
RESOURCE SHARING SECURITY

Page 1

A SECURITY SCHEME FOR RESOURCE SHARING OVER A NETWORK

John Burns
Chris J. Mitchell

Hewlett-Packard Laboratories
Filton Road

Stoke Gifford
Bristol BS12 6QZ

England

16th October 1989

RESOURCE SHARING SECURITY

Page 2

ABSTRACT

The purpose of this paper is to describe a security scheme for

a special-purpose resource-sharing system for networked

computers. The scheme makes use of cryptographic constructs

called coupons, issued by a central authority, and

representing the right to use a certain amount of resources on

a specified machine. The security scheme is described in

detail, and an analysis of its security is also given.

RESOURCE SHARING SECURITY

Page 3

1. INTRODUCTION

The purpose of the scheme described here is to provide

security for a special-purpose resource allocation scheme. We

suppose that, in a network of computers, two conditions exist:

- spare resources are available, i.e. there exist computers

on the network which do not use all their available CPU

time.

- jobs exist which require more computational effort than

can be provided by a single machine in a reasonable amount

of time.

We then suppose that the owners of the under-used machines are

willing for their unused resources to be utilised by other

users with resource shortages, as long as these other users

are appropriately authorised.

In this paper we describe a scheme for providing such

authorisation information. This system uses the notion of a

broker, who keeps details of all machines with spare

resources, and allocates these resources to other users who

need them. This broker must be trusted by all the entities

within the network which is serves. We suppose that the

computers on the network may be either users or suppliers of

resources (or both). A supplier makes the offer of unused

capacity to the broker. The broker then allocates these

resources to users who request them from the broker.

The protocol described below bears some resemblances to the

Kerberos authentication protocol described by Steiner et al.,

[11]. However there are a number of significant differences.

From a cryptographic point of view the most significant is

that, unlike Kerberos, the protocol described here is

independent of time-stamps, and hence does not rely on

synchronised clocks. In addition, within its designed

application it introduces no additional messages, and hence

its overheads on the underlying communications system are very

low.

RESOURCE SHARING SECURITY

Page 4

2. THE PROTOCOL

2.1 Notation and assumptions

The solution described in this paper relies on the use of

conventional (symmetric) cryptography, as typified by the DES

block cipher algorithm, [1], [6]. We assume that each user

and supplier in the network shares a secret key with the

broker, and that this secret key corresponds to an algorithm

capable of being used both for data encryption (for

co nfidentiality) and for computation of Message Authentication

Codes (MACs) for data integrity and authentication. We denote

the key shared by network entity E and the broker by K(E).

Note that different versions of this key should be used for

encryption a nd MAC computation; for example, the key could

bit - wise exclusive or - ed with a fixed 'mask' (not all zeros or

all ones) when used for MAC computation.

We denote by

EK[I]

the encryption of the data I using key K, and we write

MK[I]

for the MAC computed on the data I using the key K. The

difference between these two concepts is that knowledge of

EK[I] and K enables the recovery of I after the application of

the appropriate decryption function, whereas M K[I] is a short,

fixed length 'checksum' enabling delib erate or accidental

modifications to data to be detected.

An example of a suitable algorithm is provided by the DES (or,

for that matter, any other block cipher algorithm). Data

encryption could be achieved by using DES in the standardised

Cipher Block C haining (CBC) Mode, [2], [7], [8], and the MAC

computation could again be based on DES in CBC mode; see, for

example, [3], [4], [9].

RESOURCE SHARING SECURITY

Page 5

2.2 Resource tickets and their management

Fundamental to the operation of the proposed system is the

list of information on available resources kept by the broker.

This list consists of a series of tickets, issued by resource

suppliers on the network. Each ticket contains the following

three items of information: the name of the supplier, a

supplier serial number and a value parameter (giving an

indication of the amount of resources being offered). This

value parameter may, for example, indicate an upper limit on

CPU time, the type of processor involved and/or an upper limit

on available RAM; the precise use of this parameter is beyond

the scope of this paper and will, in any case, be very

dependent on the particular implementation of this scheme.

Each supplier will generate one or more of these tickets

(possible of varying values) and send them to the broker in

protected form. As and when the tickets are eventually used

(as we describe below), and as further unused resources become

available, so the supplier generates more tickets and supplies

them to the broker. Serial numbers are allocated by the

supplier, and it is important that the supplier ensures: (a)

that no two tickets with the same serial number are issued,

and (b) that a record is kept of the serial numbers of

outstanding (i.e. unused) tickets. This is necessary in order

to prevent re-use of old tickets.

More formally, a ticket issued by supplier S has the form:

(S, N, Vt)

where N is the serial number, Vt is the value and the use of

commas denotes concatenation of data. The three items of

information within the ticket are precisely the items of

information stored within the broker. When the ticket is

shipped from the supplier to the broker it has the form:

(S, N, Vt, MK(S)[S, N, Vt])

i.e. a MAC on all the data within the ticket is appended to

the end of the ticket. This MAC is computed using the key

RESOURCE SHARING SECURITY

Page 6

shared by S and the broker. The use of this MAC enables the

broker to check the validity of the ticket.

Before proceeding we consider the deletion of stored tickets.

As we described above, lists of tickets will need to be stored

both by ticket suppliers and the broker. The broker deletes a

ticket once it has been allocated to a particular user (as

described in 2.3 below). The ticket supplier deletes a ticket

when a user wishes to use the resources specified in it (see

2.4 below). However, in certain circumstances, neither of

these types of event will occur. For example, the broker may

never issue a ticket because of a shortage of users, and a

user may not need to use a resource requested from a broker,

and hence the supplier will never get a request for resources

corresponding to one of its stored tickets.

For this reason both the broker and the supplier will

automatically delete tickets from their stores after a

specified time interval (depending on the type of network

involved). At worst this will have the effect of meaning

that, occasionally, messages from users to suppliers will be

rejected because the corresponding tickets have expired and

been discarded. To minimise the probability of this occurring

it is probably wise for the broker to keep tickets for a

shorter time than the supplier.

In many applications it may be desirable for suppliers of

tickets to specify the lifetime of their tickets. Details of

how this may be achieved with only a small modification to the

basic protocol are given in 4.3 below.

2.3 Resource requests and coupons

We now consider how users request resources from the broker.

Suppose user U wishes to make use of spare resources on the

network. U issues a request to the broker, which contains the

following two items of information: the name of the user and

RESOURCE SHARING SECURITY

Page 7

a value parameter, Vr, giving an indication of the amount of

resources required. As with the value parameter in supplier

tickets, the precise nature of the request value parameter is

beyond the scope of this paper. These requests are sent in

protected form as follows:

(U, Vr, MK(U)[U, Vr])

i.e. a MAC on all the data within the request is appended to

the end of the request. This MAC is computed using the key

shared by U and the broker. The use of this MAC enables the

broker to check the validity of the request.

On receipt of a request (given that the MAC check proves it to

be valid) the broker will compare it with the outstanding

tickets, and decide which of the tickets are to be allocated

to the requesting user. This will be done using a process

which might take into account the following: the privileges

of the requesting user, the size of the value in the request

and the number and values of the outstanding tickets.

For each ticket allocated to the requesting user, a coupon

message is generated and sent (in protected form) to the

requesting user. If the ticket being allocated to user U has

the form:

(S, N, Vt)

then the corresponding coupon message has the form:

(S, N, Vt, U, MK(S)[S,N,Vt,U,SK], MK(U)[S,N,Vt,U,SK])

 (EK(U)[SK]),

 (EK(S)[SK])

The coupon itself is the first part of the message, namely:

(S, N, Vt, U, MK(S)[S,N,Vt,U,SK], MK(U)[S,N,Vt,U,SK])

where SK is a session key randomly generated by the broker and

unique to each coupon. Also sent with the coupon are: a copy

of the session key, SK, encrypted under the secret key shared

by the user and the broker:

(EK(U)[SK])

RESOURCE SHARING SECURITY

Page 8

and a copy of the session key, SK, encrypted under the secret

key shared by the ticket supplier and the broker:

(EK(S)[SK])

When the broker sends such a coupon, the corresponding ticket

is deleted from its list. For each coupon (and accompanying

keys) received by the user, the following procedure is

followed:

- the copy of the session key SK encrypted under K(U) is

decrypted and SK is recovered.

- the appropriate MAC on the coupon is then checked using

K(U) and the recovered value of SK.

- if the MAC authenticates the coupon, then the coupon is

stored ready for use, together with two other pieces of

information: the session key for the coupon (SK), and the

session key encrypted under the supplier's secret key (as

provided by the broker):

(EK(S)[SK]).

2.4 Resource supply

When the user receives the coupons from the broker, it is then

up to the user to divide the task to be performed into

suitable pieces corresponding to the values in the coupons.

We now consider the process followed when a user wishes to use

a coupon.

The user, U, sends the coupon to the named supplier, S,

(omitting the MAC computed using K(U) as this is of no use to

S), together with two other pieces of information:

- first, U also sends S a copy of the session key for the

coupon encrypted under S's secret key (as provided by the

broker):

(EK(S)[SK]).

RESOURCE SHARING SECURITY

Page 9

- second, U sends all the necessary information about the

task U wishes S to perform (probably including all the

necessary executable code) authenticated using SK, i.e. if

the task information is T then U sends S:

(T, MSK[T]).

U also stores information about the particular task T,

together with the values S and N, so that, when the results of

performing T are returned to U by S, they can be matched to T.

When S receives the coupon and the associated task

information, S follows the procedure below:

- the copy of the session key SK encrypted under K(S) is

decrypted and SK is recovered.

- the MAC on the coupon is checked using K(S) and the

recovered value of SK.

- the MAC on the task T is checked using SK.

- if the MACs authenticate the coupon and the task to be

performed, and the serial number N corresponds to an

unredeemed serial number stored within S, then the task T

is executed.

- the ticket serial number, N, in this request is deleted

from the list of outstanding tickets.

When the given task has terminated, the results of performing

the task are returned to U in a protected form. More

specifically, if R represents the results of performing the

task T, then S returns to U the following:

(R, S, N, MSK[R, S, N])

where the name of S and the serial number N identify uniquely

to U which task T these results correspond to. This completes

the description of the system's operation.

RESOURCE SHARING SECURITY

Page 10

3. ANALYSIS OF THE PROTOCOL

A system such as the one described in the above section may be

subject to a variety of attacks by unauthorised third parties

wishing to misappropriate resources. We consider some of

these attacks, and examine how the system resists them.

Before proceeding note that the system described does not

attempt to provide any confidentiality services for the tasks

distributed around the network. Rather, the scheme is

designed to protect suppliers against misappropriation of

their resources. However, if they were ever required,

confidentiality mechanisms could probably be added to the

above protocol without too much difficulty.

3.1 Replay attacks

Every message in the protocol described above involves the use

of authentication checks (MACs) computed using secret keys.

Therefore, given the MAC algorithm is sound, construction by

unauthorised users of completely spurious messages is

impossible unless keys become compromised (we discuss this

latter possibility in 3.2 below). Thus, apart from key

compromise, the only possible attacks involve some form of

replay.

We now examine in turn the effects of replaying each type of

message in the system. There are essentially five types of

message in the above system: tickets sent from S to the

broker, requests sent from U to the broker, coupons sent from

the broker to U, coupons sent from U to S and results sent

from S to U.

When transmitted from S to the broker, a ticket has the form:

(S, N, Vt, MK(S)[S, N, Vt])

and all the data in the ticket is protected by a single MAC.

Therefore, in this case the only possibility is to replay the

RESOURCE SHARING SECURITY

Page 11

message unchanged. If such a replay occurs, all that will

happen is that the broker will store a duplicate ticket, and

possibly issue a duplicate coupon to an unsuspecting user. If

this does occur the only harmful end result is that one of the

two recipients of the duplicated coupon will have their

request refused by the supplier because the ticket has already

been used. This is a minor problem and does not breach the

security of the system.

When transmitted from U to the broker, a request has the form:

(U, Vr, MK(U)[U, Vr])

and all the data in the request is protected by a single MAC.

Therefore, as before, the only possibility is to replay the

message unchanged. The end result will be that U will be

given coupons for which U has no real use, and perhaps some of

these coupons will be wasted. A persistent attacker of the

system could repeatedly do this, with the aim of diverting all

the coupons to one user and thereby preventing their

allocation to genuine users. The obvious way to alleviate the

effects of such an attack is to restrict the percentage of

coupons which may be allocated to any one user. However, the

main thing to note is that this attack would not compromise

the basic integrity of the system, since no resources would be

allocated to unauthorised users. It has to be recognised that

'denial of service' attacks can always be launched against

such systems, in the extreme simply by disrupting the

communications between end users of the network.

When transmitted from the broker to U, a coupon message has

the form:

(S, N, Vt, U, MK(S)[S,N,Vt,U,SK], MK(U)[S,N,Vt,U,SK])

 (EK(U)[SK]),

 (EK(S)[SK])

This message has three distinct parts; however all three parts

are 'bound together' by the value of SK, which is unique to

this particular coupon. Therefore, the only possibility is to

replay the message unchanged. The end result of such a replay

RESOURCE SHARING SECURITY

Page 12

will be that U ends up with two copies of the same coupon; if

U tries to use both of them then the second will be rejected

by the supplier S. This again does not represent a major

hazard to the security of the system, since such events are

bound to occasionally occur because of the automatic deletion

of tickets by suppliers.

When transmitted from U to S, a coupon message has the form:

(S, N, Vt, U, MK(S)[S, N, Vt, U, SK]),

 (T, MSK[T]),

 (EK(S)[SK])

This message has three distinct parts; however, just as before

all three parts are 'bound together' by the value of SK, which

is unique to this particular coupon. Therefore, the only

possibility is to replay the message unchanged. The end

result of such a replay will be for S to receive two copies of

the same coupon from U. The second will be rejected by the

supplier S, and so this attack again does not represent a

major hazard to the security of the system.

When transmitted from S to U, a results message has the form:

(R, S, N, MSK[R, S, N])

and all the data in the message is protected by a single MAC.

Therefore, in this case the only possibility is to replay the

message unchanged. This will mean that U gets two copies of

the results of performing the requested task. The second will

be ignored since the two copies will be identified as such by

the repetition of N (the serial number).

3.2 Deletion of messages

The only obvious effect of deleting any of the messages in

transit is to prevent the use of a ticket issued by a

supplier, S. S will then be left with an unused ticket in its

list. This could happen anyway if a user U never cashes in a

coupon issued by the broker. The simplest solution to the

RESOURCE SHARING SECURITY

Page 13

problem of accumulating unclaimed resource tickets is for all

suppliers to discard unused tickets within a certain time

interval of their issue, as described in 2.2 above.

3.3 Use of cryptanalysed session keys

It will be apparent that the protocol described above bears

many similarities to the protocol described in Needham and

Schroeder, [10]. Unfortunately, this latter protocol is

vulnerable to a certain special kind of replay attack if the

confidentiality of a session key is ever compromised; see, for

example, [5].

The main difference between the protocol described here and

the Needham/Schroeder protocol is the use of serial numbers,

which prevent re-use of coupons. This is a great advantage

since it also prevents the kind of attack possible on the

Needham/Schroeder protocol. We now describe the potential

attack in a little more detail.

Suppose that an interceptor, C say, of a coupon has, by some

means, been able to discover the session key, SK, used to

authenticate the coupon. If the interceptor wishes to use

this information to steal resources from the supplier of the

corresponding ticket, then a message of the form:

(S, N, Vt, U, MK(S)[S, N, Vt, U, SK]),

 (T', MSK[T']),

 (EK(S)[SK])

must be constructed and sent to S, where T' is the task that C

wishes S to perform.

The first and third parts of such a message can never be

computed by C, since constructing them requires knowledge of

the key K(S) which we must assume remains secure; of course,

if this key was compromised then the entire system would be

rendered insecure. Hence the only option for C is to copy

these two parts from an observed message and forge the middle

RESOURCE SHARING SECURITY

Page 14

part (containing T'). This would work (with C impersonating

U) but it would only work once, since S will delete the ticket

with serial number N from its list the first time such a

message is received.

In summary, compromise of the session key SK belonging to a

ticket will only compromise the security of the resources

allocated to that ticket, and will not allow any other

resources to be stolen. This is as much as one could expect

from a system of this type.

3.4 User attacks

In our discussion above we have considered the case where an

unauthorised third party wishes to steal resources from a

supplier. We conclude this analysis by considering the case

where a valid user wishes to try and obtain more resources

than are allocated by the broker.

As in 3.3 above, such a user U must send a message of the

following form to a supplier S:

(S, N, Vt, U, MK(S)[S, N, Vt, U, SK]),

 (T', MSK[T']),

 (EK(S)[SK])

However, user U is in no better a position than the third

party C described in 3.3 above to forge the first or third

parts of such a message. It is therefore not possible for a

user to obtain resources not allocated to it (unless the

cryptographic functions used are insecure or secret keys are

compromised).

RESOURCE SHARING SECURITY

Page 15

4. POSSIBLE EXTENSIONS

There are many ways in which the above protocol could be

extended to provide additional facilities. We consider three

such extensions here.

4.1 Multiple results messages

The protocol described above allows for the resource supplier,

S, to return a single results message to the user, U. In some

circumstances (particularly if the task being undertaken by S

is a long one) it would be desirable to allow S to return

intermediate results messages.

Currently the defined protocol will only allow the

transmission of one such results message - all subsequent

messages will be rejected as replays. To modify the protocol

to allow multiple results message requires S and U to store

and use an additional serial number, PN say. The form of the

results message will then be

(R, S, N, PN, MSK[R, S, N, PN])

In the first results message PN is set to 1, and is then

incremented for each subsequent results message. U will only

accept these messages if the new value of PN is strictly

larger than the previously received value for this particular

value of N. The use of this serial number will prevent replay

attacks.

4.2 Splitting tickets

When the broker receives a ticket from a supplier S, the value

in the ticket may be large compared with the values of coupon

the broker is being requested to issue. In such circumstances

it would be desirable if the broker could divide the ticket

into two or more parts and issue coupons whose values sum to

the value of the ticket. One way in which this might be

RESOURCE SHARING SECURITY

Page 16

achieved securely is as follows.

When the broker issues a coupon, (representing part of the

value of the ticket issued by supplier S with serial number N

and value Vt), an additional serial number CN is included.

The number CN is initially set to 1, and subsequently

incremented every time a new coupon is issued representing

part of the same ticket. The issued coupon will then have the

form:

(S,N,CN,Vc,U, MK(S)[S,N,CN,Vc,U,SK], MK(U)[S,N,CN,Vc,U,SK])

where Vc represents the value of the coupon and is not more

than the value given to the issued ticket (Vt). The broker

must ensure that the sum of the coupon values Vc issued

against a ticket never exceed the value of the ticket (i.e.

Vt).

When U receives a coupon and uses it to issue a request, U not

only stores information about the task T and the values S and

N, but also stores the value CN. This value is used to help

match received results messages against stored requests. When

U requests S to perform a task, the communication is just as

described in 2.4 above, except that the coupon shipped from U

to S now contains the value Vc.

The ticket supplier, S, is also required to store additional

state information, namely: the initial value of the ticket

Vt, the value so far consumed (i.e. the sum of the values Vc

of the coupons so far received bearing the serial number of

the ticket), and the values for the serial numbers CN so far

received. When a coupon is received two additional checks are

performed: the coupon number CN is checked against the stored

values for this N to detect replays, and the value on the

coupon, Vc, is added to the value so far consumed, and a check

is made to see that the total value does not exceed the value

originally assigned to this serial number N.

Finally note that the only other change to transmitted

messages is in the form of the results message, which also

RESOURCE SHARING SECURITY

Page 17

includes the new serial number CN, and has the form:

(R, S, N, CN, MSK[R, S, N, CN])

4.3 Limiting the life of tickets

The automatic expiry of tickets was discussed in 2.2 above.

However, as mentioned in 2.2, in some circumstances different

suppliers may wish to assign different (shorter) life-times to

their tickets. For example a supplier may have resources

available for a strictly limited period of time, and may wish

to specify that, after the expiry of this time period, the

ticket should not be issued.

Of course, one simple strategy would be for suppliers to

delete the tickets themselves once the resources have ceased

to be available, regardless of the fact that the broker might

still issue a corresponding coupon to a user. All that would

happen is that the user's request for resources would be

denied. However, a more efficient solution might be to

include a life-time interval inside each ticket. The general

form of a ticket would then be:

(S, N, Vt, T)

where T indicates the length of time that the ticket should be

kept by the broker. If the ticket remains unused after time T

has elapsed, it is automatically deleted by the broker.

Suppliers would normally keep tickets for a slightly longer

time interval (as previously discussed).

One advantage of this scheme is that it does not require

synchronised clocks in order to operate correctly. All it

requires is that the broker's and supplier's clocks run at

roughly the same rate (a very reasonable requirement).

RESOURCE SHARING SECURITY

Page 18

REFERENCES

[1] ANSI X3.92, Data encryption algorithm, American National

Standards Institute (New York), 1981.

[2] ANSI X3.106, Data encryption algorithm - modes of

operation, American National Standards Institute (New York),

1983.

[3] ANSI X9.9, Financial institution message authentication

(wholesale), American Bankers Association (Washington, DC),

August 1986.

[4] ANSI X9.19, Financial institution retail message

authentication, American Bankers Association (Washington,

DC).

[5] D.E. Denning and G.M. Sacco, 'Timestamps in key

distribution protocols', CACM 24 (1981) 533-536.

[6] FIPS PUB 46, Data encryption standard, Federal

Information Processing Standards Publication 46, National

Bureau of Standards, U.S. Department of Commerce (Washington,

DC), January 1977.

[7] FIPS PUB 81, DES modes of operation, Federal

Information Processing Standards Publication 81, National

Bureau of Standards, U.S. Department of Commerce (Washington,

DC), December 1980.

[8] ISO 8372, Information processing - Modes of operation

for a 64-bit block cipher algorithm, International

Organization for Standardization, 1987.

[9] ISO Draft International Standard (DIS) 9797, Data

cryptographic techniques - Data integrity mechanism using a

cryptographic check function employing an n-bit algorithm with

truncation, International Organization for Standardization,

RESOURCE SHARING SECURITY

Page 19

1988.

[10] R.M. Needham and M.D. Schroeder, 'Using encryption for

authentication in large networks of computers', CACM 21

(1978) 993-999.

[11] J.G. Steiner, C. Neuman and J.I. Schiller, 'Kerberos:

An authentication service for open network systems', in:

Proceedings of the USENIX Winter Conference, Dallas, 9-12

February 1988, USENIX, 1988, pp.191-202.

