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Abstract

Glover and Punnen ������ asked whether there exists a polynomial time algorithm
that always produces a tour which is not worse than at least n��p�n� tours for some
polynomial p�n� for every TSP instance on n cities� They conjectured that	 unless
P
NP	 the answer to this question is negative� We prove that the answer to this
question is	 in fact	 positive� A generalization of the TSP	 the quadratic assignment
problem	 is also considered with respect to the analogous question� Probabilistic	
graph�theoretical	 group�theoretical and number�theoretical methods and results are
used�

Key words� Traveling salesman problem	 quadratic assignment problem	 approxi�
mation algorithm�

� Introduction

The domination number� dom�A� n�� of an approximation algorithm for the traveling sales�
man problem �TSP� is the maximum integer k 	 k�n� such that� for every instance I of
the TSP on n cities� A produces a tour T which is not worse than at least k tours in I
including T itself� F� Glover and A�P� Punnen 
��
 asked whether there exists a polynomial
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time �in n� algorithm A with domination number dom�A� n� � n��p�n� for some polyno�
mial p�n�� They conjectured that� unless P	NP� the answer to this question is negative�
We prove that the answer to this question is� in fact� positive�

Polynomial algorithms with exponentially large domination number were suggested
in a number of papers including 
�� �� ��� ��� ��� ��� ��� ��
� The strongest result was
obtained in 
��
� there is a polynomial algorithm B with dom�B� n� 	 ��n��tn� for every
constant t � ����

In 
��
� in a series of computational experiments with several families of instances� it
was shown that a combination of an algorithm from 
��
 �with proven large domination
number� and a modi�cation of a traditional approach leads to a construction heuristic for
the TSP which clearly outperforms well�known construction heuristics for the asymmetric
TSP� A high potential of local search heuristics which use neighbourhoods of exponential
cardinality �and� thus� polynomial algorithms of exponential domination number to search
the neighbourhoods� was shown in 
�� �� ��
�

In this paper� we introduce a polynomial approximation algorithm for a wide family
of combinatorial optimization problems which is based on the derandomization method
of conditional probabilities� see e�g� 
�� ��
� We call this algorithm the greedy�expectation
algorithm �GEA�� We prove that the adaptation G of the GEA for the TSP has the domi�
nation number dom�G� n� � �n� ��� for every n �	 �� To establish this� both probabilistic
and graph�theoretical approaches and results are used� �Preliminary computational ex�
periments with the GEA for some Euclidean instances taken from the well�known TSPlib
show that the GEA produces tours of quality superior to that of the best well�known
construction heuristics� but the GEA is not as fast as most of them��

We also consider a generalization of the TSP� the quadratic assignment problem �QAP��
see 
�� �
� The domination number of an algorithm for the QAP can be de�ned similarly
to that of an algorithm for the TSP� Let A be the GEA specialized for the QAP� We
show that dom�A� n� � �n � ��� for every prime power n� We also prove that� given
� � �� dom�A� n� � n���n for every su�ciently large n� Since no QAP neighbourhoods
of �any� exponential cardinality are known so far �Deineko and Woeginger 
�
 conjecture
that such neighbourhoods do not exist at all�� our results are �rst of its kind for the QAP�
To show these results� probabilistic� group�theoretical and number�theoretical approaches
and results are applied�

� Greedy�expectation algorithm

For integers k � m� let 
k�m
 stand for the set fk� k��� ����mg� Let m be a positive integer
and let D be a subset of 
��m
n 	 f�x�� x�� ���� xn� � xi � 
��m
� i 	 �� �� ���� ng� Let f
be a mapping from 
��m
n into the set of reals� We consider the following optimization
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problem� �nd
minff�x�� ���� xn� � �x�� ���� xn� � Dg� ���

Let x�i� � ���� x
�
ik
� 
��m
� where � � is �	 it � n� � � s � t � k� Then� D�x�i� � ���� x

�
ik
� 	

f�x�� ���� xn� � D � xi� 	 x�i� � ���� xik 	 x�ikg� For k 	 �� let D�x�i� � ���� x
�
ik
� 	 D�

Consider D as a probability space by assigning to each element x� 	 �x��� ���� x
�
n� of

D a non�negative weight �probability� P�x�� such that
P

x��DP�x�� 	 �� Then� f is a
random variable� thus� we can deal with the expectation Ef of f as well as its conditional
expectations� This interpretation of D and f allows us to apply the derandomization
method of conditional probabilities �see� e�g�� 
�� ��
� to obtain Algorithm ����

Assume that m is bounded by a polynomial in n� and for every �x�i� � ���� x
�
ik
� � 
��m
k

�� � k � n�� the claim D�x�i� � ���� x
�
ik
� �	 � can be veri�ed in time polynomial in n�

Suppose also that the conditional expectations �for non�empty D�x�i� � ���� x
�
ik
�� E�f jxi� 	

x�i� � ���� xik 	 x�ik� can be computed in time polynomial in n� Then� the following algorithm
is of polynomial complexity �in n�� We call it the greedy�expectation algorithm �GEA��

Algorithm ��� For k �	 � to n �nd x�ik such that the following holds�

E�f jxi� 	 x�i� � ���� xik�� 	 x�ik�� � xik 	 x�ik� 	 minfE�f jxi� 	 x�i� � ���� xik�� 	 x�ik�� � xp 	 j� � �p� j� � Qg�

where Q 	 f�p� j� � p � 
�� n
� fi�� ���� ik��g� j � 
��m
 and D�x�i� � ���� x
�
ik��

� xp 	 j� �	 ��

Theorem ��� Let �x��� ���� x
�
n� be a solution obtained by the GEA� Then f�x��� ���� x

�
n� � Ef�

Proof� By the formula of total expectation �see formula ���� in 
��
�� for k 	 �� �� ���� n�

E�f jBk��� 	
X

fE�f jBk��� xik 	 j�P�xik 	 jjBk��� � j � 
��m
� D�x�i� � ���� x
�
ik��

� x�ik 	 j� �	 �g�

where Bk�� 	 �xi� 	 x�i� � ���� xik�� 	 x�ik��� Thus� there exists an x�ik such that

E�f jxi� 	 x�i� � ���� xik 	 x�ik� � E�f jxi� 	 x�i� � ���� xik�� 	 x�ik����

Such an x�ik is found by the algorithm� Hence�

Ef � E�f jxi� 	 x�i�� � ��� � E�f jxi� 	 x�i� � ���� xin 	 x�in� 	 f�x��� ���� x
�
n�� ���

�

Remarks� �� The main limitation in use of GEA is that one has to be able to compute
the conditional expectations of f in polynomial time� For the TSP and QAP� in order to be
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able to compute the conditional expectations� we will only consider uniform distributions�
i�e� P�x� 	 ��jDj for every x � D�

�� Method of pessimistic estimators developed within the derandomization method of
conditional probabilities can be used to relax the assumption that the conditional expec�
tations are computed in polynomial time� Instead� it can be required that some upper
bounds on the expectations are computed in polynomial time �see 
�� ��
 for more details��

� GEA for the TSP

The �asymmetric� TSP is de�ned as follows� Let K be a complete digraph with vertex set
V �K� and arc set A�K� �if x and y are distinct vertices in K� then both xy� yx � A�K��
jV �K�j 	 n�� Every arc xy in K is assigned a real cost c�xy� 	 cK�xy�� It is required to
�nd a hamiltonian cycle �tour� H of minimum cost in K� �The cost c�G� of a subgraph G
of K is the sum of the costs of arcs in G��

It is easy to see that the TSP is a special problem of ���� Indeed� we can reformulate
the TSP as follows� Let D be the collection of sets with n arcs from A�K� such that the
arcs in every set form a tour in K� Find minf

Pn
i�� c�ai� � fa�� ���� ang � Dg�

For an arc a 	 xy in K� the contraction of K at a� K�a is a complete digraph with ver�
tex set V �K�a� 	 V �K��fvag�fx� yg� where va �� V �K�� such that the cost cK�a�b� of an
arc b in K�a is de�ned as follows� cK�a�uw� 	 cK�uw�� cK�a�uva� 	 cK�ux�� cK�a�vaw� 	
cK�yw�� where u�w � V �K� � fx� yg� We will omit the subscripts K and K�a when the
costs are de�ned from the context� We assume that c�xx� 	 � for every vertex x in K� It
is easy to verify that

c�K�xy� 	 c�K�� c��x�� c��y� � c�xy�� c�yx�� ���

where c��x� 	
P

u�V �K� c�xu� and c��y� 	
P

u�V �K� c�uy�� The total cost of all tours in
K is denoted by T �K�� The average cost of a tour in K is denoted by ��K�� As every arc
of K is contained in �n� ��� tours� ��K� 	 T �K���n� ��� 	 �n� ���c�K���n� ���� hence�
��K� 	 c�K���n� ��� This formula can also be shown using linearity of expectation� Let
�a�K� be the average cost of a tour containing an arc a� Clearly� �a�K� 	 ��K�a� � c�a��

The following algorithm is an adaptation of the GEA to the TSP�

Algorithm ��� Compute c�K� and call the recursive procedure TSPGEA�n�K� c�K���
which returns a tour in K�

Procedure TSPGEA�n�K� c�K���

�� If n 	 � return the tour of K�

�� Compute c��x� and c��x� for every x � V �K��
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	� For every b � A�K� compute c�K�b� using 
	��

�� Find a 	 xy in K such that �a�K� 	 minf�uw�K� � u �	 w � V �K�g�


� Compute T �	TSPGEA�n� ��K�a� c�K�a���

�� In T substitute the vertex va with the arc a�

�� Return T �

It is straightforward to show that the complexity of Algorithm ��� is O�n��� To prove
Theorem ���� we use the following result on decomposition of A�K� into tours� A set
fC�� ���� Cn��g of �n� �� tours in K is a decomposition of A�K� if A�K� 	 �n��

i�� A�Ci�� As
jA�K�j 	 n�n� ��� A�Ci� 	A�Cj� 	 � for every pair of distinct i and j�

Lemma ��� For every n � �� n �	 �� n �	 �� there exists a decomposition of A�K� into

tours�

While the assertion of this lemma for odd n was already known to Rev Kirkman �see 
�
�
p� ����� the even case result was only established in 
��
 as a solution to the corresponding
conjecture by J�C� Bermond and V� Faber �who observed that the decomposition does not
exist for n 	 � and n 	 ���

Theorem ��� Let H be a tour in K such that c�H� � ��K�� If n �	 �� then H is not

worse than at least �n� ��� tours in K 
for any K��

Proof� The result is trivial for n 	 �� �� If n 	 �� the result follows from the simple fact
that the most expensive tour T in K has cost c�T � � c�H��

Assume that n � � and n �	 �� Let D� 	 fC�� ���� Cn��g be a decomposition of the
arcs of K into tours �such a decomposition exists by Lemma ����� Given a tour H in K�
clearly there is an automorphism of K that maps C� into H� Therefore� if we consider
D� together with the decompositions �D�� ���� D�n���	� of K obtained from D� using all
automorphisms of K which map the vertex � into itself� we will have every tour of K in
one of Di�s� Moreover� every tour is in exactly n� � decompositions Di�s �by mapping a
tour Ci into a tour Cj �i� j � 
�� n� �
� we �x the automorphism��

Choose the most expensive tour in each of Di and form a set E from all distinct tours
obtained in this manner� Clearly� jEj � �n� ���� As

Pn��
i�� c�Ci� 	 c�K�� every tour T of

E has cost c�T � � ��K�� Therefore� c�H� � c�T � for every T � E � �

To see that the assertion of Theorem ��� is best possible� choose a tour H in K and
an arc a not in H� Let every arc in H be of cost one� let c�a� 	 n�n� �� and let every arc
not in A�H� � fag be of cost zero� Clearly the cost of H is less than the average �which
is n���n� ���� but only tours using the arc a have higher cost�
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Corollary ��� Let n �	 �� Then the domination number of Algorithm 	�� is at least

�n� ����

We can show that the domination number of Algorithm ��� is less than ��n� ���� Let
x� y� u� v be four distinct vertices in K� Let c�xy� 	 c�uv� 	 �� c�xv� 	 c�uy� 	 n� and let
the cost of an arc di�erent from the above four be zero� As there are less than ��n � ���
tours using arcs xy� uv� uy and�or xv� there are less than ��n � ��� tours with positive
cost� Observe that �xy�K� 	 �uv�K� 	 �� �

n�� � �zw�K� � n
n�� � where zw is any arc other

than xy and uv �after contraction of zw at least one of the two arcs of cost n will remain��
and � � �

n�� � n
n�� � Thus� Algorithm ��� starts by choosing one of the two arcs of cost

one� hence it will return a tour of positive cost�

The proof of Theorem ��� shows another way of obtaining a tour of K dominating at
least �n���� of others� If we had a decomposition of A�K� into tours� then we could choose
the cheapest tour� which would have cost at most ��K�� This approach would allow us to
yield a tour of factorial domination number even faster �in O�n�� time�� However� in this
case� we need to know at least one decomposition rather than the fact of its existence� Such
decompositions are non�trivial to obtain when n is even �see the remark before Theorem
����� In practice� this approach would very likely give worse results than those of the GEA�

� GEA for the QAP

The QAP can be stated as follows� Given a pair of n
nmatrices of reals A 	 
aij 
 and B 	

bij 
� �nd a permutation 	 on 
�� n
 that provides minimum to 
�	� 	

Pn
i��

Pn
j�� aijb��i���j��

Let Sn denote the symmetric group of permutations on 
�� n
� The QAP can be reformu�
lated as a problem of type ���� �nd minf
�	� 	 
�	���� ���� 	�n�� � 	 � Sng� Recall that
it is assumed that P�	 � Sn� 	 ��n��

To show that Algorithm ��� is polynomial� it su�ces to prove that the conditional
expectations for the QAP can be computed in polynomial time� Without loss of gener�
ality� we may restrict ourselves to E�
j	��� 	 c���� ���� 	�k� 	 c�k��� � � k � n� where
c���� ���� c�k� are distinct constants from 
�� n
� LetM 	 
�� n
�fc���� ���� c�k�g� By linearity
of expectation�

E�
j	��� 	 c���� ���� 	�k� 	 c�k�� 	

kX

i��

kX

j��

aijbc�i�c�j� �
�

n� k

kX

i��

nX

j�k��

aij
X

m�M

bc�i�m �

�

n� k

nX

i�k��

kX

j��

aij
X

m�M

bmc�j� �
�

n� k

nX

i�k��

aii
X

m�M

bmm �

�



�

�n� k��n� k � ��

X
faij � i �	 j� i� j � 
k � �� n
g

X
fbst � s �	 t� s� t �Mg�

It follows from the above formula that E�
j	��� 	 c���� ���� 	�k� 	 c�k�� �and the
other conditional expectations� can be computed in time O�n��� Thus� Algorithm ��� is
of complexity O�n
� for the QAP�

A set of permutations G � Sn is called sharply ��transitive if for every two pairs
�i� j�� �k� t� of distinct elements of 
�� n
 there is one and only one permutation 	 � G such
that 	�i� 	 k� 	�j� 	 t� Clearly� jGj 	 n�n� ���

The proof of Theorem ��� uses the following lemma by H� Zassenhaus �published in
����� see Theorem ���� in 
��
��

Lemma ��� There is a sharply ��transitive permutation group on 
�� n
 if and only if n
is a prime power�

Theorem ��� Let n be a prime power and let � be a permutation from Sn such that


��� � E
� Then jf	 � 
�	� � 
���gj � �n� ����

Proof� The multiplication in Sn is determined as follows� for 	� � � Sn and i � 
�� n
�
	��i� 	 ��	�i��� Let L 	 f�i� j� � i� j � 
�� n
� i �	 jg�

By Lemma ���� there exists a sharply ��transitive permutation group H on 
�� n
�
Since H is a subgroup of Sn and jHj 	 n�n � ��� there is a decomposition of Sn into
m 	 �n � ��� cosets of the form H� � Let ��� ���� �m be a collection of permutations such
that Sn 	 �ms��H�s�

We prove that the set H�s is sharply ��transitive for every s � 
��m
� Let �i� j�� �k� t� �
L be arbitrary� As H is ��transitive and �s is a permutation� there exists 	 � H such
that 	�i� 	 ���

s �k�� 	�j� 	 ���
s �t�� Thus� 	�s�i� 	 k� 	�s�j� 	 t� This and the fact that

jH�sj 	 n�n� �� imply that H�s is sharply ��transitive�

It follows from the formula of the conditional expectations for the QAP that

E
 	
�

n�n� ��

X

�i�j��L

aij
X

�i�j��L

bij �
�

n

nX

i��

aii

nX

j��

bjj�

We now prove that X

��H�s


�	� 	 n�n� ��E
 ���

for every s � 
��m
� We can express the above sum as follows�

X

��H�s


�	� 	
X

�i�j��L

X

��H�s

aijb��i���j� �
nX

i��

X

��H�s

aiib��i���i�� ���

�



As H�s is sharply ��transitive�

X

�i�j��L

X

��H�s

aijb��i���j� 	
X

�i�j��L

aij
X

�i�j��L

bij�

To complete the proof of ���� it su�ces to show that

X

��H�s

b��i���i��n� �� 	
nX

j��

bjj

for every �xed i � 
�� n
� To prove the last equality� it is su�cient to show that

jf	 � H�s � 	�i� 	 kgj 	 n� �

for �xed i and k� This follows from

f	 � H�s � 	�i� 	 kg 	 f	t � H�s � t � 
�� n
� k� 	t�i� 	 k� 	t�j� 	 tg�

where j is a �xed element of 
�� n
� i�

By ���� we can choose a permutation �s � H�s such that 
��s� � E
� As for the
permutation �� given in this theorem� 
��� � E
� we conclude that 
��� � 
��s� for every
s � 
��m
� �

We conjecture that the assertion of the above theorem is valid for every integer n � ��
Combining the last theorem with Theorem ���� we obtain the following�

Corollary ��� The domination number of Algorithm ��� applied to the QAP� A� is

dom�A� n� � �n� ��� for every prime power n�

A permutation group G � Sn is called ��transitive if for every two pairs �i� j�� �k� t� of
distinct elements of 
�� n
 there are s�i� j� k� t� � � permutations 	 � G such that 	�i� 	
k� 	�j� 	 t� Every ��transitive group has the property that the number of permutations
carrying one pair of distinct elements to another pair is constant� i�e�� s�i� j� k� t� is a
constant� �The set of such permutations is a coset of the subgroup �xing the �rst pair�
and so this is just the fact that all such cosets contain the same number of elements��

For almost all values of n� the only ��transitive groups of degree n are the symmetric
and alternating groups �see 
�
�� The only two series of n such that there exist ��transitive
permutations groups of degree n and polynomial �in n� order are prime powers and num�
bers of the form �qd�����q���� where q is a prime power and d � � �their order is roughly
nd��� i�e�� polynomial when d is bounded� 
�
� Using this result� we can readily obtain
factorial bound for jf	 � 
�	� � 
���gj �see Theorem ���� when n 	 �qd�����q��� and d
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is bounded� Still� this bound is valid for a small fraction of positive integers and unlikely
to be sharp� Thus� we proceed by deriving a bound which is even weaker� but valid for all
su�ciently large n�

The following number�theoretical assertion can be found in 
�
 �this was proved by R�
Baker and G� Harman��

Lemma ��� Let p�� p�� ��� be the increasing sequence of all primes� Then pk�� � pk �
k��o��� for every k � �� where 
 	 ������

Theorem ��� Let � � � be arbitrary� Then� for su�ciently large n� there are at least

n���n permutations � such that 
��� � E
�

Proof� Let p be the largest prime number not exceeding n� Assume that p � n �otherwise
the proof is trivial��

By the formula of total expectation given in the proof of Theorem ���� there is a
sequence x�n�p��� ���� x

�
n of distinct numbers in 
�� n
 such that E
 � E�
�	�j	�i� 	 x�i � i �


n � p � �� n
�� Let S� be the set of permutations� 	 in Sn� such that 	�i� 	 x�i for all
i � 
n� p� �� n
� We want to prove that there are �p� ��� distinct permutations� �� in S�

with 
��� � E�
�	�j	 � S��� This will imply that there are �p���� distinct permutations�
�� in S� with 
��� � E
�

Let y�� � y
�
�� ���� y

�
p be the sequence obtained from �� �� ���� n by deleting the integers

x�n�p��� ���� x
�
n� If 	 is an element in Sp then de�ne the element 	� � Sn as follows�

	��i� 	 x�i for all i � 
n� p��� n
 and 	��i� 	 y���i� for all i � 
�� n� p
� Clearly the above

mapping is a bijection from Sp to S��

Let H be a sharply ��transitive permutation group on 
�� p
� Let m 	 �p� ��� and let
��� ��� ���� �m be a collection of permutations such that Sp 	 �ms��H�s� Let H �

s 	 �H�s�
�

�i�e� we use the earlier mentioned bijection�� Observe that H �

��H
�

�� ����H
�

m partitions S��

Analogously to the proof of Theorem ���� it is not di�cult to show that the permutation
of highest cost in each of H �

��H
�

�� ����H
�

m are distinct and have cost at least E�
�	�j	 � S���

Now it is su�ces to demonstrate that �p� ��� � n���n for n large enough� By Lemma
���� the gap between p and the next prime p�� p�� p� does not exceed k��o���� where p is
the kth prime and 
 	 ������ Therefore� the gap between n and p is at most n��o���� Thus�
for n large enough� 	 is not worse than q 	 bn� n��o��� � �c� � dn� n�e� permutations�
where � 	 ���� However� this implies that q � n��nn

�
� n���n for every su�ciently large

n� �

Combining the results of the last theorem and Theorem ���� we obtain the following�

Corollary ��	 Let � � � be arbitrary� Then� the domination number of Algorithm ���

applied to the QAP� A� is dom�A� n� � n���n for every su�ciently large n�

�



For the QAP� we conjecture that the domination number of Algorithm ��� is at least
�n � ��� for every n � �� It would be very interesting to verify whether there exists a
polynomial approximation algorithm C for the QAP such that dom�C� n� � 
n� for some
positive real constant 
 � ��
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