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Abstract

EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries’ origins and
EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST
counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research
into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not
always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be
invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report
an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin
for EST libraries and quality control of the expression data using EST expression information alone. We created a small
expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection
procedures differ from traditional approaches to finding ‘‘tissue-specific’’ genes and our matrix yields consistency high positive
correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of
libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g.
brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised
tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have
been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may
potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging.

Citation: Milnthorpe AT, Soloviev M (2012) The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data. PLoS ONE 7(3): e32966.
doi:10.1371/journal.pone.0032966

Editor: Cynthia Gibas, University of North Carolina at Charlotte, United States of America

Received August 1, 2011; Accepted February 6, 2012; Published March 8, 2012

Copyright: � 2012 Milnthorpe, Soloviev. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No external funding received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Mikhail.Soloviev@rhul.ac.uk

Introduction

EST expression profiling has by now become well-established

high-throughput method for acquiring quantitative information on

a sample’s transcriptome and for studying differential gene

expression, inferred from the differences in the relative numbers

of EST tags between two libraries. To facilitate gene discovery, the

EST content of a library can be altered to reduce the abundance

of transcripts representing genes with high expression. To achieve

this a library can be either normalised by removing the most

abundant transcripts in order to reduce or eliminate the

differences in the relative transcript abundances to a narrow

range [1–4], or subtracted to enrich the library for rare novel

transcripts [5,6]. Ideally this should create a library containing the

same or similar tag counts for the low abundance sequences as

before, but with vastly reduced counts for abundant or unwanted

cDNAs. Neither normalised nor subtracted libraries are suitable

for studying differential mRNA expression because of the

significantly changed representation or removal of the original

transcripts.

Growing amounts of EST as well as SAGE and microarray data

triggered off growth of large databases for storage, processing and

retrieval of the data. For example the current version of the

Cancer Genome Anatomy Project (CGAP) database contains

2,507,631 individual records and 6,694,344 EST counts for Homo

sapiens covering 122,755 individual UniGene clusters. (http://

cgap.nci.nih.gov/Info/CGAPDownload, accessed 15th July 2011).

The CGAP database contains EST tag counts from Homo sapiens or

Mus musculus EST libraries and provides the information and data

mining tools needed to elucidate the molecular anatomy of

cancerous cells from the UniGene repository [7,8]. The database

has been used in investigations into differential gene expression

into a wide variety of cancers, for example, breast cancer [9],

colon cancer [10,11], gastric cancer [12], lung cancer [13],

prostate cancer [14].

EST data, library annotations and analysis algorithms may

contain errors. These include clustering errors [15,16], annotation

errors and data retrieval errors [17]. The methods used to

generate cDNA libraries such as RT-PCR and fractionation of

cDNAs can also introduce biases into EST data [18,19]. However,

because of a variety of potential experimental and annotation

errors and the quality of EST data, normalisation and subtraction

issues, one cannot be sure whether libraries used are suitable for

quantitative mRNA expression analysis or not. Library tissue

origins are not always known or correctly reported and some

libraries originate from pooled or mixed tissue samples. Therefore,

a method capable of assessing the quality of expression data based

on the library expression data alone would be invaluable for

assessing the quality of EST expression data and determining their

suitability for mRNA expression analysis. The aim of this

investigation was to produce an objective and easy to follow

methodology for identifying the tissue of origin for EST libraries
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and for evaluating the quality of EST expression data and their

suitability for digital gene expression analysis.

We hypothesised that the expression levels of a set of tissue-

specific markers could be used to determine the quality of EST

expression data, to verify the identity of known libraries or to

identify unknown libraries. In the current investigation we used

human EST expression data to find a set of markers for

determining tissue specificity of EST libraries. We chose to use

libraries from the CGAP database (http://cgap.nci.nih.gov/)

because of the wide use of this repository for studying differential

gene expression in cancer.

Methods

Selection of tissue specific UniGene clusters
Candidate tissue-specific UniGene clusters were selected based on

a number of criteria. Firstly, the CGAP database was manually

searched for the highly abundant and tissue-specific UniGene clusters

defined by their EST counts, for all individual tissue types available

using the DGED tool (http://cgap.nci.nih.gov/Tissues/GXS).

Separate searches were conducted for ‘‘Normal’’ and ‘‘Cancer’’

histology for all tissue types. The minimum number of sequences per

library was set to 10, the tissue preparation was set to ‘‘bulk’’ and the

library protocol to ‘‘non-normalised’’ in all searches. The EST library

group was set to ‘‘All’’, which included all CGAP, MGC, ORESTES

and un-annotated libraries, the latter constituted the vast majority

(,72%) of all the libraries used. The gene lists were downloaded

from CGAP and then searched for the UniGene clusters with the

high odds ratio (i.e. the normalised EST abundance in the selected

tissue type divided by normalised abundance in all other libraries,

typically above 10), which was also statistically significant (typically

P,0.05). Additional selection criteria were high relative EST

expression levels in the targeted tissue (typically above 0.1% of all

the ESTs counts) and low expression levels in the rest of tissue types

(typically below 0.1% of all the ESTs counts). Where possible only

ESTs identified in at least two libraries and counted at least three

times in the tissue studied were selected. Up to thirty individual

UniGene cluster IDs having the highest odds ratios and meeting all of

the above criteria were selected from each of the individual tissue

types. Where less than thirty or none were available, the selection

criteria were relaxed and the UniGene clusters which satisfied most

of the search criteria were selected (Supplementary Dataset S1). All

the UniGene cluster IDs were combined (totalling 2,295 from all

tissues types) and the duplicates were removed, yielding 1,089

individual UniGene cluster IDs (Supplementary Dataset S2).

The second round of search for additional tissue markers was

on the basis of their absolute abundance level only. For this

EST counts for each of the 37,575 different UniGene clusters

from 155 non-normalised libraries from all non-cancerous

tissue types were determined. Expression thresholds were set at

1,2,4,8,10,12,14,16,18,20,22,24,26,28,30,32,63,128 and 256, and

subsets of genes based on their maximum expression level

recorded across all these libraries (across all the tissues) were

identified. Statistical relationships between these subsets and the

previously constructed list of 1,089 genes were identified. The

maximum positive correlation value of +0.48 was recorded for the

subset of genes with the maximum EST counts of at least 18 in at

least one of the 155 libraries tested (Figure S1). That subset contained

909 UniGene IDs, of which 483 were already among the earlier

found genes (the 1,089 set). The newly identified 426 UniGene IDs

were added to the original selection yielding 1,515 UniGene IDs

(Dataset S3). Following a more recent update this list was reduced to

1,437 UniGene IDs by excluding 78 cluster IDs (due to removal of

these entries from the subsequent CGAP database release) (Dataset

S3). We then calculated expression levels (EST counts) for each of

these 1,437 UniGene clusters for each of the main 26 human tissues

matching tissue definitions of CGAP database, except for bone

marrow, which was combined with bone, its parent tissue, and

cerebellum and cerebrum, which were combined with brain, of

which they are dependent tissues. However, some tissues, e.g. brain

and nearby pituitary gland were not combined because despite being

close together, therefore relevant EST libraries were assigned to

different tissues. Also, having a few tissues with only limited (often

single) suitable EST libraries would not allow the consistent analysis

of all dependent tissues at many levels of resolution. To avoid such

inconsistency, we did not analyse dependent tissues. The produced

expression matrix (1,437 UniGene cluster IDs626 tissues) was used

for further optimisation.

Optimised selection of UniGene clusters
The first round of optimisation aimed to reduce inter-tissue

correlations. Tissue-specific expression ‘‘super-libraries’’ were cre-

ated for 26 tissues from 126 bulk, non-normalised libraries made

from normal tissues with at least 200 total EST counts, by combining

EST counts for the selected set of 1,437 UniGene cluster IDs from

the same tissue, where more than one EST library per tissue was

available. Pearson product-moment correlation coefficients were

calculated for all pair-wise combinations of such tissue specific

expression data sets. The Pearson correlation is invariant to the

changes in location and scale in the variables, the calculated

correlation coefficients yield comparable values within the same

scale interval (21 to +1) for all tissues and libraries irrespective of

their size, coverage, the number of ESTs or any preceding linear

data transformations. Sum of squared errors was used as a measure

of discrepancy between the calculated correlation data and the

model (no inter-tissue correlation of expression data for the selected

markers). We then tested how the inter-tissue correlation values

changed following removal of individual cluster expression data

from the subset of 1,437 clusters. The individual UniGene clusters,

removal of which had a favourable effect on the reduction of the

overall inter-tissue correlations, were permanently removed and the

iterative rounds of Cluster removal were repeated. The best

remaining UniGene IDs (the last 505 clusters) were used for the

second optimisation round, which was aimed to improve intra-tissue

correlations. EST counts for each of the remaining 505 UniGene

clusters for each individual non-normalised library from normal

(non-cancer) tissues (the same libraries as used before) were

compared to each other. This time we used individual library

expression data (not the super-libraries) to calculate sum of squared

differences between the calculated correlation data and the model

(high intra-tissue correlation of expression data for the tissues where

two or more individual libraries were available). We then tested how

such intra-tissue correlation values changed following removal of

individual cluster expression data from the subset of 505 clusters.

After repeating this procedure for all of the 505 remaining clusters,

all the clusters were scored and the ones, removal of which improved

the correlations most were permanently removed. 244 UniGene IDs

were eventually selected as the generic EST expression tissue-specific

dataset (Dataset S3). The reduced expression matrix (244 UniGene

cluster IDs626 tissues, referred to as EST expression matrix

(Dataset S4)) was used for all subsequent analyses.

Results

Tissue specific UniGene clusters and EST expression
matrix

We hypothesised that to be suitable for the role of universal

tissue specific markers, the transcripts should be (i) highly
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abundant in their target tissues relative to all the other tissues, (ii)

should be abundant in absolute terms in target tissues. The high

relative abundance (high odds ratio) defines the tissue specificity.

The high absolute abundance (above 0.1%) was chosen to ensure

that such transcripts would still be found even in smaller libraries

with small number of total EST counts. Up to thirty individual

UniGene clusters were eventually selected using criteria described

in Methods section, from each of the individual tissue types. Of the

1,089 genes identified (Dataset S2), 1,044 were present in normal

(non-cancer) tissues (although non-exclusively) and 479 originated

from more than one tissue type. Whilst we allowed that, a further

optimisation of the selected subset was necessary.

For the majority of the tissues, the original selection was made

based on the very small number of libraries available in CGAP for

those tissues (typically 2–4 libraries, with brain and placenta being

exceptions where more than 10 libraries were available (Dataset

S1)). Because of that and also because of the stringent selection

requirements, it was reasonable to assume that some suitable genes

could have been omitted because of the very limited choice of

libraries available for the analysis and not because of them being

unsuitable tissue markers. We therefore searched for additional

candidate genes by looking solely into individual EST counts for all

of the 37,575 different UniGene clusters from 155 non-normalised

libraries from all non-cancerous tissue types. Following the

procedures outlined in Methods we expanded the list of potential

tissue markers to include 1,437 UniGene clusters (Dataset S3).

Because of the relaxed criteria used for selecting the potential

tissue markers, in order to find the best makers and to reduce the

list to a more manageable and shorter list we attempted to

optimise the selection using new selection criteria independent of

the ones used in the original rounds of selection. The first round of

optimisation aimed to reduce inter-tissue correlations and yielded

a reduced set of 505 UniGene clusters. The final optimisation

round aimed to improve intra-tissue correlations. The optimised

set of tissue-specific markers contained 244 UniGene cluster IDs

(Dataset S3) for which EST expression matrix (244 UniGene

IDs626 tissues) was created (Dataset S4).

Inter-tissue correlations and intra-tissue correlations
using EST expression matrix

Correlation values between tissue expression profiles of the 244

UniGene Clusters from the EST expression matrix and the

relevant EST counts from 113 largest libraries (Dataset S5)

representing 26 main human tissues were calculated. The

correlation data fell into three main categories. The first group

contained groups of libraries for which virtually no inter-tissue

correlation was found, and where all the libraries shown good

positive correlation (values ranging approximately within +0.2 to

+1) with the relevant source tissues but not with any of the other

tissues. Figure 1 summarises the results for five such representative

tissues where correlation levels clearly confirm the identity of each

Figure 1. Correlation of the EST matrix with individual libraries from matching tissues showing no inter-tissue correlation. Pearson
product-moment correlation coefficients (vertical axes) calculated for each of the individual EST libraries and the EST expression matrix
(Supplementary Dataset S4). A: Placental libraries. B: Lung libraries. C: Pancreatic libraries. D: Retinal libraries. E: Testis libraries. See Supplementary
Dataset S5. for the libraries’ IDs.
doi:10.1371/journal.pone.0032966.g001
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of the individual EST libraries. The second group contained

tissues for which only one or two non-normalised bulk EST

libraries were available. In the former case (one library per tissue)

positive correlations of +1 were expected, because for these tissues

only our EST matrix was based on those expression data.

Nevertheless, no other tissues having positive correlation above

,0.2 were identified, confirming the absence of cross-tissue

correlations for the EST matrix entries (Figure 2). The third group

included tissues with some degree of multiple tissue positive

correlations. These were brain tissue libraries which shown partial

positive correlation with peripheral nervous system EST libraries,

the peripheral nervous system libraries showed a degree of positive

correlation with brain derived libraries, heart libraries showed

weak positive correlation with muscle libraries and muscle libraries

shown some positive correlation with heart libraries (Figure 3).

Some positive correlation between these groups of libraries is likely

because of the very similar nature of those tissues. But this was

unexpected, because one of the original optimisation rounds

specifically aimed to exclude such correlation where possible.

However such partial positive correlation proves that our EST

matrix is also capable of identifying more distant but related tissue

types. One particular brain library out of the 13 brain libraries

tested (NIH_MGC_181) showed unexpectedly high correlation

with pituitary gland. This was much stronger than with the brain

expression pattern from the EST expression matrix – the supposed

origin of this particular library (Figure 3A). A plausible explanation

might be an unintentional inclusion of pituitary gland tissue with

the brain tissues for the original library preparation; this is likely

due to the close proximity of pituitary gland which is located at the

base of the midbrain. Despite the inclusion of this library in the

Figure 2. Correlation of the EST expression matrix with tissues
with one or two libraries were available. Pearson product-
moment correlation coefficients (vertical axes) calculated for each of
the individual EST libraries and the EST expression matrix (Supplemen-
tary Dataset S4). A: ‘‘Soares_pineal_gland_N3HPG’’ library (dark bars),
‘‘Pineal gland II’’ (lighter bars). B: ‘‘Small intestine I’’ EST library. C:
‘‘NCI_CGAP_Br7’’ library from mammary gland. D: ‘‘Thyroid’’ EST library.
doi:10.1371/journal.pone.0032966.g002

Figure 3. Correlation of the EST expression matrix with individual EST libraries from related tissues. Pearson product-moment
correlation coefficients (vertical axes) calculated for each of the individual EST libraries and the EST expression matrix (Supplementary Dataset S4). A:
Brain EST libraries, these include one cerebellum and one cerebrum EST libraries. Assumed mixed tissue brain library showing positive correlation
with pituitary gland is ‘‘NIH_MGC_181’’. B: Peripheral nervous system libraries showing a degree of positive correlation with brain libraries. C: Heart
libraries showing a degree of positive correlation with muscle libraries. D: Muscle libraries showing a degree of positive correlation with heart
libraries. See Supplementary Dataset S5. for the libraries’ IDs.
doi:10.1371/journal.pone.0032966.g003
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original selection and into the subsequent optimisation steps as

‘‘brain’’ derived, our EST matrix was still able to pick this

inaccurately annotated library, thus confirming the robustness of

our approach to cluster selection for the EST expression matrix.

Using just tissue-specificity (the traditional approach which relies

on comparing gene expression between tissues) would have

counted such pituitary library as brain derived, which would have

influenced the selection of ‘‘tissue specific’’ genes, for which

incorrect tissue specificity would have been assigned.

Figure 4A summarises the correlation ranges for all the expected

matching tissues, including the tissues detailed in Figures 1, 2, 3.

The first and third quartiles for all the positively correlated

libraries from all tissues studied are 0.4 and 0.8 respectively (full

range 0.2 to 1). The negative inter-tissue correlations are shown in

Figure 4B. These values are based on all of the non-matching

inter-tissue correlations, with first and third quartile values of

20.04 and 20.02 respectively. The expected inter-tissue correla-

tions, such as brain with peripheral nervous system and heart with

muscle) are summarised in Figure 4C. These correlations values

are lower than the tissue-specific intra-tissue matches (Figure 4A),

but notably higher than correlations between any non-matching

tissues (Figure 4B), with the first and third quartiles at ,0 and

+0.14 respectively. Figure 4D compares all three correlations

ranges for all cases (positive tissue matches, related tissues, and

non-matching tissues).

EST libraries from mixed, uncharacterised or poorly
defined tissue preparations

We further decided to apply our EST expression matrix to the

identification of unknown or mixed tissue libraries. A small

number of EST libraries annotated as being produced from

uncharacterised tissues and therefore not included in our EST

selection procedure, but for which their tissues origins are

identifiable, were used. Figure 5A shows correlation results for

one such library (NCI_CGAP_HN5), derived from gum tissue.

This library shows clear positive correlation with the skin tissue

type, which is the most related tissue type from the 26 tissue types

included in our EST matrix, proving the accuracy of tissue typing

Figure 4. Intra-tissue and inter-tissue correlations. Correlation coefficients calculated for all of the 113 EST libraries (Supplementary Dataset S5)
against our EST expression matrix (Supplementary Dataset S4). The data also include the tissues detailed previously in Figures 1–3. A: Positive
correlations between all expected matching libraries, e.g. all individual ‘‘Adipose’’ libraries vs. the ‘‘Adipose’’ expression matrix (Supplementary
Dataset S4) etc. Correlation value of ‘‘1’’ is for tissues where only one EST library was available. B: Correlations for all expected non-matching libraries,
e.g. all ‘‘Adipose’’ libraries available vs. all but the ‘‘Adipose’’ expression arrays from our EST matrix (Supplementary Dataset S4) etc. The presumed
mixed tissue brain library ‘‘NIH_MGC_181’’ was excluded from calculations. C: Correlations for all expected related tissues, e.g. all individual ‘‘Bain’’
libraries available vs. the ‘‘Peripheral nervous system’’ expression matrix, etc. D: All expected positive correlations from all matching libraries as in
panel A (left box plot). Correlations from all related tissues as in panel B (middle box plot). All expected correlations from non-matching tissues, as in
panel C (right). In all panels the boxes are drawn from the first to third quartiles. Plots also show minimum value, median (thick line) and the
maximum correlation values recorded.
doi:10.1371/journal.pone.0032966.g004
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using our matrix. Another example of uncharacterised library is

the umbilical cord library (Stratagene endothelial cell 937223)

which showed positive correlation with vascular tissue type and to

a lesser degree with ovary and peripheral nervous system tissue

types (Figure 5B). Whilst high positive correlation with vascular

tissue and a degree of correlation with the ovary are likely,

correlation with peripheral nervous system was unexpected

because nervous fibres are only present in the proximal part of

the umbilical cord [20]. However, since ovaries are innervated, the

matching of both ovary and peripheral nervous system tissue types

might be easily explained if the original preparation of umbilical

cord contained some ovary tissue. In the absence of further

independent information on that library source it would be

reasonable to assume that the tissue could have contained some

ovary tissue or was obtained form the proximal part of the

umbilical cord. However, the highest positive correlation for this

EST library is with vascular tissue which is the best match from

the tissues available in the matrix. These examples show that our

EST expression matrix can help to identify tissue origins of EST

libraries. Figure 5C shows an example of correlations obtained for

a pooled library (NIH_MGC_184). The correlations indicate the

presence of a mixed (lung+thymus) tissues. Such a particular tissue

mixture is not impossible, since these two tissues are normally

situated in very close proximity to each other and the library may

indeed have been made from such a mixed tissue preparation (the

library annotation is ‘‘pooled tissue’’). Another example of mixed

tissue library ‘‘NCI_CGAP_HN20’’ is shown in Figure 5D.

Correlations indicate the presence of ovary and thymus, the

combination which is unlikely to have occurred by accidental

tissue mixing, since the two organs are normally located far apart,

but the library description does not specify the tissue origins and

therefore no means exist to prove or disprove this tissue matching.

A conclusion from this particular result would be to avoid using

such a library for quantitative expression analysis. Figures 5E and

5F exemplify correlation values obtained for embryonic libraries

(‘‘Embryo, 8 week I’’ and ‘‘Embryo, 12 week II’’ respectively). If

these annotations are correct, and both libraries are made from

the unfractionated embryonic tissue, our data would suggest that

bone and brain tissue markers should have been more prominent

at the earlier stages of development whilst towards week 12 muscle

specific markers dominate. Such changes do indeed reflect the

high prominence of the brain over the rest of the embryo at early

gestation stages and the forming of bone around weeks 5 and 10 of

gestation [21], followed by the development of muscle tissues and

heart at later developmental stages [22,23] thus validating our

interpretation. The stronger correlation with vascular tissue in the

12-week library is consistent with increasing vascularisation

following the development of the heart.

EST libraries from cancer preparations
Although initial cluster selection procedure relied on both normal

and cancer libraries, about 95% of all the UniGene clusters found

were present in normal tissues. Our optimisation procedures relied

on the normal EST libraries only. It was therefore interesting to see

how our EST matrix would score cancer library preparations,

which are expected to reflect aberrations in gene expression as well

Figure 5. Correlation of the EST matrix with individual libraries from uncharacterised or poorly defined tissue preparations. Pearson
correlation coefficients (vertical axes) calculated between the individual EST libraries and the EST expression matrix (Supplementary Dataset S4). A:
‘‘Uncharacterised’’ library NCI_CGAP_HN5 derived from gum tissue. B: ‘‘Uncharacterised’’ Stratagene endothelial cell 937223 library. C and D: pooled
libraries NIH_MGC_184 and NCI_CGAP_HN20 respectively. E: ‘‘Embryo, 8 week I’’ library. F: ‘‘Embryo, 12 week II’’ library.
doi:10.1371/journal.pone.0032966.g005
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as genomic abnormalities which characterise cancers. Figure 6

shows a few typical examples of correlations obtained for a number

of EST libraries from non-normalised bulk cancer tissues; these can

be divided in two main categories. The first group represent cancer

libraries which correlate well with the stated tissues of origins

(Figures 6A, 6B, 6C). One exception is a colon cancer library

‘‘NCI_CGAP_Co12’’, where ‘‘Gastrointestinal tract’’ EST profile

scored nearly as well as the ‘‘Colon’’ profile. We believe this is likely

because of the close relation between the two tissue type definitions

or because mixed tissue preparation was used, or both. The second

group of libraries produced unexpected correlation results

(Figures 6D, 6E, 6F). The tissue of origin did not score in any of

these, and the matching, at least numerically, was with apparently

irrelevant tissues (liver instead of brain in ‘‘NCI_CGAP_Brn64’’,

thymus instead of kidney in ‘‘NCI_CGAP_Kid13’’ and no single

tissue scored in brain cancer library ‘‘NCI_CGAP_Brn53’’

(Figure 6F). Clear tissue type matching in some cases of cancer

derived libraries, but not in others is probably due to differences in

cancer progression. It is reasonable to expect that gene expression

changes will increase with the progression of cancer and the

progressive deregulation of normal cellular processes. The decreas-

ing accuracy of tissue matching for cancer samples using our EST

expression matrix is an indication that the analysis should be

capable, in principle, of accurate cancer staging.

Normalised EST libraries
Normalising a cDNA library changes the apparent expression

levels in that library and should ultimately remove any differences in

the gene expression (in normalised libraries) or leave only

differentially expressed cDNAs (in subtracted libraries). The

progressive disappearance of gene expression differences will

depend on the degree of normalisation. It might be reasonable to

assume that unless the library is completely normalised the genes

which were highly over expressed originally may still have high EST

counts, albeit reduced to some degree. For example if a hypothetical

library containing three genes with relative abundances 1, 10, 100 is

partially normalised to yield e.g. 11, 12 and 13 ESTs or e.g. 1, 2 and

3 ESTs, such three datasets would still correlate well with the

original counts (for the above example the correlation would be

+0.904 in both cases), and both such ‘‘normalised’’ libraries might

both score reasonably well if correlated to EST expression matrix

such as created in this work. Although normalisation and

subtraction are in essence non-linear transformations we continued

using Pearson product-moment correlation coefficient and did not

calculate Spearman’s and Kendall’s correlation coefficients in order

to keep the results comparable with all the previous calculations.

The correlation data for a number of normalised libraries are shown

in Figure 7. Normalised placenta library ‘‘NIH_MGC_148’’

correlated well with placental tissue array from our EST expression

matrix scoring (+0.69) despite being normalised (Figure 7A). Two

different normalised lung libraries ‘‘UI-CF-EC1’’ and ‘‘UI-CF-

FN0’’ both had lung as the most highly positively scored tissue, but

had different levels of unanticipated cross-tissues correlation

(Figures 7B and 7C). The data in Figure 7C show a degree of

positive correlation with heart, muscle and spleen. Such unexpected

cross-tissue relations probably arise from gradual loss of lung gene

Figure 6. Correlation of the EST expression matrix with individual EST libraries from cancer preparations. Pearson correlation
coefficients (vertical axes) calculated between the individual EST libraries and the EST expression matrix (Supplementary Dataset S4). A: Bone cancer
library NCI_CGAP_Ch1. B: Pancreatic library ‘‘Pancreas tumor III’’. C: Colon cancer library NCI_CGAP_Co12. D: Brain cancer library NCI_CGAP_Brn64. E:
Kidney cancer library NCI_CGAP_Kid13. F: Brain cancer library NCI_CGAP_Brn53.
doi:10.1371/journal.pone.0032966.g006
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expression specificity following normalisation. This is clearly seen in

Figure 7D, where normalised thymus library ‘‘Soares_thy-

mus_NHFTh’’ is scored using our EST matrix. That library

correlated with none of the 26 tissue types in our EST matrix.

Using normalised libraries for the selection and optimisation our

EST matrix wasn’t feasible (with the degree of normalisation

unknown no such optimisation was practically achievable). We

therefore used alternative approach to validate the lack of tissue

correlations found in normalised library such as in Figure 7D. We

created an artificial ‘‘normalised’’ EST matrix where all the 244

different UniGene clusters expression levels were set to ‘‘1’’ (except

one value set to 0.999 to avoid a divide by zero error in calculating

the Pearson correlation coefficient). We then correlated this model

‘‘normalised’’ dataset to out EST expression matrix. Similarly to

the normalised thymus library ‘‘Soares_thymus_NHFTh’’, the

artificially ‘‘normalised’’ library did not correlate with any of the

other tissues (Figure 7E). Such lack of any correlation between the

model ‘‘normalised’’ dataset and any of the tissues confirms that

high degree of library normalisation will yield zero correlations if

compared with our EST matrix. To further test the robustness of

our matrix we created another artificial dataset by assigning

random values to each of the 244 UniGene clusters. Such an

artificially arbitrary array did not show positive correlation with

any of the 26 tissues from our EST expression matrix. A

representative graph is shown in Figure 7F. Thus only tissue-

specific non-normalised cDNA libraries (such as in Figures 1, 2, 3)

are expected and have yielded positive correlations, proving the

functionality of our approach.

Discussion

EST expression data may contain errors originating from many

different stages of tissue preparation, mRNA purification, cDNA

priming and synthesis, library generation and amplification, DNA

sequencing, including the randomness of the clone selection, EST

pre-processing, clustering, annotations (ESTs and libraries) as well as

data querying, retrieval and processing by databases. Library tissue

origins are not always known or correctly reported and some

libraries originate from pooled or mixed tissue samples. These can be

experimental errors (e.g. inclusion of neighbouring but different and

irrelevant tissues or improper separation of dependant and parental

tissues) or data entering errors (wrong tissue, wrong field, wrong

keywords to name a few). Some of the errors are due to expected

variability in conducting experiments, some can be due to human

error factors and would be impossible to predict or evaluate. By the

time the expression data are made available to the user, many of

these issues are difficult, impractical or impossible to check or trace

back to the original preparation. Information about cloning and

sequencing is provided for some but not all individual cDNA/EST

sequences and if available, could be accessed from primary sequence

databases (e.g. dbEST division of GenBank) but not from CGAP and

other secondary databases. In practice these issues are rarely

addressed by tools for digital gene expression analysis, and there is

little attempt made by tools available from secondary databases to

evaluate the expression data quality. For example, the only statistical

analysis currently available from CGAP (http://cgap.nci.nih.gov/

cgap.html) calculates a Benjamini Hochberg false discovery rate ‘‘Q’’

Figure 7. Correlation of the EST expression matrix with normalised EST libraries. Pearson correlation coefficients (vertical axes) calculated
between the individual normalised EST libraries, two model libraries and the EST expression matrix (Supplementary Dataset S4). A: Normalised
placenta library NIH_MGC_148. B and C: normalised lung libraries ‘‘UI-CF-EC1’’ and ‘‘UI-CF-FN0’’ respectively. D: Normalised thymus library
Soares_thymus_NHFTh. E: Artificial ‘‘normalised’’ EST matrix where all the expression levels are set to ‘‘1’’ (shown in blue). F: Artificial ‘‘random’’ EST
matrix where all the expression levels are randomly assigned (shown in red).
doi:10.1371/journal.pone.0032966.g007
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value for each UniGene cluster from the difference between the EST

counts mapping onto that cluster in two user-selected pools of EST

libraries, and even this value seems to be erroneously calculated since

it indicates that the probability of the result being a false discovery

depends on the display cut-off settings, rather than just the gene

expression values themselves. We therefore set out to find ways of

evaluating the EST expression data based on the reported expression

data alone, by devising a methodology not dissimilar to the use of

checksum algorithms for controlling the integrity of data in files,

which is independent of the upstream sample processing details of

which are often unknown and uncontrollable.

Our results demonstrate that a small EST expression matrix

may be used as a tool for confirming tissue specificity of EST

libraries of different size, for the quality control of EST expression

data or for identifying problems with EST library preparation

(mixed tissues, unknown preparation, normalisation) and possibly

for providing the additional insight into the disease progression for

cancer derived EST libraries.

Recently organism-specific tissue-distribution profiles based on

UniGene expression data from GeneBank were reported for a

number of different organisms [24]. The main focus of that paper

was to overcome natural language variations, aliases and

typographical errors when retrieving tissue source information –

a common problem of many data repositories, including EST data

[17,25–27]. The TissueDistributionDBs allows searching for genes

or tissues and calculates a complex tissue specificity indexes for

each gene by the use of standardised Tissue Synonym Library and

Tissue Ontology data available at BRENDA [28]. The tool is

mostly suitable for the analysis of individual genes and can not be

used for comparing EST libraries (i.e. collections of genes). No

attempt was made to evaluate the suitability of tissue specificity

tables for the analysis of EST expression data, no gene subsets

were created and genes were not evaluated for their suitability for

solving quality control issues and tissue determination. The

database appears to have not been updated since 2009.

Analysis of gene expression data for quality control purpose has

been attempted previously with SAGE data [29]. Three databases

were compared – Gene Expression Atlas (oligonucleotide micro-

array data), SAGEmap (SAGE libraries) and TissueInfo (EST

libraries). Because these databases use different formats for sample

annotation and use different statistical methods for data analysis, a

method called Preferential Expression Measure (PEM) was devised

to score differential expression of genes in libraries grouped into six

different tissue categories (brain, kidney, ovary, pancreas, prostate

and vascular endothelium) in three databases. Inter-database

correlations were measured and were found to be high for brain,

prostate and vascular endothelium, but not for kidney, ovary and

pancreas. However, inter-library correlations have yet to be

applied as a quality control method within one database [29].

In a more recent study, data for 8,570 genes across 46 human

tissues from the Gene Expression Omnibus (an Affymetrix

microarray data repository) were categorised according to tissue

specificity and subcellular localisation of their protein product

[30]. The authors reported that widely expressed genes have

higher expression levels than genes which are expressed in one or a

few tissues. In this respect we are especially pleased to have

identified tissue specific genes, which are also highly expressed,

contrary to the trend reported in [30].

While many quality control methods were previously suggested,

they only focussed on the whole genome [31] or covered aspects of

the data such as GC content [1], with few investigations focusing on

the tissue-specificity issues [32]. A common shortcoming of many

previous reports is that tissue specificity of the genes was reported [33–

37] but no attempts were made to actually use such data for quality

control or evaluation of the expression data. Moreover, even unique

‘‘tissue specific genes’’ might be of little use if they are expressed at low

levels and would therefore be absent in many smaller libraries.

Furthermore, many existing tools and secondary databases, including

the CGAP, are simply sophisticated information retrieval tools,

lacking numerical methods for verification of the EST counts and

sample origins. The EST counts are assumed to be correct and the

libraries to be correctly annotated [38–40]. The existing algorithms

used to analyse EST expression data place the emphasis on

identification of the degree of over/under-expressed for tissue/

disease-specific genes by comparing EST counts between two library

pools without fully evaluating the quality of the expression data or the

origins of the experimental material used, these are simply assumed to

be correct and no numerical methods for their verification are made

available [38–40]. It is not surprising that many such tissue

distribution resources are quickly superseded by more recent

developments or being taken off-line [27,41–43]. Our approach to

the tissue-specificity problem is different from the previously reported

attempts in that we looked into origins of the expression data and

assessed tissue specificity of the original preparations and the data

quality. We were able to generate a small optimised subset of 244

UniGene Cluster IDs which showed high levels of intra-tissue

correlation between different EST libraries while presenting low levels

of inter-tissue correlation, suggesting high tissue specificity. The

reported EST expression matrix can be used to confirm tissue

identities of EST expression datasets for all main human tissue types,

to provide insight into the origin of uncharacterised libraries, to

identify normalised or subtracted libraries or various other exper-

imental artefacts. In a few cases we were able to identify the location

of the tumour from which a cancer sample was taken, an extension

not previously considered and not previously reported.

The next logical step is to adapt and apply our algorithms to other

publicly available gene expression data. We envisage that with the

increasing amounts of EST expression data, our optimised EST

marker set could be improved and the tissue range might be

expanded. The availability of other expression information, such as

from SAGE data [44], DNA microarray data [45] and northern

blots [46] and merging such data could improve the selection even

further. We envisage that the increasing amounts of expression data

available could further decrease the number of UniGene IDs in our

expression matrix and may allow accurate analysis and tissue typing

of the related and dependent tissues.

Supporting Information

Figure S1 Correlation between the highly expressed
ESTs and the individual EST’s maximum counts.
Horizontal axis - the maximum number of times ESTs have been

counted in any of the 155 normal non-normalized libraries.

Vertical axis - correlation. ESTs which counted at least 18 times in

at least one of the libraries are the most resembling of the tissue

specific markers identified manually using CGAP tools.

(TIF)

Dataset S1 The initial selection of UniGene Clusters. Up

to thirty UniGene IDs were selected per each tissue.

(XLS)

Dataset S2 All the selected UniGene IDs and the non-
redundant collection. All the selected UniGene IDs are

combined, sorted (to show differences in the expression of any

duplicated IDs in different tissues) and the duplicated UniGene

IDs are removed. Tissue identities for the redundant UniGene IDs

were assigned based on the highest recorded expression odds ratio.

(XLS)
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Dataset S3 Optimization of UniGene ID selection.
Additional UniGene IDs are added based on the similarity of

their maximum recorded expression levels to the maximum

recorded levels of the UniGene Clusters form the original election.

Optimization of the combined list by two rounds of selective

removal of UniGene IDs.

(XLS)

Dataset S4 EST expression matrix. Expression levels of the

selected 244 marker UniGene IDs in the 26 tissue super libraries.

(XLS)

Dataset S5 EST libraries tested for inter-tissue corre-
lations. 113 representative tissue-specific EST libraries tested for

inter-tissue correlations using the EST expression matrix.

(XLS)
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