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Abstract. A method for remote user authentication is proposed that
requires only public information to be stored at the verifying host. Like
the S/KEY scheme, the new technique uses only symmetric cryptography
and is resistant to eavesdropping, but, unlike S/KEY, it is resistant to
host impersonation attacks. The avoidance of asymmetric cryptographic
techniques makes the scheme appropriate for low cost user authentication
devices.

1 Introduction

Authentication of remote users is a problem commonly encountered in dis-
tributed computing environments. It is a problem addressed by the S/KEY user
authentication system, details of which have been published as an Internet RFC,
[2]. A complete software implementation of S/KEY has also been made publicly
available (see [2]).

The S/KEY scheme, which is closely based on a scheme devised by Lamport,
[6], has been designed to provide users with ‘one-time passwords’, which can be
used to control user access to remote hosts. Of course, as with any such system,
after the user authentication process is complete, i.e. after the one-time password
has been sent across the network, no protection is offered against subversion of
the link by third parties. This fact is pointed out in [2]. Indeed it is stated there
that the S/KEY scheme ‘does not protect a network eavesdropper from gaining
access to private information, and does not provide protection against “inside”
jobs or against active attacks where the potential intruder is able to intercept
and modify the packet stream’.

It is further claimed that S/KEY ‘is not vulnerable to eavesdropping/replay
attacks’. Unfortunately, as has been pointed out by a number of authors, (see, for
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example, [8] or Note 10.7 of [7]) depending on the definition of ‘replay attack’,
the S/KEY scheme can fail to provide this property. Specifically, the S/KEY
scheme is subject to a ‘host impersonation’ attack, where the false host can
obtain information from the remote user which can be used to impersonate the
remote user to the genuine host at some later occasion.

One major advantage of S/KEY over other user authentication schemes is
that it only requires the verifying host to store public information about the
remote user. Knowledge of this public information is not in itself sufficient to
enable a third party to masquerade as the remote user, although if the remote
user’s secret key is poorly chosen then the public information would enable a
brute force search to be performed. The purpose of this paper is to propose an
alternative user authentication scheme which retains this major advantage of
S/KEY, but which resists host impersonation attacks. It also has the practical
implementation advantage that it uses only symmetric cryptography, an impor-
tant issue if the remote user’s secret key is stored in a device (e.g. a cheap smart
card) with limited computational power.

2 The new scheme

We suppose that the host H and remote user U have an initial secure session
during which the U supplies H with trusted public information. We therefore
divide our description into two phases, ‘set up’ and ‘use’.

Prior to these phases, two system parameters ¢t and r are selected, where ¢
and 7 are positive integers satisfying r < t. The choice of these values affects the
security of the scheme (see Section 3 below). A method for computing MACs
(Message Authentication Codes) must also be agreed; this could be HMAC or a
block cipher based CBC-MAC — see, for example, ISO/IEC 9797, [4, 5]. What-
ever method is chosen must be resistant to both key recovery and forgery attacks.
In fact, we require resistance to a slightly generalised version of key recovery. Key
recovery attacks normally involve an attacker using a number of (message, MAC)
pairs to find the key used to generate the MACs. Here, we do not wish the at-
tacker to be able to find any key which maps a given message to a given MAC,
regardless of whether or not it was the actual key used. By choosing the algo-
rithm and algorithm parameters carefully, it should be possible to achieve the
desired attack resistance.

For the purposes of the discussion below we write Mg (X) for the MAC
computed on data X using secret key K.

2.1 Set up phase

The remote user U chooses a set of ¢ secret keys for the MAC algorithm, denotes
by K1, Ks, ..., K;. U then chooses a random data string X and computes

for every i (1 < <t). U then:



— passes the values V1, V5,...,V; and X to H, and
— securely stores K1, Ko, ..., K; and X.

H securely stores Vi,Vs,...,V; and X as the public verification information
for U. The integrity of this information must be preserved, but secrecy is not
required.

2.2 Use of the scheme

We now suppose that U wishes to authenticate him/herself to host H. The
process operates in a series of steps, as follows. Note that if, at any point, one
of the checks made by the receiver of a message fails, then, unless otherwise
stated, the entire protocol run is deemed to have failed. This assumption applies
throughout this paper.

1. H first sends X to U.

2. U first checks the correctness of X, in case of loss of synchronisation between
U and H. If X is incorrect then, in certain circumstances, U may check the
previous value of X to see if synchronisation can be restored (this possibility
is discussed further in Section 3). U then chooses a new set of ¢ secret keys:
K{, K}, ..., K] and selects a new random value X’. U also computes two
sequences of t values:

Vi = M, (X'), W= Mg, (VII[V3ll---[IV), (1<i<t)

where here, as throughout, || denotes concatenation of data items.
U now sends (W{,W4,...,W/) to H.

3. H then chooses a random r-subset of {1,2,...,t}, say {i1,42,...,%,}, and
sends this subset to U.

4. U now sends the r secret keys K;,, K;,,...,K; to H, as well as the set of
t values V/, V5, ..., V/ and the value X'. U now replaces the stored values
X, K1, Ks,...,K; with X', K{,K},...,K{. (In certain cases, U may retain
the ‘old’ values, as discussed below).

5. H now verifies the r MAC values V;,,V,,,...,V; using the set of r keys
supplied by U and the stored value of X. If all these values are correct,
then H also verifies the r MAC values W/ , W/ ,... W] using the set of r

keys supplied by U and the values V{, V3, ...,V supplied by U previously.

If all these MACs are also correct, then H accepts U as valid, and replaces

X, Vi, Vo, ...,V with X/, V] V... V).

3 Discussion and analysis

We now consider practical and security aspects of the scheme. Observe that
elements of the scheme are very similar to the one time signature (OTS) scheme
of Rabin [9] (see also section 11.6 of [7]). Indeed, one way of looking at the scheme
above is to regard the set up phase as key generation for an OTS scheme, as a



result of which the host is equipped with the public key. One iteration of the
protocol consists of the user generating a new OTS key pair, signing the new
public key with the existing OTS private key, and the host then performing a
verification process. On completion the host has a copy of the new OTS public
key, ready to start the process again.

The scheme also has features in common with the ‘Guy Fawkes’ protocol
of Anderson et al. [1]. However, the scheme nevertheless has properties distinct
from previously specified protocols.

3.1 Choices for t and r

We first consider how ¢ and r should be chosen. To avoid certain attacks, we
wish to choose these values so that the probability of a third party successfully
guessing the subset {i1,i2,...,%,.} in advance is negligible. That is we wish to
arrange things so that 1/ (:) is negligible.

Given that we wish to minimise ¢ (to minimise the storage and bandwidth
requirements) then this probability is minimised by choosing r = |t/2], since
(Lt;%) > (:) for all i. Also, since ZE:O (f) = 2! we immediately have that
(ley2) > 2/t +1)if ¢ > 1.

Hence, if we wish to guarantee that the probability of successfully guessing
the subset is at most 1079 say, then choosing ¢t > 35 will suffice.

3.2 Host impersonation attacks

Suppose a third party, F say, wishes to impersonate H to U with a view to
learning enough to impersonate U to H at some subsequent time. In step 3
of the protocol, F can only choose a random r-subset of {1,2,... ¢}, and E
will then learn a set of r of the secret keys. However, at a later stage, when F
impersonates U to H, E will only be successful if he/she knows all the keys in
the subset chosen by H. The odds of this will be acceptably small as long as ¢
and r are chosen appropriately (see the discussion in Section 3.1).

3.3 Man in the middle attacks

Of course, as with any authentication protocol, it will always be possible for a
third party E to simply sit between U and H in the communications channel,
and relay messages between the two. This only becomes a genuine threat if E is
able to change some part of the messages, and/or to re-order them in some way.
We now look at the various messages in turn, to see if this is possible.

— In step 2, E could change some or all of the MAC values W/. However, given
that at this stage E will not know any of the keys K, the probability that
the modified values will be correct is negligibly small (since we assume that
forgery attacks are not feasible).

— In step 3, F could change the subset, but then the set of keys returned in
step 4 will not be correct.



— In step 4, E could modify some or all of the secret keys K;; and/or some or
all of the MAC values V. Successfully changing the values V) would require
knowledge of the keys K/, but none of these have yet been divulged by U.
Changing the secret keys K;, is prevented by the fact that H can check
them using the values V;,. (Changing these verification MACs would have
required knowledge of the previous set of keys, and changing these previous
keys would have required changing the previous verification MACs, and so
on).

3.4 Denial of service attacks

There is, of course, a simple and effective ‘denial of service’ attack against the
described protocol. A third party E can simply engage in the protocol with U
by impersonating H. When U tries to authenticate him/herself to the genuine
H, U will have a different value of X to that sent by H in the first step of the
protocol.

There are two main ways in which this can be dealt with. Firstly, U could
simply abandon the attempt to authenticate to H, and arrange for the system
to be re-initialised. Secondly, U could retain ‘old’ values of X (along with the
associated set of keys) and use them to complete the authentication protocol.
However, such a process has very serious dangers, depending on the choices of ¢
and 7.

With r set to |[¢/2], even doing the process twice would completely destroy
the system security. A malicious third party £ could impersonate H to U twice,
using two disjoint r-subsets of {1,2, ..., t}. This would mean that F would obtain
all of the keys K1, Ks, ..., K; (or all but one of them if ¢ is odd). As a result, E
would be able to impersonate U to H any number of times.

Hence if we are to allow the same key set to be used more than once then r
and ¢ need to be chosen appropriately. Also, U needs to implement a counter to
limit the number of times any particular key set is used for the authentication
process. The limit for this counter will be determined by the choices for ¢t and 7.
This issue is discussed further in the next section.

3.5 Resynchronisation

As we have just seen, one way of limiting the impact of denial of service attacks
by malicious third parties impersonating the host, is to allow a key set to be
used more than once. This may also be necessary if the authentication process
between user and host fails part way through, e.g. because of a communications
failure.

If a key set is to be used up to a maximum of ¢ times (this being enforced by
the counter held by U) then it should be the case then any party with knowledge
of ¢ different random r-subsets of the set of ¢ keys K;, Ko, ..., K; should have
a negligible probability of knowing all the members of another randomly chosen
r-subset of keys.



To compute the necessary probabilities we make some simplifying assump-
tions (pessimistic from the point of view of the legitimate system users). We
suppose that, by bad luck or by host impersonation, all the ¢ different r-subsets
are mutually disjoint. Thus we require that the probability that a randomly
chosen r-subset of {1,2,...,t} does not contain any element from a specified
subset of size ¢ — c¢r shall be small. The following result, the proof of which is
elementary, is therefore relevant.

Lemma 1. Suppose ¢, r and t are positive integers satisfying r(c + 1) < t. If
S is a subset of {1,2,...,t} of size cr, then the probability that R, a randomly
chosen r-subset of {1,2,...,t}, is a subset of S is equal to

)
0

We thus require that ¢, » and ¢ should be chosen so that

er(er—=1)...(ecr—r+1)
tt—1)---(t—r+1) ’

which is bounded above by (cr/t)", is small. As an example we can put r = 32
and ¢t = 64c¢, and we are then guaranteed that the probability of a successful
attack is less than 2732,

4 A streamlined version of the protocol

In the protocol presented above, steps 1 and 2 can be merged with steps 3
and 4 respectively, to give a two-pass protocol. This is at the cost of increasing
long-term storage requirements. The modified protocol operates as follows.

4.1 Set up

The remote user U chooses two sets of t secret keys for the MAC algorithm,
the current set, denoted by Ki, Ko,..., K, and the pending set, denoted by
K|, K}, ...,K]. U chooses two random data strings used as key set indicators,
denoted by X and X’ (for the current and pending key sets).
U now computes verification MACs for both the current and pending key
sets as
Vi= Mg, (X) andV/ = MK;(X')

for every i (1 <1 <t). U also computes a further set of ¢ MACs
W = Mg, (V{[|[V5]]---[V{), (1<i<t).
U then:

— passes the two sets of verification values and the corresponding key set indi-
cators (Vq,Va,..., Vi, X) and (V/,V4,...,V/, X’) to H,



passes the t MACs (W{,W3,...,W/) to H, and
securely stores the two key sets with their respective indicators, i.e. stores
(K1,Ks,...,Ki, X) and (K1, K},..., K[, X').

H securely stores the information received from U. The integrity of this infor-
mation must be preserved, but secrecy is not required.

4.2

Use of the scheme

Suppose that U wishes to authenticate him/herself to host H. The process op-
erates as follows.

1.

2.

5

We

5.1

‘We

H chooses a random r-subset of {1,2,...,t}, say {i1,i2,...,4,}, and sends
this subset to U along with the current key set indicator X.

U first checks the correctness of X, in case of loss of synchronisation between
U and H. If X is incorrect then, in certain circumstances, U may check the
previous value of X to see if synchronisation can be restored (as discussed
in Section 3).

U then chooses a new set of ¢ secret keys: KY', K4, ..., K}’ and selects a new
random key set indicator X”. U also computes two sequences of ¢ values:

V' = My (X7), Wi = My, (V'[[VR']| - [IV)), (1 <i<t).

U now sends X", (V{", V5’ ...;V/y and (W{ , W§,...,W/') to H. U also
sends the r secret keys K, , K; ., K;,. to H. U now replaces the stored
values of

- X, K1, Ks,...,K; with X', K{, K}, ..., K[, and

- X' K|,K},..., K] with X" K{/ K ... K.
H now verifies the 7 MAC values V;,,V;,,...,V; using the set of r keys
supplied by U and the stored value of X. If all these values are correct, then
H also verifies the 1 MAC values W/ ,Wj ..., W/ using the set of r keys
supplied by U and the stored values V{, V5, ..., V/. If all these MACs are
also correct, then H accepts U as valid, and replaces:

- X, Vi, Vo,..., Vy with X/ V] V..., V),

- XV vy, VY with X7V VY VY and

- Wi, Wh, ... W, with W/, W ... W/

25+

Implementation issues

now consider certain practical implementation issues for the protocol.

Complexity

start by considering the storage, computation and communications complex-

ity of the scheme as described in Section 2.



— Storage: the requirements for the host are to store ¢t MACs and a random
value; the requirements for the user are to store ¢ keys. During execution of
the protocol, the remote user and host must both store a further 2¢ MACs,
and the user must also temporarily store an additional ¢ keys. Note that, for
the streamlined scheme of Section 4, the long term storage requirements for
host and user increase to 3t MACs and 2t secret keys respectively. Note also
that, if the user retains ‘old’ key sets for resynchronisation purposes, then
this will be at a cost of ¢ keys, a random value and a usage counter for each
retained old set.

— Computation: the host verifies 2r MACs and chooses one random r-subset
of {1,2,...,t}, and the user generates 2t MACs.

— Communications: the user sends the host a total of 2¢ MACs, one ran-
dom value and r secret keys, and the host sends the user one r-subset of

(1,2,....t}

To see what this might mean in practice, suppose we wish to use the basic
scheme (of Section 2) in such a way that a particular key set can be used up
to ¢ = 3 times, and that the user retains one ‘old’ key set for resynchronisation
purposes. We thus choose r = 32 and ¢ = 196. Suppose that the MAC in use
is HMAC based on SHA-1 (see [5] and [3]) with MACs and keys of 160 bits
each; suppose also that X contains 128 bits. Then the user must store 2t keys,
two random values and a counter (which we ignore since it will take negligible
space) — this amounts to 392 x 20 + 32 bytes, i.e. just under 8 kbytes, with an
additional 12 kbytes of short term storage needed during protocol execution).
The host must store approximately 4 kbytes of MACs, with an additional 8
kbytes of short term storage needed during protocol execution. During use of
the protocol the user will need to compute 392 MACs and the host will need
to compute 64 MACs. The total data to be exchanged between host and user
during the protocol amounts to around 8.5 kbytes.

Note that the values X do not need to be random or unpredictable - U could
generate the values using a modest-sized counter (e.g. of 4 bytes). This would
save a small amount of communications and storage costs. It is also tempting
to try and reduce the MAC lengths. However, significant length reductions are
not possible since, as noted in Section 2, we do not wish the attacker to be
able to find any key which maps a given message to a given MAC, regardless
of whether or not it was the actual key used. This implies that MACs need to
be of length close to that assumed immediately above, although a reasonable
saving achievable by reducing MACs to, say, 10 bytes is not infeasible. Whilst
such modifications will not significantly reduce user storage requirements, the
communications requirements are almost halved, as are the host storage require-
ments.

5.2 A security improvement

In cases where ¢ > 1, i.e. where key sets may be used more than once, a ma-
licious entity impersonating the host is free to choose the subsets {1,2,...,r}



disjointly so as to learn the maximum number of secret keys. This maximises
the (small) probability this malicious entity will have of impersonating the user
to the genuine host (see Section 3.5). To avoid this, i.e. to increase the diffi-
culty of launching a host impersonation attack, we can modify the protocol so
that neither the remote user nor the host chooses the r-subset {41, is,...,,} of
{1,2,...,t}. This can be achieved by prefixing the protocol of Section 4 with two
additional messages, and also making use of an appropriate one-way, collision-
resistant hash-function (see, for example, [3]). Note that these two additional
messages can be merged with the first two messages of the basic protocol of
Section 2.
The revised protocol from Section 4.2 starts as follows:

1. H chooses a random value 7, of length comparable to the key length in use,
computes h(rg) (where h is a pre-agreed hash-function), and sends h(rp)
to U.

2. U chooses a random value ry, of length the same as rg, and sends it to H.

3. H computes h(rg||ry) and uses this hash-code to seed a pseudo-random
number generator (PRNG) of appropriate characteristics to generate an r-
subset {i1,42,...,4,} of {1,2,... ¢t} — this PRNG could, for example, be
based on h. H now sends ry and X to U.

4. U first checks ry using the value h(rg) sent previously. U now recomputes
the r-subset {i1,42,...,%,}, and continues as in step 2 of the scheme from
Section 4.2.

Note that, by sending h(rg) in the first step, H commits to the random value
rg without revealing it. This prevents either party learning the other party’s
random value before choosing their own. This, in turn, prevents either party
choosing even a small part of the r-subset. Note also that, although this scheme
lengthens the protocol, it also slightly reduces the communications complexity,
since the r-subset no longer needs to be transferred.

6 Summary and conclusions

A novel unilateral authentication protocol has been presented, which uses sym-
metric cryptography and only requires public information to be stored at the
verifying host. The computational and storage requirements are non-trivial, but
may still be potentially attractive to designers of low-cost remote user authenti-
cation devices who wish to avoid the complexity of implementing digital signa-
tures.
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