
NEGATIVE MAGNETORESISTANCE IN INDIUM ANTIMONIDE
/

A Thesis submitted for the Degree of Ph.D. in the 
University of London, Bedford College, by 

by Terry Ellis, M.Sc.



ProQuest Number: 10098295

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10098295

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



— I —

ABSTRACT •

Negative longitudinal m&gnetoresistance in indium antimonide 

subject to a quantizing magnetic field [Ü Wc > kT and Wc t >> ^ where 

is the cyclotron frequency] has been investigated under ohmic and 

non-ohmic conditions. Conduction band electron concentrations ranged 

from 1 X 10^^ cm ^ up to 2.23 x 10^^ cm Under ohmic conditions 

the negative magnetoresistance was studied at various stabilized 

temperatures between 4.2°K and 130°K. Non-ohmic results were taken at 

4.2°K, using pulsed electric fields up to 10 V cm ^ to induce

free carrier heating. Using an "electron temperature model" to 

represent the energy distribution of the electron system, the ohmic 

and non-ohmic behaviour are compared. The comparison yields some 

idea of the validity of this model in the presence of large magnetic and 

electric fields. The mechanism proposed for the observed negative 

raagneto-resistance is the magnetic field reduction of the small-angle 

scattering from collisions with the ionized impurities, as originally 

proposed theoretically by Argyres and Adams (1956) and extended by 

Dubinskaya (1969). A computer programme is formulated for the extreme 

quantum limit [h ojjj >> kT and E^] where only the ground state Landau 

level is occupied. As well as incorporating arbitrary degeneracy the 

calculations include the effect of drift momentum relaxation by small 

angle forward scattering events. These contribute to momentum relaxa

tion because of the energy uncertainty of an.electron associated with 

finite collision times. The role of higher Landau energy levels is 

also considered. The inclusion of the forward scattering events 

results in a fairly good quantitative agreement with experiment.

Various theoretical approximations and the effects of sample inhomogeneity
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are discussed as limitations on the agreement. An experimental and 

theoretical review of the phenomenon of negative magnetoresistance in 

semiconductors, associated with a variety of mechanisms, is also given.
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CHAPTER 1.

INTRODUCTION.

The present work is an experimental investigation of the 

negative magnetoresistance in indium antimonide. Although in Chapter 3 

we review various kinds of negative magnetoresistance, both theoretically 

and experimentally, in a variety of substances, the present investigation 

is concerned with the negative magnetoresistance in indium antimonide 

arising from the Landau quantization of the electron energy spectrum.

If we solve the one electron Hamiltonian for an electron in a 

magnetic field, we find the electron spectrum goes from

îi^k^e = _ —  the standard quasi-continuum equation

f;2v2
to E = (n + 5)tl + 2m*

for an electron in a strong magnetic field such that x >>1, where 

Wg. = is the cyclotron frequency and x is the collision time of

the electron. If this inequality is valid the Landau energy levels 

(n + g coe, where n is the Landau subband number, are well defined.

In this solution the magnetic field is in the z direction and so the z 

component of the motion remains unchanged.

The changed electron spectrum is also exhibited in the changed 

density of states behaviour. In Fig. la we see the normal band 

form of the density of states. Fig. lb shows how this is changed by 

the presence of a quantizing magnetic field as defined above. The 

discontinuities occur at each Landau energy level. It is this form of 

the state density which is used in the present analysis. In actual fact 

Fig. lb is a somewhat idealized picture of the state density and there are 

various broadening effects which round of the discontinuities, e.g. the
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various collision processes and the fluctuating impurity potential.

A modified [broadened] diagram is shown in Fig. Ic.

The condition x >> means that substances with small 

effective mass having comparatively large wc values, most readily 

display the Landau quantization and also give the largest Landau energy 

spacings Wg.

The effect of conduction band quantization displays a wide 

range of new phenomena when the condition > k^T is approached. If

the substance is degenerate [e ^ »  ü  m^] then many Landau levels are 

occupied and various phenomena such as the de-Haas, Van Alphen and 

Shubnikov, de-Haas effects are observed. These are oscillatory changes 

in the magnetic susceptibility and resistivity respectively, which occur 

in relationship to an increasing magnetic field as successive Landau 

levels pass through the Fermi level and are emptied. If we have a 

non-degenerate material [e^ << "h w^] then only the first few Landau levels 

are occupied and the above oscillatory phenomena are not observed.

However, the quantization is still apparent in the transport behaviour. 

Various other oscillatory phenomena appear, such as the magnetophonon 

resonance which occurs when a Landau level passes some resonant 

scattering energy, such as the optical phonon energy *h wop.

We also find that the magnetoresistive behaviour displays new 

characteristics and becomes sensitive to the relative electric and 

magnetic field configuration as well as the type of electron scattering 

mechanism present.

One particular manifestation [the one investigated in this work]^ 

is the appearance of a strong negative magnetoresistance of up to - 90%. 

This only occurs for a longitudinal configuration [e parallel to h]. We 

give a detailed study of this particular aspect of the Landau quantiza-* 

tion and investigate it quantitatively for the condition H k^T,
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the so-called "extreme quantum limit" where all the electrons are in the 

ground state Landau level.

Experimentally the extreme quantum limit requires high 

magnetic fields and, preferably, low effective mass, if it is to be 

readily achievable over a wide range of temperatures. The present 

study measures the transport in this region up to 130^K with a fairly 

limited field of 40,000 Gauss. This means that a material with a low 

effective mass is a necessity. Therefore, indium antimonide, with 

m* = 0.013 m* is particularly appropriate.

Because of its small effective mass and the present availabi

lity of pure crystal samples with low levels of impurity, the mobility 

at low temperatures is high. The purest sample used has a mobility of 

640,000 cm^ V""̂  sec”  ̂ at 77°K. The strong negative magnetoresistance 

increases this mobility up to a value of 5 x 10^ cm^ V“ ĵDiec’“  ̂ (this is 

under non-ohmic conditions for this particular case). It is possible 

to obtain samples of even greater purity than this.

The problem of transport in the quantum and extreme quantum 

limits is by no means a completely solved problem on the theoretical 

side. Attempts using a quantum mechanical formulation have been made 

in various approximations, but the complexity of the problem is rather 

involved in any full-scale treatment.

For the analysis of the results in Chapter 4 the early theory of 

Argyres and Adams (1956) together with some additional theory by 

Dubinskaya (1969) is used. The combination of these is sufficient to 

explain the essential features of extreme quantum limit behaviour under 

ohmic conditions.

The non-ohmic comparison which follows is based upon the 

electron temperature model. This is a fairly simple model, especially 

when compared with certain other more involved derivations, which
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nevertheless is sufficient to show that the basic mechanism for the 

ohmic and non-ohmic effects is the same. In fact, the electron 

temperature model often produces a rather good quantitative analysis, 

especially for the impure samples.
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CHAPTER 2.

EXPERIMENTAL PROCEDURE.

2 .1 Apparatus: 2.2 Cryomagnetic System: 2,3 Sample Holder Design:

2.4 Experimental Technique.

2.1 Apparatus.

A block diagram of the experimental apparatus is shown in Fig.

2.1, Central to the arrangement is the liquid helium cryostat, 

containing the sample holder and super-conducting magnet system. These 

features are described later. The superconducting magnet is supplied 

from a source having a current range of 0 ^ 40 amps. (With the 

particular Oxford Instrument magnet used 32 amps, is specified as the 

recommended largest operating current, giving a central magnetic field 

of 40 kilogauss.) Automatic current trip-out operates in event of a 

critical voltage appearing across the terminals, so protecting the 

magnet from damaging power dissipation. A reversing switch enables 

the magnetic field to be applied in either direction. A separate D.C. 

source, giving a current of 40 mA, operates the superconducting switch, 

allowing operation in the persistent or variable modes.

A two way selector switch connects the current leads of the 

sample to either a D.C. supply or the pulse generator. Both of these 

have a reversing switch for changing the direction of the sample 

current. The D.C. current is read from a Keithley digital multimeter 

(Type 168). A large series resistor is included in the D.C, supplyt
line to give a constant current source for all ohmic measurements. For 

the pulsed readings standard resistances are used to measure the current
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pulses, by way of the oscilloscope display.

Both supplies give a floating output. This is necessary 

because one end of the sample is electrically earthed by way of the 

cryostat body, which serves as a common earthed lead. The pulse 

generator was specifically built for the high electric field negative 

magnetoresistance measurements (A.K. Betts, Physics Department, Bedford 

College). It provides a floating output and can give current pulses 

from 0 to 15 Amps, at voltages up to 100 V. Pulse length is adjustable 

around 5y sec.and repetition rate down to 1 per sec. A repetition rate 

of around 5 per sec. was used in the experiments.

A second selector switch connects either a digital voltmeter 

(Keithley Type 168), for D.C. measurements, or the oscilloscope, for 

pulsed readings, to the sample voltage probes. These probes must also 

remain floating. To achieve this the oscilloscope input is a 

differential amplifier, having a sufficiently large resistive isolation 

from earth. The current and voltage pulses can be simultaneously 

displayed on the oscilloscope.

Temperature adjustment and stabilization is accomplished by an 

Oxford Instrument - Precision Temperature Control Unit. This is used, 

in combination with a helium exchange gas system, to obtain temperatures 

between 4.2°K and 150°K. The unit has a gold/iron versus chromel 

thermocouple as a temperature sensor, with reference junctions attached 

to the 4.2°K helium heat sink. The control unit supplies power to the 

sample heater until the set temperature is achieved. The unit stabilizes 

to the set temperature, to better than 0.1°K. Response of the 

controller, as well as maximum heater output voltage can be adjusted to 

give optimum performance for the particular cryogenic system. A 

separate direct reading of the thermocouple voltage is obtained from 

a Keithly micro-voltmeter (Model 155).
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2,2 Cryomagnetic System.

The cryomagnetic system is shown in Fig. 2.2. Basically, it 

consists of two silvered glass dewars (the inner for liquid helium, and 

the outer for liquid nitrogen) with the sample holder and superconduct

ing magnet being supported from stainless steel flanges attached to the 

top of the taller inner dewar by means of a rubber collar. The flange 

arrangement, with the helium vessel inlet and outlet tubes and super

conducting magnet/switch terminals, is itself supported by the larger 

framework containing the whole system. The rubber collar, connecting 

the stainless steel flanges and the inner helium dewar, is secured by 

two 0-rings clasped between metal rings. The grip is secured by 

screwing the rings, on each 0-ring, closer together.

The sample holder was designed to fit the central column, and 

the lower (sample) end fits snugly into the 2 cms diameter bore at the 

centre of the super-conducting coil. The sample holder position is 

adjusted and secured so that the sample lies exactly at the

longitudinal centre of the magnet. This is necessary to ensure the 

homogeneity and correct calibration of the magnetic field. Graph 2.1 

shows how the field strength decreases with distance from the centre of 

the coil on a longitudinal axis. (The coil is a fairly short one

(4 cms), so that a marked drop off in calibration is to be expected.)

The calibration of the magnet at its centre point is 1250 gauss/amp.

The superconducting magnet is composed of niobium titanium 

superconducting wire with a transition temperature around 11°K. It is 

important in sample holder design to ensure that there is no strong 

thermal link between the sample heater and any section of the super

conducting coil. If even a small part is heated sufficiently to "go

normal" the magnet supply must cut out, if permanent damage to the
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resulting high resistance section is to be avoided. In the present 

design the main heat path flows into the copper shoulder (shown in Fig,

2,2) well away from the main body of the magnet.

The main heat input into the helium bath, besides the sample 

heater, comes from the superconducting switch, when it is open (switch 

current on). Therefore, where possible, it is desirable to work in 

the permanent field mode. Other heat sources are conduction down 

the stainless steel tubing and the large gauge copper feed wires to the 

superconducting magnet. The large superconducting supply current in 

these wires also generates appreciable heating. The 5 litres of 

helium in the inner dewar is sufficient for about 7 hours.

The sample holder tube and helium dewar vacuum insulation are 

connected to the exchange gas and vacuum pump systems, (The vacuum 

space is initially pumped out before being sealed off,)

The confined nature of the superconducting coil bore and the 

design of the sample holder permit only a longitudinal magnetic field 

configuration for the sample, A separate liquid nitrogen system was 

used to make Hall measurements at 77^K, These were necessary to find 

the free electron concentrations present in the samples. The trans

verse magnetic field was sufficiently strong (wg. t >> | ) to make the 

Hall factor r = 1, Therefore, at this temperature and field 

1/R^ec = n (concentration of free electrons) = (the difference

between donor and acceptor concentrations),

2,3 Sample Holder Design.

The sample holder is drawn in Fig, 2,3, The principal materials 

used are non-magnetic stainless steel and high purity (99,999% pure) 

copper. The stainless steel tubing is used because of its low thermal 

conductivity. The high purity copper is used for the opposite reason, 

in that it has a very large thermal conductivity, especially around_ _ __ __ _
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liquid helium temperatures, (The low temperature thermal conductivity 

of pure copper is more than an order of magnitude higher than the room 

temperature thermal conductivity of either pure copper or the various 

other coppers.)

The sample platform and heater area is machined from the high 

purity copper. Between the sample and the copper platform is a very 

thin layer of mica, for electrical insulation. The mica is 

attached to the copper and the bottom of the sample by a thin smearing 

of special low temperature n- type vacuum grease. One end of the 

sample is indium soldered to a small copper end plate, which is 

greased and then screwed onto the main body of copper, to ensure good 

thermal contact. In this way one end of the sample is earthed both 

electrically and thermally to the whole sample holder and cryostat. 

Because the bottom of the sample also has fairly good thermal contact, 

temperature gradients down the sample should be minimised.

The electrical terminals are formed from small cylindrical 

blocks of P,T,F,E, (< 2 mm, diameter) with a hole drilled through the 

axis and the inside section of a small co-axial cable glued into 

position to act as a copper terminal. The P,T.F.E, is glued onto a 

shouldered hole drilled through the copper platform. The copper leads 

are soldered to the ends of the terminals beneath the platform. Fine 

gauge platinum wire, 0.1 mm. diameter, is used to make the connection 

from the terminal platform end, onto the sample. The wire for the 

current contact is indium soldered to the end of the sample.

The two platinum wire voltage probes are resistance welded onto 

the sample by capacitor discharge. A 100 pF capacitor is charged to 

about 20 Volts and discharged through each wire in turn. The platinum 

wires are sprung onto the required part of the sample, with an initial 

contact resistance between 20 and 100 ohms. The high instantaneous
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capacitor current flowing through the contact resistance is sufficient 

to weld the wire to the sample. The contacts produced by this method 

are mechanically weak and can easily break away when the system is 

cryogenically cooled. However, the great advantage is that the weld 

area is small and covers only a tiny portion of the sample width.

This is especially important for magnetoresistance measurements, 

particularly on high mobility samples, such as indium antimonide.

The probes can disturb the current flow and thereby lead to misleading, 

non bulk effect, magnetoresistance.

The heater is situated immediately behind the sample area and 

is wound from 40 Gauge, cotton insulated Manganin wire, and glued into 

position.

The hot junction of the thermocouple is glued to the copper 

platform beside the sample. The junction is electrically insulated 

from the copper and fixed with low temperature G.E.7031 varnish. A 

smearing of n-type grease is also applied. The gold/copper and chromel/ 

copper junctions are both attached to the 4.2°K copper base, as 

reference points. The gold wire is soldered directly onto the copper 

base, so that this junction is electrically earthed. (The copper base 

is joined to an external wire which leads to the measuring apparatus.)

The copper/chromel junction is glued to, but electrically insulated from 

the copper base in a similar way to the sample junction. The thermo

couple was tested with the hot junction at room temperature and the 

reference at 77°K. The output agreed reasonably well with published 

values. Gold/iron thermocouple tables given by Rosenbaum (1968) were 

used for temperature measurements. The calibration is shown graphically 

in Graph 2.2.

Stainless steel i" tubing joins the sample platform/heater to 

the copper base so as to minimize the heat blow into the helium bath.
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Holes drilled into the side of the tube give entrance to the main 

stainless steel tubing. The electrical leads are passed through 

these holes, to the main terminal block at the top of the holder.

They also allow the sample space to be pumped out when the copper 

jacket has been soldered into position.

The jacket is machined to fit over the copper base and rest 

against the base shoulder. It is important that the jacket does not 

touch any other part of the sample holder, as it is in direct contact 

with the helium bath and would provide a strong thermal short. The 

jacket is vacuum sealed with Woods Metal Alloy low melting point solder.

The top outlet of the main tubing is left open, for 

attachment to the vacuum system. A side connection from the tubing 

leads to the glass insulated 9 pin base terminal, which makes all the 

electrical connections between the sample holder and external apparatus.

2.4 Experimental Technique.

After the liquid nitrogen precool and helium transfer stages, 

initial checks were made for vacuum leaks and electrical or thermal 

shorts in the system. Preliminary readings were taken of the sample 

and voltage probe resistances. Cooling strains can (and did) result 

in the probes breaking away, or the current contacts cracking, as a 

result of differential contraction processes.

With no exchange gas present the sample platform slowly cooled 

to around 20°K before reaching equilibriumo Therefore, to begin with, 

sets of measurements were taken at temperatures above this value. Only 

when all the required readings in excess of 20°K had been taken was 

helium exchange gas admitted. With the exchange gas present the 

temperature immediately dropped to 4.2°K. (The remaining output from 

the thermocouples was spurious and not indicative of any actual
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temperature difference. As such it was allowed for - deducted - from 

the higher temperature measurements.) Most of the exchange gas was 

pumped out, until the temperature began to rise, and the pumping was 

stopped a few degrees before the desired temperature was reached. The 

control unit was then used to heat the sample the remaining few degrees. 

This method was the most convenient, economical and stable way of 

achieving the required temperature.

For the ohmic results a set of voltage versus magnetic field 

readings were taken at each stabilized temperature. The current was 

set at a constant value. It was therefore possible to view directly 

the resistivity dependence on magnetic field. Voltage readings were 

taken at steps of 5 kilogauss, for both directions of magnetic field and 

sample current. Changing the magnetic field direction gave a 

substantial reading difference, which was largely independent of sample 

current direction. This results from a slight misalignment of the 

potential probes and sample orientation from the desired longitudinal 

configuration, with a resulting additional Hall field contribution to 

the measured voltage. The conditions of observation with pH >> |

(y is the mobility and H the magnetic field) means that the Hall field 

is much greater than the resistive field, for a transverse configuration. 

This in turn means that even a slight misalignment in the longitudinal 

configuration, giving a small net transverse component of H, may result 

in a significant Hall voltage. This is particularly relevant for the 

negative magnetoresistance measurements, where mobilities higher than 

2 X 10^ cm^ V"lsec"l mean that yH ~ 2 (yH/lO® in mixed units) for 

magnetic fields (transverse component) as low as 50 gauss. The voltage 

independence of current direction indicates that there were no, or at 

least very small, temperature gradients. The four voltage readings for 

each magnetic field were averaged to eliminate the above contributions.
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Sets of results were taken typically at 4,2°K, 10°K, 15°K,

20°K, 25°K, 35°K, 45°K, 55°K, 77°K, 100°K and 130°K. Regular checks 

were made that the measurements were taken in the ohmic region, i.e.

I-V have a linear relationship.

With exchange gas admitted the non-ohmic results were taken 

at 4.2°K, and the sample switched to the pulse system. The results were 

taken with the magnetic field in the permanent mode, typically at 0,

10 kilogauss, 20 kilogauss, 30 kilogauss and 40 kilogauss, a set of 

current and voltage pulse measurements being made for each magnetic 

field setting. From these the required resistivity versus electric 

field values could be calculated. Fields up to 10 V/cms were found 

sufficient to cover the whole non-ohmic negative magnetoresistance 

range. Pulse measurements were made down to low (mA) current ranges, 

so that a check could be made that they married up to the D.C. ohmic 

measurements taken at 4.2°K. Readings were taken for both magnetic 

field directions and current directions, with a similar treatment to the 

ohmic case.

Because of the large currents involved it was necessary to 

keep the pulse repetition rate at a very low level, even though the 

pulse length was less than 5y sec. Typically at lOV with a current of 

10 amps and a pulse rate of 5 there is still a sample power of 2.5 

milliwatts. Higher repetition rates quickly resulted in a thermal 

heating of the sample. Observation of the voltage pulse and comparison 

with the current pulse ensured that no significant thermal heating took 

place in the duration of the pulse and, on the other hand, that the 

pulse was significantly longer than the energy relaxation time, such that 

the electron system could reach an equilibrium state. The current and 

voltage pulses compared favourably.

The relative errors in the system were small, being about 1% for
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the ohmic measurements. For the pulse measurements the readings were 

taken from an oscilloscope display with an error of 5% or more. The 

non-ohmic measurements, therefore, have a greater inaccuracy.

Measurements were repeated during the run, ensuring 

reproducibility and to check that there were no hysteresis effects 

with current, voltage or magnetic field sweep.

Sample dimensions and probe spacings were measured before and 

after each run with a travelling microscope.
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CHAPTER 3.

NEGATIVE MAGNETORESISTANCE AND HOT ELECTRONS IN SEMICONDUCTORS.

(A REVIEW)

3.1 Introduction: 3,2 Negative Magnetoresistance - Review of Theory:

3,3 Negative Magnetoresistance - Experimental Review: 3,4 Hot Electrons,

3.1 Introduction.

Section 3,2 reviews the various mechanisms which have been 

proposed to explain the negative magnetoresistance observed in semi

conductors. Broadly speaking there are two different types of negative 

effect: (i) comparatively small effects (generally < - 10%) seen at

very low temperatures and associated with the detailed structure and 

interactions around the impurity levels and the bottom of the conduction 

band; (ii) larger effects (up to -90%) taking place in the conduction 

band,and arising from the energy quantization of the conduction band 

electrons caused by high magnetic fields. The quantization imposes 

strong limitations on the effective scattering cross-section.

Most emphasis is given to the second of these effects, being 

the most relevant to the present investigation. In particular, attention 

is given to the interaction of conduction band electrons with ionized 

impurities when subject to high (quantizing) magnetic fields.

In section 3,3 we review the experimental work on negative 

magnetoresistance in semiconductors. Examples are given over a wide 

range of semiconductors, temperatures and magnetic fields. Various 

models, as expounded in section 3,2, are used by the authors to explain 

the experimental results. The agreement is by no means unanimous, 
especially in the type (i) effects studied. Sample inhomogeneity and 

shape are also shown to complicate the investigations.
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Finally section 3.4 looks at the phenomenon of "hot" electrons 

in semiconductors, i.e. when the electron system is not in thermal 

equilibrium with the lattice. In particular, the behaviour of hot 

electron systems under high magnetic fields is explored both theoretically 

and experimentally. The magnetic field can result in strong deviations 

from the normal equilibrium formof the distribution, with the possiblity 

of various non-linear and "runaway" effects,

3,2 Negative Magnetoresistance - Review of Theory,

Standard solutions of the Boltzmann equation, for a parabolic 

conduction band, give the magnetoresistance as being proportional to 

for the transverse configuration and zero for the longitudinal 

configuration. This is derived for low magnetic fields, such that 

u)̂  T << ^ ((JÜC is the cyclotron frequency and t the electron collision 

time). For high magnetic fields, where Wc T »  the simple theory 

predicts a transverse saturation magnetoresistance and still a zero 

longitudinal magnetoresistance.

Experimentally this behaviour is seldom found, especially at 

low temperatures and for the high magnetic field condition x >>

More refined approaches must take into account the effect of a magnetic 

field on the relaxation time of the electron, (It is also necessary to

note how the concentration of conduction band electrons may depend on 

the magnetic field, as this can exert a substantial effect on the 

magnetoresistance,)

Early experimental observations of negative effects were 

generally explained as resulting from contacts, or sample inhomogeneity. 

See Frederikse and Hosier (1957) or Bate et al (1961), Indeed, sample 

shape, contacts and inhomogeneity were sometimes deemed sufficient to 

explain all magnetoresistance, positive or negative, Weiss (1961),
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However, two main approaches to negative magnetoresistance as a bulk 

effect emerged; (i) Toyozawa (1962) with the local spin model, and 

(ii) Argyres and Adams (1956) who showed the importance of the Landau 

energy quantization of the conduction band» We will look at these 

two approaches in turn, along with their extension and/or alternative 

theories.

(i) The Toyozawa model treats the interaction of the electrons in

the impurity band with a localized spin system. The theory was 

adapted from Yosida (N57) who interpreted low temperature resistance 

anomalies in noble metals containing magnetic impurities using a Kondo 

type system of s - d exchange interaction between free electrons and 

the magnetic impurities. This interaction leads to the well-known 

Kondo minimum, seen in metals at low temperatures, where the resistance 

increases with decreasing temperature. Normal first order perturbation 

treatment is insufficient and higher orders must be used to reproduce 

this behaviour. (The mathematics of the Kondo problem can become very 

involved in a fuller treatmentiNoziëres (1975).)

However, in non-magnetic semiconductors it is not readily seen 

how local magnetic moments exist in the first place. Toyozawa shows 

that by introducing electron correlation energy into a network of 

random impurities, localized electron spin systems can exist around 

relatively isolated centres. Provided that these centres are not too 

isolated they can scatter the remaining "conducting" electrons in the 

impurity band. Using second order perturbation calculations the 

resistivity is found to increase logarithmically with decreasing 

temperature. Applying a magnetic field removes the dynamical and 

spatial randomness of the magnetic moments, effectively reducing the 

scattering cross-section and hence giving a negative magnetoresistance.
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Both the spin scattering and the magnitude of the negative magneto

resistance should increase with decreasing temperature.

From the theory the magnetoresistance ratio ( - A p / p o ) ®  ,

where M is the magnetization of the moments'.

So that for low magnetic fields,
( - A p / p o )  a

where x, the magnetic susceptibility, should follow the standard 
Curie-Weiss type law,

C
^ T + 0

0 being the Curie or Nêel temperature of the spin system. More - .

generally, for arbitrary magnetic fields where x becomes a function of 

magnetic field, the resistivity ratio should vary as the Brillouin 

function.

The partial localization of electrons within the impurity band 

is not the only way that the magnetic scattering centres are taken to 

arise. Other uses of the Toyozawa type system assume localization on 

isolated "single" impurity sites, fluctuating wells in the bottom of 

the conduction band or the formation of impurity aggregates. The last 

of these is taken to be a possible situation in heavily doped semicon

ductors, the precipitation of impurities being discussed by Andrianov (1975) 

for the case of Gallium Arsenide. Examples of the other systems are 

given in section 3.3.

Experimentally the local spin model has not been clearly 

established and the data is rather conflicting. The behaviour is 

rarely found and it may be necessary to extend the calculations past the 

second order; Alexander (I9G9). Alternatively, the magnetic moments 

themselves may depend on H and T in a complicated way, Andrianov (Ĥ S), 

giving strong divergence from the simple theory. —
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There has also been theoretical criticism of the spin model, 

with alternative mechanism for the negative magneto resistance being 

proposed. Mott (1974) states that the localized spins probably do not 

exist. He suggests that the dependence of the Fermi energy on 

magnetic field could result in a negative magnetoresistance. The conduc

tivity in the impurity band is proportional to the density of states 

squared at the Fermi level. If the magnetic field dependent Fermi 

energy, moves to a higher state density a negative magnetoresistance 

results. (This, of course, would not explain any negativity observed 

in the conduction band at higher temperatures.)

Another explanation of the low temperature results is based upon 

a two-band model proposed by Hedgcock (1970). In this model the 

impurity and conduction bands overlap, but with a fairly well defined 

mobility edge. A magnetic field causing spin alignment (as in Pauli 

Paramagnetism) with the corresponding energy changes - spin up or spin 

down energies - redistributes the electrons between the impurity and 

conduction bands. A simple calculation shows that there can be a net

transfer of electrons across the mobility edge and so an increased

conductivity,

Hedgcock fits a curve of the form,

^  = aH^ + bH^ (a is a negative number)

to the experimental results. (The bH^ term is the "normal" positive 

magnetoresistance given by simple theory.) He obtains a fit with a 

value of c = 1, which is close to the value calculated on the two band 

model. The Toyozawa theory gives c = 2.

So far we have viewed electron interactions around the impurity 

energy levels. We now look at electronic conduction processes in the 

conduction band, and how the interaction with the standard scattering
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mechanisms is modified by a large magnetic field.

(ii) The theory of Argyres and Adams (1956) is concerned with 

scattering processes in the conduction band, resulting from the standard 

phonon and ionized impurity interactions. The Hamiltonian for a free 

(conducting) electron in a magnetic field is used to evaluate the 

electronic wavefunctions and energy eigenvalues of the system. The 

wavefunctions are then used to calculate the scattering matrix elements 

for both acoustic phonons and screened ionized impurity interactions. 

(Optical phonon interactions or the piezo-electric component of the 

acoustical phonon interaction are not considered in the theory.) The 

matrix elements are used to calculate the relaxation times. The theory 

is done for the "Extreme Quantum Limit" condition given by Ti >> kT and 

>> Ep, such that all the electrons are in the ground state Landau level. 

The expressions for conductivity are calculated from the standard type 

of relationship, for the limits of degenerate and non-degenerate 

statistics. The theory is only applied to the longitudinal (H parallel 

to E) configuration.

For the case of non-degenerate statistics and scattering from 

ionized impurities a negative magnetoresistive effect is predicted.

The explanation of this result can best be given with reference to 

Fig. 3.1. For the "Extreme Quantum Limit" all electrons are confined 

to the lowest Landau level and the energy of any electron is given by,

i A Wf + _
2m*

where |h is the ground state level. (The magnetic and electric 

fields are in the z direction.) Scattering off ionized impurities is 

elastic, which means that the magnitude of k^ must remain unchanged if 

energy is to be conserved. Therefore +k^ can only go to -ki and vice



E(k), .relatior ship for z direction 
(showing; two Landau levels.)

r-Back Sc at ter Mag
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versa, i.e. momentum reversal of the electron. See Fig.3.1,

There are many scattering events where kz remains unchanged - forward 

scattering - but these do not relax drift momentum and therefore do not 

contribute to the resistance. Because the scattering from ionized 

impurities is predominantly small angle scattering, the 180 degree 

momentum reversal has only a small effective cross-section. Therefore, 

the relaxation efficiency is strongly curtailed.

The strength of the negative magnetoresistance depends on the 

magnitude of (kR), where k is the mean electron momentum and R the 

screening radius of an ionized impurity. For kR >> 1 small angle 

scattering is predominant and occurs down to a minimum angle of 

0 " l/(lcR), without the presence of a magnetic field. If the parameter 

kR<l, which occurs for low temperature and/or strong screening, then the 

scattering becomes much more isotropic and small angle processes do not 

predominate (momentum reversal has a larger effective cross-section). 

Therefore, the net effect from the magnetic field cutting of small angle 

scattering is reduced.

More generally, when more than just the ground state Landau 

level are occupied, the scattering restrictions are not so stringent.

This is the case for -h "* kT or E^. When the condition kT >> -h w'c
applies the electrons are spread over a number of levels and the normal 

quasi-continuum of states applies. Ionized impurity scattering, in 

the non-degenerate limit, when more than one level is occupied is 

treated by Dubinskaya (1969). For more than one level the mathematics 

becomes rather tedious and it becomes necessary to solve sets of 

simultaneous equations, an additional equation being needed for each 

Landau level. Numerical calculations for two Landau levels are given by 

Dubinskaya.

Dubinskaya also gives an additional approximate treatment for
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effects due to collision broadening of the allowed states. -The 

effect allowed for is a certain amount of small-angle scattering 

resulting from the finite time between collisions and the associated 

uncertainty energy spread.

From the uncertainty principle

(where t c  is the collision time).

This in turn gives an uncertainty in kz, given by:

This gives the possibility of collision processes with small kz 

changes (small angle). The uncertainty Akz is generally rather small, 

but the effect on the negative magnetoresistance can be substantial 

because the forward scattering events have a high probability.

The correction can be included in the "extreme quantum limit"

by introducing a relaxation time Tf associated with the forward scatter

ing collisions. This can be combined with the relaxation time from the 

backward scattering events in the standard relationship, to yield a 

total transport relaxation time, so that:-

' _____ 1_____  = _ J _  +
T transport T Back T forward

The main result is to uniformly reduce the magnitude of the

negative magnetoresistance, as shown by Dubinskaya for different degrees 

of a forward scattering contribution. (The inclusion of a forward 

scattering would also appear to change the qualitative behaviour for low 

values of the quantum parameter (fi Wc/k^T), as discussed in Chapter 4.)

A further possible correction comes from the non-parabolicity 

of the conduction band, which is fairly strong for the case of indium 

antimonide with its low effective mass and strong band interaction.

See Phadke (1975) and Agaeva (1974). The non-parabolicity results in 

a magnetic field dependent effective mass. As the magnetic field
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technique, which is shown to converge rapidly, enables a solution to 

be derived for multiple Landau level occupancy. The main concern of 

Magnusson was the magnetophonon resonance phenomenon, but his calcula

tions also show a strong negative magnetoresistance associated with the 

optical phonons. The magnetoresistance from this source remains 

negative up to the highest magnetic fields. Addition of acoustic 

scattering, in the high field region, quickly pushes the calculations 

into the positive region.

A negative magnetoresistance should also result from electon- 

hole scattering. The mass of the hole is much greater than the 

electron and so the scattering anisotropy is similar to the ionized 

impurity case. However, the author is not aware of any investigation, 

theoretical or experimental concerning this mechanism. The experi

mental situation would probably be difficult to realize, as the electron- 

hole scattering only predominates at high temperatures (above 400°K for 

indium antimonide).

A different kind of negative magnetoresistance can exist in 

many valley semiconductors such as Germanium and Silicon. Miller ( II G&) 

shows how an electric field can redistribute the electrons amongst the 

more mobile valleys. The associated negative effect is fairly small 

and strongly anisotropic.

The quantum limit with degenerate statistics and multiple 

Landau occupancy has been investigated theoretically by Serre (1974). 

Ionized impurities are taken as the only scattering mechanism. A 

substantial negative magnetoresistance is shown to result from the 

quantization effects. In the extreme quantum limit, if the statistics 

remain degenerate, the magnetoresistance starts to go positive, unlike 

the non-degenerate case where the negative magnetoresistance saturates 

to a constant negative value. Serre incorporates a density of state 

broadening factor F, which arises from the fluctuation of the bottom of
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the conduction band caused by the potential from the random distribution 

of charged impurities. See Dyakonov, Ebros and Mitchell (1969) or 

Keldysh (1964). This broadening can result in the second Landau level 

being occupied even for the condition "h > E^, and is calculated as 

exerting a fairly strong effect on the magnitude of the magnetoresistance. 

The broadening effect besides changing the negative magnetoresistance 

may decrease or totally remove the de-Haas Shubnikov oscillations 

normally associated with the degenerate multiple-occupancy case.

The negative magnetoresistance in the degenerate case, with 

more than one Landau level, has also been covered by Gerhardts and 

Hajdu (1971). Ionized impurity scattering is used, but no additional 

corrections are used. They state that a more complete approach using 

a generalized Born approximation and allowing for Landau broadening, 

would be desirable.

In fact Gerhardts gives a formally more complete approach to 

the quantum limit transport problem (Gerhardts (1971) ) but using the 

physically unrealistic point impurity scattering mechanism. Four 

different approximations are investigated: (i) the lowest Born

approximation; (ii) the T-matrix method; (iii) the generalised Born 

approach; (iv) the self-consistent T matrix. The calculations are 

done for the degenerate case in the quantum and extreme quantum limits.

The calculations, especially in the extreme quantum limit, are found to 

be sensitive to the approximation used and the treatment of the Landau 

broadening.

A rigorous quantum mechanical formulation using the ionized 

impurity scattering mechanism has not been attempted and would involve 

fairly formidable evaluation techniques. Most treatments use the 

standard Born approximation, which is discussed further in Chapter 4.

The treatment of the Landau broadening may be important, as shown by
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Serre. The broadening can arise from collision effects, as well as 

the random impurity potential as used by Serre. Barker (H72) gives 

a,treatment of the possible broadenings of the Landau states, in 

reference to the damping of magnetophonon resonances. The effect is to 

curtail the sharp singularities that exist in the undamped state structure. 

At low temperatures we also have the possibility of multiple scattering 

events that occur when an electron interacts with two or more sites 

simultaneously. Multiple scattering events, for the zero-magnetic 

field scattering from ionized impurities, have been calculated by 

Moore (1969) as a correction to the standard Brooks-Herring mobility 

equation.

3.3 Negative Magnetoresistance - Experimental Review.

Most of the published experimental work is concerned with spin/ 

impurity mechanisms of negative magnetoresistance. . Although Argyres 

predicted the negative conduction band effect in 1956, it is only more 

recently that it has been investigated experimentally.

Negative magnetoresistance has been observed in a wide range of 

substances, both metallic and semiconducting, crystalline and non

crystalline. We will not cover the metallic work, although the metallic 

alloys with their low temperature resistance anomaly were the first 

subjects of the Kondo spin-interaction theory.

Various magnetic semiconductors display, quite strongly, the 

spin scattering mechanism and the associated negative magnetoresistance.

See Shapira (1971) for work on Eu.Te. or a review of magnetic semi

conductors by Gurevich (1975). The scattering is within the conduction 

band and is associated with the net magnetic moment of the impurity ' 

atoms and not any hypothesized correlation effects between electrons and 

impurity centres. The scattering and associated negative magneto

resistance is found to increase as the temperature is lowered, reaching
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a maximum value when a phase transition to ferromagnetic or anti

ferromagnetic ordering is taking place. At this critical temperature 

the magnetic order fluctuations are at a maximum. All transport 

coefficients, not only conductivity, display anomalies in this region.

Mell (1970) has investigated negative magnetoresistance for 

a range of amorphous semiconductors (Ge, Si, In Sb and Ge Te) and 

reports that nearly all show a negative effect, which varies as 

where 0.5 < n < 1. This occurs in the hopping conduction region and 

quickly vanishes at higher temperatures.

Various negative magnetoresistance results have also been 

associated with heating effects other than fcke case of using an 

electric field to merely raise the electron temperature. For non

parabolic semiconductors, with multi-valley structure, an electric 

field can redistribute the carriers into more mobile valleys. This 

was mentioned in the previous theory review section (Miller). Kotkus

(1972) obtains a 2% negativity at 77°K in germanium resulting from 

this effect.

Newhouse (1969) has observed a transverse negative magneto

resistance in germanium at 4.2°K. This was attributed to impact 

ionization of the impurity levels, caused by the increasing Hall field 

as the magnetic field was raised.

A resistive drop with magnetic field can be observed in the 

pinch effect,seen in semiconductors at sufficiently high electric 

fields to excite an electron-hole plasma. See Glicksman (1959).

The pinch, which results from the currents own magnetic field, narrows 

the effective cross-sectional area of the current and gives a higher 

resistance. An applied longitudinal magnetic field destroys this 

self—containment and thereby decreases the resistance.

Investigations have also been made on carbon in its various
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forms. See Delhaes (1972); Yazama (1969); Delha© (1974);

Fujita (1968). The negative magnetoresistance has been attributed to 

a variety of causes. Proposed mechanisms are: magnetic field

reduction of diffuse scattering at crystalline boundaries; changes in 

the free electron concentration with magnetic field; Toyozawa spin 

scattering effects. The effects would seem to depend on the detailed 

structure of the material used and its degree of graphitization.

Negative magnetoresistance resulting from spin scattering has 

been investigated fairly extensively, although not conclusively. A 

number of authors have used the Toyozawa theory, and extensions of it, 

to interpret their results. See Delhaes (1972) on pyrocarbon;

Larsen (1973) on sulpho-spinels; Zotova (1963) on indium arsenide; 

Zavaritskaya (1973) on gallium arsenide; Sasaki (1961) and (1961) on 

germanium; Khosla (1970) on cadmium sulphide; and Matveenko (1971) on 

gallium antimonide.

Takita (1973) reports a negative magnetoresistance of -5% in 

p-type tellurium at 1.2°K and below. At the higher levels of doping 

used there is no separate impurity band and the dominant carriers are in 

the conduction band. He states, however, that the existence of 

localized spins is somewhat questionable and the Toyozawa type model is 

found to be inapplicable, especially as there is only a small g-factor 

associated with the band.

Iwai (1974) reports a small negative magnetoresistance <1% in 

Cd In2 Sq., which is observed up to a temperature of 130°K. As no 

Toyozawa H^ dependence is observed Iwai used the Hedgcock mobility edge 

model to interpret the results.

The negative magnetoresistance observed in gallium arsenide 

exceeds -35% and appears to be the largest effect, in a non-magnetic 

semiconductor, attributed to a spin system. An H^ dependence is seen at
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low magnitude fields and (Ap/p^)^ fits a Curie-Weiss susceptibility law, 

being proportioned to 1/(T - A). Experimentally A is found to be a 

negative value, indicating anti-ferromagnetic coupling between the 

spins, A g factor of 25 is necessary to explain the results, (A 

high g factor is characteristic of all the experimental work on non

magnetic semiconductors.)

As stated in section 3.2 the spin systems are not only limited 

to the original Toyozawa impurity bonding regime, Garyagdyer (listed 

above) used the fluctuating bottom of the conduction bond as a mechanism 

for localization of the electron spin system. (The fluctuation arises 

from the random impurity distribution as used by Serre (see section 3.2) 

to account for Landau level broadening.) Gayagdyer uses a root mean 

squared fluctuating potential of 30 meV for indium arsenide. This value 

has a strong dependence on the degree of compensation. The local 

magnetic moments required by theory to fit the data rise to 200 Bohr 

magnetons. (A rather high value!) Although results show a general 

qualitative agreement with the Toyozawa theory, the calculated magnitude 

of the moments does not follow the Toyozawa dependence on magnetic field 

or temperature.

This seems to be the case for a variety of investigations.

Even where the spin systems are assumed to exist the agreement with 

theory is often of a somewhat ambiguous nature. Results on cadmium 

sulphide, which gives an unsaturated magnetoresistance up to 140 kG, do 

not give the expected fit even at very low fields. Susceptibility 

measurements have also been found to give ambiguous results.

Andrianov (1975) points out that the susceptibility seems to be independ

ent of any heat treatment, whereas the negative magnetoresistance seems 

to show a strong sensitivity to such treatment.

As stated in the theoretical review it might be necessary to
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extend the calculations past the second order of perturbation in 

order to account for these discrepancies. The Toyozawa magnetic 

moment system comes from a many-body interaction and is therefore a 

complicated group excitation, in the way a plasma oscillation is.

It is therefore possible that the normal magnetic susceptibility 

functions are inapplicable.

Polyanskaya (1975) reported that for low magnetic fields a 

deviation from the expected (Toyozawa) dependence may result from 

contacts disturbing the current flow. When a double cross sample was 

substituted the dependence was obtained. At higher magnetic fields 

the behaviour was found to be independent of sample shape and contacts.

Katayama (listed previously) attributes a very low temperature 

negative magnetoresistance in indium antimonide to the establishment of 

a Toyozawa spin system at the bottom of the conduction band. In 

indium antimonide the resistivity can be observed to go through a minimum 

and saturate at very low temperatures. This behaviour is greatly 

amplified by a strong magnetic field, Sladek (1958), resulting from the 

freeze out of conduction electrons into the impurity band. However, 

Katayama measured the Hall coefficient with a very small magnetic field 

to show that there is no freeze out with temperature alone, down to 0'1°K. 

A negative magnetoresistance of -10% was measured using magnetic fields 

less than 1.5 kG. A g factor of 200 is necessary to explain the results. 

Above 1.5 kG magnetic freeze out and Landau quantization predominate over 

the negative effect, to give a strong positive magnetoresistance.

The condition for the extreme quantum limit, di »  kT or

and, (JO T »  1 means that this regime can most readily be achieved in c
semiconductors with low effective mass. Elements such as germanium and 

silicon require very high magnetic fields to reach the extreme quantum 

limit. Therefore, most experimentation has been on III-V and some
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II-VI compounds with low effective masses.

Experiments by Amikhanov (1967) on indium arsenide and 

Aliev (1975) on Ga^ In^_^ Air solid solutions, have shown negative 

magnetoresistance arising from the Argyres mechanism of reduction in 

cross-section of ionized impurity scatterers. Temperatures ranged 

from 77 K to 300 K, and the negative magnetoresistance reached -30% for 

the lower temperatures. AlieV studied the result of changing theI
mixture (adjusting the x parameter) for a constant electron concentration 

n = 1.2 X 1 0l7 cms""^, where the samples are degenerate. The postion of 

the negative maximum depended on the degree of degeneracy and the value 

of X. Changing the composition factor x tended to increase the effec

tive mass, reducing so that the maximum shifts to higher magnetic

fields. However, for all the samples the maximum occurred around

h CO /E^ =  1.5, which corresponds with the value given by Gerhardt’s 
degenerate theory.

Berchenko (1974) investigated Cd^ ^^(l-x) solid solutions,

in the quantum limit. The statistics are non-degenerate and so the

Dubinskaya theory was used. A negative effect of -60% was found.

The effect of varying the x parameter was also investigated. The x

parameter changes the effective mass and a corresponding shift in the

maximum position (maximum negativity), similar to the Aliev case,

resulted. However, the turning value when plotted against the quantum

parameter was approximately 9, for all the samples. The

Dubinskaya theory gives a turning point around 3 ~ 4-5. No detailed

analysis of the results was attempted.

Dubinskaya tested her theory on tellurium, which gave a fairly

small effect, and found a qualitative agreement with the theory.
• V.

Bastard (1974) also investigated tellurium at temperatures between 1.6°K 

and 4.2°K with impurity dopings from 10^^ cms'^ up to 5 x 10^6 cms” .̂

The investigation was done just for the extreme quantum limit with the
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Argyres theory being extended to include the double valley structure.

The negative behaviour was not observed for low dopings, but occurred 

with impurity banding concentrations. This work would appear to be 

the only application of "normal" scattering mechanisms for the explana

tion of negative magnetoresistance the impurity banding regime, i.e. 

not spin scattering or redistribution amongst states behaviour.

Negative magnetoresistance in indium antimonide has been in

vestigated by Ilin (1973) and Tokumoto (1974). Various papers on the 

hot electron behaviour in the quantum limit also deal with negative 

magnetoresistance and these are dealt with in the next section.

Ilin investigated the longitudinal magnetoresistance at a 

temperature of 30°K for electron concentrations ranging from 0.72 to 

5 X 1 0l4 cms~3. The results were interpretted on the Dubinskaya theory, 

but no quantitative analysis was attempted. The turning points, with 

regard to 3 seemed to be in rough agreement with theory, as well as the 

fact that the magnitude of the negativity increased with increasing 

sample purity. However, there was a very much stronger dependence on 

impurities than predicted by theory, as well as a smaller magnitude than 

given by theory. Indeed, for the more impure specimens of 3 to 

5 X 1Q14 cms~3 concentration (although still rather pure) no negative 

magnetoresistance was observed at all.

"The Tokumoto results also display a wide range of magnitude 

for samples of apparently similar levels of impurity. Also, the results 

taken at 77°K seem to display an overall independence on impurity 

concentrations, which range from lO^^ up to lO^G cms~3, although individual 

samples show a negativity anywhere between 0 and -60%. (This would 

appear to be in contradiction of the Ilin paper and expectation;of the 

Dubinskaya theory.) This range of results and discrepancies would seem 

to result from the effect of sample inhomogeneities. It is clearly
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important to have as homogeneous a sample as possible, if there is to be 

as little masking of the negative magnetoresistance as possible.

Other Tokumoto results, taken up to room temperature, sometimes 

show a maximum negative effect at temperatures in excess of 100°K, often 

showing a magnitude >60%. These results are for a 7 x 10^^ cms“^sample 

(high purity) where the zero magnetic field resistivity resulting from 

ionized impurity scattering is far less than 60% at these high 

temperatures. The conclusion is that other scattering mechanisms must 

give rise to the observed negative magnetoresistance, the most likely 

source being polar optical phonons. Indeed, the Magnusson paper, 

previously outlined, predicts a strong negative effect from this source.

No detailed investigation appears to have been made at higher temperatures.

3.4 Hot Electrons

The term "hot electron" was first used by Shockley to denote the 

increase of electron energy in semiconductors in excess of the lattice 

energy when a strong electric field was applied. Considerable work, 

both theoretical and experimental, has been undertaken since. Detailed 

reviews have been given by Conwell (1967) and Putley (HC^.). With the 

addition of a magnetic field to a hot electron system a wide range of 

different phenomena may be observed. These effects will be reviewed 

briefly, with reference to more detailed discussions.

The plasma pinch effect has already been mentioned. This occurs 

for an electrically excited electron-hole plasma. With the addition of 

a magnetic field microwave radiation is found to occur. The sample acts 

as a microwave aerial. Buchsbaum (1965) reports a microwave emission 

from indium antimonide placed in a longitudinal magnetic field with 

electric fields as low as 12 V.cm"!, The experiments were performed at 

77°K. At such low fields and lattice temperatures no excitation of holes 

occurs, so that no electron-hole plasma should exist. However, Ancher
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Johnson (1969) showed that soldered current contacts, composed of indium,

injected holes into the sample even at comparatively low electric fields.

In this way an electron-hole plasma may exist along a section of the

sample and result in the observed microwave emission. A variety of such

instabilities are reviewed by Putley and Bowers (1964).

Instabilities associated with high magnetic fields may arise

from the magnetically induced freeze out of the free carriers, or the

Landau quantization effects. Under such conditions critical electric

fields may result in the avalanche ionization of the frozen out electrons,

or a transition between the Ti w >> kT and di w << k T regimes withc e  c e
their different magnetic field dependency of the resistivity. This

second case has been investigated theoretically by Kazarinov and Skobov

(1962) using a transverse magnetic field configuration. In the

transition region from ii w >> T to m << T (where T is the electron® c e c e e
temperature) the component of the resistivity decreases as the cube 

of the current density. Zlobin (1972) gives a review of hot electron 

effects in a quantizing magnetic field and shows how S and N type I/V 

characteristics, with accompanying instabilities, may arise when 

quantization is destroyed as given above in the Kazarinov transition 

region. The particular behaviour depends largely on the important 

scattering mechanisms present.

The formation of electric field domains or filamentary current 

regions have been associated with these transition regions and their 

associated instabilities. The instability of the domains give rise to 

electrical oscillations which are dependent upon the external circuitry 

(see Ridley (1963) ).
For the case of electron excitation from impurity sites,

Mansfield (1970), we find an avalanche effect at critical electric 

fields. An S shaped characteristic can arise under such circumstances.
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from the changing screening of the impurities by the electrons excited 

into the conduction band, as discussed by Zajtser, Zvezdin et al (1971). 

The change of resistivity can extend over several orders of magnitude.

A particularly relevant effect with regard to the Landau 

quantization is the reduction in the effective electron-electron 

collisions as the extreme quantum limit is approached. In fact, the

electron-electron collision frequency in the extreme quantum limit is

(
~Ti Wc \■ j  . The mutual electron interactions are 

therefore rapidly supressed by the magnetic field. Normally the electron 

collisions serve to establish the form of the distribution function in 

both energy and momentum space. When they lose effectiveness (when 

electron-electron interactions become much less frequent than other 

electron collisions) strong deviations from the standard Boltzmann 

statistics may result, with the possibility of electron energy runaway 

phenomena, in the presence of strong "heating" electric fields.

The reason why the collisions become inefficient in energy and 

momentum redistribution may be understood quite simply. When two 

electrons collide their total energy and momentum must be conserved 

(it can only be redistributed between them) but because of the basic one 

dimensional nature of the extreme quantum limit transport they can only 

exchange positions in phase space, leaving the distribution form of the 

electron system unchanged.

A general solution of the Boltzmann equation for the exact 

distribution function, with arbitrary electric field and/or magnetic 

field, cannot be derived analytically. Various procedures and 

approximations have been used to estimate it. Price (1970) has given a 

theoretical account of these various approaches when strong electric

fields are present.
The simplest approach is the "electron temperature" model. The
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electron temperature model, introduced by Frohlich (1947), assumes that

the heating of an electron system can be represented by a shifted

equilibrium (Boltzmann) distribution, with an effective electron

temperature T to replace the thermal lattice temperature T • This can ^ L
only be the case when electron-electron collisions exceed all other

collision processes to establish such a distribution. Clearly, with

quantum limit transport this model should be inapplicable. Even in

the absence of quantizing magnetic fields the model is generally only

justified when the electric field is not too strong - "warm" electrons.

The warm electron condition is often defined as T - T?<< T,.e L L
The electron temperature is evaluated from the energy balance

equation:- Rate of energy gain from electric field (nepE^) = Rate of 

loss of energy to relaxing mechanism. n is electron concentration, 

p the mobility and E the electric field* Where the energy loss rate is 

derived theoretically as some function of electron temperature, so that 

n e p E% = f(Tg)o 

See Hughes and Tree (1970).

Expressions for f(T^) have been calculated for various scattering 

mechanisms which relax energy, Frohlich (1947) for acoustic phonons 

and Stratton (1957) for polar optical phonons.

The wide availability of computation facilities has made possible 

various Monte Carlo numerical calculations of the distribution function.

The standard ensemble average in phase space f(k), is replaced by a time

averaged functional representation* This is calculated by following the 

motion of one electron in phase space and scattering it by use of a random 

numbers system. The distribution function is constructed from the length 

of time the electron spends in each section of phase space. Detailed 

explanations of the method have been given by Kurosawa (1966) and 

Fawcett (1970)*
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Other techniques for calculating the distribution function 

involve the use of truncated Legendre polynomial expansions, iteration 

of trial functions or variational type procedures.

The addition of a strong magnetic field to the hot electron 

system results in stronger deviations of the distribution from the 

equilibrium form. This may be especially true with the above 

mentioned runaway effects* A theoretical method devised by Kurosawa 

(1965) and used in a number of experimental investigations, replaces 

the Boltzmann equation by a Brownian type diffusion motion in energy 

space, with an associated diffusion equation. The electric field and 

collision processes are viewed as producing small Brownian type changes 

in the energy of the electron Ac, between each interaction. This means 

that the electric field and energy relaxation processes must not be 

over strong. This assumption is a fair one as far as acoustic phonon 

interactions are concerned. For optical phonons Kurosawa uses an 

energy continuity equation. This describes the acceleration of electrons 

by an electric field to the point . at which they reach the optical phonon 

energy "h , whereupon they spontaneously emit a phonon and return to

the ground state energy* The process can then be repeated*

This model only allows for the calculation of f^(e), i.e. the 

symmetrical part of the distribution function. This is a strong drawback 

if the true distribution has a significant streaming property. In fact 

for a low temperature regime, T^ << ii , where only polar interactions

are significant (this is seldom the case however) the distribution is 

likely to assume a needlelike shape under high electric field conditions.

See Vosilius (1966).
Hot electron transport in the quantum limit has also been 

treated by Magnusson (1972). The theory is for arbitrary electron 

degeneracy and a longitudinal magnetic field configuration* Scattering



— 48 —

from ionized impurities, acoustic phonons and polar optical phonons are 

all incorporated* The distribution is calculated analytically for the 

extreme quantum limit, with just the ground state Landau level occupied 

and by an iterative technique for more than one Landau level being 

occupied* The parameters of indium antimonide are used to give an 

example of the calculated distribution function (although the theory is 

valid for any parabolic polar semiconductor) and compared with the 

drifted Maxwell approach, to show how widely they differ, i.e. how wrong 

the "electron temperature" distribution is.

Although the various simpler models frequently give a very 

misleading picture of the electron distribution, it is mostly true that 

the values of the required transport parameters, performed as averages, 

are not very sensitive to the exact form it may take. It is quite often 

the case, although not always so, that using the correct function, or a 

better approximation, gives only a quantitative change in transport 

behaviour with the essential characteristics remaining largely unchanged*

There have been several experimental papers using the Kurosawa 

method in the quantum limit regime. See Kotera et al (1968); Kotera et 

al (1971); Komatsubara et al (1969). These investigations looked at 

the transverse and the longitudinal conductivity, as well as the microwave 

absorption properties, with strong electric and magnetic fields. The 

experiments were all on pure samples of indium antimonide. The theory 

was used to calculate f^Ce) for electric fields up to 10 V.cm"! and 

magnetic fields up to 20 kG. The calculated distribution showed strong 

deviations from the Boltzmann distribution with sharp discontinuities 

appearing at the Landau levels* The distribution is also strongly 

attenuated beyond the optical phonon energy as might be expected. The 

calculations are done for a lattice temperature of 4 2 K, but from these
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calculations the higher Landau levels are still occupied because of the 

heating electric field and the possibility of thermal runaway. The I/V 

characteristics calculated from these distributions showed strong non

linear behaviour and were compared with experimental results. The 

comparison is complicated by the magnetic freeze out of conduction 

electrons, which leads to a further addition to the non-linear behaviour. 

Scattering included ionized impurities, acoustic and polar optical phonons, 

Electron-electron scattering was not taken into account, but theft inter

actions are probably not very important owing to the low carrier con

centrations and quantizing magnetic fields.

Results for the longitudinal configuration are particularly 

relevant. The distribution shows a strong tendency to maximize around 

each Landau sub-band. This results from the runaway effect, which 

occurs in each sub-band at a critical electron energy, where the electron 

energy increases rapidly until the point where electrons are scattered 

to a higher Landau energy level, or emit an optical phonon, whereupon 

they return to the ground state. The Kotera paper gives a typical 

longitudinal configuration I/V plot, which shows a negative magneto

resistance effect for electric fields in excess of 1 V/cms. i,e. the 

I/V characteristics cross-over as this region is entered. Similar 

behaviour was found experimentally. However, those researchers do not 

investigate the negative magnetoresistance and attribute the crossing of 

the characteristics to the hot electron magnetophonon effect, where a 

Landau level crosses the optical phonon energy leading to resonance 

scattering.
Yamada (1973) deals mainly with the hot electron magnetophonon 

effect and how its behaviour depends upon the distortion of the 

distribution function. The increase of the mobility with magnetic 

field (negative magnetoresistance) is explained as resulting from
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mobility limiting transitions. The electrons in a sub—band rise in 

energy, being heated by the electric field, until they reach the next 

sub-band (Landau level) and are scattered into it. As the sub-bands 

spread apart with increasing magnetic field this transition energy 

increases, so that electrons can gain a greater mobility before reaching 

the higher Landau level. None of these hot electron papers interpret 

the negative magnetoresistance explicitly as arising from a magnetic 

field reduction of the effective scattering cross-section.

The various energy relaxing mechanisms are clearly of central 

importance in the interpretation of hot electron data. In indium 

antimonide these have been widely investigated for both degenerate and 

non-degenerate statistics. See Kinch (1967); Szyraânska and Maneval 

(1970); Sladek (1960); Gershenzon et al (1973); Kahlert and Bauer

(1973). These investigations are mainly concerned with the relaxing

processes at, or around liquid helium temperatures.

For comparatively small heating, where Te < 16°K, the results 

are generally analysed using just acoustic phonon interactions via the 

deformation potential and piezo-electric modes. The relative 

importance of these modes depends on sample temperature and concentration 

of free electrons. The degree of degeneracy is also an important 

factor. See Bauer. For greater heating levels, polar optical phonons 

soon become the dominant energy relaxing mechanism. Solution of the 

Boltzmann equation and experimental results show that the polar optical 

ph'.i'on processes are the only important ones when Te > 18 K. At 

slightly lower temperatures, around 16 K, a two phonon process

may be important over a small temperature range. See Stradling and 

Wood (1970). This interaction involves two transverse acoustical 

phonons of high energy (generally taken to be at the Brillouin'zone edge)
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being simultaneously emitted in opposite directions. Although only a 

second order process, the relaxation efficiency is high because a large 

value of energy can be emitted in each event.

Additional corrections to these basic mechanisms, such as 

electron-electron interactions and screening effects can also be 

included in the analysis, as well as corrections from band non— 

parabolicity. The last correction mentioned results in a p-type 

function admixture to the standard $ -type wavefunction of the electrons, 

in additions to the changing effective mass value. The treatment of 

the inter-electron behaviour and the screening parameters is rather 

complex and is therefore frequently ignored or simplified. A full 

quantum mechanical treatment has not been attempted.

Gershenzon looked at the hot electron behaviour in indium ' 

antimonide at low temperatures (4.2°K), without a magnetic field and 

explained, qualitatively, the resistive behaviour with increasing 

electric field. He points out three regions of different interactions 

as the field is increased.

Firstly, a fairly rapid decrease in resistivity as the electrons 

are heated efficiently by the electric field (or possibly excited into 

the conduction band, if they are frozen out) and can lose energy only 

to the comparatively few inefficient acoustic phonons present at 4'2°K. 

Secondly, a quasi-ohmic region where the resistivity is almost 

independent of electric field. In this region the electrons have 

sufficient energy to begin spontaneously emitting polar phonons and are 

cooled very efficiently, so that the net energy of the electron system 

only increases slowly with electric field. In both of these regions 

the mobility is still determined by the elastic scattering on ionized 

impurities. Finally, in the third region the resistivity increases 

with the electric field. This happens when the polar phonons begin to



- 52 -

limit the mobility, as well as relaxing the energy.

Illin et al (1974) extend this work by applying a strong 

longitudinal magnetic field to this system. The three regions are 

still in evidence, but in a modified form.

For low electric fields (the first region) carrier freeze out 

becomes very important with large magnetic fields and the breakdown at 

critical electric fields can be drastic. (This region is not shown in 

in the II’in reference.) The second region shows a very strong 

negative magnetoresistance, as in the Kurosawa calculations and experi

ments. The energy is still relaxed by polar optical phonons and the 

mobility determined by ionized impurity scattering events, as in the 

zero magnetic field case. The reduction in scattering cross-section by 

the quantizing magnetic field (Argyres) explains the negative effect.

The authors also point out how the electron-electron scattering 

reduction by the high magnetic fields may lead to a qualitative difference 

in the observed behaviour. This concerns the behaviour in the second 

region. For weak electron-electron scattering the quasi-ohmic region is 

independent of electric field, whereas for strong electron-electron 

scattering it shows a weak increase with electric field. Therefore, if 

the electron-electron scattering is initially important with no magnetic 

field, a noticeable change in behaviour occurs as the magnetic field is 

increased.

In the third, optical phonon region , there is a rather small 

positive magnetoresistance which saturates very quickly. Consequently, 

all the resistances for various magnetic fields converge to a single 

characteristic.
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CHAPTER 4.

ANALYSIS AND DISCUSSION.

4.1 Introduction; 4.2 Results and Errors; 4.3 Ohmic Analysis

4.4 Non-ohmic Analysis; 4,5 Discussion.

4.1 Introduction.

Results are given for a range of samples and temperatures, 

with both ohmic and non-ohmic investigation of the negative magnetore

sistance. Most emphasis is given to the ohmic results and a full 

quantitative analysis is attempted only for this case. The ohmic 

analysis uses the Argyres and Adams theory of the magnetic field 

dependent scattering cross-section from ionized impurities. Additional 

allowance is made for small angle forward scattering (Dubinskaya) 

resulting from finite collision times and the uncertainty principle.

The equations are generalized for arbitrary degeneracy and evaluated with 

a computer programme, A comparison is made between ohmic and non-ohmic 

effects, using the simple electron temperature model to interpret the 

non-ohmic data. The theoretical analysis, its approximations and 

correspondence with experiment is discussed in detail.

4,2 Results and Errors.

Considerable initial research was conducted on a variety of 

samples with different dimensions. These experiments were performed 

using a different sample holder to the one previously described. The 

samples were immersed directly in liquid helium, so that only non-ohmic 

4.2^K measurements could be made. Results on samples with small cross- 

section tended to display greater anomalies in the magnitude of the 

negative magnetoresistance. For this reason all the measurements reported
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here were made on large samples.

The samples used are shown below in Table 1» Samples were 

purchased from either Malvern or M.C.P, Electron concentrations ranged 

from 1.1 X 10^^ cms  ̂up to 2,23 x 10^^ cms"^ and mobilities from 

640,000 cm^ V V sec  ̂down to 270,000 cm^ V“  ̂ sec"”̂ . All the samples 

had the same dimensions of 1 x 2 x 20 mm^.

TABLE 1.

Sample Origin n (77°K) W(77°K)

MALVERN 1.1 X 10l4 6,4 X 10^ cm^ V“^
M.C.P. 2.7 X 1014 3.1 X 105

S3 M.C.P. 5.6 X 10l4 5 X 10^

S4 M.C.P. 8.0 X 1Q14 4 X 10^

Ma l v e r n 2.23 X 10^5 2.7 X 10^

The Sg sample displayed somewhat anomalous results - the 

negative magnetoresistance was curtailed and was positive for T < 15°K. 

This probably resulted from inhomogeneities or imperfections in the 

crystal (the dislocation density was high).

An experiment was also undertaken to increase the donor con

centration Ng by placing a sample in a nuclear reactor to undergo 

thermal neutron bombardment. Indium has a very high neutron capture 

cross-section and the element rapidly transmutes, by beta decay, to 

tirv , Therefore, valency is increased by one and the 

original indium site becomes a donor. This method should provide a 

controlled means of increasing the donor concentration in one sample, 

over a series of experiments. These results are not presented here, 

and the method has not been fully investigated. The residual 

radioactivity and the possibility of fast neutron damage are problems
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encountered» However, use of a moderating medium and precautions in 

handling may enable this to be a useful tool.

The ohmic and non-ohmic results of the remaining specimens are 

presented in Graphs 1, The ohmic results give a plot of the resisti— 

vity ratio =  j p f e ) .  This is the most

appropriate plot to show the magnetoresistivity behaviour for the 

quantum (3 1), and extreme quantum limit (3 >> 1), assuming the

statistics are non-degenerate, (In the extreme quantum limit the 

statistics of all the samples become non-degenerate, even though the 

higher doped specimens may be strongly degenerate for low or zero 

magnetic field,) The non-ohmic results are shown graphically, with 

p versus the electric field E, the lattice temperature being held at 

a constant 4,2°K. For clarity only the negative magnetoresistance 

region is shown. At lower electric fields strong magnetic freeze out 

effects give a high positive magnetoresistance, with a sudden breakdown 

at critical electric fields. The end of the breakdown region can be 

seen in the graphs.

The electron concentration (n) and the mobility (y) quoted in 

Table 1, are both calculated from the Hall and conductivity 

' measurements at 77°K.

The greatest source of error in the results is probably the 

effects of inhomogeneitiesi Some samples were tested for 

reproducibility, the voltage probes being shifted to different points 

on the surface. Although, the relative errors are probably only 1% or 

so (or 5% for non-ohmic) the absolute error is more, probably around 

10% for the samples analysed.
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4,3 Ohmic Analysis.
Following the theory of Argyres and Adams for electron 

transport in the extreme quantum limit and longitudinal configuration, 
we have

V

and without a magnetic field, the standard expression 
2 o Po_4.\3/2 r-ea

a - _o 3m* (2
2 r 2m* ̂ T (e) ^  de (2)

° • de
o

Where the essential difference between the two equations 
(besides the different t expressions) arises from the changed density 
of states behaviour:-

f e )  “c ^

(Note the dependence on just the z component in the magnetic field 
expressions, indicative of the one dimensional character of the extreme 
quantum limit transport.)

The expression for the zero field relaxation time for scattering from 
ionized impurities is given by the standard Brooks-Herring relationship,

^ (*•" * " -
where x - (2k R )^ = —  where e° “ ^8 eOg . s 2m* ^2

K  is the dielectric constant, 
k is the electron wave vector,

Rg is the impurity screening length.
Nj is the ionized impurity concentration.
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In a high magnetic field the free electron wavefunctions are 

given by:-

'l'(N, ky, k ^  - (x + ky y (6)

N, and are the three quantum numbers of the electrons,

X is the magnetic length “ensure of orbit radius.

Ly and are just the normalization parameters associated with the 

y and z directions.

(x + ky) is the wavefunction of a harmonic oscillator of 

frequency in its Nth excited state

The potential of the ionized impurities is given by

(7)

where is the screening length (derived in the appendix).

The scattering rate from ionized impurities in the extreme 

quantum limit is calculated from the matrix element of the interaction,

X. e o

"scare = It I l<°' "y* "II '-(r -R)|0, k^, k,>|2 6|c;-e,) (8)

where equations (6) and (7) are used as the wavefunctions and perturbing 

(scattering) potential respectively. N = 0 in both the initial and 

final wavefunctionsj so that the electron remains in the ground state 

Landau energy. The summation is made over all the R sites of the 

impurity potentials.

From the scattering rate expression we may obtain, after the 

various summations and substitutions have been made,

^  „ Tf e** Nj. e_-3/2 I(y) (9)
r 2 (2m*y^ 1 + Cj/4e^
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t

where I (y) * 1 + y e^ Ei(-y) and y = ( 1 + ^ ez  ̂
"■‘Ë '8

Rjjg being the screening radius with magnetic
2m* 2 field (derived in appendix).

HS

Argyres simplifies equation (9) be using the approximation

I(y) - (1/1 + y)

and substituting (5) and (9) into (1) and (2) obtains

f  = (&n(l + X) - ySg )( i + if if * iTTT (2 + # +(#)2)) (10)o c

for the non-degenerate limit.

The bracket involving the Jin term is removed from the integral of

and a value of x chosen such that x = 2kR is the value that maximizess
the remaining part of the integral. This is the standard procedure 

for the evaluation of a^, as derived by Brooks and Herring.

Equation (10) is valid only for non-degenerate statistics.

We have generalized these expressions for arbitrary statistics, which 

is a more useful result for indium antimonide at low temperatures.

The general statistics equation is given by,

!a  1 ^% " i2('o*) V Jin (1 + x) - 1 + X fi(V) +

fim ( ̂ 2 (̂ h) + I (®h) + a? (̂ h)) (11)

where, once again x is chosen from the value at the maximum of the 

integral when the bracket with the Jin term is removed. This value is 

given generally by the expression
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X
9 (kgT): K 2Tm

e2 (2m*) ̂ f' 0*)

and 9 is the solution of the equation.

(Ï - 3) exp (I - 9^*) « 9* + 3. See Mansfield (1956)

For the non-degenerate case, as used by Argyres in equation (10)

m(k jr)
X = A  ( :ÏÏ \ n

In equation (11) A = (Xï)^^^ K 24? / &

^-3

and and are Fermi Integrals with magnetic field 9*

and without magnetic field 9*. i* tke reJwctd Ftffrwl 4<vcJl.o —  —  -

The importance of the finite collision time with the associated 

uncertainty in electron energy has been discussed in section 3.2. 

Following the Dubinskaya treatment and using separate relaxation times 

for the 'Argyres* backward scattering and uncertainty forward 

scattering, we combine them in the usual way, to give 

1 1 . 1

Transport B

Tg is given by equation (9)

is calculated by Dubinskaya and is given by.

f (2m*) (12)

where Z. “ s 
1 ■ ^
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and Jl̂  is the mean free path in the z direction (for all collision 

processes and not just momentum relaxation interations).

This expression is derived from a similar expression to 

equation (8) for the backward scattering case, but the delta function 

6(e^ - e^) is replaced by the Lorentzian

1 r/2
(e. - e.')2 + (r/2)Z

where V is the collision broadening factor di

Using equations (9) and (12) we may write the full transport relaxation

time as, 

1 ïïe*+ N,

tTranSo (2m*)^

Ü)
4 k„T

(1 + Eg/(4 kgT y) )

X r
ds H------

exp Idi Ü)
e”  ̂ dSl

c /vA£g/hü)̂ )

s -

n 2m*

where y =

I T

(kgT)^ (13)

Equation (13) is written out in full, to show the detailed dependence 

on reduced energy, y.

j^This expression is given incorrectly in the Dubinskaya reference.^

We can re-write this more conveniently as

Trans*
(1 - (Fy + C) exp (Fy + C) 

(1 + E/y)

e“® dS
A yi

IFy+C)

-3/2 (14)
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Where P, F, C, A and E are all energy independent factors 

which however, vary with magnetic field and temperature.

The conductivity for arbitrary degeneracy is given by equation

(1)

and M

rB

H M ^Trans ^ dy 3y
(15)

Where B “ f M  

—2e^  1 / 2m*\ ,, J „
m* (2w)2 {■(,2 J %  ) “c'

Substituting (14) into (15) we obtain the integral for the conductivity

ry^exp(y -9^) (1 - (Fy + C) exp (Fy + C)

[l + exp (y - 9*]2 (1 + E/y)

-S . Ve ds)

Fy+C

+ Ayi -1
dy

There is no analytic solution to this integral and usually 

approximations are made in its evaluation,

(1) Forward scattering ignored, so that A = 0,

(2) The Argyres approximation, mentioned previously

i.e. (1 - (F.y + C) exp (F.y + C) X -s

(Fy+C)

(3) Calculated for degenerate or non-degenerate limits,

(4) The whole of the [ ]term taken outside the integral 

and a value of y used which is the value at the maximum 

of the remainder of the integrand. Dubinskaya uses 

this approximation in the non-degenerate limit and uses 

à y value of 2.
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These approximations can produce large errors, besides the fact

that the evaluation is not valid for intermediate degeneracy..

Therefore, the integral has been evaluated by numerical methods without

any approximation.

The integral involves another sub-integral (the exponential 
^00 —8

integral Ei 5 ~  dS) which has a function of y as its lower
Jpy+C

limit. The programme must calculate this sub-integral for each step

of the total integral. It is also necessary to limit the exponential

integral upper limit to some finite value, as well as to remove the

divergence in the main integral for the y = 0 lower limit. An upper

limit of 100 is used in the exponential integral and the main integral

is given a lower limit of 0.1. Over a wide range the integration was

found to be insensitive to the choice of values used in these limits.

B, A, C, E and F along with the reduced fermi energy in a 
*magnetic field 9_, formed the data for each conductivity to be evaluated.

The reduced fermi energy 9 is calculated from the expression 

Nj) - = n = 1 D^(e) f (£,Ep) ds (16)

which for the extreme quantum limit gives

(v)‘ '■(2lt)2 \ ^ Z  )  “c
o

or
-J ( V ) -    -o

F - { (9„) being a fermi integral (Tabulated in Fistul (1969) ) from
*which we can find 9^.ri

The assumptions made in this expression are discussed in 

section 4.5.
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In Graphs (2) we show the experimental results for the 

three samples S3, 84, and 85 plotted as resistivity p versus magnetic 

field H. On each graph is also shown the theoretical calculations, 

both with and without the addition of the forward scattering term.

The importance of the forward small angle scattering is immediately 

apparent,

Dubinskaya also gives a treatment for the case of more than 

just one Landau level being occupied. The second and higher levels 

only become important for B < 5, In this region of magnetic fields 

it is necessary to solve sets of coupled algebraic equations, the 

manipulation and evaluation being rather long processes and 

necessitating involved computer calculations. Therefore, this region 

of the results has not been analysed and a dotted line shows the 

supposed theoretical extrapolation when multiple Landau occupancy 

becomes important. The zero magnetic field resistivity is calculated 

theoretically, as discussed at the end of this section.

The important parameter, as far as the forward scattering 

is concerned, is (R^g/2 Zz) where R^g is the screening length derived 

in the appendix and given by

3/2r 2 = 2irK (kRT)
^ 8  \ 2m* / ê -h w2 F - 3/2 (9g)

where ^-3/2 (3%) is a fermi integral.

Also, for the collision free path. A proper treat

ment of this is obviously difficult since all collision processes must 

be included in which is not a simple relaxation time. Even if ionized 

impurities are the only processes involved the relaxation time for the 

interaction is not equivalent to the collision time and the relaxation 

time is what the theory is trying to calculate in the first place. There
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is no independent way of arriving at an expression for

However, the mobility relaxation time is a measure of and 

so is taken from the experimental value of mobility at each

calculated point.

"^"^Relax “ e

and is taken as the average electron velocity over the 

distribution. ,

, = <v ■(¥)*
H

so that,
2k,T\2 F^(9*)

£z e / \ m* / F , (9*)
H

The expression for v^ is also an approximation, since it only 

represents an average thermal velocity. It should be emphasized that 

although the values are calculated from experimental values it is 

not used as a fitting parameter.

The only other quantity which has to be calculated for each 

sample is the total ionized impurity concentration This is calcu

lated using the Brooks-Herring expression for the mobility in zero 

magnetic field and the experimentally measured mobility at 35°K. The 

temperature must be high enough to avoid, as far as possible, the 

influence of the impurity level perturbation of the bottom of the conduc

tion band. On the other hand the temperature must not be so high as 

to excite acoustic and polar optical phonons to any great degree. The 

calculated value of N is presented on each graph. This value changes 

only by a small amount between 25°K and 35°K, showing that impurity 

perturbation effects or alternative scattering mechanisms are probably 

not too important around these temperatures. (At lower temperatures
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the resistivity calculated from the at 35°K begins to diverge more 

strongly from the experimental resistivity, underestimating the 

experimental resistivity to a greater degree as the temperature is 

lowered. ^This can be seen quite clearly on the graphs and is 

discussed in section 4.5.)

4.4 Non-Ohmic Analysis.

Graph 1 showing the experimental results for non-ohmic 

behaviour, with resistivity versus electric field, does not lend 

itself to direct comparison with the ohmic behaviour.

The Kurosawa model calculates the I/V characteristics for 

various magnetic fields using the distribution function derived from 

the Brownian motion in energy space and the energy continuity equation. 

The required computation is rather long. For comparitive simplicity 

and to test its experimental validity we use the electron temperature 

model to analyse the results, even though the more exact methods show 

• strong deviation from a Maxwellian form.

Initially, the electron temperature Te is calculated for 

various poipts on the zero magnetic field resistivity characteristic.

It is assumed that polar optical phonons are the only energy relaxation 

processes and that the distribution function is Maxwellian with an 

associated electron temperature. The electron temperature associated 

with a particular value of resistivity and electric field is calculated 

from the energy balance equation.

Energy gained from electric field = Energy loss to optical phonons 

which applied to the equilibrium situation, where the electrons have 

attained a stable energy.

Mathematically the above relationship is
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neuE' =* neE^ No ^ ^ 1 exp (y^ - y) - 1 I •y exp ( 2) Ko( 2).TTm* ' L
where y_ = ~  * and y = , kO is the optical phonon energy

(17)

To (lattice temperature), Te (electron temperature), 

is a modified Bessel function of the second kind.

No e kg8

and being the high frequency and static dielectric constants 

respectively.

The equation for the rate of energy loss to polar optical 

phonons was derived by Stratton (1958) and is based upon a Maxwell 

distribution, applying for To << 0, (In our case To =» 4.2°K and 

0 = 290^K*) The equation should be valid where electron-electron 

collisions dominate the energy exchange processes, Stratton gives the

condition for this as being

nmin, = 7 X 10® E 0 K 'o o
- 1 (-Y) (18)

The electron concentration should be greater than this if electron-

electrpn collisions are to predominate. Values for n . versus Te aremin
given below in Table 2,

TABLE 2.

"min Te (°K)

7.4 X 10^4 10

6 15

5a. " 20

4.5 25

3.6 " 35

3.1 " 45
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The conditions become less stringent as Te increases (more 

e “ e collisions take place), but it can be seen that the purest sample 

having n - 1.1 x ’lO^^ is always below the minimum value, for all 

temperatures. Table 2 applies to the zero magnetic field resistivity.

In the extreme quantum limit no sample should satisfy the conditions 

for the existence of a Maxwell distribution.

Equation (17) is solved for various points on the line, 

as shown in Graphs (3). From each point we can draw a line with 

Constantine E^(i.e. E^/p) which denotes a constant power input/power 

loss. If an electron temperature is still valid this line should have 

a constant T^, the same as that calculated for the zero magnetic field 

resistivity.

Besides assuming a Maxwell distribution, we have also only 

considered polar optical phonons as relaxing electron energy. This is 

a valid assumption for Te > 18^K. The lowest input energy rate per 

electron used in the analysis (the calculated 25^K point) is 6.6 x 10 

watts and comes well into the power range where only polar optical 

processes need be considered.

It is also assumed that the electron concentration remains 

constant and that there is no magnetically induced freeze out. (Electron 

freeze out can be seen to have a very strong effect at lower electric 

field values.)

The S^, and samples are analysed, two electron 

temperatures being calculated for each sample. These temperatures are 

replotted on a resistivity versus magnetic field graph. This is 

shown on Graphs (4) where ohmic results are also given to enable a direct 

comparison with non-ohmic results to be made. These results are 

discussed in the next section.
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The S^, and samples were chosen because they scanned 

the electron concentration from 1 x 10^^ to 2,2 x 10^^,

4,5 Discussion.

Graphs (1) show the conventional plot of the magneto- 

resistance ( A p / p ^ )  ratio versus p , the quantum parameter. This shows 

very well the overall behaviour and magnitude of the effect. It also 

has the advantage of having the same axis for all samples. However, 

for a quantitative analysis it is not so appropriate* We, therefore, 

replot the experimental results as resistivity versus magnetic field and 

it is these graphs that are used for analysis. The reasons that this 

is done are twofold.

Firstly, A p / p ^  contains two parameters with Ap being the 

difference p^ - p^, which for small magnetoresistance values is a small 

number. Errors in the magnitudes of these quantities (either 

experimentally or theoretically) give a magnified total inaccuracy, 

especially for small Ap values.

Secondly, the calculation of p^ using the Brooks-Herring 

equation (generalized for arbitrary degeneracy) can be a rather inaccurate 

evaluation. Along with the increasing inaccuracy of the Born 

approximation as the temperature decreases and the possibility of multiple 

scattering from two, or more, centres (a second order perturbation calcula

tion by Moore (1969) gives corrections to the Brooks-Herring equation from 

these effects) we also have the possibility of the impurity states 

perturbing the bottom of the conduction band.

In indium antimonide, down to low concentrations, the impurity 

levels merge with the conduction band and there is no distinct activation 

energy, . When calculating the position of the Fermi energy the impurity 

sites are ignored and the standard unperturbed conduction band__density 

of states are used, This evaluation ignores the perturbation of the
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conduction band by the impurities. ' It should be noted that this 

may be particularly important in indium antimonide, where the small 

effective mass m* gives a low density of states around the bottom of 

the conduction band. There is no simple treatment to arrive at a proper
I

state density and the problem has . to be solved in a self-consistent form 

using combinations of free electron and localized wavefunctions.

In the extreme quantum limit the density of states in the 

conduction band is radically transformed by the magnetic field, and the, 

conduction band state density at low energies is far greater than the 

zero magnetic field state density. It is tk^ercfore plausible to 

assume that the perturbation by the impurities should have less percentage 

effect on the total state density. It is also true that in a quantizing 

magnetic field the electron wavefunction takes on a cigar type shape, 

with a shrinking cross-section for increasing magnetic field. Multiple 

scattering events and deviations from the Born approximation may be 

. reduced:- Reduced multiple scattering events because of.the decreasing 

.wave size and greater Born approximation accuracy resulting from the 

importance of the back scattering events in the extreme quantum limit, 

which arise from close penetration "unscreened" interactions for which 

the Born approximation is an exact solution.

For these reasons we use a direct plot of for the quantita

tive ohmic analysis. The ohmic analysis was applied to three samples 

S^j and S^. The sample was not analysed, even though theoretically 

this should give the largest effect. In the purer samples, such as S^, 

the effect of acoustic phonons becomes important at lower temperatures, 

limiting the temperature range of present interest. The results also 

seem rather low (small negative magnetoresistance) for this sample and 

inhomogeneities would appear to have a significant effect in reducing 

the magnitude of the negativity.
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The importance of the Dubinskaya forward scattering is 

illustrated in Graphs (2) by showing both the backward scattering alone 

and the backward and forward combined scattering. Not only is the 

resistive magnitude strongly increased , the qualitative behaviour is 

also modified, especially for low B values. The resulting ^it is 

quite good, although somewhat too high (negativity smaller) for the 

sample. The theoretical calculations extend down to p  ^ 5, and show 

a turning point (minima) at approximately the same value of %  as the
CTkis r«fer/Q to QRflf^hs^J

experimental results, i.e, p  ~ 9,/\ The turning point is normally 

explained as arising from electrons beginning to occupy the second 

Landau level, with associated inter-Landau scattering and a relaxation 

on the "back flip only" condition. This is calculated as giving a 

turning value around B ~ 4 or 5, It would seem, therefore, that 

forward scattering events are the determining factor for the turning 

value as well as the magnitude of the magnetoresistance.

Calculations to include second and higher Landau levels are 

very tedious and can only be evaluated numerically. The considerable 

extra computational work would not extend the range of the theory very 

greatly, and at lower magnetic fields we very quickly arrive at the 

situation where multiple Landau occupancy becomes important and the 

computational components rise exponentially.

At higher temperatures (35°K), but where ionized impurities 

still provide the dominant scattering mechanism, experimental results 

show a tendency not to saturate and exhibit greater negativity than the 

theoretical prediction. In fact, except for the lowest temperatures, 

the experimental results are always more negative,with smaller 

resistance values than theory.

At temperatures greater than 35°K (results shown on Graphs (1) 

for the sample extend up to 130°K) the negative magnetoresistance 

fihow8 a gradual decline. The analysis cannot be extended into this
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region because acoustic and polar optical phonons become important 

electron scatterers. We also begin to see the oscillatory magneto- 

phonon effect (see Stradling (1970). ) in which electrons are resonantly 

scattered whenever a Landau level coincides with the optical phonon 

energy. An expanded view of this behaviour is shown with the graph 

of the results.

It should be possible to analyse the magnetoresistance at 

these temperatures using Magnussons solution of the Boltzmann 

equation in the extreme quantum limit. The theory could be computed 

incorporating acoustic and polar optical phonons, as well as ionized 

impurity scatterers. However, no additional treatment for forward 

scattering events is given by this theory. The negative magneto

resistance associated with polar optical phonons should be particularly 

important as this interaction shows a strong angular dependence similar 

to the ionized impurity case. The acoustical processes give rise to 

positive magnetoresistance for B > 2 and tend to blanket out the 

negative magnetoresistance from the polar processes.

Although is plotted against H so as to avoid the use of 

and its associated inaccuracies, it is still necessary to use p^ to find 

from the Brooks-Herring equation. This is done using the p^ value 

at T M 35°K. for all the samples considered.

This value of is used to calculate p^ from the Brooks-Herring

equation for all the experimental temperatures used, as well as being 

used for all p^ calculations. From Graphs (2) it can be seen that

starting from the forced fit at 35 K the p^ experimental resistivity 

soon begins to exceed the theoretical value. The discrepancy rapidly

increases for decreasing temperatures, showing the inaccurancy of the

Brooks equation for analysing the p^ data. The p^ curves on the other 

hand do not display such a marked change, especially considering the
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greatly increased complexity of the quantum limit theory. The 

values calculated from the (35°K) value give a reasonable fit for 

the p^ theory in the and samples. For the sample, which has 

the highest impurity concentration, the theory gives resistivity 

values which are too high and this may well be due to an overestimation 

of calculated from Brooks-Herring, Reducing by 20% gives a 

better quantitative match. Changing shifts all the theoretical lines 

by an equal amount and does not alter the relative behaviour or 

magnitudes.

In view of the importance of forward scattering the approxima

tions used in its incorporation into the present analysis should be 

noted. The main problem is the treatment of the collision free path.

As previously pointed out this is not a mobility free path as used 

in the present calculations. Also, using the expression >x

is not strictly accurate when <V^> is taken as the average thermal •

energy. Some idea of the importance of the Z and the sensitivity of
z

the theory to this parameter can be seen on Graph (5), This graph 

shows the results of the sample along with the theory incorporating 

the combined backwards and forwards scattering. However, the theory for 

the 15°K characteristic shows the sensitivity to Z^ by multiplying and 

dividing Z^ by factors of 2, 3 or 5. By dividing Z^ (increasing the 

collisions) the forward scattering achieves greater preponderance and 

increases the resistance. By multiplying Z^ (decreasing collisions) 

the forward scattering has a smaller effect and the characteristics start 

to approach the backward only form. It is interesting to note how a 

strongly defined turning point appears to emerge with increased forward 

scattering. We see from these characteristics that by changing Z^ by 

a factor of 2 makes a fairly substantial difference - enough to cover 

the difference between theory and experiment. In view of this and the



- 90 - ,

aforementioned approximations in it may be possible to improve the 

agreement by endeavouring to calculate with greater precision.

The Argyres and Dubinskaya theories used in the present 

analsysis are semi-classical equations and do not come from a rigorous 

quantum mechanical formulation. Dubinskaya introduces the forward 

scattering by relaxing the delta function condition on the ionized impurity 

matrix elements. This is a fair first order approximation, but may 

lead to certain inaccuracies. The standard conduction band density 

of states is used in the theory with the associated discontinuity 

(infinity) at the bottom of the band. This singularity should be 

rounded off by various broadening processes. As well as the 

collision broadening mechanisms there is also the possibility of 

broadening resulting from the random impurity distribution, with the 

fluctuating impurity potential perturbing the bottom of the conduction 

band.

However, it should be emphasized that improvements in the 

theoretical analysis are limited by the experimental inaccuracies 

resulting from the presence of sample inhomogeneities. These can 

modify the qualitative behaviour as well as the magnitude of the negative 

magnetoresistance. Inhomogeneous samples cannot necessarily be 

pinpointed by a low mobility value, because high mobility samples can 

exhibit strong variations. (Very pure samples can exhibit inhomogeneity 

by producing anomalously high mobilities.) Unfortunately, magneto

resistive behaviour seems to be the most sensitive probe of the irregu

larities. The inhomogeneities are presumed to introduce transverse 

components of current with an associated positive magnetoresistance.

We may view any sample giving anomalously low negativity as being 

subject to inhomogeneities and therefore not analizable on a quantitative 

basis.
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A possible way of prior testing for inhomogeneities is by 

looking at the behaviour of the Hall coefficient factor^ as the

magnetic field is increased from a classically weak to a

classically strong t >>^regime. For a known scattering mechanism 

r should follow a well defined variation, going to unity as the strong 

regime is approached.

The non-ohmic results are shown for the S^, and samples. 

Ohmic and non-ohmic results were always taken during the same 

experimental run for each sample, in order that no relative errors from 

inhomogeneity effects could result in spurious differences between the 

two. This makes a straight comparison unambiguous, except for a 

slightly greater error in the non-ohmic results because voltage and current 

were measured as pulses.

A general observation, applicable to all the samples, is that 

the non-ohmic characteristics show greater negativity than the ohmic.

This is particularly noticeable for the purest sample S^. It can also 

be said that the negative magnetoresistance for the ohmic and non-ohmic 

cases clearly arises from the same basic mechanism.

Unfortunately, the electron temperature can only be calculated 

over a narrow range. When the electric field is too low we see magnetic 

freeze out of conduction electrons and when the field is too high the 

optical phonons beging to limit the electron mobility. Temperatures 

of 25°K and 35°K are used as the most convenient comparision temperatures. 

These are also pretty much at either end of the above mentioned limiting 

processes. It is these two temperatures which are used for the ohmic 

comparison in Graphs (A). It would have been desirable to view electron 

temperatures less than 25°K, but electron freeze out and the need to 

incorporate acoustic phonons in the energy relaxation processes preclude
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this comparison, (The two phonon relaxation process can become 

important around 20°K as well as the standard single phonon interactions.)

Viewing the comparison in Graphs (4) we see that it is fairly 

good, except for the pure sample. The agreement would seem to improve 

with greater sample impurity. In the purest sample the non-ohmic 

results only agree well with the ohmic for the low magnetic field region. 

For high magnetic fields the non-ohmic characteristics display a much 

greater negativity. This applies, but to a lesser extent, to the more 

impure samples. The only exception to this is the rather anomalous 

result for the 25°K line in the sample, where the calculated non- 

ohmic zero magnetic field resistivity is rather too high. Even in this 

case for higher magnetic fields the non-ohmic resistivity drops to a 

lower value than the ohmic resistivity.

The difference between the ohmic and non-ohmic characteristics 

probably arises from the role of acoustic phonons which begin to have 

some effect, reducing the negative magnetoresistance, around these 

temperatures in the ohmic conditions. This certainly would appear to 

explain the large discrepancy in the sample, where acoustic phonons 

become more effective because of the sample purity. However, there does 

not appear to be a great deal of difference between the relative behaviours 

for the 25°K and 35°K characteristics, i.e. there should be greater 

divergence for the 35°K line because of the increasing presence of acoustic 

phonons. Secondly, the non-ohmic is in excess (greater negativity) of 

the ohmic, even for the 25°K line in the most impure sample S^. A 

further investigation on samples with greater impurity concentration 

would clarify this behaviour.

We should also note that for high magnetic fields where we 

enter the extreme quantum limit regime the distribution function is 

rather distorted and the "electron temperature" distribution could be 

inaccurate. This also could explain the divergence of the ohmic and
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non-ohmic lines at high magnetic fields.
t

In view of this last point the simple electron temperature model 

gives rather good agreement. The far more complicated calculations 

based on the Kurosawa formulation would hardly appear to be worthwhile. 

This is particularly the case for the most impure sample S^, where the 

agreement is very good over the whole range, except for a slight 

divergence at the highest magnetic fields. It would be interesting to 

extend the magnetic fields above the present limits to see if this 

behaviour continued.

Finally, this work would benefit from a more comprehensive 

and extended study on the experimental side. Samples of greater impurity 

would be a useful extension, as well as increased facilities for high 

magnetic fields. Neutron bombardment as a means of increasing the 

electron concentration (and impurity concentration) in a controlled 

fashion also offers potential interest. Rather than using samples of 

increased conduction band electron concentration, it would be desirable to 

view more compensated samples. This would avoid the increasing 

degeneracy of the conduction band, with the associated de-Haas 

Shubnikov oscillations. Similar investigations could also be made on 

otherlll-V compounds such as indium arsenide and gallium arsenide, 

although higher magnetic fields are more of a necessity here, and for 

any substance where the effective mass is large. The effects of 

sample inhomogeneities can exert substantial limitations on the various 

investigations and means of controlling or investigating their range 

should be given further study.
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CONCLUSION.,

In spite of difficulties in obtaining accurate results, 

without spurious size and inhomogeneity effects, a reasonably good 

quantitative analysis has been achieved. The magnetic field reduction 

of the collision cross-section from ionized impurity scattering sites 

has been identified as the mechanism giving the negative magnetoresist

ance in both the ohmic and the non-ohmic cases. The inclusion of 

scattering events allowed by the uncertainty of the electron energy is 

found to be of strong significance in the analysis. The electron 

temperature model has been investigated in a situation where it has 

doubtful validity, but it has been found to give a reasonable analysis, 

especially for the more impure samples. Possible extensions of the 

investigations, both theoretically and experimentally, have been 

discussed.
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APPENDIX.

H .Screening Length R for Arbitrary Degeneracy and Extreme Quantum Limit

The theory used for scattering from ionized impurities uses 

a screened coulomb potential, of the form

V(r) . ^  exp ^

where R^ is a screening len^h indicative of how effectively the

impurity charge is shielded by the free conduction band electrons.

We must calculate R^ in the extreme quantum limit for the

analysis (R^).s
This is done by solving Poisson*s equation

V(r) = “• n(r) ) (1)

where n^ is the concentration of electrons in the unperturbed lattice

and n(r) the concentration in the perturbed lattice, i.e. with an ionized

impurity present.

If n^ = F (0) (some function of potential)

and n(r) = F (0 + V) 

we use the approximation

F (0 + V) = F (0) + V F'(0) = n(r)

Therefore, pio "* n(r) = - V F'(0) (2)

Now

n^ = F(0)
1

So F(0) = (kgT):  ̂2m*\ /A w f , (3*) (3)

where f , (9*) is a tabulated fermi function for the reduced fermi- “i H .

energy in a magnetic field __
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*and 60 = kT

Therefore, F-(0) =(kgT) ,  ^  ^ <3*) _ 3 _
I 7215? \ ^ )  _i (kT)

2
I

and using the relationship *f (9^) “ J ^-3/2
4

we have ^  ,

( ? ) * ’ '%  U n  »>
B

substituting (2) and (4) into equation (1)

V2v(r) = - ^  X 2 (2x)'̂ ^ ( W r  ( # r )  *  £_3/2CJ'h) k Wr;

or V(r) = — i-r V(r)

where V(r) = ^  exp^-^j
s

so that the screening length

(rH)2 . .2^ K (k^T)i /
e^ ii w -3/2'°H'

For the case of non-degenerate statistics

9* << 0.

^-3/2 ^ ^ exp (9%)

so (R^)^ = -2 tiK (k^T)  ̂ ^s' ■ - -B---- (  1   r-
ê'fi ü)̂ 2m*/ 2/ t t  exp (9^)
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Using the standard expression for n^ in the extreme quantum limit

(  2m* -fi w JTT. exp (3 )

We can write
(R«) 2 = K kgl

4ïïe^no

Thus, for nondegenerate statistics the screening length reduces to the 

standard zero magnetic field expression and the magnetic field has no 

effect.

For completely degenerate statistics

and f_3/2 (3*) ^ - 2 (3*)"= -

so (f)" . 1.
® " ê fi ui \ 2m*/ 2 (3’ê Ti Wg \ 2m*/ 2 (3*7^

and 3/2

H 2Using this expression in (R^) gives

, H 2 ^ 2x K . / 6 2 fXo.
e2 (fi oi JZ I 2;^/

2Thus, in the degenerate case the screening length decreases as H , i.e. 

the magnetic field increases the screening.
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For no magnetic field present, a similar procedure to the 

one previously outlined yields

^2 K'ti\ 1
® 2 e2 (2m*) (kgl)& £' O*)

2

It should be noted that these derivations are simple semi- 

classical derivations of the screening parameter. The magnetic 

field expression also uses an unbroadehed density of states 

equation, which may have an important effect in the degenerate case. 

Other more involved vigorous treatments have been given* See 

Wallace (1974). However, although some of the sample are degenerate 

in zero magnetic field, they all go to non-degenerate statistics with 

increasing magnetic field where the general expression for has 

greatest validity. '
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