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BASIL ABDUL-AHED BEHNAM
SYNTHESIS AND SPECTROSCOPIC STUDIES OF SOME 

POLYCYCLIC HETEROCYCLIC COMPOUNDS
ABSTRACT

Four tetrabenzo[^,^,^,j_] [l,6 ]diazacyclododecines, series I, and 
their tetrahydro derivatives, series II, have been prepared.

Series I Series II
( 1 ) X  = Y = Z =  H ( 1 ) X  = Y = Z =  H
(2) Y = Z = H, X = CO^CH (2) Y = Z = H, X = CO^CH^
(3) X = Z = H, Y = OCH (3) X = Z = H, Y = OCH^
(4 ) X = Y = H, Z = COgCH (4) X = Y = H, Z = CO^CH

1 13H N.m.r. spectra (220 MHz] and C n.m.r. spectra (22.63 MHz) of
the compounds in both series were studied and assignments of the chemical
shifts of most of the nuclei were made.

Temperature variable high resolution H n.m.r. (220 MHz) was employed
to study the behaviour of the methyl protons doublet in compounds (3) and (4)
of series II, and the diastereotopic methylene protons in all compounds of

13series II. It is concluded from these results and from the C n.m.r. spectra 
that compounds (1),(3) and (4) in series II must exist as two non-equivalent 
conformera.

The ultra-violet absorption spectra, in 95% ethanol, of the compounds 
in both series were determined. On the basis of these spectra and of the 
^H n.m.r. results it is concluded that the compounds in series I, must have 
the EE configuration.

Mass spectra of the four compounds in series II were measured by the 
Physico-Chemical Measurements Unit, Harwell. Fragmentation patterns are 
discussed in detail.

Lanthanide shift reagents, Eu(fod) and Pr(fod) , were used 
extensively to help in the elucidation of the H n.m.r. spectra (60 MHz) of 
the compounds in both series. It was.found that the mole ratio of the shift 
reagent/substrate in compounds of series I is 1:1, and 2:1 in compounds of 
series II. Chirality was observed in compounds (2),(3) and (4) of series I 
in the presence of large amounts of Eu(tfc)^ or Pr(tfc)^ in CDCl^ solutions. 
Compounds of series II are achiral under the conditions of the experiment.
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1. INTRODUCTION

1 .1 . The Historical Background of 2,2*-Bridged Biphenyls with 
12-Membered Homo- and Hetero-Cyclic Bridging Rings

For roughly the past thirty years, 2,2'-bridged biphenyls have

been extensively studied. They have yielded much information to

interest stereochemists, for two important reasons: firstly, where the

bridge consists of no more than four atoms, these compounds exist, in

many cases, in only two conformations which are enantiomerically related 5

secondly, the energy barrier separating these conformations is frequently

high enough to be conveniently measurable.^

Several workers have realized that synthesizing 2,2'-bridged

biphenyls with ten and higher-membered bridging rings presents considerable

difficulties, as only a few of them are known at the present time. In 1955,
2Wittig and his co-workers published an elegant and interesting paper 

concerned with some compounds containing 12-membered homocyclic bridging 

rings. They showed that both under the influence of phenyl-lithium as 

well as under the conditions of Hofmann degradation, the methiodide of 

cis-N-methyl-12-aza-l,2,3,4,7,8 ,9,10-tetrabenzocyclotrideca-pentaene- 

[_a,£,e_,£,̂ ] (I) gave trans-12-dimethy 1 amino-1,2,3,4,7,8 ,9,10-tetrabenzocyclo- 

dodeca-pentaene[a,£,£,^,^] (II), m.p. 228-229°, in 65-73% yield. Likewise, 

the trans-isomer of (I) gave the cis-isomer of (II), m..p. 147-148°, in 

65% yield.

CH_I + PhLi
— >Hofmann
degradation

(I) (II)

CH =  CH

CH.



The cis-trans isomeric amines (II) were identified by their

infra-red spectra. On hydrogenation over platinum, the higher melting 

amine (II) produced a dihydro-product (III) of m.p. 209-210° and the 

lower melting isomer produced one of m.p. 137-138°. It was found 

that the dihydro-derivative (III)
CH•CH,

CHCH

N(CHL)2

of m.p. 137-138 converted into 

that of m.p. 209-210° during 

melting, whilst the opposite conversion 

could not be detected. (Ill)
On the other hand the methiodide of the dihydroamine (III)

(m.p. 137-138°) gave a hydroxide which underwent normal thermal 

decomposition with separation of water and trimethylamine. The residue, 

obtained after high vacuum sublimation and crystallisation in 78% yield, 

consisted of colourless optically uniform crystals of trans-1,2,3,4,7,8,9,10- 

tetrabenzocyclododeca-pentaene[£,£,£,£,y (IV), m.p. 298.5-299°. It was 

suggested that the C=C- double bond has the trans-configuration in this 

•hydrocarbon.

+H,
> ■

(V)

With the catalytic hydrogenation of (IV) in the presence of

platinum in tetrahydrofuran, 1,2,3,4,7,8,9,10-tetrabenzocyclododeca-
* otetraene[£,£,_£,ij (V) of m.p. 267-268 was formed by the absorption of

one mole of hydrogen.

Now called 9,10,19,20-tetrahydrotetrabenzo[a,c,g,i]cyclododecene.
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The methiodide of the cis-amine (II) was submitted to Hofmann 

degradation, and after sublimation in high vacuum, a mixture of four 

hydrocarbons was obtained. By fractional crystallisation and selection 

of the crystals as well as by chromatographic separation using aluminium 

oxide, besides phenanthrene which was isolated in 19% yield, three 

isomeric hydrocarbons were separated with melting points 163-164° (21%), 

236.5-237° (29%) and 297.5-298° (10%).

The hydrocarbon of m.p. 163-164°, which fluoresced strongly violet 

with ultra-violet radiation, unlike its isomers, oxidised straight away 

with potassium permanganate to yield two moles of diphenic acid. With 

this, it is certain that the Hofmann degradation of the accompanying 

methiodide took the desired course and the sought for 1,2,3,4,7,8,9,10- 

tetrabenzocyclododecahexaene[^,£,e^,£,^,y (VI) emerged. As the isomeric 

compound of m.p.2 9 7.5^2 98° was likewise 

oxidizable, even if more slowly, to two 

moles of diphenic acid with potassium 

permanganate in good yields, the same 

structural formula (VI) is given to it.

In agreement with this is the result of the catalytic hydrogenation with 

platinum as the catalyst. After absorption of two moles of hydrogen, 

both hydrocarbons (VI) produced the same compounds of m.p. 260-261°.

By I heating to 240°, this common hydrogenation product could be changed 

into a modification, which admittedly did melt a few degrees lower than 

the l,2,3,4,7,8,9,10-tetrabenzocyclododeca-tetraene[£,£,£,£] (V), 

m.p. 267-268°, obtained by hydrogenation of (IV), but it proved to be 

wholly identical with (V) on the basis of their ultra-violet and infra

red spectra. Observations of the Calotte models reveal that it is

CH CHk
a

CH CH

(VI)
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possible that the twisted benzene nuclei of the two biphenyl systems 

click into particular places. In this case "rotational polymorphism" 

becomes clear here due to the especially strong rotational obstacle.

While the two hydrocarbons of m.ps.163-164° and 297.5-298° showed 

similar reactions with oxidative degradation and catalytic hydrogenation, 

which ensures their corresponding structure (VI), a suggestion was made 

that they must be stereo-isomers. The hydrocarbon (VI) of m.p. 163-164° 

and only this one, changed into the above mentioned isomer of m.p. 236.5-237°, 

when heated to about 180°. As this latter compound was neither affected 

by potassium permanganate nor hydrogenated, it can only be the bis- 

(o-phenylene)cyclobutane (VII). The ultra-violet spectrum of (VII), 

which largely matches that of 9,10-dihydrophenanthrene argues for the

CH;---- CH T  ^  I H

H -C H  ^

9̂  ^
II +  II

O r ” ' “' ~ ô

(VII) , (VIII)

structure (VII) too. Another proof of the cyclobutane-derivative

structure (VII) was that it decomposes completely on melting to give

two moles of phenanthrene (VIII).

The infra-red and ultra-violet spectra of the two stereo-isomeric

hydrocarbons (VI) gave strong evidence that the compound which melts

at 163-164° represents the trans-trans-isomer (Via). This was later

shown by X-ray Crystallography to be the cis-trans-isomer (VTc).^^^'^^^

The stereoisomer of m.p. 297.5-298° represents the cis-cis-form (VIb).

The m.p. was later raised to 306-306.5° and the configuration confirmed
127by X-ray crystallography.



trans-trans-£orm 
(Via)

cis-cis-form
(VIb)

The true trans-1rans-is omer was 

subsequently obtained 126,128 found 

to have m .p. 302-303°; its configuration

was also determined by X-ray crystallo-
, 129 graphy

cis-trans-form
(Vic)

Voll and his co-workers recently have reported that 9,10,19,20- 

tetrahydrotetrabenzo [_a,£,£,^] cyclododecene (V) occurs in two diastereoisomeric 

forms. The X-ray crystal analysis has shown that the isomer of m.p. 260-261° 

is the meso-form (Va), in which the axes of both of the biphenyl units are 

approximately parallel. The dihedral angles between the planes of the ,

benzene rings are 84.9°. On the other hand, the isomer which melted at

267-268 is the racemic form (Vb) which contains two independent molecules.



13

Meso-form Racemic-form
(Va) (Vb)

The axes of the biphenyl groups are approximately orthogonal, the 

twist angles of the planes of the benzene rings are 63.4°.

As far as bridged biphenyls with 12-membered heterocyclic bridging 

rings are concerned, little work has been published. Bergmann and his
4co-workers have proved that the condensation of biphenyl-2,2'-dialdehyde 

and 2,2'-diaminobiphenyl proceeds to give the bis-Schiff base, tetrabenzo- 

[£,^,h,j_] [1,6]diazacyclododecine (IX) in quantitative yield as a single 

product with a m.p. above 300°.

A few years later, Bindra and 

Elix^ confirmed that compound (IX) 

was obtained as a result of the above

a
a

N

N

CH

CH

jD
“ O

condensation, in quantitative yield with (IX)

a m.p. 326 , and proved that the cyclic 12-membered ring is not planar.
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They added that the course of aromatic diamine-dialdehyde condensations 

is governed by the distance between the substituents and it appeared 

that a 1 2-membered ring is the minimum ring size necessary for the 

formation of a bis-Schiff base. When the ring size of the potential 

bis-Schiff base is less than twelve, only the hydride shift products 

are in fact observed. They also have 

confirmed the structure (IX) by reduction —

with sodium borohydride in methanol, to 

give 9,10,19,20-tetrahydrotetrabenzo- 

[^,^,h,j_] [1,6]diazacyclododecine (X),
O’

NH CH,
2

NH —  CH.2

(X)

with m.p. 158°.

As it appears that 2,2’-bridged biphenyls with 12-membered hetero

cyclic bridging ring may be of particular theoretical interest, it seemed

worthwhile to attempt to resynthesize compounds (IX) and (X) and to study
1 13in more detail their spectroscopic behaviour by means of H- and C-N.M.R.,

U.V. and I.R. Spectroscopy and by Mass Spectroscopy.
1In H-ii.M.r. spectroscopy, bridged biphenyls show a complex multiplet 

in the aromatic region of the spectrum which cannot easily be analysed; 

therefore, attempts have been made to investigate in greater depth the 

effect of ring substitution, in different positions of the molecule, on 

the n.m.r. spectra as well as on the rate of the condensation reaction.

Lanthanide shift reagents and chiral lanthanide shift reagents 

have been used to help in elucidation of the n.m.r. spectra and to induce 

stereospecific chemical shifts.
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1.2. Electronic Spectra

Electronic spectra arise from transitions between electronic 

states and are accompanied by simultaneous changes in the vibrational 

and rotational states. The.transitions observed in the near ultra-violet 

and visible regions generally involve 7r-electrons with or without 

interaction with substituents containing other ir-electron or n-electron 

systems, that is unshared pair of electrons associated with atoms such 

as nitrogen and oxygen. Relatively large energy differences (AE) are 

involved, and hence absorption occurs at rather large frequencies or 

relatively short wavelengths..
Empirical correlation between ultra-violet light absorption 

and molecular structure depends upon the fact that ultra-violet light 

absorption is characteristic of certain n-electron systems or chromophores 

rather than of the molecule as a whole. When two or more chromophores 

are present in the same molecule without conjugation, the overall 

absorption is almost additive. When two or more chromophores are in

conjugation, the absorption band usually shifts to the longer wavelength

region [bathochromic shift) and its intensity is frequently higher than 

those observed for the two separately.

The biphenyl molecule (XI) is collinear and the two benzene rings 
can rotate almost freely about.the l,l'-bond,. e.g. Hewlett^ has calculated 

the energy barrier for the passage through the flat coplanar state to be 

only 3.9 .kcab/mole.

5 6 2' 3*

3 2 6» 5'
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The biphenyl molecule was shown by X-ray crystal analysis to
° 7be coplanar in the crystalline state, with a 1,1’-bond of length 1.48 A

QTrotter has confirmed the above basic coplanar structure of

biphenyl in the crystalline state, though according to him the 1 ,1 ’-bond 
o

length is 1.507 A; the 2,2’,6 ,6 ’-hydrogen bond angles are slightly deformed,
> 9the hydrogen atoms remaining in the plane of the rings .

The ultra-violet spectrum of biphenyl itself shows a broad high- 

intensity band at 249 nm, sometimes called ’’the conjugation band”, with 

a maximal molecular extinction coefficient of 17,300 in 96% ethanol^^.

This band has been attributed to resonance between the two aromatic 

nuclei, the 1,1’-bond acquiring some double bond character. Since 

conjugation operates by overlapping of the TT-orbitals of the two 

benzene rings, the presence of' this band was once accepted as demonstrating 

the planarity of the biphenyl molecule in solution. The overlap of the 

ir-orbitals is obviously maximal in the coplanar conformation but it still 

exists, becoming increasingly smaller, when the angle between the rings 

increases, and becomes zero only at 90°. At small interplanar angles 

there should be only a relatively slight loss of resonance and it seems 

that near-planarity should also produce effective conjugation.

The introduction of substituents into the biphenyl molecule 

affects the spectrum in a way which depends on their position in the 

parent phenyl ring, as well as upon their own nature. Ortho-Substituents 

have a very large steric effect. If they are large enough the two benzene 

rings cannot become coplanar or rotate freely about the 1 ,1 ’-bond.

Electronic spectra are very sensitive to the steric effects and introduction 

of one fluorine atom into the ortho-position of the biphenyl results in 

a considerable short-wave shift to 241.5 nm and reduction in extinction
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coefficient to 16,500 of the conjugation band^^. The introduction

of only two substituents into the sterically sensitive ortho-positions

of the biphenyl molecule as with 2 ,2 ’-dimethyIbiphenyl leads to failure

to show the characteristic intense biphenyl absorption indicating a

lack of conjugation between the two benzene rings owing to interference

between the two methyl groups and the 2 ’- and 6 '-hydrogen atoms.

On the other hand, as the interfering effect of the two hydroxyl groups

in 2 ,2 ’-dihydroxybiphenyl is comparatively small, the ultra-violet spectrum

of this compound shows the characteristics both of a conjugated biphenyl
11and of phenol, and is presumably an intermediate case.

The biphenyl compounds in which the 2,2’-positions are joined

together by rings of various sizes are of considerable interest. By

joining the 2 ,2 ’-positions in biphenyl with a saturated bridge of two

or more atoms, the two benzene rings can also be fixed at an inclined

angle, and the resulting homocyclic or heterocyclic ring will be nonplanar,

provided that normal bond lengths and angles obtain.

The interplanar angle, 0, between the planes of the two benzene

rings may be calculated for undistorted structures where the bridge consists

of 2, 3 or 4 atoms. For compounds where the bridge consists of 5 or more

atoms, the bridging ring is flexible, and many values of 0 are possible

without any distortion from normal molecular dimensions.^

The simplest 2,2’-bridged biphenyl, fluorene (XII), in which the

rings are joined through one methylene group, does not satisfy the above

requirements since it is regarded as a strained planar structure and the
12 1%two benzene rings are no longer collinear. '

Bridging the 2,2’-positions in biphenyl by two methylene groups •

(XIII) involves apparently no strain, the two benzene rings are collinear 

and the ultra-violet spectrum exhibits a typical high-intensity biphenyl
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band at A 263.5 nm, E 18,000 and a broad low-intensity band max max
at the longer wavelength region. The appearance of these bands as 

absorption contributions from the separate unconjugated phenyl 

chromophores make it reasonable to think about a lesser interplanar 

angle, 0 , in this compound than in biphenyl itself.

(XII) (XIII)

With the three-atom-bridge biphenyl (XIV), the ultra-violet 

absorption spectrum shows a shift of the biphenyl conjugation band to 
shorter wavelength (X^^^ 247 nm) accompanied by a reduction in 

extinction coefficient (Ê ĝ  ̂15,700). On increasing the number of 

bridging carbon atoms to four, the compound formed (XV)exhibits 

a further perceptible short-wave shift of the conjugation band

H^C CH,2 CH2

(̂ 2 H^C— CHg

(XIV) (XV)

(A^ 235 nm) and a marked reduction in extinction coefficient

(e^ax 9,680) (Spectrum 1). The interplanar angle, 0, between the
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Spectrum No.l. Ultra-violet 
spectra of simple’derivatives 
of biphenyls with homocyclic 
bridging rings, showing the 
effect of increasing ring 
size on the conjugation band. 
(Mislow, Hyden and Schaefer, 
1962)15

220 230 240 250 260 270 280 290 300 

X, nm

planes of the benzene rings, increases rapidly with the increased size 

of the bridging ring, and there is sufficient electronic interaction 

between the two benzene rings to produce a separated conjugation band 

even when 0 is as large as 59^ (for compound XV). Complete coplanarity 
of the benzene rings is evidently not required for the development of 

a conjugation band.

For biphenyl compounds with a 5-membered bridge at the 2,2’-

positions, such as (XVI), the bridging ring is flexible, and many

values of 0 are possible without any distortion from normal molecular

dimensions. The ultra-violet absorption spectrum shows that the

conjugation band is present as an inflection at short wavelength

(Xf^fl 231 nm, 5,550). • The long-wave features are clearly

resolved and the spectrum of (XVI) is nearly superimposable on that of

the open-chain analogue (XVII), this indicates severe reduction in 
15 ■conj ugation.
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Y
C (V

CH.22

*2\ ™2 ' HjC CHj

CO^H ■ (XVII)

(XVI)

In biphenyls with the 12-membered ring at the 2,2'-positions, 

such as (XVlll), the bridging ring is flexible. On comparing its 

ultra-violet absorption spectrum with that of (XIX), one notices the
■i ;

strong decrease in the intensity of the band at X 267 nm, which ^  ̂ max
is ascribed to the loss of conjugation between the C=C- combination 

and the biphenyl system. The spectrum of (XVI11) is very similar

(XVlll)

HC CH„

(XIX)

to the spectrum of its non-cyclic analogue (XX) and thus to that of

0—0
H 3C CH,

(XXI)
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(XXI), (Spectrum 2).

Spectrum No.2, Ultra-violet spectra of;
(a) Tetrabenzo-cyclododecapentaene (XIX)
(b) Tetrabenzo-cyclododecatetraene (XVIII)
(c) Tetrabenzo-dodecatetraene (XX)
(d) 2,2'-DimethyIbiphenyl (XXI)

toI

30

20

10

220 250 300
X nm

1.3. Lanthanide Shift Reagents in Proton Magnetic Resonance Spectroscopy

1.3.1. Introduction

One of the most important recent developments in organic nuclear 

magnetic resonance spectroscopy is the discovery by Hinckley in 1969 

that some paramagnetic lanthanide $-diketonates, "Shift Reagents", can 

be used to induce stereospecific chemical shifts in the n.m.r. spectra 

of organic molecules containing functional groups with lone pairs of 

electrons and thus to facilitate spectral an a l y s i s . Q u i t e  often 

spectra of great complexity can be reduced to "first-order" without 

the loss of resolution. Thus multiplicities are discernible, non- 

equivalence is usually greatly amplified, and coupling constants are 

easily evaluated.

The direction of the shift, i.e. upfield or downfield, depends primarily 

upon the lanthanide complex used. Complexes of europium, erbium, 

thulium and ytterbium shift n.m.r. resonances to lower field while
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complexes of cerium, praseodymium, neodymium, samarium, terbium and
17holmium tend to shift resonances to higher field.

1.3.2. Historical background

The possibility of utilizing specific electron-nuclear interactions

with paramagnetic ions to resolve accidental coincidences of n.m.r.
17spectra was realized in 1960 in an 0 n.m.r. study of cation hydration.

Since that time, there have been numerous reports of the perturbation

properties of transition metal complexes on the proton magnetic
18resonance spectra of the ligands to which they are attached. The

Ni^* and Co^* acetylacetonates attracted most interest, although other

transition metal complexes were also investigated. The ligands were

usually attached by nitrogen- or oxygen-based functional groups. The

induced shifts were often very small, and, owing to the relatively slow

electron spin relaxation times of the transition metal ions, line

broadening resulted in the loss of signal multiplicity from which

much of the structural information is derived.

In 1969, Hinckley^^ reported the influence of the dipyridine

adduct of tris(dipivaloylmethanato)europium (III), Eu(dpm)^ (XXII, Ln = Eu),

on the p.m.r. spectrum of cholesterol. Significant induced chemical

shifts were found with acceptable levels of signal broadening. Shortly
19afterwards, Sanders and Williams employed the chelate without the 

two molecules of pyridine and observed a fourfold increase in the 

magnitude of the induced shifts in the spectra of n-hexanol and of 

benzyl alcohol, presumably due to the lack of competition for co-ordination 

sites by pyridine.
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H

W s

c — 0(C
' c__0

CCCHgjg

Ln

P z C - C 2F5

c — 0
/  f - -H  Ç , /Ln
/ C - 0

^(“ 3 ) 3

(XXII) (XXIII)

Another fairly early discovery was the fact that other lanthanide

elements besides europium are useful in shift reagents. Thus Briggs et al, 

reported that while Eu(dpm)^ induces shifts to lower fields those induced 

by Pr(dpm)^ are to higher fields with rather larger shifts than Eu(dpm)^

20

21
and evidenced this with the resolved spectrum of n-pentanol.

Shift reagents are not limited to dpm chelates. Rondeau and Sievers

have reported that europium and praseodymium complexes of 1,1,1,2,2,3,3-

heptafluro-7,7-dimethyl-4,6-octanedione, fod, of the type Ln(fod)g (XXIII),

are superior shift reagents for weak Lewis bases such as ethers and esters.

Eu(fod) 2 and Pr(fod)g are also superior in terms of solubility (which can
21 22be a problem with the dpm analogues ' ) but require greater care in

handling since they are extremely moisture sensitive.

• The initial reports of Hinckley^^ and Sanders and Williams^^ inspired 

considerable interest in the potential of lanthanide shift reagents. In 

1970, only a few additional papers appeared, but in 1971 and 1972 the 

subject was one of the most active areas of chemistry and several hundred 

citations have now been published. A wide range of shift reagents has 
now been developed.
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18 2*?—261.3.3. Mechanism of induced chemical shifts *

Incorporation of a paramagnetic metal ion into a substrate

molecule by means of some kind of complexation or chelation modifies

the external homogeneous magnetic field, at least in the close vicinity 
23of the metal ion . Paramagnetic ions are sources of secondary 

magnetic fields, which are usually anisotropic, their magnitude and 

direction varying with the direction of the primary field. The 

influence of the secondary magnetic fields falls away sharply with 

distance, and induced shifts will only be significant if the nucleus 

being observed is in close average proximity to the paramagnetic ion. 

This requirement is satisfied by the rapid equilibria involving organic 

compounds possessing Lewis base sites and lanthanide ions, which 

function as Lewis acids.

The lanthanide induced shift (LIS) value is defined as the 

difference between the resonance frequency of a particular nucleus in 

the substrate (S) and the frequency of that nucleus in the adduct 

(lanthanide reagent-substrate, LS):

A = vg -   CD

A is the observed induced shift, and since it represents the average 

of the signal for complexed and uncomplexed substrate (fast exchange 

of L and S with LS occurs on the n.m.r. time scale), A is proportional 

to the molar concentration of reagent (L) in solution. Thus a plot 

of A versus molar concentration of lanthanide shift reagent (LSR) is 
a straight line passing through zero.

In the lanthanide-substrate complex, interaction between the 

paramagnetic metal ion and the nuclei of the substrate causes changes 

in the chemical shift of the nuclei. Two types of interaction between
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metal cation and ligand have been proposed, the dipolar or pseudocontact 

and the Fermi contact interactions. The paramagnetic shift arising 

from these interactions can be expressed as:

A para = A dip + A contact (2)
With lanthanides the predominant magnetic interaction with protons 

is pseudocontact in nature. Dipolar or pseudocontact shift is caused 

by a dipolar interaction between the nucleus and the electron spin 

magnetization of the paramagnetic metal ion. The dipolar shift can be 

expressed as a function of the internal co-ordinates of the nucleus 

under consideration with the metal ion at the origin: r is the length 

of a vector joining the paramagnetic centre and the nucleus, 0 is 

the angle between this vector and the z-magnetic axis, and w is the 

angle which the projection of r into the xy-plane makes with the 

x-magnetic axis (Figure 1). The equation for this dipolar shift in its 
most general form is:

A dip = K 3cos 0-1
ax. + K /sin 0cos2o)

nonax ■) C3)

Figure No.l.
Co-ordinates r, 0 and w of & 
nucleus i in the co-ordinate 
system x, y, z with the three 
principal components Xy ^^d 
Xg of the magnetic susceptibility.

The expression in the brackets are called the "geometric factors"; 

they are dependent on the geometry of the complex formed but independent

nucleus

Paramagnetic 
centre /
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of the lanthanide itself. The constants K and K are functionsax nonax
of the magnetic anisotropy of thé complex, determined by the electronic 

properties of the lanthanide in magnitude and sign. In the case of 

most common relaxation phenomena (where the tumbling time of the 

complex is much greater than the electron spin relaxation time) these 

constants may be expressed as functions of the three principal molecular 

magnetic susceptibilities Xy, corresponding to the x, y, and z 

axes in Figure 1.

For an axially symmetrical field where x^ = X|| and X% = Xy - Xĵ ,
Knonax becomes zero, and the non-axial term in equation (3) vanishes. 

Equation (3) reduces to equation (4). Equation (4) is valid for all i 

observed resonances of a substrate.

A. = K 3cos 0^ -1 .....  (4^

' . '

Equation (4) is the McConnell-Robertson equation and is used in 

most calculations of lanthanide inducedshift (LIS) values. A. isI 1

characteristic for a particular nucleus i; 0^ and r^ depend on the 

geometry of the complex and can be calculated from an appropriate model 

of the complex for every nucleus i; the value of K is different for each 

complex studied as it involves the x tensor, which is split into Xĵ  and 

X||, the tensors perpendicular and parallel to the molecular axis. If 

one knows the topology of the complex (geometry of the substrate and 

position of the lanthanide ion), then the observed induced shifts should 

be proportional to the calculated geometrical factor. Thus from the 

induced shifts it should be, in principle, possible to determine the 

geometry of a rigid substrate. The expression (4), derived for axially 

symmetric complexes, will not necessarily be applicable to the wide range 

of complexes of lower symmetries.
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According to McConne11-Robertson's theory, the pseudocontact

shift arises from a failure of the dipolar interaction to average to

zero owing to the metal ion’s possessing an anisotropic % tensor.
27However, Bleaney proposes a theory in which K encompasses a different

set of parameters. Rather than attributing pseudocontact shift to

the anisotropic x factors, he suggests that the dipolar induced shift

is caused by anisotropy in the susceptibility which occurs in less than

cubic geometries.

The Fermi-contact interaction involves direct delocalization

and/or spin polarization of the unpaired electron via the molecular

orbitals of the substrate ligand. As a result, the unpaired electron

spin density is spread over a number of atomic sites in the ligand,

thereby inducing a contact shift. Contact interaction may involve

both TT and a bonds, although, it falls off rapidly through a series of

o bonds except in conjugated systems, which facilitate delocalization

of unpaired electrons. This interaction is independent of the 
2(3cos 0^ - i) term. For the case of a spin-only system, equation (5) 

has been derived to account* for the contact shift:

. a.con .  _A. Ye geBSCS+l)   [5^
^ Y„ 3kT

In this .equation and are the magnetogyric ratios of the 

electron and nucleus, respectively, S is the spin quantum number, B is 

the Bohr magneton, and k is Boltzmann’s constant. In anisotropic systems 

A^ includes all possible orientations of the molecule tumbling freely in 
solution.

The distinction between contact and pseudocontact shift is 

important for a better understanding of the factors affecting the LIS. The 

assumption that lanthanides interact with nuclei by a pseudocontact
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mechanism is based on their high electropositive character and the 

shielding of unpaired electrons of the f-orbitals. As the lanthanides 

form complexes by electrostatic interaction, this precludes the operation 

of a contact mechanism of the same order of magnitude as those found 

with first-row transition-block metal complexes, but with even as 

little as 1% covalency contact shift should be observed. Therefore, 

even with lanthanides, a small degree of contact interaction is 

possible and is seen in deviations from the expression (4), particularly 

for protons attached to the carbons nearest the lone-pair-bearing atoms. 

Pseudocontact and contact interactions are distinguished in a graphical 

analysis using the log of expression (4). A similar deviation from 

an otherwise linear plot of log r- against .log is reported by 

Demarc o , w h o  attributes this to the presence of contact shift.

1.3.4. Distance-shift relationships^ *̂

Assuming the interaction of the lanthanide complexes is 

predominantly pseudocontact, the magnitude of the LIS of the ith nucleus 

is inversely proportional to the cube of the average distance from the 

metal ion [expression (4)]. Taking logarithms of both sides of 

equation (4) gives equation (6), in which K is a multi-term constant.

log (A^) = -3 log + log (3cos^Gu-l) + log K .....  (6)

For most organic molecules, values of 0^ for most of the nuclei

lie between 0 and 30°, and changes in (3cos^0^-l) are therefore small 

compared with changes in log r^. Under these conditions, a graph of 

log (A^) against log r̂  ̂should approximate to a linear correlation

with a slop of -3. In analyses of this kind, a ligand atom-lanthanide

bond distance of 3-4 Â is Usually assumed, and measurements
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from the estimated average position of the lanthanide nucleus to 

each nuclei are made using Dreiding molecular models. Consequently 

this approach enables relative distances of the nuclei from the metal 

ion to be estimated, which can contribute to structural information.

This can be applied by altering the possible structural models of the 

molecule to obtain the best correlation of the distance-shift data.

The presence of more than one co-ordination site in the organic 

substrate complicates the interpretation of the measured shifts since 

these represent sums of the interactions with the LSR at each site, 

although some groups form stronger co-ordination complexes than others. 

At each co-ordination site, equilibrium constants, and hence pseudo- 

contacts, contribution differ and so result in different proportionality 

constants in expression (4).

By assuming expression (6) correct, a graphical analysis by 

this approach allows a distinction between the relative contributions 

of co-ordination at each site of a ’bifunctional molecule. This approach 

is only useful when co-ordination sites are far apart so that some 

protons are only affected by co-ordination at one site. The slope of 

-3 would be expected but it is not in fact obtained with these graphs, 

and this is attributed to errors in the distance measurement or to 

neglect of 0̂ .. One generalized interpretation suggests that molecules 

which produce slopes greater than 3 are flexible, but those of slopes 

less than 3 are rigid.

1.3.5. Influence of the angular term

Deviations from the distance-shift correlations due to neglect 

of the geometric term are common and by including the term (3cos 0^-1), 

improved correlations are obtained.
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In certain cases the angle 0^ may be sufficiently large for

the direction of "normal shift" to be reversed. A plot of the
2 '[3cos 0.-1) term against angle, as in Figure 2, shows how the LIS 

can be varied from positive to negative as the angle is altered.

r H
I

o'1
V)OOto

CN

180135
-1 L

2Figure No.2,. The variation of 3cos 0.-1 with the angle 0

Thus with EuCdpmJg,' the angle term (3cos 0^-1) is positive for 0^

values from 0 to 54.7° and from 125.3 to 180° and a positive

(shift to lower field) iÿ observed, however when 0^ has a value from

55 to 125° the angle terra and A. become negative (i.e., shifts to higher■ 1
17field are observed). ’ By altering the solvent or ligand of the LSR,

the direction of the shift is often altered, as these factors can

also affect the geometry of the complexed substrate. An alternative 

explanation for the reversal of the 'normal' direction of the LIS is 

attributed either to the presence of significant contact interaction, 

or to changes in magnetic susceptibility % tensor, (although disagreement 

has been expressed with this latter reason) or to changes in the sign

of crystal field coefficients. It is obviously advantageous not to
2 25neglect the term (3cos 0^-1) also in cases of lower than axial symmetry.

It is a characteristic feature of the geometrical factor that

for 0 = 54.7° the sign of the shift is inverted. Figure 3 illustrates

the geometrical effect on the LIS.
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Figure No.5. The dipolar, 
axially symmetric field (point 
dipole); positive lobes signify 
induced downfield shifts, negative 
lobes upfield shifts for Eu(III); 
the reverse is true for Pr(III).

principal 
magnetic axis

1.3.6. Effects of temperature

The use of variable-temperature studies in n.m.r. spectroscopy 

is now well established in solving problems involving rotamerism and 

conformational analysis.

Temperature-dependent shifts in the presence of LSRs have 

been observed. With monofunctional substrates it is found that 

shift magnitudes increase with decreasing temperature. Line broadening 

is also a consequence of reducing the temperature and has been 

attributed to reduced rates of interconversion of the free and complexed 

substrate. This suggestion is supported by the appearance of free 

and complexed substrate at temperatures below -80° in solutions of 

DMSO in CD2CI2 containing Euffod)^.

Linear relationships between the LIS and the inverse of the 

absolute temperature have been observed over the temperature range 

-30 to 90 , but in any single molecule all the protons may not always 

respond uniformly to temperature changes. Curved Arrhenius plots can 

be attributed to changes in the molecular configuration of the complexes 

with temperature, or, in the case of polyfunctional ligands, to a

change in the site of co-ordination. 18
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28With a chiral shift reagent Fraser, Petit and Saunders found 

that the shift separation between enantiomers increases with increasing 

temperature.

1.3.7. Lanthanide metal ion
Transition-metal complexes could be used as shift reagents in 

n.m.r. spectroscopy if it were not for the excessive linewidth broadening 

these metal ions exhibit in solution. Europium(III), the most frequently 

selected lanthanide, is selected by virtue of its anomalously inefficient 

nuclear spin-lattice relaxation properties. It has a low-lying Russell-
7Saunders state and a diamagnetic F^ ground state, which gives a very 

small separation of the highest and lowest occupied metal orbitals and
7which leads to inefficient relaxation; the excited F^ state presumably 

contributes to the pseudocontact shift. Thus the presence of such 

metal ions as europium(III) in solution causes very little broadening 

in n.m.r. spectra.

Narrow bandwidths are exhibited by the lanthanides praseodymium (Pr) 

neodymium (Nd), samarium (Sm), and europium (Eu), and moderate broadening 

is found with ytterbium (Yb), but a notable exception to these character

istics occurs with gadolinium (Gd), which is used explicitly as a 

broadening probe. Europium and praseodymium are used most extensively 

and ytterbium also appears satisfactory for use, although it causes 
greater broadening.

A second factor in selection of the correct lanthanide as a 

LSR is the magnitude of the shift produced. The largest shifts are 

unfortunately exhibited by the metals which cause greatest broadening, 

e.g. terbium to thulium, and, therefore, the metals selected for use 

as LSRs are necessarily a compromise of these factors, with a greater
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consideration given to the broadening factor. Consequently, europium 

produces relatively small but adequate shifts and is the lanthanide

used most extensively since the first paper was published by Hinckley.

I This metal ion produces large enough shifts with sufficiently minimal
[
, broadening to allow gross multiplet adsorption bands to be resolved

at relatively large shifts. •

Praseodymium follows europium in its popularity, owing to two

factors: (i) the shifts are larger than those caused by europium,,
20in proton n.m.r., compensating for the slightly poorer broadening

properties; (ii) praseodymium causes upfield shifts and is, therefore,

a useful complementary reagent . A disadvantage of praséodymium and

other shielding of LSRs, however, is the added complication of

crossing over of resonances, which confuses analysis in some cases.
29-32A series of papers, largely by Beauté and Wolkowski,

33advocates the use of ytterbium and holmium owing to their relatively

greater shifting power (cf. europium), but these advantages are balanced

by their greater bandwidths. Thulium has been used as a LSR,^^ but

although shifts are greater than those caused by europium, drastic

broadening again limits its application. The reference to a LSR as

deshielding or shielding refers to its use under 'normal' conditions

(as a 3-diketonate complex), in fairly non-polar solvents and with

angle outside the 54.7 to 125.3° limits,. Finally, diamagnetic 
35lanthanum is used in LSR studies although the shifts produced are 

probably due to changes in shielding by bonded electron^ and not 

indicative of any pseudocontact shift. The main use of lanthanum may, 

thereforei lie in taking accurate measurements of the LIS due to
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pseudocontact shift only, by subtracting shifts caused by the lanthanum 

complex from the LIS caused by a paramagnetic LSR.^^

In an isostructural, series, is proportional to K, which in 

turn depends on the magnetic properties of the metal alone [eq. (4)], 

provided dipolar or pseudocontact interactions are solely responsible 

for the shifts. The results are shown in Figure 4.

Hor H

Pr Tb
Nd LuSm

GdLa Er Yb
Eu

Tm

•§

Figure No.4. Relative LIS for a typical dipolar-shifted 
nucleus in the region -54.7 < 0 < +54.7° for different 
lanthanide ions.

yel
1.3.8. Lanthanide shift reagent (LSR)

Bulky ligands in the LSR are an advantage as this restricts 

mobility in the complex, preventing the susceptibility tensors being 

averaged out by a combination of different configurations .

The introduction of fluorine atoms on the 3-diketonate ligand 

overcomes the solubility problem and has led to superior LSRs. One 

such complex, the l,l,l,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6- 

dionato(fod) lanthanide, apart from having improved solubility, has 

a more acidic metal ion owing to the electron-withdrawing power of
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the fluorines. This greater Lewis acidity causes a stronger association 

with the substrate and thus extends its range to less basic groups; 

although the bond chemical shift is smaller for these fluoridated 

LSRs, the observed LIS is larger because of the stronger binding in 

the complex. However, an alternative method for comparing the shifting 

power of LSRs, by measuring their vinylic proton shifts, allows a comparison 

of the shifting power of various fluorinated LSRs with the non-fluorinated 

reagents.

EuCfodJg > Eu(pfd]g > Eu(fhd)^ > EuCdpm)^ where (pfd) represents 

l,l,l,2,2-pentafluoro-6,6-dimethylheptane-3,5-dione and (fhd] represents 

1,1,l-trifluoro-5,5-dimethylhexane-3,4-dione. Various LSRs appear to 

exhibit different degrees of Fermi contact interaction with aromatic 

substrates, and a series of the reagents with an increasing degree of 

Fermi contact interaction operating is reported;

Pr(fod)^ < YbCfod)^ < EuCdpm)^ < ErCdpm}^ < Eu(fod)^ 
increasing Fermi contact interaction

Finally, one disadvantage in using the fluorinated LSR is that 

the t-butyl resonance occurs in the 1-2 p.p.m. region when complexed, 

hence interfering with proton resonances in this region. On the other 

hand the t-butyl resonance of EuCdpm)^ occurs upfield of TMS in proton 

n.m.r. and is, therefore, not interfering with the spectra.

1.3.9. Application of LSR to simplify the p.m.r. spectra of
18 26 37 monofunctional compounds. ' '

Only substrates having a sufficiently polar and exposed group 
(or atoms) to form a complex with the reagent can be subjected to 

investigation using shift reagents. Some general conclusions have been
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made concerning comparisons of co-ordinating ability of different 

functional groups. The following series of functional groups have 

been put in order of their ability to co-ordinate and cause a LIS:

phosphoryl > carbonyl > thiocarbonyl > thiophosphoryl 

ethers > thioethers > ketones > esters

amines > hydroxyls > ketones > aldehydes > ethers > esters > nitriles 

(for RCH^X)

(Note: there are contradictions with respect to relative shifts,e.g. 

ketones and ethers).

This order reflects the 'binding* dissociation constant of the 

corresponding substrate-reagent adduct and to a smaller extent the 

geometry (distance and angle) of the protons with respect to the central 

metal ion, although factors such as steric hindrance cannot be ignored.

A. LIS of alcohols and phenols

Both Eu(dpm)^ and Eu(fod)g have been used successfully on many 

occasions to simplify the p.m.r. spectra of alcohols. Eu(fod)g is a stronger 

Lewis acid and is therefore expected to form stronger complexes with 

strong Lewis bases. In addition, owing to the greater solubility of 

Eu(fod)^ in CCI^, larger induced shifts are expected for this reagent.

Phenols with pK^ values less than 10 cause decomposition of 

EuCdpm)^. The more acidic Eu(fod) 2 should be less unstable and might 
be more useful for phenols.

B. LIS of ketones and aldehydes

Carbonyl compounds, complex much less strongly than hydroxyl 

compounds with LSR. Eu(fod)^ does not appear to offer any advantage 

over Eu(dpm) 2 as a shift reagent for ketones, similar induced shifts 

being observed with both reagents for 3,S,S-trimethyl-3-,(p-chlorophenyl)- 
cyclohexanone.
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C. LIS of esters and lactones

Esters are weaker Lewis bases than ketones toward LSR, the 

preferred co-ordination site being the carbonyl and not the ether 

oxygen.
D. LIS, of: amides and lactams

Co-ordination of LSR to amides and lactams involves the carbonyl 

oxygen rather than the nitrogen atom. Delocalization of the nitrogen 

lone pair of electrons under the electron-withdrawing influence of the 

carbonyl group gives rise to partial double-bond character of the C-N

bond, and thus the existence of the ^  and jE rotamers (XXIV and XXV).

LSR offer an attractive method for determining the rotamer ratios.

0 ^R* 0^ H -
C — N C —  N

R H R R»

(XXIV) ^  rotamer (XXV) jE rotamer

In the absence of steric hindrance, groups cis to the carbonyl 

experience a larger induced shift than their trans counterparts. This 

situation may be reversed when bulky groups are present.

Increase in the coalescence temperature of cis and trans amides 

on complexation with LSR has been attributed to the increased electron- 

withdrawing power of the complexed carbonyl and/or increased peak 

separations of the rotamers.

E. LIS of ethers and epoxides

Although ethers are generally regarded as very poor donors
38toward LSR, the work of Hart and Love has shown that they may compel 

effectively with esters and ketones; e.g. for an equimolar mixture of
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tetrahydrofuran and acetone with Eu(dpm)^ 90% complexing to the ether 

function is indicated. When the ether oxygen lone pair of electrons 

is delocalized into an extended tt system, complexing becomes very 

weak.

The efficacy of a number of europium chelates as LSR have been 

compared using di(n-butyl)ether. The ligand decafluoroheptanedione 

(F^C^COCH^COC^Fg) is a stronger Lewis acid than fod and has fewer 

interfering ligand proton absorptions. The corresponding europium 

complex has greater chloroform solubility and induces larger shifts 

in protons remote from the co-ordination site. The epoxide group is 

an ideal function for shift calculations because of its rigid nature.

F. ' LIS of amines

The amine function is usually more basic than the hydroxyl, and 

therefore large apparent shifts may be observed with shift reagents owing 

to the lower dissociation constant of the reagent-substrate adduct. The 

importance of steric effect is clearly demonstrated by the drastic fall 

in the magnitude of the induced shifts for the ortho protons along the

series (XXVI) --->• (XXVII) — ^  (XXVIII), despite the actual increase

in basicity of 0.5 pK unit along the same series.

(18.4)

H Me

'H(9.1) CO.6)

(XXVI) (XXVII) CXXVIII)



39

Considerable care must be exercised when interpreting the shifts 

induced in anilines and aniline analogues, because of the possibility of 

Fermi contact interactions. Large Fermi contact contributions occur in 

aniline and p-toluidine, the effect being most apparent for the EuCfod)^ 

reagent. By contrast, PrCfod)^ and Eu (dpm) ̂  show little evidence for Fbimii contact 

shifts, the results being interpretable in terms of dipolar interactions alone,

G. LIS of aza heterocyclic compounds

Much of the discussion regarding interactions of LSR with aza hetero- 

cyclics has been concerned with the controversy surrounding the relative 

contributions of the Fermi contact and dipolar contributions to the observed 

induced shifts. It has been shown that the induced shifts for the protons 

of pyridine and quinoline in complexes with Eu(dpm)^ can be accounted for 

mainly in terms of dipolar interactions.

H. LIS of nitriles

Nitriles are very weak donors and only small LIS are observed.

Eu(dpm)g has been used successfully to enable distinction between the cis- and 

trans-bicyclo(6,1,0]nonatriene derivatives (Figure 5) and their thermolysis 

products. The ketenimine group (=C=NR) is an even weaker donor than the 

nitrile.

CHNC

CN

15%

70?

85%

30%

Figure No.5. The thermolysis products of cis- and trans-9-cyano- 
9-methyl-bicyclo[6,1,0]nona-2,4,6-triene.
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1.3.10. Interaction of LSR with polyfunctional molecules

The relative shifting (and complexing) abilities of functional

groups can be determined by n.m.r., either by intermolecular (external)

or intramolecular (internal) competition experiments; the former is
38done with a mixture of substrates, the latter with a substrate containing 

more than one function. This latter case is of great interest in practical 

terms, since one frequently has to deal with polyfunctional substrates.

Double or higher complexation in polyfunctional molecules shows up 

in the absolute shift values observed [large LIS, if the different centres 

of complexation have comparable co-ordination binding constants, the 

induced shifts of the two or more Ln(III) being additive] or in a bend 

in the A versus LSR-concentration slope (at low LSR concentration the 

strongest basic function is dominant, when the strongest base site
23approaches saturation, the other(s) start to co-ordinate LSR too).

The additivity of LIS can be exploited to determine complex 

populations in polyfunctional compounds by use of the LIS values of 

monofunctional standard model compounds.

Distinct nonadditivity indicates some special effects. In the 

series methoxy-, ô -, m-, £-dimethoxybenzene a remarkable increase in 

the LIS (ratio LSR/S = 1/1, p.p.m.) is observed for the methoxyl groups 

in the ortho isomer only.

OCH.
0.31

OCH ] ] I OCH
OCH3 8 57 OCH3 OCH3 ;

0.5 0.89 VEu
(XXIX) (XXX) (XXXI) . (XXXII) (XXXIII)
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Clearly, (XXX) forms a strongly bonded bidentate complex (XXXIII). 

It was found^^ that the o-dimethoxy arrangement in (XXX) appears to have 

about twice the affinity for Eu^fod)^ that an aromatic ester group has. 

(An isolated methoxy function co-ordinates poorly compared to the ester 

group).

The simplest way to make the case clear cut is to use a model 

compound with one,and only one, strongly Lewis-basic functionality.

1.3.11. Chiral shift reagents

Prior to the discovery of LSR, two principal methods have been

used to distinguish enantiomers by n.m.r. In the first method, a

derivatizing agent [(R)-o-methylmandeloyl chloride^^ or better, Moscher's

(R)- or (S)-a-methoxy-a-trifluoromethylphenylacetic acid^^] is used to

convert optically active amines or alcohols into diastereoisomers, which

show useful, but not particularly large, chemical shift differences

generally of about a maximum of 0.15 p.p.m. The second method employs

a solute-solvent interaction between a chiral solvent and each of the
t

enantiomers to form loosely-bound diastereoisomers of slighly different

chemical shifts (A6 < 0.1 p.p.m.). The splitting of the signals in

the spectrum results from a different position of the substrate nuclei

in the diastereomers with respect to the magnetic field produced by the

ring current of the TT-system of the solvent. Optically active %,%,2-tri- 
ofluro-l-phenylethanol has been the most successful reagent for a variety

42of amines, esters and sulphur and phosphorus compounds.

Since the discovery^^'^^ that LSRs are capable of inducing 

simplification and enhancement of resolution in n.m.r. spectra of various 

Lewis bases, many new developments and refinements have been introduced. 

Whitesides and co-workers^^ and others^^'^^ have reported that 

Chiral LSRs shift the resonances of many enantiomeric organic Lewis bases
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to different extents. This finding provides a simpler method for

the determination of enantiomeric purity than others employed.

Since the magnitude of the LIS, A6, has proved to be a sensitive probe

of steric environment^^, it is expected that chiral shift reagents

(where ^ denotes one optical isomer of the chelate) will produce

diastereoisomeric shift difference, AA6, between the resonances of
SOequivalent nuclei in an enantiomeric pair (R,S).

The situation is described by equations (7) and (8), where

C+ + R  ---^ (C+R)......................... .....  (7)

+ s  -----^ (C+S) .....  (8)

the association of with R and S forms two diastereomeric (and, in 

principle, n.m.r. distinguishable) adducts in solution. Because the 

interchange processes are rapid, the observed shifts are a time average 

of those for the complexed and free substrate. Thus AA6 and Aô are 

dependent on the molar shift reagent/substrate ratio . The intensity 

of a signal, on the other hand, is proportional to the total mole fraction, 

n, of a given enantiomer. From the measurement of peak areas, the 

enantiomeric purity, E.P. can be readily calculated using equation (9).

■ .....

The disappointing feature of the chiral LSR concerns the relative

shifting of the R/S enantiomers, which is a function of both the differences
18in equilibrium constants and the actual geometries of the complexes.

It is difficult to predict which shift reagent will yield the best 

enantiometric shift differences for a given substrate.

The successful application of the optically active shift reagent 

technique to the reactions of epimerization, racemization, asymmetric
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induction or to the determination of enantiomeric purity depends 

mainly on the use of a high-resolution spectrometer and an appropriate 

solvent, and on the asymmetric centre being relatively close to the 

complexation site.^^

1.3.12. Substrate-lanthanide shift reagent interaction

Determination of relative lanthanide induced shift (LIS) values 

by plotting A versus the ratio molar concentration of shift reagent/ 

substrate (Figure 6 shows the plots of A vs L^/S^) would seem to be a 

reliable and rather easy procedure. However, it has been shown that

A A

Figure No. 6. (a) Ideal and (b) typical A versùs L^/S^ plot;
in (b) the plot should represent a straight line up to L^/S^ 
fV 0.5 allowing extrapolation of the A value for the 1:1 complex;' 
S^ is kept contant, is varied in the experiment.

the values obtained for the slope (at low LSR concentrations) differ
52for different substrate concentrations despite equal L^/S^ ratios 

(L^ and S^ are the molar concentrations of added LSR and substrate, 

respectively); this finding and the nonlinearity of the plot at L^/S^ 

ratios higher than 0.5 require explanation.
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For strong Lewis-base substrates (e.g. amines, alcohols) one can

assume that at high concentrations of LSR a value for the LIS is obtained

which does not change upon further addition of reagent, since no more

lanthanide ions can be incorporated into the complex, all coordination

sites being saturated. In the ideal case of a well defined 1:1 complex,

a very sharp bend should show up in the plot (Figure 6). However,

this is almost never true, thus indicating that a simple, one-step, 1:1

equilibrium is not, in fact, the only one involved. Besides the species

L,S, and LS, the species LS^ (1:2 stoichiometry) will be present in 
23solution, also . Nevertheless, almost all methods to obtain the 

intrinsic parameters of the reagent-substrate equilibrium are based on 

the assumption of a 1:1 complex.

The observed lanthanide-induced shift A for any particular nucleus 

is an average of the shifts for the complexed substrate and the uncomplexed 

one in the case of rapid exchange on the n.m.r. time scale. For a 

nucleus of a substrate molecule in the presence of a shift reagent forming 

1:2 adducts the observed lanthanide-induced shift A is given by:

A = A, + A   (10)

where is the total substrate concentration and [LS], A^ and [LS^],

A^ are respectively the equilibrium concentrations and limiting LISs
53of the 1:1 and 1:2 adducts.

A two-step mechanism should provide a reasonable model for the 

equilibria involved in the complex mechanism:

L + S ^  ^  LS > = [L] [S]" .....
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LS + s ^ ----  LS, , K, = [^^2^   (12)
=' - [LS] [S]

where L and S are the molar concentrations of the LSR and substrate, 

respectively, and [LS] the molar concentration of the complex formed 

in solution; the ratios of these species depends on and K^, the

binding constants. If = 4K^ .....  (13) then the reagent has

two equivalent and independent sites for substrate co-ordination.

In addition to adduct formation there are at least three other 

types of chemical interactions that are often present in shift reagent- 

substrate systems. These include the presence of another substrate, 

e.g. water impurity, complex formation between the substrate and the 

solvent molecules, e.g. hydrogen bonding to chloroform, and dimerizatioh 

of the reagent.

The presence of an impurity binding to the reagent will add the 

equilibrium:

L . 1  LI , K. = ...... (14)

which for n = 1 (n = number of equivalent and independent binding sites) 

will exist simultaneously with that described by equation (11). Therefore, 

the presence of other donor substrates as impurities can reduce the 

effective concentration of the LSR^^ if they form stronger co-ordination 

complexes than the substrate under study.

Interaction of the substrate with solvent molecules. A, adds the 

equilibrium:

s + A ^  SA ,   (15)
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As a result of this interaction, substrate concentration is reduced 

and a smaller value of the slope is obtained.

For the case of reagent dimerization which adds [to equilibrium 

(11)] the equilibrium:

L + L  --^  Lg . K =   (16)
[L]2

It is assumed that the dimer does not co-ordinate substrate. A two-fold 

advantage exists in measurements at low concentrations of the LSR (a 

factor favouring the fluorinated LSRs which have greater 'shifting 

power') since (i) this minimizes the possibility of dimerization of 

the LSR and (ii) the bulk susceptibility changes caused by the metal ion 

are minimal.

The three interactions above [equations (14), (15) and (16)] were 

considered as existing separately. If present simultaneously the 

equations become rather involved.
59The lowering of the LIS with different solvents is reported; 

one explanation attributes this to competitive inhibition of weakly 

complexed substrates, particularly with donor solvents such as aceto- 

nitrile, pyridine, acetone and dimethyl sulphoxide. Therefore, the 

use of donor competing solvents should be avoided when using the tris-g- 

diketonate LSR.' As the magnitude of LIS is geometry dependent and lanthanide 

complexes are predominantly electrostatic, the solvation spheres can 

influence this geometry so that different solvents may alter shifts.

As the LSR is only a weak Lewis acid, steric hindrance reduces the 

LIS either because of a smaller value of the equilibrium constant or a 

greater nucleus-cation distance or both.
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1.3.13. Graphical interpretation of induced shifts

Although a large amount of information can be gleaned by a visual

analysis of a series of spectra obtained from incremental additions of

LSR, the information is more conveniently expressed in graphical form.

The mathematical treatment to allow manual (graphical) evaluation of

the experimental results with reasonable simplifications is outlined 
23as follows

Consider the equilibrium for a 1:1 complex [equation (11)], the 

observed LIS A of a given nucleus in the presence of a shift reagent 

is given by:

A Aj   (17)

where X is the concentration of the LS complex, and the other symbols 

are as defined previously. A = A^ for the pure LS complex.

The equilibrium binding constant is given as:

V _ [LS] __________ _X   nsi
1 “ [L][S] ■ ( L ^ - X ) ( S ^ - X )  .....

where L^ is the total concentration of the reagent. S^ and L^ are

determined by the experimental conditions chosen. By extraction of

X from equation (18) and substituting X in equation (17) one obtains

an expression where A is a function of A^, K^, S^ and L^.

One experimental restriction to simplify matters is to use low

reagent concentrations

® t>> h
in which case X will be small too (X is the LS concentration)

S ^ »  X

Upon introducing this condition, equation (18) becomes
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K, =1 (L^ - X)S^ , - XS^

extracting X,

X =

and substituting in A [equation (17)] yields

A = .....  (19)
1 " St%l

Equations (18) and (19) are the basic equations for the. two most 

important approaches to obtain intrinsic LIS parameters.

Approach 1, A versus L^/S^ plot at constant S^.

The most used graphical method is the one where the substrate 

concentration S.̂  is kept constant and the reagent concentration L^ is 

varied (the condition S.̂  »  L^ remaining valid). In practice, a n.m.r. 

sample of the substrate, is prepared, and the n.m.r. spectra are recorded 

for various concentrations of the reagent, which is added incrementally. 

The slope of the plot A versus L^/S^ is assumed to give a measure of the 

"bound” or "limiting" shift.

To check the validity of this assumption we have to consider two 

limiting cases:

A. Strong binding of the substrate to the reagent: this means 

1 in equation (19), then equation (19) becomes

A = ^l^t^l = A. / L. \.................. .....  (20)(̂ 1
Equation (20) corresponds to a straight line for the plot A versus _t

S
passing through the origin, with slope equal to the limiting shift A^.
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For high L^) and good complexing (a large value for K^)

this method will yield correct results.

B. Weak binding of the substrate to the reagent: this means

<jC 1 in equation (19), then equation (19) becomes

A = KjL^A^

or

A = K^AjS^ ..... (21)

Equation (21), too, corresponds to a straight line in the plot

of A versus L^/S^, but the slope is not equal to A^ any more. It is 

also dependent on the substrate concentration and the binding constant 

of the complex formed.

Approach 2. Plot of versus 1/A at constant L^.

This approach was introduced by Armitage.^^’̂ ^ It offers the bonus

that values for A and K are obtained as well,i i
We write equation (18) in the following form:

L -  —L,S, - S^X - l,X . I
2We have assumed »  L^; therefore, X will be low and X will 

be very small, therefore, negligible.

Rearranging equation (17) to extract X (X = AS^/A^) and substituting

in K^,

1 A^L^ - AS^ - AL̂

rearranging to extract yields

(22)
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Equation (22) predicts a straight versus 1/A plot with a 

slope of L^A^ and a y-intercept of -(L^ + 1/K^), thus yielding values 

for both intrinsic parameters A^ and . A typical (idealized) plot 

is shown in Figure 7. The separate lines for all protons converge to

Figure No. 7. Idealized versus 
1/A plot for three nuclei of a 
particular substrate; at low 
concentrations a straight line is 
expected; is kept constant, 
is varied in the experiment.

the same intercept, which corresponds to a consistent value of 

obtained from any one of the protons.

All previously derived equations [(11) and (17) - (22)] are 

valid for a "one step - 1:1 binding model". To account for the expected 

1:2 complexing, also,the equations can be modified easily for the 

assumption of a "one step - 1:2 binding model" of the type,

2S + L -

1/A

±  LS;.'
We write equation (10) in the following form:

A = -  (XA^ + 2y A^) (23)

where y is the molar concentration of the LS^ species. and 

are defined as follows [derived from the equilibrium (11) and (12)]

_ [LS]
1 [L][S] (S^ - X - 2y)(L^ - X - y) (24)

[LSJ
■̂ 2 ■ [LS] [S] (25)X(S^ - X - 2y) ....

In principle, X and y can be extracted from equations (24) and (25) 
and substituted in equation (23) to solve this four-parameter problem for

Aj,- A^ and K^, K^.
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Assuming the condition may be valid; then equations

(23), (24), (25) assume the following form when 2yA^ XA^ is 

assumed for (23) and ^  X, 2y is assumed for (24) and (25):

A =   (26)

""l = S-(\ -- X - y)   (27)

^2 " XS^   (28)

Equation (28) upon rearrangement is 

y. = xs^K, 

Equation (27) upon rearrangement is

X = - K^S^X - K^S^y

Equation (28) substituted in (27) is

X = - K^S^X - K^S^XS^K,   (29)

Now X, extracted from (29) is

' .............

Equation (30) substituted in equation (28) becomes

y  ----------------- 2 (31)
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and -equation (31) substituted in equation (26) becomes

A = 2A^

2Now the assumption »  1 or is introduced, yielding

rearranged becomes

(32)

and rearranged again becomes

St = 2A^L^ |i I    (33)

Comparison of equations (32) and (33) with (20) and (22), 

respectively, demonstrates that for both complexation models (1:1, 

one step, and 1:2, two steps) the plots A versus L^/S^ and versus 

1/A yield straight lines, the A^ in equations (20) and (22) being 

equal to 2A^ in equations (32) and (33).

In the majority of cases, plots of induced shift versus the

ratio of [LSR]/[substrate] are not linear over the entire range from

zero to one for [LSR]/[substrate], although for one or two instances
18a linear relationship has been claimed. Usually some curvature 

is apparent at both extremes of the plot, with a good linear correlation
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being noted for the range 0.2 - 0.6 mole ratio. Curvature at low 

LSR concentrations has been attributed to competition between the 

substrate and traces of water or acidic impurities for the LSR.^^'^^ 

Curvature at high ratios of [LSR]/[substrate] has been ascribed to 

incomplete solution of the LSR and medium and association effects.

1.4. Carbon-15 Magnetic Resonance Spectroscopy

For many years n.m.r. spectroscopy has been used in the
13structural determination of organic compounds. The advent of C n.m.r.

spectroscopy as a new tool has provided a valuable complementary

technique. In 1957 the first reports^^'^^ of successful determinations 
13of n.m.r. of C nuclei in natural abundance appeared and since then 

sufficient work has been done to indicate several features which offer 

new approaches to problems of chemical interest. There are many points 

to contrast between the two techniques.

A. Chemical shift
13It is generally found that C chemical shifts are ca. 20 times

larger in p.p.m. than chemical shifts. Whereas a precise chemical

shift determination in proton spectra often requires a detailed analysis

because this quantity is obscured by splitting due to spin-spin coupling,
13this complication does not arise in natural-abundance C spectra.

Broad-band noise-modulated proton decoupling simultaneously removes 
13 1all heteronuclear C - H couplings. Hence each chemically non

equivalent carbon within the molecule gives rise to a separate line 

whose relative position corresponds to a chemical shift.

B. Line width

With modern-instrumental methods, it is possible to have narrower
13 1 1resonance lines in C n.m.r. spectra than with H spectra. H spectra

are extensively spin-coupled, leading to broadened resonance bands for
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13most protons. In C n.m.r. the situation is more easily controlled 
and spin-spin splitting is not usually present.

C. Sensitivity

Isotope 13 has a nuclear spin of 1/2 (as does ^H); however,

the natural abundance of carbon-13 is 1.1%. On account of the much
13 1lower sensitivity of C as compared to H n.m.r. spectroscopy,

sensitivity is a far worse problem. It is generally preferable

to use solutions which are at least 1 M. The low sensitivity of

spectroscopy creates additional problems by the use of large diameter

tubes and Fourier transform spectroscopy to increase the sensitivity.
13C n.m.r. spectra of organic compounds are usually recorded

with simultaneous proton decoupling in order to eliminate spin-spin

splitting and to take advantage of the signal enhancement provided

by the nuclear Overhauser e f f e c t . F o r  the assignment of the resonance

signals obtained in this way to the individual carbons in the molecule

studied, "off resonance" decoupling is a straightforward technique

to distinguish between the signals of quaternary carbons, CH-, CH^—  ,

and CHg-groups. The differentiation within each group, however, is

a more difficult task if chemically different carbons are expected

to yield signals of equal intensity.

In general, however, it has not been possible to make a full

assignment in complex organic molecules without the aid of spectral

comparison of chemically related compounds. This can be achieved

by introducing functional groups at various sites of a molecule or by

specific labelling. For carbons bearing protons and in cases where

synthetic methods are available, specific deuteration provides a useful

alternative that leads to an unequivocal decision due to the observable 
13C-D spin-spin coupling. Clearly, deuteration fails if the desired 

synthesis is impossible or becomes^too time consuming.
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The lanthanide chemical shift reagents that are currently

being used to "simplify" n.m.r. spectra of compounds containing
l3coordinating functional groups can also be used in C n.m.r. studies.

13Since C resonances enjoy a far greater freedom from overlap than 

proton resonances, it is possible to aid n.m.r. spectral assignments 

by the use of these reagents.
13Assigning the lines in a C n.m.r. spectrum to individual 

carbon atoms in a molecule obviously requires the combined application 

of the above-mentioned techniques.
13The results which can be obtained directly from C spectra 

are concerned, for the most part, with the chemical shift which has been 

called "the most important single parameter to be derived from the n.m.r, 

spectrum". For a specific nucleus A, the chemical shift depends on the 

field experienced at that nucleus and which is given by:

= «0 - V    (34)

where is the applied field. The total shielding constant can be
68approximated by a sum of three terms:

= ad + ap + a'   (35)

The diamagnetic contribution of ad is the Lamb term for the atom 

being considered; i.e., ad corresponds to the uniform circulation of 

the atomic electrons as if they were free. The paramagnetic term ap 

is a local correction due to the molecular environment and involves 

the mixing of ground and eXcited electronic states by the applied 

magnetic field (ap would be zero in an isolated atom). The term 

a* represents the effect of the electron circulation on all other 

atoms and any interatomic ring currents which cannot be localized.
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13Several studies of C n.m.r. of aromatic molecules have been

r e p o r t e d . F o r  the alternant hydrocarbons, the carbon shieldings

for the nuclei bonded to two other carbons only differ very slightly

( ̂  1 p.p.m.) from that of benzene, while the carbon nuclei at ring

junctions absorb at appreciably lower field. For the non-alternant

hydrocarbons, the aromatic nuclei absorb over a much wider range than
70for the alternants. The two types of hydrocarbon exhibit clear 

differences. Since, theoretically, the significant distinction between 

the alternant and non-alternant-hydrocarbons is that for the former 

the TT-electron density at each carbon is very close to unity while 

for the latter large differences may result at various positions, it 

follows that shifts in aromatic systems may be governed by the 

IT-electron distribution.

The results for the methyl-substituted benzene series^^'^^
13indicate two general features, of aromatic C shieldings. The more 

distinctive of these is a pronounced deshielding of ca. 9 p.p.m. at 

an aromatic carbon upon replacement of hydrogen by methyl. It is 

particularly interesting that this deshielding influence is approximately 

constant for a large variety of aromatic derivatives and only for 

cases in which there is substantial steric interference with the methyl 

group are marked changes in its : magnitude found. The second feature 

which was recognised, although the differences are small, was that the 

indirect effects of a methyl group on the other aryl carbons are additive 

with successive methyl substitution on the ring provided the methyl

groups are in meta- or para- positions. Thus, if the substituents are
13not ortho-, the aromatic C shifts in polysubstituted cases are given 

by the algebraic sum of the effects observed for the monosubstituted
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benzenes. The agreement between observed and calculated values is

often 1 p.p.m. and, generally, the deviations are less than 
792 p.p.m. If the substituents are ortho-, larger deviations are

usually found.

From the available data, shift values for the monosubstituted

benzenes have been collected in Table 1,

From these results it is apparent that the carbon bonded

to the substituent absorbs over the widest range, 66.8 p.p.m.;

in contrast, the meta-carbons are the least affected by substitution,

3.2 p.p.m. The ortho- and para- carbons exhibit appreciable shifts,

19-25 p.p.m. for this assortment of substituents.

Since the carboxylic carbon in benzoic acid absorbs at 
81174.9 p.p.m., formation of the methyl ester produces a 9 p.p.m.
82upfield shift. Substituents on the aryl ring are shown to affect

the carboxyl shieldings very slightly, with significant changes occurring

only in the ortho- substituted examples. The largest shift, + 4.4 p.p.m.,

is caused by an ortho-hydroxyl group, presumably, because of intra-
83molecular hydrogen bonding. The much smaller shifts caused by the 

other ortho-substituents indicate that these compounds are more sterically 

hindered.
84Dhami and Stothers have studied extensively a series of 40 

substituted anisoles. The data for the monô-pàra-substituted,anisoles 

confirm the existence of the additive nature of substituent effects 

on aryl carbon shieldings. While, in ortho-substituted systems, 

generally, it is found that the shielding effects of substituents on 

the aryl carbons are no longer additive, but it appears that the
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Table No.l. Empirical parameters* for the calculation
of chemical shifts in :substituted benzenes. 80

Substituent Position
C-1 ortho meta para

H 0 0 0 0
+ 9.3 + 0.8 0 - 2.9

CĤ CH, +15.6 , - 0.4 0 - 2.6 ,
+ 20.2 . - 2.5 + 0.1 - 2.4

CCCH;), +22.4 - 3.1 - 0.1 - 2.9

C^3 - 9.0 - 2.2 + 0.3 + 3.2
+ 13 - 1 + 0.4 - 1

CH=CH^ + 9.5 - 2.0 + 0.2 - 0.5
C=CH - 6.1 + 3.8 + 0.4 — 0.2
CH^OH +12 - 1 0 - 1
COOH + 2.1 + 1.5 0 + 5.1
cocP + 8 + 1 0 + 3
COOCH + 2.1 + 1.1 + 0.1 + .4.5
COCl + 5 + 3 + 1 + 7
CHO + 8.6 + 1.3 + 0.6 + 5.5
COCHg + 9.1 + 0.1 0 + 4.2
COCF - 5.6 + 1.8 + 0.7 + 6.7
COĈ H; + 9.4 + 1.7 - 0.2 + 3,6
CN -15.4 + 3.6 + 0.6 + 3.9
OH +26.9 -12.7 + 1.4 - 7.3
OCH, +31.4 -14.4 + 1.0 - 7.7
OCOCH +23 - 6 + 1 - 2

oCffs + 29 - 9 + 2 - 5
NH^ +18.0 -13.3 + 0.9 - 9.8
NCCĤ )̂ +23 -16 + 1 -12
NfCsHs), +19 - 4 + 1 - 6
NHCOCH +11 -10 0 - 6
NOg +20.0 - 4.8 + 0.9 + 5.8
NCO - + 5.7 — 3.6 + 1.2 - 2.8
F +34.8 -12.9 + 1.4 - 4.5
Cl + 6.2 + 0.4 + 1.3 - 1.9
Br - 5.5 + 3.4 + 1.7 - 1.6
I . -32 +10 + 3 + 1
*
p.p.m. Relative to internal benzene standard; positive shifts downfield
(based on TMS convention).
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magnitude of the deviation from additivity is a crude measure of 

the steric hindrance to electronic interactions.

The interaction of the methoxyl oxygen with the benzene ring 

is altered in the highly substituted examples relative to that in the 

meta-, para-, and mono-ortho-substituted cases. For a compound in 

which there is no interference by substituents, several canonical 

forms can be written. The more important of these are shown as 

structures (XXXIV - X X X V I I I ) . T h e  aromatic shieldings for anisole

^Me Me ^Me  ̂Me
+0 +0

(XXXIV)

I
(XXXV) (XXXVI) (XXXVII) (XXXVIII)

are readily explicable in terms of the contributing forms (XXXV) - 

(XXXVII), since an increase in the electron density is expected at 

the ortho- and para- positions, and since these positions are 

considerably shielded in the anisole molecule relative to the value 

for benzene carbons.

The major contributions to any substituent effect must be 

related in some way to the ability of the substituent to alter the 

electronic structure at the site involved in the molecule under study. 

Contributions due to simple electrostatic effects arising from electro

negativity differences in the substituent are transferred to the 

reaction site through simple inductive processes, field effects, 

and resonance or mesomeric phenomena. Attempts have been made to
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divide substituent effects into these various contributions and

thereby find a common basis for the numerous substituent effect derived

from a variety of chemical reactions or physical properties.
13The C chemical shifts of 14 monosubstituted benzenes and

14 4-substituted biphenyls have been determined by Schulman and his

co-workers^^ and correlated by various linear free energy relationships.

They concluded that electronic reorganisation in these molecules through •

resonance structures is of greater significance than that due to

electrostatic field effects, as the field effects will alter the 
13C shifts in only a minimal way. They added that a significant 

substituent effect is transmitted all the way from the 4-carbon of biphenyls 

to the 4 '-carbon, i.e., a substituent effect is transmitted through eight 

covalent bonds.

An early study of biphenyl at 8.5 MHz by Lauterbur^^ revealed

a spectrum very similar to that of toluene, with no resolvable shifts

between the o-, m- and p-carbons; a re-examination of the spectrum at
8715.1 MHz has,given more detailed information . Suitably deuterated

derivatives were employed to allow unambiguous assignments for
88naphthalene and biphenyl to be made. Alger e^ al. concluded that

the inclusions of the mobile bond-order and charge polarization effect

(both a- and m-electron charge densities) improved the theoretical

treatment of aryl carbon shieldings.

Hasegawa and his co-workers^^ have studied the n.m.r.

spectra of several alkyl biphenyls. For the meta- and para-alkylated

biphenyls, the chemical shift of each aromatic carbon-13 is calculated

according to the additivity rule, A satisfactory agreement obtained
13between the observed values of the C chemical shifts and those 

predicted by the additivity calculations. They found, in all cases, - 

that the hyperconjugative effect gives rise to adrastic lower-field
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shift for the ring carbon atoms bonded to the alkyl groups in 

the order of CH^ < CH^CH^ < At the same time,

an alternative higher-field shift of the next neighbouring carbon 

atoms of the alkyl groups is observed; that is, in the case of 

4,4'-dialkylbiphenyl, the ring carbons at the meta-position reveal a 

chemical shift in the directions opposite to the chemical shift of the 

para-positions. They suggested that these results are probably due 

to the 0rtho-para-conjugation or to the inductive effect of the alkyl 

groups,

For the ortho-alkylated biphenyls, the substituents may cause 

a large steric effect; hence, the analysis of the spectra is much 

more difficult and the quantitative assignment using the additivity 

rule does not hold.

They added that the observed chemical shifts of aliphatic
13C atoms for para- or meta-alkylated biphenyls agree with the values 

of the corresponding alkylated benzenes. In the case of ortho-alkylated 

biphenyls, such as 2,2’-dimethylbiphenyl and 2,2',6,6'- tetramethyl- 

biphenyi, the chemical shifts of the methyl carbons shows a field 

shift higher by about 1 p.p.m. than that of toluene. The different 

shifts were suggested to be due to a space interaction between the 

two methyl groups, and this interaction may arise by an orbital 

overlap between the methyl groups, which were considered to approach 

one another to take the ci£-conformâtion,
90In a subsequent paper, Imanari and his co-workers have 

13studied the C n.m.r. spectra of the ortho- and para-hàlogenobiphenyTs. 

For the 4,4'-dihalobiphenyls^ the observed chemical shifts of the 

and positions gave an excellent positive linear dependence

on the absolute value of the electronegativity of the substituents.
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Conversely, those for the and positions show a negative 

dependence. The plots of the C^-position only revealed a remarkable 

deviation from the straight line, which may be due to the heavy 

atom effects of the halogen atoms. For the ortho-halobiphenyls, 

e.g., 2,2'-, and 2,6-dichlorobiphenyl and 2,2',6,6'-tetrachloro- 

biphenyl, the additivity calculation gave more or less satisfactory 

results for the ring carbons, except for the values of the bridge

head and Ĉ ' positions. They suggested that this deviation, 

a remarkable high field shift, is due to the anisotropic effect 

of the ring current which is reduced by the large electronegativity 

of the halogen atoms. They also suggested that these anomalous 

discrepancies in the C^-chemical shift may be considered to result

from some interaction between the chlorine and 2P carbon atomicz
orbitals.
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2, DISCUSSION

2,1.. Synthesis of some 2,2*-Bridged Biphenyls with I2TMembered 

Hetero-cyclic Bridging Rings.

The synthesis are set out in Schemes 1 - 4.

(XXXIX)

(XL)

(XLI)

O^N

0 0

Cu-Bronze
250-60°

(XLII)

LiAlH^
Na-Dried Ether

H OH

(XLIII)

Pb(CH COO)^ 
Na-Dried Benzene

CHHCNH,
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In Scheme 1, the condensation of 2,2'-diaminobiphenyl (XLI) and 

biphenyl-2,2'-dialdehyde (XLIV) in absolute ethanol at room temperature 

furnished tetrabenzo[b,d,h,j_] [1,6]diazacyclododecine (IX), as colourless 
crystals, in 76% yield, and having the m.p. 312-313°. Bergmann et al.^ 

and Bindra et al.^ prepared (IX) with m.ps. above 300° and 326°, 

respectively. Many attempts were made to prepare a sample with m.p. 326°, 

but without any success. Also an attempt to isolate any isomeric 

component of (IX) by column chromatography was unsuccessful.

Compound (IX) upon reduction with sodium borohydride in methyl 
5alcohol was reported to yield 9,10,19,20-tetrahydrotetrabenzo[b,^,h,j]— 

[1,6]diazacyclododecine (X) in 80% yield as colourless needles with 

m.p. 158°. Attempts were made to reduce (IX) by the method given by 

Bindra et al.,^ but these failed to give (X). However, reduction of 

compound (IX) with dimethylamine borane in glacial acetic acid gave 

(X) in 89% yield and with the. m.p. 174-176°. It was found that (X) 

is easily oxidised in the air and changes its colour rapidly from white 

to pale yellow to brown. The ease, speed and high yield with which 

this reduction proceeded is worthy of mention, the entire reaction 

occurring within a matter of a few minutes.

In Scheme 2, the condensation of dimethyl 2,2*-diaminobiphenyl- 

4,4'-dicarboxylate (L) and (XLIV) in absolute ethanol furnished 

dimethyl tetrabenzo[b,d,h, j_] [1,6]diazacyclododecine-2,7-dicarboxylate 

(IXc) in 83.5% yield. Compound (IXc) was found to occur in two 

crystalline forms; very pale yellow rods with m.p. 262-263°, and 

pale yellow diamond-shaped plates with m.p. 261-261.5° (see page 224). 

(IXc) was reduced easily, with dimethylamine borane in glacial acetic 

acid, to dimethyl 9,10,19,20-tetrahydrotetrabenzo,h,j][1,6]diaza^ 

cyclododecine-2,7-dicarboxylate (Xc) in 89% yield. On crystallisation
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of the reduction product from ethanol, two crystalline forms were 

obtained; a large proportion of pale yellow triangular rods with m.p. 

238-239°, and a small proportion of bright yellow hexagonal plates 

with m.p. 237-238° (seepage 225). Attempts to prepare a quaternary 

salt from (Xc) using iodomethane in warm dry acetone and in dry 

benzene, separately, failed.

In Scheme 3, the preparation of 5,5'-dimethoxy-2,2*-dinitrobiphenyl 

(LIV) was reported by Kempter and Castle, (J. Heterocycl. Chem., 1969,

523) who obtained it in 80% yield by the reaction of 3-iodo-4-nitroanisole 

and copper bronze at 140-170°. However, during this work (LIV) was 

prepared in 46% yield by heating 3-chloro-4-nitroanisole (LIII) with 

activated copper bronze at 250-265°. A dark black solid was obtained, 

purified (some) on silica gel column and eluted with chloroform. The 

first portion of eluate gave nearly colourless prisms with m.p. 149- 

149.5°, while the remaining portions gave coloured prisms (see page 228). 

The low yield obtained by this method in comparison to that obtained 

by Kempter and Castle is mainly due to the higher temperature at which 

reaction occurred in which some of the product (LIV) is decomposed.

Compound (LIV) was readily reduced. When hydrogenated over 5%

palladinized charcoal at 45 p.s.i. at room temperature in tetrahydrofuran

it gave 2,2’-diamino-5,5'-dimethoxybiphenyl (LV) in 77% yield. On the

other hand, hydrogenation of (LIV) over Adams' platinum oxide at 46 p.s.i.

at room temperature in glacial acetic acid furnished (LV) in only 11%

yield. The figures of the micro-elemental analysis of (LV) have shown

some discrepancies from the theoretical values. Out of fourteen analyses,

only two sets of figures were found to be acceptably close to the
1theoretical one (see page 229 ). However, H n.m.r. spectrum (60 MHz)
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of (LV) in CDClg displayed a broad singlet at 3.37 p.p.m. (2 NH2 

protons which exchange with D^O) and a sharp singlet at 3.76 p.p.m.

(6H, methyl protons) as well as a singlet at 6.79 p.p.m. due to the 

aromatic protons. The mass spectroscopic determination of the molecular 

weight of (LV) had given the formula ^24^15^2^2 (measured mass = 244.1211) 

[see Spectrum 20 , page 113]. The infra-red spectrum (hexachlorobutadiene 

mull) showed marked absorption at 3410 and 3330 cm~^ (NH^). Also the 

condensation product (IXb) made from (LV) had a satisfactory analysis.

From the above spectroscopic studies of (LV) it is concluded that 

the compound is the right one despite the discrepancies encountered in 

its elemental micro-analysis.

The condensation of (LV) and (XLIV) in absolute ethanol furnished 

3,6-dimethoxytetrabenzo[^,^,h,j_] [1,6]diazacyclododecine (IXb) in 95% 

yield. Reduction of (IXb) proceeded easily, with dimethylamine borane 

in glacial acetic acid, to give 3,6-dimethoxy-9,10,19,20-tetrahydro- 

tetrabenzo[b^d^h^jJ[l,6]diazacyclododecine (Xb) in 69% yield.

In Scheme 4, hydrogenation of (LVIII) over Adams' platinum oxide 

at 63.5 p.s.i. at room temperature in tetrahydrofuran gave dimethyl 

2,2'-diaminobiphenyl-6,6'-dicarboxylate (LIX) in 76% yield. It was 

found that (LIX) had the m.p. 127-128°, changing after melting to a 

white solid which did not remelt even at 340°. Reduction of (LVIII) 

with hydrazine using W-2 Raney nickel catalyst was unsuccessful. A 

yellowish-green solid was obtained whose m.p. was above 300°.

Condensation of (LIX) and (XLIV) in absolute ethanol furnished 

dimethyl tetrabenzo[^,^,h_,j][1,6]diazacyclododecine-4,5-dicarboxylate 

(IXa) in 81% yeild. Hydrogenation of (IXa) went easily over Adams' 

platinum oxide at 48 p.s.i. at room temperature in tetrahydrofuran
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and gave dimethyl 9,10,19,20-tetrahydrotetrabenzo[b^d^h^jJ[l,6]- 

diazacyclododecine-4,5-dicarboxylate (Xa) in 73%'yield. Attempts 

to reduce (IXa) with dimethylamine borane in glacial acetic acid 

failed to give (Xa).

Hydrogenation of 2,2'-dinitro-4,4^6,6'-tetramethyibiphenyl 

over Adams’ platinum oxide at 44 p.s.i. at room temperature in a 

mixture of glacial acetic acid and absolute ethanol gave 2,2’- 

diamino-4,4’,6,6'-tetramethylbiphenyl in 87% yield. In another 

method, when 2,2'-dinitro-4,4',6,6’-tetramethylbiphenyl was 

hydrogenated over W-2 Raney nickel at 600 p.s.i. and 200° in 

benzene for three hours, only 27% yield of the amino-compound 

was obtained. A considerable amount of brown sticky material was 

left unidentified. Attempts were made to condense 2,2'-diamino- 

4,4' ,6,6 ’-tetramethylbiphenyl and biphenyl-2,2'-dialdehyde in 

absolute ethanol, benzene or glacial acetic acid but failed to give 

the desired compound.
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2.2. Electronic Absorption Spectra

Schiff's bases contain the azomethine group -HC=N-, as in 

benzylideneaniline, and may be considered to have an electronic 

structure similar to that of stilbene, since the azomethine and 

vinyl groups are iso-m-electronic. One may therefore predict, at 

first consideration, similar absorption spectra for both molecules.

Such expectations are not realized, however. The most striking 

difference between the spectra of trans-stilbene and benzylideneaniline 

is in the relative extinction coefficients of the long wavelength bands 

(Table 2).

Table No. 2. Comparison of the ultra-violet absorption 
spectra of trans-stilbene and benzylideneaniline.

Compound X Emax,nm max X zmax,nm max X zmax,nm max Solvent Ref.

203 24,000 229 16,400 296 29,000

308 28,500
Ethanol

o -
//
C

206.7

218

235

227

236

20,640

14,390

9,071

12,000

9,900

91

262

262

17,000

17,300

(310) 8,530

314 6,940

Ethanol

Cyclo-
hexane

92,93

94

Wavelengths enclosed in parentheses indicate a shoulder rather than a 
band maximum.

In the case of trans-stilbene, the band at X 296 nm is the most   ' max
intense one in the near ultra-violet region. This band occurs with markedly 

reduced intensity in the spectrum of benzylideneaniline, appearing as a
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shoulder at 310 nm; such differences must reflect differences in

their electronic structures (Spectrum 3).

lo'

o
O '
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ooLD
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CM
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Spectrum No.3. Ultra-violet 
absorption spectra of 
trans-stilbene (A) and
benzylideneaniline (B)

1 95 in ethanol.

10 '

10 '

00otocn
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96Ismailsly. and Smirnov recognized that while tt-conjugation 

extends over the whole molecule in the case of stilbene, it is reduced 

in benzylideneaniline. They postulated that the unshared pair of 

electrons on the nitrogen atom can conjugate with the N-phenyl ring.

This implies a non-coplanar molecular structure, since the N-phenyl 

group can only conjugate with .thé nitrogen lone pair if the N-phenyl ring

is rotated out of the plane of the conjugated system consisting of the
** 9*7 98C-phenyl group, and the azomethine group. Burgi and Dunitz ' found

that in the crystal the N-phenyl ring is twisted out of the Ph-CH=N-

plane by 55°. This considerably reduces stilbene-like conjugation
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between the phenyl rings through the -CH=N- linkage. The benzylideneaniline 

molecule energetically favours' a non-coplanar structure [Figure 8] rather 

than the planar configuration^"^^ .

Figure No.8. Non^planar structure- 
of benzylideneaniline

102El-Bayoumi and his co-workers have studied the spectral changes

of benzylideneanilines due to substitution, change of solvent, and

protonation and interpreted the 315 and 262,5 nm bands as corresponding

respectively to transitions involving the aniline part and the benzal part

of the molecule. In a subsequent paper, El-Bayoumi and his co-workers^^^

studied the absorption spectra of N-benzylimines and found that the 311 nm

band observed for benzylideneaniline is absent in the spectra of 
■zN-benylimines. This further supports its assignment as a locally excited

transition which involves the aniline part of benzylideneaniline.

Room temperature ultra-violet absorption spectra of benzylideneanilines

have shown them to exist in the an^-configuration, and photoisomerization 
107studies add supporting evidence that the sterically hindered syn-benzyl- 

ideneanilines can be expected to isomerize rapidly to the anti-configuration 

except at low temperatures. Irradiation of a solution of benzylideneaniline 

at low temperature converts it reversibly to a photoisomer of different ulfrar 

violet absorption, but no concrete evidence as to its structure has been 

presented. Kobayashi and his co-workers^^^ have determined the ultra--
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violet spectra of photoisomers ôf many substituted benzylideneanilines 

in an EPA matrix (ether-isopentane-ethanol) at -196°C and showed that 

the imino arene ring of the photoisomer is about 90° rotated from the 

Ph-CH=N- plane around the N-Ph bond. However, it was not possible 

to determine whether or not the photoisomer has a syn-structure. They 

added that the photoisomers are stable in a matrix at -196°C for a long 

period and stable for several hours in solutions [EPA, methylcyclohexane, 

or acetone) at -72°C. Therefore, in a subsequent paper, Kobayashi et al.^^^ 

have studied the configuration of the photoisomers by determining n.m.r.

spectra of a number of benzylideneanilines at -75°C in acetone-d^ 

solution and concluded that, as in the cases of stilbenes and azobenzenes, 

benzylideneanilines do have syn-isomers, which are stable only below 

-70°C and have not been isolated as such.

Before starting to discuss the ultra-violet absorption spectra 

of the heterocyclic 2,2•-twelve-membered-ring bridged biphenyls, it is 

of importance to discuss their geometries first. Dreiding molecular 

models of tetrabenzo[^,^,h_,j_] [1,6]diazacyclododecine [IX) have shown 

that there are three distinct possibilities of geometrical isomerisms:

1 - Syn-syn-configuration where there are two conformational 

possibilities :

A - Where the two biphenyl units are flat, and the bridging 

ring is flexible [Figure 9). The molecule cannot have [S)> and/or [Re

configurations in the biphenyl units.
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Figure No. 9. Syn-syn- 
configuration of (IX) with 
flexible bridging ring.

B - Where, the bridging ring is rigid. The molecule has (S)- 

and (R}~ configurations at the amine and aldehyde biphenyl units 

respectively, with angles of twist of about 75° for each (Figure 10)

Figure No. 10. Syn-syn- 
configuration of (IX) with 
rigid bridging ring. (S)- 
and (R)- configurations at 
the amine and aldehyde biphenyl 
units, respectively.

2 - Anti-anti-configuration where the bridging ring is flexible 

and the molecule can have several conformations, and therefore, several 

values of 0, the angle between the planes of the benzene rings, i.e. of
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twist about the 1,1’-bond of each of the biphenyl skeletons. There

are two extreme conformations, out of many the molecule may have,

where in one of these two extreme conformations the N-phenyl ring in

one half of the molecule is twisted out of the Ar-CH=N- plane by about

90°, while the C-phenyl ring in the same half of the molecule has zero

twist. The reverse is true for the other half of the molecule. In

the other extreme conformation, the situation is the same as stated

above except the twisting of the N-phenyl and C-phenyl are in the

reverse order for the same half of the molecule.

In these two extreme conformations with (R)- configuration at

the amine and aldehyde biphenyl units (Figure 11), the angles of twist

are about 53 and 55°, respectively. In changing the conformation from
oone to another, these angles of twist may increase to about 60 and 62, 

respectively, as a maximum.

Figure No.11. Anti-anti- 
configuration of (IX) with 
flexible bridging ring. (Re
configuration at both biphenyl 
units.
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3 - Syn-anti-configuration where the bridging ring is relatively 

rigid and the molecule can have only two conformations.

Figure No. 12. Figure No. 13.

Syn-anti-configuration of (IX) with relatively rigid 
bridging ring. (S)- and (R)-configurations at tĥ e amine 
and aldehyde biphenyl units, respectively.

Figure 12 has an (S)- and (R)- configurations along the 1,1’- 

bond of the biphenyl skeletons of the molecule with angles of twist of 

about 37 and 55° at the amine and aldehyde biphenyl skeletons, 

respectively.

Figure 13 has the same (S)- and (R)- configurations, but the 

angles of twist at the amine and aldehyde biphenyl units are about 55

and 37 , respectively.
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The spectrum of tetrabenzo[b,^,h_, j_] [1,6]diazacyclododecine (IX) 

in 95% ethanol solution exhibited four main bands in the near ultra-
icviolet region (Spectrum 4). The absorption data are summarised in Table 3 

and are in good agreement with those obtained by Bindra and Elix,^ and 

Bergmann et al.^ (Table 4).

Tab le No. 4 . Ultra-violet absorption spectrum of tetrabenzo- 
[b,d,h,j][l,6]diazacyclododecine.

Amax,nm °max ^max,nm ^max Solvent Reference

235 4.62 300 3.94 90% ethanol 5

310 3.78 chloroform .4

The longest wavelength band appeared as a structureless shoulder 

at ca. 300 nm (e^^ 6,440) and occurred at slightly longer wave

length than the corresponding band of the trans-stiIbene 296 nm,
£ 29,000) and with considerably reduced intensity. On the other hand,max
this band occurred at shorter wavelength than the corresponding band of 

benzylideneaniline (A^^ 310 nm, 8,530) and with slightly lower 

intensity.
The marked difference in the intensity of this band in compound (IX) 

and in stiIbene and the similarity in intensity in comparison with benzyl

ideneaniline reflect the fact that tt-conjugation is interrupted at the 

nitrogen atom and the unshared pair of electrons on the nitrogen atom 

can conjugate with the N-aryl ring. Such results are in favour of the 

non-coplanar molecular structure of tetrabenzo[b,d,h,j][l,6]diazacyclo- 

dodecine and indicate that the N-aryl ring is nearly perpendicular to 

the benzal part (Ar-CH-) of the molecule; i.e. the two aromatic rings 

are weakly interacting with each other across -CH=N- linkage. This is

* Spectra 4, 6 - 9, 11, 13 and 14 are on pages 92 - 99;
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in good agreement with Bindra and Elix^ who confirmed that there is

no extended conjugated system in (IX), and therefore, concluded that

this cyclic twelve-membered ring is not planar.

The vestigial band corresponding to the inflection at 249 nm

(E^^f 36,300) is probably due to a transition involving the benzal part

of molecule (IX). The high intensity of this inflection must be due

in part to overlapping by the longwave side of the biphenyl conjugation

band, presumably occurring at X 234 nm (e 39,400) and the highmax max
intensity of the latter must be due in part to overlapping by the short

wave side of the band due to transition involving the benzal part of

molecule (IX), and in part to the band at A 235 nm (e 9,071) [inmax max '■
benzylideneaniline] which is due to electronic transition involving the

N-aryl ring of molecule (IX) and is hidden under the more intense

transitions as shown in Spectrum 4. Intensities of transitions throughout are

expected to be approximately twice as high as those of benzylideneaniline

since two such chromophores are present in the molecule. In comparison

with the locations of the suggested two bands at A. _ 249 and A 234 nm,inf max
109Insole has reported the ultra-violet absorption spectra of some 

unsaturated heterocyclic eight-membered-ring bridged biphenyls (Spectrum 5) 

and suggested that the broadness of the biphenyl conjugation band at 

^max ^^4.5 nm of (curve B) is due to the Ar-N=CH-Ar chromophore which is 

absorbing in this region as well.

Spectrum No.5. Ultra-violet absorption 
spectra of; (A) (S)-(+)-6,7-Diphenyldi- 
benzo[£,^] [1,4]-diazocine-3,10- 
dicarboxylic acid, (B) (S)- (+)-1,12- 
Dimethyl-6,7-diphenyldibenzo[e^,^] [1,4]- 
diazocine, and (C) 6,7-Diphenyldibenzo- ' 
[£,£ ][l,4]diazocine.

w 4 --

1- .

400300200
A, nm
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The absorption intensities of the bands obtained by Insole

(Table 5) are in good agreement with the intensities obtained in

the present work. The suggested biphenyl conjugation band of (IX)

at 234 nm has undergone hypsochromic displacement, 18 nm, in

comparison with the band at A^^^ 252 nm of 6,7-diphenyldibenzo[e^gJ-

[1,4]diazocine (curve C). This is due probably to the increase in

the size of the bridging ring and to the flexibility of the cyclic

■ 12-membered-ring of compound (IX).

The intense band at A 203 nm (e 56,400) may in partmax  ̂max > ■> j r

be due to the overtone transition corresponding to one benzene ring.^^^

The introduction of two carboxyl groups into the 4,5-positions

of the parent compound (IX), produced a hypsochromic shift of 7 nm in

the biphenyl conjugation band (Spectrum 6, Table 3). This suggests

that the two carboxyl groups cannot be accommodated with ease into the

4,5-positions of the parent compound without producing some molecular

distortion. Nevertheless, considerable biphenyl conjugation still

persisted in spite of the large angle of twist. The high intensity

of the shifted-biphenyl conjugation band A 227 nm (e 49,700)^ ^ max max
must be due in part to overlapping by the long-wave side of the

short-wave band at A 205 nm, by the short-wave side of the vestigialmax • / ^
band at A. . 253 nm, and to the hidden band at A 235 nm (e 9,071), inf .. max  ̂max ' ^
It is therefore clear that the suggested biphenyl conjugation band at 

^max in the parent compound (IX) does exist.

The introduction of two methoxyl groups into the 3,6-positions 

of the parent compound (IX), exerted almost no distinct effect on the 

positions of the biphenyl conjugation band A^^^ 235 nm and the short

wave band at A 203 nm (Spectrum7,Table 3). max  ̂^ '
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The long wavelength bands, X 300 nm (e 10,800) andmax max
A 300 nm (s 9,890), of the above two derivatives, respectively, 

have shown better resolved features with comparable intensity in comparison 

to the long wavelength band, A^^^ 300 nm 6,440), of the parent

compound (IX). This probably indicates that this band is sensitive 

to substitution and supports the assignment to electronic transitions

involving the N-aryl ring in the two compounds.

l̂ /hile the introduction of two carboxyl groups into the 2,7-positions 

of the parent compound (IX), a bathochromic shift of 19 nm in the biphenyl 

conjugation band is produced (Spectrum 8, Table 3). This is probably due

to the resonance between the carboxyl group and the biphenyl nucleus. The

long wavelength band A^^^ 290 nm 16,700) has suffered a hypsochromic

shift of 10 nm and an increase in intensity in comparison to the parent 

molecule (IX) 300,nm, 6,440)]. The broadness of the band at

A^ax 253. nm suggests that the benzal chromophore is also absorbing in this 

region.

There is a slight bathochromic shift in the spectra of the three 

substituted compounds in comparison to the parent molecule (IX) for the 

band at A^^^ 249 nm which is probably due to transitions involving the 

benzal part of the molecule.

From the above discussion, one may conclude that substituent 

effects on the ultra-violet spectra reveal an effect on the biphenyl 

conjugation band and show a comparable high intensity in. the long-wave 

bands, probably corresponding to electronic transitions involving the 

N-aryl ring of the molecule. Such results are in favour of the non- 

coplanar structure of the compound (IX), including its derivatives, and 

indicate that the N-aryl ring is nearly perpendicular to the Ar-CH=N- plane.
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1H n.m.r. studies of these four compounds at room temperature, 

showed a singlet band for the two azomethine protons, therefore excluding 

the probability of their having the syn-anti-configuration. Since syn- 

benzylideneaniline has not been detected at room temperature, it is 

concluded that tetrabenzo[b,d,h,j_] [l,6]diazacyclododecine (IX) and its 

derivatives must have the anti-anti-configuration, in accordance with the 
above interpretation of the ultra-violet spectra.

With the 9,10,19,20-tetrahydro-derivative of (IX), Dreiding 

molecular models have shown that this compound and its derivatives 

possess a heterocyclic twelve-membered-ring of high flexibility. The 

interplanar angle between the two benzene rings along the 1,1’-bond 

cannot be accurately estimated from models, since these compounds must 

have more than one conformation corresponding to the minimum valence- 

angle strain. There are four configurational possibilities that these 

compounds might have according to the sense of twist of the biphenyl 

units.

1 - (R)^ - (R)^ - configuration. Figure 141
2 - (S)^ - (S)^ - configuration. j enantiomers

3 - (R) - (S) - configuration. Figure 151
J enantiomers

4 - (S)^ - (R)^ - configuration. j

where (R)^, (S)^ are the senses of twist of the biphenyl unit attached 

to the nitrogen atoms, and (R)^, (S)^ are the senses of twist of 

the biphenyl unit attached to the carbon atoms.
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Figure No.14 
(R)-configuration of (X) at 
both biphenyl units with highly 
flexible bridging ring.

Figure No.15 
(R)- and (S)-configurations of 
(X) at the amine and aldehyde 
biphenyl units, respectively, with 
highly flexible bridging ring.

The ultra-violet absorption spectrum of 9,10,19,20-tetrahydro- 

tetrabenzo [b,d,h, j_] [l,6]diazacyclododecine (X) (Spectrum 9) showed a slight 

hypsochromic shift of the biphenyl conjugation band (A^^^ 230 nm,

32,500) in comparison with 234 nm for (IX), probably due to the

reduced conjugation between the two benzene rings across the 1,1'-bond. 

Comparing the intensity of this band with that of the biphenyl molecule 

(Cmax 17,000), its high intensity is presumably owing in part to overlapping 

by the long-wave side of the inflection at 210 nm, and in part by the

short-wave side of the vestigial band at 245 nm (e^^^ 28,100) which

is probably the intramolecular charge transfer band of the transition 

accompanied by a partial electron transfer from the amino group to the 

benzene ring of the Ph-NH-CH^-group. The ultra-violet absorption spectrum 

of N-methylaniline (Spectrum 10) and its absorption data (Table 6) are 

given for comparison.
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Figure No.14 
(R)-configuration of (X) at 
both biphenyl -units with highly 
flexible bridging ring.

Figure No.15 
(R)- and (S)-configurations of 
(X) at the amine and aldehyde 
biphenyl units, respectively, with 
highly flexible bridging ring.

The ultra-violet absorption spectrum of 9,10,19,20-tetrahydro- 

tetrabenzo [b,^,h, j_] [l,6]diazacyclododecine (X) (Spectrum 9} showed a slight 

hypsochromic shift of the biphenyl conjugation band (A^^^ 230 nm,

32,500) in comparison with 234 nm for (IX), probably due to the

reduced conjugation between the two benzene rings across the 1,1’-bond. 

Comparing the intensity of this band with that of the biphenyl molecule 

(^max 17,000), its high intensity is presumably owing in part to overlapping 

by the long-wave side of the inflection at 210 nm, and in part by the

short-wave side of the vestigial band at A_^^ 245 nm (e^^^ 28,100) which 

is probably the intramolecular charge transfer band of the transition 

accompanied by a partial electron transfer from the amino group to the 

benzene ring of the Ph-NH-CH^-group. The ultra-violet absorption spectrum 

of N-methylaniline (Spectrum 10) and its absorption data (Table 6) are 

given for comparison.
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Spectrum No.10, Ultra
violet absorption spectrum 
of N-methylaniline in 95% 
ethanol.

4.

3.

2 .

250 300

A, nm

Table No.6 . Ultra-violet absorption data of aniline 
and N-methylaniline

The a band The CT band
Compound "max \ax'"^ "max Solvent Ref.

0 " ™ 2  ,• 284.5 3.24 234 4.06 Ethanol 112

^ - N H  -  CH3

294
£max

1,500

243
^max
13,200 Isooctane

Ethanol

1 1 2 ,1 1 3
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Spectrum No.10, Ultra
violet absorption spectrum 
of N-methylaniline in 95% 
ethanol.

4.

3.

2 .

250 300

X, nm

Table No.6 . Ultra-violet absorption data of aniline 
and N-methylaniline

The a band The CT band
Compound X ,nm max Emax Solvent Ref.

0 - ™ 2  ■ 284.5 3.24 234 4.06 Ethanol 112

Q - N H - C H 3

294
emax

1,500

243
^max
13,200 Isooctane

Ethanol

1 1 2 ,1 1 3
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The longest wavelength band 290 nm 7,830) appears

as a shoulder and is probably the perturbed locally excited transition

band corresponding to the benzene a-band. The high intensity of this

shoulder in comparison to that of N-methylaniline A 294 nm Ce 1,500)max max
may be due in part to a small absorption contribution from the

—H^C—C^H^— ■ part of the molecule. For example, 2,2'-dimethyl-

biphenyl has absorption maxima of A 270.8 nm (e 600) and A 263.5 nm ^ max max max
115^^max ^^0)' Also the shoulder at A^^^ 290 nm has suffered a hypsochromic

shift of 10 nm in comparison to that of (IX) A^^^ 300 nm. This is in

good agreement with the hypsochromic shift, 15 nm, of the longest wavelength

band A 323 nm (e 2,500) of (LX) in comparison with that of (LXI) max max ^ v. ^
A 338 nm (e 2,950). max max .

HN NH
(LXI)

The short wavelength band A 203 nm has an extra inflection atmax
A^^^ 210 nm. These bands may in part be due to the overtone transition 

corresponding to one benzene ring. The absorption data summarized in 

Table 7 are partly in agreement with that obtained by Bindra and Elix^ 

(Table 8) .
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Table No.8 . Ultra-violet absorption spectrum of 
9,10,19,20-tetrahydrotetrabenzoj_] [1,6]- 
diazacyclododecine in 90% ethanol.

X log E max,nm max X log E max,nm max Xmax,nm "max Reference

217 4.64 230 4.54 (290) 4.00 5

Values in parentheses denote inflections.

With the introduction of two carboxyl groups into the 4,5-positions 

of the parent compound (X), the ultra-violet absorption spectrum (Spectrum 11) 

shows a perceptible hypsochromic shift of the biphenyl conjugation band, 

so that it is no longer separated from the shortwave band by a minimum.

The molecule is relatively free to increase the angle of twist between the 

two benzene rings across the 1 ,1 ’-bond in order to accommodate the 

substituents. Accordingly, the large bathochromic shift, 44 nm, of 

the long wavelength band 334 nm is a pertinent allowance for the

electronic bathochromic effect of the two carboxyl groups attached at the 

4,5-positions of the molecule.
The vestigial band at 250 nm (e^^^ 18,400) is probably the

intramolecular charge transfer band corresponding to that at X^^^ 245 nm 

(Einf 28,100) in Spectrum 9. The slightly high intensity of this band 

is probably due in part to overlapping by the vestigial long-wave side 

of the conjugation band.
The inflection at X^^^ 273 nm (e^^^ 8,770) is believed to

112'correspond to the hidden biphenyl band referred to as the H band, 

and this revelation is probably due to the marked hypsochromic shift 

and reduction in intensity of the biphenyl conjugation band caused by 

larger deviation from planarity of the conformation of the conjugated 

biphenyl systems in (Xa) as compared with [X).
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This H band at 273 nm can be compared with the two inflections
117at ^  ^^inf 1'004] and 274 nm 716) of (LXII),

and also with the two bands at A 265 nm fe 800) and A 273 nmmax max max
ISC^max of (LXIII) (Spectrum 12). The high intensity of the

(LXII)

CH, COLH

(LXIII)

H band 8,770) must be due in part to overlapping by the long-wave

side of the vestigial band at A^^^ 250 nm.

Spectrum No.12. Ultra-violet
absorption spectrum of 1-methyT-
2,3,8,9-tetrahydro-4,5:6 ,7-
dibenzazonine (LXII) and 1,2,3,4-,
dibenzcyclonona-1,3-diene-7-
carboxylic acid (LXIII) in 

11796% ethanol.

(LXII)
(LXIII)

1 2  -  I'

oi-H
X
w

220 240 260 280
A, nm

The short wavelength bands at A 200 (e 63,500) and the ^ max max
inflection at A^^^ 205 (c^^^ 59,300) have suffered a slight hypsochromic 

shift and drop in intensity in comparison to the same bands of compound (X);

\ a x  202 (Emax 2 0.2 0 0)' and 210 63.800)
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In compound [Xb], distortion of the molecule resulting from the

accommodation of two methoxyl groups at 3,6-positions seems to be

negligible, as the ultra-violet spectrum of (Xb) (Spectrum 13) is nearly

superimposible on that of Spectrum 9 except that the long wavelength

band at 308 nm has suffered a bathochromic shift, 18 nm, and the

short wavelength bands (A 204 and A. - 209 nm) show an increase inmax m i
their intensities. The absorption data are summarized in Table 7. The

biphenyl conjugation band A^^^ 230 nm and the intramolecular charge

transfer band A^^^ 245 nm are in the same positions as those in Spectrum 9

and have nearly similar intensities.

In compound (Xc), the biphenyl conjugation band A 241 nm (e' max max
50,250) shows a bathochromic shift, 11 nm, and increased intensity in 

comparison to that of (X) (Spectrum 14). The intramolecular charge 

transfer band of the transition accompanied by a partial electron transfer 

from the amino group to the benzene ring of the Ar-NH—CH^—group is probably 

hidden under the more intense the biphenyl conjugation band. The inflection 

at A^^^ 280 nm 12,600) is probably the H band, and of higher intensity

than the inflection at A^^^ 273 nm (c^^^ 8,770) of compound (Xa), due in

part to overlapping by the long-wave side of the biphenyl conjugation band.

The absorption data are summarized in Table 7.

The long wavelength band A 340 nm [c 7,610) shows a large
max

bathochromic shift, 50 nm, and a broad well resolved band.of nearly the 

same intensity as that in Spectrum 9 (c^^^ 7,830), while the short wavelength 

bands 203, A^^^ 207 nm) show reduced intensity probably due in part

to the bathochromic shift of the biphenyl conjugation band.
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Spectrum No.4. Room-temperature ultra-violet absorption spectrum, in
95% ethanol, of tetrabenzo[b,d,h,2 ] [l,6]diazacyclododecine
(IX), 6.137 X  lO"^ mole/litre.
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Spectrum No.6 . Room-temperature ultra-violet, absorption spectrum, in 95% 
ethanol, of dimethyl tetrabenzo[^,^,h_, j_] [l,6]diazacyclo-

_ g

dodecine-4,5-dicarboxylate (IXa), 5.099 x 10 mole/litre.
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Spectrum No. 7. Room-,temperature ultra-violet absorption spectrum, in 95%
ethanol, of tetrabenzo[b,£,h,j_] [IjôJdiazacyclododecine-Sjô- 
dimethoxy ClXb], 5.257 X 10  ̂mole/litre.
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Spectrum No.8 . Room-temperature ultra-violet absorption spectrum, in 95% 
ethanol, of dimethyl tetrabenzo[^,^,h,j_] [l,6]diazacyclodo 
decine-2,7-dicarboxylate (IXc), 5.057 x 10  ̂mole/litre.



95

CH0.7 —

0 .6- “

0.5 —

< 0.4--

0.3 —

0 .2 - -

0 .1- -

o
co
to

oo
tO
to

o o
CM
to

o
o

oen
CM

oooo o

CM
o
o
CM

o osû
CM

o o
toCN

CN totoCM

Spectrum No . 8

Wavelength, nm

Room-temperature ultra-violet absorption spectrum, in 95% 
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decine-2,7-dicarboxylate [IXc), 5.057 x 10 ^ mole/litre.
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Spectrum No.9 . . Room-temperature ultra-violet absorption spectrum, in
95% ethanol, of 9,10,19,20-tetrahydrotetrabenzo[b,d,h_,j_]- 
• [1 ,6]diazacyclododecine (X), 6.069 x 10  ̂mole/litre.
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Spectrum No. 11. Room-temperature ultra-violet absorption spectrum,
in 95% ethanol, of dimethyl 9,10,19,20-tetrahydrotetra- 
benzo[b,d,h,j][1 ,6]diazacyclododecine-4,5-dicarboxylate 
(Xa), 5.015 X 10 mole/litre.
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2.3. Mass Spectra

The mass spectroscopic determination of the molecular weight of

(X) had given the formula *̂ 26̂ 2̂2̂ 2 (measured mass = 362.1799; calculated 
mass = 362.1783) which fitted with the results obtained from elemental 

microanalysis (see page 217).

In the mass spectrum of this compound (Spectrum 15), the molecular 

ion peak appears at m/e = 362, formed by the loss of a non-bonded electron 

from one of the nitrogen atoms in structure (X). The peak at m/e = 363 

is the characteristic isotope peak (M+1). The molecular ion is accompanied 

by a peak at m/e = 361 of lower intensity; its formation is due to the 

loss of one hydrogen,atom.

The main process in the fragmentation behaviour of this compound 

is elimination of phenanthrene as a neutral fragment with the formation 

of an odd-electron ion, the base peak, at m/e = 184. A possible scheme 

is depicted below:

H_C Hi_CH

0-0

r
:NH J n h .

+

(X)

H^N
V""
NH,

m/e = 184

The odd-electron ion, m/e = 184, so formed decomposes further by the 

loss of ammonia as a stable neutral fragment to yield the carbazole ion 

peak at m/e = 167.
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Spectrum No.15. Mass spectrum of 9,10,19,20-tetrahydr6tetrabenzo- 
[b,d,h,j][l,6 ]diazacyclododecine (X).

Spectrum No.16.
Mass spectrum of 
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HN

m/e = 184

-NIL

m/e = 167

. Loss of a hydrogen atom from each of the species of m/e = 184 

and m/e = 167 corresponds to the ions of m/e = 183 and m/e = 166, 

respectively.

Spectrum 16 shows the mass spectrum of 2,2’-diaminobiphenyl.

Elimination of carbazole as a neutral fragment from the molecular 

ion of (X) leads to the formation of an odd-electron ion of m/e = 195. 

Subsequent loss of ammonia may also produce the ion of m/e = 178.

+NHHN

m/e = 194

H 4 INH

HC— CHHC CH

m/e = 178m/e = 195

Loss of a hydrogen atom from the odd-electron ion of m/e = 195 

produces an even-electron ion of m/e = 194. On the other hand, this 

even-electron ion of m/e = 194 could be formed by rearrangement of the 

molecular ion followed by loss of ^^2^10^* A possible route

is as follows:
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/NHHN HN NH.

+CH

H
I

^  / %  +H_C +CH

m/e = 194

q-p
NIL

A fragment ion of m/e = 179 which odeurs in the recorded mass 

spectrum has been assigned a structure derived from the following scheme:

9 - 9
HN /r'NH
u ÿ

H^C 1 H VCH

A  ^ --- / / ^

HN'
y
NH,

+ HLC- ■CH

o
m/e = 179

The origin of the fragment ion corresponding to the peak at 

m/e = 165 is probably related to the intermediate ion of m/e = 180 

if a methyl radical should happen to be lost from it. A possible scheme 

could be as follows:

HN +NH

H2

r r
HN---NH

+CH

m/e = 180

H

^
m/e = 165
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The complexity of the fragmentation processes becomes evident 

when one considers the fragmentation behaviour of (Xa). The mass 

spectroscopic determination of the molecular weight of this compound 

had given the formula ^3o'^26^2^4 (measured mass = 478.1890; calculated 
mass = 478.1892).

In its mass spectrum (Spectrum 17), the molecular ion peak 

appears at m/e = 478. The lesser intensity peak at m/e = 477 is due .to 

the loss of one hydrogen atom from the molecular ion. The base peak 

at m/e = 300 corresponds to the ejection of phenanthrene as a neutral 

fragment from the molecular ion.

H COgC COgCHg HgCOgC CO^CHg

NH +NH_ 

CH

 (/ \

(Xa)

H^N NH

m/e = 300 

+

(/

Loss of a methoxyl radical,from the fragment ion of m/e = 300 

will produce an even-electron ion of m/e = 269. Degradation with loss 

of ammonia or carbon monoxide as two stable neutral fragments from the 

fragment ion of m/e = 269 could produce two ions corresponding to the 

two peaks at m/e = 252 and m/e = 241, respectively.
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C-JOCHLH3 -OCH

NH

m/e = 300

H

HN NH

0 +
H3

m/e = 269

H
m/e = 252

NHC
II
0

m/e = 237

-HTO

NHC

-CHLOH rCO

-CO

CO

H^N

m/e = 241

-CHgOH

C NH

0

m/e = 219
0

m/e = 209
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The route to a moderately intense peak at m/e = 237 has been 

formulated as a successive loss of methoxyl radical and methyl alcohol 

from an m/e = 300 precursor.

Further elimination of carbon monoxide or methanol as two stable 

neutral fragments from the fragment ions of m/e = 237 and m/e = 241, 

respectively, would produce an even-electron ion of m/e = 209.

On the other hand, successive loss of two methyl alcohol as 

neutral fragments from the base peak at m/e = 300 would result in the 

formation of an odd-electron ion of m/e = 236.

NH

-CHLOH

0 H

HN

NH

m/e = 300 m/e = 268 m/e = 236

Rearrangement followed by elimination of a water molecule from 

the fragment ion of m/e = 269 would give an even-electron ion of 

m/e = 251. Further elimination of methanol as a stable neutral fragment 

would produce a fragment ion of m/e = 219, which might be formed, as well, 
by loss of a water molecule from the fragment ion of m/e = 237.
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NH
2

m/e = 269

+
N = C

NHC

■ >

HN

M CO^C NH

H
F

OH

NH

-CH^OH

NH
II
0

m/e = 219 m/e = 251

Spectrum 18 shows the mass spectrum of dimethyl 2,2’-diaminobiphenyl- 

6 ,6 ’-dicarboxylate. '

Peaks at m/e = 195, 194, 180, 179, 178 and 165 are derived by 

similar routes to those mentioned in compound (X).

A useful peak at m/e = 447 is formed by rearrangement of the 

molecular ion and loss of a methoxyl radical. Although this even- 

electron ion is of low abundance, it forms probably as an intermediate 

ion for the formation of many other ions. The fragmentations pathway 

may be presented as follows:
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H.CO.C ■ CO_CH_ o 2 1 I 2 3

H'-CH

m/e = 478

m/e = 420 -HCN

+ 'JH

HC— CH 

(/ \  )■

N

H-N

NHH3

m/e = 447

NHH

m/e = 478

NHCCLC

m/e = 429

0=C

H,C CH

m/e = 415

H C —  CH

m/e = 387

Y

-CHLOH

m/e = 419

0+

H^O— CH

m/e = 430

HLCO

-NH
^  H^C— CH

m/e = 402
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The origin of the two fragment ions corresponding to the peaks 

at m/e = 429 and m/e = 420 are probably related to the loss of a water 

molecule and HCN as neutral fragments from the intermediate fragment 

ion of m/e = 447, respectively.

Degradation with loss of ammonia and then carbon monoxide from 

the fragment ion of m/e = 447 should produce two even-electron ions 

corresponding to the two peaks at m/e = 430 and m/e = 402, respectively. 

Elimination of a methanol neutral fragment with subsequent loss of 

carbon monoxide from m/e = 447 would result in the formation of two 

even-electron ions of m/e = 415 and 387.

On the other hand, the ion of m/e = 419 is probably formed by 

loss of neutral carbon monoxide from the ion of m/e = 447. Further 

elimination of ammonia or methanol would produce two even-electron ions 

of m/e = 402 and m/e = 387, respectively.

Degradation with loss of ammonia and then a methoxyl radical 

from the molecular ion of m/e = 478 should produce two ions corresponding 

to the two peaks at m/e = 461 and m/e = 430.

H^C— CH

-NH.

H^C— CH

H3CO2Ç

-OCH • N I
H^C CH

m/e = 478 m/e = 461 m/e = 430
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Successive elimination of two molecules of methanol from the 

molecular ion should produce two fragment ions of m/e = 446 (which 

may lose a hydrogen atom to give an even-electron ion of m/e = 445) 

and m/e = 414.

HN C

tNHCCLC -CH OH

CH

m/e = 446

-CHgOH

HN-

NÎ

H^C CH

m/e = 414

The peak at m/e = 386 could be produced from the loss of 

carbon monoxide as a neutral fragment from the fragment ion of m/e = 414.

HN-

-CO

HN

N

HoC— CH

m/e = 414 m/e = 386
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The mass spectrum (Spectrum 19) of (Xb) is relatively simple. The

molecular ion peak appeared at m/e = 422. This ion was found to have the

formula of C_oH^,N„0 _ by accurate mass measurement:Zo Zo Z Z

Measured
mass

422.1990

Possible
formula

^28^26^2°2

Calculated
mass

422.1994

The peak at m/e = 421 is due to the loss of one hydrogen atom from 

the molecular ion, while the peak at m/e = 423 is the characteristic isotope 

peak (M+1).
Elimination of a phenanthrene molecule from the molecular ion produces 

the most abundant fragment ion of m/e = 244 "base peak".

0/
tNHHN

\==\ CH, / °
C CH

5

-h
0

/

H^N NH

CH,

m/e = 244
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Accurate mass measurement of the base peak has given the 

following data:

Measured
mass

244.1215

Possible
formula

Cl4"l6N2°2

Calculated
mass

244.1212

Loss of a methyl radical from the most abundant ion of m/e = 244 

would produce a fragment ion of m/e = 229.

0/
CH

NH
-CH3 '

m/e = 244

+NH

m/e = 229

Degradation with loss of ammonia from the fragment ion of 

m/e = 244 should produce an ion corresponding to the peak at m/e = 227. 

Since an odd-electron ion is less stable, elimination of a hydrogen atom 

from the ion of m/e = 227 to produce the more stable even-electron ion 

at m/e = 226 is also possible.
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NH

\CH, -NH,

tpCHHLCO OCH

J
m/e = 244 m/e = 227 m/e = 226

The peak at m/e = 214 appears to be due to the loss of CH^O 

from the fragment ion of m/e = 244. Loss of a hydrogen atom from 

the odd-electron ion of m/e = 214 produces an even-electron ion of 

m/e = 213.

H^N NH^

m/e = 244

-CHgO

H^N NH,

m/e = 214

-H,

/
H3C — y /

HN— NH

m/e = 212
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On the other hand, the fragment ion of m/e = 212 seems to be 

due to the loss of two hydrogen atoms from m/e = 214, Spectrum 20 

shows the mass spectrum of 2,2'-diamino-5,5’-dimethoxybiphenyl,

The fragmentation paths to produce the ions of m/e = 195, 194, . 

180, 179, 178 and 165 are identical to those obtaining for compounds 

(X) and (Xa).

The mass spectrum of (Xc) is shown in (Spectrum 21). It 

can be seen by comparison with the mass spectrum of (Xa) (Spectrum 17) 

that the fragmentation patterns are basically very similar, but there 

is sufficient variation in the relative abundaices of the fragment ions 

to differentiate between the two isomers. The molecular ion peak at 

m/e = 478 can be seen in both spectra, although it is very much smaller 

in Spectrum 21 than it is in Spectrum 17.

The mass spectroscopic determination of the molecular weight 

of (Xc) had given the formula, (measured mass = 478.1885;

calculated mass = 478.1893). The peak at m/e = 477 is due to the loss 

of one hydrogen atom from the molecular ion, while the peak at m/e = 479 

is the characteristic isotope peak (M+1).

Rearrangement followed by elimination of a phenanthrene molecule 

as a neutral fragment from the molecular ion would produce the most 

abundant ion in the spectrum of m/e = 300.
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H,CO.C

HN tNH

CO2C

:NH +NH. 

H—  CH-CH

4-
H N NH^ 

m/e = 300

The even-electron ion of m/e = 269 could be derived from the most 

abundant ion of m/e = 300 by loss of methoxyl radical. Subsequent loss of 

two hydrogen atoms and/or carbon monoxide results in three peaks corresponding 

to three even-electron ions of m/e = 267 and m/e = 239 or m./e = 241, 
respectively. Degradation with loss of ammonia as a neutral fragment could 

lead to the formation of the even-electron ion of m/e = 252.

Loss of two hydrogen atoms or ammonia from m/e = 241 produces two ions 

of m/e = 239 and m/e = 224.

On the other hand, thermal degradation with loss of ammonia from the 

ion of m/e = 300 could produce an odd-electron ion of m/e = 283. Further 

elimination of methoxyl radical followed by loss of carbon monoxide as a 

neutral fragment would lead to the formation of two even-electron ions of 

m/e = 252 and m/e = 224, respectively.

It is possible that fragmentations might proceed as follows:
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NH

m/e = 300

-NH,
HLCO

H

1

-OCH;

m/e = 283

-OCH3'

H^CO^C

HN NH

-NH.
>* H^cOaC— ^  ^ ^  y

N 
H

m/e = 252

Y

= \  - / = \ Q '

m/e = 269

-CO

H3CO2C — y y c E 0 +

HN NH
m/e = 26.7

-CO

Ÿ
“3C°2C ^ --- \ J *

HN-NH 
m/e = 239

-CO

Y
HN NH 

m/e = 241

-NH.
> ■  V ° 2 ^

IH
m/e = 224
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The peak at m/e = 209 is produced by an unknora route, and is 

believed to have the following structure:

— — ^  /)— ^  /)*

HN NH HN---- NH

m/e = 209

Elimination of carbon monoxide neutral fragment from the fragment 

ion of m/e = 209 produces an even-electron ion of m/e = 181. Spectrum 22 

shows the mass spectrum of dimethyl 2,2'-diaminobiphenyl-4,4'-dicarboxylate, 

Rearrangement followed by loss of ammonia as a neutral fragment 

from the molecular ion produces an odd-electron ion of m/e = 461.

Successive elimination of methoxyl radical and then carbon monoxide 

neutral fragment from the molecular ion could lead to the formation of 

two even-electron ions of m/e = 447 and 419.

The fragmentation paths to produce the ions of m/e = 195, 194, 180, 

179, 178 and 165 are identical to those obtaining for compounds (X), (Xa) 

and (Xb) .
Finally, the simple fragmentation pattern of compound (Xc) in the 

region of m/e = 370 to m/e = 478 in comparison to that of (Xa) is due to 

the complete elimination of cyclization possibilities which can readily 

occur in compound (Xa).
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The peaks at M-4 in the spectra of compounds (X), (Xb) and (Xc) may be 

due to traces of the unreduced compound in each case. There is no evidence 

of such impurity in the n.m.r. spectra of (X), (Xb) and (Xc) so that the 

amount must be very small; presumably the molecular ion of these unreduced 

compounds is rather stable and thus appears with a relatively high intensity.

H3C02C - ^ ^ ---- CO2CH3

tNHHN

H_C— CH

d - b

m/e = 447

CO^C

:HHC

0 = c COUCH

NH -OCH,*

H,CO

I

H^C CH

m/e = 478

-CO

t

H,N NH
' IH_C— CH

d - h

CO2CH3

iti/e = 419

-NH.

HgCOgC - \ J  v y  COgCH^

N

V  \ ____// ^

m/e = 461



122

2.4. Proton Magnetic Resonance Spectra including Results Using 
Lanthanide Shift Reagents

The N.m.r. spectra of the eight polycyclic heterocyclic

compounds (IX - IXc and X - Xc) were determined at 60, 100 and

220 MHz in CDCl^ solution using TMS as internal reference standard.

The results are presented in the following order:

2.4.1. H N.m.r. spectra of tetrabenzo[^,^,h,j_] [Ijôjdiazacyclo- 

dodecine and its derivatives with substituents in ortho-, 

meta- or para- positions of the nitrogen biphenyl system

The N.m.r. spectrum of tetrabenzo[b,^,li, j_] [1,6]diazacyclo- 

dodecine (IX) showed absorption only in the aromatic region (Spectrum 23), 

Expansion of the Spectrum 23 and integration of the peaks showed very 

clearly resonances corresponding to nine protons (Spectrum 24).

The aromatic protons were separated very well and the splitting 

patterns of individual peaks can be recognised. Irradiating the multiplet 

at 6.61 - 6.65 p.p.m. revealed loss of meta-coupling at 7.20 - 7.32 p.p.m, 

(Spectrum 25).
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T-q— I— 1— I— I— I— I— r
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"1— T— F— I— 1— 1— :— I— I— I— I— I— r— I— I— I— i— T— I— 1— j— I— I— I— I— I— I— I— I— r

CHHO

i ■ ■ ■ < 1- 1 I__I__I— I— I— I— I— I— L  J— I— :— >-

' I ! I I I I l— j L,.̂ ...l

8
I » I I 1 « « » » > 1— j  i — j — L— I— I I  , . j  , . , l —,jt.. 1

6 5 6

Spectrum No.23, N.m.r. spectrum (220 MHz) of tetrabenzo- 
[b,d^h^j][l,6]diazacyclododecine (IX) in
CDCl .
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Vr

/■

III

NIIHC

r

V K11CH

14501750 1650 1550 1350 Hz
Spectrum No.24. Expanded H N.m.r. spectrum (220 MHz) of tetrabenzo- 

[b,^,h, j_] [1,6]diazacyclododecine (IX) in CDCl^, sweep 
offset by.1350 Hz, sweep width 500 Hz.

/rrJ
V

IRRâHIAÎEI)
; ■ HERE;..

1750 1650 1550 1450 1350 Hz

Spectrum No.25. Irradiated H N.m.r. spectrum (220 MHz) of tetrabenzo- 
[b,^,h,j_] [1,6]diazacyclododecine (IX) in CDCl^ at 
6.61 - 6.65 p.p.m., sweep offset by 1350 Hz, sweep 
width 500 Hz.



125

Unambiguous assignments of individual peaks are made with the aid 

of substituents effect in the ortho-, meta- or para-positions in the 

nitrogen biphenyl system of the molecule. N.m.r. spectra of these 

derivatives (IXa), (IXb) and (IXc) are shown in Spectra 26, 27 and 28, 

respectively. The chemical shifts data of tetrabenzo[_b,d,h, j_] [l,6]diaza- 

cyclododecine (IX) and its derivatives (IXa), (IXb) and (IXc) are 

collected in Table 9.

GHHC

i 1

Spectrum No.26. 1H N.m.r, spectrum (220 MHz) of dimethyl tetrabenzo- 
[^,^,h,j_] [1,6]diazacyclododecine-4,5-dicarboxylate 
(IXa) in CDCl .
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OCH

GH

Spectrum No. 27; H N.m.r. spectrum (220 MHz} of 3,6-dimethoxy- 
t e t r a b e n z o j _ ]  [l,6]diazacyclododecine (IXb) 
in CDClg.

 I.

1Spectrum No.28. H N.m.r. spectrum (220 MHz) of dimethyl tetrabenzo-
[lb,̂ ,h, j_] [1,6]diazacyclododecine-2,7-dicarboxylate
(IXc) in CDClg.
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Studying the above results. Table 9, showed that the effect of the 

substituents in the nitrogen biphenyl system of the molecule produced 

changes in the chemical shifts of the ring protons of the same biphenyl 

unit which are in line with the conjugative effects of the substituents, 

whereas the effect on the chemical shifts of the ring protons of the 

carbon biphenyl system is nearly negligible. This shows that the Ph.N
ring and the Ph^ ring joined by CH=N cannot lie in the same plane.

The aldimine proton signal in compounds (IX-IXc) appeared as a

sharp singlet in the range 7.77-7.96 p.p.m. and resonated in the upfield

region in comparison to the same signal of the compounds reported by Hall
118and her co-workers, which resonated in the downfield region in the 

range 8.08-8.93 p.p.m. This is probably due to increased twisting of 

the N-Ph bond in compounds (IX-IXc) in comparison to those reported by 

Hall e^ , resulting in less deshielding. An interesting point is 

observed in the case of compound (IXa) in which the aldimine proton 

signal has been shifted from 7.93 to 7.77 p.p.m. This is probably due 

to the steric effect of the two ortho-carboxyl groups which are certainly 

large enough to cause increased twisting of the nitrogen biphenyl system 

and the aldimine, CH=N, groups as well. Thus, the aldimine protons are 

removed from the local deshielding influence, resulting in slightly 

shielding shift.

From the evidence discussed above, it may certainly be concluded

that the quartet at 6.61-6.65 p.p.m. in compound (IX) arises from the

two ring protons ortho- to nitrogen and not from the methine group as
4was suggested by Bergmann and his co-workers . However, it is not 

apparent from models why this signal is so far upfield.

Lanthanide shift reagents, Eu^fod)^ and Pr(fod)^, were used to 

simplify the ^H N.m.r. spectra. No detectable shifts could be observed 

on successive addition of Eu(fod)^ or Pr(fod)^ to a solution of tetrabenzo-
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j_] [1,6]diazacyclododecine (IX) in CDCl^. Evidently the electron

density at the nitrogen atoms, in this case, is insufficient for

complexation with the shift reagents used here, individually.

The effect on the resonance positions of the different protons

in compound (IXa) upon addition of increasing amounts of Eu(fod)^ and

Pr(fod)^ is shown in Spectra 29 and 30, respectively. Increasing the

amount of Eu(fod)g or Prffod)^, however, has increasingly resolved

the spectrum of (IXa) such that upon addition of 40.95 mg

(3.989 X 10  ̂mole) of Pr(fod)^ to the solution dramatic changes

occurred in the spectrum of (IXa)(Spectrum 30b). Most obvious of

these changes was the shift of five well-resolved signals to the

highfield regions of the spectrum.

Of greatest interest, however, are the downfield shifts

observed for the aromatic hydrogen resonances g and y upon addition

of Pr(fod)g to (IXa), (Spectrum 30a). This could be explained by a

substantial alteration of geometry in the interaction of (IXa) with

Pr(fod)^. With such an alteration the dépendance of shift on angle could
119become important enough to change the sign of the shift (Figure 16).
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GH(a)

o

8 36

(b)

I

CH.

I  1______ i__L_________ J ___L_____I _
7 6 5 . 4 6

Spectrum No.29. 60 MHz H N.m.r. spectra of dimethyl tetrabenzo [^,^,h,j_]-
[1,6]diazacyclododecine-4,5-dicarboxylate (IXa)
(5.40 mg, 1.138 x 10  ̂mole) in CDCl^ (0.5 ml) containing 
various amounts of Eu(fod)g: (a) 0.00 rtig; (b) 5.90 mg.
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(a)
CH.

I8

"""' ':6ffse%:%y
■5,iP;iPlia.!i

,18 12,17 .

I ' I • I 1 ; : ■ I • r : I . ' ' , I ! i I
8 7 3

Spectrum No.30. 60 MHz H N.m.r. spectra of dimethyl tetrabenzo-
[^,d,h,j_] [1,6]diazacyclododecine-4,5-dicarboxylate 
(IXa) (5.40 mg; 1.138 x 10~^ mole) in CDCl^ (0.4 ml) 
containing various amounts of Pr(fod)^: (a) 1.76 mg; 
(b) 40.95 mg.
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Very weak association of compound (IXb] with EuCfod)^ and 

Pr(fod)^ was observed. This behaviour can be justified by considering 

that the electron pairs of the oxygen atom are delocalized over the 

aromatic ring, not therefore being available for association with the 

shift reagent^^^. Upon addition of 10.46mg(l.0081 x 10  ̂mole) of 

Eu(fod)^ to the solution of (IXb) only the aromatic proton was

resolved (Spectrum 31b). On the other hand upon addition of 101.18 mg 

(9.857 X 10 ^ mole) of Pr(fod)g to the solution of (IXb) [5.00 mg,

1.195 X 10 ^ mole, (mole ratio of Pr(fod)^/substrate = 8.25)], this 

large amount of Pr(fod)g failed to resolve any aromatic protons

besides H^^g; ^4,5 ^11,18"
Spectra 32 and 33 illustrated the effect of adding successive

quantities of Eu(fod)^ and Pr(fod)g to the solution of compound (IXc) 

in CDClg, respectively. Four aromatic protons were resolved and 

confirmed the earlier assignments.

The assignments of the various protons resolved by lanthanide 

shift reagents were based on the analysis of their signal multiplicities 

and by making use of the fact that the pseudocontact shifts decrease 

with increasing spatial distance of the respective nuclei from the bonding 

site between shift reagent and substrate. Also the geometric factor, 0, 

has been given considerable attention.

Figures 16, 17, 18 and 19 demonstrated an essentially linear 

dependence of the paramagnetic shifts on added Eu(fod)g and Pr(fod)^ 

at lower concentration. The induced shift changes are proportional 

to the amount of shift reagent added to the solution up to a molar 

ratio of shift reagent to substrate of about 1:1, and then tend to 

a limiting value.
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8 4 «

i
I
8
Spectrum No. 51. 60 MHz H N.m.r. spectra of 3,6-dimethoxytetrabenzo-

[b,^,h,j_] [l,6]diazacyclododecine (IXb)
(5.30 mg; 1.266 x 10  ̂mole) in CDCl^ (0.6 ml) 
containing various amounts of Eu(fod}g:
(a) 0.00. mg; (b) 10.46 mg.



' ‘ ‘ 'o! bJi' *' r J)

Spectrum No.32. 60 MHz H N.m.r. spectra of dimethyl tetrabenzo-
[b,d,h,j_] [l,6]diazacyclododecine-2,7-dicarboxylate 
(IXc) (5.00 mg, 1.054 x 10  ̂mole) in CDCl^ (0.7 ml) 
containing various amounts of Eu(fod)^: (a) 0.00 mg;
(b) 5.87 mg; (c) 13.04 mg; (d) 22.83 mg.
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Spectrum No.53. 60 >4Hz N.m.r.spectra of dimethyl tetrabenzo[b,d,h,j_]- 
. [l,6]diazacyclododecine-2,7-dicarboxylate (IXc) (5.00 mg, 
1.054 X 10~^ mole) in CDCl^ (0.7 ml) containing various 
amounts of Pr(fod)^: (a) 7.88 mg; (b) 36.06 mg.
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Chiral lanthanide shift reagents tris[3-trifluoromethyl- 

hydroxymethylene-d-camphorato]europium (III), Eu(tfc)g, and 

praseodymium (III), Pr(tfc)g, have been used to determine whether 

or not the above compounds are chiral. 2,2’-bisHydroxymethyl-6,6'- 

dimethoxybiphenyl and dimethyl 6,6’-dimethoxybiphenyl-2,2'- 

dicarboxylate are used as two examples of the analysis. Upon 

addition of Eu(tfc)g to a solution of 2,2’-bishydroxymethyl-6,6'- 

dimethoxybiphenyl in CDCl^, the CH^ protons were shifted to lower 

field and appeared as an AB quartet having = 12 Hz (Spectrum 34b). 

This resolution of the methylene protons must result from their 

shift non-equivalence as diastereotopic protons. The methoxyl 

groups showed a non-equivalence of 0.04 p.p.m. (Spectrum 34c).

OCH

OH

j I — ^
5 48 67 2 6
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CE

6.5 5.5 4.5 58.5 7.59.5

Spectrum No.34. 60 MHz H N.m.r. spectra 
of 2,2'-bishydroxymethyl- 
6,6’-dimethoxybiphenyl 
(5.35 mg, 1.950 x 10  ̂mole) 
in CDClg (0.5 ml) containing 
various amounts of Eu(tfc)^:

4.5 6
(a) 0.00 mg; (b) 10.37 mg; (c) 18.75 mg ’’Resolved methoxyl 
resonances’.’. Chemical shifts are referenced to TMS.



141

Addition of Pr(tfc)^ to a solution of dimethyl 6,6'-dimethoxy- 

biphenyl-2,2’-dicarboxylate in CDCl^ also succeeded in effecting a 

resolution of the signals for the enantiotopic protons. The carbo- 

methoxyl groups showed a non-equivalence of 0.05 p.p.m. while those 

of methoxyl groups, showed a non-equivalence of 0.02 p.p.m. (Spectra 35b 

and 35c)i

Mj

4

(a)

- OOH
I ! 1 ■ i C O q O H J  i

■ i . -Zi ■ ^

COpCH^

Spectrum No.35. Resolved methoxyl arid carbomethoxyl resonances are observed 
(60 MHz) for the enantiomers of dimethyl 6,6’-dimethoxy--5biphenyl-2,2'-dicarboxylate (3.08 mg, 0.932 x 10 mole) in 
CDClg (0.6 ml) containing various amounts of Pr(tfc)^:
(a) 0.00 mg; (b) 95.87 mg; (c) 114.82 mg "Expanded Spectrum"
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Effects of Eu(tfc)^ on the N.m.r. spectrum of compound (IXa) 

are illustrated in Spectra 36a, 36b and 36c. The enantiotopic carbo

methoxyl groups' showed a non-equivalence of 0.04 p.p.m.

COgCH,

-L J.. 
4

J
• ,i:- i

3 5

(a)

: !

(c)

Spectrum No.36. Resolved carbomethoxyl resonances are observed ( 60 MHz) 
for the enantiomers of dimethyl tetrabenzo [Id , [1,6]- 
diazacyclododecine-4,5-dicarboxylate (IXa) (5.60.mg, 
1,180 X 10  ̂mole) in CDCl^ (0.4 ml) containing various 
amounts of Eu(tfc)^; (a) 0.00 mg; (b) 105.42 mg;
(c) 105.42 mg,"Expanded Spectrum",
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The enantiotopic methoxyl groups in compound (IXb) showed very 

poor shift non-equivalence (Spectra 37a and 37b) upon addition of 

Eu^tfc)^. This is probably due to the weak association of Eu(tfc)^ 

with the substrate.

T

- :î ;
t !

_ L  ' _ '
- i 'i . '

T i : : /  ;
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OCH.
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4 6

( a ) (b)

Spectrum No.37. Resolved methoxyl resonances are observed (60 MHz) for the 
enantiomers of 3,6-dimethoxytetrabenzo [b,̂ ,h_, jj [1,6]- 
diazacyclododecine (IXb) (5.28 mg, 1.262 x 10  ̂mole) in 
CDCl^ (0.5 ml) containing various amounts of EuCtfc)^:
(a) 0.00 mg; (b) 99.87 mg "Expanded Spectrum".
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Non-equivalence of carbomethoxyl■groups in compound (IXc) is 

also observed upon addition of Eu(tfc)^(Snectra 38a, 38b and 38c). 

The magnitude of non-equivalence is 0.02,p.p.m.

Î. :
• - Î ‘' r :

t ■

I -1-I

C02CHj,|:

- i .

f )

: i

3 « 4 a

( a ) (b) (o)

Spectrum No.38. Resolved carbomethoxyl resonances are observed (60 MHz) 
for the enantiomers of dimethyl t e t r a b e n z o [1,6] 
diazacyclododecine-2,7-dicarboxylate (IXc) (6.60 mg,
1.391 X 10  ̂mole) in CDCl^ (0.7 ml) containing various 
amounts of Eu(tfc)^: (a) 0.00 mg; (b) 51.46 mg;
(c) 69.50 mg. Expanded spectrum of (IXc)(4.20 mg;
0.885 X 10"^ mole) in CDCl^ (0.7 ml).
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Non-equivalence was not observed among aromatic and aldimine 

protons in compounds (IXa), (IXb) and (IXc). Also magnitudes of 

non-equivalence among the above discussed compounds were found to 

be small, but proved that these compounds are chiral.

12.4.2. H N.m.r. spectra of 9,10,19,20-tetrahydrotetrabenzo^

[b,^,h_,^] [1,6]diazacyclododecine and its derivatives 

with substituents in ortho-, meta- or para-positions 

of the nitrogen biphenyl system.

N.m.r. spectrum at 220 MHz in CDCl^ of (X) at 27° is 

shown in Spectrum 39 which displays a broad singlet at 4.22 p.p.m.

(2 NH protons which exchange with D^O) and a quartet at 3.78 p.p.m.

(4 H, methylene protons) as well as a complex multiplet at 6.66 - 

7.49 p.p.m. due to the aromatic protons. Each pair of methylene 

protons is diastereotopic. At low temperatures they appear as an 

AB quartet (J^^ = 12.25 Hz), becoming a doublet between 49.5 and 57° and 

coalescing to a singlet between 59.5 and 64.5° (Spectrum 40), when 

conformational inversion of the twisted biphenyl systems becomes 

rapid. At 60 MHz the quartet is no longer resolved.
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Spectrum No.39. H N.m.r. spectrum (220 MHz) of 9,10,19,20-tetra- 
h y d r o t e t r a b e n z o j _ ]  [1,6]diazacyclododecine (X) 
in CDClg at 27°C.
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Spectrum No.40. Temperature variable 
spectra (220 MHz) for 
the diastereotopic 
methylene protons of 
compound (X) in CDC1_,
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The addition of successive quantities of Pr(fod)^ to a solution of (X) 
in CDClg separates only g and ^g (Spectrum 41). No more peaks could be 
separated even when a total quantity of 172.64 mg of Pr(fod)3 was added.

1,8

8 67 3 Ô5 4

i Î ;

CLL:l-_rç:L=:'zq:

: 1- n - ^ ' F l ; v^i
iJiîiü::— -!:; \rfrr.̂

3 6

Spectrum No.41 60 MHz N.m.r. spectra of 9,10,19,20-tetrahydrotetrabenzo- 
[b^d^h^jJ[l,6]diazacyclododecine (X) (5.40 mg, 1.490 x 10 
mole) in CDCl^ (0.7 ml) containing various amounts of 
Pr(fod)g: (a) 0.00 mg; (b) 50.14 mg.
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On the other hand, successive addition of Eu(fod)g to 

(X) in CDClg shift g and some of the other peaks to lower field, 

but it is not possible to assign any of them due to their overlapping 

with the rest of the aromatic protons. It is worth noting here 

that on addition 55.21 mg of Eu(fod) to 5.97 mg of (X) in CDC1_6 , j
(0.7 ml), the CH^ protons appear as an AB quartet having J^g = 12.2 Hz 

(Spectrum 42).

Spectrum No.42. 60 MHz • H N.m.r. spectrum 
of the methylene proton 
absorption of 5.97 mg of 
(X) in CDCl (0.7 ml) in 
the presence of 55.21 mg 
of Eu(fod)^.

Figures 20 and 21 show schematic representations of the 

quantitative study of the association of (X) with Pr(fod)^ and 

Eu(fod)2  ̂ respectively. Figure 21 shows that the stoichiometry for 

the adduct formation is 2:1 for the molar ratio of Eu(fod)^7Compound (X)
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Figure No.20. Variation in the chemical shift of some of the
protons in (X) upon addition of Pr(fod)^ in CDCl^
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Figure No.21. Variation in the chemical shift of some of the 
protons in (X) upon addition of EuCfod)^ in 
CDCl .
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Spectrum 43 shows the 220 MHz ^H N.m.r. spectrum of (Xa) in 

CDCl2 which consists of a broad singlet at 3.17 p.p.m. (2 NH protons 

which exchange with D2O), a sharp singlet at 3.57 (2 CH^), an octet 

at 4.00 p.p.m. (4 H, methylene protons), a doublet at 6.72 p.p.m.

(thought, to arise from the two ring protons ortho to nitrogen) and 

a complex multiplet at 7.11 - 7.37 p.p.m. due to the aromatic protons.

Each pair of methylene protons is diastereotopic. At 35° these 

protons appear as a double AB quartet and become a single quartet 

between 50 - 64° (Spectrum 44). Presumably the favourable conformation 

at lower temperatures has the CH^ group in different environments.

The effect on the resonance positions of the different protons 

in (Xa) upon addition of increasing amounts of Pr(fod)^ is shown in 

Spectrum 45. In the absence of Pr(fod)^ (Spectrum 45a), only NH, CH^,

CH^, H^ g and H^ ^ protons are readily assignable. Increasing the amount 

of Pr(fod)^, however, increasingly resolves the spectrum of (Xa) such 

that, at a molar ratio of Pr(fod)^ to (Xa) of 0.985, the spectrum of 

(Xa) becomes first order (Spectrum 45f). Most obvious of these changes 

is the shift of H to the lower field regions of the spectrum. A possible 

explanation for the downfield shift for H _ would be a substantial 

alteration of geometry in the interaction of (Xa) with Pr(fod)g. With 

such an alteration the dependence of shift on angle could become important 

enough to change the sign of the shift.

Proton assignments shown were based on observed splitting patterns 

and confirmed by distance-shift relationships.
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Spectrum No.43. H N.m.r. spectrum (220 MHz) of dimethyl 9,10,19,20- 
tetrahydrotetrabenzo jj [1,6] diazacyclododecine-
4,S-dicarboxylate (Xa) in CDCl^*

11;ÿ\.uwA*'—

NH

Spectrum No.44. Temperature variable spectra (220 MHz) for the 
diastereotopic methylene protons of compound, (Xa)
in CDClg.
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Spectrum No.45. 60 MHz ^H N.m.r. spectra of dimethyl 9,10,19,20-tetra- 
hydrotetrabenzo[b,d,h,j_] [l,6]diazacyclododecine-4,5- 
dicarboxylate (Xa) (5.40 mg, 1.128 x 10 mole) in CDCl^ 
(0.4 ml) containing various amounts of Pr(fod)^:
(a) 0.00 mg; (b) 1.15 mg; (c) 2.53 mg; (d) 3.66 mg;
(e) 5.21 mg; (f) 11.41 mg; (g) 90.92 mg.
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Figure 22 shows schematic representations of the quantitative 

study of the association of (Xa) with Pr(fod)g, and reveals that shifts 

for all solute protons are in the same direction, i.e., to higher 

field values except for H where the shifts are in the opposite 

direction, i.e. lower field values. Also it shows that the stoichiometry 

for the adduct formation is 2:1 for the molar ratio of Pr(fod)„/

Compound (Xa).

It is clear from the movement of NH and CH^ that co-ordination 

occurs at both sides even at small concentration of shift reagent.

11,18
CO

£  ^
É +2 -j-

i  0 -
CH

+->t+4 CH■H
C/Ü
1—4

0•H
1 NH

Mole Ratio, Pr(fod) /Substrate

Figure No.22. Variation in the chemical shift of some 
of the protons in (Xa) upon addition of 
Pr(fod)- in CDCl,.

HN

CH
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Spectrum 46 shows the N.m.r. spectrum at 220 MHz in

CDClg of (Xb) at 21°. It reveals part of the methylene quartet

at 3.74 p.p.m. (4 H, methylene protons), a doublet at 3.75 and

3.78 p.p.m. (6 H, methyl protons) and a complex multiplet at 

6.62 - 7.48 p.p.m. due to the aromatic protons. The NH peak does 

not show in the spectrum because, it is believed, the solution 

was left for some time before running the spectrum. From the 60 MHz 

spectrum it appears as a broad singlet at 4.11 p.p.m. (2 NH protons 

which exchange with D^O). The observed doublet for the methyl protons 

is more likely to come from two non-equivalent conformera. Each 

pair of methylene protons is diastereotopic. At low temperatures 

they appear as an AB quartet = 12.8 Hz, one-fourth of the quartet

is overlapped with the two methyl peaks), and coalescing to a singlet 

between 21 and 63° (Spectrum 47).

If is of interest to note that dramatic changes occur in the

Spectrum 47. Most obvious of these changes is that the two methyl

peaks move far away from each other as the probe temperature increases, 

while they move towards each other and form one peak as the temperature 

is decreased. This means that the two methyl groups are magnetically 

equivalent and non-equivalent at lower and higher temperatures, 

respectively.
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OCH

HIT

8 6 2 67 4 35

Spectrum No.46. H N.m.r. spectrum (220 MHz) of 3,6-dimethoxy- 
9,10,19,20-tetrahydrotetrabenzo[b,d,h,j][1,6] ■
diazacyclododecine (Xb) in CDCl^ at 21 C.
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Spectrum No.47. Temperature variable spectra (220 MHz) for the methyl 
protons and the diastereotopic methylene protons of 
compound (Xb) in CDCl^.
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Upon addition of increasing amounts of Pr(fod)^ to a solution 

of (Xb) in CDClg (Spectrum 48), as is observed, four of the aromatic 

protons are resolved and moved to the upper field regions of the 

spectrum. Further addition of Pr(fod)^ failed to resolve extra aromatic 

protons. As compared to the case in compound (Xa), where all of the 

aromatic protons are resolved, very weak association of (Xb) with 

Pr(fod)^ was observed,this is probably due to delocalisation of the 

electron pairs of the oxygen over the aromatic rings.

GH.

(a)
C E

11,18

NH

8 67 5

Spectrum No. 48/ 60 MHz H N.m.r. spectra of 3,6-dimethoxy-9,10,19,20-
t etrahydrotetrabenzoj_] [1,6]diazacyclododecine (Xb) 
(5.90 mg, 1.396 x 10  ̂mole) in CDCl^ (0.6 ml) containing 
various amounts of Pr(fod)g: (a) 0.00 mg; (b) 1.38 mg;
(c) 2.30 mg; (d) 36.47 mg.
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On the other hand, upon addition of increasing amounts of 

Eu(fod)^ to a solution of (Xb) in CDCl^ (Spectrum 49) the aromatic 

protons in the upper regions of the spectrum (i.e. g and y) are 

shifted to the lower regions, but due to their overlapping with the 

rest of the aromatic protons their assignments together with the 

other aromatic protons become difficult.

An interesting phenomenon is observed here as the two methyl 

protons move in different directions of the spectrum. The upfield 

shift of one of'the methyl doublets may be related, as well, to a 

substantial alteration of geometry in the interactions of this compound
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with Eu(fod)„. With such an alteration the dependence of shift on angle 

could become important enough to change the sign of the shift. An 

alternative explanation based on a change in relative magnitudes of the 

magnetic susceptibility tensors seems unlikely.

2CH.
H 2 C

'■ 1 I / •
' h w

I  : .... j ..... ....... .

5 4 6

Spectrum No.49. 60 MHz N.m.r, spectra of 3,6-dimethoxy-9,10,19,20-
tetrahydrotetrabenzo[b,d,h, j_] [1,6]diazacyclododecine (Xb) 
(5.90 mg, 1.396 x 10"^ mole) in CDCl^ (0.6 ml) containing 
various amounts of Eu(fod)g: (a) 1.35 mg; (b) 8.75 mg;
(c) 19.35 mg.
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Figure No.23. Variation in the chemical shift of 
some of the protons in (Xb) upon 
addition of PrCfod)^ in CDCl^*
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Figure No.24. Variation in the chemical shift of some of the
protons in (Xb) upon addition of Eu(fod) 2  CDCl^.
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Figures 23 and 24 show schematic representations of the quantitative 

study of the association of (Xb) with Pr(fod), and Eu(fod)g, respectively, 

and reveal that the stoichiometry for the adduct formation is 2:1 for 

the molar ratio of Pr(fod)^ of Eu(fod)^ to (Xb). Figure 23 shows that 

the induced shifts for all solute protons are in the same direction,

i.e.,to the higher field values, while Figure 24 shows that the protons 

of one of the methyl groups is moving in the opposite direction 

relative to those of the other.

The N.m.r. spectrum at 220 MHz of (Xc) in CDCl^ at 24° is 

shown in Spectrum 50 which reveals ^^4 of the methylene quartet at

3.79 p.p.m. (4 H, methylene protons), a doublet at 3.86 and 3.89 p.p.m.

(6 H, methyl protons) and a complex multiplet at 7.13 - 7.78 p.p.m. 

due to the aromatic protons. The peaks at 7.13 - 7.17 (d); 7.40 (s) 

and 7.72 - 7.78 (t) p.p.m. are believed to arise from the aromatic 

protons H I-; H J, and H respectively. On expansion of part of4 ̂ J j. ̂ o hJjO .
Spectrum 50, the peak at 7.72 - 7.78 (t) p.p.m. shows ortho- and meta- 

couplings (Spectrum 51). The NH peak does not show in Spectrum 50, because 

the solution was left for some time before running the spectrum. From 

60 MHz spectrum NH appears as a broad singlet at 4.34 p.p.m. (2 NH 

protons which exchange with D^O). The observed doublet for the methyl 

protons, as in case of (Xb), is more likely to arise from two non

equivalent conformera.
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spectrum No.50. H N.m.r. spectrum (220 MHz) of dimethyl 9,10,19,20- 
tetrahydrotetrabenzo[b,^,h, j_J[l,6]diazacyclododecine-
2,7-dicarboxylate (Xc) in CDCl2 at 24°C.
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Spectrum No.51. Expansion of part of 
the 220 MHz N.m.r. 
spectrum of H protonOft)
absorption of (Xc) in 
CDCl2 at 25°C. Sweep 
offset by 1650 Hz and 
sweep widtk = 100 Hz.

~ r T ~ W  Î

Each pair of methylene protons is diastereotopic. At low 

temperatures they appear as an AB quartet = 12.45 Hz, one-fourth

of the quartet is overlapped with the two methyl peaks), becoming a 

doublet between 38 and 42° and coalescing to a singlet between 46 and 

63° (Spectrum 52), when conformational inversion of the twisted biphenyl 

systems becomes rapid.

i+24°G +42°G
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Spectrum No.52. Temperature variable spectra (220 MHz) for the methyl 
protons and the diastereotopic methylene protons of 
compound (Xc) in CDCl^.
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From the temperature variable spectra (Spectrum 52], it is quite 

clear that the two methyl peaks did not show any changes with temperature.

N.m.r. spectrum (220 MHz) of (Xc) in DMSO at 20° also

shows two peaks for the two methyl protons (Spectrum 53), and therefore, 

supports the previous conclusion that (Xc) does exist in two stable non

equivalent conformers.

i-
2CH

NH
CH,

Aromati c 
Protons

CH,

NH

7 1 6 38 5 4

Spectrum No.55. H N.m.r. spectrum (220 MHz) of dimethyl 9,10,19,20- 
tetrahydrotetrabenzo ,i] [1 ,6]diazacyclododecine-
2,7-dicarboxylate (Xc) in [^H^] DMSO at 20°C. Bands 
marked ’S ’ are due to solvent.
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Studying the effect of increasing probe temperature on the 
2two methyl peaks in [ H^] DMSO, it is found that the methyl peaks 

did not coalesce even when the probe is heated to 117° (Spectrum 54).

CHCH

CH^ CH.

CH,

J \v\-7
+100°C ■v.vv

OH^

X A / W
/

CH;

+117°C

Spectrum No.54. Temperature variable spectra (220 MHz) for the
methyl protons and the diastereotopic methylene

2protons of compound (Xc) in [ H ] DMSO..
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Spectrum 55 represents the H N.m.r. spectra of the association 

of (Xc) with Eu(fod) 2 in CDCl^ before and after addition of the shift 

reagent. Seven well-resolved peaks move to the lower field regions 

of the spectrum and can be assigned unambiguously on the basis of 

observed splitting pattern and distance-shift relationships.

H H  ■ '

8

Spectrum No.55. 60 MHz H N.m.r. spectra of dimethyl 9,10,19,20-
tetrahydrotetrabenzo j_] [1 ,6] diazacyclododecine
2,7-dicarboxylate (Xc) (5,40 mg, 1.128 x 10  ̂mole) 
in CDClg (0.7 ml) containing various amounts of 
Eu(fod)g: (a) 0.00 mg; (b) 1.90 mg; (c) 7.98 mg;
(d) 18.86 mg.
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Upon addition of 107.89 mg of EuCfod]^, the methylene protons 

appear as an AB quartet (Spectrum 56].

w:

k

E x p a n d e d

Spectrum No.56. 100 MHz H N.m.r. spectra of the methylene proton
absorption of 5.40 mg of (Xc] in CDCl^ (0.7 ml] in 
the presence of 107.89 mg of Eu(fod]g^
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Figure No. 25. Variation in the chemical shift of some of the protons 
in (Xc] upon addition of Eu(fod]^ in CDCl^.
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Figure 25 shows schematic representations of the quantitative 

study of the association of (Xc) with Eu(fod)^ and reveals that the 

stiochiometry for the adduct formation is 2 :1 for the molar ratio of 

Eu(fod)^7(Xc). Also, the induced shifts for all solute protons are in 

the same direction, i.e. to the lower field values.

No enantiomeric shift differences could be detected on treatment of 

(X) with Eu(tfc)g, (Xa) with Eu(tfc)^ and Pr(tfc)g, (Xb) with Pr^tfc)^ 

and (Xc) with Eu(tfc)^. It is difficult to conclude definitely at this 

stage that the above four compounds are achiral. In this connection, 

it is important to suggest that it may be necessary to try several other 

chiral shift reagents to achieve definite conclusions.

The chemical shift data of some of the protons of 9,10,19,20- 

tetrahydrotetrabenzo[^,d,h,j_] [l,6]diazacycldodecine (X) and its 

derivatives (Xa), (Xb) and (Xc) are collected in Table 10.

Table No. 10 Chemical shifts (6 ; 60 and 
220 MHz ; Me^Si; CDCl^) of 
methyl, methylene, secondary 
amine and some aromatic 
protons of compounds (X)-(Xc).

Z

HN NH

Substituent Methyl S0 cMethylene Amine Aromatic
Compound Protons Protons Protons Protons

X Y Z NH "1 , 8

X H H H -̂----- 3.78(q) 4.22(s) 6 . 6 6 - 6 . 8 6 (m)

Xa COgCHg H H 3.57(s) 4.00(o) 3.17(s) 6.69 - 6.74(d)

Xb H OCH^ H 3.75(s) 3.74(q) 4.11(s) 6.62 - 6 . 6 6 (d)
3.78(s)

Xc H H CO2CH3 3.86(s) 3.79(q) 4.34(s) 7.40(s)
3.89(s)

(s) singlet; (d) doublet; (q) quartet; (o) octet; (m) multiplet
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2.5. C-15 Magnetic Resonance Spectra

With the aid of complete proton decoupling it was possible to 

resolve all of the carbon resonances one from the other. It has also 

been possible by using off-resonance proton decoupling, substituent 

influences and spectral comparison of related compounds to make self- 

consistent and unambiguous assignments of nearly all of the resonances 

encountered.

To facilitate the interpretation of the spectra, the eight 

compounds have been classified into two categories:

132.5.1. C N.m.r. spectra of tetrabenzo[b,^,h,j_] [1,6]diazacyclododecine 

and its derivatives with substituents in ortho -, meta- or p r o 

positions of the nitrogen biphenyl system.

13The complete proton decoupled C n.m.r. spectra of compounds 

[IX - IXc) with their off-resonance proton decoupled spectra are given

in Spectra 57 - 60. The observed chemical shifts for the aromatic
.

carbons, aldimine, carbomethoxyl and methoxyl carbon nuclei for the 

same compounds are collected in Table 11. These results are discussed 

in turn in the following manner:

Methoxyl and carbomethoxyl carbon nuclei

The assignment for the highfield methyl absorption of the methoxyl 

carbon is straightforward and unequivocal, as it appears as a quartet in 

the off-resonance proton decoupled spectrum. On the other hand, the 

carboxyl carbon absorbs at lowfield in a region relatively free of other 

signals. The small lowfield shift (1.2 p.p.m.) experienced by the 

carboxyl carbon in compound (IXa) relative to compound (IXc) can be 

attributed to reduced conjugation between the aromatic benzene ring and 

the carbomethoxyl gtoup as.a result of steric interference.
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It is quite clear from Table 11, that the absorption for the 

methoxyl carbon appears at somewhat higher field than that of a methoxyl 

group bonded directly to an aromatic ring, but it is difficult to 

account for this difference on the basis of the presently available 

data. .

Aldimine carbon nuclei

These are easily assigned by the off-resonance proton decoupled 

spectra, where a clean doublet is observed. The slight upfield shift 

experienced by the aldimine carbon in compound (IXb) and the small 

downfield shifts experienced by the same nuclei in compounds (IXa) and 

(IXc) relative to compound (IX) may be in line with the inductive 

effects of the substituents.

Aromatic carbon nuclei

A distinction between the quaternary carbons and the others is 

straightforward, since the former give rise to single bands in the off- 

resonance proton decoupled spectra.

A complete assignment in complex molecules can generally not 

be achieved without utilizing the tool of spectral comparison. This is 

not possible, however, unless a series of closely related compounds is 

available.
13The complete proton decoupled. C n.m.r. spectra of 2,2’-diamino- 

biphenyl, biphenyl-2,2 ’-dialdehyde, dimethyl 2 ,2 ’-diaminobiphenyl-6 ,6 ’- 

dicarboxylate, 2 ,2 ’-dinitro-5,5’-dimethoxybiphenyl, dimethyl 2 ,2 ’-dinitro- 

biphenyl-4,4’-dicarboxylate, 2,2’-diaminobiphenyl-4,4',6 ,6 ’-tetramethyl 

and benzylideneaniline together with their off-resonance proton 

decoupled spectra are given in Spectra 61 - 67, respectively. From the 

obtained signal multiplicities in the off-resonance proton decoupled 

spectra (it is possible to discriminate between methyl, methylene, methine
79and quaternary carbons) and from the predictions of additivity calculations
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Table No.12. The observed and calculated aromatic carbon-13 chemical shift of 
some substituted biphenyls and benzylideneaniline together with the chemical 
shift of the functional groups in CDCl^ solutions relative to TMS, in p.p.m.

Compound Carbon
Position Observed Calculated Functional 

Group Observed

6  b

H^N ■ NH^

6 5

H_CO

NH

/ °H.C

NO

\ h .

6 5

CH

-CH

,1 I

2 3

/ ~ % 4
H

1 124.5 129.3
2 144.1 146.8
3 115.4 116.8
4 130.9 129.0
5 118.45 119.7
6 128.6 128.9 Aldehyde
1 141.2 142.9
2 134.6 136.6 >C=0
3 131.7 130.4
4 128.8 128.9
5 133.4 135.2 190.9
6 128.6 128.8
1 1 2 2 . 8 128.8 Carbomethoxyl
2 145.1 146.3 OCH, >C0
3 1 2 0 . 2 120.3 o
4 128.4 128.5 51.8 167.6
5 118.8 119.2
6 131.3 130.2

1 137.5 136.4 Methoxyl
2 140.2 138.3
3 127.5 123.9 OCH_
4 115.8 113.0 O
5 163.4 165.4 56.1
6 113.4 112.9
1 137.65 139.9 Carbomethoxyl
2 146.9 146.7
3 126.0 123.4 OCH >C=0
4 131.9 129.8
5 134.2 134.7 52.9 164.5
6 131.0 127.9
1 119.4 124.5 Methyl
2 144.4 148.7
3 113.5 112.3 CH
4 137.8 138.4 o
5 1 2 1 . 1 117.6 C 21.3
6 137.8 138.0 c; 19.5
r  ■ 151.9®

6

1 136.2 -- —

2 » 1 2 0 . 8 ---- ' Aldimine
2 128.7? -- — N=CH
3' 128.7? — — — 159.9
3 129.0? — — —

4' 125.8 ----

4 131.1 — — —

The calculated C-13 chemical shifts in substituted biphenyls are based on the 
values of biphenyls and mono-substituted benzenes given by Stothersl22 and 
Schulman ejt al .&6

®rhe assignments of the observed C-13 chemical shifts in benzylideneaniline are 
based on the values given by Inamoto et al^% and Ruxer et al
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complete analyses for peak assignments were made unequivocally. The 

observed and the calculated values of the aromatic carbon-13 chemical 

shifts together with the observed chemical shifts of carbon-13 in those 

groups incorporated in these molecules are summarized in Table 12. The 

chemical shift data summarized in Table 12 are considered as a basis 

for discussing the diazacyclododecine compounds.

The difference of about 22 p.p.m. between two of the quaternary 

carbon signals in compound (IX) strongly supports the assignment of 

the lower field signal to a to nitrogen; while the 3 quaternary

, carbon, 2 3  ̂ in' the amine biphenyl unit is shielded. The above
121assignments are in line with those given by Pugmire et al. for 

quinoline, isoquinoline and acridine. Table 13.

The assignment of the bridgehead carbons [C in compound (IXb)
I Z1 ,Z4

is in good agreement with the conjugative effect of the methoxyl substituent. 

It is interesting to note that the small upfield shift (-1.8 p.p.m.) 

experienced by 23 compound (IXa) compared with that in (IX) probably 

arises from the steric effects in terms of the repulsive forces between 

the closely spaced carbomethoxyl groups.
IAs mentioned earlier, the ultra-violet spectra and the H n.m.r. 

spectra can be satisfactorily interpreted in terms of a non-planar 

structure for the Ph-N=CH-Ph part of the molecule in which the aniline 

. ring cannot conjugate fully with the benzal-amino Tr-system. The 

bridgehead carbons 2g ^26 27 and y to nitrogen, respectively) 

in the aldehyde biphenyl unit show downfield shifts in comparison to 

the bridgehead carbon 23 nitrogen) in the amine biphenyl

unit, Table 11. It,is clear now that the bridgehead carbon signals in 

the aldehyde biphenyl unit are not much affected by the different substituents
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in the amine biphenyl unit in comparison to the shifted bridgehead 

carbon signals in the amine biphenyl unit.

In line with the above conclusion, it is found that the 

protonated carbons* in the aldehyde biphenyl unit are not affected 

by the different substituents in the amine biphenyl unit as well.

The assignments of the protonated carbon signals of C ; C .Xx^Xo X^ ̂ X/
^13 16 ^14 15 based on their appearance as a doublet in

■ the off-resonance proton decoupled spectrum and the fact that their 

chemical shifts parallel those obtained in biphenyl-2 ,2 ’-dialdehyde 

and benzylideneaniline. Table 12. Unequivocal assignments of the 

above protonated carbon signals, possibly, could be made using 

selective proton decoupling technique and/or specifically labelled 

materials would be required.

It is interesting to note that the aldimine group CH=N has 

significant deshielding effect [+ 1 . 8 p.p.m.) on the ortho-carbons 

^11 18 the rings attached to carbons. On the other hand, it has 

a pronounced shielding effect (-10.5 p.p.m.) on the ortho-carbons 

g of the rings'attached to nitrogens with significant shielding 

effect (-3.6 p.p.m.) on the para-carbons Table 11 (compound IX).

The assignment of the carbon beating methoxyl group C_3,0
in compound (IXb) is straight forward and unequivocal because of the 

marked deshielding effect of the methoxyl group. This peak is the 

lowest field signal in the aromatic region and appears as a singlet 

in the off-resonance proton decoupled spectrum. Since an increase 

in the electron density is expected at the ortho- and para^positions, 

then the. ortho-carbons y and ^ are markedly shielded, while the 

effect of methoxyl group on the meta-carbon g is a small deshielding

effect.
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In compounds (IXa) and (iXc), the carbon bearing the

carbomethoxyl group is deshielded and appeared as a singlet in

the off-resonance spectra. The electron-withdrawing tendency of

the carbomethoxyl group is evident from its deshielding effect on

the para-carbon. Less deshielding effect is observed on the ortho-carbon. 
Table 11.

132.5.2. . C N.m.r, spectra of 9,10,19,20-tetrahydrotetrabenzo[b^d^h^j]-

[l,6 ]diazacyclododecine and its derivatives with substituents in 

ortho-, meta- or para-positions of the nitrogen biphenyl system .

The complete proton decoupled n.m.r. spectra of compounds

(X - Xc) with their off-resonance proton decoupled spectra are given

in Spectra 68 - 71. The observed chemical shifts for the aromatic 

carbons, carbomethoxyl, methoxyl and methylene nuclei for the same 

compounds are collected in Table 14. These results are discussed in 

turn in the following order:

Methoxyl and carbomethoxyl carbon nuclei

Confident assignment of the highfield methyl absorption of the

methoxyl and carbomethoxyl carbon nuclei could be made from its quartet

splitting in the off-resonance proton decoupled spectra. The complete 
13proton decoupled C n.m.r. spectra of compounds (Xb) and (Xc) in

CDC1„ showed a doublet for the methyl carbon signal which is probably3 .
due to two non-equivalent conformera. The complete proton decoupled
13 2Ç n.m.r. spectrum of confound (Xc) in [ H^] DMSO, Spectrum 72, still

showed the doublet for the methyl carbon which supports the above

suggestion.
The carboxyl carbon in compounds (Xa) and (Xc) absorbed at 

lowfield in a region relatively free of other signals. Spectral
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comparison with substituted biphenyls. Table 12, and off-resonance 

spectra of compounds (Xa) and (Xc) gave unambiguous assignment of this 

singlet signal.
13The complete proton decoupled C n.m.r. spectrum of compound (Xc)

2in [ H^] DMSO, Spectrum 72, showed a doublet for the carboxyl carbon.

Methylene carbon nuclei 

' Methylene carbon resonances could be distinguished both by 

their upfield absorption and by their triplet splitting in the off- 

resonance spectra. The significant upfield absorption of methylene 

carbon in compound (Xa) is probably due to conformational effect, 

where the CH^ is no more under the influence of the local deshielding 

effect, thus, resulting in an upfield shift.

Aromatic carbon nuclei

The assignments of the aromatic carbons in compounds (X),

(Xb) and (Xc) became more difficult due to the presence of extra signals 

in the aromatic region of their spectra. Spectra 6 8 , 70 and 71, 

respectively. The extra carbon signals are more likely to come from 

two (or more) non-equivalent conformera.

Quaternary (bridgehead) carbons 2 4 * ^22 23' ^25 28
^26 27 compounds (X - Xc) give singlet signals in the off-resonance

* ■ 13 1proton decoupled spectra due to the absence of direct C - H coupling.

Also, quaternary carbon signals are of lower intensity than protonated

carbons. Therefore, confident assignments of all of the bridgehead

carbons are made through the use of the above facts. In addition,

spectral conç»arison supports the assignment of these signals.. It is

interesting to note that the observed upfield shifts in the quaternary

carbons ^4  ̂ ^22 23' S s  28 .̂ 26 27 compound (Xa) probably
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arise from the steric effects in terms of the repulsive forces 

between the closely spaced carbomethoxyl groups.

The assignment of the protonated carbons in the aldehyde 

biphenyl unit is much more difficult than that encountered in compounds 

(IX - IXc). The observed doublet splitting in the off-resonance spectra 

and spectral comparison with that of 2,2'-dimethylbiphenyl. Table 15, 

provide some sort of help in assigning these signals.

13Table No.15. The observed aromatic C chemical shift of
2,2'-dimethylbiphenyl in p.p.m. from TMS

Compound S  "4 S  ^6

q - V . '
"3C “ 3

141.9 135.9 130.4 129.9 126.4 127.8

The original data in p.p.m. in 
C,H

and converted using 5 ̂  128.7

THF referenced ^ . 89to benzene

It is of interest to mention here the significant downfield

shift (+5.5 |).p.m.) observed for X6 confound (Xa) relative to

the same carbon in compound (X). This discrepancy is difficult to

account for on the basis of the presently available data.

The assignment of the carbon bearing methoxyl group ^ in

compound (Xb) is easy and unequivocal because of the pronounced

deshielding effect of the methoxyl group. It appeared as a singlet

in the off-resonance spectrum. It is important, however, to draw

attention to the pronounced shielding at the ortho-positions, y

and C. r indicative of electron release to the rings by methoxyl 4, b
groups, while the meta-carbon g is deshielded slightly.
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In compounds (Xa) and (Xc), the carbon bearing the carbomethoxyl 

group is deshielded and appeared as a singlet in the off-resonance spectra, 

In compound (Xc), the carbons ortho to the carbomethoxyl function 

[C^ g and Cg absorb at lower field due to the interaction of the 

carbomethoxyl groups with the amine biphenyl unit. IVhereas, in 

compound (Xa), the carbon ortho to the carbomethoxyl function, 

experiences a significant upfield shift. This is probably due to 

steric inhibition of conjugation between the carbomethoxyl group and 

the aromatic ring.

Finally, it is worthwhile to suggest here that variable- 
13temperature C n.m.r. is the technique worth investigating next 

to help in the analysis of the different conformations the molecules 

(X), (Xb) and (Xc) might have.
1 13In conclusion the results of H and C n.m.r. of compounds

13(X), (Xb) and (Xc) may be summarised. C n.m.r. spectra of the above

compounds have shown extra signals in the aromatic region. Also, the

methyl signal in compounds (Xb) and (Xc) occur as a doublet in the 
1 13H and C n.m.r. spectra. Temperature variable studies of the methyl 

protons doublet in compound (Xb) have shown that the two signals move 

apart on increasing the probe temperature and move towards each other 

and form one.signal on decreasing the temperature. On the other hand, 

the methyl protons doublet in compound (Xc) are unaffected on increasing 

the probe temperature even when heated to +117°.

Shift reagents studies on compound (Xb) resulted in an upfield 

shift of the methyl doublet upon addition of Pr(fod)while one signal 

of the doublet moved upfield on addition of Eu(fed)^ and the other
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downfield. In compound (Xc), the doublet moved downfield upon

addition of E u ( f o d ) b u t  one signal of the doublet moved faster

than the other.

These observations suggested that compounds (X), (Xb) and

(Xc) must occur as two or more non-equivalent conformers. More

detailed studies are required, especially temperature variable and
13shift reagents studies on the C n.m.r. spectra of these compounds.
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3. EXPERIMENTAL

General Statements

The following general statements apply wherever relevant in the 

text, unless othervi;ise stated.

1. Melting points below 120° were determined in an oil bath. Those 

above 120° were determined on an Electrothermal melting point 

apparatus. Thermometers were calibrated against standard 

thermometers.
12. H-N.M.R. spectra were determined for deuteriochloroform solutions

either at 60 MHz on a Perkin-Elmer R12 instrument or at 100 and 

220 MHz by the Physico-Chemical Measurements Unit at Harwell, 

Didcot, Oxfordshire. Chemical shifts were measured on the 

6-scale relative to TMS as internal standard (6 = 0).

133. C-Fourier Transform N.M.R. spectra were determined for 

deuteriochloroform solutions at 22.63 MHz, by the P.C.M.U., or

. by King’s College, London, under the University of London

Intercollegiate Research Services Scheme. Chemical shifts were 

measured on the 6-scale relative to TMS as internal standard 

(6 = 0).

4. ‘ Ultra-violet absorption spectra were determined for 95% ethanol

solutions with the Perkin-Elmer 124 automatic recording 

spectrophotometer. Quartz cells were employed throughout.

5. Mass spectra were measured by the P.C.M.U.

6. • Infra-red spectra were measured either with the Perkin-Elmer 457

or with the Unicam SP.200 spectrophotometers, with a mulling agent.
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7. Microanalyses were performed by the micro-^analytical 

laboratory in Bedford College, London, by Dr. F.B. Strauss 

at Oxford, or by Dr. A. Bernhardt in West Germany.

8. The -general procedure employed for lanthanide shift reagents 

experiments was as follows:

An accurately weighed amount (3.08 - 6.60 mg) of substrate 

was placed in a clean and dry n.m.r. tube. Dry CDCl^

[0.4 - 0.7 ml, previously dried over preheated (120°C) 3 X 

molecular sieves] was then added and the n.m.r. spectrum was recorded 

at 60 MHz on a Perkin-Elmer R12 instrument.

Accurately weighed amounts of the Eu or Pr shift reagents were 

added in increments to the n.m.r. tube. After each addition of 

shift reagent, the n.m.r. tube was stoppered and vigorously 

shaken. . In some cases, the n.m.r. tube was placed in a beaker 

of warm tap water (40°) to effect solution. The spectrum was 

recorded after each addition of shift reagent, and the chemical 

shifts 'of all the protons were recorded (in p.p.m. downfield 

from internal tetramethylsilane).
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2,2’-Dinitrobiphenyl

(F.R'. Shaw and E.E, Turner, J. Chem. Soc., 1933, 135) 

£-Chloronitrobenzene (60 g, 0.381 mole) was briskly boiled in 

a wide boiling-tube kept at 250-260° in a metal bath while copper- 

bronze (40 g) was added gradually and stirred in (with a thermometer) 

during 20 minutes, Heating was continued for another 10 minutes, 

the mixture was allowed to cool somewhat and was extracted with hot 

o-dichlorobenzene, The solution was filtered hot, the solid residue 

washed with hot o^-dichlorobenzene, and the total, filtrate treated 

with light petroleum (b.p. 40-60°) until the solution went faintly 

cloudy. Filtration of the resulting cold suspension gave dark broun 

crystals. The dark brown crystals were recrystallized from glacial 

acetic acid and gave a brown crystalline product (26.5 g, 57%), 

m.p. 121-123°. A small portion of the product, after recrystallization 

once from ethanol, gave light brown prisms, m.p. 124-124.5°

(lit. /  124°).

2,2’-Diaminobiphenyl

: (W.L, Mosby, J. Org. Chem., 1957, ^ ,  671)

A mixture of iron powder (60 g), water [30 ml) and glacial 

acetic acid [2 ml) was stirred mechanically in a two-necked flask (500 ml) 

and boiled under reflux for 15 minutes. 2,2’-Dinitrobiphenyl (24.4 g,

0.10 mole) was added in small portions, occasionally washed down with 

ethanol (a total of 10 ml). The resulting dark mixture was stirred and

^ F. Ullmann and J. Bielecki, Ber., 1901, 34, 2176
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boiled under reflux for 5 hours, then cooled somewhat and 200 ml 

of benzene was added, and the heating and stirring were continued 

for another hour. The benzene layer was decanted while it was hot . 

and the solids were washed well with additional hot benzene. The 

combined benzene extracts were dried over anhydrous potassium 

carbonate. After filtration and removal of solvent, the product 

obtained was crystallized from a mixed solvent containing 80% of 

ethanol and 20% of light petroleum (b.p. 60-80°) giving slightly 

coloured transparent prisms (14.84 g, 80.7%),m.p. 78.5-79°. 

Recrystallization a small portion of the product from light 

petroleum (b.p. 80r.l00°) gave white needles , m.p. 80-80,5° (lit.

80-81°).

Trans-9,lO-dihydro-9,IQ-dihydroxyphehanthréne

(J, Booth, E. Boy land and E.E. Turner, Chem. Soc., 195.0, 1188)

The preparation of diol was performed in two ways :

A. Portion-wise addition

The lithium aluminium hydride [1 g, 0,026 mole) in sodium-dried 

■ ether [200 ml) was stirred magnetically while the 9,10-phenanthrenequinone 

[4 g, 0,019 mole) was added in solid form [in small portions), occasionally 

being washed down with ether. After the addition, the mixture was heated 

under reflux for 4f hours and cooled. Water [50 ml) and 4N-sulphuric acid 

[50 ml) were added, IVhen all the excess of lithium aluminium hydride 

had been decomposed, the aqueoUs layer was grey and the ethereal layer

^ S. Sako, Mem. Coll. Eng. Kyushu Imp. Univ., 1932, 6, 263; 
Chem. Zentr., I, 1937, 3791.
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yellow. But when more ether was added, with shaking, green solid was 

formed. This green solid was decomposed by the acid, and more ether 

was added to dissolve the yellow substance formed. When the ethereal 

layer was clear it was separated, the aqueous layer was extracted with 

ether, and the combined ethereal layer and extract washed with 2N-sodium 

hydroxide. The ethereal layer was dried over sodium hydroxide pellets. 

Green substance was seen to collect at the bottom of the flask again.

It was filtered off and ether removed. The crude diol obtained was 

crystallized from benzene and gave white large needles [1.463 g, 35.9%), 

m.p. 186-187°,

B. Soxhl^et apparatus

The lithium aluminium hydride (2 g, 0.053 mole) was suspended 

in sodium-dried ether (400 ml) and the 9,10-phenanthrenequinone (8 g, 

0.039 mole), previously dried over phosphorus pentoxide, was put in a 

Soxhlet thimble and extracted with the refluxing ether. A greenish- 

yellow precipitate was formed soon afterwards. Extraction was continued 

for 12 hours and the reaction mixture treated with water (50 ml) and 

2N-sulphuric acid (120 ml) after cooling to room temperature. The 

ether solution was combined with the ethereal extract of the aqueous 

solution and washed several times with 2N-sodium hydroxide until free 

of green substance. When dried over sodium hydroxide pellets, the green 

substance was again formed and collected at the bottom of the flask. It 

was filtered off and the ether removed by distillation. The diol

obtained was recrystallized from benzene giving large needles (5.09 g,

67 %), m.p. 186-187° (lit., needles, m.p. 185-187°; prisms, m.p. 194°).
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The yield is based on the amount of quinone consumed in this 

preparation. A significant amount of 9,10-phenanthrenequinone (0.53 g) 

was left in the thimble.

Biphenyl-2,2’-dialdehyde

(D.M. Hall and B. Prakobsantisukh, J. Chem. Soc., 1965, 6311)

The trans-9,lO-dihydro-9,10-dihydroxyphenanthrene (8.5 g, 0.04 mole) 

was suspended in sodium-dried benzene (250 ml) and lead tetra-acetate 

(18.2 g, 0.04 mole) was added to the stirred suspension; stirring was 

continued at room temperature for 4 hours. After stirring, the white 

lead diacetate was filtered off and the yellow filtrate was evaporated 

to dryness under reduced pressure, giving an oily substance (7.4 g) 

which solidified on standing overnight. The solid obtained was 

recrystallized from a mixture of 30% sodium-dried ether and 70% light 

petroleum (b.p. 40-60°) giving large bright yellow plates (5,5 g, 65%), 

m.p. 62-63° (lit.,° 64-65°).
In another preparation, the crude dialdehyde (5.73 g) was 

purified by column chromatography. It was dissolved in a minimum 

amount of sodium-dried ether and passed through neutral alumina (60 g) 

using a mixture of 30% dry ether and 70% light petroleum (b.p. 40-60°) 

as eluent. The first portion of eluate gave colourless prisms (4.31 g) 

and had m.p. 63-64° when recrystallized from ether-light petroleum.

The second portion of eluate yielded a few orange-yellow crystals, 

identified as 9,10-phenanthrenequinone, m.p. 204-207° (lit.208.5-210°).

° R.G.R. Bacon £t al., £. Chem. Soc., Perkin I, 1974, 2153

R. Wendland and J. LaLonde, Org. Synth., 1954, 34, 76, Coll. Vol.4, 757
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Tetrabenzo [lb ,d,h , j_] [1,6] diazacyclododecine

(E.D. Bergmann, I. Agranat and M.A. Kraus, J. Org. Chem.,
1967, 600)

Biphenyl-2,2'-dialdehyde (1.05 g, 0.005 mole) and 2,2'-diamino- 

.biphenyl (0.92 g, 0.005 mole) were dissolved separately in a minimum 

amount of absolute ethanol (20 ml for each) at room temperature and 

then mixed. Crystalline solid was observed soon afterwards. The solution 

was left to stand for two days and the solid obtained was filtered off 

and dried giving colourless crystals (1.728 g, 97%), m.p. 297-300°..

Three crystallizations from benzene gave the desired product, m.p. 312-313°,

76% (lit.,° 326°).

The infra-red spectrum (Nujol) showed marked absorption at 

1625 cm"^ (C=N). •

Attempt to isolate the isomeric component of tetrabenzo[b,d,h,j][1,6]- 
diazacyclododecine by column chromatography

1.237 g of tetrabenzo [^,^,h,j_] [1,6] diazacyclododecine was dissolved 

in a minimum amount of chloroform, passed through a column of silica gel 

(60 g) and eluted with a mixture of sodium dried benzene (70%) and ethyl 

acetate (30%). Most of the column became mustard coloured. After 

collecting the mustard fraction, the solvents were evaporated under 

reduced pressure, 0.965 g of pale yellow crystals obtained. Recrystallisation 
from benzene (three times) gave colourless.crystals, m.p, 312-313°.

Two zones were developed in the column after collecting the 

mustard fraction. The lower zone spread over a wide area which was pale

e A.P. Bindra and J.A. Elix, Tetrahedron, 1970, 26, 3749
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yellow in colour, while the upper zone was brown in colour and of 

small area. The pale yellow zone was collected, solvents were 

evaporated under reduced pressure and 0.083 g of yellow crystals were 

obtained. Recrystallization from benzene gave colourless crystals, 

m.p. 304.5-305°.

The brown zone was collected later on and gave yellow crystals 

0.141 g. When recrystallised from benzene gave off-white crystals, 
m.p. 286-292°.

The total amount of tetrabenzo [^,^,h,j_] [1,6]diazacyclododecine 

collected from the column was 1.189 g.

The n.m.r. spectra of the mustard fraction, m.p. 3/2— 3/3 ̂  , 

and the off-white crystals, m.p. 286-92°, were identical and were also 

identical with the spectrum of tetrabenzo [^,^,]p,^] [1,6] diazacyclododecine 

before chromatographic separation.

9,10,19,20-Tetrahydrotetrabenzo[ ^ , h ,̂ ] [1,6]diazacyclododecine

(Method used by J.H. Billman and J.W. McDowell, Org. Chem.,
1961, 2^, 1437, for the reduction of Schiff bases)

A. Reduction with dimethylamine borane in glacial acetic acid

Tetrabenzo[^,^,h,j_] [1,6]diazacyclododecine (1.00 g, 0.0028 mole) 

was suspended in glacial acetic acid (2 ml) in a test-tube fitted with a 

thermometer and placed in a cold water bath. An equimolar amount plus 

25% excess of the dimethylamine borane (0.412 g) was dissolved in glacial 

acetic acid (2 ml) and this solution added slowly to the Schiff base 
suspension keeping the temperature approximately at 20°. After the 

addition was complete, the colour changed from brown to colourless: 

glacial acetic acid (1 ml) was added, the reaction mixture was heated at 

50-53° for 7 minutes,and allowed to cool. Cold distilled water was added



217

slowly until precipitation was complete. The white precipiate was 

collected by suction filtration, washed with cold water and dried 

giving white solid (0.985 g, 97%)̂  m.p. 168-172.5°.. Crystallization 

from methyl alcohol gave pale yellow diamond-shaped plates m.p. 174- 

176°, 89%, which turned brownish on storing (lit.° 158°).

Three reductions were performed successfully on the above 

mentioned compound.

The infra-red spectrum (Nujol) exhibited pronounced bands at 

3310 and 3415 cm  ̂ (N-H). The C=N band is absent.

(Found: C, 86.2; H, 6.1; N, 7.6.

Calc, for C : C, 86.1; H, 6.1; N, 7.7%).

B. Reduction with sodium borohydride

(A.P. Bindra and J.A. Elix, Tetrahedron, 1970, 2^, 3749) 

Attempts to reduce tetrabenzo[^,^,h,j_] [1,6]diazacyclododecine 

by sodium borohydride in methyl alcohol failed to give the tetrahydro- 

derivative.

Methyl ^-aminobenzoate

(E.R. Riqgel and K.W. Buchwald, J. Amer. Chem. Soc., 1929, 51, 484)

p-Aminobenzoic acid (200 g, 1.46 mole) was dissolved in methyl 

alcohol (2 litres) in a 5-litre, round-bottomed flask. The flask was 
fitted with a reflux condenser and concentrated sulphuric acid (100 ml)

° A.P. Bindra and J.E. Elix, Tetrahedron, 1970, 26, 3749
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was added cautiously to the flask down the condenser,, with occasional 

swirling. The solution was then boiled under reflux for 13 hours.

About 1 litre of methyl alcohol was distilled off and the residual 

solution poured into 2.5 litres of cold water. The solution was 

stirred mechanically and neutralized by adding solid sodium bicarbonate, 

until the solution was alkaline to litmus. The creamy solid ester, 

which separated, was filtered off, washed with water and crystallized 

from ethyl alcohol giving fawn crystals (192.3 g, 87%), m.p. 111.5- 

112° (lit., 112°).

Methyl p-iodobenzoate

(Method of N.E. Searle and R. Adams, J. Amer. Chem. Soc.,
1933, 1651)

Finely powdered methyl p-amihobenzoate (138 g, 0.92 mole) was 

made into a thin paste with water. 6N-hydrochloric acid (750 ml)

(450 ml of cone. HCl + 300 ml of H^O) was added. The mixture was cooled 

with mechanical stirring to -6° and diazotized with sodium nitrite 

(69 g, 1 mole) dissolved in water (150 ml). During the above dropwise 

addition, the temperature was kept between -3 and -6°. To the diazotized 

solution, potassium iodide (250 g, 1.5 mole) dissolved in water (225 ml) 

was added dropwise with rapid stirring. The frothing reaction mixture was 

warmed in hot water and stirred with sodium metabisulphate solution to 

remove excess iodine. The product was filtered, washed thoroughly with 

water and dried. Crystallization from methyl alcohol gave sandy-orange 

crystals (193 g, 81%), m.p. 113-114° (lit.,^ 112-114°).

Chua Cheung King Ling, Ph.D. Thesis, London. Univ., 1962.
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Methyl p-iodo-ra_-nitrobenzoate

(C.C. King Ling and M.M. Harris, Chem. Soc., 1964, 1825)

A solution of powdered methyl p-iodobenzoate (58 g, 0.22 mole) in 

cone, sulphuric acid (75 ml) was cooled, (ice-salt bath), with mechanical 

stirring to 0° and a mixture of conc. nitric acid (sp. gr. 1.42, 30 ml) 

and conc. sulphuric acid (sp. gr. 1.84, 30 ml) added dropwise, keeping 

the temperature between 5 and 6°. The first drop of nitrating mixture 

added turned the solution black and the reaction mixture became 

increasingly viscous until about 1/3 of the nitrating mixture had been 

added. Further addition was, however, accompanied by a decrease in 

viscosity and a gradual change of colour from black to reddish-broivn.

When all the nitrating mixture had been added, the reaction mixture 

was stirred for a further i hour and then allowed to stand in the ice 

+ water for another 3 hours. The thick mixture was poured, with stirring, 

onto crushed ice. The yellow solid which separated was filtered, washed 

thoroughly with water, then treated with hot water at about 80° and 

filtered giving yellow-orange crystals. Recrystallisation from methyl 

alcohol gave large ochre needles (43 g, 63%), m.p. 103-104° (lit., 104-106°) 

A considerable amount of by-product was obtained from the mother 

liquor, filtered off, washed thoroughly with cold water and dried giving 

yellow crystals 7.12 g, m.p. 147-149°. Recrystallization from methyl 

alcohol gave white silky needles (6.28 g), m.p. 164.5-165° (decomp.)

(lit., m.p. 182° (decomp.)}

it was found that the m.p. of this by-product is not constant, 

but changeable from time to time depending on the rate of heating.

(Found: C, 32.8; H, 2.2; N, 1.9; 0, 19.04; I, 42.81%).

From the above analysis, the possible molecular formula is

^16^13^°7^2'
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2
The n.m.r. spectrum of this by-product in [ DMSO with 

tetramethylsilane as internal standard (Spectrum 73) has revealed 

seven aromatic protons and six protons in the upfield region of the 

spectrum. It is suggested that the compound might have a general 

structure like:

NO

111 i ; ! ! I i ! I

iîrpiTTi

2 Ô

1Spectrum No.73. H N.m.r. spectrum of a by-product from nitration of
2methyl p^-iodobenzoate in [ H^jDMSO. Band marked ’S ’ 

is due to solvent.
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The infra— red spectrum (Nujol) exhibited pronounced bands at 

1707 (C=0 of aromatic ester), 1285 and 1117 (C-0 of aromatic ester), 

and 1576 and 1300 cm  ̂ (NO^ of aryl-nitrobenzoate).

However, the mass spectrum (Spectrum 7 4) of the by-product has '

.shown that the molecular ion peak appeared to be at m/e = 583, which 

means that there are only five aromatic protons. This disproves the 

above suggestion made by considering the n.m.r. spectrum.

Accurate mass measurements of the molecular ion at m/e = 583 and 

the base peak, at m/e = 388 have given the following data:

Measured
masses

582.8611

387.8452

Possible
formulae

Calculated
masses

582.8630

387.8462

100
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90-
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"-3 60-
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0 40-
*r4 30-
cd
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Spectrum No. 74 . Mass spectrum of a by-product from nitration of 
. methyl £-iodobenzoate.
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On examining a fresh mass spectrum of the by-product, it appeared 

that the sample is a mixture of a number of compounds with peaks beyond 

the mass of m/e = 583.

Consequently, assigning the structure of the by-product is 

abandoned at the present time, due to the disagreement between the results 

obtained by n.m.r. and mass spectroscopy.

Dimethyl 2,2'-dinitrobiphenyl-4,4'-dicarboxylate

(C.C. King Ling and M.M. Harris, J. Chem. Soc., 1964, 1825)

Methyl 3-nitro-4-iodobenzoate (50 g, 0.163 mole) was melted in a 

hard glass tube immersed in a metal bath heated to 180°. The temperature 

inside the hard glass tube was brought to 175°. Copper bronze (40 g) was 

added, stirred in with a thermometer, at such a rate as to maintain the internal 

temperature between 180-195°, while the temperature of the bath was kept between 

165-175°. When all the copper bronze had been added, the bath was raised to 

190° for 15 minutes. The tube was then removed from the metal bath, allowed 

to cool to 100° and the reaction mixture extracted several times with boiling 

chloroform. The extracts were filtered hot through a Buchner funnel, and 

the filtrate evaporated to dryness under reduced pressure giving brown crystals. 

Recrystallization of the crude product from acetone-water (4:1) gave khaki 

coloured monoclinic crystals (23.7 g, 81%), m.p. 159-159.5° (lit., 159-161°).

Dimethyl 2,2*-diaminobiphenyl-4,4*-dicarboxylate

Reduction with hydrazine using W-2 Raney Ni as catalyst 

(C.C. King Ling and M.M. Harris, J_. Chem. Soc., 1964, 1825)

W-2 Raney nickel catalyst was prepared according to the procedure 

given in Organic Synthesis, Collective Vol. Ill, p.181.
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Dimethyl 2,2^-dinitrobipheny1-4,4’-dicarboxylate (9 g,

0.025 mole) was dissolved in a mixture of 95% ethyl alcohol (580 ml) 

and toluene (100 ml) in a 1—litre, 3-necked, round-bottomed flask, 

fitted with a reflux condenser, a dropping funnel and a thermometer.

The thermometer was fitted so that its bulb was immersed in the 

solution. The solution was heated on a water bath to r>j 70°, The 

flask was then removed from the water bath and two tea-spoonsful of 

W-2 Raney nickel were added to the solution. Hydrazine hydrate (100%;

40 ml) was added slowly from the dropping funnel at such a rate that 

the temperature of the reaction mixture remained between 63 and 67°, or 

to maintain a vigorous reaction (important). There was vigorous 

effervescence during the addition of the hydrazine hydrate, and the 

colour of the solution changed from bright yellow, through dark brown, to 

very pale yellow. More W-2 Raney nickel catalyst, one tea-spoonful, 

was added and the reaction mixture was boiled on a water bath for 

15 minutes and was then filtered hot. The filtrate was concentrated 

to a small bulk by distilling off the solvent under reduced pressure.

When the concentrated solution had cooled, the amine crystallized out 

as yellow long needles, and was filtered off and dried, giving 7.14 g. 

Recrystallization from benzene containing a little ethanol gave pale 

yellow rhombohedra (6.93 g, 92%), m.p. 174-175° (lit., 174-176°).

Dimethyl tetrabenzo[b,d,h,j][1,6]diazacyclododecine-2,7-dicarboxylate

It was found that dimethyl 2,2'-diaminobiphenyl-4,4 '-dicarboxylate 

is not soluble in absolute ethyl alcohol at room temperature; therefore, 

the reaction was carried out as follows:-
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Biphenyl-2,2'-dialdehyde (1.05 g, 0.005 mole), dimethyl 2,2'- 

diaminobiphenyl-4,4'-dicarboxylate (1.5 g, 0.005 mole) and absolute 

ethyl alcohol (60 ml) were heated under reflux for 3 hours. The 

clear reaction mixture was left to stand at room temperature for 

two days. Yellow crystals separated at the bottom of the flask, and 

were filtered off and dried, giving yellow diamond-shaped plates 

(2.3 g, 97%), m.p. 251-255°.

This compound was prepared four times. Recrystallization of 

the condensation product "yellow diamond-shaped plates" from a 

mixture of 60% dry benzene and 40% light petroleum (b.p. 60-80°) gave, 

on two occasions, very pale yellow rods, m.p. 259-261°, as a major 

crystalline form. Recrystallization of the rods once gave two crystalline 

forms; a large proportion of very pale yellow rods, m.p. 262-63°, and 

a small proportion of pale yellow diamond-shaped plates, m.p. 261-261.5°, 

83.5%. On the other two occasions, pale yellow diamond-shaped plates, 

m.p. 261-261.5° , were obtained as a major crystalline form after one 

crystallization of the condensation product.

The infra-red spectrum (Nujol) exhibited strong bands at 

1727 (C=0 of aromatic ester) and 1632 cm  ̂ (C=N).

(Found: C, 76.1; H, 4.6; N, 5.6.

^30^22^2^4 z^guires: C, 75.9; H, 4.7; N, 5.9%).

Dimethyl 9,10,19,20-tetrahydrotetrabenzo [.b_>̂ ĥ,2 ]’ [l,6]diazacyclo- 
dodecine-2,7-dicarboxylate

(Method of J.H. Biliman and J.W. McDowell, Ĵ. Org. Chem.,
1961, 1437)

Dimethyl tetrabenzo[b,^,h^, j_] [1,6]diazacyclododecine-2,7- 

dicarboxylate (0.5 g, 0.00105 mole) was suspended in glacial acetic 

acid (1.5 ml) in a test-tube fitted with a thermometer and placed in
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a cold water bath. An equimolar amount plus 33% excess of the 

dimethylamine borane (0.165 g) was dissolved in glacial acetic acid 

(1 ml) and this solution added slowly to the Schiff base suspension 

keeping the temperature approximately at 20°. After the addition was 

complete, the colour changed from orange-red to yellow and then to 

very pale green; glacial acetic acid (1 ml) was added, the reaction 

mixture was heated at 48-51° for 7 minutes, and allowed to cool.

Cold distilled water was added slowly until precipitation was complete-. 

The precipitate was collected by suction filtration, washed with cold

water and dried giving pale yellow solid (0.473 g, 94%), m.p. 214-227°.

Crystallization from ethyl alcohol gave two crystalline forms; a large 

proportion of pale yellow triangular rods, m.p. 238-239°, and a small 

proportion of bright yellow hexagonal plates, m.p. 237-238° (0.45 g,

89%) .

Four reductions were performed successfully on the above mentioned 

compound on the same scale each.

(Found: C, 74.7; H, 5.4; N, 5.6.

^30^26^2^4 T^guires: C, 75.3; H, 5.5; N, 5.85%).
The infra-red spectrum (Nujol) showed marked absorption at 

3395 and 3360 (N-H) and 1709 cm  ̂ (C=0 of aromatic ester). The C=N band 

is absent.

Attempted quaternization of dimethyl 9,10,19,20-tetrahydrotetrabenzo- 
[^,^,h, j_] [1,6]diazacyclododecine-2,7-dicarboxylate

Attempt to prepare a quaternary salt from dimethyl 9,10,19,20- 

tetrahydrotetrabenzo[^,^»h,_i] [1,6]-diazacyclododecine-2,7-dicarboxylate 

using iodomethane in warm dry acetone and in dry benzene, separately, 

failed. Ihe n.m.r. spectrum of the product, in each case, was identical 

with that of the starting material.
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3-Chloro-4- and 6-nitrophenols

A. Nitration with concentrated sulphuric acid and sodium nitrate

(H.H. Hodgson and F.H. Moore, J. Chem. Soc., 1925, 127, 1599)

m-Chlorophenol (24 g, 0.187 mole), liquified by ethyl alcohol (2 ml), 

was added slowly during 40 minutes to the mechanically stirred solution, 

kept at 20-21°, of concentrated sulphuric acid (sp. gr. 1.84, 40 g) and 

sodium nitrate (29 g, 0.341 mole) in water (70 ml). After being stirred 

for 2 hours, the mixture was diluted with water (140 ml). The yellowish- 

orange solid was filtered, washed with cold water and steam-distilled.

The yellow oil in the distillate solidified on cooling, and after being 

filtered off, washed with cold water and dried, it gave 3-chloro-6- 

nitrophenol (0.795 g) as a yellow solid, m.p. 39-40° (lit., 41°).

The original filtrate and washings were added to the mixture in 

the distillation flask and steam-distilled. More 3-chloro-6-nitrophenol

collected in the distillate as a yellow oil which solidified on cooling
o '(5.8 g), m.p. 39-40 . The total yield of 3-chloro-6-nitrophenol was 20%.

3-Chloro-4-nitrophenol, which remained in the distillation flask.

as a brown solid, was filtered and dried. Crystallization from benzene

containing some activated charcoal gave large pale brown needles (7.26 g,

22%), m.p. 120.5-121.5° (lit., 121-122°).

B. Nitration with concentrated nitric acid in glacial acetic acid

(H.E. Ungnade and I. Ortega, J. Org. Chem., 1952, 17, 1475) 

m-Chlorophenol (10 g, 0.078 mole) dissolved in glacial acetic 

acid (10 ml), was added dropwise during 15 minutes to the mechanically 

stirred solution of concentrated nitric acid (sp. gr. 1.42, 11 ml) in
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glacial acetic acid (30 ml), kept within a temperature range of -17 and 

-11°. Stirring was continued for a further 2 hours after the addition 

was completed. The resultant reddish-brown mixture was poured on to 

300 gm of ice, allowed to stand for 30 minutes, and steam-distilled.

The yellow oil in the distillate solidified on cooling, and when filtered 

off, washed with cold water and dried it gave 3-chloro-6-nitrophenol 

(3,03 g, 22%), as a yellow solid, m.p. 39-40°.

3-chloro-4-nitrophenol, which remained in the distillation flask 

as a brown oil, was decolourized with activated charcoal and crystallized 

from water giving white needles (3.64 g, 27%), m.p. 120-121°.

3-Chloro-4-nitroanisole

(H.H. Hodgson and F.W. Handley, Chem. Soc., 1926, 542)

3-Chloro-4-nitrophenol (9.5 g, 0.055 mole) dissolved in xylene 

(70 ml) was stirred mechanically and heated under reflux on the water-bath 

in the presence of anhydrous potassium carbonate (12 g). Dimethyl sulphate 

(16 ml) was gradually added during 15 minutes and the whole mixture heated 

under reflux for 11 hours. The resultant thick pale yellow mixture was 

rendered strongly alkaline with sodium hydroxide (5 g) and steam-distilled; 

xylene passed over first and was followed by 3-chloro-4-nitroanisole as 

a viscous pale yellow liquid which solidified on cooling. After being 

filtered, washed with cold water and dried it gave pale yellow solid 

(9.415 g, 92%), m.p. 56-56.5°. Rapid crystallization from light petroleum 

(b.p. 60-80°) gave yellowish-green needles, m.p. 56-56.5° ( l i t . 56.5°).

^ H.H. Hodgson and F.H. Moore, J. Chem. Soc., 1926, 157
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5,5'-Dimethoxy-2,2'-dinitrobiphenyl

(F.E. Kempter and R.N. Castle, Heterocycl. Chem., 1969, 6(4), 523, 
who used 3-iodo-4-nitroanisole)

3-Chloro-4-nitroanisole (27 g, 0.144 mole) was melted in a hard 

glass tube immersed in a metal bath heated to 255°. The temperature inside 

the hard glass tube was brought to 250°. Copper bronze (20 g) was added 

during 30 minutes, stirred in with a thermometer, at such a rate as to 

maintain the internal temperature between 250-265°. When all the copper 

bronze had been added, the bath was raised to 275-280 for 15 minutes.

The tube was then removed from the metal bath, allowed to cool to 100° 

and the reaction mixture extracted several times with boiling benzene. The 

extracts were filtered hot through a Buchner funnel, and the filtrate 

evaporated to dryness under reduced pressure. A dark black solid was 

obtained, and was washed with some ether and filtered with suction giving 

a light black solid (10,025 g, 46%), m.p. 144-146.5°. Recrystallization 

from ethanol gave nearly colourless crystals, m.p. 147-,48.5° (lit.,148- 

149°).

Column chromatography was used to purify some of the crude product 

(1 g). It was dissolved in a minimum amount of chloroform and passed 

through silica gel (28 g). Chloroform was used as an eluent, which was 

collected continuously from the column in quantities of 10 ml each; these 

were evaporated to dryness under reduced pressure and the solids were 

crystallized individually from benzene. The first portion gave nearly 

colourless prisms (0.179 g) and had m.p. 149-149.5°. The second and third 

portions gave brown prisms (0.506 g) and had m.p. 148-149°, while the 
fourth and last portion gave dark brown prisms (0.158 g) and had m.p. 147- 

148°. •
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2,2'-Piamino-5,5*-dimeth6xybiphenyl
A. Reduction using 5% palladinized charcoal catalyst

(Method of D.C. Iffland and H. Siegel, J. Amer. Chem. Soc., 1958,
1947)

A mixture of 5,5'-dimethoxy-2,2'-dinitrobiphenyl (1 g, 0.0033 mole), 
5% palladinized charcoal catalyst (0.4 g) and tetrahydrofuran (50 ml) was 
shaken with hydrogen at 3 atmospheres in a hydrogenation apparatus at 
13-17°. After the absorption of hydrogen ceased, the solution was 
filtered and the light green filtrate obtained was reduced to about 7 ml 
by vacuum evaporation, keeping the water-bath temperature under 30°.
Cold distilled water was added to the reduced filtrate, and light green 
solid separated at the bottom of the flask; after being filtered, it 
was washed with cold water and dried giving (0.69 g, 86%), m.p. 99-102°. 
Crystallization from light petroleum (b.p. 80-100°) gave amber needles
(0.62 g, 77%), m.p. 105-106°.

(Found: 1 - C, 68.2; H, 6.5
2 - C, 69.0; H, 6.9

^14^16^2^2 z^T^ires C, 68.8; H, 6.6
N, 11.3 
N, 10.7 
N,.11.5%).

B . Reduction using Adams' platinum oxide catalyst
A mixture of 5,5'-dimethoxy-2,2'-dinitrobiphenyl (2.0 g, 0.0066 mole), 

Adams' platinum oxide catalyst (0.1 g) and glacial acetic acid (230 ml) was 
shaken with hydrogen at 46 p.s.i. in a hydrogenation apparatus at 15°.
After the absorption of hydrogen ceased, the solution was filtered and
the brown filtrate obtained was evaporated to dryness under reduced pressure.

, The tarry material obtained was treated ^ith dilute hydrochloric acid, the 
solution was filtered, and the filtrate was made alkaline to litmus. The . 
preciptate was filtered, washed with water and dried giving dark brown solid 
(0.28 g, 17%), m.p. 100-103°. Crystallization from light petroleum 
(b.p. 80-100°) gave amber needles (0.17g, 11%), m.p. 105-6°.
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5.6-Diïïiéthoxytetrabenzo [b, h , j_] [1,6] diazacyclododecine 
Biphenyl-2,2’-dialdehyde (0.525 g, 0.0025 mole), 2,2'-diamino-

5, 5 ’ -dimethoxybiphenyl (0.611 g, 0.0025 mole) and absolute ethyl alcohol 
(35 ml) were heated under reflux for 1 hour. Yellow solid was observed 
soon. The reaction mixture was left to stand, at room temperature, 
overnight. The yellow diamond plates were filtered and dried giving 
(0-99 g, 95%), m.p. 286-287.5°. Recrystallization from sodium-dried 
benzene gave pale yellow prisms, m.p. 288.5-289.5°.

The infra-red spectrum (Nujol) exhibited a band at 1630 cm
(C=N).

(Found: C, 80.5; H, 5.3; N, 6.3.
^28^22^2^9 requires C, 80.35; H, 5.3; N, 6.7%).

3.6-Dimethoxy-9,10,19,20-tetrahydrotetrabenzo[b, h ,j_] [1,6]diazacyclo
dodecine

(Method of J.H. Biliman and J.W. McDowell, J. Org. Chem., 1961,
1437).

3,6-Dimethoxytetrabenzo[jb,^,h, j_] [1,6]diazacyclododecine (0.50 g, 
0.0012 mole) was suspended in glacial acetic acid (1.5 ml) in a test- 
tube fitted with a thermometer and placed in a cold water bath. An 
equimolar amount plus 25% excess of the dimethylamine borane (0.18 g) 
was dissolved in glacial acetic acid (1 ml) and this solution added 
slowly to the Schiff base suspension keeping the temperature approximately 
at 20°. The colour of the solution changed from orange to red to yellow 
and then became colourless. After the addition was complete, glacial 
acetic acid (I ml) was added, the reaction mixture was heated at 
45-47° for 10 minutes, and allowed to cool. Cold distilled water was added
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slowly until precipitation was complete. The precipitate was collected 
by suction filtration, washed with cold water and dried giving white 
solid (0.44 g, 87%), m.p. 158^161°. Crystallization from absolute ethyl 
alcohol gave pale yellow hexagonal plates, m.p. 164.5-165°, 69%.

The infra-red spectrum (Nujol) showed marked absorption at 
3405 and 3275 cm  ̂ (N-H). The C=N band is absent.

(Found: C, 79.8; H, 6.3; N, 6.5.
^28^26^2^2 C, 79.6; H, 6.2; N, 6.6%).

Methyl 2-iodo-3-nitrobenzoate
(Method of E.R. Riegel and K.W. Buchwald, J. Amer. Chem. Soc.,
1929, 484)
2-Iodo-3-nitrobenzoic acid (50 g, 0.171 mole) was dissolved in 

methyl alcohol (1,500 ml) in a 5-litre, round-bottomed flask. The flask 
was fitted with a reflux condenser and concentrated sulphuric acid 
(sp. gr. 1.840, 70 ml) was added cautiously to the flask down the
condenser, with occasional swirling. The solution was then boiled under
reflux for 27 hours. A clear yellow solution was obtained and when it 
was poured into 2.5 litres of ice-water, yellow solid formed. This was 
filtered off, washed with cold water, slurried in ice-water, and the 
slurry was treated with solid sodium bicarbonate until it was alkaline 
to litmus. The ester was filtered off, washed thoroughly with cold water 
and crystallized from aqueous methyl alcohol giving yellow needles (50.7 g, 
97%), m.p. 62-63° (lit.,^ 64-66°).

^ D.C. Iffland and H. Siegel, J. Amer. Chem. Soc., 1958, 80, 1947
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Dimethyl 2,2'-dinitrobiphenyl-6,6'-dicarboxylate
(D.C., Ifflaiid and H. Siegel, _J. Amer. Chem. Soc., 1958, 80, 1947 / 

and P.P. Holt and A.N. Hughes, Chem. Soc., 1960, 3216)
Methyl 2-iodo-3-nitrobenzoate (40 g, 0.111 mole) was melted in 

a hard glass tube immersed in a metal bath heated to 160°. The 
temperature inside the hard glass tube was brought to 155°. Copper- 
bronze (34 g) was added during 45 minutes, stirred in with a thermometer, 
at such a rate as to maintain the internal temperature between 160-170°, 
while the temperature of the bath was kept at 135-145°. When all the 
copper-bronze had been added, the bath temperature was raised to 210-220° 
for 15 minutes. The tube was then removed from the metal bath, allowed 
to cool to 100° and the reaction mixture extracted several times with 
boiling chloroform. The extracts were filtered hot through a Buchner 
funnel, and the filtrate evaporated to dryness under reduced pressure 
giving brown crystals. Recrystallization of the crude product from 
benzene gave pale yellow hexagonal plates (20.5 g, 87%), m.p. 129-130° • 
(lit.,^ 132-133°).
Dimethyl 2,2'-diaminobipheny1-6,6'-dicarboxylate
A. Reduction using Adams' platinum oxide catalyst

(Method, of D.C. Iff land and H. Siegel, Amer. Chem. Soc., 1958, 
1947)

A mixture of dimethyl 2,-2'-dinitrobiphenyl-6,6 '-dicarboxylate 
(4 g, 0.0111 mole), Adams' platinum oxide catalyst (1.40 g) and tetra
hydrofuran (240 ml) was.shaken with hydrogen at 63.5 p.s.i. in a 
hydrogenation apparatus at 13-15°. After the absorption of hydrogen

^ J. Kenner and W.V. Stubbings, J. Chem. Soc., 1921, 119, 593.
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ceased, the solution was filtered and most of the solvent was removed 
from the yellowish-green filtrate by vacuum evaporation, keeping the 
water-bath temperature under 30°. Cold distilled water was added to 
the residue, and yellowish-green solid separated at the bottom of the 
flask. This was filtered off, washed with cold water and dried, giving 
(3.0 g, 90%), m.p. 120-123°. Crystallization from ethyl alcohol gave 
pale yellow prisms, m.p. 127-128°, 76%, changing after melting to a 
white solid which did not re-melt even at 340°.

(Found; C, 63.9; H, 5,4; N, 9.2.
^16^16^2^4 C, 64.0; H, 5.4; N, 9.3%).

B. Reduction with hydrazine using W-2 Raney Ni catalyst
(Method of D. Balcom and A. Furst, Amer. Chem. Soc., 1953,
75, 4334 and R.E. Moore and A. Furst, J[. Org. Chem., 1958,

1504)
Attempts to reduce dimethyl 2,2'-dinitrobiphenyl-6,6 '-dicarboxylate 

by hydrazine in presence of W-2 Raney nickel as a catalyst, using variable 
proportions of substrate to ethanol, failed to give the amino-compound.
A yellowish-green solid was obtained, in all cases, whose m.p. was above 
300°.
Dimethyl tetrabenzo[b,d,li, j_] [l,6]diazacyclododecine-4,5-dicarboxylate

Biphenyl-2,2'dialdehyde (0.525 g, 0.0025 mole) was added to the 
warm solution of dimethyl 2,2'-diaminobiphenyl-6,6'-dicarboxylate (0.751 g, 
0.0025 mole) in absolute ethyl alcohol (50 ml). The resultant clear 
solution was shaken for 4 hours and left to stand at room temperature 
for 2 days. Yellow solid separated at the bottom of the flask, after 
being filtered and dried giving pale yellow tiny crystals (1.084 g.
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91%), m.p. 272-274°. Recrystallization from absolute ethyl alcohol 
gave pale yellow tiny crystals, m.p. 276-277°, 81%.

The infra-red spectrum (Nujol) exhibited strong bands at 1727 
(C=0 of aromatic ester) and 1626 cm"^ (C=N).

(Found: C, 75.6; H, 4.7; N, 5.6.
^30^22^2^4 z^%"^res C, 75.9; H, 4.7; N, 5.9%).

Dimethyl 9,10,19,20-tetrahydrotetrabenzo[ b , j _ ]  [1,6]diazacyclo- 
dodecine-4,5-dicarbbxylate
A. Reduction using Adams' platinum oxide Catalyst

(Method of D.C. Iffland and H. Siegel, J. Amer. Chem. Soc.,
1958, 1947)
A mixture of dimethyl tetrabenzo[^,^,]i,j_] [l,6]diazacyclododecine-

4,5-dicarboxylate (0.2 g,0,00042 mole), Adams' platinum oxide catalyst 
(0.15 g) and tetrahydrofuran (100 ml) was shaken with hydrogen at 48 p.s.i. 
in a hydrogenation apparatus at 16-18.5°. After the addition of hydrogen 
ceased, the solution was filtered and the colourless filtrate obtained 
was reduced to about 3 ml by vacuum evaporation, keeping the water-bath 
temperature under 30°. Cold distilled water was added to the reduced 
filtrate, light grey solid separated at the bottom of the flask, after 
being filtered, washed with cold water and dried giving (0.170 g, 84%), 
m.p. 205-211°. Two crystallization from absolute ethyl alcohol gave 
colourless needles, m.p. 214-214.5°, 73%.

Two reductions were performed successfully.
The infra-red spectrum (Nujol) exhibited pronounced bands at 

3395 and 3413 (N-H) and 1723 cm  ̂ (C=0 of aromatic ester). The C=N 
band was absent.

(Found: C, 74.95; H, 5.8; N, 5.9.
^30^26^2^4 z^S^ires C, 75.3; H, 5.5; N, 5.85%).
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B. Reduction with dimethylamine bbràiié in glacial acetic acid
(Method of J.H. Bi liman and J.W. McDowell, J. Org.’ ' Chem., 1961,
26, 1437)
Attempts to reduce dimethyl tetrabenzb[b^d^h^j][l,6]diazacyclo- 

dodecine-4,5-dicarboxylate by dimethylamine borane in glacial acetic 
acid failed to give the tetrahydro-derivative. A yellowish-green 
solid was obtained, in all cases, whose m.p,was 223-248°, The n.m.r. 
spectrum of the product obtained by this method was quite different 
from the n.m.r^ spectrum obtained for the product from method (A), and 
was unchanged on treatment with D^O (absence of NH groups).
Dimethyl 6,6'-dimethbxybipheny1-2,2'-dicarboxylate

(D.M. Hall and E.E. Turner, J. Chem. Soc., 1951, 3072)
6,6'-Dimethoxydiphenic acid (5 g, 0.0165 mole) was dissolved in 

methyl alcohol (67 ml) in a 250 ml, round-bottomed flask. The flask was 
fitted with a reflux condenser and concentrated sulphuric acid (5 g) 
was added cautiously to the flask down the condenser, with occasional 
swirling. The solution was then heated under reflux for 6 hours. Off- 
white prisms were collected at the bottom of the flask, after being 
filtered, washed and dried, giving (5.24 g, 96%), m.p. 128-133°. 
Recrystallization from methyl alcohol gave white prisms (4.97 g, 91%), 
m.p. 136-137° (lit., 136.5-137.5°).
2,2'-Bishydroxymethyl-6,6'-dimethoxybiphenyl

(D.M. Hall and E.E. Turner, J. Chem. Soc., 1951, 3072)
The lithium aluminium hydride (0.9 g, 0.0237 mole) was suspended 

in sodium-dried ether (65 ml) contained in a 500 ml, 2-necked, round- 
bottom flask, fitted with a reflux condenser and a dropping funnel.
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Dimethyl 6,6'-dimethoxybiphenyl-2,2'-dicarboxylate (3 g, 0.0091 mole) was 
added slowly, from a dropping funnel into a magnetically stirrêd solution, 
as a finely ground solid, each lot being washed into the reaction flask 
with ether (100 ml altogether). The addition was completed in 30 minutes 
boiling under reflux and the reaction mixture was left to reflux for 
another 30 minutes to ensure complete reduction. The excess of lithium 
aluminium hydride was decomposed very cautiously by adding sucessively 
wet ether, water (drop at a time) and dilute sulphuric acid. A fairly 
clear aqueous layer with white solid at the interface was obtained. The 
ether was distilled off from the reaction vessel, and the white solid 
was filtered off, washed with cold water and dried giving(2.35 g, 94%), 
m.p. 156-157°. Crystallization from ethyl alcohol gave white rods, 
m.p. 157-158° (lit., 158-159°).
2,2'-Diamino-4,4',6,6'-tetramethylbiphenyl
A. Reduction using Adams' platinum oxide Catalyst

(Method of D.C. Iffland and H. Siegel, J. Amer. Chem. Soc., 1958,
1947)
A mixture of 2,2'-dinitro-4,4',6,6'-tetramethylbiphenyl ̂  (5 g,

0.0167 mole), Adams' platinum oxide catalyst (0.173 g), glacial acetic acid 
(60 ml) and absolute ethyl alcohol (150 ml) was shaken with hydrogen at 
44 p.s.i. in a hydrogenation apparatus at 13-14°. After the addition 
of hydrogen ceased, the solution was filtered and the colourless filtrate 
obtained was evaporated to dryness under reduced pressure, keeping the

 ̂ P.M. Everitt, S.M. Loh and E.E. Turner, J. Chem. Soc., 1960, 4587.
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water-bath temperature under 30°. The residue, which had m.p. 179.5-
181°, was crystallized once from light petroleum (b.p. 60-80°) and
gave brownish-creamy cluster crystals (3.51 g, 87%), m.p. 180-181.5°.

(Found: C, 79.9; H, 8.5; N, 11.7.
^16^20^2 T^guires C, 79.9; H, 8.4; N, 11.7%).

B. Reduction using W-2 Raney nickel catalyst
(Method of I. Puskas, E.K. Fields and E.M. Banas, Amer. Chem. Soc., 
Div. Petrol. Chem. Prepr., 1972, 17(1), B56)

2,2’-Dinitro-4,4',6,6'-tetramethylbiphenyl (10 g, 0.0333 mole), 
benzene (100 ml) and two spatula tips of W-2 Raney nickel catalyst were 
placed in a 1-litre autoclave which was then evacuated, filled with 
hydrogen at 600 p.s.i., and heated at 200°C for 3 hours. The reaction 
mixture was cooled to room temperature, treated with ethyl alcohol and 
filtered. Solvent was removed from the filtrate under reduced pressure, 
keeping the water-bath temperature under 30°, and gave a brown sticky 
material. This was washed with a small amount of n-hexane and was 
crystallized from light petroleum, giving light grey cluster crystals 
(2.121 g, 27%), m.p. 180-181.5°.

A considerable amount (4.83 g) of brown sticky material was 
left unidentified.
Attempted preparation of 2,4,5,7-tetramethyltetràbenzo[ b , li, j_] [1,6] - 
diazacyclododecine

Biphenyl-2;2'-dialdehyde (0.525 g, 0.0025 mole) and 2,2'-diamino- 
4,4' ,6, 6 '-tetramethylbiphenyl (0.601 g, 0.0025 mole) were dissolved 
separately in a minimum amount of absolute ethanol (10 and 15 ml, 
respectively) and then mixed. The mixture was boiled under reflux for
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6.30 hours, cooled and the yellow solid was filtered off and dried 
giving (1.00 g, 96%), m.p. 200-215°.

The product failed to give a sharp m.p. (230-251°) after various 
attempts to crystallize it from a variety of organic solvents (e.g. 
methanol, ethanol, glacial acetic acid, benzene or a mixture of 70% 
sodium dried benzene and 30% light petroleum (b.p.60-80°). The product 
from the crystallization process was a yellow fine solid.

An attempt was made to purify the condensation product by column 
chromatography. The product (0.7 g) was dissolved in a minimum amount 
of chloroform passed through a column of silica gel (60 g) and eluted 
with a mixture of 94% sodium dried benzene and 6% ethyl acetate. 0.62 g 
of yellow solid, m.p. 240-260°, was collected from the column. The 
n.m.r. spectrum of the condensation product was not a promising one for 
the expected structure.

Attempts to prepare 2,4,5,7-tetramethyltetrabenzo[^,£,h, j_] [1,6]- 
diazacyclododecine in benzene or glacial acetic acid media also failed 
to give the desired compound.
Methyl 3-chloro-2-nitrobenzoate

(Method of E.R. Riegel and K.W. Buchwald, Amer. Chem. Soc.,
1929, 484)
3-Chloro-2-nitrobenzoic acid (7.3 g, 0.0362 mole) was dissolved 

in absolute methyl alcohol (190 ml) contained in a 500 ml, 2-necked, round- 
bottomed flask, fitted with a reflux condenser and a dropping funnel. 
Concentrated sulphuric acid (sp. gr. 1.840, 10 ml) was added cautiously 
to the flask from the dropping funnel during 10 minutes, with occasional 
swirling. The solution was then boiled under reflux for 18f hours. A
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colourless solution was obtained and when it was poured into 500 ml 
of ice-water, white solid formed. This was filtered off, washed with 

' cold water, slurried in ice-water, and the slurry was treated with 
solid sodium bicarbonate until it was alkaline to litmus. The ester 
was filtered off, washed thoroughly with cold water and dried giving 
(7,44 g, 95%), m.p. 104.5-105.5°. Crystallization from methyl alcohol 
gave white square-ended rectangular rods, m.p. 104.5-105.5°.

(Found: C, 44.3; H, 2.8; N, 6.3.
CgH^ClNO. requires C, 44.6; H, 2.8; N, 6.5%).

Attempted preparation of dimethyl 2,2'-dinitrobiphenyl-3,3'-dicarboxylate 
(Method of C.C. King Ling and M.M. Harris, J. Chem. Soc., 1964, 1825)

An attempt was made to prepare the above mentioned compound as 
follows:

, Methyl 3-chloro-2-nitrobenzoate (17 g, 0.0788 mole) was melted in 
a hard glass tube immersed in a metal bath heated to 270°. The temperature 
inside the hard glass tube was brought to 265°. ■ Copper bronze (17 g) was 
added during 20 minutes, stirred in with a thermometer, at such a rate 
as to maintain the internal temperature between 265-275°. IVhen all the 
copper bronze had been added, the bath temperature was raised to 290-98° 
for 15 minutes. .The tube was then removed from the metal bath, allowed . 
to cool to 100° and the reaction mixture extracted several times with 
boiling chloroform. The extracts were filtered hot through a Buchner 
funnel, and the filtrate evaporated to dryness under reduced pressure 
giving dark brown sticky material. Crystallization of the product from 
benzene or passing it through a column of alumina eluted with a mixture
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of 70% sodium dried benzene and 30% ethyl acetate failed to give any 
solid; a dark brown sticky material was obtained instead.
6.7-Diphenyldibenzo[e,g][1,4]diazocine

(N.L. Allinger and G.A. Youngdale, J. Org. Chem., 1959, 2^, 306)
This was prepared from 2,2*-diaminobiphenyl and benzil in glacial 

acetic acid. The condensation product was recrystallized from glacial 
acetic acid, and gave yellow triangular rods, m.p. 241-242, 70% (lit.,^ 
m.p. 239-240°).
Attempted preparation of 5,6,7,8-tetrahydro-6,7-diphenyidibenzo[e,g]-
[1.4]diazocine
Reduction with dimethylamine borane in glacial acetic acid

(Method of J.H. Billman and J.W. McDowell, J. Org. Chem., ,1961,
26, 1437)
Due to the ease, speed and effectiveness of the reduction of 

tetrabenzo[^,^,h,jj [1,6]diazacyclododecine by dimethylamine borane in 
glacial acetic acid medium, attempts to reduce 6,7-diphenyldibenzo [ê ,_g]-
[1.4]diazocine by dimethylamine borane were made. The compound proved 
to be rather inert to the reducing agent, as the bulk of the starting 
material was recovered unchanged.
3.8-Dimethyl-4,5-6,7-dibenzo-l,2-diazocine

(D.M, Hall, J.E. Ladbury, M.S. Lesslie and E.E. Turner, J. Chem. Soc., 
1956, 3475)
This was prepared from 2,2*-diacetylbiphenyl and 100% hydrazine 

hydrate in ethyl alcohol: The product was crystallized from aqueous ethanol,
and gave colourless prisms, m.p. 166-167°, 55% (lit., m.p. 167-168°).

^ D.M. Hall, Hwang Huaun-Yong and B.Bhanthumnavin, J. Chem. Soc.,
Perkin Trans. II, 1973, 2131.
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Attempted preparation of l,2,3,8-Tétrahydrô-3,8-diméthyl-
4,5-6,7-dibénzo-l,2-diàzôcine
Reduction with dimethylamine borane in glacial acetic acid

(Method of J.H, Billman and J.W.McDowell, J_. Org. Chem., 1961,
26, 1437)
Attempts to reduce 3,8-dimethyl-4,5-6,7-dibenzo-1,2-diazocine 

by dimethylamine borane in glacial acetic acid failed to give the 
tetrahydro-derivative. The compound proved to be rather inert to 
the reducing agent, as the bulk of the starting material was recovered 
unchanged.
2,7-Dinitrophenanthraqùinone

(J.Schmidt and A. KSmpf, Bor., 1903, 36, 3738)
- 9,10-Phenanthraquinone (30 g, 0.1443 mole) was boiled under reflux 

with a mixture of red fuming nitric acid (sp. gr./-o 1.50, 400 ml) and 
concentrated sulphuric acid (sp. gr. 1.84, 50 ml) for 30 minutes, and the 
cooled reaction mixture was poured into eight times the amount of water.
The voluminous yellow precipitate, left to stand over-night; was 
separated by syphoning off and filtering off of the liquid and was 
dissolved in 4 litres of boiling glacial acetic acid. On'cooling this 
solution, the 2,7-dinitrophenanthraquinone appeared in tiny yellow needles, 
filtered off and dried giving (19,30 g, 45%), m.p. 303-304° (lit., 
300-303°).

The glacial acetic acid mother liquor was reduced to an eighth 
of its volumne. From this concentrated solution, 4,5-dinitrophenanthra- 
quinone was separated, on cooling, as brown feathers. The amount varied 
from nil to 0.4 g, m.p. 200-210° (lit., 215-217 ).

 ̂J. Schmidt, Ber., 1902, 35, 3121
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Attempted reduction of 2,7-dinitrophenanthraquinone
A. Reduction with sodiuni borohydride in methanol

(Method of S.W. Chaikin and W.G. Brown, J. Amer. Chem. Soc.,
1949, 7ĵ , 122).
Attempt to reduce 2,7-dinitrophenanthraquinone by sodium 

borohydride in methanol failed to give the dinitro-diol. A black 
solid was obtained and left unidentified.

B. Reduction with sodium borohydride in the presence of aluminium 
chloride
(Method of H.C. Brown and B.C. Subba Rao, Amer. Chem. Soc., 
1956, 78, 2582)
Attempt to reduce 2,7-dinitrophenanthraquinone by sodium 

borohydride in the presence of aluminium chloride in tetrahydrofuran 
failed to give the dinitro-diol. A crimson-red solid was obtained and 
left unidentified.
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dodecine and its tetrahydro-derivative.

The following sclieme showed the processes through which it was
hoped to get the 12-membered ring compound with 1,8-substituents:
HH
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2-Nitroacetô-p_-toluidide
(R.A. Morton and A. McGookin, J. Chem. Soc., 1934, 901)
This compound was prepared by treatment of 2-nitro-p-toluidine 

with freshly distilled acetic anhydride in the presence of 
concentrated sulphuric acid. Yellow flakes were obtained in 83% yield, 
m.p. 144.5-145.5° [lit., 145°).
2.3- and 2,5-Dinitroaceto-p^-rtoluidides

[R.A. Morton and A. McGookin, J. Chem. Soc., 1934, 901 and
H.J. Page and B.R. Heasman, J_. Chem. Soc., 1923, 3235)
These were prepared by treatment of 2-nitroaceto-p-toluidide with

fuming nitric acid [sp. gr. 1.50) at a temperature kept below 0°.
Yellow solid was obtained in 93% yield.

Attempts were made to separate the two isomers, at this stage,
by dissolving the nitration product in boiling glacial acetic acid.
On cooling, 2,3-dinitroaceto-p-toluidide crystallized first as colourless

oneedles, m.p. 174 [lit. 175 ). It was found that the amount of
2.3-dinitrôaceto-£-toluidide separated, in each case, varied from 
30-45%. The isolation of 2,5-dinitroaceto-p-toluidide from the mother- 
liquors was found to present considerable difficulties.
2.3- and 2,5-Dinitrb-rpTtoluidines

[R.A. Morton and A. McGookin, £. Chem. Soc., 1934,901)
These were prepared on hydrolyzing a mixture of 2,3- and 2,5- 

dinitroaceto-p-toluidides in sulphuric acid medium; orange solid was 
obtained in 94% yield.
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Several attempts were made to separate the mixture of dinitro- 
toluidines, using variable proportions of acetone/water solution. It 
was found that only a small quantity of pure 2,3-dinitro-p-toluidine, 
m.p. 123.5-124° (lit., 124°), can be separated by this method. In 
other attempts, recrystallization of the mixture from ethyl alcohol 
or benzene, also failed to separate the two isomers.
3-Amino-2-nitrotoluene

(H. Burton and J. Kenner, Ĵ. Chem. Soc., 1921, 119, 1047)
This compound was prepared by partial reduction of 2,3-dinitro- 

toluene with an absolute ethyl alcoholic solution of stannous chloride 
saturated with dry hydrogen chloride. The product crystallized from a 
mixture of equal proportions of dry benzene and light petroleum'
(b.p. 80-100°) giving deep red prisms, m.p. 105.5-107° (lit.,^ 108°), 40%.
Conclusion

In order to carry out the whole synthesis fairly large quantities 
of 3-amino-2-nitrotoluehe were required. It was found that several 
attempted separations of 2,3- and 2,5-dinitroaceto-p-toluidides, and of
2,3- and 2,5-dinitro-p-toluidines by various methods were tedious, ..time 
consuming, and gave only small amount of each isomer in pure state. Also, 
partial reduction of 2,3-dinitrotoluene with an absolute ethyl alcoholic 
solution of stannous chloride saturated with dry hydrogen chloride gave 
40% yield, while Burton and Kenner obtained a 79% yield.

For the above reasons, the attempt to prepare 1,8-dimethyl 
tetrabenzo[^,^,h,^] [1,6]diazacyclododecine and its tetrahydro-derivative 
was abandoned.

^ R.A. Morton and A. McGookin, J. Chem. Soc.,
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