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Threshold law for the triplet state for electron-impact ionization in the Temkin-Poet model
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We derive the analytical threshold behavior for the triplet cross section for electron-impact ionization in the
Temkin-Poet model. The analytical results indicate that the most recent numerical calculations may fail to
reproduce the correct threshold behavior in an energy regime below aboutE50.1 a.u. We also present an
analytical expression for the energy distribution of the two electrons near threshold.@S1050-2947~97!04704-5#
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The Temkin-Poet model@1–3# for the three-body Cou-
lomb system consisting of a nucleus with chargeZ and two
electrons has received considerable attention during re
years. It is also known as thes-wave model because th
interaction between the electrons is replaced by its mono
part 1/r. ~where r. denotes the larger of the distances
each electron from the nucleus! and the single-particle angu
lar momenta are confined to zero. It is perhaps the simp
model for a three-body Coulomb system that still retains
crucial feature of mutual long-range interactions. It has
come the ideal testing ground for numerical methods t
hope to describe the full three-body problem@3–7#.

Early attempts to formulate a threshold law for t
s-wave model concentrated on the fact that the equation
motion are separable forr 1.r 2 and vice versa. The basi
solutions in the case of hydrogen (Z51) are products of free
particle solutions for one of the electrons and Coulo
waves for the second electron. The singlet or triplet symm
try of the wave function is ensured by superimposing
infinite set of such basic solutions at a fixed total energy
enforcing the appropriate boundary condition. Based on
ansatz Temkin derived a power law proportional toE1.5 for
the singlet cross sections whereE is the total energy of the
two free electrons@2#.

Recent time-dependent calculations for the Temkin-P
model@9,10#, however, suggest a quite different scenario
electron-impact ionization. The major part of the wave fun
tion that contributes to ionization remains confined near
‘‘ridge’’ r 15r 2 as it propagates outwards towards large
terparticle separation. It thus shows surprising similarity w
earlier time-dependent calculations for a collinear configu
tion of the three particles@11#.

This similarity supports the idea that the Wannier pictu
of ridge propagation also holds for the Temkin-Poet mo
where the potential in the hyperanglea5arctan(r2 /r1) has
the form of a cusp;up/42au arounda5p/4 rather than an
inverted harmonic oscillator as in the collinear configuratio
It is important to emphasize that this picture of ridge prop
gation must be distinguished from the original Wann
analysis based on classical trajectories@12#, which is not
possible for the Temkin-Poet model because of the lack
ionizing trajectories in a certain energy range even ab
zero energy@13#.
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An analytical theory for the threshold behavior of ioniz
tion cross sections is not only inherently important but it
also of relevance to numerical methods with regard to
question of their convergence in the threshold region.
derive here an analytical threshold law for the ionizati
cross section and the single differential cross section in t
let symmetry for the Temkin-Poet model. The single diffe
ential triplet cross section is of special interest because
ferent types of large-scale basis set calculations show g
agreement in the triplet case while there are disagreem
for the singlet@8#. The energy distribution for ionization in
triplet symmetry at fixed total energy is thus a most suita
candidate for comparison between the analytical theory
numerical results if the latter ones are performed clo
enough to threshold.

A theory that incorporates the picture of ridge propagat
in a purely quantum-mechanical fashion has been formula
recently@15#. Since it has already been described in detail
the special case of the singlet cross section of the Tem
Poet model@16# we only give a brief outline for our pur-
poses.

With the approximation of a fixed nucleus the Schr¨-
dinger equation for the Temkin-Poet model reads in hyp
spherical coordinatesa5arctan(r2 /r1) andR5(r 1

21r 2
2)1/2,

F2
1

2

]2

]R2 2
1

2R2 S ]2

]a2 1
1

4
22RC~a! D2EGC~R,a!50.

~1!

The potential functionC(a) is given by

C~a!5H 2Z/cosa2Z/sina11/cosa 0<a<p/4

2Z/cosa2Z/sina11/sina p/4<a<p/2.
~2!

Single differential cross sections are related to the const
tion of adiabatic wave functionswm(R;a) at fixed hyper-
radius whose Schro¨dinger equation is given by

F ]2

]a2 1
1

4
22RC~a!12R2«m~R!Gwm~R;a!50. ~3!
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55 3251BRIEF REPORTS
The adiabatic energies«m(R) show avoided crossings at re
values of the hyperradiusR. Asymptotically they converge
towards the threshold energies of the scattering channels
a sufficiently large imaginary part of the hyper-radius th
connect smoothly to a single-valued function«(R) @14#.
Double escape is characterized by following the syst
along a path in that part of the complex hyper-radius pla
where«(R) is single valued. The transition probability be
tween an initial adiabatic state to a final state in which b
particles are ionized is then given by the hidden cross
theory @15# as

Pasy~E!5expF22 ImE
R0

`
A2@E2«~R!#dRG . ~4!

The path of integration starts at a small radiusR0 at the
boundary of the reaction zone, which is of the order of a f
bohr radii. We choseR054 a.u. in our calculations.

Absolute values of the differential cross sectionds/de2
as a function of the energye2 of one of the electrons involve
an additional factorPinner(E), which derives from contribu-
tions to the transition probability from the reaction zone
R,R0. To determinePinner(E) the adiabatic energy surfac
«(R) must be calculated fully quantum mechanically
small interparticle distance. However, since at small interp
ticle separation the Coulomb interaction dominates the t
energyE, near threshold this factor is only weakly depende
on the energy and is not needed to determine the form of
threshold law. The differential ionization cross section
given by

ds

de2
~E!5

dsasy

de2
~E!Pinner~E!, ~5!

where

dsasy

de2
~E!5

p

2E11
Pasy~E!

1

Esin~2a!
uwasy~RE ,a!u2.

~6!

The energy distribution is determined by the absolute squ
of the asymptotic form of the wave function in the lowe
ionization channel. The radiusRE at whichwasy(RE ,a) has
to be evaluated is inversely proportional to the total ene
and relates to the transition from the Coulomb zone wh
the potential energyC(a)/R dominates the three-particl
motion to the asymptotically free zone where the escap
particles are virtually free.

Instead of taking a path in the complex hyper-radius pla
the asymptotic partPasy(E) of the transition probability can
be calculated by replacing the exact«(R) by its asymptotic
expansion«asy(R) and integrating Eq.~4! along the real axis.
Formally the ionization channels emerge when the adiab
Schrödinger equation~3! is solved for negative values of th
hyper-radius. To avoid confusion with the actual physi
hyper-radiusR we rename itr.

After expanding the potential function~2! around the un-
stable equilibriumx5p/42a50 and introducing a new
variable
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z5A2~2r!1/3S p

4
2a D ~7!

the Schro¨dinger equation~3! for the asymptotic adiabatic
wave function becomes

F d2dz2 2z2
3

2A2~2r!1/3
z212D~r!Gwasy~z!50, z>0.

~8!

D(r) has been introduced in connection with the asympto
adiabatic energy

«asy~r!5
A2

~2r!
1

2D~r!

~2r!4/3
2

1

4r2
. ~9!

If the quadratic term inz is neglected, Eq.~8! becomes an
equation for the Airy function, which is subject to the boun
ary condition

wasy~a5p/4!50 ~10!

since the wave function for the triplet state must vanish wh
the electrons are at equal distances from the nucleus. A
lution is the Airy function Ai(z22D) with 2D52.338 in-
dependent ofr. The value of 2D is chosen so that the Airy
function has only one node in the hyperangle~at a5p/4)
that corresponds to the first excited adiabatic st
w1(RE ,a). The corresponding wave function of Ref.@16# in
the singlet case was the nodeless ground state with
boundary condition of vanishing derivative ata5p/4. The
change in the boundary conditions accounts for a differ
value of 2D, but otherwise the solution is unchanged. T
adiabatic wave function in the hyperangle must be norm
ized to unity for negative values ofr, which gives the nor-
malization constant

N 2~r!5A~2r!1/3, ~11!

whereA50.4912. The contribution of the quadratic term
Eq. ~8! is calculated in first-order perturbation theory, whic
gives the expectation value

^x2&5
1.434N 2

~2r!A2
. ~12!

Inserting this result into Eq.~9!, the asymptotic dependenc
of the adiabatic energy onr is

«asy~r!5
C0

~2r!
1

C1

~2r!4/3
1

C2

~2r!5/3
~13!

with the numerical values C05A2, C152.338,
C251.057. The dependence of the asymptotic adiabatic
ergy onr is the same as for the singlet case derived in R
@16# but the numerical values ofA, C1, andC2 differ due to
the different boundary condition imposed.

The adiabatic wave function at a large value of the hyp
radiusRE54C0 /E is given by

wasy~RE ,a!5N~RE! Ai ~zE22D! ~14!
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with

zE5A2expF2
ip

3 GRE
1/3S p

4
2a D . ~15!

The integral Eq.~4! is evaluated by expanding the integra
up to orderR27/6 ~in the limit E→0) inclusively using the
expression~13! for the asymptotic adiabatic energy. The r
sult is

Pasy~E!5exp$2A3@C1f ~1/3;C0 ,E!1C2f ~2/3,C0 ,E!

2 1
2C1

2g~5/3,C0 ,E!#% ~16!

with

f ~t;C0 ,E!5
r0

2t

tA2E 2F1@1/2,t;t11;2C0 /~ER0!# ~17!

and

g~t;C0 ,E!5
r0

2t

2tA2E3 2F1@3/2,t;t11;2C0 /~ER0!#.

~18!

Integrating the energy distribution overe2 or equivalently
over the hyperangle gives the integrated cross section

sasy~E!5
1

2E11

A

2A6D
exp@22/3A3pDE21/6#Pasy~E!.

~19!

Using the limiting form off andg asE goes to zero in Eq.
~19! the threshold behavior takes the form

sasy~E!;
1

2E11
exp@2aE21/61bE1/6#. ~20!

The numerical values of the coefficients area515.766 and
b521.162 for the triplet cross section. For the singlet cro

FIG. 1. Ratiosasy(E)/s(E) for the triplet cross sections in th
Temkin-Poet model. The filled circles are the CCC data points fr
Ref. @5#. The diamonds correspond to the HSCC data from Ref.@6#.
s

section the corresponding values area56.870 and
b52.770@16#. The triplet cross section is much smaller th
the singlet cross section sincea is more than twice as big in
the triplet case. This reduction in the cross section is a c
sequence of the requirement that the wave function m
have a node on the ‘‘ridge’’ (a5p/4) in the triplet case.
Note that the correction term containingb reduces the triplet
cross section even further in contrast to the singlet cr
section whereb is positive.

The exponential threshold law in the Temkin-Poet mo
in contrast to the Wannier power law, which arises both
the fully three-dimensional problem@15# and in a restricted
collinear configuration of the three particles@17#, may be
connected to the fact that in the classical version of
Temkin-Poet model ionization is forbidden in a limited e
ergy range even above total energy zero@13#, as it is well
known that classically forbidden motion often leads to
quantum-mechanical law with exponential behavior in t
energy.

One way to extract the contribution of the fact
Pinner(E) to the cross section is to build the ratio between
asymptotic contribution to the integrated cross section
~19! and integrated cross sections taken fromab initio calcu-
lations. This ratio has been plotted in Fig. 1 using the data
the convergent close coupling~CCC! method of Bray and
Stelbovics@5# and the hyperspherical close coupling~HSCC!
method of Kato and Watanabe@6#. Figure 1 shows that a
energies aboveE50.4 a.u. both methods give quite simila
results and the ratiosasy/s depends only weakly on the en
ergy and can be very well fitted by a linear function of t
energy with small positive slope. The striking feature is
sudden drop of the ratio atE50.2 a.u. for the CCC data an
atE50.1 a.u. for the HSCC data. In contrast, theory predi
a smooth behavior ofPinner near the ionization threshold
@15#. We argue from this fact that the drop of the ratio ne
threshold may indicate the region of energy below which
ab initio calculations fail to converge. It is reasonable th
the region of convergence extends to lower energy for
HSCC calculations compared to the CCC calculations

FIG. 2. Energy distributiondsasy/de2 as a function of the en-
ergy e2 of one of the electrons for the triplet cross section in t
Temkin-Poet model. Energies:E50.05 and 0.1 a.u.
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55 3253BRIEF REPORTS
cause the hyperspherical channel functions are better ada
to the problem in the threshold region than the independ
particle basis used in the latter.

In Fig. 2 we present the asymptotic contribution Eq.~5! to
the single differential cross section at two different total e
ergiesE50.05 and 0.1 a.u. Note thatPinner(E) contributes
with an energy-dependent part only but is independent of
hyperangle, so it does not change the shape of the ene
distribution. The lowest energy for which a single differen
tial cross section has been calculated to date for the Temk

FIG. 3. Solid line: Asymptotic cross sectionssasy(E) for the
Temkin-Poet model in triplet symmetry according to Eq.~19!. The
dashed line indicates the threshold behavior given by Eq.~20!.
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Poet model byab initio methods isE51.5 a.u.@8#. This is
clearly beyond the range where the asymptotic theory p
sented here is valid and we therefore make no attemp
compare our results with these data. Our main result is
the asymptotic theory predicts an energy distribution tha
governed by the square of an Airy function in the hype
angle.

Expression~19! for the asymptotic contribution to the in
tegrated cross section is plotted together with the limit
behavior Eq.~20! in Fig. 3. It is seen that the threshold la
only holds in a very limited energy range of approximate
0.1 a.u. One advantage of the theory presented here is
the general expression~19! for the asymptotic contribution to
the cross section holds over a much wider energy range
the threshold law itself.

For future researchab initio calculations of energy distri-
butions for the Temkin-Poet model and comparison with
energy distributions predicted by the asymptotic theory p
sented here would be most valuable.
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