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Threshold law for the triplet state for electron-impact ionization in the Temkin-Poet model
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We derive the analytical threshold behavior for the triplet cross section for electron-impact ionization in the
Temkin-Poet model. The analytical results indicate that the most recent numerical calculations may fail to
reproduce the correct threshold behavior in an energy regime below Bzo0tl a.u. We also present an
analytical expression for the energy distribution of the two electrons near threpBbb0-29407)04704-5

PACS numbds): 34.80.Dp

The Temkin-Poet moddl1-3] for the three-body Cou- An analytical theory for the threshold behavior of ioniza-
lomb system consisting of a nucleus with chaland two  tion cross sections is not only inherently important but it is
electrons has received considerable attention during receaiso of relevance to numerical methods with regard to the
years. It is also known as thewave model because the question of their convergence in the threshold region. We
interaction between the electrons is replaced by its monopolgerive here an analytical threshold law for the ionization
part 1f. (wherer. denotes the larger of the distances of cross section and the single differential cross section in trip-
each electron from the nucleuand the single-particle angu- |et symmetry for the Temkin-Poet model. The single differ-
lar momenta are confined to zero. It is perhaps the simplegntia) triplet cross section is of special interest because dif-

model for a three-body Coulomb system that still retains thgg gnt types of large-scale basis set calculations show good

crucial feature of mutual long-range interactions. It has be'agreement in the triplet case while there are disagreements

3or the singlet[8]. The energy distribution for ionization in

triplet symmetry at fixed total energy is thus a most suitable
0(;randidate for comparison between the analytical theory and
numerical results if the latter ones are performed close

hope to describe the full three-body problégs-7].

Early attempts to formulate a threshold law for the
s-wave model concentrated on the fact that the equations
motion are separable far;>r, and vice versa. The basic

solutions in the case of hydroged £ 1) are products of free enough to thres_hold. . . .
particle solutions for on)g 019 thf e)lectro%s and Coulomb_ A theory thatincorporates the picture of ridge propagation

waves for the second electron. The singlet or triplet symmell & Purely quantum-mechanical fashion has been formulated
try of the wave function is ensured by superimposing anrecently[;S]. Since it has glready been des_crlbed in detail fc_)r
infinite set of such basic solutions at a fixed total energy andhe special case of the singlet cross section of the Temkin-
enforcing the appropriate boundary condition. Based on thi§oet model[16] we only give a brief outline for our pur-
ansatz Temkin derived a power law proportionaBb® for ~ POSes. S _ )
the singlet cross sections wheEeis the total energy of the ~ With the approximation of a fixed nucleus the Schro
two free electrong2]. dinger equation for the Temkin-Poet model reads in hyper-
Recent time-dependent calculations for the Temkin-Poegpherical coordinates=arctant,/r;) andR= (r{+r3)*,
model[9,10], however, suggest a quite different scenario for

electron-impact ionization. The major part of the wave func- 1 4 1[4 1 IRG (R a)=0
tion that contributes to ionization remains confined near the| 2 yRZ  2R? WJF 4 (@) | = (R,a)=0.
“ridge” r,=r, as it propagates outwards towards large in- (1)

terparticle separation. It thus shows surprising similarity with
earlier time-dependent calculations for a collinear configuraThe potential functiorC(«) is given by
tion of the three particlegl1].

This similarity supports the idea that the Wannier picture
of ridge propagation also holds for the Temkin-Poet model C(a)=(
where the potential in the hyperangle=arctan(,/r;) has
the form of a cusp~|m/4— «| arounda = m/4 rather than an
inverted harmonic oscillator as in the collinear configuration
It is important to emphasize that this picture of ridge propa
gation must be distinguished from the original Wannier
analysis based on classical trajectorjdg], which is not
possible for the Temkin-Poet model because of the lack of
ionizing trajectories in a certain energy range even above
zero energy13].

—Zlcose—Z/sina+1/lcosx O<a<w/4
—Zlcose—Z/sina+ 1/sie wlA<a<w/2.

)

‘Single differential cross sections are related to the construc-
tion of adiabatic wave function ,(R;a) at fixed hyper-
radius whose Schdinger equation is given by

#? 1
W—FZ—ZRC(a)—i-ZRZsM(R) ¢, (Ria)=0. (3
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The adiabatic energies,(R) show avoided crossings at real

values of the hyperradiuR. Asymptotically they converge z=/2( p)m(—— a
towards the threshold energies of the scattering channels. For

a sufficiently large imaginary part of the hyper-radius theythe Schrdinger equation(3) for the asymptotic adiabatic
connect smoothly to a single-valued functiettR) [14].  wave function becomes

Double escape is characterized by following the system

Y

along a path in that part of the complex hyper-radius plane d2
wheree(R) is single valued. The transition probability be- 2\/— —=—:2T2A(p) |pasf(2)=0, z=0.
tween an initial adiabatic state to a final state in which both p) 8
particles are ionized is then given by the hidden crossing ®)
theory[15] as A(p) has been introduced in connection with the asymptotic
adiabatic energy
Pas)(E)=exp{ -2 ImfR \/2[E—s(R)]dR}. 4 2 2A(p) 1
0 =——+ - —. 9
EasyP) ED MY 9

The path of integration starts at a small radiRg at the
boundary of the reaction zone, which is of the order of a few
bohr radii. We chos®y,=4 a.u. in our calculations.
Absolute values of the differential cross sectida/de,
as a function of the energy, of one of the electrons involve Pasf @=/4)=0 (10)
an additional factoP;,,e(E), which derives from contribu-
tions to the transition probability from the reaction zone atsince the wave function for the triplet state must vanish when
R<R,. To determineP;,.(E) the adiabatic energy surface the electrons are at equal distances from the nucleus. A so-
g(R) must be calculated fully quantum mechanically at|ution is the Airy function Aiz—2A) with 2A=2.338 in-
small interparticle distance. However, since at small interpardependent op. The value of 2 is chosen so that the Airy
ticle separation the Coulomb interaction dominates the totafunction has only one node in the hyperangi o= m/4)
energyE, near threshold this factor is only weakly dependentthat corresponds to the first excited adiabatic state
on the energy and is not needed to determine the form of thg, (Rg,«). The corresponding wave function of REE6] in
threshold law. The differential ionization cross section isthe singlet case was the nodeless ground state with the

If the quadratic term irz is neglected, Eq(8) becomes an
equatlon for the Airy function, which is subject to the bound-
ary condition

given by boundary condition of vanishing derivative at= 7/4. The
change in the boundary conditions accounts for a different
do doasy value of 2A, but otherwise the solution is unchanged. The
d_ez(E) de, (E)PinnedE), (5)  adiabatic wave function in the hyperangle must be normal-

ized to unity for negative values @f, which gives the nor-
malization constant

where
N3(p)=A(-p)*?, 11
O'asy(E): 77 P E);| Re,a)|? - . .
de, 2E+1" 2l B) Eginzay | PasRe @)% whereA=0.4912. The contribution of the quadratic term in

(6) Eq. (8) is calculated in first-order perturbation theory, which
gives the expectation value

The energy distribution is determined by the absolute square 1.434\°2

of the asymptotic form of the wave function in the lowest (x%) = -

ionization channel. The radiuge at which ¢,5(Rg, ) has (—p)2

to be evaluated is inversely proportional to the total energy

and relates to the transition from the Coulomb zone wherénserting this result into E¢(9), the asymptotic dependence

the potential energyC(«)/R dominates the three-particle Of the adiabatic energy op is

motion to the asymptotically free zone where the escaping

particles are virtually free. Co Cy C
Instead of taking a path in the complex hyper-radius plane EasfP) = (—p) +(_p)4/3+(_p)5/3

the asymptotic parP,q(E) of the transition probability can

be calculated by replacing the exaqR) by its asymptotic ~with the numerical values Cy,= V2, C,=2.338,

expansiore ,s(R) and integrating Eq4) along the real axis. C,=1.057. The dependence of the asymptotic adiabatic en-

Formally the ionization channels emerge when the adlabatl@rgy onp is the same as for the singlet case derived in Ref.

Schralinger equatior(3) is solved for negative values of the [16] but the numerical values @&, C;, andC, differ due to

hyper-radius. To avoid confusion with the actual physicalthe different boundary condition imposed.

hyper-radiusR we rename ifp. The adiabatic wave function at a large value of the hyper-
After expanding the potential functiai@) around the un- radiusRg=4C,/E is given by

stable equilibriumx=7/4—a=0 and introducing a new

variable PasyRe, @) =MRg) Ai(zg—2A) (14

(12

(13
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FI(_B. 1. RatiO(raS)(E)/o(E) fo_r the triplet cross sections_in the FIG. 2. Energy distributiomlo,,/de, as a function of the en-
Temkin-Poet model. The filled circles are the CCC data points frorrbrgy e, of one of the electrons for the triplet cross section in the
Ref.[5]. The diamonds correspond to the HSCC data from F&f.  Temkin-Poet model. EnergieE=0.05 and 0.1 a.u.

with section the corresponding values am@=6.870 and
- o b=2.770[16]. The triplet cross section is much smaller than
Ze= \/Eexp{ - Ré’?’(— — ) (15) the singlet cross section sinagis more than twice as big in
3 4 the triplet case. This reduction in the cross section is a con-

sequence of the requirement that the wave function must
have a node on the “ridge” ¢ = 7/4) in the triplet case.
Note that the correction term containibgeduces the triplet
cross section even further in contrast to the singlet cross
section wherd is positive.
Pas)(E)=eXp[— \/§[C1f(1/3;Co,E)+sz(2/3,C0,E) _ The exponential thres_hold law in the Te_mkin-_Poet mod_el
in contrast to the Wannier power law, which arises both in
—1C39(5/3,Co,E) 1} (16)  the fully three-dimensional problefi5] and in a restricted
. collinear configuration of the three particlgs7], may be
with connected to the fact that in the classical version of the
Temkin-Poet model ionization is forbidden in a limited en-
Po ergy range even above total energy zgt8], as it is well
2E known that classically forbidden motion often leads to a
quantum-mechanical law with exponential behavior in the
and energy.
One way to extract the contribution of the factor
o Pinned E) to the cross section is to build the ratio between the
9(7;Co,E)= 2—\/@ 2F1[3/2,7,7+1;— Co/(ERp)]. asymptotic contribution to the integrated cross section Eq.
4 (18) (19 and integrated cross sections taken fralninitio calcu-
lations. This ratio has been plotted in Fig. 1 using the data of
Integrating the energy distribution oves or equivalently ~the convergent close couplingCC) method of Bray and
over the hyperangle gives the integrated cross section  Stelbovicg5] and the hyperspherical close coupliSCO
method of Kato and Watanaljé]. Figure 1 shows that at
B A o3 16 energies abov&=0.4 a.u. both methods give quite similar
oasfB) =557 260 exy] 22°\3mAE " YO]P o (E). results and the ratior,s, /o depends only weakly on the en-
(19 ergy and can be very well fitted by a linear function of the
energy with small positive slope. The striking feature is a
Using the limiting form off andg asE goes to zero in Eq. sudden drop of the ratio &= 0.2 a.u. for the CCC data and
(19) the threshold behavior takes the form atE=0.1 a.u. for the HSCC data. In contrast, theory predicts
a smooth behavior oP;,,., near the ionization threshold
[15]. We argue from this fact that the drop of the ratio near
threshold may indicate the region of energy below which the
ab initio calculations fail to converge. It is reasonable that
The numerical values of the coefficients ae 15.766 and the region of convergence extends to lower energy for the
b= —1.162 for the triplet cross section. For the singlet crossHSCC calculations compared to the CCC calculations be-

The integral Eq(4) is evaluated by expanding the integrand
up to orderR™ "8 (in the limit E—0) inclusively using the
expression(13) for the asymptotic adiabatic energy. The re-
sult is

-T

f(T,Co,E): 2F1[1/2,7',T+1,_C0/(ER0)] (17)

1
~— _ —-1/6 1/6
TasfE) 2E+1exp[ aE™“*+bE""]. (20
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FIG. 3. Solid line: Asymptotic cross sectioms,(E) for the
Temkin-Poet model in triplet symmetry according to EtP). The
dashed line indicates the threshold behavior given by(#g).
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Poet model byab initio methods isE=1.5 a.u.[8]. This is
clearly beyond the range where the asymptotic theory pre-
sented here is valid and we therefore make no attempt to
compare our results with these data. Our main result is that
the asymptotic theory predicts an energy distribution that is
governed by the square of an Airy function in the hyper-
angle.

Expression(19) for the asymptotic contribution to the in-
tegrated cross section is plotted together with the limiting
behavior Eq(20) in Fig. 3. It is seen that the threshold law
only holds in a very limited energy range of approximately
0.1 a.u. One advantage of the theory presented here is that
the general expressid9) for the asymptotic contribution to
the cross section holds over a much wider energy range than
the threshold law itself.

For future researchb initio calculations of energy distri-
butions for the Temkin-Poet model and comparison with the
energy distributions predicted by the asymptotic theory pre-
sented here would be most valuable.
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