
.
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On the other hand, letting H be the stabilizer in G of a subspace of codimension 1
of the natural module, we have dimH(H) = 1− 1

d+1 . It follows that

l(SL1
d(Fp[[t]])) = 1− 1

d+ 1
.

This completes the proof of Theorem 1.4 in the case where p does not divide d. If
p divides d then L(G) is still isomorphic to L+(G), where G = sld(Fp), but G is no
longer simple. However, the required result is easily obtained by factoring out the
center of G.

This completes the proof of Theorem 1.4.
It may be interesting to compute l(G) for other classical groups G over power

series rings, using essentially the same method.
Finally, let us turn to the proof of Theorem 1.6. Let G = W1 be the first Witt

algebra over Fp. Then G is a simple Lie algebra with a basis e0, . . . , ep−1 satisfying

[ei, ej ] = (j − i)ei+jmodp.

Thus G admits Z/pZ-grading G =
⊕p−1

i=0 Gi, where Wi = 〈ei〉. We denote this
grading by α.

Now, let G = Aut1(Fp[[t]]) be the Nottingham group, and let Gn be its congru-
ence filtration. Thus G1 = G and Gn is the collection of automorphisms g ∈ G
sending t to t +

∑
i>n ait

i (ai ∈ Fp). It is well known that Gn is an Np-series
and that the corresponding Lie algebra L = L(G) =

⊕
n≥1Gn/Gn+1 has the form

L+(G, α, p).
It is easy to see that the maximal graded subalgebras of G (with respect to the

grading α) have the form Fpe0 + Fpea + Fpep−a for some 1 ≤ a ≤ (p− 1)/2. Thus

l(W,α) =
3

p
.

Suppose first that p > 5. Then it follows from Corollary 5.4 that l(G) ≤ 1/2.
However, for each integer m, G has a closed subgroup

G(m) = {t 7→ t+
∑

n>1,n≡1modm

ant
n : an ∈ Fp},

whose associated subalgebra has the form L(m) :=
∑

n≡0modm Ln, where Ln =
Gn/Gn+1. This implies dimH(G(m)) = D(L(m)) = 1/m by 5.1. In particular,
dimH(H) = 1/2 for some closed subgroup H of G. It follows that

l(G) = 1/2.

If p = 5 then Corollary 5.4 yields l(G) ≤ 3/5, but it is not clear whether equality
holds.

Part (i) of Theorem 1.6 is proved.
To prove part (ii), first note that, by the above discussion,

Spec(G) ⊇ {1/m : m ≥ 1}.
Now, let L =

⊕
n≥1 Ln = L+(G, p, α) be as above, and let M ⊂ L be a graded sub-

algebra of infinite codimension which is maximal with respect to these properties.
Then, according to [BShZ, 4.4], one of the following holds.

(i) There exists 1 ≤ a ≤ (p− 1)/2 such that

M =
⊕

n≡0,a,−amodp

Ln.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HAUSDORFF DIMENSION, PRO-p GROUPS, AND KAC-MOODY ALGEBRAS 5087

(ii) There exists a prime q 6= p such that

M =
⊕

n≡0modq

Ln.

Moreover, the Lie algebras of type (ii) are isomorphic to the original Lie algebra L,
by an isomorphism sending Ln to Lqn.

We now claim that, if M is a graded subalgebra of L, then either D(M) = 1/m
for some m, or D(M) ≤ 3/p. Indeed, suppose D(M) > 3/p and let us show that
D(M) = 1/m for some m. If dimL/M < ∞ then D(M) = 1 and we are done.
Otherwise M is contained in a maximal graded subalgebra of infinite codimension
in L, say K1. Clearly, K1 cannot be of type (i), since this would imply D(M) ≤
D(K1) = 3/p. Hence K1 is of type (ii). It follows that D(K1) = 1/q1 for some
prime q1 and that K1

∼= L. If dimK1/M <∞ then D(M) = D(K1) = 1/q1 and we
are done. Otherwise there is a maximal graded subalgebra of infinite codimension
K2 of K1 which contains M . Since K1

∼= L it follows that K2 satisfies conditions (i)
or (ii) above (with L replaced by K1). However, K2 cannot be of type (i) by density
considerations. Hence K2 is of type (ii), so its density in K1 is 1/q2 for some prime
q2. This implies that the density of K2 in L is 1/(q1q2). If M has finite codimension
in K2, then D(M) = 1/(q1q2). Otherwise we can continue in this manner, based
on the isomorphism K2

∼= L. Note that the assumption D(M) > 3/p implies that
this process is finite. This completes the proof of the claim.

Having proved that D(M) ∈ [0, 3/p]∪ {1/m : m ≥ 1} for any graded subalgebra
M of L, it follows from Lemma 5.1 that

Spec(G) ⊆ [0, 3/p]∪ {1/m : m ≥ 1}.
This concludes the proof of Theorem 1.6, provided the Hausdorff dimension is
computed with respect to the congruence filtration Gn of the Nottingham group
G. However, it is known that every open normal subgroup N of G lies between Gn

and Gn+2 for some n [Yo], and this implies that the theorem remains valid with
respect to any other filtration.

6. Appendix

We give below a proof of Theorem 1.7. Let F be a field of characteristic p 6= 2.
It is clear that sld(F ) has a (parabolic) subalgebra of dimension d2−d. It therefore
suffices to show that, if L is a subalgebra of sld(F ) whose dimension exceeds d2−d,
then L = sld(F ). For the rest of this discussion we fix p, d and L as above. We also
let eij (i, j = 1, . . . , d) be the standard matrix units. Our Lie algebra notation is
standard and follows [H]. Note that sld(F ) is a perfect Lie algebra, and so it follows
that every maximal proper subalgebra of sld(F ) contains the center Z of sld(F ).
We shall assume, for simplicity, that p does not divide d, in which case Z = 0. If p
divides d then our arguments still apply after factoring out the center.

The first lemma follows from basic linear algebra.

Lemma 6.1. Let ϕ1, . . . , ϕf be linearly independent linear functionals on the linear
space V . Let v1, . . . , vn be a basis for V . Then there are f basis elements vi1 , . . . , vif
such that, for each 1 ≤ m ≤ f , there is a linear combination ψm =

∑
j cmjϕj

satisfying ψm(vik) = δmk.
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We need some definitions. Let D denote the subalgebra of diagonal matrices in
sld(F ). Then dimD = d − 1. Let E =

∑
i6=j Feij and let P be the projection of

sld(F ) onto E (whose kernel is D).

Lemma 6.2. For each i there are j, k 6= i with eij , eki ∈ L.

Proof. Let f = dim(D ∩ L). Then f ≤ d − 1, and since dim(sld(F )/L) < d − 1
we have f ≥ 1. Choose a basis h1, . . . , hf for L ∩ D. We can view each hj as a
functional on the roots space of sld(F ). Then h1, . . . , hf are linearly independent
functionals.

Now, the subspace P (L) has codimension < f in E. This implies that, for
any subset R of f matrix units eij ∈ E, some non-trivial linear combination∑

eij∈R cijeij lies in P (L).

Fix i, 1 ≤ i ≤ d, and let us show that, for some j 6= i we have eij ∈ L. It is well
known that the roots corresponding to the root elements ei1, . . . , eii−1, eii+1, . . . , eid
form a basis for the roots space of sld(F ). Apply Lemma 6.1 to the function-
als h1, . . . , hf acting on the roots space, equipped with the above basis. Let
eij1 , . . . , eijf be as in the conclusion of 6.1.

Let
∑f

k=1 cijkeijk be a non-trivial linear combination of these elements which

lies in P (L). Then there exists b ∈ D such that b +
∑f

k=1 cijkeijk ∈ L. Now,

suppose cijm 6= 0. Consider the linear combination h =
∑f

k=1 akhk corresponding
to ϕm in the conclusion of Lemma 6.1. Regarding h as an element of L, we have

cijmeijm = [h, b+
∑f

k=1 cijkeijk ] ∈ L. It follows that eij ∈ L, where j = jm.
In a similar manner it follows that eki ∈ L for some k 6= i.

Lemma 6.3. For each i ∈ {1, . . . , d} there is ki 6= i such that eiki , ekii, eii−ekiki ∈
L.

Proof. Fix i and let R = {eik : i 6= k, eik 6∈ L}. If R = ∅ then the existence of ki
follows from Lemma 6.2. So suppose R 6= ∅. Then, since the root corresponding to
eij is opposite to the root corresponding to eji, the roots corresponding to the set
S = R ∪ {eki : i 6= k, eik ∈ L} form a basis for the roots space. As in the proof of
Lemma 6.2, it follows that one of the elements of S lies in L. By definition, this
element cannot lie in R. Hence we obtain ki, as required.

For the rest of the discussion we fix, for each i, an integer ki as in Lemma 6.3,
in such a way that kki = i. Then the map i 7→ ki is a fixed-point-free involution
lying in the symmetric group Sd. Note that, by extension of scalars, we can (and
will) assume that F is algebraically closed. Now, D ∩ L is a toral subalgebra of L.
Hence we can write L as the direct sum of 1-dimensional subspaces Lα which are
ad(D ∩ L)-invariant.

Lemma 6.4. Let Lα be as above, and let v ∈ Lα be a non-zero vector. Then one
of the following holds:

(i) v ∈ D ∩ L.
(ii) v = cnmenm, where 0 6= cnm ∈ F .
(iii) v = cnmenm + ckmknekmkn , where 0 6= cnm, ckmkn .

Proof. Write v = b +
∑

i6=j cijeij , where b ∈ D. If cij = 0 for all i 6= j, then
v = b ∈ D ∩ L. So suppose cnm 6= 0 for some n 6= m.
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Since enn − eknkn ∈ D ∩ L, v is an eigenvector of enn − eknkn . Hence there is
l ∈ F such that

lv = [enn − eknkn , v] = [enn − eknkn , b] +
∑

cij [enn − eknkn , eij ].

This yields

lb+
∑

lcijeij =
∑
j

(cnjenj − cknjeknj) +
∑
i

(−cinein + cikneikn)

= 2cnknenkn − 2cknneknn +
∑

j 6=n,kn
cnjenj +

∑
i6=n,kn

cikneikn

−
∑

j 6=n,kn
cknjeknj −

∑
i6=n,kn

cinein.

Suppose first that m 6= kn. Then, by looking at the coefficients of enm in both sides
of the above equality, we see that l = 1 and b = 0. Using the fact that 1 6= −1 in
F , we conclude that

v = cknneknn +
∑

j 6=n,kn
cnjenj +

∑
i6=n,kn

cikneikn

(the first summand must vanish if p 6= 3).
We now use the fact that v is also an eigenvector of emm − ekmkm , namely,

µv = [emm−ekmkm , v] for some µ ∈ F . Substituting the expression for v, and using
the fact that n,m, kn, km are all distinct, we obtain

µv = cmknemkn − ckmknekmkn − cnmenm + cnkmenkm .

As cnm 6= 0, we must have µ = −1, and

v = cnmenm + ckmknekmkn ,

as required.
We are left with the case where cnm 6= 0 for n 6= m implies m = kn. In this case

we have

v = b+
∑
n

cnknenkn ,

where b ∈ D. Expanding the equality lv = [enn − eknkn , v] as above, we find that
l = 2, b = 0, and 2v = 2cnknenkn − 2cknneknn. Since the characteristic of F is not
equal to 2, it follows that v = cnknenkn , as in (ii). The result follows.

An element v = cijeij + ckjkiekjki ∈ L will be said to be indecomposable if v is
in one of the subspaces Lα mentioned above, cij , ckjki 6= 0 and eij , ekjki 6∈ L. A
matrix unit eij (i 6= j) is said to be missing if eij 6∈ L and eij does not occur in
any indecomposable element.

Lemma 6.5. There are no indecomposables elements in L, and the number of miss-
ing elements is less than d− 1.

Proof. If eij occurs in an indecomposable element, then it must occur with ekjki .
Since we fixed km for each m, eij can occur in at most one indecomposable element.
For each indecomposable element choose one of the matrix units occurring in it.
Let W be the linear space which is spanned by these chosen matrix units as well as
all the missing elements. Then dimW is equal to the number of indecomposable
elements plus the number of missing elements.
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We claim that W ∩ L = 0. Suppose otherwise, and let v ∈ W ∩ L be a non-zero
vector. Since v ∈ L∩E, it can be written as a linear combination of indecomposable
elements and matrix units eij which lie in L. On the other hand, v is a linear
combination of the elements spanning W . This yields a contradiction, and so the
claim is proved.

Using the fact that W ∩ L = 0 and that L has codimension less than d − 1 in
sld(F ), it follows that dimW < d−1. In particular, the number of missing elements
is less than d− 1.

Suppose that v = cijeij + ckjkiekjki is an indecomposable element. Then i 6= kj ,
for otherwise ki = kkj = j, which implies v ∈ Feij , a contradiction to v being
indecomposable. The same argument shows that j 6= ki. Hence

[v, eji] = [cijeij , eji] = cij(eii − ejj),

and
[v, eji, v] = cij [eii − ejj , v] = cij [eii − ejj , cijeij ] = 2c2ijeij .

Since v ∈ L and eij 6∈ L, we conclude that eji 6∈ L.
Note that, if m 6= j, then eij and eim cannot occur in the same indecomposable

element (as this would imply m = ki = j). Similarly, eij and eni cannot occur in
the same indecomposable element (as this would imply i = ki). Consider the d− 3
pairs {eik, eki} where k 6= i, j, ki, and let S be the union of those pairs. By the
above discussion any two elements of S cannot occur in the same indecomposable
element. Let T be a set consisting of eij , eji, the elements of S which occur in some
indecomposable element, as well as the missing elements. Let U be the linear space
spanned by T . Then we easily obtain U ∩ L = 0, and this yields dimU < d− 1. It
follows that |T | < d− 1, and so |T \ {eij, eji}| < d− 3.

Since there are d− 3 pairs of the form {eik, eki} (k 6= i, j, ki), there exists k such
that eik, eki 6∈ T . Thus eik, eki are not missing, and do not occur in indecomposable
elements. It follows that eik, eki ∈ L. Therefore their Lie product eii− ekk also lies
in L. We conclude that [eii − ekk, v] ∈ L. However,

[eii − ekk, v] = cijeij if k 6= kj ,

and
[eii − ekk, v] = cijeij − ckjkiekjki if k = kj .

Since cijeij+ckjkiekjki ∈ L, we conclude that in either case eij ∈ L, a contradiction.
The lemma is proved.

Proof of Theorem 1.7. In view of 6.4 and 6.5, we can write L as a direct sum of
D ∩ L and subspaces of the form Feij for some i, j with i 6= j. We claim that
eij ∈ L for all i 6= j, namely, that there are no missing elements.

Suppose, by contradiction, that eij is missing. Then at most d − 3 additional
elements are missing. Consider the d− 2 pairs {eik, ekj}, where k 6= i, j. Then for
some k we have eik, ekj ∈ L. Therefore eij = [eik, ekj ] ∈ L, a contradiction.

Having proved that eij ∈ L for all i 6= j (namely, that L ⊇ E), it follows at once
that eii − ejj ∈ L for all i 6= j, and so L contains D. Therefore L = sld(F ), and
the theorem is proved.
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