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Wannier threshold law and the classical-quantum correspondence in three-body
Coulomb breakup

P. Chocian, W. Ihra,* and P. F. O’Mahony
Department of Mathematics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom

~Received 15 December 1999; published 15 June 2000!

We derive the classical threshold law for the breakup of three charged particles interacting via long-range
Coulomb forces for the case of a charge ratio of 1/4 between the particles involved. The Wannier exponent in
canonical Wannier theory is known to diverge in this case. We find that the classical threshold law, which is
proportional to exp(2l/AE), shows exponential suppression of the ionization probability at threshold. We thus
identify the possibility that exponential behavior in breakup processes, typically attributed to quantum-
mechanical tunneling, can arise as a completely classical dynamical effect. We show that in the limit of zero
energy, the behavior of the cross section is characterized by a classical to quantum transition. We discuss the
regime of parameters in which this transition occurs and the possibility of an experimental observation of this
transition.

PACS number~s!: 34.80.Dp
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The first study of the complete fragmentation of thr
charged particles for small total fragmentation energyE
→0 dates back to Wannier’s seminal paper from 1953@1#. In
this paper, he derived a power lawP(E)}Ej1 for the frag-
mentation probability based on purely classical argume
The threshold exponentj1 depends on the charges an
masses of the individual particles. In the case where on
the particles has massm and chargeq and the other two
particles have equal massesM and charges2Q (q and Q
have the same sign!, the exponent is given by@2,3#

j15
3

4
A11

16

9

112M /m

12Q/4q
2

1

4
. ~1!

In the casem@M , Q51, andq51, the original Wannier
resultj151.127 for electron-impact ionization of neutral a
oms is recovered.

Quantum-mechanical formulations@4,5# for the breakup
were subsequently proposed that led to the same thres
law as derived classically by Wannier. More recently, se
classicalS-matrix theory has been used to confirm and e
tend the range of Wannier’s classical theory of fragmenta
@6#. The success of Wannier’s classical analysis of
threshold region for three-body Coulomb breakup raises
question as to the extent of its validity and as to how cla
cal and quantum-mechanical threshold laws in atomic ph
ics are related.

A situation that is especially interesting with respect
this question arises when the charge ratio between the
ticles taking part in the break-up process has the valueq/Q
51/4. A possible experimental realization is the ionization
Be31 in a collision with a Be41. Wannier’s original analysis
seems to fail for this process since the Wannier expon
diverges for charge ratio 1/4. A recent analysis of t
breakup process therefore started from a quant
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mechanical picture using hidden-crossing theory@7#. The re-
sults can be summarized as follows:~a! The quantum-
mechanical fragmentation probability is not a power law
the energy but has the form

Pqm~E!}expF 2k

E1/6G ~2!

with a numerical factork depending on the fragments, an
~b! the semiclassical limit of the threshold lawdiffers from
the quantum-mechanical threshold law; it is given
Psc(E)}exp@2lE21/2#.

The question that naturally arises and that we answe
this paper is the following: Is it possible to derive thesemi-
classical threshold law resorting to a completely classic
picture? Intuitively one might guess the answer to be ne
tive since semiclassically the breakup probability is expon
tially suppressed~albeit with a different energy exponen
than the quantum-mechanical threshold law!, pointing to-
ward a possible interpretation in the form of a tunneli
mechanism involved in the breakup process. However, as
will show, the exponential behavior can be interpreted pur
in terms of the classical dynamics of the system. We thus
the breakup process with diverging Wannier exponent on
equal footing with Wannier’s original analysis forq/Q
Þ1/4. The derivation of the classical threshold law is fo
lowed by a discussion that puts special emphasis on the
lation between the classical threshold lawPcl(E) derived
here and the previously derived quantum-mechanical thre
old law Pqm(E).

As a required preliminary to the derivation of the thres
old law for the divergent case, we will provide Wannier
derivation in brief. To look for electronic trajectories leadin
to double escape, Wannier@1# argued that one has to look fo
unstable ridges or points in the equipotential plot. For a s
tem consisting of two electrons and a fixed nucleus~charge
Z), the potential energy can be written in hyperspherical
ordinatesR, a, and u, with R5A(r 1

21r 2
2),tana5r 2 /r 1,
©2000 The American Physical Society04-1
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wherer 1 and r 2 are the distances of the electrons from t
nucleus andu the interelectronic angle. The potential ener
is V5C(a,u)/R and

C~a,u!52
Z

cosa
2

Z

sina
1

1

~12sin 2a cosu!1/2
. ~3!

This has a saddle point ata5p/4; u5p.
The variablesb5p/42a and g5p2u are introduced

with origin at the Wannier saddle point and the Hamiltoni
of the system in terms of the hyperspherical coordinates
these variables are written as

H~[E!5
1

2
pR

21
1

2R2 pb
21

2

R2sin2~2a!
pg

21
C

R
. ~4!

The momentapR , pb , andpg are given by

pR5Ṙ, pb5R2ḃ, pg5
R2sin2~2a!

4
ġ, ~5!

and the equations of motion are

R̈5Rḃ21
1

4
R sin2~2a!ġ21

C

R2, ~6!

d

dt
@R2ḃ#5

1

2
R2 sin~2a!cos~2a!ġ22

1

R

]C

]b
, ~7!

d

dt FR2 sin2~2a!

4
ġG52

1

R

]C

]g
. ~8!

The motion in the coordinateg proves incidental for the
threshold behavior of the cross section sinceg always tends
asymptotically to zero~the interelectronic angleu focuses at
p).

To form an equation that describes theb coordinate dy-
namics near the ridge the functionC(a,u) is expanded as a
power series about the saddle point and Eq.~7! is linearized
to get

2RṘḃ1R2b̈52
1

RS 2
12Z21

A2
b D . ~9!

The finite energy~E! hyper-radial momentum along th
saddle for the linearized system is

Ṙ5
A2E1

4A2S Z2
1

4D
R

~10!

and time is eliminated from Eq.~9! by using Eq.~10!. This
gives an equation of motion inR for the angleb:

d2b

dR2 R2@2ER1k#1
db

dR
RF4ER12k2

k

2G2bF12Z21

A2
G50,

~11!
01470
d

wherek54A2(Z2 1
4 ).

This equation is crucial in finding the ionization probab
ity. Wannier chose to work with theE50 solutions. Equa-
tion ~11! then becomes Euler’s equation with the gene
solution found by reducing it to a constant coefficient equ
tion by means of the substitutionR5Rbexp(q). The general
solution is

b5
p

4
2a5C1e[ 2(1/2)m21/4]q1C2e[(1/2)m21/4]q ~12!

with m5 1
2 @(100Z29)/(4Z21)#1/2. The solution with expo-

nent2 1
2 m2 1

4 ([j2) is associated with trajectories that co
verge to the ridge and the solution1 1

2 m2 1
4 ([j1)

with diverging trajectories. The proportion of converging tr
jectories that correspond to ionization cannot be limited a
the critical behavior when evaluating the energy depende
of the ionization cross section is due to the diverging traj
tories.

The energy dependence of the ionization probability
given by finding the ratio of an angular trajectory spre
(bb) at a radiusRb ~this radius is a constant in the limitE
→0 @8#! to a fixed angular spread (bc) that is not dependen
on energy at largeR (5Rc),

P~E!}
bb

bc
5

C2Rb
j1

bc
. ~13!

Keeping bc fixed results in an energy dependence of t
integration constantC2. In the generic Wannier theory, on
constructs different solutions@the ones approximated byE
50 in the Coulomb zone (ER!1) and the ‘‘free’’ ones for
ER@1] and matches them. So in the generic case the s
tions in the Coulomb zone do not depend on the energ
all, classical scaling comes in through the matching con
tion at ERc'1 whereRc is

Rc5
~4Z21!

A2E
S [

k

2ED . ~14!

The result is Wannier’s threshold power law

P~E!}~ERb!j1. ~15!

Quantum-mechanical derivations@4,5# lead to an identical
threshold law. In addition, hidden-crossing theory@5# has
been used to extend Wannier’s results near threshold by
troducing corrections to the power law. Corrections can a
be obtained within the framework of classical Wann
theory by extending the theory to finiteE. The key is to use
Eq. ~11!, keepingE as a parameter. We find that the resu
from hidden-crossing theory and the extended Wann
theory for theZ51 system are indistinguishable up to an
beyond 8 eV above threshold@9#. This demonstrates the
equivalence between the quantum-mechanical and clas
results in the generic Wannier case.

The divergence of the Wannier exponent when the ra
of nuclear charge to wing particle charge isq/Q51/4, or
equivalently whenZ51/4 in the above,does notmark a
4-2
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failure of Wannier theory. To find a solution for this ca
demands that we use Eq.~11!, keepingE as a parameter. Fo
Z51/4 (k50) this becomes

d2b

dR2 R3@2E#1
db

dR
R2@4E#2bA250. ~16!

We cast this equation into normal form by lettingb(E,R)
5u(R)v(E,R) and choosingu so that the first derivative
term in v8 vanishes. This gives

u5
A

R
~17!

and hence the equation forv

d2v
dR2 5 f ~E,R!v, ~18!

wheref (E,R)5(EA2R3)21. This equation has solutions in
volving the modified Bessel functions (I n@x# and Kn@x#)
@10#, and when the product is taken withu(R) we get

b~E,R!5A1A1

R
I 1F23/4A 1

ERG1A2A1

R
K1F23/4A 1

ERG .
~19!

This solution shows the scaling property of the classi
Hamiltonian since it depends onER. So even with a vanish
ing Coulomb potential on the saddle~which is manifest
through the solutions being Bessel functions! the Coulombic
nature of the problem shows through the argument of
Bessel functions.

To be able to construct the ionization probability usi
Wannier’s arguments, it is important that one of these so
tions can be identified with trajectories that diverge from
ridge and the other with those that converge. In Fig. 1
plot the two solutions in Eq.~19! at a fixed energyE. We see
that theK1@x# solution gives the required diverging behavi
and that theI 1@x# solution gives the converging behavio
that does not affect the energy dependence of the ioniza
cross section.

The ionization probability can therefore be constructed
calculating the ratio of the angular spread inb at a fixed
radius Rb to the fixed angular spread at an asymptotica

FIG. 1. Plots of solutionsI 1 andK1 as a function of the hyper
radius R at total energyE50.02 eV. The label C indicates th
convergent solutionI 1@x#, and the label D corresponds to the dive
gent solution,K1@x#. For the divergent solution, we plot it sepa
rately for radii near the nucleus and at asymptotic distances.
01470
l
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large distance. Since Eq.~19! is the solution forall values of
ER we takeRc→`. This means that we should write

P~E!}b~E,Rb!/b~`!. ~20!

So to get the correct threshold law we must take the li
R→` at fixed finite Ebefore takingE→0 for the threshold
behavior.

The angleb for the divergingK1@x# solution at one par-
ticular energyE converges toE1/2223/4 asR→`, so to have
a constant asymptotic angle one has to choose

A2523/4E21/2. ~21!

To getb(Rb) we need the behavior of the solution atsmall
ERb!1. This is precisely the condition for the applicabilit
of a WKB solution of Eq.~18!. The general solution is a
linear combination of the two WKB solutions

v~E,R!5 f ~R!21/4expF6ER

f ~ t !1/2dtG . ~22!

Evaluating the integral in Eq.~22! and taking the produc
with u(R) gives

b~E,R!5B1R21/4expF123/4

AER
G1B2R21/4expF223/4

AER
G .

~23!

The second (B2) solution corresponds to the divergin
K1@x# solution and gives theb(Rb) behavior. The additiona
energy dependence ofB2 @same asA2 in Eq. ~21!# is not
important in the threshold behavior since the exponen
part dominates, so the ionization cross section iss(E)
}exp@223/4/AERb#. With both electrons on the ridge the in
tial distancex0 of each electron from the nucleus isx0

5Rb /A2 so thatRb5A2x0 and hence,

s~E!}expF 2l

AE x0
G , ~24!

wherel5A2. This is the exact same formula as obtained
@7# by taking the semiclassical limit of the quantum expre
sion obtained from hidden-crossing theory. It also agr
with the classical Monte Carlo calculation of Dimitrijevi´
et al. @11# who found that an identical exponential functio
with l51.364~a difference of only 5% from our analytica
value! best fitted their numerical data.

The classical threshold law Eq.~24! is based on the qua
sifree motion of the particles along the Wannier ridgeb
50. The coupling between the motion in the hyperangleb
and the hyperradiusR is described by Eq.~23!. It determines
the classical threshold law. The threshold regime is cha
terized by the conditionERb!1 under which the classica
threshold law Eq.~24! was derived. Quantum mechanicall
Rb can be interpreted as the binding radius of the initia
bound particles.Rb is thus inversely proportional to the bind
4-3
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BRIEF REPORTS PHYSICAL REVIEW A 62 014704
ing energyEb of the initially bound complex. In terms of th
binding energy the condition to be in the threshold regime
E/Eb!1.

We now ask the following question: Suppose we are
the threshold regimeE/Eb!1. An experiment is performed
in which the break-up cross section is measured at diffe
values of energyE, and the target is always prepared in t
same state with binding enegyEb . Will one measure the
classical threshold behavior all the way down to ze
breakup energy? Surprisingly, the answer is negative.
stead, a transition from the classical threshold behavior
~24! to the quantum-mechanical threshold law Eq.~2! will
take place. The reason is the following: As shown in R
@7#, where the quantum-mechanical threshold law Eq.~2!
was derived, the quantum-mechanical motion inb is related
to a quantum-mechanical zero point energyE0(R) that de-
pends on the hyper-radius asE0(R);1/R3/2. The classical
threshold law holds when the motion along the saddle
. A

01470
s

n

nt

-
q.

.

is

quasifree corresponding to the conditionE@E0 or ER3/2

@1 for R.Rb . Expressed in terms of the initial bindin
energy, this gives the conditionE@Eb

3/2 for the classical
threshold law to hold. In the opposite limit, the zero po
energy E0 dominates over the breakup energy and
quantum-mechanical version of the threshold law holds.

Measuring the near-threshold breakup cross section of
three-body Coulomb system with charge ratioq/Q51/4 as a
function of energy opens—at least in principle—a way
investigate the classical to quantum transition in a probl
of atomic collision dynamics. The classical threshold la
shows an exponential suppression of the breakup probab
near zero energy. We have shown that exponential thres
behavior need not necessarily involve quantum-mechan
tunneling but can arise as a classical dynamical effect.

One of us ~W.I.! would like to thank Professor H
Friedrich for stimulating discussions.
,

@1# G. H. Wannier, Phys. Rev.90, 817 ~1953!.
@2# H. Klar, J. Phys. B14, 3255~1981!.
@3# J. M. Feagin, J. Phys. B17, 2433~1984!.
@4# A. R. P. Rau, Phys. Rev. A4, 207 ~1971!.
@5# J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A54, 544

~1996!.
@6# J-M. Rost, Phys. Rev. Lett.72, 1998~1994!.
@7# W. Ihra, F. Mota-Furtado, and P. F. O’Mahony, Phys. Rev
55, 4263~1997!.
@8# P. Chocian, W. Ihra, and P. F. O’Mahony, Phys. Rev. A60,

4160 ~1999!.
@9# P. Chocian, Ph.D. thesis, University of London, 1999.

@10# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic Press, New York, 1994!, p. 986.
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