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Wannier threshold law and the classical-quantum correspondence in three-body
Coulomb breakup
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We derive the classical threshold law for the breakup of three charged particles interacting via long-range
Coulomb forces for the case of a charge ratio of 1/4 between the particles involved. The Wannier exponent in
canonical Wannier theory is known to diverge in this case. We find that the classical threshold law, which is
proportional to exp&\/yE), shows exponential suppression of the ionization probability at threshold. We thus
identify the possibility that exponential behavior in breakup processes, typically attributed to quantum-
mechanical tunneling, can arise as a completely classical dynamical effect. We show that in the limit of zero
energy, the behavior of the cross section is characterized by a classical to quantum transition. We discuss the
regime of parameters in which this transition occurs and the possibility of an experimental observation of this
transition.

PACS numbd(s): 34.80.Dp

The first study of the complete fragmentation of threemechanical picture using hidden-crossing thdatly The re-
charged particles for small total fragmentation enefgy sults can be summarized as follow&) The quantum-
— 0 dates back to Wannier's seminal paper from 1853In mechanical fragmentation probability is not a power law in
this paper, he derived a power Ia(E)>=E*+ for the frag-  the energy but has the form
mentation probability based on purely classical arguments.

The threshold exponenf{, depends on the charges and
masses of the individual particles. In the case where one of p (E)“EXF{_—Kl )
. g
the particles has mass and chargeq and the other two g6
particles have equal masskkand charges-Q (q andQ

have the same signthe exponent is given bj2,3] ) ) )
with a numerical factox depending on the fragments, and

(b) the semiclassical limit of the threshold ladiffers from
1+ ———— (1)  the quantum-mechanical threshold law; it is given by
9 1-Q/4q 4 P.{E)xexd —\E %2,
The question that naturally arises and that we answer in
In the casem>M, Q=1, andq=1, the original Wannier this paper is the following: Is it possible to derive themi-
resulté, =1.127 for electron-impact ionization of neutral at- classical threshold law resorting to a completely classical
oms is recovered. picture? Intuitively one might guess the answer to be nega-
Quantum-mechanical formulationd,5] for the breakup tive since semiclassically the breakup probability is exponen-
were subsequently proposed that led to the same thresholilly suppressedalbeit with a different energy exponent
law as derived classically by Wannier. More recently, semithan the quantum-mechanical threshold )iapwointing to-
classicalS-matrix theory has been used to confirm and ex-ward a possible interpretation in the form of a tunneling
tend the range of Wannier’s classical theory of fragmentationmechanism involved in the breakup process. However, as we
[6]. The success of Wannier's classical analysis of thewill show, the exponential behavior can be interpreted purely
threshold region for three-body Coulomb breakup raises thi terms of the classical dynamics of the system. We thus put
question as to the extent of its validity and as to how classithe breakup process with diverging Wannier exponent on an
cal and quantum-mechanical threshold laws in atomic physequal footing with Wannier's original analysis fa/Q
ics are related. #1/4. The derivation of the classical threshold law is fol-
A situation that is especially interesting with respect tolowed by a discussion that puts special emphasis on the re-
this question arises when the charge ratio between the paation between the classical threshold ldy(E) derived
ticles taking part in the break-up process has the vgli@  here and the previously derived quantum-mechanical thresh-
=1/4. A possible experimental realization is the ionization ofold law Py(E).
Be** in a collision with a B&". Wannier’s original analysis As a required preliminary to the derivation of the thresh-
seems to fail for this process since the Wannier exponernld law for the divergent case, we will provide Wannier's
diverges for charge ratio 1/4. A recent analysis of thisderivation in brief. To look for electronic trajectories leading
breakup process therefore started from a quantumto double escape, Wannigk] argued that one has to look for
unstable ridges or points in the equipotential plot. For a sys-
tem consisting of two electrons and a fixed nuclésarge
*Present address: Univerdifareiburg, Theoretical Quantum Dy- Z), the potential energy can be written in hyperspherical co-
namics, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.  ordinatesR, «, and 8, with R=\/(r{+r5),tana=r,/ry,
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wherer, andr, are the distances of the electrons from thewherek=4.2(zZ—1).
nucleus and the interelectronic angle. The potential energy  This equation is crucial in finding the ionization probabil-

isV=C(a,6)/R and ity. Wannier chose to work with thE=0 solutions. Equa-
tion (11) then becomes Euler's equation with the general
Cla )= z N 1 3 solution found by reducing it to a constant coefficient equa-
(a,0)= cosa sina  (1-—sin2a cosh)?’ 3 gglrlljtti)g/nr?;ans of the substitutidR=R,exp(@). The general

This has a saddle point at=7/4; 6= 1. -
The variablesB= w/4—« and y=m— 6 are introduced B=——a=Cqel~W2p-14a C el(2u-14a (1)
with origin at the Wannier saddle point and the Hamiltonian 4

of the system in terms of the hyperspherical coordinates and, . .
these variables are written as with = [ (10 —9)/(4Z—1)]*2 The solution with expo-

nent— 3 u— 3 (=£&_) is associated with trajectories that con-
1 1 2 C verge to the ridge and the solutioriu—3(=¢.)

H(=E)= §p§+ >R2 5+ szﬂL 5. (4 with diverging trajectories. The proportion of converging tra-

sir(2a)"” R ; : o e
jectories that correspond to ionization cannot be limited and
the critical behavior when evaluating the energy dependence
of the ionization cross section is due to the diverging trajec-

. . R%sir?(2a) . tories.

Pr=R, ps=R’B, Py=—7 7 ) The energy dependence of the ionization probability is

given by finding the ratio of an angular trajectory spread

(By) at a radiusik,, (this radius is a constant in the lini

—0 [8]) to a fixed angular spreagB() that is not dependent

on energy at larg® (=R,),

The momentgg, pg, andp, are given by

and the equations of motion are

R= R/'32+%Rsin2(2a)y2+ R%, (6)

Bb_C2RE+
o P(E)e 2 =— = (13)
()

d ) 1 ) . 1
&[Rzﬁ]zsz Sln(2a)00$20‘)72_§£,
Keeping B, fixed results in an energy dependence of the

d [R2sirf(2a) 1 4C integration constant,. In the generic Wannier theory, one
— Ly |=— = —. (8)  constructs different solutionigthe ones approximated by
dt 4 Ry =0 in the Coulomb zoneER<1) and the “free” ones for

ER>1] and matches them. So in the generic case the solu-
tions in the Coulomb zone do not depend on the energy at
all, classical scaling comes in through the matching condi-
tion atER.~1 whereR; is

The motion in the coordinates proves incidental for the
threshold behavior of the cross section sincalways tends
asymptotically to zerdthe interelectronic anglé focuses at

).
To form an equation that describes tBecoordinate dy- (42-1) k
namics near the ridge the functi@( «, 0) is expanded as a = (E E) (14
power series about the saddle point and Egis linearized \2E
t t
0ge The result is Wannier’s threshold power law
.. .. 1 1272-1 &
2RRB+R2B=— —| - 2 =—_"3]. 9 P(E)>*(ERy)®*. (15

Quantum-mechanical derivatiof%,5] lead to an identical
The finite energy(E) hyper-radial momentum along the threshold law. In addition, hidden-crossing the¢B] has

saddle for the linearized system is been used to extend Wannier’s results near threshold by in-
troducing corrections to the power law. Corrections can also
1 be obtained within the framework of classical Wannier
4\/5(2— Z) theory by extending the theory to finiEe The key is to use
R= 2E+ (10 Eq. (11), keepingE as a parameter. We find that the results

R from hidden-crossing theory and the extended Wannier

theory for theZ=1 system are indistinguishable up to and

beyond 8 eV above threshol®]. This demonstrates the

equivalence between the quantum-mechanical and classical

results in the generic Wannier case.

-0 The divergence of the Wannier exponent when the ratio
' of nuclear charge to wing particle chargedsQ=1/4, or

(11 equivalently whenZ=1/4 in the abovedoes notmark a

and time is eliminated from Eq9) by using Eq.(10). This
gives an equation of motion iR for the angleg:

d’g dg
ggR

122-1
dr?

2

R [2ER+K]+ -B

k
4ER+ 2k — >
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FIG. 1. Plots of solution$; andK; as a function of the hyper-
radius R at total energyE=0.02 eV. The label C indicates the
convergent solutioh;[ x], and the label D corresponds to the diver-
gent solution,K,[x]. For the divergent solution, we plot it sepa-
rately for radii near the nucleus and at asymptotic distances.

failure of Wannier theory. To find a solution for this case

demands that we use Ed.1), keepingE as a parameter. For
Z=1/4 (k=0) this becomes

d’B

WR3[2E]+ j—ﬁRZME]—ﬁ\/E:O.

(16)

We cast this equation into normal form by letti®{E,R)
=u(R)v(E,R) and choosingu so that the first derivative
term inv’ vanishes. This gives

== 17)
u R (
and hence the equation for
_2 =f(E,R)v 18
dR2 ( ’ ) ’ ( )

wheref(E,R) = (E2R®) ~*. This equation has solutions in-
volving the modified Bessel functiond (x] and K, [X])
[10], and when the product is taken witl{R) we get

1 [1 1 [1
ﬁ(E!R):Al\/%Il{ng E_R +A2\/% Kl|:23/4 E—R:|

(19

This solution shows the scaling property of the classical

Hamiltonian since it depends dR. So even with a vanish-
ing Coulomb potential on the saddigvhich is manifest
through the solutions being Bessel functipttee Coulombic
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large distance. Since E(L9) is the solution forall values of
ER we takeR.—«. This means that we should write
P(E)xB(E,Rp)/B(). (20)
So to get the correct threshold law we must take the limit
R—oo at fixed finite Ebefore takinge— 0 for the threshold
behavior.
The angleg for the divergingK,[ x] solution at one par-
ticular energyE converges t&E?2 34 asR—, so to have
a constant asymptotic angle one has to choose
A,=2%g 12 (21)
To getB(R,) we need the behavior of the solutionsahall
ER,<1. This is precisely the condition for the applicability

of a WKB solution of Eq.(18). The general solution is a
linear combination of the two WKB solutions

. (22)

R
v(E,R)= f(R)-l/“exp[ + J f(t)Ydt

Evaluating the integral in Eq22) and taking the product
with u(R) gives

3/4

JER

__n3/4
+B,R Y4ex )
z JER

(23

B(E,R)=BIR—1’4exp{

The second B,) solution corresponds to the diverging
K[ x] solution and gives thg(R,) behavior. The additional
energy dependence &, [same asA, in Eq. (21)] is not
important in the threshold behavior since the exponential
part dominates, so the ionization cross sectiono{E)
xexf —2%4ER,]. With both electrons on the ridge the ini-
tial distancex, of each electron from the nucleus ig
=R,/\2 so thatR,= \2x, and hence,

a(E)xex;{ \/E_XO

where\ = /2. This is the exact same formula as obtained in
[7] by taking the semiclassical limit of the quantum expres-

: (24)

nature of the problem shows through the argument of theion obtained from hidden-crossing theory. It also agrees

Bessel functions.

with the classical Monte Carlo calculation of Dimitrijévic

To be able to construct the ionization probability usinget al.[11] who found that an identical exponential function
Wannier's arguments, it is important that one of these soluwith A =1.364(a difference of only 5% from our analytical
tions can be identified with trajectories that diverge from thevalue best fitted their numerical data.
ridge and the other with those that converge. In Fig. 1 we The classical threshold law E¢R4) is based on the qua-

plot the two solutions in Eq.19) at a fixed energ{. We see

sifree motion of the particles along the Wannier ridge

that theK [ x] solution gives the required diverging behavior =0. The coupling between the motion in the hyperangle

and that thel,[x] solution gives the converging behavior

and the hyperradiuR is described by Eq23). It determines

that does not affect the energy dependence of the ionizatiotlhe classical threshold law. The threshold regime is charac-

cross section.

terized by the conditiorER,<1 under which the classical

The ionization probability can therefore be constructed bythreshold law Eq(24) was derived. Quantum mechanically,

calculating the ratio of the angular spread gnat a fixed

Ry can be interpreted as the binding radius of the initially

radius Ry, to the fixed angular spread at an asymptoticallybound particlesR, is thus inversely proportional to the bind-
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ing energyE,, of the initially bound complex. In terms of the quasifree corresponding to the conditi®E, or ER®?
binding energy the condition to be in the threshold regime is>1 for R>R,,. Expressed in terms of the initial binding
E/E,<1. _ _ _energy, this gives the conditioB>E}? for the classical

We now ask the following question: Suppose we are inthreshold law to hold. In the opposite limit, the zero point
the threshold regim&/E,<1. An experiment is performed energy E, dominates over the breakup energy and the
in which the break-up cross section is measured at differenantum-mechanical version of the threshold law holds.
values of energy, and the target is always prepared in the * \1easuring the near-threshold breakup cross section of the
same state with binding enedy,. Will one measure the three-body Coulomb system with charge rafi@=1/4 as a
classical threshold behavior all the way down to zerog .o of energy opens—at least in principle—a way to
breakup energy? Surprisingly, th_e answer 1S negatn_/e. Ini'nvestigate the classical to quantum transition in a problem
stead, a transition from the glassmal threshald behavpr anf atomic collision dynamics. The classical threshold law
t(gl?e t&;ﬂg q#ﬁ;tfergégfﬁziﬂgafgIﬁg@ﬁg’liéa\évhﬁhvml Ref shows an exponential suppression of the breakup probability
7] Where.the quantum-mechanical thr.eshold law E2) ‘near zero energy. We have shown that exponential threshold

' . . . . behavior need not necessarily involve quantum-mechanical
was derived, the quant'um-mechan}cal motiorgifs related tunneling but can arise as a classical dynamical effect.
to a quantum-mechanical zero point eneiy(R) that de-
pends on the hyper-radius &(R)~1/R*2 The classical One of us(W.l.) would like to thank Professor H.
threshold law holds when the motion along the saddle id=riedrich for stimulating discussions.
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