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We present results of a detailed study of equilibrium magnetotunneling between an array of independent
identical one-dimensional wires and a two-dimensional electron gas. From the tunneling differential conduc-
tance, measured as a function of the in-plane magnetic field, we find directly the number of occupied one-
dimensional subbands, the subband energies, and the wave functions as a function of the strength of confine-
ment in these wires. As many as 14 one-dimensional subbands were probed. We show that an analysis of our
results based on the Bardeen tunneling Hamiltonian formalism allows the determination of the functional form
of one-dimensional confining potentials. We give two examples, one for a narrow wire and one for a wide wire.
@S0163-1829~97!51804-2#

The Schottky gate technique for patterning two-
dimensional electron gases~2DEG’s! ~Ref. 1! in
GaAs/AlxGa12xAs heterostructures initiated an intensive
study of one-dimensional~1D! systems.2 The response of
these systems to changing gate voltage is a complex
problem—experimentally and theoretically. Theoretical
models,3 which predict a generic dependence of the 1D con-
fining potential on gate voltage, at least must make assump-
tions about the distribution of ionized donors, strain intro-
duced by the surface gates and the nature of surface states
and include a model for the Schottky interface. The uncer-
tainty in these parameters has provided a strong motivation
for experimental investigation of quantum-mechanical struc-
ture in these systems. Equilibrium lateral transport4 and ca-
pacitance measurements5,6 may not be used for this purpose
since they yield information only about density of states at
the chemical potential. Nonequilibrium conductance mea-
surements allow the determination of subband spacings close
to the chemical potential,7 and magnetodepopulation of 1D
channels can be used to estimate the width of confining po-
tentials with many occupied subbands.8 However, these
methods do not provide sufficient information to determine
accurate functional forms for confining potentials. Tunneling
experiments, in which electrons from a detector electron gas,
are used to probe a 1D system do in principle provide suffi-
cient information to determine all quantum-mechanical
structures. This is because conservation of momentum in
tunneling ensures that these measurements are sensitive to
the details of the 1D spectral function.9 This function con-
tains the Fourier transforms of the occupied eigenstates,10,11

and allowed approximate forms for bound states in etched
1D wires12 to be determined in nonequilibrium measure-
ments.

In this paper we present the results of equilibrium mag-
netotunneling experiments on electrostatically defined 1D
wires which allow a direct determination of their eigenvalues
and wave functions, and therefore the functional forms of
their confining potentials.

Figure 1 shows a schematic diagram of our device.13 Two
parallel 2DEG’s occupy 18-nm-wide GaAs quantum wells,
which are separated by a 12.5-nm-wide Al0.33Ga0.67As bar-
rier. The carrier concentrations are 3.03 1015 and 1.93 10

15 m22, with corresponding low-temperature mobilities of
50 and 20 m2 ~V s! 21 in the upper and lower wells, respec-
tively. Separate contact to each 2DEG was achieved using a
selective depletion scheme.14 An in situ patternedn1 GaAs
full gate15 beneath the active tunneling area was used to fix
the carrier concentration in the lower 2DEG at 3.03 1015 m
22 by applying a voltageVbg510.6 V. A superlattice
Schottky gate was defined above the active tunneling area
using electron-beam lithography. Here we consider two de-
vices with superlattice periods of 350 and 570 nm, and litho-
graphic wire widths of 180 and 340 nm, respectively, each
consisting of 50 wires. The application of a voltage
Vsl
def5–0.42 V was necessary to define an array of indepen-

dent quasi-1D wires in the upper well of each device. Due to
the penetration of the superlattice gate electric field through
the depleted regions of the upper well, a 1D surface super-
lattice~1DSSL! was induced in the lower 2DEG. This device
structure has a number of features which make it particularly
suitable for determining confining potentials: the experi-
ments may be performed in equilibrium, thereby eliminating
the effect of capacitive coupling on the confining potential;
the widths of the two quantum wells are identical to within
atomic resolution, thereby eliminating the effects of relative
diamagnetic shift; and the carrier concentration in the detec-
tor layer can be tuned to probe the Fermi surface of the 1D
wires.

Typical tunneling differential conductance~TDC! charac-
teristics, as measured between the quasi-1D wires and the
1DSSL are shown in Fig. 2 as a function of the magnetic
field applied in the plane of the wells, parallelBi, and per-
pendicularB' to the wires. The measurements were per-
formed at 60 mK, with an excitation voltage of 50mV at 79
Hz. Figures 2~a! and 2~b! show the results obtained in the

FIG. 1. Schematic diagram of our device geometry. Voltages
Va andVb make independent contact to each well.
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350-nm period device forVsl between –0.48 and –0.62 V.
At Vsl5– 0.62 V, the lower 2DEG was sufficiently depleted
under the 1DSSL gate pattern to prevent further measure-
ments. Figures 2~c! and 2~d! compare results for the 350- and
570-nm period devices atVsl5–0.48 V.

Qualitatively, just as for 2D-2D magnetotunneling,16 the
oscillations in the data can be explained as resulting from the
relative displacement of the origins ink space of each quan-
tum well bydk(',i)5ez0B(i ,') /\, wherez0530.5 nm is the
average tunneling distance between wells. It causes different
pairs ofk states in each well to contribute to the tunneling at
different magnetic fields resulting in a variation in the TDC.
The observed change in the TDC upon rotation of the direc-
tion of the magnetic field with respect to the 1DSSL there-
fore reflects directly the asymmetry of the 1D wires.

A quantitative analysis can be obtained using the Bardeen
tunneling Hamiltonian formalism.17 Tunneling between an
array of 1D wires and a 1DSSL yields a complex tunneling
problem. However, in the upper well of our device the large
barriers which separate 1D wires make them independent
systems which contribute independently to the device TDC.
In the lower well the confining potential is flat and 2DEG-
like in the regions where there is a significant overlap be-
tween the wave functions in the upper and lower wells18 due
to screening by the 1D wire densities. The low-temperature
TDC of our device is therefore a sum of 1D-2D tunneling
events, one for each wire, and may be written as an overlap
integral between the spectral function of an average 1D sys-
tem with that of a 2D system:

dI

dV
}t2 (

ki ,k'
A2~ki1dki ,k'1dk' ;m!B1~ki ,k' ;m!,

~1!

wheret2 is thez-direction transmission coefficient~assumed
the energy and position independent!, andm is the chemical

potential. The spectral function of the 1D system is defined
by

B1~ki ,k' ;m!5(
n

uf̃n~k'!u2A1~ki ,n;m!, ~2!

where f̃n(k') is the Fourier transform of thenth 1D sub-
band wave function. In the quasi-particle approximation the
spectral functions of the 1D wire and 2DEG in the basis of
their own eigenstates,A(1,2) , are Lorentzian

A~1,2!~s~1,2! ;m!5G/2p@~G/2!21~m2js~1,2!

~1,2!2!#. ~3!

s15(ki ,n),s25(ki ,k') are the quantum numbers of the 1D
wire and 2DEG, respectively, and\/G is the quasiparticle
lifetime, but here it will also account for differences between
1D wires.G50.5 meV was used in the calculations as fitting
best the data~compare Ref. 9!. js1

(1)5En1\2ki
2/2m*1V1 is

the dispersion relation in the 1D wire andjs2
(2)

5\2(ki
21k'

2 )/2m*1V2 is the dispersion relation for the
2DEG.En are the 1D subband energies in the upper well and
V(1,2) are 2D subband energies in the upper and lower wells,
respectively.

The spectral function of a 2DEG, evaluated at the chemi-
cal potential, is just the 2DEG’s Fermi circle. The spectral
function of a 1D wire, evaluated at the chemical potential, is
elliptical in k space, and contains an internal structure. Two
examples of 1D spectral functions are shown in Figs. 3~a!
and 3~b! for a parabolic and square-well potential, respec-
tively. Both have six occupied subbands. The details of the
1D spectral function are separable intoki andk' dependen-
cies, as may be seen from Eq.~2!. In the ki direction the
spectral function has peaks at values ofki5ki

n derived from
m5js1

(1), and indicated in Figs. 3~a! and 3~b!. In the k' di-

rection, each peak deriving from each subband is modulated
by the Fourier spectrum of this subband wave function.

WhenBi is swept, the Fermi circle of the 2DEG moves
relative to the 1D spectral function in thek' direction. As it
passes across the 1D spectral function, there will be a con-
tribution to the TDC from all parts of the 1D spectral func-
tion with which it intersects. Detailed analysis of Eq.~1!
shows that in general the dominant contribution is from the
Fourier spectrum of the highest occupied subband. Since the
Fermi circle in the 2DEG was larger than the 1D spectral

FIG. 2. Magnetotunneling differential conductance measured
with the magnetic field applied~a! and ~c! parallel and~b! and ~d!
perpendicular to the wires. Upper graphs compare the TDC for the
same, 350-nm period device but differentVsl @~a!–0.47,–0.48, . . . ,
–0.62 V,~b!–0.48,20.50, . . . ,20.62 V#. Lower graphs compare the
TDC measured forVsl5–0.48V for 350- and 570-nm period de-
vices.

FIG. 3. Spectral functions of a 1D parabolic potential~a! and a
1D square well potential~b!, at the chemical potential, forG50.5
meV.

55 R1967MAGNETOTUNNELING SPECTROSCOPY OF ONE- . . .



function during the experiments the plots in Figs. 2~a! and
2~c! are full representations of 1D wave functions~or their
amplitude! in k space. As we sweepVsl @Fig. 2~a!# or change
the lithographic wire width@Fig. 2~c!#, the number of peaks
in each trace, which is the same as the number of occupied
subbands, decreases as the confinement increases. In addi-
tion, Fig. 2~a! shows the change in symmetry of the wave
functions between odd and even as successive subbands are
depopulated. Figure 4~a! shows the number of occupied sub-
bands as a function ofVsl taken from such traces for both
devices, which follow the well-known 1D subband depopu-
lation characteristics.4,6 The lowest number of probed sub-
bands was limited by the geometry of the superlattice gate.
As many as 14 1D subbands could be probed in the wider
device. Up to now the observation of so many subbands has
been reported only from measurements of ballistic channels,
which have smooth potential profiles.2 Our result shows that
the superlattice gate also produces a smooth potential in the
upper well, and may suggest that more complex mechanisms
lead to collective depopulation of the subbands.19

WhenB' is swept, the positions of maximum intersection
between the 1D and 2DEG spectral functions correspond,
approximately, to the fields where the trailing edge of the
2DEG Fermi circle intersects with the quantized valueski

n of
the 1D spectral function. From the magnetic-field points at
which maximum intersection occurs in experimental traces,
we can calculateki

n and therefore estimateEn . These are
shown in Fig. 4~b! for the narrower device, for which the
peaks are well resolved. They show the expected increase in
En with increasing confinement, in agreement with calcula-
tions in Ref. 3, but we have insufficient data to show clearly
the pinning of the peaks in the 1D density of states at the
chemical potential. The subband separation is similar to that
found in nonequilibrium lateral measurements.7

The spectral functions in Figs. 3~a! and 3~b! are quite
different. For the square-well potential theki

n points are
bunched toward large values ofukiu, but for the parabolic
potential they are more evenly spaced as a result of their
different eigenspectra. In thek' direction for the square-well
potential the wave functions are truncated sin and cos func-
tions which have Fourier spectra which peak around the
quantized 1Dk' values. This gives Fig. 3~a! the appearance
of a broad elliptical ring. In thek' direction for the parabolic
potential, the simple harmonic-oscillator wave functions are
always localized around the classical turning points. This

gives Fig. 3~b! the appearance of a flat elliptical disc. The
width of the spectral function in thek' direction is propor-
tional to the reciprocal of the width of the 1D wire at the
chemical potential, and the width in theki direction is given
by E1.

The differences between spectral functions for different
potentials result in very different TDC characteristics.20 Each
measurement of the TDC as a function of in-plane magnetic
field is a unique signature of the underlying confining poten-
tial, and in principle may be used to extract its functional
form. Since the TDC traces for theBi and B' directions
emphasize different aspects of the 1D spectral function, in
practice we found it better to use data from both directions to
determine confining potential profiles. Figure 5 shows ex-
perimental TDC’s forBi andB' sweeps withVsl5–0.48 V
~solid lines! compared to the TDC calculated from Eq.~1!
using functional forms for the confining potentials which
gave the closest match between experiment and theory.
These potentials are shown in Figs. 5~e! and 5~f!. For a nar-
row wire we find an essentially parabolic confinement, and
for the wide wire we find a flat bottomed potential with steep
walls. The parameters which define them are shown in Fig.
5~e!, and were obtained in the following way. The period of
the superlatticeWsl is known accurately from calibrated
scanning electron microscopy photographs of the device.
The data in Figs. 5~a! and 5~b! give us the number of occu-
pied subbands and the spatial extent of the highest occupied
subband wave function and therefore the widthWm . The
Fermi energies in each 2DEG and the lowest subband energy
E1 are both determined by the positions of the outermost
peaks marked by arrows in Figs. 5~c! and 5~d!. These values
are very accurate, since these positions are not affected by
the internal structure of the 1D spectral function. Approxi-
mate eigenvalues can also be found from Figs. 5~c! and 5~d!

FIG. 4. ~a! Depopulation characteristics obtained from TDC
sweeps withBi for 350- and 570-nm period devices.~b! Subband
energies estimated from TDC sweeps withB' for the 350-nm pe-
riod device.

FIG. 5. Experimental and calculated TDC forVsl5–0.48 V for
Bi ~a! and~b! andB' ~c! and~d! for a 350-nm period device~a! and
~c! and a 570-nm device~b! and ~d!. ~e! shows the best fitting
potential profile for 350-nm period device, and~f! for a 570-nm
period device.
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and their distribution gives a strong indication of the shape
of the confining potential. The lower part of the confining
potential defined about pointy1 is taken to be U
}uy2y1ua1. This parametrization allows us to vary its shape
continuously from triangulara151 to squarea1→`. We
choose a value fora1 based on the distribution of peaks in
Figs. 5~c! and 5~d!, at high and lowBi , and the overall shape
of the TDC which varies from strongly peaked for a square
potential to flat for a parabolic potential~cf. Fig. 3!. The
shape of the upper part of the confining potential defined
around pointy2 is then adjusted througha2 andC2 ~defined
as for the lower part! to give the correct number of occupied
subbands and width. Fine overall adjustments are then made
to a1 ,a2 ,C1, andC2 to give the best overall fit. It should be
noted that the spectral function does not contain any infor-
mation about unoccupied subbands and therefore the TDC is
not sensitive to the shape of the confining potential above the
chemical potential. The deviation between the experimental
and theoretical TDC derives from tunneling which does not
come from the overlap between the 2DEG Fermi circle and
the 1D spectral function. It is mostly a slowly varying back-
ground which probably comes from the assumption of a uni-
form 2DEG in the lower well, and the assumption that dis-
order in the 1D wires is accounted for by a spectral
broadening parameter.

In conclusion, we have presented magnetotunneling stud-
ies of 1D wires defined by surface Schottky gates, which are
able to measure directly eigenenergies and wave functions,

and we showed that analysis with the Bardeen tunneling
Hamiltonian formalism may be used to determine functional
forms of 1D confining potentials. We find that the generic
behavior of Lauxet al.3 describes our data very well: the
subband spacings increase with increasingly negative gate
voltage; a narrow wire has a nearly parabolic confining po-
tential, whereas a wide wire has a flat bottom and steep
walls. We cannot directly compare our results with Ref. 3,
since they perform their calculations for a different device
structure. For future work, results from our device should
allow an accurate parametrization of this type of calculation.
In addition, since equilibrium magnetotunneling depends
upon the shape of the spectral function, this device structure
can be used to investigate non-Fermi-liquid behavior pre-
dicted for 1D systems.21 Our experiment is an example of
what can be done with equilibrium magnetotunneling. The
device structure is such that it is possible to perform both
magnetotunneling and lateral transport measurements on
gate geometries of arbitrary shape.
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