MSD RERRESENTATIONS

| nt roducti on

Exponentiation of large integers (modulo a large integer) is

the basis of several well known cryptographic algorithms such

as RSA, [1]. The calculations involved are complex, and can

be time - consuming especially when performed in software. As a
result algorithms which speed up software implementations of

modular exponentiation are of considerable practical

significance; see, for example, Selby and Mitchell, [2].

The generally accepted method for performing modular
exponentiation is the 'squ are and multiply' technique; see,
for example, Beker and Piper, [3], or Knuth, [4]. In brief,

if one is required to compute
nf (mod N)
and e has binary representation

€g-1€g5-2....€Q

where e g. 1 is the most significant bit, then the 'left to

right' version of the algorithm works as follows:
X =1;
for i = s-1to0do{
x:= x2(mod N);
if (e i =1) x= x* m(mod N)}
The result will be contained in X.

It is worth observing at this point that the number of modular

multiplications by minvolved in per forming the algorithm is
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determined by the number of 1s in the binary representation of

e. The purpose of this paper is to show how the use of an

alternative representation of e, in combination with a slight
variant of the above algorithm, can considerabl y reduce the

number of multiplications involved.

MSD representations

Suppose that, in a binary representation of a number, entries

of -1 are allowed (in addition to 0 and +1). Then any number

has many such (  nodi fied signed-digit, or MSD)representation
for other applications of such representations, including the

construction of ripple - free adders, see, for example, Drake et
al.,[5]. For example, the number 23 has unique binary

representation
10111

but has various MSD representations such as:
++00-, +0-00- and + -+-++

where + represents +1 and - represents - 1.

Now suppose that e has an MSD representation
f(s) f(s-1).... f (0)

where f( s) is the most significant digit. Then a modified
'left to right’ version of the square and multiply algorithm

work s as follows:
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for i :=s to 0 do {
X = x2 (mod N);
x =x * nf(i) (nod N}

Checking the validity of the nodified algorithmis
straightforward. It should now be clear that the nunber of
nodul ar multiplications in the revised al gorithm depends on

t he nunber of non-zero entries in the MSD representation of e
which we are using (which we call the weight of this
representation of e). This can be significantly smaller then
the binary weight of e offering considerable perfornmance
advant ages, given that the pre-conputation of ntl can be
performed efficiently. Conputing ntl uses the Euclidean

al gorithmwhich, fortunately, can be nmade to run very quickly.

The remai nder of this paper is concerned with describing a

met hod for finding a m ni mum wei ght MSD representati on of a
nunber. This nethod we call the Weight M nimsation Al gorithm
(WvA) and works as follows. Suppose e has an s-bit MSD

representation stored in variabl es
e[s-1], e[s-2], ..., e[0].

Note that the algorithm possibly requires the use of an

additional variable e[s], initially set to O:

1. If consecutive pairs of non-zero elenments remain, |et i
be the | east integer for which e[i] and e[i+1] are non-

zero. Otherw se term nate.
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2. If e[i] # e[i+1l] then set e[i] := e[i+1l] and set

e[i+1] := 0 and go to step 1.

3. Oherwise let j be the |least integer for which

e[j] #e[i] and e[j-1] =¢e[j-2] = ... =e[i]. If

e[j] = 0 then set e[j] e[i], else set e[j] := 0. Set

e[i] :=-e[i] and e[k] 0 (i <k<j). GCGoto step 1.
Clearly each step of the algorithm produces an equival ent NMSD
representation of the nunber e; noreover the algorithm

term nates because the value of i determned in step 1
strictly increases after obeying either step 2 or step 3. It
Is also inportant to observe that each step of the WVA either
| eaves the wei ght unchanged or reduces it, i.e. the
representation output fromthe WWA has wei ght | ess than or

equal to the weight of the input representation

Sparse MSD representations

An MSD representation is said to be sparse if no two adj acent

entries are non-zero.

Lemma 1: The MSD representation produced by using the WA

w |l always be sparse.

Proof: This is imedi ate by exam nation of the WA
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Lemma 2: If the positive integer e has a sparse (s+1)-bit MSD

representation (with |Ieading entry non-zero), then
25-dg < e < 2S5+dg

wher e
dg = 25-2 + 25-4 + |

Proof: Since e is positive, then the leading termin any MSD
representation nust be +1. The |argest sparse representation

for a given nunber of bits will always have the form
+0+0+0. . .

and the smal | est such representation will have the form
+0-0-0. ..

and the Lemma foll ows.

Lemma 3: Every integer has a uni que sparse MSD

representation

Proof: Suppose e has two sparse representations (f(i)) and
(g(i)) of s+1 and t+1 bits respectively (in each case with

| eadi ng entry non-zero). Suppose, wthout |oss of generality
that f(s) = 1 (and hence e is positive). W now show that

t = s and g(s) = 1.

Now since (f(i)) is sparse, by Lenma 2 e satisfies
25-dg < e < 2S5+dg

Clearly g(t) = 1 since e is positive. By the sane argunment as

above:
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2U-di < e < 2t+d;.

Now observe t hat
dg + dg41 = 25-1
and hence
2S + dg < 28*1 - dgyq

and so s =t.

The Lenmma now follows by induction (nodify (f(i)) and (g(i))

by changing the leading termin both to zero).

Lenmas 1 and 3 now give the desired result:

Theorem The representation generated by the WVA has the

m ni mum possi bl e wei ght .

Proof: Suppose this is not true, i.e. suppose e has an MsSD
representation (g(i)) which has weight |ess than the unique
(by Lemma 3) sparse representation. By Lenma 1, applying the
WVA wi || generate a sparse representation wth weight |ess
than or equal to the weight of (g(i)). This imrediately gives

a contradiction by Lemma 3.

Sunmary and acknow edgenent

From t he above discussion it should be clear that the Wi ght

M ni m sation Al gorithm generates an MSD representation of
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m ni mrum wei ght. This in turn enabl es the nunber of nodul ar
mul tiplications to be m nimsed when perform ng a nodul ar
exponentiation. This offers the possibility of significantly

I mproving the performance of software inplenmentations of RSA
We woul d |i ke to acknow edge the contribution of Al ex Sel by,

who originally suggested the idea of using an MSD

representation in nodul ar exponentiation.
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