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Abstract

This note shows that the testability result obtained by Brown and Matzkin (1996) for an
exchange economy survives the introduction of standard, aggregate production, even without
the observation of production levels.

In a seminal contribution, Brown and Matzkin (1996) showed that the hypothesis of Walrasian
equilibrium in an exchange economy can be refuted upon observation of finitely many pairs of prices
and profiles of individual endowments (i.e. that there are nontrivial restrictions on the equilibrium
manifold). The crux of the argument there was that, in the presence of nonnegativity constraints,
there exists a fundamental tension between the two principles of the Walrasian model, namely
individual rationality and market clearing.1

A natural question to ask is whether the same conclusion applies to economies in which production
takes place. In this case, if data on production is available, then it readily follows that the general
equilibrium hypothesis can be refuted. What is less obvious is that the same conclusion applies
even if only prices and endowments are observed (under standard assumptions on the production
technology). In this setting, the existence of conditions that are equivalent to the rationalizability
of a data set seems easy to obtain (subject to the conditions imposed on the technology) but one
might expect that these conditions be tautologies, and hence that refutability fail, because:

1. If profits are not observed, individual incomes are undetermined and hence the restrictions
imposed by individual rationality may be weakened.

2. In the presence of production, nonnegativity constraints on consumption are less informative:
production may transform endowments so as to allow consumption allocations outside the
original Edgeworth boxes.

Introducing production, however, adds profit maximization as an element of the model and this
additional structure may as well be a source of refutability for the hypothesis.

∗I thank Caterina Calsamiglia, Donald Brown and Herakles Polemarchakis for helful conversations about this topic.
The usual disclaimer obviously applies.

1This work has been extended to economies with public goods (Snyder, 1999), dynamic exchange economies with
incomplete markets (Kubler, 2003), exchange economies with random preferences (Carvajal, 2004a) and exchange
economies with externalities (Carvajal, 2004b). For a survey of this literature, see Carvajal et al. (2004).
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This note studies the refutability of the Walrasian hypothesis for economies with aggregate pro-
duction. Two technological assumptions are considered: constant returns to scale and "no free
lunch." Under constant returns to scale, profit maximization implies zero profits for the firm and,
hence, its introduction does not leave individual outcomes undetermined, effectively assuming away
the first difficulty mentioned above. The second difficulty, however, remains, and the result obtained
here shows that the structure added by profit maximization makes up for weakened nonnegativity
constraints. Alternatively, when the only assumption is that one cannot obtain positive output with-
out using some input, this note shows that the equilibrium hypothesis is refutable upon observation
of the (constant) ownership structure in the economy.
In both cases, the argument uses the example provided by Brown and Matzkin to argue that

there exist data which are inconsistent with the equilibrium hypothesis. This goes to say that the
relationship existing between prices and endowments, first discovered by Brown and Matzkin for
exchange economies, is profound enough to be maintained in seemingly less restrictive settings.
For the hypothesis of Pareto-efficiency in economies with (produced) public goods, Snyder (1999)

solved the testability problem, imposing conditions on the technology which are identical to the ones
initially imposed here. As it turns out, Snyder finds examples of data which are inconsistent with
the efficiency hypothesis and arise simply from the demand side of that economy (see too Carvajal
et al., 2004). Here, demand considerations do not suffice, and it is the combination of individual
rationality and profit maximization that implies refutability.

1 Constant returns to scale
Fix a society I, with cardinality I ∈ N, and fix L ∈ N, the number of commodities. Let C be the
set of all non-empty, closed, negative monotonic,2 convex cones in RL, and let U be the class of all
continuous, strongly concave, strictly monotone functions from RL+ into R.
For each individual i ∈ I, preferences will be denoted by ui ∈ U and endowments by ei ∈

RL++. An aggregate technology with constant returns to scale is denoted by C ∈ C. The (L− 1)-
dimensional, strictly positive simplex will be denoted by SL−1++ . For (p,m) ∈ SL−1++ × R++, denote
B (p,m) =

©
x ∈ RL+ : p · x ≤ m

ª
.

Definition 1 For
³¡
ui, ei

¢
i∈I , C

´
∈ ¡U ×RL++¢I × C, let W ³¡

ui, ei
¢
i∈I , C

´
be the set of prices

p ∈ SL−1++ such that there exist optimal supply

y ∈ argmax
y0∈C

p · y0

and a profile of optimal demands¡
xi
¢
i∈I ∈

Q
i∈I
arg max

x∈B(p,p·ei)
ui (x)

such that markets clear: P
i∈I

¡
xi − ei

¢
= y

It is important to notice that, in the previous definition, p · y = 0 and, hence, profits can be
ignored in each individual budget constraint.

2A set Y ⊆ RL is said to be negative monotonic if (y ∈ Y and y0 ≤ y) =⇒ y0 ∈ Y .
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1.1 Characterization

As in Brown and Matzkin (1996), suppose that one observes a finite data set of prices and profiles
of endowments. The testability-refutability problem studies whether it is always possible to find
a profile of preferences and a technology for which each one of the observed prices is consistent
with the corresponding profile of endowments via the equilibrium concept. For this, one treats the
technology and the profile of individual preferences as the unobserved and invariant fundamentals
whose existence is being tested. The profile of endowments is assumed to be an observable, exogenous
variable and the prices are the endogenous, observable variable.3 The question is then whether
there exist conditions on the observable variables (which can be understood as conditions on how
the endogenous variables respond to the exogenous variables) which are implied by the existence
of unobservable fundamentals and the equilibrium concept. If the conditions are not tautologies,
then the theory is refutable. If they characterize existence of fundamentals (i.e. if they are not only
necessary but sufficient) then they exhaust the implications of the model.
Let T ∈ N.

Definition 2 A sequence
³¡
eit
¢
i∈I , p

t
´T
t=1

in RLI++ × SL−1++ , is CRS-rationalizable if there exists³¡
ui
¢
i∈I , C

´
∈ UI × C such that for every t ∈ {1, ..., T},

pt ∈W
³¡
ui, eit

¢
i∈I , C

´
The following theorem offers a characterization of rationalizability which is mediated by existen-

tial quantifiers.

Theorem 1 Sequence
³¡
eit
¢
i∈I , p

t
´T
t=1

is CRS-rationalizable if and only if for every t ∈ {1, ..., T}
there exists yt ∈ RL and for every (i, t) ∈ I × {1, ..., T} there exists ¡vit, λit, xit¢ ∈ R× R++ × RL+
which satisfy the following conditions:

1. For every t, t0 ∈ {1, ..., T}, pt · yt0 ≥ pt · yt = 0.

2. For every i ∈ I and every t, t0 ∈ {1, ..., T}, vit0 ≤ vit+λitpt ·
³
xit

0 − xit
´
, with strict inequality

if xit 6= xit
0
.

3. For every i ∈ I and every t ∈ {1, ..., T}, pt · ¡xit − eit
¢
= 0.

4. For every t ∈ {1, ..., T}, Pi∈I
¡
xit − eit

¢
= yt.

Proof. This follows straightforwardly from Varian (1984, theorem 6) and Matzkin and Richter
(1991, theorem 2), by an argument virtually identical to the one used by Brown and Matzkin (1996).

Because of its existential quantifiers, the previous characterization fails to provide a test of the
Walrasian hypothesis (at least a direct one). Again as in the related literature, standard quantifier-
elimination results, introduced in economics by Brown and Matzkin, allow us to prove that there
exists a quantifier-free characterization of rationalizability:

3Supply and individual demands are assumed to be unobservable.
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Corollary 1 There exists a finite set (CRS−R) of polynomial inequalities in ¡RLI++ × SL−1++

¢T
such

that a sequence
³¡
eit
¢
i∈I , p

t
´T
t=1

is CRS-rationalizable if and only if it satisfies (CRS −R).

Proof. This follows from the Tarsky-Seidenberg theorem, since the conditions of the theorem
(including domain restrictions) constitute a semialgebraic set: see Mishra (1993) or Carvajal et al.
(2004).

Unfortunately, since the corollary itself does not rule out the possibility of system (CRS − R)
being a tautology, it is silent about whether the equilibrium hypothesis can be refuted. Put another
way, the corollary only says that the set of rationalizable data sets is semialgebraic (given I, L

and T ), but fails to imply the existence of nonrationalizable data sets, since
¡
RLI++ × SL−1++

¢T
is

semialgebraic.

1.2 Nonrationalizable data

To see that the equilibrium hypothesis can be refuted, it suffices to notice that the data¡¡¡
e11, e21

¢
, p1
¢
,
¡¡
e12, e22

¢
, p2
¢¢

of figure 1 is not rationalizable:

( )2111,ee

1p

( )2212,ee

2p

Commodity 1

Commodity 2

Figure 1

To see why, notice that if individual 1 is to satisfy conditions 2 and 3 of the theorem (2 implies
WARP), without loss of generality, x11 has to lie in the thicker part of individual 1’s corresponding
budget line in figure 2,
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10 Commodity 1

Commodity 2

2p

1p

( )2212,ee

( )2111,ee

Figure 2

Now, given nonnegativity constraints on consumption, this implies that production y1 must lie in
the thicker part of the (zero-profit) hyperplane

©
y : p1 · y = 0ª, as depicted in the figure 3,

10 Commodity 1

Commodity 2

2p 2e

1p

1p

2p

( )2212,ee

( )2111,ee

Figure 3

which then implies p2 · y1 > 0 and violates condition 1 of the theorem (profit maximization).
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Indeed, in this example individual rationality of consumer 1 requires that at prices p1 commodity
1 be used to produce commodity 2 in a ratio equal to the relative price of commodity 1 (y11 < 0 and
−y12/y11 = p11/p

1
2). Then, at prices p

2, where the relative price of commodity 2 has increased and
given that the previous rate of transformation was technically feasible, there would exist feasible
production bundles consistent with positive profits (at p2: p2 · y1 = y11

¡
p21 − p22p

1
1/p

1
2

¢
> 0), which

would be inconsistent with profit maximization and constant returns to scale.4

2 No free lunch
A production set Y ⊆ RL satisfies no free lunch if y > 0 =⇒ y /∈ Y , which is to say that there cannot
be production without the use of some input. Let Y be the set of all non-empty, closed, convex,
negative monotonic sets in RL that satisfy no free lunch.
Since the technology may now allow for non-zero profits, our definition of individual must include

information about profit shares, which will be denoted by
¡
θi
¢
i∈I , and the equilibrium set (W )

must now account account for the effects of profits on the budget constraints. Let SI−1+ be the
(nonnegative) (I − 1)-dimensional simplex in RI .

Definition 3 For
³¡
ui, ei

¢
i∈I , θ, Y

´
∈ ¡U ×RL++¢I ×SI−1+ ×Y, let W

³¡
ui, ei

¢
i∈I , θ, Y

´
be the set

of prices p ∈ SL−1++ such that there exist optimal supply

y ∈ argmax
y0∈Y

p · y0

and a profile of optimal demands¡
xi
¢
i∈I ∈

Q
i∈I
arg max

x∈B(p,p·ei+θip·y)
ui (x)

such that markets clear: P
i∈I

¡
xi − ei

¢
= y

2.1 Characterization

Again, suppose that one observes prices and profiles of endowments, but assume, furthermore, that
the ownership structure θ is also known. As before, the question is whether there exist nontautolog-
ical conditions on the observable variables implied by the existence of unobservable fundamentals
and the equilibrium concept.

Definition 4 A data set
µ³¡

eit
¢
i∈I , p

t
´T
t=1

, θ

¶
∈ ¡RLI++ × SL−1++

¢T ×SI−1+ , is rationalizable if there

exists
³¡
ui
¢
i∈I , Y

´
∈ UI ×Y such that for every t ∈ {1, ..., T},

pt ∈W
³¡
ui, eit

¢
i∈I , θ, Y

´
4There is another way to read the example: If the data are going to be consistent with profit maximization, then

production levels must have y12 ≤ 0 and y21 ≤ 0, which only goes to reinforce the violation of WARP by consumer 1.
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Before stating our characterization of rationalizability, we need to strengthen the axiom of profit
maximization, proposed by Hanoch and Rotschild (1972) and Varian (1984), so as to account for
the no free lunch assumption.

Lemma 1 Let (yt, pt)Tt=1 ∈
¡
RL × SL−1++

¢T
. There exists Y ∈ Y such that

(∀t ∈ {1, ..., T}) : yt ∈ argmax
y∈Y

p · y

if and only if

(∀t, t0 ∈ {1, ..., T}) : pt · yt0 ≤ pt · yt¡∃ρ ∈ RL++¢ (∀t ∈ {1, ..., T}) : ρ · yt ≤ 0

Proof. For necessity, the condition that, ∀t, t0 ∈ {1, ..., T}, pt · yt0 ≤ pt · yt is obvious. Now,
suppose that ¡∀ρ ∈ RL++¢ (∃t ∈ {1, ..., T}) : ρ · yt > 0
Then, the system

ρ · y1 ≤ 0

ρ · y2 ≤ 0

...

ρ · yT ≤ 0

ρ · ¡−e1¢ < 0

ρ · ¡−e2¢ < 0

...

ρ · ¡−eT ¢ < 0

where el, l = 1, ..., L, is the lth canonical vector in RL, has no solution (on ρ). It follows from

theorem 22.2 in Rockafellar (1970) that there exist (αt)Tt=1 ∈ RT+ and
³
βl
´L
l=1
∈ RL+\ {0} such that

TX
t=1

αtyt =
LX
l=1

βlel > 0

It follows that (αt)Tt=1 > 0 and, hence, by convexity, that

TX
t=1

αtPT
s=1 α

s
yt ∈ Y

but,
TX
t=1

αtPT
s=1 α

s
yt =

1PT
s=1 α

s

LX
l=1

βlel > 0

which contradicts no free lunch.
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For sufficiency, as in Varian (1984), let Y be the convex hull of set

TS
t=1

¡
yt − RL+

¢
which is nonempty, closed and convex. That ∀t ∈ {1, ..., T}, yt ∈ argmaxy∈Y p · y follows from
Theorem 2 in Varian (1984). To see that Y satisfies no free lunch, suppose that y ∈ Y and y > 0.

By construction, ∃ (eyt)Tt=1 ∈ TQ
t=1

¡
yt − RL+

¢
and (αt)Tt=1 ∈ ST−1+ such that y =

PT
t=1 α

teyt, so, since
ρ ∈ RL++,

0 < ρ · y

= ρ ·
TX
t=1

αteyt
≤ ρ ·

TX
t=1

αtyt

=
TX
t=1

αt
¡
ρ · yt¢

≤ 0

an obvious contradiction.

Theorem 2 Sequence
µ³¡

eit
¢
i∈I , p

t
´T
t=1

, θ

¶
is rationalizable if and only if there exists ρ ∈ RL++,

for every t ∈ {1, ..., T} there exists yt ∈ RL and for every (i, t) ∈ I × {1, ..., T} there exist¡
vit, λit, xit

¢ ∈ R×R++ ×RL+ which satisfy the following conditions:
1. For every t, t0 ∈ {1, ..., T}, pt · yt0 ≥ pt · yt.
2. For every t ∈ {1, ..., T}, ρ · yt ≤ 0.
3. For every i ∈ I and every t, t0 ∈ {1, ..., T}, vit0 ≤ vit+λitpt ·

³
xit

0 − xit
´
, with strict inequality

if xit
0 6= xit.

4. For every i ∈ I and every t ∈ {1, ..., T}, pt · ¡xit − eit
¢
= θipt · yt.

5. For every t ∈ {1, ..., T}, Pi∈I
¡
xit − eit

¢
= yt.

Proof. This follows straightforwardly from lemma 1 and Matzkin and Richter (1991, theorem
2), by an argument virtually identical to the one used by Brown and Matzkin (1996).

Again, because of its existential quantifiers, the previous characterization is not an immediate
test of the equilibrium hypothesis. As before:

Corollary 2 There exists a finite set (R) of polynomial inequalities in
¡
RLI++ × SL−1++

¢T ×SI−1+ such

that a sequence
µ³¡

eit
¢
i∈I , p

t
´T
t=1

, θ

¶
is rationalizable if and only if it satisfies (R).

Proof. This follows from the Tarsky-Seidenberg theorem, since the conditions of the theorem
constitute a semialgebraic set.
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2.2 Nonrationalizable data

Remarkably, the same data set used by Brown and Matzkin (1991) and in the exercise with constant
returns to scale, will fail to be rationalizable in the present setting. For the sake of definiteness, a
specific numeric example is initially given.
Consider the following data set,5

e11 = (9, 1) e12 = (1, 9)
e21 = (1, 1) e22 = (1, 1)
p1 = (100, 1) p2 = (1, 100)

θ1 = 1 θ2 = 0

and suppose that it is rationalizable. Then, fix
¡¡
x11, x21, y1

¢
,
¡
x12, x22, y2

¢¢
such that:

π1 = p1 · y1 ≥ p1 · y2 (WAPM1)

π2 = p2 · y2 ≥ p2 · y1 (WAPM2)µ
p2 · x11 ≤ p2 · e12 + π2

p1 · x12 ≤ p1 · e11 + π1

¶
=⇒ x11 = x12 (WARP)

p1 · x11 = p1 · e11 + π1 (WL1,1)

p2 · x12 = p2 · e12 + π2 (WL1,2)

p1 · x21 = p1 · e21 (WL2,1)

p2 · x22 = p2 · e22 (WL2,2)

x11 + x21 = e11 + e21 + y1 (MC1)

x12 + x22 = e12 + e22 + y2 (MC2)

x11, x21 ≥ 0 (NN1)

x12, x22 ≥ 0 (NN2)

y11 > 0 =⇒ y12 < 0 (NFL)

In this case, the following claims would be true:

Claim 1 y11 ≥ y21 ≥ −2 and y22 ≥ y12 ≥ −2.

Proof. From WAPM1 and WAPM2, 100y11 ≥ 100y21 +
¡
y22 − y12

¢ ≥ 100y21 + 1
100

¡
y11 − y21

¢
, so

y11 ≥ y21. That y
2
1 ≥ −2 follows from MC2 and NN2.

The other inequalities are proven similarly.

Claim 2 p2 · x11 < p2 · e12 + π2 and p1 · x12 < p1 · e11 + π1.

5For notational simplicity, prices are not normalized here.
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Proof. From WL1,1, notice that x111 = 1
100

¡
901 + π1 − x112

¢
, so

p2 · x11 =
1

100

¡
901 + π1 − x112

¢
+ 100x112

= 9.01 +
1

100
π1 +

µ
100− 1

100

¶
x112

= 9.01 +
1

100

¡
100y11 + y12

¢
+

µ
100− 1

100

¶¡
2 + y12 − x212

¢
≤ 208.99 + y11 + 100y

1
2

≤ 208.99 + y21 + 100y
2
2

< 901 + y21 + 100y
2
2

= p2 · e12 + π2

where the third equality follows from MC1, the first inequality from NN1 and the second one from
WAPM2.
The other inequality is proven similarly.

Claim 3 x11 6= x12.

Proof. By NFL, either y11 ≤ 0 or y12 < 0.
Consider first the case y11 ≤ 0, which implies, by the first claim, that y21 ≤ 0. Then, by MC2,

NN2 and the fact that y21 ≤ 0, we have that x121 = 2 + y21 − x221 ≤ 2. On the other hand, by MC1

x111 = 10 + y11 − x211
≥ 8− x211
≥ 6.99

where the first inequality follows from the first claim and the second one from WL2,1 and NN1,
which imply that x211 = 1

100

¡
101− x212

¢ ≤ 1.01.
Now, suppose that y12 < 0. Then, by MC1 and NN1, x

11
2 = 2 + y12 − x212 < 2− x212 ≤ 2, whereas

x122 = 10 + y22 − x222
≥ 8− x222
≥ 6.99

which follows from MC2, the first claim, WL2,2 and NN2 (the last two imply that x222 ≤ 1.01).
Claims 2 and 3 imply that WARP is inconsistent with the rest of conditions and, hence, that the

data are not rationalizable.

2.3 Why?

The numeric example makes the case for refutability, but does not offer a clear illustration of why
this is the case. A graphic explanation is offered here.
Consider the original setup of an exchange economy. The reason why the data are not rational-

izable in that case is that (via nonnegativity constraints of consumer 2) the sizes of the Edgeworth
boxes make it impossible for individual 1 to satisfy WARP, given the positions of his (observed)
budget lines, as shown in the figure 4.
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1p

2e2p

Commodity 1

Commodity 2

( )2212 ,ee

( )2111,ee

Figure 4

With production, exchange may occur outside the original boxes and the budget lines may be
elsewhere. In order to rationalize the data in an economy with production, one would like to be
able to modify the Edgeworth boxes, and/or displace individual 1’s budget lines, so that individual
1’s budget lines intersect in the interior of one (or both) of the boxes. Graphically, the first option
would look like figure 5,

1p

2p

Commodity 1

Commodity 2

22212 yee ++
12111 yee ++

2y

1y

Figure 5
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while the second option would look like figure 6.

1p

2p

Commodity 1

Commodity 2

22212 yee ++

12111 yee ++

2y

Figure 6

The added structure imposed by the assumption of individual rationality, however, may suffice
to make both options impossible.
First, profit maximization implies that any attempt to make the exchange at observation

¡¡
e11, e21

¢
, p1
¢

occur at a taller (and hence narrower) box, will result in the exchange at
¡¡
e12, e22

¢
, p2
¢
necessarily

occurring at an even narrower box, and, furthermore, there is a bound to how much narrower the
box at

¡¡
e11, e21

¢
, p1
¢
can be made. This is illustrated by figure 7: by profit maximization, y2 must

lie below the hyperplane normal to p2 through y1, and hence y21 < y11. (Obviously, a symmetric
problem and bound will arise when attempting to make the exchange box

¡¡
e12, e22

¢
, p2
¢
broader.)

1p

2p

Commodity 1

Commodity 2

2y

1y

)( 22
1

12
1 ee +−

Figure 7
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The second choice would try to impose production levels consistent with displacements of indi-
vidual 1’s budget lines in opposite directions, for example by introducing losses at

¡¡
e12, e22

¢
, p2
¢

and not at
¡¡
e11, e21

¢
, p1
¢
, as illustrated before. As it turns out, however, profit maximization with

convexity and no free lunch implies that profits at both observations cannot differ by too much, as
illustrated by figure 8: given y1, profits at

¡¡
e12, e22

¢
, p2
¢
can be neither too low (given by a hyper-

plane below the lower hyperplane normal to p2 in the figure) nor too high (given by a hyperplane
above the higher hyperplane normal to p2).

1p

2p

Commodity 1

Commodity 2

1y

)( 22
1

12
1 ee +−

2p

Figure 8

3 Concluding remarks
The results here show that the Walrasian hypothesis in economies with production can be refuted
upon observation of the ownership structure of the economy and finitely many pairs of prices and
endowments, and that for given, finite cardinalities, it is characterized by a finite set of polynomial
inequalities. This is an extension of Brown and Matzkin (1996) to production economies. In terms
of the introductory discussion, the note has shown that introducing production weakens the impli-
cations of nonnegativity constraints, yet introduces additional structure via the principle of profit
maximization, which suffices for refutability. It remains to be studied whether other technological
assumptions allow for the same result.
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