
MSD REPRESENTATIONS

Page 1

Introduction

Exponentiation of large integers (modulo a large integer) is

the basis of several well known cryptographic algorithms such

as RSA, [1]. The calculations involved are complex, and can

be time - consuming especially when performed in software. As a

result algorithms which speed up software implementations of

modular exponentiation are of considerable practical

significance; see, for example, Selby and Mitchell, [2].

The generally accepted method for performing modular

exponentiation is the 'squ are and multiply' technique; see,

for example, Beker and Piper, [3], or Knuth, [4]. In brief,

if one is required to compute

me (mod N)

and e has binary representation

es- 1es- 2....e0

where e s- 1 is the most significant bit, then the 'left to

right' version of the algorithm works as follows:

x := 1;

for i := s- 1 to 0 do {

 x := x2 (mod N);

 if (e i = 1) x = x * m (mod N) }

The result will be contained in x.

It is worth observing at this point that the number of modular

multiplications by m involved in per forming the algorithm is

MSD REPRESENTATIONS

Page 2

determined by the number of 1s in the binary representation of

e. The purpose of this paper is to show how the use of an

alternative representation of e, in combination with a slight

variant of the above algorithm, can considerabl y reduce the

number of multiplications involved.

MSD representations

Suppose that, in a binary representation of a number, entries

of - 1 are allowed (in addition to 0 and +1). Then any number

has many such (modified signed-digit, or MSD) representation s;

for other applications of such representations, including the

construction of ripple - free adders, see, for example, Drake et

al.,[5]. For example, the number 23 has unique binary

representation

10111

but has various MSD representations such as:

++00- , +0 - 00- and + - +- ++

where + represents +1 and - represents - 1.

Now suppose that e has an MSD representation

f(s) f(s- 1) f(0)

where f(s) is the most significant digit. Then a modified

'left to right' version of the square and multiply algorithm

work s as follows:

MSD REPRESENTATIONS

Page 3

x := 1;

for i := s to 0 do {

 x := x2 (mod N);

 x = x * mf(i) (mod N) }

Checking the validity of the modified algorithm is

straightforward. It should now be clear that the number of

modular multiplications in the revised algorithm depends on

the number of non-zero entries in the MSD representation of e

which we are using (which we call the weight of this

representation of e). This can be significantly smaller then

the binary weight of e offering considerable performance

advantages, given that the pre-computation of m-1 can be

performed efficiently. Computing m-1 uses the Euclidean

algorithm which, fortunately, can be made to run very quickly.

The remainder of this paper is concerned with describing a

method for finding a minimum weight MSD representation of a

number. This method we call the Weight Minimisation Algorithm

(WMA) and works as follows. Suppose e has an s-bit MSD

representation stored in variables

e[s-1], e[s-2], ..., e[0].

Note that the algorithm possibly requires the use of an

additional variable e[s], initially set to 0:

1. If consecutive pairs of non-zero elements remain, let i

be the least integer for which e[i] and e[i+1] are non-

zero. Otherwise terminate.

MSD REPRESENTATIONS

Page 4

2. If e[i] � e[i+1] then set e[i] := e[i+1] and set

e[i+1] := 0 and go to step 1.

3. Otherwise let j be the least integer for which

e[j] � e[i] and e[j-1] = e[j-2] = ... = e[i]. If

e[j] = 0 then set e[j] := e[i], else set e[j] := 0. Set

e[i] := -e[i] and e[k] := 0 (i < k < j). Go to step 1.

Clearly each step of the algorithm produces an equivalent MSD

representation of the number e; moreover the algorithm

terminates because the value of i determined in step 1

strictly increases after obeying either step 2 or step 3. It

is also important to observe that each step of the WMA either

leaves the weight unchanged or reduces it, i.e. the

representation output from the WMA has weight less than or

equal to the weight of the input representation.

Sparse MSD representations

An MSD representation is said to be sparse if no two adjacent

entries are non-zero.

Lemma 1: The MSD representation produced by using the WMA

will always be sparse.

Proof: This is immediate by examination of the WMA.

MSD REPRESENTATIONS

Page 5

Lemma 2: If the positive integer e has a sparse (s+1)-bit MSD

representation (with leading entry non-zero), then

2s-ds � e � 2s+ds

where

ds = 2s-2 + 2s-4 + ...

Proof: Since e is positive, then the leading term in any MSD

representation must be +1. The largest sparse representation

for a given number of bits will always have the form

+0+0+0...

and the smallest such representation will have the form

+0-0-0...

and the Lemma follows.

Lemma 3: Every integer has a unique sparse MSD

representation.

Proof: Suppose e has two sparse representations (f(i)) and

(g(i)) of s+1 and t+1 bits respectively (in each case with

leading entry non-zero). Suppose, without loss of generality

that f(s) = 1 (and hence e is positive). We now show that

t = s and g(s) = 1.

Now since (f(i)) is sparse, by Lemma 2 e satisfies

2s-ds � e � 2s+ds

Clearly g(t) = 1 since e is positive. By the same argument as

above:

MSD REPRESENTATIONS

Page 6

2t-dt � e � 2t+dt.

Now observe that

ds + ds+1 = 2s-1

and hence

2s + ds < 2s+1 - ds+1

and so s = t.

The Lemma now follows by induction (modify (f(i)) and (g(i))

by changing the leading term in both to zero).

Lemmas 1 and 3 now give the desired result:

Theorem: The representation generated by the WMA has the

minimum possible weight.

Proof: Suppose this is not true, i.e. suppose e has an MSD

representation (g(i)) which has weight less than the unique

(by Lemma 3) sparse representation. By Lemma 1, applying the

WMA will generate a sparse representation with weight less

than or equal to the weight of (g(i)). This immediately gives

a contradiction by Lemma 3.

Summary and acknowledgement

From the above discussion it should be clear that the Weight

Minimisation Algorithm generates an MSD representation of

MSD REPRESENTATIONS

Page 7

minimum weight. This in turn enables the number of modular

multiplications to be minimised when performing a modular

exponentiation. This offers the possibility of significantly

improving the performance of software implementations of RSA.

We would like to acknowledge the contribution of Alex Selby,

who originally suggested the idea of using an MSD

representation in modular exponentiation.

MSD REPRESENTATIONS

Page 8

References

[1] RIVEST, R.L., SHAMIR, A., and ADLEMAN, L.: 'A method for

obtaining digital signatures and public - key cryptosystems',

Commun. ACM, 21 (1978) 120 - 126.

[2] SELBY, A., and MITCHELL, C.J.: 'Algorithms for soft ware

implementations of RSA', IEE Proceedings Part E, 136 (1989)

166 - 170.

[3] BEKER, H.J., and PIPER, F.C.: 'Cipher systems' (van

Nostrand, London, 1982).

[4] KNUTH, D.E.: 'The art of computer programming, Volume 2:

Seminumerical algorithms' (Addison - Wesley, USA, 1981, 2nd

edition).

[5] DRAKE, B.L., BOCKER, R.P., LASHER, M.E., PATTERSON, R.H.

and MICELI, W.J.: 'Photonic computing using the modified

signed - digit number representation', Optical Engineering, 25

(1986) 38 - 43.

