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Electromagnetic response of a vortex in layered superconductors
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Department of Physics & Astronomy, Northwestern University, Evanston, Illinois 60208
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~Received 10 May 1999!

We calculate the response of a vortex core in a layered superconductor to an ac electromagnetic field. In
particular we investigate the intermediate clean regime, where the broadening of the vortex core bound states
is comparable to or larger than the level spacing. The response of the order parameter, impurity self-energy,
and currents are obtained by a self-consistent determination of the distribution functions and the excitation
spectrum. The response is dominated by order parameter collective modes coupled to the fermion excitations
of the vortex core. At low frequencies this coupling leads to substantially enhanced absorption in the vortex
core.@S0163-1829~99!11237-2#
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I. INTRODUCTION

Vortex cores play a key role in dissipation processes
superconductors in the Abrikosov phase. Bardeen
Stephen1 modeled the vortex core as a region of norm
metal in which the excitations in the core respond to an e
tromagnetic field like electrons in the normal metallic sta
This is a good approximation for dirty superconductors w
a mean free pathl much smaller than the coherence leng
j0 . However, in clean superconductors the low-lying exci
tions in the core are the bound states of Caroli, de Gen
and Matricon.2 These excitations have superconducting
well as normal properties. They are the source of circulat
supercurrents in the equilibrium vortex core,3 and they are
strongly coupled to the condensate by Andreev’s scatte
processes.3,4 Their response to an electromagnetic field
radically different from that of normal electrons. For vorte
cores one has two fundamentally different origins of dissi
tion. One is dissipation by the collective motion of the co
densate, and the second is dissipation by transitions betw
Caroli–de Gennes–Matricon bound states. These proce
are coupled because of the strong interaction between
condensate and the bound states, and require a self-cons
treatment of condensate and bound-state dynamics. Ea
calculations of the ac-response neglected this coupling
concentrated on the limitv→0.5,6 We present a fully self-
consistent calculation of the response of the current den
in the core to an ac electric field of frequency compara
with the gap frequencyD/\ or smaller. Our results show tha
the coupling of condensate and bound-state dynamics is
sential for even a qualitative understanding of the lo
frequency dynamics of core electrons and the dissipatio
the core.

We consider a superconductor with a random distribut
of atomic size impurities in a static magnetic fiel
The applied ac electric field, dE0

v(t)5dE0e2 ivt

52 (1/c) ] tdAv(t), is linearly polarized in thex direction,
and its wavelength is large compared toj0 . The impurity
scattering rate is assumed to be large enough that the s
conductor is outside the superclean limit;7 i.e., all bound
PRB 600163-1829/99/60~14!/10447~8!/$15.00
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states are broadened by an amount comparable to or la
than the ‘‘minigap,’’D2/Ef .2 In particular we investigate the
intermediate clean regime,j0& l&(Ef /D)j0 , where we ex-
pect the model of a ‘‘normal metal core’’ to break down.
this regime we can use the quasiclassical theory,8 which is a
powerful method for studying nonequilibrium supercondu
tivity. This theory describes phenomena on length sca
large compared to the microscopic scales~Bohr radius, lat-
tice constantkf

21 , Thomas-Fermi screening length, etc.! and
frequencies small compared to the microscopic scales~Fermi
energy, plasma frequency, conduction band width, etc.!. We
use units\5kB51, and note that the charge of an electron
e,0. The ac frequencies of interest are of the order of
superconducting energy gap,uDu;Tc , or smaller, and the
length scales of interest are the coherence length,j0
5v f /2pTc , and the penetration depth,l. Hence, our theory
requires the conditionskfj0@1, and Tc /Ef!1, where the
Fermi wavelengthkf

21 and the Fermi energyEf stand for
typical microscopic length and energy scales.

II. THEORETICAL BACKGROUND

The quasiclassical theory is designed for our purposes
is formulated in terms of the quasiclassical Nambu-Keldy
propagatorǧ(pf ,R;e,t), which is a 434 matrix in Nambu-
Keldysh space, and a function of positionR, time t, energy
e, and momentapf on the Fermi surface. For a review of th
methods and an introduction to the notation we refer to
article by Larkin and Ovchinnikov.9 We denote Nambu-
Keldysh matrices by a ‘‘check’’ accent, and their 232
Nambu submatrices ofadvanced~superscriptA!, retarded
~superscript R!, and Keldysh-type~superscript K! by a
‘‘hat’’ accent. In this notation the transport equation and t
normalization condition read

F S e1
e

c
vf•AD ť32Ďm f2š i2d v̌,ǧG

^

1 ivf•“ǧ50, ~1!

ǧ^ ǧ52p21̌, ~2!
10 447 ©1999 The American Physical Society
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where A(R) is the vector potential of the static magne
field, B5“3A, Ďm f(pf ,R;t) is the mean-field order param
eter matrix, andš i(pf ,R;e,t) is the impurity self-energy.
The perturbationd v̌(pf ,R;t) includes the external electri
field and the field of the induced charge fluctuatio
dr(R;t). The commutator@Ǎ,B̌# ^ is Ǎ^ B̌2B̌^ Ǎ, where
the noncommutativê product is defined by

Ǎ^ B̌~e,t !5e
i
2 (]e

A] t
B

2] t
A]e

B)Ǎ~e,t !B̌~e,t !. ~3!

For convenience we work in a gauge where the external e
tric field is defined by a vector potentialdAv(t) and the
induced electric field is obtained from the electrochemi
potential dF(R;t). We consider the limit of largek
5l/j0 , so that we can neglect corrections to the vector
tential due to the induced current densities, which are p
portional to 1/k2. Hence in the Nambu-Keldysh matrix no
tation the perturbation has the form

d v̌52
e

c
vf•dAv~ t !ť31edF~R;t !1̌, ~4!

and is assumed to be sufficiently small so that it can
treated in linear response theory.

Equations ~1!–~4! must be supplemented by sel
consistency equations for the order parameter and the im
rity self-energy. We use the weak-coupling gap equation

D̂m f
R,A~R;t !5NfVE

2ec

1ec de

4p i
^ f̂ K~pf8 ,R;e,t !&, ~5!

D̂m f
K ~R;t !50, ~6!

and the impurity self-energy in Born approximation with is
tropic scattering,

š i~R;e,t !5
1

2pt
^ǧ~pf8 ,R;e,t !&. ~7!

The Nambu matrixf̂ K is the off-diagonal part ofĝK, and the
Fermi surface average is defined by

^¯&5
1

Nf
E d2pf8

~2p!3uvf8u
¯ , Nf5E d2pf8

~2p!3uvf8u
. ~8!

The material parameters that enter the self-consistency e
tions are the dimensionless pairing interactionNfV, the im-
purity scattering lifetimet, and the Fermi surface data:pf
~Fermi surface!, vf ~Fermi velocity!, andNf ~averaged den-
sity of states at the Fermi surface!. We eliminate both the
magnitude of the pairing interaction and the cutoff in Eq.~5!
in favor of the transition temperatureTc .

A. Linear response

In the linear response approximation we split the pro
gator and the self-energies into an unperturbed part an
term of first order in the perturbation

ǧ5ǧ01dǧ, Ďm f5Ďm f01dĎm f , š i5š01dš i , ~9!

and expand the transport equation and normalization co
tion through first order. In zeroth order
c-

l

-
-

e

u-

a-

-
a

i-

F S e1
e

c
vf•AD ť32Ďm f02š0 ,ǧ0G

^

1 ivf•“ǧ050, ~10!

ǧ0^ ǧ052p21̌, ~11!

and in first order

F S e1
e

c
vf•AD ť32Ďm f02š0 ,dǧG

^

1 ivf•“dǧ

5@dĎm f1dš i1d v̌,ǧ0# ^ , ~12!

ǧ0^ dǧ1dǧ^ ǧ050. ~13!

In order to close this system of equations one has to sup
ment the transport and normalization equations with the
roth and first order self-consistency equations for the or
parameter,

D̂m f0
R,A ~R!5NfVE

2ec

1ec de

4p i
^ f̂ 0

K~pf8 ,R;e!&, ~14!

dD̂m f
R,A~R;t !5NfVE

2ec

1ec de

4p i
^d f̂ K~pf8 ,R;e,t !&, ~15!

and the impurity self-energy,

š0~R;e!5
1

2pt
^ǧ0~pf8 ,R;e!&, ~16!

dš i~R;e,t !5
1

2pt
^dǧ~pf8 ,R;e,t !&. ~17!

The self-consistency equations~15! and ~17! for the re-
sponse of the self-energies are equivalent to vertex cor
tions in the Green’s function response theory, and are p
ticularly important in the context of nonequilibrium
superconductivity. The self-consistency conditions guaran
that the quasiclassical theory obeys fundamental conse
tion laws. In particular, Eqs.~16! and~17! imply charge con-
servation in scattering processes, whereas Eqs.~14! and~15!
imply charge conservation in particle-hole conversion p
cesses; any charge which is lost or gained in a particle-h
conversion process is balanced by the corresponding ga
loss of condensate charge. It is the coupled quasiparticle
condensate dynamics which conserves charge in super
ductors. Neglect of the dynamics of either component, or
of a nonconserving approximation for the coupling of qua
particles and collective degrees of freedom leads to unph
cal results.

Finally, the electrochemical potential,d F is determined
by the condition of local charge neutrality,10 which is a con-
sequence of the long-range of the Coulomb repulsion. T
Coulomb energy of a charged region of sizej0

3 and typical
charge densityeNfD is ;e2Nf

2D2j0
5 , which should be com-

pared with the condensation energy;NfD
2j0

3. Thus, the
cost in Coulomb energy is a factor (Ef /D)2 larger than the
condensation energy. This leads to a strong suppressio
charge fluctuations, and the condition of local charge neut
ity holds to very good accuracy for superconducting ph
‘“nomena. The formal result for the change in the char
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density in quasiclassical theory to leading order inD/Ef is
given in terms of the Keldysh propagatordĝK by11

dr (1)~R;t !5
eNf

11F0
s E de

4p i
^Tr dĝK~pf8 ,R;e,t !&

2
2e2Nf

11F0
s dF~R;t !, ~18!

whereF0
s are Landau parameters. From Maxwell’s equat

2“

2dF2 (1/c) ] t“•dA54pdr, it follows that the change
in the charge densitydr(R;t) is of order of (D/Ef)

3, imply-
ing that the leading order contribution vanishesdr (1)(R;t)
50. This is the condition of ‘‘local charge neutrality,’’10

valid through first order inD/Ef ; it implies a spatially vary-
ing electrochemical potentiald F determined by

2edF~R;t !5E de

4p i
^Tr dĝK~pf8 ,R;e,t !&. ~19!

The small charge density of order (D/Ef)
3, which produces

this potential, is calculated~in the high-k limit ! from
Poisson’s equation

dr~R;t !52
1

4p
“

2dF~R;t !. ~20!

Equations~10!–~17! and~19! constitute a complete set o
equations for calculating the electromagnetic response
vortex. The structure of a vortex in equilibrium is obtain
from Eqs.~10!, ~11!, ~14!, and~16!, and the linear respons
of the vortex to the perturbationdA(R;t) follows from Eqs.
~12!, ~13!, ~15!, ~17!, and ~19!. In equilibrium the current
circulating around the vortex is given by

j0~R!5eNfE de

4p i
^vf~pf8!Tr@ t̂3ĝ0

K~pf8 ,R;e!#&. ~21!

The currents induced bydA(R;t) can then be calculate
directly from the Keldysh propagatordĝK via

d j ~R;t !5eNfE de

4p i
^vf~pf8!Tr@ t̂3dĝK~pf8 ,R;e,t !#&.

~22!

The external field also induces nonequilibrium thermal c
rents in the vortex core, which are given by

d j «~R;t !5NfE de

4p i
^evf~pf8!Tr@ t̂0dĝK~pf8 ,R;e,t !#&

2 j0~R!dF~R;t !. ~23!

The self-consistent solution of the quasiclassical equat
ensure the following conservation laws for charge and
ergy:

] tdr (1)~R;t !1“•d j ~R;t !50, ~24!

] td«~R;t !1“•d j «~R;t !5 j0~R!•dE~R;t !, ~25!
n

a

-

s
-

where d«(R;t) is a local energy density, anddE(R;t)
5dE0

v(t)2“dF(R;t) is the total electric field. Because o
the local charge neutrality condition~19!, the first equation
reduces to“•d j (R;t)50.

B. Scalar transport equations

The numerical solution of nonequilibrium transport pro
lems is greatly simplified by a reformulation of the noneq
librium quasiclassical equations.12 For a derivation of these
equations from the standard equations listed above we
the projection operators introduced by Shelankov,13

P̂1
R,A5

1

2 S 1̂1
1

2 ip
ĝ0

R,AD , P̂2
R,A5

1

2 S 1̂2
1

2 ip
ĝ0

R,AD .

~26!

The projection operators obey the algebraic relations that
low from the normalization conditions~11!,

~ P̂1
R,A!25 P̂1

R,A , ~ P̂2
R,A!25 P̂2

R,A ,

P̂1
R,AP̂2

R,A5 P̂2
R,AP̂1

R,A50. ~27!

We use the following convenient parametrization of t
equilibrium propagators,14

ĝ0
R,A57 ipN0

R,AS 12g0
R,Ag̃0

R,A

2g̃0
R,A

2g0
R,A

211g0
R,Ag̃0

R,AD , ~28!

ĝ0
K5~ ĝ0

R2ĝ0
A!tanh~e/2T!, ~29!

N0
R,A5

1

11g0
R,Ag̃0

R,A , ~30!

where the scalar functionsg0
R,A are obtained by solving the

Riccati type transport equations

ivf•“g0
R,A12eg0

R,A52D̃R,A~g0
R,A!212SR,Ag0

R,A2DR,A,
~31!

ivf•“g̃0
R,A22eg̃0

R,A52DR,A~ g̃0
R,A!222S̃R,Ag̃0

R,A2D̃R,A.
~32!

Unphysical solutions are eliminated by choosing initial co
ditions properly. The initial conditions forg0

R andg̃0
A have to

be chosen so that their transport equations are stable in
rection ofvf , and the initial conditions forg̃0

R andg0
A so that

their transport equations are stable in direction of2vf . We
use the following short-hand notation for the driving terms
the transport equations:

D̂m f0
R,A 1ŝ i0

R,A2
e

c
vf•At̂35S SR,A DR,A

2D̃R,A S̃R,AD , ~33!

dh̆5dD̆m f1ds̆ i1d v̆,

dĥK5dĥR
^ tanh~be/2!2tanh~be/2! ^ dĥA1dĥa,

dĥR,A5S dSR,A dDR,A

2dD̃R,A dS̃R,AD , dĥa5S dSa dDa

dD̃a 2dS̃aD . ~34!
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The key result is that the Nambu matricesdĝR,A,K can be
expressed, with the help of Shelankov’s projectors, in te
of six scalar functions,dgR,A, dg̃R,A, dxa, andd x̃a, each of
which is a function ofpf , R, e, t, and satisfies a scala
transport equation. From the first-order normalizati
conditions ~13! we have P̂1

R,A
^ dĝR,A

^ P̂1
R,A50 and

P̂2
R,A

^ dĝR,A
^ P̂2

R,A50; as a consequence thespectral re-
sponsedĝR,A, can be written as

dĝR,A572p i @ P̂1
R,A

^ dX̂R,A
^ P̂2

R,A2 P̂2
R,A

^ dŶR,A
^ P̂1

R,A#.
~35!

The Nambu matricesdX̂R,A anddŶR,A are not uniquely de-
fined. However, a convenient parametrization in terms
two scalar functionsdgR,A anddg̃R,A is given by

dĝR,A572p i F P̂1
R,A

^ S 0 dgR,A

0 0 D ^ P̂2
R,A

2 P̂2
R,A

^ S 0 0

2dg̃R,A 0D ^ P̂1
R,AG . ~36!

It is convenient to transform from the Keldysh respon
function,dĝK to theanomalous responsefunction dĝa
s

f

e

dĝK5dĝR
^ tanh~e/2T!2tanh~e/2T! ^ dĝA1dĝa.

~37!

The normalization condition~13! gives P̂1
R

^ dĝa
^ P̂1

A 50

and P̂2
R

^ dĝa
^ P̂2

A 50, so thatdĝa can be written in the
following form:

dĝa522p i @ P̂1
R

^ dX̂a
^ P̂2

A 1 P̂2
R

^ dŶa
^ P̂1

A #, ~38!

where the freedom in choosingdX̂a and dŶa allows us to
parametrizedĝa in terms of two scalar distribution function
dxa andd x̃a,

dĝa522p i F P̂1
R

^ S dxa 0

0 0D ^ P̂2
A

1 P̂2
R

^ S 0 0

0 d x̃aD ^ P̂1
A G . ~39!

The transport equations for the scalar functionsdgR,A,
dg̃R,A, dxa, d x̃a follow from Eqs. ~10! and ~12!. They de-
couple for given self-energies, and one finds12 the following
set of linearized transport equations:
ivf•“dgR,A12edgR,A1~g0
R,AD̃R,A2SR,A! ^ dgR,A1dgR,A

^ ~D̃R,Ag0
R,A1S̃R,A!

52g0
R,A

^ dD̃R,A
^ g0

R,A1dSR,A
^ g0

R,A2g0
R,A

^ dS̃R,A2dDR,A, ~40!

ivf•“dg̃R,A22edg̃R,A1~ g̃0
R,ADR,A2S̃R,A! ^ dg̃R,A1dg̃R,A

^ ~DR,Ag̃0
R,A1SR,A!

52g̃0
R,A

^ dDR,A
^ g̃0

R,A1dS̃R,A
^ g̃0

R,A2g̃0
R,A

^ dSR,A2dD̃R,A, ~41!

ivf•“dxa1 i ] tdxa1~g0
RD̃R2SR! ^ dxa1dxa

^ ~DAg̃A1SA!

5g0
R

^ dS̃a
^ g̃0

A2dDa
^ g̃0

A2g0
R

^ dD̃a2dSa, ~42!

ivf•“d x̃a2 i ] td x̃a1~ g̃0
RDR2S̃R! ^ d x̃a1d x̃a

^ ~D̃Ag0
A1S̃A!

5g̃0
R

^ dSa
^ g0

A2dD̃a
^ g0

A2g̃0
R

^ dDa2dS̃a. ~43!

The transport equations fordgR, dg̃A, dxa are stable in direction ofvf , and the transport equations fordg̃R, dgA, d x̃a are
stable in direction of2vf .

The linear corrections to the retarded, advanced, and Keldysh Green’s function are then given by

dĝR,A572p iN0
R,A

^ S 2~dgR,A
^ g̃0

R,A1g0
R,A

^ dg̃R,A! ~dgR,A2g0
R,A

^ dg̃R,A
^ g0

R,A!

~dg̃R,A2g̃0
R,A

^ dgR,A
^ g̃0

R,A! ~dg̃R,A
^ g0

R,A1g̃0
R,A

^ dgR,A!
D ^ N0

R,A, ~44!

dĝa522p iN0
R

^ S ~dxa1g0
R

^ d x̃a
^ g̃0

A! 2~g0
R

^ d x̃a2dxa
^ g0

A!

~ g̃0
R

^ dxa2d x̃a
^ g̃0

A! ~d x̃a1g̃0
R

^ dxa
^ g0

A!
D ^ N0

A . ~45!
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FIG. 1. The left panel shows the local density of states in the core of a vortex as function of energy~e! at different points on a straigh
line through the vortex center. The spacing of the points is in steps of 0.8j0 , and the largest distance from the center is 8.8j0 . The center
of the vortex corresponds to the bright filled spectrum. The right panel is the local spectral current density for the same set of tra
Note that the spectral current density is dominated by the current carried by the bound states.
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After Fourier transforming Eqs.~40!–~43! we are left with
six ordinary differential equations along straight trajector
in R space. Thê product is especially simple for the cas
of linear response. The products are here of the t
Ê^ dX̂ or dX̂^ Ê whereÊ is an equilibrium quantity anddX̂
a response term. In Fourier space one obtains in this ca

Ê~e! ^ dX̂~e,v!5Ê~e1v/2!dX̂~e,v!,

dX̂~e,v! ^ Ê~e!5dX̂~e,v!Ê~e2v/2!. ~46!

For given self-energies, Eqs.~40!–~43! are adecoupledset
of linear differential equations for the scalar function
dgR,A, dg̃R,A, dxa, d x̃a. The solution of this initial value
problem is obtained numerically by standard Runge-Ku
methods. This method is superior to the direct solution of
matrix differential equation system, Eqs.~12!,~13! ~a stiff
boundary value problem! which suffers from numerical in-
stabilities and is not as fast. The scalar functionsdgR,A,
dg̃R,A, dxa, d x̃a, are coupled through the self-consisten
conditions for dDR,A,a and dSR,A,a, which determine the
right-hand sides of Eqs.~40!–~43!. The self-consistency
problem is solved numerically in an effective way using sp
cial algorithms for updating the right-hand side of Eq
~40!–~43!.12

III. RESULTS AND DISCUSSION

The linear response equations require as input the s
consistent equilibrium functionsg0

R,A , g̃0
R,A , and equilib-

rium self-energiesSR,A, S̃R,A, D̃R,A, D̃R,A. They are ob-
tained by solving Eqs.~31!,~32! self-consistently with Eqs
~14! and ~16!, using Eqs.~28!–~30! and ~33!. Given these
solutions we then solve the first-order transport equati
~40!–~43! together with the linearized self-energy equatio
~15!,~17! and the charge neutrality condition~19!, using the
relations~44!–~46!, ~37!, and~34!. The linear response limi
is valid as long as the expansion parameterd is small
s

e

,

a
e

-
.

lf-

s
s

enough; where d5eudE0uj0D/v2 for v*1/t, d
5eudE0uj0Dt/v for v&1/t, and d5eudE0uj0 /v for v
*D. In these cases the changesdDm f are small compared to
the equilibrium order parameterDm f0 and the spatial oscilla-
tion amplitude of the vortex center~defined as the poin
where the order parameter vanishes! is small compared to the
coherence length.

The calculations are done for layereds-wave supercon-
ductors with a cylindrical Fermi surface along thec direc-
tion, isotropic Fermi velocityvf in the ab plane and a large
Ginzburg-Landau parameterk@1. Impurity scattering is
taken into account self-consistently in the Born approxim
tion. We consider a moderately clean superconductor wi
mean free path,l 510j0 , and choose a low temperatureT
50.3Tc . We present results fors-wave pairing since the
dynamics associated with the continuum and bound state
most clearly distinguishable in this case. However,
vortex-core dynamics of ad-wave superconductor12 is quali-
tatively similar to thes-wave case presented here.

Figure 1, left panel, shows the calculated local density
states

N0~R,e!5Nf

1

4p i
^Tr@ t̂3ĝ0

A~pf8 ,R;e!2 t̂3ĝ0
R~pf8 ,R;e!#&,

~47!

of an equilibrium vortex at various distances from the co
center. The important feature at the vortex center is the z
energy bound state, which is broadened by impurity scat
ing into a resonance of widthG'0.6Tc . At finite distances
from the vortex center the bound states of quasiparticles w
different angular momenta~different impact parameter! form
a one-dimensional band, which is broadened by impu
scattering. The bands widen with increasing distance fr
the center because of the coupling to the vortex flow fie
and develop Van Hove singularities at the band edges.
continuum edges show a characteristic shape as a resu
Doppler shifts due to the circulating supercurrents. At t
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FIG. 2. Two-dimensional plot of the charge current density distribution~first column! and corresponding local (external1induced)
electric field~second column!. The order parameter displacement velocity field is shown in the third column, and the thermal current
distribution is shown in the fourth column. The results are for a frequency ofv50.3D with the external field along thex direction. The top
row shows the amplitude of the in-phase response (;cosvt), while the bottom row shows the reactive response (;sinvt). Distances from
the vortex center extend up to 6.3j0 .
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vortex center, as a result of self-consistency, there is no
hancement of the density of states at the continuum e
The right panel of Fig. 1 is the corresponding spectral curr
density4

j0~R,e!52eNf

1

4p i
^vf~pf8!Tr@ t̂3ĝ0

A~pf8 ,R;e!

2 t̂3ĝ0
R~pf8 ,R;e!#&, ~48!

for the vortex as a function of the impact parameter, wh
illustrates clearly that the equilibrium current density in t
core of the vortex is carried by the bound states.

The first two columns in Fig. 2 show typical results f
the current patternsd j (R,t) and field patternsdE(R,t), in-
duced by an external electric field of the formdE0

v(t)
5dE0 cos(vt). The system responds with an in-phase
sponse@;cos(vt)# and out-of-phase response@;sin(vt)#.
The in-phase current response at positionR determines the
local time-averaged energy transfer between the exte
field and the electrons,E(R)5^d j (R,t)•dE0

v(t)& t , while the
out-of-phase current response is non-dissipative. Absorp
and reactive currents show characteristically different fl
patterns. The nondissipative current response,d j 9, is nearly
homogeneous~see lower left pattern of Fig. 2!, whereas the
pattern of absorptive current responsed j 8, has qualitatively
the form of a vortex-antivortex pair~see upper left pattern o
Fig. 2!. Hence, the partj01d j 8 of the total current density
j01d j , describes a transverse oscillation of the equilibriu
current pattern in they direction. The amplitude of this os
cillation increases with decreasing frequency. At higher f
quency the current pattern deviates significantly from a ri
shift, as can be seen in Fig. 5~discussed below!. The second
column of Fig. 2 shows the total electric field,dE(R,t)
5dE0

v(t)2“dF(R,t), which consists of the homogeneou
n-
e.

nt

h

-

al

ve

-
d

external field and the internal field due to charge fluctuatio
induced by the external field. Note that the induced field
predominantly out-of-phase and exceeds the external fiel
the center of the vortex core. For higher frequencies, 0D
&v&2D, the induced dipolar field evolves from an out-o
phase dipolar field along the direction of the applied field
an in-phase dipolar field opposite to the applied field, th
reducing the external field by roughly one half. The induc
field vanishes rapidly for frequencies above the gap ed
The charge density fluctuations responsible for the
duced field dr(R,t)52“

2dF(R,t), are of the order
(ed/j0

2)•(D/Ef). Thus, only a fraction (ed)•(D/Ef) of an
elementary charge oscillates periodically in time over an a
of j0

2. The charge accumulation is consistent with the con
tion of local charge neutrality,10 as discussed in Sec. II A
We note that the induced charge in the vortex core resul
from particle-hole asymmetry, as discussed recently,15 is of
ordere(D/Ef)

2, i.e., of second order inD/Ef and negligible
in the context of this paper. However, the particle-hole asy
metric charges give a comparable contribution to the dyna
ics of the vortex core for sufficiently small excitation field
i.e., d;D/Ef , which may be relevant in high-Tc supercon-
ductors.

The in-phase current and field response~upper row of Fig.
2! imply that the local absorption can be either positi
@‘‘hot spots’’ with E(R).0 in the vortex center#, or negative
@‘‘cold spots’’ with E(R),0 above and below the vorte
center#, and is dominated by the absorption in the vort
center. The net dissipation is positive, and is obtained
integratingE(R) over the vortex. At higher frequencies th
dissipation is dominated by higher energy bound states an
located away from the vortex center~see Fig. 5!.

The electromagnetic response of the vortex core is du
an interplay between collective dynamics of the order para



co

ti
0°
n
v

-

-

fo
ity

a
ed
r
e

is
ty

an

or
lla

t
t

sity

lf-
ld-
s–
eter
the
by

rent
rtex

the
elf-
to a

for

re

si-

si-

the
the
rtex

ter,

ge-
cal
,
,
ld,
-

us
real
s.
um
ates
om-
e-
. It

ap
t
de
c

ce

ity

re
oz

an

PRB 60 10 453ELECTROMAGNETIC RESPONSE OF A VORTEX IN . . .
eter and the dynamics of the Caroli–de Gennes–Matri
bound states. We find that at low frequencies,v'1/t, the
order parameter performs a nearly homogeneous oscilla
perpendicular to the applied field, with a velocity that is 9
out of phase with the applied field. To analyze the deviatio
of the self-consistent order parameter from the rigidly mo
ing vortex structures forv!Dm f we introduce the order pa
rameter displacement vectordR0(t) defined by dD(R,t)
5dR0(R,t)•“Dm f0(R). The velocity field of the order pa
rameter is thendv(R,t)5] tdR0(R,t). The nearly homoge-
neous oscillation at low frequencies is shown in Fig. 2
v50.3D in the third column. The order parameter veloc
field for a higher frequencyv51.2D, is shown in Fig. 3.
The vortex core oscillates at these frequencies in-phase
perpendicular to the applied field but is strongly deform
In one period the vortex center moves a distance of orde
the coherence length multiplied with the linear-response
pansion parameterd. So, the velocity of the vortex center
of the order ofj0vd;v fd. Nevertheless, the current densi
in the vortex core is smaller by a factord compared to the
Landau critical current density. Forv*D, both the phase
and amplitude of the vortex core oscillation decrease
approach zero abovev;2D. In Fig. 2, last column, we
show the energy current density,d j «(R,t), for v50.3D.
Our calculations show that the energy flow in the vortex c
is predominantly in direction of the order parameter osci
tion and is restricted to the core region.

The coupling between order parameter response and
bound states is demonstrated in Fig. 4, which compares

FIG. 3. The order parameter displacement velocity for an
plied electric field withv51.2D. The difference in the velocities a
the inner and outer region of the core is indicative of strong or
parameter deformation. The left panel shows the in-phase velo
field, and the right panel the out-of-phase velocity field. Distan
from the center of the core extend up to 4.7j0 .

FIG. 4. Absorptive part of the spectral current dens
^v f xdgR(pf ,R;e)&, at the vortex center~left! and at point (0.8j0,0)
on the x axis ~right! for v50.3D. The vertical lines denotee
5v/2. The solid curves are the fully self-consistent spectral
sponse, while the dashed lines represent the spectrum for a fr
order parameter.
n

on

s
-

r

nd
.
of
x-

d

e
-

he
he

absorptive part of the nonequilibrium spectral current den
d j x

S(e)5^v f x Tr@ t̂3dĝR(pf8 ;e)#&, obtained from a self-
consistent calculation with that obtained from a non-se
consistent calculation that takes into account the fie
induced transitions within the band of Caroli–de Genne
Matricon bound states, but freezes the order param
degrees of freedom. The corresponding contribution to
current density is obtained by multiplying these functions
the Fermi function centered ate5v/2, and integrating over
e:16 d j x

S5* (de/p) f (e2v/2)d j x
S(e). The absorptive part of

the response function shows peaks in the spectral cur
density associated with the band of bound states in the vo
core. The spectral weight abovee5v/2 does not contribute
significantly to the current response. Figure 4 shows that
bound state band is shifted to lower energy by the s
consistent response of the order parameter, leading
strong enhancement of the absorptive current.

The absorptive currents show a nontrivial structure
frequencies in the rangeD,v,2D. Figure 5 shows that the
absorptive currents flow predominantly in regions whe
bound states with energyebs5v/2 are localized. We inter-
pret these structures in terms of impurity-mediated tran
tions between the Van Hove band edges~shown in Fig. 1! of
the bound-state bands of the equilibrium vortex. The tran
tion rate increases with decreasing frequency, and forv com-
parable to the width of the zero energy resonance in
bound state spectrum the absorption is determined by
spectral dynamics of the zero energy resonance at the vo
center. The spectral response of these states~Fig. 4! leads to
a dramatically enhanced absorption near the vortex cen
which is much larger than in the normal state.

It is convenient to describe the response of an inhomo
neous system to a homogeneous electric field by a ‘‘lo
conductivity,’’ s i j (R,v). It is defined by the linear relation
d j i(R,v)5s i j (R,v)dE0 j (v), between the current density
j (R,v), and the amplitude of the homogeneous fie
dE0(v). Figure 6 shows the local conductivity in the vicin
ity of the vortex core as a function of frequency for vario
distances from the vortex center. At the vortex center the
part ofsxx ~absorption! increases rapidly at low frequencie
Further away from the center the absorption has a maxim
at a frequency corresponding to transitions between st
near the Van Hove peaks of the bound state band. For c
parison we show in Fig. 6 the conductivity of a homog
neous superconductor with the same mean-free path

-

r
ity
s

-
en

FIG. 5. Dissipative currents in the vortex core induced by
external electric field in thex direction with v51.1D ~left! and
1.5D ~right!. Note that the current density atv51.5D is scaled by a
factor 2.5 relative to the current density at 1.1D. Distances from the
center extend up to 6.3j0 .
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shows the typical absorption edge fors-wave pairing atv
52D. It should be emphasized that the low-frequency
sorption in the vortex center is much larger than the Dru
absorption in the normal state~inset of Fig. 6!. This effect
reflects the existence of the zero-energy resonance in

FIG. 6. Local conductivity in the vortex core as a function
frequency. The lower set of curves showv Resxx as a function of

distance from the center~shown in the legend! along theŷ direction.
The upper set of curves arev Im sxx . The thick black curves cor-
respond to the vortex center. For comparison, the thick gray cu
are the conductivity for a homogeneous superconductor with
same mean-free-path, which illustrates the role of the vortex-c
bound states in the EM response of the core. The inset sho
comparison of the Drude absorption~dotted curve! of a normal
metal with the enhanced absorption at the center of the vortex
~full curve!. Note thats052e2Nfv f

2 , l 510j0 andT50.3Tc .
v

.

w
ld,
-
e

he

bound state spectrum at the vortex center~see Fig. 1!. The
conductivity sum-rule is obeyed despite this enhanced
sorption. The apparent excess weight of* Resxx(v)dv is
compensated by a negatived function contribution associ-
ated with counterflowing supercurrents near the vortex c
ter. Figure 6 also shows enhanced supercurrents in the vo
center~as compared to a homogeneous superconductor! for
frequencies comparable with the width of the zero-ene
resonance.

Finally we note that the order parameter response at
frequencies is mostly transverse to the electric field and
the absorptive current in the core is predominantly paralle
the applied field, i.e., there are no charge currents in thy
direction related to the order parameter motion. Howev
there is a substantial energy flow in they direction. Our
calculations show that the energy flow in the vortex core
predominantly in direction of the order parameter oscillati
and transports energy from ‘‘hot spots’’ to ‘‘cold spots.
Thus, the states in the vortex core extract energy from
external field, and transport this energy several cohere
lengths away from the vortex center in they direction. The
net dissipation will finally be determined by inelastic pr
cesses in the vortex core.
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