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Abstract

Glover and Punnen (1997) asked whether there exists a polynomial time algorithm
that always produces a tour which is not worse than at least n!/p(n) tours for some
polynomial p(n) for every TSP instance on n cities. They conjectured that, unless
P=NP, the answer to this question is negative. We prove that the answer to this
question is, in fact, positive. A generalization of the TSP, the quadratic assignment
problem, is also considered with respect to the analogous question. Probabilistic,
graph-theoretical, group-theoretical and number-theoretical methods and results are
used.

Key words: Traveling salesman problem, quadratic assignment problem, approxi-
mation algorithm.

1 Introduction

The domination number, dom(A,n), of an approximation algorithm for the traveling sales-
man problem (TSP) is the maximum integer k£ = k(n) such that, for every instance Z of
the TSP on n cities, A produces a tour T" which is not worse than at least k tours in Z
including T itself. F. Glover and A.P. Punnen [12] asked whether there exists a polynomial



time (in n) algorithm A with domination number dom(A,n) > n!/p(n) for some polyno-
mial p(n). They conjectured that, unless P=NP, the answer to this question is negative.
We prove that the answer to this question is, in fact, positive.

Polynomial algorithms with exponentially large domination number were suggested
in a number of papers including [3, 5, 10, 12, 13, 14, 16, 21]. The strongest result was
obtained in [14]: there is a polynomial algorithm B with dom(B,n) = Q(n!/t") for every
constant ¢ > 1.5.

In [11], in a series of computational experiments with several families of instances, it
was shown that a combination of an algorithm from [21] (with proven large domination
number) and a modification of a traditional approach leads to a construction heuristic for
the TSP which clearly outperforms well-known construction heuristics for the asymmetric
TSP. A high potential of local search heuristics which use neighbourhoods of exponential
cardinality (and, thus, polynomial algorithms of exponential domination number to search
the neighbourhoods) was shown in [3, 7, 17].

In this paper, we introduce a polynomial approximation algorithm for a wide family
of combinatorial optimization problems which is based on the derandomization method
of conditional probabilities, see e.g. [1, 18]. We call this algorithm the greedy-ezpectation
algorithm (GEA). We prove that the adaptation G of the GEA for the TSP has the domi-
nation number dom(G,n) > (n — 2)! for every n # 6. To establish this, both probabilistic
and graph-theoretical approaches and results are used. (Preliminary computational ex-
periments with the GEA for some Euclidean instances taken from the well-known TSPlib
show that the GEA produces tours of quality superior to that of the best well-known
construction heuristics, but the GEA is not as fast as most of them.)

We also consider a generalization of the TSP, the quadratic assignment problem (QAP),
see [8, 9]. The domination number of an algorithm for the QAP can be defined similarly
to that of an algorithm for the TSP. Let A be the GEA specialized for the QAP. We
show that dom(A,n) > (n — 2)! for every prime power n. We also prove that, given
B > 1, dom(A,n) > n!/p" for every sufficiently large n. Since no QAP neighbourhoods
of (any) exponential cardinality are known so far (Deineko and Woeginger [9] conjecture
that such neighbourhoods do not exist at all), our results are first of its kind for the QAP.
To show these results, probabilistic, group-theoretical and number-theoretical approaches
and results are applied.

2 Greedy-expectation algorithm

For integers k < m, let [k, m] stand for the set {k,k+1,...,m}. Let m be a positive integer
and let D be a subset of [1,m|" = {(z1,%2,....,x,) : x; € [I,m],i = 1,2,...,n}. Let f
be a mapping from [1,m]™ into the set of reals. We consider the following optimization



problem: find
min{f(z1,...,2n) : (z1,...,2,) € D}. (1)

Let 20 ,...,2% € [1,m], where 1 < i;, #4; <n, 1 <s <t <k Then, D(z) 2)) =

i1 ik 117 " iy
{(z1,.;n) €D my, =), .. x5, = w?k} For k =0, let D(z) , ...,x?k) =D.
Consider D as a probability space by assigning to each element 2° = (z9,...,20) of
D a non-negative weight (probability) P(z°) such that 3" ,0cpP(z°) = 1. Then, f is a
random variable; thus, we can deal with the expectation Ef of f as well as its conditional
expectations. This interpretation of D and f allows us to apply the derandomization

method of conditional probabilities (see, e.g., [1, 18]) to obtain Algorithm 2.1.

Assume that m is bounded by a polynomial in n, and for every (:1:?1, - :L‘?k) € [1,m]*
(0 < k < n), the claim D(x?l,...,x?k) # () can be verified in time polynomial in n.
Suppose also that the conditional expectations (for non-empty D(x?l, ,$?k)) E(f|zi, =
:Jc?l, oy Ty, = x?k) can be computed in time polynomial in n. Then, the following algorithm

is of polynomial complexity (in n). We call it the greedy-expectation algorithm (GEA).

Algorithm 2.1 For k:=1 ton find x?k such that the following holds.
E(f|z;, = :1:?1, ey Ty = $?k,1a$ik = w?k) = min{E(f|z;, = $?1""7xik—1 = x?k LTp=17): (p,J) € QL

where Q = {(p,7) : p € [1,n] = {ir,...,ir—1}, j € [L,m] and D(a ..., ,xz, =7j) #0.

Theorem 2.2 Let (29, ...,20) be a solution obtained by the GEA. Then f (9, ...,20) < Ef.

ceey by

Proof: By the formula of total expectation (see formula (16) in [19]), for £ = 1,2, ..., n,

E(f|Bk—1) = Z{E(f|Bk—17$lk = ])P(Iﬂzk = ]|Bk—1) : ] € [17m]7 D(]:gla "'7$gk_17$?k = ]) 7é 0}7

?k_l) Thus, there exists an z¥ such that

_ — .0 _
where By | = (23, = 2, .., Tjy_, =% iy

E(f|$21 = 513?1, sy Ly, = $?k) < E(f|$7,1 = 37?17 vy Ly = x?k—l)'
Such an x?k is found by the algorithm. Hence,
0 .0 .0y 0 0
Ef > E(f|z;, = :I?il) > .. >E(flz;, = Tj ey Ty, = xzn) = f(z3y,....z,). (2)

|

Remarks. 1. The main limitation in use of GEA is that one has to be able to compute
the conditional expectations of f in polynomial time. For the TSP and QAP, in order to be



able to compute the conditional expectations, we will only consider uniform distributions,
i.e. P(z) =1/|D| for every z € D.

2. Method of pessimistic estimators developed within the derandomization method of
conditional probabilities can be used to relax the assumption that the conditional expec-
tations are computed in polynomial time. Instead, it can be required that some upper
bounds on the expectations are computed in polynomial time (see [1, 18] for more details).

3 GEA for the TSP

The (asymmetric) TSP is defined as follows. Let K be a complete digraph with vertex set
V(K) and arc set A(K) (if z and y are distinct vertices in K, then both zy, yz € A(K);
|[V(K)| =n). Every arc zy in K is assigned a real cost c(zy) = ci(zy). It is required to
find a hamiltonian cycle (tour) H of minimum cost in K. (The cost ¢(G) of a subgraph G
of K is the sum of the costs of arcs in G.)

It is easy to see that the TSP is a special problem of (1). Indeed, we can reformulate
the TSP as follows. Let D be the collection of sets with n arcs from A(K) such that the
arcs in every set form a tour in K. Find min{>"}* , ¢(a;) : {a1,...,an} € D}.

For an arc ¢ = zy in K, the contraction of K at a, K/a is a complete digraph with ver-
tex set V(K /a) = V(K)U{va} —{z,y}, where v, ¢ V(K), such that the cost cx/,(b) of an
arc b in K/a is defined as follows: cg/,(uw) = ci (uw), cx/q(uva) = cx (uT), i o (Vaw) =
ck (yw), where u,w € V(K) — {z,y}. We will omit the subscripts K and K/a when the
costs are defined from the context. We assume that c(zz) = 0 for every vertex z in K. Tt
is easy to verify that

c(K/zy) = c(K) — c"(z) — ¢ (y) + c(zy) — cly), (3)

where ¢t (z) = Yuev(k) clzu) and ¢ (y) = Yycv (k) c(uy). The total cost of all tours in
K is denoted by T'(K). The average cost of a tour in K is denoted by 7(K). As every arc
of K is contained in (n — 2)! tours, 7(K) = T(K)/(n—1)! = (n —2)!c¢(K)/(n — 1)!, hence,
7(K) = ¢(K)/(n — 1). This formula can also be shown using linearity of expectation. Let
7.(K) be the average cost of a tour containing an arc a. Clearly, 7,(K) = 7(K/a) + ¢(a).

The following algorithm is an adaptation of the GEA to the TSP.

Algorithm 3.1 Compute c¢(K) and call the recursive procedure TSPGEA(n, K, c(K)),
which returns a tour in K.

Procedure TSPGEA(n, K, c¢(K)):
1. If n = 2 return the tour of K.
2. Compute ¢t (z) and ¢ (z) for every x € V(K).



For every b € A(K) compute c¢(K/b) using (3).

Find a = zy in K such that 7,(K) = min{7,,(K) : u#w € V(K)}.
Compute T :=TSPGEA(n —1,K/a,c(K/a)).

In T substitute the vertex v, with the arc a.

Return T'.

NS G

It is straightforward to show that the complexity of Algorithm 3.1 is O(n3). To prove
Theorem 3.3, we use the following result on decomposition of A(K) into tours. A set
{Cy,...;Cp_1} of (n—1) tours in K is a decomposition of A(K) if A(K) = U’ 'A(C;). As
|A(K)| = n(n — 1), A(C;) N A(C}) = 0 for every pair of distinct ¢ and j.

Lemma 3.2 For every n > 2, n # 4, n # 6, there exists a decomposition of A(K) into
tours.

While the assertion of this lemma for odd n was already known to Rev Kirkman (see [4],
p. 187), the even case result was only established in [20] as a solution to the corresponding
conjecture by J.C. Bermond and V. Faber (who observed that the decomposition does not
exist for n =4 and n = 6).

Theorem 3.3 Let H be a tour in K such that ¢(H) < 7(K). If n # 6, then H is not
worse than at least (n — 2)! tours in K (for any K ).

Proof: The result is trivial for n = 2, 3. If n = 4, the result follows from the simple fact
that the most expensive tour 7' in K has cost ¢(T') > ¢(H).

Assume that n > 5 and n # 6. Let D; = {C1,...,C,,—1} be a decomposition of the
arcs of K into tours (such a decomposition exists by Lemma 3.2). Given a tour H in K,
clearly there is an automorphism of K that maps C} into H. Therefore, if we consider
Dy together with the decompositions (D1, ..., Dj,—1)) of K obtained from D; using all
automorphisms of K which map the vertex 1 into itself, we will have every tour of K in
one of D;’s. Moreover, every tour is in exactly n — 1 decompositions D;’s (by mapping a
tour C; into a tour Cj (i,7 € [1,n — 1]) we fix the automorphism).

Choose the most expensive tour in each of D; and form a set £ from all distinct tours
obtained in this manner. Clearly, |£| > (n —2)!. As " [' ¢(C;) = ¢(K), every tour T of
€ has cost ¢(T) > 7(K). Therefore, ¢c(H) < ¢(T) for every T € £. O

To see that the assertion of Theorem 3.3 is best possible, choose a tour H in K and
an arc a not in H. Let every arc in H be of cost one, let ¢(a) = n(n — 1) and let every arc
not in A(H) U {a} be of cost zero. Clearly the cost of H is less than the average (which
is n2/(n — 1)), but only tours using the arc a have higher cost.



Corollary 3.4 Let n # 6. Then the domination number of Algorithm 3.1 is at least
(n—2)L

We can show that the domination number of Algorithm 3.1 is less than 4(n — 2)!. Let
x,y,u,v be four distinct vertices in K. Let c¢(zy) = c(uv) = 1,¢(zv) = ¢(uy) = n, and let
the cost of an arc different from the above four be zero. As there are less than 4(n — 2)!
tours using arcs zy, uwv, uy and/or zv, there are less than 4(n — 2)! tours with positive
cost. Observe that 7, (K) = 7y (K) = 1 + =15, 7. (K) > -5, where zw is any arc other
than zy and uv (after contraction of zw at least one of the two arcs of cost n will remain),

n

and 1+ ﬁ < 5. Thus, Algorithm 3.1 starts by choosing one of the two arcs of cost

one, hence it Wiﬁ rzzturn a tour of positive cost.

The proof of Theorem 3.3 shows another way of obtaining a tour of K dominating at
least (n—2)! of others. If we had a decomposition of A(K) into tours, then we could choose
the cheapest tour, which would have cost at most 7(K). This approach would allow us to
yield a tour of factorial domination number even faster (in O(n?) time). However, in this
case, we need to know at least one decomposition rather than the fact of its existence. Such
decompositions are non-trivial to obtain when 7 is even (see the remark before Theorem
3.3). In practice, this approach would very likely give worse results than those of the GEA.

4 GEA for the QAP

The QAP can be stated as follows. Given a pair of n xn matrices of reals A = [a;;] and B =
[bij], find a permutation 7 on [1, n] that provides minimum to ¢(m) = 3771 37 @ijbr(iyr(s)-
Let S, denote the symmetric group of permutations on [1,n]. The QAP can be reformu-
lated as a problem of type (1): find min{¢p(n) = ¢(n(1),...,7(n)) : © € Sp}. Recall that
it is assumed that P(r € S,) = 1/nl.

To show that Algorithm 2.1 is polynomial, it suffices to prove that the conditional
expectations for the QAP can be computed in polynomial time. Without loss of gener-
ality, we may restrict ourselves to E(¢|r(1) = ¢(1),...,7(k) = ¢(k)), 0 < k < n, where
¢(1), ...,c(k) are distinct constants from [1,n]. Let M = [1,n]—{c(1),...,c(k)}. By linearity
of expectation,

B(gr(1) = c(1), . w(k) = c(k)) =

k k 1 k n

> tibelisel) T Do D @i D belm +

i=1j=1 i=1j=k+1  meM

1 n k n

1
D 25 D eyt D i D bum

i=k+1j=1 meM i=k+1 meM

n—k



1
(n—Fk)(n—k—1)

DAag: i# G i jek+1n}Y {bs: s#t; st €M}

It follows from the above formula that E(¢|n(1) = ¢(1),...,7(k) = c(k)) (and the
other conditional expectations) can be computed in time O(n?). Thus, Algorithm 2.1 is
of complexity O(n®) for the QAP.

A set of permutations G C S, is called sharply 2-transitive if for every two pairs
(i,7), (k,t) of distinct elements of [1,n] there is one and only one permutation 7 € G such
that 7 (i) = k,n(j) = t. Clearly, |G| = n(n — 1).

The proof of Theorem 4.2 uses the following lemma by H. Zassenhaus (published in
1935; see Theorem 20.3 in [15]).

Lemma 4.1 There is a sharply 2-transitive permutation group on [1,n] if and only if n
1§ @ prime power.

Theorem 4.2 Let n be a prime power and let p be a permutation from S, such that

$(1) < Eg. Then |{m: ¢(r) = $(u)}] = (n —2).

Proof: The multiplication in S,, is determined as follows: for m,v € S,, and i € [1,n],
m(i) = v(r(3)). Tet L= {(5,7) : i,j € [Ln]i # j}.

By Lemma 4.1, there exists a sharply 2-transitive permutation group H on [1,n].
Since H is a subgroup of S,, and |H| = n(n — 1), there is a decomposition of S, into

m = (n — 2)! cosets of the form Hr. Let 1q,..., 7,n be a collection of permutations such
that S, = UlL, HTs.

We prove that the set Hry is sharply 2-transitive for every s € [1,m]. Let (i,7), (k,t) €
L be arbitrary. As H is 2-transitive and 7, is a permutation, there exists 7 € H such
that 7(i) = 77 1(k),7(4) = 77 1(t). Thus, 774(i) = k,n7s(j) = t. This and the fact that
|H7s| = n(n — 1) imply that Hrg is sharply 2-transitive.

It follows from the formula of the conditional expectations for the QAP that

E¢ Z Qi Z bl] + = Za’ll Z b]]

( J)EL  (i,5)EL

We now prove that

> o(r (n —1)E¢ (4)

TEHT,

for every s € [1,m]. We can express the above sum as follows:

Yoodm = Y D Gibeie) T Y D Giiba(i)n(i)- (5)

TEHTS (i,j)ELmEHTs =1 meHTs



As Hrg is sharply 2-transitive,

Y. D Gibatya) = aij bij-
(i,j)eLmeHTs (i,9)€L (i,5)€L

To complete the proof of (4), it suffices to show that

n

> beyay(n—1) = bj;

meEHTS j=1

for every fixed i € [1,n]. To prove the last equality, it is sufficient to show that
H{m e Hrs: n(i) =k} =n—1
for fixed ¢ and k. This follows from
{m€Hrs: n(i) =k} ={m € Hrs: t € [1,n] — k,m(i) = k,m(j) = t},

where j is a fixed element of [1,n] — 1.

By (4), we can choose a permutation vs € H7s such that ¢(vs) > E¢. As for the
permutation i, given in this theorem, ¢(u) < E¢, we conclude that ¢p(u) < ¢(vs) for every
s €[1,m]. O

We conjecture that the assertion of the above theorem is valid for every integer n > 2.
Combining the last theorem with Theorem 2.2, we obtain the following;:

Corollary 4.3 The domination number of Algorithm 2.1 applied to the QAP, A, is
dom(A,n) > (n—2)! for every prime power n.

A permutation group G C S, is called 2-transitive if for every two pairs (4, 7), (k,t) of
distinct elements of [1,n] there are s(i,j, k,t) > 0 permutations 7 € G such that 7(i) =
k,m(j) = t. Every 2-transitive group has the property that the number of permutations
carrying one pair of distinct elements to another pair is constant, i.e., s(i,j,k,t) is a
constant. (The set of such permutations is a coset of the subgroup fixing the first pair,
and so this is just the fact that all such cosets contain the same number of elements.)

For almost all values of n, the only 2-transitive groups of degree n are the symmetric
and alternating groups (see [6]). The only two series of n such that there exist 2-transitive
permutations groups of degree n and polynomial (in n) order are prime powers and num-
bers of the form (¢¢ —1)/(qg—1), where q is a prime power and d > 2 (their order is roughly
nd*1 i.e., polynomial when d is bounded) [6]. Using this result, we can readily obtain
factorial bound for [{7 : ¢(w) > ¢(u)}| (see Theorem 4.2) when n = (¢ —1)/(¢—1) and d



is bounded. Still, this bound is valid for a small fraction of positive integers and unlikely
to be sharp. Thus, we proceed by deriving a bound which is even weaker, but valid for all
sufficiently large n.

The following number-theoretical assertion can be found in [2] (this was proved by R.
Baker and G. Harman).

Lemma 4.4 Let p1,p2,... be the increasing sequence of all primes. Then pri1 — pr <
keto(D) for every k > 2, where oo = 0.535.

Theorem 4.5 Let § > 1 be arbitrary. Then, for sufficiently large n, there are at least
n!/B" permutations w such that ¢(w) > E¢.

Proof: Let p be the largest prime number not exceeding n. Assume that p < n (otherwise
the proof is trivial).

By the formula of total expectation given in the proof of Theorem 2.2, there is a
sequence 5 1,..., z, of distinct numbers in [1,n] such that E¢ < E(¢(m)|r(i) = zf, i €
[n —p+ 1,n]). Let S" be the set of permutations, 7 in S, such that 7(i) = z? for all
i € [n—p+ 1,n]. We want to prove that there are (p —2)! distinct permutations, w, in S’
with ¢p(w) > E(¢(7)|m € S'). This will imply that there are (p —2)! distinct permutations,
w, in S’ with ¢(w) > Eg.

Let y?,yg,...,yg be the sequence obtained from 1,2,...,n by deleting the integers
:ch_p_i_l,...,x%. If w is an element in S, then define the element 7’ € S, as follows:
7' (i) = 20 for all i € [n —p+1,n] and 7'(i) = y?r(z.) for all ¢ € [1,n —p]. Clearly the above
mapping is a bijection from S, to S’.

Let H be a sharply 2-transitive permutation group on [1,p]. Let m = (p — 2)! and let
T1,T2, ..., Tm be a collection of permutations such that S, = UL, H7,. Let H, = (Hr)'
(i.e. we use the earlier mentioned bijection). Observe that H], H), ..., H] partitions S’.

Analogously to the proof of Theorem 4.2, it is not difficult to show that the permutation
of highest cost in each of H{, Hj, ..., H], are distinct and have cost at least E(¢(m)|7 € S”).

Now it is suffices to demonstrate that (p —2)! > n!/g" for n large enough. By Lemma
4.4, the gap between p and the next prime pt, pt —p, does not exceed k*T°(), where p is
the kth prime and o = 0.535. Therefore, the gap between n and p is at most nete(t) Thus,
for n large enough, 7 is not worse than ¢ = |n — n®t°() — 2|1 > [n — n?]! permutations,
where v = 0.6. However, this implies that ¢ > n!/n™" > n!/8" for every sufficiently large
n. O

Combining the results of the last theorem and Theorem 2.2, we obtain the following:

Corollary 4.6 Let 3 > 1 be arbitrary. Then, the domination number of Algorithm 2.1
applied to the QAP, A, is dom(A,n) > nl/B" for every sufficiently large n.



For the QAP, we conjecture that the domination number of Algorithm 2.1 is at least
(n — 2)! for every n > 2. It would be very interesting to verify whether there exists a
polynomial approximation algorithm C for the QAP such that dom(C,n) > an! for some
positive real constant o < 1.
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