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Electromagnetic response of a vortex in layered superconductors

M. Eschrig and J. A. Sauls
Department of Physics & Astronomy, Northwestern University, Evanston, lllinois 60208

D. Rainer
Physikalisches Institut, Universit®ayreuth, D-95440 Bayreuth, Germany
(Received 10 May 1999

We calculate the response of a vortex core in a layered superconductor to an ac electromagnetic field. In
particular we investigate the intermediate clean regime, where the broadening of the vortex core bound states
is comparable to or larger than the level spacing. The response of the order parameter, impurity self-energy,
and currents are obtained by a self-consistent determination of the distribution functions and the excitation
spectrum. The response is dominated by order parameter collective modes coupled to the fermion excitations
of the vortex core. At low frequencies this coupling leads to substantially enhanced absorption in the vortex
core.[S0163-18209)11237-2

[. INTRODUCTION states are broadened by an amount comparable to or larger
than the “minigap,”A?/E; .2 In particular we investigate the
Vortex cores play a key role in dissipation processes ofntermediate clean regimé&y,<I|<(E;/A)&,, where we ex-
superconductors in the Abrikosov phase. Bardeen angect the model of a “normal metal core” to break down. In
Stepheh modeled the vortex core as a region of normalthis regime we can use the quasiclassical théampich is a
metal in which the excitations in the core respond to an elecpowerful method for studying nonequilibrium superconduc-
tromagnetic field like electrons in the normal metallic state tivity. This theory describes phenomena on length scales
This is a good approximation for dirty superconductors withlarge compared to the microscopic scalBshr radius, lat-
a mean free path much smaller than the coherence lengthtice constankf_l, Thomas-Fermi screening length, ¢tand
&o. However, in clean superconductors the low-lying excita-frequencies small compared to the microscopic sq@esmi
tions in the core are the bound states of Caroli, de Gennegnergy, plasma frequency, conduction band width).ei¢e
and Matricor? These excitations have superconducting asuse unitsh = kg =1, and note that the charge of an electron is
well as normal properties. They are the source of circulatingg<0. The ac frequencies of interest are of the order of the
supercurrents in the equilibrium vortex cdrend they are superconducting energy gapy|~T., or smaller, and the
strongly coupled to the condensate by Andreev’s scatteringgngth scales of interest are the coherence length,
processed”* Their response to an electromagnetic field is=v;/2wT., and the penetration depth, Hence, our theory
radically different from that of normal electrons. For vortex requires the condition&£,>1, and T./E;<1, where the
cores one has two fundamentally different origins of diSSipa-Fermi Wave|engtkk;l and the Fermi energi; stand for
tion. One is dissipation by the collective motion of the Con-typica| microscopic |ength and energy scales.
densate, and the second is dissipation by transitions between
Caroli—-de Gennes—Matricon bound states. These processes
are coupled because of the strong interaction between the
condensate and the bound states, and require a self-consistentThe quasiclassical theory is designed for our purposes and
treatment of condensate and bound-state dynamics. Earlig§ formulated in terms of the quasiclassical Nambu-Keldysh
calculations of the ac-response neglected this coupling Osropagatory(p;,R;e,t), which is a 4<4 matrix in Nambu-
concentrated on the limib—0.>° We present a fully self- Keldysh space, and a function of positigy time t, energy
consistent calculation of the response of the current density and momenta; on the Fermi surface. For a review of the
in the core to an ac electric field of frequency comparablemethods and an introduction to the notation we refer to the
with the gap frequency/# or smaller. Our results show that article by Larkin and Ovchinniko¥. We denote Nambu-
the coupling of condensate and bound-state dynamics is egeldysh matrices by a ‘“check” accent, and theirx2
sential for even a qualitative understanding of the low-Nambu submatrices ofidvanced(superscriptA), retarded
frequency dynamics of core electrons and the dissipation ifisuperscriptR), and Keldysh-type(superscriptK) by a

the core. _ _ ~ *“hat” accent. In this notation the transport equation and the
We consider a superconductor with a random distributiorhormalization condition read

of atomic size impurities in a static magnetic field.

Il. THEORETICAL BACKGROUND

The applied ac electric field, SEg(t)= SEqe 't e .

=— (1/c) 4,8A°(t), is linearly polarized in thex direction, €t Vi AlTa= A= 6= 6V,§| +iv-Vg=0, (1)
and its wavelength is large compared &g. The impurity ®

scattering rate is assumed to be large enough that the super- .

conductor is outside the superclean lifhite., all bound geg=—=%1, 2
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where A(R) is the vector potential of the static magnetic
field, B=V XA, A.«(ps,R;t) is the mean-field order param-
eter matrix, ando;(ps,R;e€,t) is the impurity self-energy.
The perturbationsv(ps,R;t) includes the external electric G 8= — w21 (11)
field and the field of the induced charge fluctuations 90@Fo= 7L,

dp(R;t). The commutatofA,B], is AeB—B®A, where and in first order

the noncommutatived product is defined by

+ivi-Vg,=0, (10)

®

e X ~ .
(E+ EVf'A)T3_Ame_UO-go

e .
. . i ) . . e+—V-A)3’—A — 09,00 +ive- Vg
Ao B(et)=ez(FX-TDA(e )B(e ). 3) c /"7 787 Smio™ To. 0G| TIVer V.Y
For convenience we work in a gauge where the external elec- =[8A i+ 85+ oV,90le, (12
tric field is defined by a vector potenti@A®“(t) and the
induced electric field is obtained from the electrochemical Jo® 69+ 6@ g,=0. (13

potential 6®(R;t). We consider the Ilimit of largex
=\/¢&p, so that we can neglect corrections to the vector po-
tential due to the induced current densities, which are pro-
portional to 1k2. Hence in the Nambu-Keldysh matrix no-
tation the perturbation has the form

In order to close this system of equations one has to supple-
ment the transport and normalization equations with the ze-
roth and first order self-consistency equations for the order
parameter,

5\7=—gvf-5A“’(t)5'3+e5<I>(R;t)i, (@) AR =N Vf <f (P .Rie). (14

and is assumed to be sufficiently small so that it can be R tec de .

treated in linear response theory. 5A§*fA(R;t)=Nfo r(&f"(m R;et)), (15
Equations (1)—(4) must be supplemented by self- e !

consistency equations for the order parameter and the impymd the impurity self-energy,

rity self-energy. We use the weak-coupling gap equations

1
sEpRO=NY [ LS ReD),  © FolRi€)= 2oy (olPrRi), (10

€c

AK(R;t)=0, (6) 65i(Riet)= 5— <5g(pf Ri€t)). (17

and the impurity self-energy in Born approximation with iso-

tropic scattering, The self-consistency equation$5) and (17) for the re-

sponse of the self-energies are equivalent to vertex correc-
tions in the Green’s function response theory, and are par-
oi(R;e, t)— <g(pf ,R;€,1)). (7)  ticularly important in the context of nonequilibrium

superconductivity. The self-consistency conditions guarantee

The Nambu matrix¥ is the off-diagonal part o§*, and the that the quasiclassical theory obeys fundamental conserva-

Fermi surface average is defined by tion laws. In particular, Egg16) and(17) imply charge con-
servation in scattering processes, whereas 8¢g.and(15)
1 dzp; d2pf’ imply charge conservation in particle-hole conversion pro-
()= N_f m » N¢= m 8 cesses; any charge which is lost or gained in a particle-hole

conversion process is balanced by the corresponding gain or
The material parameters that enter the self-consistency equiss of condensate charge. It is the coupled quasiparticle and
tions are the dimensionless pairing interacthdy), the im-  condensate dynamics which conserves charge in supercon-
purity scattering lifetimer, and the Fermi surface datp;  ductors. Neglect of the dynamics of either component, or use
(Fermi surfacg v; (Fermi velocity, andN; (averaged den- of a nonconserving approximation for the coupling of quasi-
sity of states at the Fermi surfgcéNe eliminate both the particles and collective degrees of freedom leads to unphysi-
magnitude of the pairing interaction and the cutoff in E5).  cal results.

in favor of the transition temperatufe. . Finally, the electrochemical potentiad® is determined
by the condition of local charge neutralitywhich is a con-
A. Linear response sequence of the long-range of the Coulomb repulsion. The

Coulomb energy of a charged region of siZeand typical
charge densitgN;A is ~ e2N?A%£3, which should be com-
pared with the condensation energnyA2§O Thus, the
cost in Coulomb energy is a factoE(/A)? larger than the

X = =X _X X « - - condensation energy. This leads to a strong suppression of

9=00+ 00, Ami=Amiot SAmi,  0i=00+ 0Gi, (9) charge quctuations?Zmd the condition of Ioca?charr)ge neutral-
and expand the transport equation and normalization condity holds to very good accuracy for superconducting phe-
tion through first order. In zeroth order “nomena. The formal result for the change in the charge

In the linear response approximation we split the propa-
gator and the self-energies into an unperturbed part and a
term of first order in the perturbation
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density in quasiclassical theory to leading orderdifE; is  where d¢(R;t) is a local energy density, andE(R;t)
given in terms of the Keldysh propagatég® by'! = 0Eg(t) — VP (R;t) is the total electric field. Because of
the local charge neutrality conditidid9), the first equation

So(R1) = eN f de Tr 865(0! Rec.t reduces tdv - 6j(R;t)=0.
P ( 1)_1+F(s) 47T|< r g (pfl €, )>
N B. Scalar transport equations
— ;5<I>(R;t), (18) The numerical solution of nonequilibrium transport prob-
1+Fo lems is greatly simplified by a reformulation of the nonequi-

librium quasiclassical equation$For a derivation of these
equations from the standard equations listed above we use
the projection operators introduced by Shelankbv,

whereF§ are Landau parameters. From Maxwell's equation
— V2560 — (1/c) 9,V - SA=4mbp, it follows that the change
in the charge densityp(R;t) is of order of A/E;)3, imply-

ing that the leading order contribution vanish@s“)(R;t) R 1 aa R 1 aa
=0. This is the condition of “local charge neutrality"> PP=5|1+ 580", P =5|1- 00"
valid through first order il\/Es ; it implies a spatially vary- (26)

ing electrochemical potential® determined by o _ )
The projection operators obey the algebraic relations that fol-

de low from the normalization conditiondl 1),
2e5<I>(R;t)=f—.<Tr 89X (pf \R;€,1)). (19
am (PTA)2=PRA, (PRA)2=pRA
The small charge density of ordeA{E)3, which produces R ARRA  ARAARA
this potential, is calculatedin the highx limit) from PP =P2PR =0. 27

Poisson’s equation We use the following convenient parametrization of the

equilibrium propagator}

1
O v 27 .
5p(R,t) 47TV 5¢)(R,t) (20) CRA A 1_7§,A75,A 2’y§'A
Equations(10)—(17) and(19) constitute a complete set of
equations for calculating the electromagnetic response of a 95 = (88— g5 tank e/2T), (29)
vortex. The structure of a vortex in equilibrium is obtained
from Eqgs.(10), (11), (14), and(16), and the linear response 1
of the vortex to the perturbatiofA(R;t) follows from Egs. NS“EW, (30
(12), (13), (15), (17), and (19). In equilibrium the current Yo Y0
circulating around the vortex is given by where the scalar functiongy” are obtained by solving the

Riccati type transport equations

de
. o ’ ~ aK ’ . _
JO(R)_eNJ 2 VHPOTATGO(PLRION. @Dy g RAL o RAL _FRA(RA)ZL oS RARA_ARA

(31
The currents induced byA(R;t) can then be calculated
. ,\K . ~ ~
directly from the Keldysh propagatd@ig” via ivf-V7§'A—267§'A: _AR,AG,(F;,A)z_22R,A3,§,A_AR,A_
g (32)
€
5j(R;t)=efo m(vf(pf’)Tr[%g&gK(p; R;€,0)]). Unphysical solutions are eliminated by choosing initial con-

(22  ditions properly. The initial conditions fopy and¥4 have to
be chosen so that their transport equations are stable in di-
The external field also induces nonequilibrium thermal cur+ection ofv;, and the initial conditions fof/§ and y, so that
rents in the vortex core, which are given by their transport equations are stable in direction-of; . We
use the following short-hand notation for the driving terms in
de the transport equations:
B3RO =N [ v () T 3050 (0 Rs)])
l SRA  ARA

- ARA+GRA— Sy, A%,= (33
—jo(R)SD(R;t). (23 mfo™ Jio T VITATIT| XRA SRAJ

The self-consistent solution of the quasiclassical equations
ensure the following conservation laws for charge and en-

ergy:

Sh=6A + S0+ &V,

ShK= shRe tanH Be/2) —tank Be/2) ® ShA+ 5h?,
3, 0pV(R;t) + V- 8j(R;1)=0, (24

R (52“ 5AR'A) R <5Ea SA®

| e SIRA sA® —5’2’a>' (39

90e(Rit) + V- 8] (Rit) =jo(R) - SE(R;t), (29
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The key result is that the Nambu matricdg™*'K can be 59K = sgR® tani €/2T) — tank €/2T) ® 5§*+ 5G°.
expressed, with the help of Shelankov’s projectors, in terms (37
of six scalar functionsgy®#, s34, 6x2, and 62, each of X
which is a function ofps, R €, t, and satisfies a scalar The normalization conditior{13) gives pR T ® 607 P’i=0

transport equation. From the first-order normalizationgnd PR o 5§22 P2 =0, so thats§® can be written in the
conditions (13) we have PR sgR*@PRA=0 and following form:
PRAg s§RA2 PRA=0; as a consequence tispectral re-

sponsesgR”, can be written as 59°=—2mi[PRe oX2e P2 + PRe sY20 PL], (39
SGRA= T 27i[ PRA® sXRAQ PRA-PRAg sYRAQ PRAT - where the freedom in choosingX?® and 5Y2 allows us to
(35) parametrize5g? in terms of two scalar distribution functions

s o . ox® and %8,
The Nambu matricesX®* and sYR” are not uniquely de-

fined. However, a convenient parametrization in terms of S 0
two scalar functionsfy®# and 6374 is given by 893=—2mi| PR® ®PA
0 O -
S R,A
SGRA= 5 2711 | PRA ®PRA i [0 0
0 o0 +PIe| ) ca| OPL (39
- PRAg P T @ PRA (36)  The transport equations for the scalar functiofig®”,

SYRA, 6x3, 6% follow from Egs.(10) and (12). They de-
It is convenient to transform from the Keldysh responsecouple for given self-energies, and one fittdie following
function, 5§¥ to theanomalous respondenction 62 set of linearized transport equations:

in . V57R'A+ 2657R’A+ ( yg,AZR,A_ 2R,A)® 5YR,A+ 5)/R'A®(ZR‘A)/§’A+§R’A)
= —15"@ sARAR ¥ A+ 3R A v Ay Ae SSRA- SARA, (40)
in .V 5:}-/R,A_ ZeﬁR’A-I- (';}'/g,AAR,A_iR,A) ® ﬁR‘A-I- 5':}'/R,A® (AR,A?(I?,A_I_ ER’A)
=5 @ sARAR YA+ 2R AR YA Y5 Aw SR RA— SARA, (42)
ViV ox+i ;0% + (ygAR-3F) @ ox3+ oxe (A A+ 34)
= 75© 8220, — SA%® T, — vo© 6%~ 532, (42)
Vi Vo%2—id, 0%+ (VpAR-SR) @ 6%+ ox®@ (AA 5+ 54

FR® 6320 yh— SA2® yh—YR® 5A2— 832, (43)

The transport equations fatyR, 63", ox? are stable in direction of;, and the transport equations f6§R, 57", sx? are

stable in direction of-v;.
The linear corrections to the retarded, advanced, and Keldysh Green'’s function are then given by

5gRA— = 2miNEAG — (5975 + 1@ A (8YRA— g e 5T e v )) s "
=2l ' ~ = i
N A A B C e R e A
sie _pminfe| (DT HEFET) —(ge S -ader)) s
= —4ZT .
’ Tl Resc-seTh)  (FerHeaceyl) |
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FIG. 1. The left panel shows the local density of states in the core of a vortex as function of éfeagdifferent points on a straight
line through the vortex center. The spacing of the points is in steps &§ 0ahd the largest distance from the center i£8.8The center
of the vortex corresponds to the bright filled spectrum. The right panel is the local spectral current density for the same set of trajectories.
Note that the spectral current density is dominated by the current carried by the bound states.

After Fourier transforming Eq940)—(43) we are left with  enough; where §=e|6Ey|&Alw?  for  w=1lr, &

six ordinary differential equations along straight trajectories=g| 5E,| £,A 7/w for w=1/7, and 6=e|SEy|&y/w for w

in R space. Thex product is especially simple for the case = A. In these cases the chang®s,,; are small compared to

of linear response. The products are here of the typenhe equilibrium order parametér,,;, and the spatial oscilla-

E® 86X or SX® E whereE is an equilibrium quantity andX  tion amplitude of the vortex centeidefined as the point

a response term. In Fourier space one obtains in this case where the order parameter vanishisssmall compared to the
coherence length.

E(e)® 6X(€,0)=E(e+ w/2)5X(€,0), The calculations are done for layersdvave supercon-
ductors with a cylindrical Fermi surface along thedirec-
SX(e,0)®E(€)= 6X(e,w)E(e— wl2). (46) tiqn, isotropic Fermi velocity; in theab plane and a Iarge

Ginzburg-Landau parametex>1. Impurity scattering is

For given self-energies, Eq&0)—(43) are adecoupledset  taken into account self-consistently in the Born approxima-

of linear differential equations for the scalar functions,tion. We consider a moderately clean superconductor with a

SYRA, SYRA, 5x®, 5%2. The solution of this initial value mean free pathl=10%,, and choose a low temperatufe

problem is obtained numerically by standard Runge-Kutta=0.3T.. We present results fog-wave pairing since the

methods. This method is superior to the direct solution of thelynamics associated with the continuum and bound states is

matrix differential equation system, Eqgl2),(13) (a stiff ~ most clearly distinguishable in this case. However, the

boundary value problejnwhich suffers from numerical in- vortex-core dynamics of d-wave superconductbfis quali-

stabilities and is not as fast. The scalar functiahg®”, tatively similar to thes-wave case presented here.

SYRA, ox?, 8@, are coupled through the self-consistency Figure 1, left panel, shows the calculated local density of

conditions for SARA2 and §3RA2 which determine the states

right-hand sides of Eqs(40)—(43). The self-consistency

problem is solved numerically in an effective way using spe- 1 o AR

cial algorithms for updating the right-hand side of Egs. No(R,€)=N¢ —(Tr[7585(ps,R;€)—F380(pt ,Ri€)]),

(40)—(43).12 47)

IIl. RESULTS AND DISCUSSION of an equilibrium vortex at various distances from the core
) ) ] ] center. The important feature at the vortex center is the zero-
The linear response equgtlonsArequlirE as input the selnergy bound state, which is broadened by impurity scatter-
consistent equilibrium functiongg™, ¥y, and equilib-  ng into a resonance of widthi~0.6T,. At finite distances
rium self-energiesSRA, SRA ARA ARA They are ob- from the vortex center the bound states of quasiparticles with
tained by solving Eqs(31),(32) self-consistently with Eqs. different angular momentaifferent impact parametgform
(14) and (16), using Eqgs.(28)—(30) and (33). Given these a one-dimensional band, which is broadened by impurity
solutions we then solve the first-order transport equationscattering. The bands widen with increasing distance from
(40—(43) together with the linearized self-energy equationsthe center because of the coupling to the vortex flow field,
(15),(17) and the charge neutrality conditigh9), using the  and develop Van Hove singularities at the band edges. The
relations(44)—(46), (37), and(34). The linear response limit continuum edges show a characteristic shape as a result of
is valid as long as the expansion paramefeis small  Doppler shifts due to the circulating supercurrents. At the
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FIG. 2. Two-dimensional plot of the charge current density distributfost column and corresponding local (extersahduced)
electric field(second column The order parameter displacement velocity field is shown in the third column, and the thermal current density
distribution is shown in the fourth column. The results are for a frequeney=00.3A with the external field along the direction. The top
row shows the amplitude of the in-phase responsedswt), while the bottom row shows the reactive responssifi wt). Distances from
the vortex center extend up to g3

vortex center, as a result of self-consistency, there is no erexternal field and the internal field due to charge fluctuations
hancement of the density of states at the continuum edgénduced by the external field. Note that the induced field is
The right panel of Fig. 1 is the corresponding spectral currenpredominantly out-of-phase and exceeds the external field in

density‘ the center of the vortex core. For higher frequenciesA0.5
1 <w=2A, the induced dipolar field evolves from an out-of-
io(R, €)=2eN: — (v;(p)) T 7s82(p. ,R; €) pha_se dipolar fleld alqng the dlrgctlon of the a.pplle.d field to
0 f477'< nr ST an in-phase dipolar field opposite to the applied field, thus
_Angg(pf, RO, (48) reducing the external field by roughly one half. The induced

field vanishes rapidly for frequencies above the gap edge.

for the vortex as a function of the impact parameter, whichThe charge density fluctuations responsible for the in-
illustrates clearly that the equilibrium current density in theduced field dp(R,t)=—V2?6®(R,t), are of the order
core of the vortex is carried by the bound states. (e61&3) - (A/E;). Thus, only a fraction €6) - (A/E;) of an

The first two columns in Fig. 2 show typical results for elementary charge oscillates periodically in time over an area
the current patterngj(R,t) and field pattern$E(R,t), in- of £2. The charge accumulation is consistent with the condi-
duced by an external electric field of the foréEg(t)  tion of local charge neutraliti as discussed in Sec. Il A.
= 0Ey cost). The system responds with an in-phase re-4we note that the induced charge in the vortex core resulting
sponse[ ~cos(t)] and out-of-phase responge-sin(wt)].  from particle-hole asymmetry, as discussed recéntly, of
The in-phase current response at positioletermines the  ordere(A/Ey)?, i.e., of second order ia/E; and negligible
local time-averaged energy transfer between the externgh the context of this paper. However, the particle-hole asym-
field and the electrong(R) =(dj(R,t)- SEg(t));, while the  metric charges give a comparable contribution to the dynam-
out-of-phase current response is non-dissipative. Absorptivigs of the vortex core for sufficiently small excitation fields,
and reactive currents show characteristically different flowi.e., 5~ A/E;, which may be relevant in higli; supercon-
patterns. The nondissipative current respo®é, is nearly  ductors.
homogeneoussee lower left pattern of Fig.)2whereas the The in-phase current and field respolsgper row of Fig.
pattern of absorptive current respongjé, has qualitatively 2) imply that the local absorption can be either positive
the form of a vortex-antivortex paisee upper left pattern of [“hot spots” with £(R)>0 in the vortex centdy or negative
Fig. 2. Hence, the parfy+ 6}’ of the total current density [“cold spots” with £R)<0 above and below the vortex
Jot dj, describes a transverse oscillation of the equilibriumcenteil, and is dominated by the absorption in the vortex
current pattern in thg direction. The amplitude of this os- center. The net dissipation is positive, and is obtained by
cillation increases with decreasing frequency. At higher freintegrating€(R) over the vortex. At higher frequencies the
quency the current pattern deviates significantly from a rigiddissipation is dominated by higher energy bound states and is
shift, as can be seen in Fig.(8iscussed beloyy The second located away from the vortex centeee Fig. 5.
column of Fig. 2 shows the total electric fieldE(R,t) The electromagnetic response of the vortex core is due to
= 6By (t) — V&P (R,t), which consists of the homogeneous an interplay between collective dynamics of the order param-



PRB 60 ELECTROMAGNETIC RESPONSE OF A VORTEX IN . .. 10 453

P A e Y v eSS o
NN NV v v S
Lo

/A N P SR SooIIITT
/AN Vi \ 4 \

FIG. 3. The order parameter displacement velocity for an ap-
plied electric field withw=1.2A. The difference in the velocities at FIG. 5. Dissipative currents in the vortex core induced by an
the inner and outer region of the core is indicative of strong ordeexternal electric field in the direction with w=1.1A (left) and
parameter deformation. The left panel shows the in-phase velocitg.5A (right). Note that the current density at=1.5A is scaled by a
field, and the right panel the out-of-phase velocity field. Distancedactor 2.5 relative to the current density atA. Distances from the
from the center of the core extend up to &7 center extend up to 6£3.

eter and the dynamics of the Caroli—-de Gennes—MatricoRbsorptive part of the nonequilibrium spectral current density
bound states. We find that at low frequenciesy1/7, the S(e)=(vx TI[7380R(p; ;€)]), obtained from a self-
order parameter performs a nearly homogeneous oscillatiogynsistent calculation with that obtained from a non-self-
perpendicular to the applied field, with a velocity that is 90° consistent calculation that takes into account the field-
out of phase with the applied field. To analyze the deviationgnquced transitions within the band of Caroli—-de Gennes—
of the self-consistent order parameter from the rigidly mov-patricon bound states, but freezes the order parameter
ing vortex structures fo <A, we introduce the order pa- degrees of freedom. The corresponding contribution to the
rameter displacement vectaiRq(t) defined by SA(R,t)  current density is obtained by multiplying these functions by
= 0Rg(R,1)- VA 1(R). The velocity field of the order pa- the Fermi function centered at= w/2, and integrating over
rameter is themVv(R,t)=d;5Ro(R.t). The nearly homoge- 16 5iS= [ (de/ ) f(e— w/2)5j (). The absorptive part of
neous oscillation at low frequencies is shown in Fig. 2 forthe response function shows peaks in the spectral current
»=0.3A in the third column. The order parameter velocity gensity associated with the band of bound states in the vortex
field for a higher frequencyo=1.2A, is shown in Fig. 3. core. The spectral weight aboee= /2 does not contribute
The vortex core oscillates at these frequenmes in-phase a%niﬁcanﬂy to the current response. Figure 4 shows that the
perpendicular to the applied field but is strongly deformedyoyng state band is shifted to lower energy by the self-

In one period the vortex center moves a distance of order &fonsistent response of the order parameter, leading to a
the coherence length multiplied with the linear-response eXstrong enhancement of the absorptive current.

pansion parameted. So, the velocity of the vortex centeris  The apsorptive currents show a nontrivial structure for
of the order of§0w5_~vf§. Nevertheless, the current density frequencies in the rangk< w<2A. Figure 5 shows that the
in the vortex core is smaller by a factércompared to the  gpsorptive currents flow predominantly in regions where
Landau critical current density. Fas=A, both the phase pound states with energsy= w/2 are localized. We inter-
and amplitude of the vortex core oscillation decrease a”‘ﬁ')ret these structures in terms of impurity-mediated transi-
approach zero above~2A. In Fig. 2, last column, we tjons between the Van Hove band edgsisown in Fig. 1 of
show the energy current densityj.(R,t), for ®=0.3A.  the pound-state bands of the equilibrium vortex. The transi-
Our calculations show that the energy flow in the vortex cor&jon rate increases with decreasing frequency, andfoom-
is predominantly in direction of the order parameter oscilla-parab|e to the width of the zero energy resonance in the
tion and is restricted to the core region. bound state spectrum the absorption is determined by the
The coupling between order parameter response and thgectral dynamics of the zero energy resonance at the vortex
bound states is demonstrated in Fig. 4, which compares th&nter. The spectral response of these st@igs 4) leads to

a dramatically enhanced absorption near the vortex center,

<fo59R> which is much larger than in the normal state.
40 ‘ ‘ ‘ ‘ ‘ ‘ 10 It is convenient to describe the response of an inhomoge-
15 neous system to a homogeneous electric field by a “local

conductivity,” gj(R,w). Itis defined by the linear relation,

, ;o 0 9ji(R,w)=0;(R,w) 6Epj(w), between the current density,
Qf“/—_ f 1-5 ji(R,w), and the amplitude of the homogeneous field,

‘ ‘ ‘ ‘ ‘ 10 S0Ey(w). Figure 6 shows the local conductivity in the vicin-
-2 -1 0 Q/A 2-2 1 0 ;/A 2 ity of the vortex core as a function of frequency for various

distances from the vortex center. At the vortex center the real
FIG. 4. Absorptive part of the spectral current density Part of oy, (absorptionincreases rapidly at low frequenc!es.
(vix0g®(pr ,R;€)), at the vortex centelieft) and at point (0.8,,0) Further away from the centgr the absorp'_uon has a maximum
on the x axis (right) for ®=0.3A. The vertical lines denote  at @ frequency corresponding to transitions between states
=w/2. The solid curves are the fully self-consistent spectral re-near the Van Hove peaks of the bound state band. For com-
sponse, while the dashed lines represent the spectrum for a frozgrarison we show in Fig. 6 the conductivity of a homoge-
order parameter. neous superconductor with the same mean-free path. It
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bound state spectrum at the vortex ceris&e Fig. 1L The
conductivity sum-rule is obeyed despite this enhanced ab-
1 sorption. The apparent excess weight JoReo,,(w)dw is

______ compensated by a negativefunction contribution associ-

---------- ] ated with counterflowing supercurrents near the vortex cen-
] ter. Figure 6 also shows enhanced supercurrents in the vortex
center(as compared to a homogeneous superconduftior
frequencies comparable with the width of the zero-energy
resonance.

Finally we note that the order parameter response at low
frequencies is mostly transverse to the electric field and that
the absorptive current in the core is predominantly parallel to
the applied field, i.e., there are no charge currents inythe
direction related to the order parameter motion. However,
there is a substantial energy flow in tlyedirection. Our
calculations show that the energy flow in the vortex core is
predominantly in direction of the order parameter oscillation

FIG. 6. Local conductivity in the vortex core as a function of and transports energy from “hot spots™ o “cold spots.
frequency. The lower set of curves shawReay, as a function of Thus, the.StateS in the vortex (.:ore extract energy fram the

. . A external field, and transport this energy several coherence
distance from the centéshown in the legendalong they direction. lengths away from the vortex center in tyedirection. The
The upper set of curves atelm o,,. The thick black curves cor- R . . . .
respond to the vortex center. For comparison, the thick gray curve@et dlss_lpatlon will finally be determined by inelastic pro-
are the conductivity for a homogeneous superconductor with th&ESSes In the vortex core.
same mean-free-path, which illustrates the role of the vortex-core
bound states in the EM response of the core. The inset shows a

10 —p————r———— 0, (0,0)/a,

c

wo_(y,w)/ o,T
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