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Summary. The triangular inequality is a defining property of a metric space, while
the stronger ultrametric inequality is a defining property of an ultrametric space.
Ultrametric distance is defined from p-adic valuation. It is known that ultrametricity
is a natural property of spaces that are sparse. Here we look at the quantification of
ultrametricity. We also look at data compression based on a new ultrametric wavelet
transform. We conclude with computational implications of prevalent and perhaps
ubiquitous ultrametricity.

1 Introduction

The triangular inequality holds for a metric space: d(z, z) < d(z,y) + d(y, 2)
for any triplet of points x,y, 2. In addition the properties of symmetry and
positive definiteness are respected. The “strong triangular inequality” or ul-
trametric inequality is: d(z,z) < max {d(z,y),d(y, 2)} for any triplet z,y, 2.
An ultrametric space implies respect for a range of stringent properties. For
example, the triangle formed by any triplet is necessarily isosceles, with the
two large sides equal. Ultrametricity is a natural property of high-dimensional
spaces (Rammal et al., 1986, p. 786); and ultrametricity emerges as a conse-
quence of randomness and of the law of large numbers (Rammal et al., 1986;
Ogielski and Stein, 1985).

An ultrametric topology is associated with the p-adic numbers (Mahler,
1981; Gouvéa, 2003). Furthermore, the ultrametric inequality implies non-
respect of a relation between a triplet of positive valuations termed the
Archimedean inequality. Consequently, ultrametric spaces, p-adic numbers,
non-Archimedean numbers, and isosceles spaces all express the same thing.

P-adic numbers were introduced by Kurt Hensel in 1898. The ultrametric
topology was introduced by Marc Krasner (Krasner, 1944), the ultrametric
inequality having been formulated by Hausdorff in 1934. Important references
on ultrametrics in the clustering and classification area are those of Benzécri
(1979) representing work going back to 1963, and Johnson (1967).
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Watson (2003) attributes to Mézard et al. (1984) the basis for take-off
in interest in ultrametrics in statistical mechanics and optimization theory.
Mézard et al. (1984) developed a mean-field theory of spin glasses, showing
that the distribution of pure states in a configuration space is ultrametric.
“Frustrated optimization problems” are ultrametric, and have been shown
as such for spin glass and related special cases. Parisi and Ricci-Tersenghi
(2000), considering the spin glass model that has become a basic model for
complex systems, state that “ultrametricity implies that the distance between
the different states is such that they can be put in a taxonomic or genealogical
tree such that the distance among two states is consistent with their position
on the tree”. An optimization process can be modeled using random walks
so if local ultrametricity exists then random walks in ultrametric spaces are
important (Ogielski and Stein, 1985). Further historical insight into the recent
history of use of ultrametric spaces is provided by Rammal et al. (1985) and
for linguistic research by Roberts (2001).

P-adic numbers, which provide an analytic version of ultrametric topolo-
gies, have a crucially important property resulting from Ostrowski’s theorem:
Each non-trivial valuation on the field of the rational numbers is equivalent
either to the absolute value function or to some p-adic valuation (Schikhof,
1984, p. 22). Essentially this theorem states that the rationals can be ex-
pressed in terms of (continuous) reals, or (discrete) p-adic numbers, and no
other alternative system.

In this article we will describe a new ultrametric wavelet transform. Our
motivation for doing this is to provide analysis capability for situations where
our data tends to be ultrametric (e.g., sparse, high-dimensional data). Sec-
ondly, in this article, we will present results of Lerman’s proposed quantifica-
tion of ultrametricity in a data set.

2 P-adic Coding from Dendrograms

Dendrograms used in data analysis are usually labeled and ranked: see Figures
1 and 2.

For the ranked dendrogram shown in Figure 1 we develop the following
p-adic encoding of terminal nodes, by traversing a path from the root: z; = 0-
2740-2540-2240-21; 25 = 0-2740-25+0-2241-21; 24 = 0-27+1-2°+0-2%40-23;
26 = 0-2741-25+1-2% The decimal equivalents of this p-adic representation
of terminal nodes work out as z1,xs,...z5 = 0,2,4,32,40,48,128,192.

Distance and norm are defined as follows. dy(z,z') = dplz — 2’| =
27" or 2. 27" where = Y, ax2*,2’ = Y, a}2%,r = argmin, {ax = a}.
The norm is defined as d,(z,0) = 271! = 1.

To find the p-adic distance, we therefore look for the smallest level, r (if
ordered from terminal to root as in Figure 1) which is identical in the pair of
power series, which yields the result of 2771, We find |z — @a]2 = 27211 =
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Fig. 1. Labeled, ranked dendrogram on 8 terminal nodes. Branches labeled 0 and
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Fig. 2. A structurally balanced, labeled, ranked dendrogram on 8 terminal nodes.
Branches labeled 0 and 1.
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Siley — zalp = 2757 = s|oy — mgle = 27T = 4. The smallest p-adic
distance between terminals in Figure 1 is seen to be 155.

For Figure 2, we also find the smallest p-adic distance to be ﬁ. In Figure
2, the decimal equivalent of the p-adic number zg is 208. If we look for the
maximum possible decimal equivalent of the p-adic numbers corresponding to
8 terminal nodes, the answer is 1-27+1-264+1-25+4+1-244+1-23+1.224+1.2! = 254.

The p-adic representation used here is not invariant relative to dendro-
gram representation. Consider, for example, some alternative representation
of Figure 1 such as the representation with terminal nodes in the order:
T7,%8,%1,%2, X3, T4, L5, Te. Lhe dendrogram can be drawn with no crossings,
so such a dendrogram representation is perfectly legitimate. With branches
labeled 0 = left and 1 = right, as heretofore, we would find the p-adic represen-
tation of z; to be 1-2740-2540-2240-2'. However if the p-adic representation
differs with this new dendrogram representation, a moment’s thought shows
that both p-adic norm, and p-adic distance, are invariant relative to dendro-
gram representation. A formal proof can be based on the embedded classes
represented by dendrogram nodes.

3 Regression based on Ultrametric Haar Wavelet
Transform

The wavelet transform, developed for signal and image processing, has been
extended for use on relational data tables and multidimensional data sets
(Vitter and Wang, 1999; Joe et al., 2001) for data summarization (micro-
aggregation) with the goal of anonymization (or statistical disclosure limita-
tion) and macrodata generation; and data summarization with the goal of
computational efficiency, especially in query optimization. There are prob-
lems, however, in doing this with direct application of a wavelet transform.
Essentially, a relational table is treated in the same way as a 2-dimensional
pixelated image, although the former case is invariant under row and column
permutation, whereas the latter case is not (Murtagh et al., 2000). Therefore
there are immediate problems related to non-uniqueness, and data order de-
pendence. For very small dimensions, for example attributes in a relational
data table, a classical application of a wavelet transform is troublesome, and
in addition if table dimensionality equal to an integer power of 2 is required,
the procedure is burdensome to the point of being counter-productive. Sparse
tabular data cannot be treated in the same way as sparse pixelated data
(e.g. Sun and Zhou, 2000) if only because row/column permutation invari-
ance causes the outcome to be dominated by sparsity-induced effects. In this
article we will develop a different way to wavelet transform tabular data. A
range of other input data types are also capable of being treated in this way.

Our motivation for the development of wavelet transforms in ultrametric or
hierarchical data structures is to cater for “naturally” or enforced ultrametric
data. An example of the former case is questionnaire results with embedded
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question sets. An example of the latter case is that of data with already
strong ultrametric tendency such as sparsely coded data in speech analysis,
genomics and proteomics, and other fields, and complete disjunctive form in
correspondence analysis.

The Haar wavelet transform is usually applied to 1D signals, 2D im-
ages, and 3D data cubes (see Starck et al. 1998; Starck and Murtagh, 2002).
Sweldens (1997) extended the wavelet transform to spherical structures, still
in Hilbert space. We extend the wavelet transform to other topological struc-
tures, in particular hierarchies which have a natural representation as trees.
In regard to the wavelet transform, we focus in particular on the Haar wavelet
transform, in its redundant (Soltani et al., 2000; Zheng et al., 1999) and non-
redundant versions (e.g., Frazier, 1999).

The Morlet-Grossmann definition of the continuous wavelet transform
(Grossmann et al. 1989; Starck and Murtagh 2002) holds for a signal f(z) €
L?(R), the Hilbert space of all square integrable functions. Hilbert space
L?(R) is isomorphic and isometric relative to its integer analog I2(Z). The
discrete wavelet transform, derived from the continuous wavelet transform,
holds for a discrete function f(z) € I*(Z).

Our input data is decomposed into a set of band-pass filtered compo-
nents, the wavelet coefficients, plus a low-pass filtered version of our data,
the continuum (or background or residual). We consider a signal, {co,}, de-
fined as the scalar product at samples i of the real function f(z), our input
data, with a scaling function ¢(x) which corresponds to a low-pass filter:
co(k) = (f(z),d(x — k).

The wavelet transform is defined as a series expansion of the original signal,
co, in terms of the wavelet coefficients. The final smoothed signal is added to all
the differences: ¢p,; = cJ,i+EJJ:1 wj,;. This equation provides a reconstruction
formula for the original signal. At each scale j, we obtain a set, which we call
a wavelet scale. The wavelet scale has the same number of samples as the
signal, i.e. it is redundant, and decimation is not used.

Now consider any hierarchical clustering, H, represented as a binary rooted
tree. For each cluster ¢ with offspring nodes ¢ and ¢', we define s(¢") through

1

application of the low-pass filter (g) :
2

1 0.5)° s(q)
m o _ T Y —
(@) = 3 6+ = (02) (59 1)
Next for each cluster ¢ with offspring nodes ¢ and ¢', we define detail coeffi-

i) = St —aan = (_53)'( j((j))s ®

1
cients d(¢") through application of the band-pass filter ( ? ):
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The scheme followed is illustrated in Figure 3, which shows the hierarchy
constructed by the median method, using the first 8 observation vectors in
Fisher’s iris data (Fisher, 1936).
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Fig. 3. Dendrogram on 8 terminal nodes constructed from first 8 values of Fisher’s
iris data. Median method used in this case.

For any d(q;) we have: ), d(g;)r = 0, i.e. the detail coefficient vectors
are each of zero mean. The inverse transform allows exact reconstruction of
the input data. If an observation vector is denoted by x;, then the ultrametric
wavelet transform defines the p-adic encoding for x; given by ZI‘*I arpr where
ar € {0,1} and p; = 2*. The wavelet transform is defined by z; = s,_1 +
2?71 ardy where s, 1 is the final smooth component, and dj, are the detail
or wavelet signals (or vectors).

Setting wavelet coefficients to zero and then reconstructing the data is
referred to as hard thresholding (in wavelet space) and this is also termed
wavelet smoothing or regression. Table 1 shows the excellent results that can
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be obtained for Fisher’s iris data. Further results on the energy compacting
or compression properties of this new ultrametric Haar transform are given in
Murtagh (2003b), together with R code for this new transform and its inverse.

Filtering threshold|% coefficients set to zero|mean square error
0 16.95 0

0.1 70.13 0.0098

0.2 91.95 0.0487

0.3 97.15 0.0837

0.4 97.82 0.1040

Table 1. Ultrametric Haar filtering results for Fisher’s 150 X 4 iris data. Filtering
is carried out by setting small (less than the threshold) wavelet coefficient values
to zero. The data is then reconstructed. The quality of reconstruction between the
input data matrix, and the reconstructed data matrix, is measured using mean
square error.

4 Lerman’s H-classifiability

The work of Rammal et al. (1986) used the discrepancy between the subdom-
inant ultrametric (provided by single link hierarchical clustering) and input
metric values as a measure of how ultrametric the given data set was. Their
work is further discussed below, in this section. We distrust the single link
method in view of its known chaining and other disadvantages. We will now
review an alternative measure of ultrametricity in a data set, due to Lerman
(1981).

On a set F, a binary relation is a preorder if it is reflexive and transitive.
Let F denote the set of pairs of distinct units, where a unit is from E. A
distance defines a total preorder on F":

V{(z,9), (z,1)} € F : (z,y) < (2,1) <= d(z,y) < d(2,1)

This preorder will be denoted wy. Two distances are equivalent on a given
set F iff the preordonnances associated with each on E are identical. A total
preorder is equivalent to the definition of a partition (defining an equivalence
relation on F'), and to a total order on the set of classes. A preorder @ is called
ultrametric if:

Va,y,z € E: p(z,y) <rand p(y,2) <r = p(z,2) <7

where r is a given integer and p(z,y) denotes the rank of pair (z,y) for
@, defined by non-decreasing values of the distance used. A necessary and
sufficient condition for a distance on F' to be ultrametric is that the associated
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preorder (on E x E, or alternatively preordonnance on E) is ultrametric.
Looking again at the link between a preorder and classes defining a partition,
Vz,y,z € E s.t. (z,y) < (y,2) < (z,2) we must have: (z,2) < (y,2), i.e. (z,2)
and (y,2) are in the same class of a preorder @.

We move on now to define Lerman’s H-classifiability index (Lerman, 1981),
which measures how ultrametric a given metric is. Let M (x,y, z) be the me-
dian pair among {(z,v), (v, ), (z, 2)} and let S(z,y, z) be the highest ranked
pair among this triplet. J is the set of all such triplets of . We consider the
mapping 7 of all triplets J into the open interval of all pairs F' for the given
preorder w defined as:

T:J —>]M(w>yaz)7$($7yaz)[

A measure of the discrepancy between preorder w and an ultrametric pre-
order will be defined from a measure on all pairs F' that is dependent on
w.

Given a triplet {z,y, 2z} for which (z,y) < (y,2) < (z, 2), for preorder w,
the interval |M (z,y, 2), S(z,y, 2)[ is empty if w is ultrametric. Relative to such
a triplet, the preorder w is “less ultrametric” to the extent that the cardinal
of |M(z,y, 2), S(z,y, 2)[, defined on w, is large. In practice we ensure that ties
in the ranks, due to identically-valued distances, are taken into account, by
counting ranks that are strictly between M and S.

We take J into account in order to define discrepancy between the struc-
ture of w and the structure of an ultrametric preordonnance where |.| denotes
cardinality:

H(w) = [[M(z,y,2),S(@,y.2)[|/(|F| = 3)|J]
J

If w is ultrametric then H(w) = 0. As shown in simple cases by Lerman
(1981, p. 218), data sets that are “more classifiable” in an intuitive way, i.e.
they contain “sporadic islands” of more dense regions of points — a prime
example is Fisher’s iris data contrasted with 150 uniformly distributed values
in R* — such data sets have a smaller value of H(w). For Fisher’s data we
find H(w) = 0.0899, whereas for 150 uniformly distributed points in a 4-
dimensional hypercube, we find H(w) = 0.1835.

Generating all unique triplets is computationally intensive: for n points,
n(n — 1)(n — 2)/6 triplets have to be considered. Hence, in practice, we must
draw triangles randomly from the given point set. For integer indices 1, j, k,
wedraw i~ [1...n—2],j~[i+1...n—1],k ~ [max (4,5) + 1...n] where
sampling is uniform.

Rammal et al. (1985, 1986) quantify ultrametricity as follows. The Rammal
ultrametricity index is given by >°_  (d(z,y) —d.(z,y))/ >_, , d(z,y) where d
is the metric distance being assessed, and d. is the subdominant ultrametric.
The Rammal index is bounded by 0 (= ultrametric) and 1. As pointed out in
Rammal (1985, 1986), this index suffers from “the chaining effect and from
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sensitivity to fluctuations”. The single link method, yielding the subdominant
ultrametric, is subject to potential pathologies. For this reason the Lerman
index is to be preferred. The latter is unbounded and, given the definition
used above, we have found maximum values (i.e. greatest non-ultrametricity)
in the region of 0.25.

Rammal et al. (1985, 1986) discuss a range of important cases: a set of n
binary words, randomly defined among the 2% possible words of k bits; and
n words of k letters extracted from an alphabet of size K. For binary words,
K = 2; for nucleic acids, four nucleotids give K = 4; for proteins, twenty amino
acids give K = 20; and for spoken words, around 40 phonemes give K = 40.
Using the Rammal ultrametricity index, experimental findings demonstrate
that random data, in the sparse limit (i.e., with increasing dimensionality and
with increasing sparseness), are increasingly ultrametric.

Our experimental findings are different, given the very different way we
assess ultrametricity, and we contribute some important clarifications in the
light of Lerman’s H-classifiability to the Rammal et al. discovery that ultra-
metricity is “a natural property of large spaces”.

We use uniformly distributed data and also uniformly distributed hyper-
cube vertex positions. The latter is used to simulate the multivalued words
considered by Rammal et al. Random values are converted to hypercube ver-
tex locations by use of complete disjunctive data coding (Benzécri, 1992). For
example, for K = 4 we use four fixed intervals. A value of z falling in the first
interval receives a 4-valued set: 1,0,0,0; a value of z falling in the second in-
terval receives the 4-valued set: 0, 1,0, 0; and so on. Such complete disjunctive
coding is widely used in correspondence analysis. It is easily verified that the
row marginals are constant. In this important case, Lerman (1981) develops
an analytic probability density function for the H-classifiability index.

In our experiments (see Murtagh, 2003a), we found that there is no increase
in H-classifiability, i.e. departure from ultrametricity, for increasing numbers
of points, n, at least for the range used here: n = 1000, 2000, 3000, 4000, 5000.
In the results shown in Figure 4 we note the following additional findings:

e There is increase in H-classifiability, i.e. departure from ultrametricity,
for increasing dimensionality. Again this holds for the dimensionalities
examined here: m = 50,100, 250, 500.

e Random hypercube vertex data are “more classifiable”, i.e. such data has
smaller H-classifiability and is more ultrametric, compared to uniformly
distributed data.

In our experimentation we chose data sets with no a priori clustering.
These data sets were random, being either

e uniformly distributed, or
e gsparsely coded as hypercube vertices.

We see that the latter is consistently more ultrametric than the former.
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Fig. 4. Upper curve: uniformly distributed values. Lower curve: random hypercube
vertex points. A low value of H-classifiability is related to near-ultrametricity. Each

point shows an average of different experiments corresponding to numbers of points
n = 1000, 2000, 3000, 4000, 5000.

Our results point to the importance of the “type” of data used or, better
expressed, how the data are coded. Binary data representing any categori-
cal (qualitative) variables are consistently more ultrametric than uniformly
distributed data.

Further experiments on quantifying ultrametricity in data can be found in
Murtagh (2004).

Given that sparse forms of coding are considered for how complex stimuli
are represented in the cortex (see Young and Yamane, 1992), the ultrametric-
ity of such spaces becomes important because of this sparseness of coding.
Among other implications, this points to the possibility that semantic pat-
tern matching is best accomplished through ultrametric computation. Our
justification in indicating this is that once we have a dendrogram data struc-
ture nearest neighbor computation is carried out with constant computational
complexity, i.e. it is of O(1) computational cost. Other operations can also be
carried out with good computational properties once we have a binary rooted
tree data structure that defines interrelationships.
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5 Conclusion

We have shown that sparse coding tends to be ultrametric. This is an interest-
ing result in its own right. However a far more important result is that certain
computational operations can be carried out very efficiently indeed in space
endowed with an ultrametric. Chief among these computational results is that
nearest neighbor finding can be carried out in (worst case) constant compu-
tational time. We have noted how forms of sparse coding are considered to be
used in the human or animal cortex. We raise the interesting question as to
whether human or animal thinking can be computationally efficient precisely
because such computation is carried out in an ultrametric space.

We have developed a new form of the Haar wavelet transform for topologies
associated with hierarchically structured data sets. We have demonstrated the
effectiveness of this transform for data filtering and for data compression.
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