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ABSTRACT.

The object of this thesis is to solve, in integers
4 2X and Y, various equations of the form X - dY^ = ±,1, ±4;

- dY^ , ±.1, ±4; Ĥ x'̂  - dY® « +1, i4 and X - dlî\^ = ±1, ±. 4,
where d and N are given square free integers.

The work stems from two papers by J.H.E.Cohn in v/hich
4 2 2 4the equations X - dY^ * ±.̂ » ±.4 and X - dY = ±.1# ±4 are

solved for certain values of d.
2 2It is well known that the solutions of X - dY =4,

2 2and those of X - dY =s -4 where such solutions exist, may be
expressed in terms of the least positive solutions of these

4 2equations. Solutions of the equations X - dY « 4;i, +4 and
2 4 ^2 2X - dY « i.lf ±.4 may now be sought among those of X - dY
±.̂  9 A4 •

Extensive work in this direction has been done by
W.Ljunggren working in the quadratic field R(d^) and other
allied algebraic fields. His methods are powerful but deep
and complicated.

It is possible to show that the solutions of the equations
X^ - dY^ « ĵ 4 foimsequences which satisfy a three-term recurrence
relation. By applying the elementary theory of quadratic
residues to these equations Cohn has solved the equations
x"̂  - dY^ a jhl, +4 and X^ - dY^ « +1, ^4 for those d for which

2 2either of the equations X - dY = +4 has solutions (X,Y) 
for which X and Y are both odd.

This thesis extends Cohn’s work, using similar 
methods, to solve the equations N̂ x"̂  - dY^ = ±.1* ±4 and 
X^ - dlT̂ Ŷ  ^ i;4 for the same values of d as above and

any given integer N.
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A few limited results are given for other values of d.
L.J.Mordell has given sinple conditions under which 

2 4the equation X - dY « 1 can have no solutions* A theorem
4 2of a similar type concerning the equations X - dY « 1, 4 

is proved.
Finally the results proved in this thesis are compared 

with those of Cohn, Ljunggren and Morde 11.
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NOTATION.

The following standard notation is used!

(m,n) denotes the highest common factor of m and n#

m|n denotes ’m divides n’#

râ n denotes ’m does not divide n*.

denotes ’ Implies and Is Implied by ’•

(R / S) denotes the Jacobi symbol for R and S.

The properties of this last sjmbol are explained In the 
Introduction, on page 13.
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INTRODUCTION.

The work In this thesis stems from two papers, (g, 4),
by J.H.E.Cohn, which are concerned with the solution, in

4t 2integers X and Y, of the Diophantlne Equations X - dY *» ±.1» ±. 4
S 4 and X - dY c +1, ±,4.
It is a long-established fact that the equation

X^ - dY^ c 1 has infinitely many solutions, in integers x and
Y, for every non-square integer d>& The first published proof
of this was given, around 1766, by Lagrange using the theory
of continued fractions. Many other proofs have been given
since. See, for example, (14),

Thus the equation X^ - dY^ « 4 always has solutions,
since if (x,y) is a solution of X^ - dY^ » 1, (2x, 2y) is a 

o 2solution of X - dY = 4, For brevity we shall refer to
4 2 2X 4" Yd , as well as (X,Y) as a solution of X - dY » 4,

Such a solution will be called positive if X > 0, Y > 0, The
positive solutions may be ordered by the size of X, or, what

^ i
is the same thing, by the size of X + Yd , since if X + Y_d^

4 g oand Xg + Y d^ are positive solutions of X - dY" » 4 for which
X > Xg, then

> Xg + Ygd^

and vice versa.
Now It is easily shown that, if a+  bd Is the least 

positive solution of X^ - dY^ « 4, then the general solution
is given In terms of a and b... by

X + Yd& . 8 / a + W & \ *

where n Is any Integer. See, for example (6). Because of
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this fact, the least positive solution is often called the 
fundamental solution, a convention which we adopt in this 
thesis.

2 2Unlike the equation X - dY = 1, the equation 
2 2X - dY «S -1 does not have solutions. In Integers X and Y,

for all non-square values of d^o. For example. It Is easily
seen that If X^ - dY^ « -l,then any factor of d Is congruent
to 1, 2, or 5 (mod 8.)* Even this condition is not sufficient

2 2as, for example, the equation X*̂  - 34Y"̂  « -1 has no solutions
in integers X and Y, See (15). However, if the equation 
2 2X - dY = -1 has solutions, the situation Is very similar

to that described above. For then, clearly, the equation
2 2 ^X - d% « -4 has solutions and we can show that, if a + bd
Is the fundamental solution of X^ - dY^ « -4, then the general
solution is given in terns of a aJid b by

where n Is any integer. We can also show that, for these
2 2values of d, the general solution of X - dY » 4 is given by

J [ 1 \ 2n
X + Yd « 2 I a + bd^ J

2 2i.e. in this case the fundamental solution of X - dY « 4 Is 
given by 2 ̂ a + bd^ ̂

Now the equations X^ - dY^ = ±1# ±4 are closely connected 
with the real quadratic field R(d^), I.e. the field consisting 
of all the numbers of the form

r + sd^
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where r and s are rational numbers, positive, negative or zero. 
Each of these numbers, where s / 0, is a zero of a unique 
quadratic polynomial with relatively prime integral coefficients, 
the leading coefficient being positive. If the leading 
coefficient is 1, the corresponding number is said to be an 
integer of the field. Starting with this definition of 
integer it is possible to construct an arithmetic very similar

ito that of the rational Integers. We denote by p[d J the set 
of all Integers of R(d^). If pL , j7 and are In p[d^] we
say y3 divides «x. and write ^  | . If e(. ( 1, o< is called
a unit of P[d^]# If « a + bd^, the norm of cX ,
is the product of d  with Its algebraic congugate Û  * a - bd^ ,
I.e. » a - db . It Is easily shown that ^  Is a unit
of h[d^] if and only It^ck « ^1. Since It can be shown 
that a + bd^ Is a quadratic Integer if and only if a and b 
are rational Integers, (or, in the case of d = 1 (mod 4) a 
and b may be both half odd Integers) clearly the units of 
r[d^3 a 1*0 given by the solutions of

X® - dY® = il, i4.

This line of approach was used by Ljunggren, In (7,9,10), 
to find solutions of the equations - dY^ » +4 and
X^ - dY^ « i,l, jh4. Working In R[idt] end other allied algebraic
fields, he used the knovai properties of the units to obtain
upper bounds for the number of solutions of the equations
A O  2 4X - dY"̂  » j;_l, ^4 and X - dY «I, ^4. He also found upper

2 4bounds for the number of solutions of X - dY » -1 for large 
classes of values of d. m  each case he gave a method for 
finding solutions where they exist.
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HiG methods are very powerful but very complicated and 

the methods for finding solutions in a given case Involve 
a great deal of computation. It Is, therefore, of interest 
to look for more elementary methods of proving his results, and 
shorter ways of obtaining solutions in given numerical examples* 

In 1964 Mordell gave some simple conditions for d under
2 4which the equation X - dY « 1 can have no solutions other 

than (1,0)# See (13). In particular, he showed that the 
equation - pY^ « 1 has only this solution if p Is an odd 
prime, p « 5, 9 or „13 (mod 16),p/ 5. This work was extended 
by Ljunggren in 1966 to include the case p = 1 (mod 16). See 
(12). In this paper Ljunggren also proved that the equation 
x"̂  - pY^ «5 1 has no non-trlvlal solutions if p Is an odd prime, 
p / 5 or 29. If p « 5 or 29 there Is just one non-trivial 
solution in each case.

These two papers used only elementary methods except 
that they both made use of the fact that the only solutions 
of the equation

2 4 X - 2Y ss -1

are (X,Y) « (1,1) and (239,13). This result was proved by 
Ljunggren in (10), and the proof is very long and difficult*

m  1966 Cohn published (2)in which equations of the form 
- dY^ * ±1» ±4 and X^ - dY^ « ±.1» ±4, for certain values of 

d, were solved using elementary methods - although again It 
should be noted, (^), that a result from Ljunggren’s work.
In (2), was needed to deal with one special case.

The d dealt with were those for which the equation 
X^ - dY^ » -4 has solutions (X,Y) for which X and Y are both 
odd. In a later paper, (4), Cohn dealt with the equations
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- dy^ a 1, 4 and X^ - dY^ = 1, 4 for those d for which the

p 2equation X - dY e -4 has no solutions, hut the equation 
X^ - dY^ e 4 has solutions (X,Y) for which X and Y are both 
odd.

These papers do not cover all the cases dealt with by
Ljunggren, but the proofs are shorter and simpler and give
a neater method for finding solutions v/here they exist.

This thesis extends Cohn’s work to solve equations of
the form X® - dN®ï^ = ±1, 1.4 and K - 3Ï® » .̂1, ,̂4 for the
same d as those considered In (2, 4). We also obtain one or

2 2two results for the case when the equations X - dY » ±4 have
only solutions (X,Y) for which X and Y are both even but the
method has limited application In this direction.

2 2Suppose that the equation X - dY « -4 has solutions.
4Let a 4" bd be the fundamental solution and denote by 

(Qgjj^l(a), ^I^2n+l(^)) the general solution given by

Then the solutions of X^ «- dY^ *= 4 are given by f*bPg^(a))
where Qgn(^) + bPgj^(a)d^ » 2 ^ a + bd^^ ̂

Clearly
Q%(a) - T3P^(a)ai.- sf a - hd^ j

4 4for all Integers n. Let oC « &(a + bd ), p « 4(a - bd^)$ Then
Q^(a) - << ̂  * p  “

hd
Using these formulae we can show that the sequences 

^Q^(a)\ andfp^(a)^ both satisfy a three-term recurrence 
relation of the form
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Z * aZ 4* Z n+1 n n-1
Clearly, therefore, the sequences {NQ^(a) ^ snd (RP^(a) }
satisfy the same relation for all integers N.

2 2If the equation X - dY » -4 has no solutions, let 
a + bd^ be the fundamental solution of the equation X^ - dY^ » 4. 
Denote by (q^(a), bp (a)) the general solution given by

qjj(a) + "bp̂ (a) d = S / a + td^^

Let oL » 4(a + bd^), p  at 4(u - bd^) as before. Then clearly 

q^(a) « oC + .p

and we can show that for all integers IT, the sequences 
|Nq^(a)} and ^Np^(a) J satisfy a three**term recurrence relation 
of the form

®n+l * " ®n-l '
The main part of this thesis Is concerned with proving 

that In many cases only a finite number of specified terms 
of these sequences can be squares. The method used is based 
on the following simple reasoning.

2For any Integers R and T » S , the congruence 

a T (mod R)

Is soluble since r |s^ * T = 0. Thus If we are given an Integer 
T and can find an Integer R such that the congruence
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= T (mod H)

has no solutions, then T is not a square*
Given an integer Z in one of our sequences, therefore, 

we seek among the terms of that and the related sequences for
an integer 11 such that the congruence

« Z (mod R)

is insoluble* In the cases where the fundamental solution 
a + bd^ Is such that a and b are odd this process is successful 
and we obtain the desired results. If a and b are even,
however, except In a few cases the method breakâ down and the
results are Inconclusive.

To simplify the manipulation we Introduce the Legendre 
symbol and the allied Jacobi symbol.
If the congruence

x^ = T (mod R)

Is soluble, we say that f is a quadratic residue of R. If
not, v/e say that T Is a quadratic non-residue of R. The
Legendre symbol, (T / p). Is defined for all odd primes p 
i n t e g e r s  T  s w a c U  t K a . k  C T ,  p  )  ^  1

(T / p) ss 1 If T Is a quadratic residue of p;
(T / p) « -1 If T Is a quadratic non-residue of p.

The Legendre symbol can be shown to have the following properties:
(I) (ST / p) - (3 / p) (T / p).
(II) tf S = T (mod p) then (3 / p) - (T / p).
(III) (T® / p) = a If (T,p) = 1.
(Iv) (-1 / P) .
(v) (2 / p) . (-1)&(P^^1).
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(vl) If p and q, are "both primes, then (p / q) (q / p)

The Jacobi symbol, (T / R), is defined for every odd
Integer R where R Is not necessarily prime# It is defined by

(T / R) = 1 If R « 1;
(T / E) •= (T / p^) (T / Pg) .... (T / p p  If E - Pĵ Pg .... p.

Where p^, p^ .... p^ are primes.
The Jacobi symbol has properties analogous to properties (1)
- (vl) given above for the Legendre symbol and
(1)* (T / RE) = (T / R) (T / S).
Also, It Is clear that if (T / R) = -1 then T is a quadratic 
non-residue of R. It should be noticed, however, that (T / R)
= 1 does not necessarily imply that T Is a quadratic residue of 
R, but it is the first mentioned Inference which we use.

V/e deal with the sequences in four groups;
1. iO^(a) } and (l^(a) } where a Is odd;

S. {Ojj(a) ) and {l^(a) } where a Is even;

3. (q^(a) } and {&%(&) 3 where a Is odd;

4. [q^(a) } and fp^(a) } vhere a Is even;

in chapters 1 - 4  respectively.
It Is easily shown that the fundamental solution 

a + bd^ of - dY^ « -4 Is such that a and b are odd If and 
only If the equation X^ - dY^ *# -4 has solutions, (X,Y), such 
that X and Y are both odd. Thus chapter 1 is concerned with 
the equations X^ - dY^ « +1, +4 where d is such that the 
equation - dY^ = -4 has solutions (X,Y) for which X and Y
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are both odd. Cohn’s paper, (S), dealt with the equations 
-  dY^ * i.3., ^ 4  and X -  dY^ = ± 1 ,  ± 4 ,  i.e. Q^(a) « X ^  or 2X^

and bP (a) » Y^ or 2Y^. We set out these results and extend
^ 2 2 the work to solve the equations Q  (a) « Q  (a)X , 2Q (a)X ,
P o ^ Q ^ o ^ 2P^(a)X^, 2Î (a)x"' and P^(a) * I^(a)Y^, 2^(a)Y , Q^(a)Y ,

2Qjjj(a)Ŷ . Using these results we then solve the equations
Q (a) « NX^, SMX^ and P (a) * NY^, 21TŶ , for general square-free " n
values of N.

Similarly, chapter 2 is concerned with the equations
o gX - dY e ±.1, +4 for those d for which the equation

X^ - dY^ * -4 has only solutions, (X,Y), for which X and Y
are both even. Here, however, v/e are able to solve only the

2 2 2 equations Q (a) * X , 2X and P (a) = Y for those a such that an in
2 I a, 4^ a.

2 2If the equation X - dY = -4 has no solutions, it is
j.easily shown that the fundamental solution, a + bd^, of

X^ - dY^ *t 4 is such that a and b are both odd if and only If
2 2the equation X - dY « 4 has solutions, (X,Y), such that X

and Y are both odd. Thus chapter 3 Is concerned with the 
2 2equations X - dY as 1,4 where d is such that the equation 

x2 _ ^y2 ^ ..4 has no solutions, but the equation X^ - dY^ » 4 
has solutions, (X,Y), such that X and Y are both odd. The

A 2 2 4equations X - dY * 1, 4 and X - dY = 1, 4, I.e.
2 2 2 2q (a) = X , 2X and bp (a) = Y , 2Y were solved In (4). Againn

v/e set out these results and extend the work to prove results
for the functions ,q (a) and p (a) analogous to those proved Inn n
chapter 1 for the functions Q^(a) and Pĵ (a).

In chapter 4 we are concerned with the remaining case 
of those d for which the equation X^ - dY^ = -4 has no solutions
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and the equation - dY^ * 4 has only the solutions (X,Y) for
which X and Y are both even. The results obtained here,
however, are even more limited than those of chapter 2.

In chapter 5 we set out the implications of the results
4 Qof chapters 1 - 4  for the equations X - dY « ĵ l, +4;

- dy^ - ±,4; K®X^ - dY^ B ±.1, ±4 and X® - dH®Y‘̂ = £.1, ^4.
2 p ~If either of the equations X - dY ±4 has solutions,

(X,Y), for which X and Y are both odd these equations are
dealt with completely and a straightforward method for finding
solutions in particular cases Is given. It should be noted,
however, that this still depends, as do Ljunggren’s methods,
on finding by trial and error the fundamental solutions of the
equations X^ - dY^ « ^4 and for a particular d these may be
very large Indeed: for example, the fundamental solution of
2 2X - 94Y a 4 Is X « 5,086,590, Y « 442,128.

A few Inferences are made in the case where the equations
2 pX - dY » ^4 have only solutions (X,Y) for which X and Y 
are both even.

We then compare our results with those of Ljunggren in 
(7 - 11).

Finally we give some conditions for d under which the 
equations X^ - dY^ = 1, 4 have no non-trivial solutions and compare 
our results with the similar work of Ljunggren, Mordell and 
Cohn in (18). (15) and (̂ ) respectively.
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CHAPTER 1.

The object of this thesis is to prove various results
concerning the solutions, in integers X and Y, of the equations
X® _ « il, i4j X^ - dY® . il, i4; X® - dN y "̂ = il, i4 and

- dY = il, i4 where d and H are given square-free integers.
The equations are dealt with in four groups:

2 21. Those for which the equation X - dY = -4 has solutions
(X,Y) for which X and Y are both odd.

2 22. Those for which the equation X - dY = -4 has solutions
(X,Y) but only such that X and Y are both even.

2 23. Those for which the equation X - dY » -4 has no solutions
2 2but the equation X - dY » 4 has solutions (X,Y) for which X

and Y are both odd.
2 24. Those for which the equation X - dY « -4 has no solutions

2 2and the equation X - dY * 4 has only solutions (X,Y) for
which X and Y are both even.

If (X,Y) Is a solution of either of the equations
X^ - dY^ = then, clearly. If d Is odd X and Y have the

2same parity: If d Is even then X Is even and hence dY = 0 (mod 4),
I.e. Y Is even since d Is square-free. It Is now clear that
these four groups exhaust all the possibilities, for it Is a

P  2well-known fact that the equation X - dY = 1, where d is a
square-free Integer, always has Infinitely many solutions in

2 2integers X and Y. Thus the equation X - dY = 4 must have 
solutions (X,Y) where X and Y are both even.

Since, If (X,Y) Is a solution of either of the equations 
X^ - dY^ » ±4, X and Y have the same parity, such a solution, 
from now on, will be referred to as either an ”odd” or an "even" 
solution.

We are able to give quite extensive results for the
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equations In groups 1 and 3. It will be seen later that the 
method used relies heavily upon the fact that the equations

- dY^ = +4 have odd solutions In these cases. In view of
this It Is of interest to note that if d is such that

8 ^- d^Y = -4 has solutions, but no odd ones, then the equation
2 2X - d Y = 4 has no odd solutions either.

 ̂ 2
For suppose x 2 - d y_ = 4 where and y are odd. Then

 ̂ 2 2clearly d Is odd. Suppose also that (2x ) - d (2y.) = -4,8 ^ 2  S I S
I.e. X. - d_y = -1. Then since d Is odd, x and y are2 1 s  1 2 2
of opposite parity.
Let

}  = : I  “ V s  + ^1^2*

Then ^ and ^  are both odd and

Ÿ  ~

which contradicts the assumption that X^ - d^Y^ = -4 has no 
odd solutions.

This means that none of the equations in group 2 can be 
dealt with, even partially, by the method used for the equations 
In grpup 3 and each group must be dealt with separately.

Some results have been obtained for the equations in 
groups 2 and 4 but these are very limited.

V/e now deal with each group separately.



19.

2 2In this chapter we suppose that the equation X - dY = -4
has odd solutions.

The results at the beginning of this section, up to and 
including theorem 1.4,are due to J.H.E.Cohn and are taken from 
(2).

The general method used is to seek solutions of the
equations X^ - dY^ *= ±4; X^ - dY^ ® ±1» +4J X^ - dN̂ Ŷ  ̂= +1, ±4
and N̂ x"̂  - dY^ « 1.1» ±4 among the solutions of X^ - dY^ = +1, i4.

V/e begin by establishing some miscellaneous results
2 2Concerning the solutions of the equations X - dY = ±1, ±4

which we will require later.
2 2Since X - dY = -4 has odd solutions, clearly d = 5 (mod 8).

If X = a, Y as b Is the fundamental solution, i.e. the least
positive solution. It Is a well-known fact that the general
solution is given in terms of a and b;

i / 1 \ 2n-lX 4. Yd^ = 2 I a + bd^

See, for example (6).
Thus, since we are assuming that there is a solution for

which X and Y are both odd, a and b are also both odd. We 
write oC « ^(a + bd^), p = ^(a - bd^) and have Immediately

oC + p  = a; « -1 (1.1)

We then define, for all integers n,

ta
9n(a) - (* “ + p>“ (1.3)

n+2 _ n+2'

î„(a) = 1 ( ^ * - p*) (1*2)

h _ n'ifnVa; = <6
Then

- r ' )
s



2 0 .

m aP^ ^ ^(a) + I^(a) from (1 .1 ) and (1 .2 );
I.e.

-n + s(&) “ (a) + P_(a) (1.4)^ n 4. 1 n
Similarly, from (1.1) - (1.3 )

Q ^(a) m  aQ (a) + Q (a) (1.5)n + 2 n + 1 n
p A b ) b (-1)*"! P (a) (1.6)n
Q__(a) . (-1)“ Q_(a) (1.7)** n
Also, P (a) « 0,P (a) a 1,Q (a) « 2 and Q  (a) « a. Thus0 X o 1

It le clear that p (a) and Q (a) are Integers for ail Integersn 31
n and moreover positive for positive n. The first few 
values are:

n p (a) Q (a)
t\

0 0 2 
1 1  a
2  a a® + 2

p 33 a + 1 a + Sa
4 + 2 a a^ + 4a^ + 2

5 a^ + 3a^ + 1  a^ + 5a^ + 5a
6 a^ + 4a^ + Sa a^ + 6 a^ + 9a^ + 2

Now from (1.2)

* Pĵ (a) Q^(a) + Qĝ (a) I^(a) from (1.2) and (1.3)
1. 6.

i(l.8)m '" /  .
... V. - ■;ôf *I »it '' -- B..'
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Similarly, from (1.1) - (1.3) we find

2Q (a) « (a^ + 4) P (a) P (a) + Q (a) Q (a) (1.9)m + n m n m n
Q^(a) « Qg^^a) + (*1) .2. (1.10)

Q (a)^ -(a® + 4) P (a)® + (-1)*.4. (1.11)n n
Now from (1.11), obviously s Iq (a)<^7 sIP (a). Also, from (1.2)* n n

= ^  (4 * -j)") (.1^* + + (-1)*)

= ^(a) (0^(&)^ - (-1)^)

Thus, since 2l0j^(a)<=>2 |p^(a), either 2|p^(a) or 2|(Q^(a)^ -(-l)^)t
i.e. 2)p_ (a). Now from (1.4)

' o n

and since a is odd, therefore, P_ _(a) and P (a) are eitheron-1 3n-2
both odd or both even. But if they are both even, T^(a) is
even for all Integers n, which we have supposed not to be the
case. Hence P,^ _(a) and P (a) are both odd and on—jl on̂ Ŝ

2|p^(a)<=>2|Q (a)<=>3)n. (1.12)

(1.11) and (1.12) now give

(P^(a).Q^(a)) B 1 If Sfn} (Pĵ (a),Qĵ (a)) - 2 If 3|n (1.13)

Prom (1.8) we find

2P (a) B P (a)Q. (a) + P, (a)Q (a)n + 12 n kd 12 n
- Pji<a)(Qg(a)® - 2) + Q^(a)Pg(a)Qg(a)

from (1.8) and (1.10)
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« p (a)( (a^ + 4)P.(a)® + S) + Q (a)P (a)Q (a)Il O n o D
from (1,11)

c 2P (a) (mod 2P^(a) ) since 2|p^(a), 2|q (a) n o G 6
from (1.12).

5  3But now P (a) tt a + 4a + 3a * 0 (mod 8) and therefore
6  *"

2P (a) « 2P (a) (mod 16).n + 12 - n
By similar means we may prove all the following;

+ igt*) - 8): P^ ^ 2^(a) = P^(a) (mod 16)
(1.14)

+ ig(*) 2  Q (a) (mod 8); Q (a) = Q^(a) (mod 16)
(1.15)

Throughout this work k will denote an integer, not 
necessarily positive, which is even but not divisible by 3. 
Prom (1.10)

Q (a) o (a) - (*1)^ *2k
and thus, from (1*12), since 3^k

Q^a) >  0, Q^(a) = 3 (mod 8) if |rk is odd,

Q^(a) * 7 (mod 8) if &k is even

Now from (1.8)

(1.16)

* ^(^)(%(^)^ (~1) #2) + Q^(a)P (a)Q^(a)
N

N
from (1.8) and (1.10)
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(-1)^"^.2P (a) (mod Qjj[(a) ) If 3-f-K
ss • N 4“ (-1) ~l.2P^(a) (mod 2Q^(a)) If 3|N

from (1.12)

Thus, in either case, from (1.12)

®m + 2N S (-1)^"^ (":od Q^(a) ) (1.17)

Similarly v/e find

S Q^(a) (mod Q^(a) ) (1.18)

^  + gl/a) £ (-1)^ V ® )  ) (1'19)

%  + (mod(a® + 4)P^(a)) (1.20)

Using (1.16) - (l.ls) we find that;

P (a) --P (a) (mod O (a) ) (1,21)m + 2k m ^
Qm 4- 2k(^) *-Q^(a) (mod Q^(a) ) (1.22)

Also, taking N *= 1 in (1.18) and (1.20) \ie liave, by induction:

Q (a) = 2 (mod a) (1.23)2n
Qgĵ (a) (—1) .2 (mod a 4- 4) (1.24)

Then, from (1.9) and (1.24)
n 2

^2n + = (-1) .a (mod a + 4) (1.25)

From (1.8), clearly,

2P (a) « P (a) (a^ + 2) + Q (a).an 4- 2 n n
S **2P̂ (a) + aQ^(a) (mod a^ + 4)

Using this equation and (1.24) and (1.25), by an inductive
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arguement we can show

P (a) « (-1)^ $na (mod + 4) (1*26)
2 n

P. fa) £ (-l)*^.(2n + 1) (mod a® + 4) (1.27)2n + X
Prom (1.23) and (1.16) we have

(a / # (a)) « (-1 / a)(Q (a) / a) = (-1 / a)(2 / a) « (-2 / a) 
k  ^

I.e.

(Qj(a) / Q (a) ) B (-2 / a) (1.28)

How since 2\lc, 3fk, k = ±, 2 (mod 6) and thus, from (1.18) and 
(1.7), we have

ç^(a) £ Q^_g(a) = .... B Q^g(a) m Q (a) (mod Q g ( a )  )

whence

<^(a) £ Q (a) = + 2 (mod i (a + 3) )

e -1 (mod 7Ç (a^ + 3) )

Thus we obtain

(6g(a) / Q (a) ) = (4 / Q^(a))(a / V ® » U ( a ®  + 3) / Q^(a) )

- (a / Q^(a))(-Q^(a) / i(a® + 3)) hy (1.16)

■ (a / Qjj(a))(l / ^(a + 3))

= (a / )

which, with (1.28) gives

(QgCa) / Q (a) ) « (-2 / a) (1.29)
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By a similar argaement we find that

If S^n, 3{n, then (Q^ (a) / Q^(a)) • (Q (a) /
(1.50)

How let n he an Integer such that 2fn, 3+n, and suppose 
2 Sthat Q (a) + 1 e By . Then, since n is odd, from (1.10)

we have
, , 2 Q ( a ) SB Sy *f 1 #2n

Suppose first that n = 1 (mod 4). Then if n / 1, let n = 1 + rk
where r is odd and k = 2^, m>l. Then

22y + 1 « Q (a) « Q (a)2n 2 + 2rk
» (-l)’̂ Qg(a) (mod Q (a) )

hy repeated applications of (1.22). Thus, since r is odd,
2 92y + 1 = -(a + 2) (mod Q (a) )

k
i.e.

4y^ 2 -2(a^ + 3) (mod Q^(a) )
2Hence, since a(a + 3) « Qg(a) and (Qg(a), Q^(a) ) = 1,

1 at (*»2 / Q^(a) ) (a + 3 / Q^(a) )
SB -(a^ / Q^(a) ) (a^ + 5 / Q^(a)) hy (1.16) since 4\k 
■ -(a / Q^(a) ) (a(a^ + 3) / Q (a) )
» -(a / Q (a) hy (1,30) with n « 1k
» #"l.

This is clearly Impossible. Thus if Q̂ (̂a)̂  + 1 = 2y^ and n » 1 
(mod 4) then n * 1.
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g
If n * 3 (mod 4), we have Q (a) » 2y + 1 « Q (a) by (1.7) 
where #.n = 1 (mod 4) and this is therefore only possible for 
-n as 1. Hence we have

o 2if 2ln, 3fn, then if Q (a) + 1 « 2y ,n * ĵ,l (1.31)n
Now from (1.2) and (1.3)

* ( v  . !<•> ♦ , !<•>)

. l‘*’)
and hence

2n

“ ^m(Sn + 
^2n +

i.e.

'.(2. . !)<•> - -a. . !<■> " . K  . !<•>)
Similarly we find

% ( 8 n + l ) W " Q m ( Q s n +%(=)) d'"")
Finally we observe that if 2JL = a + bd^ is the fundamental

solution of the equation -* dY^ « --4, and a and b are both
2 2odd, then the fundamental solutions of the equations X - dY « 4, 

X^ - dY^ « -•I and X^ - dY^ « 1 are respectively 2J^$ oL̂ , and 
Hence
the general solution of X̂ *^dY^ =» -4 is X » ^(a),Y "T^Pgn-l^^)

(I. I)
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the general solution of - dY- « 4 is X ts Q (a), Y * bP (a)2n
(I.II)

the general solution of - Si = -1 is X « Jq (a),Y (s)6n—3 on—o
(I.Ill)

S 2the general solution of X - dY « 1 is X = ^ = &bP^^(a)
(I.IV).

We are seeking solutions of the equations
X® - dY^ = ±.1, t4; X^ - dY = ±.1, ±4J X^ - d A ^  » tl, ±4, and 
H^X* - dY^ * ±.1» ±4. Clearly the solutions of X^ - dY® = -4

g
are given by X * Q (a), Y = bP (a) and those of 2 P 4 2n-l 2n—1
X - dN^Y a 1 by X * jQ^„(a), F T  » &bP (a) with similaron 6n
results for the other equations. We therefore wish to prove
theorems which will enable us to say when P (a) » Y , NY ;

2 2 ^Q (a) ® X , NX where IT is a square-free integer. We are
2 2already in a position to deal with the cases Q^(a) = X ,2X ;

Pĵ (a) as Y^t 2Y^. The results are contained in the following 
four theorems.

g
THEOREM 1.1. The equation Q (a) = X has'  ....  n
(a) two solutions n » 1,3 if a as 1;
(b) one solution n «  3 if a = 3;
(c) one solution n = 1 if a is a perfect square, a / 1;
(d) no solutions otherwise.
Proof, (i) If n is even, by (1.10) we have

Qĵ (a) as Q. (a)^ ±. 2 / X^.

(11) If a « 5 or 7 (mod 8) aid n Is odd, then Q (a) / X^;
For Q (a) = -a / X^, Q (a) B + 3) / X^, whereas if n / -1—1 —3
or -3 we can choose r ̂  0 and k such that n = *t + 2.3^.k \here 
2\k, 3jk, and t « 1 or 3. Then repeated applications of 
(1.22) give
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Q^(a) # ^ 2 gp ^(a) « (-1) Q_t(a) (mod Q^(a) )

* Q^(a) (mod Q^(a) ) by (1.7).

Since 2|k, S-J-k, (Q (a), Q (a) ) = 1 ad hence

(Qĵ (a) / Q^(a) ) « (Q^(a) / Q^(a) ) » (-2 / a) from (1.28)
and (1.29)

as —1 
2since a « 5 or 7 (mod 8). Thus Q (a) X .

n 2
(iii) If a = 1 or 3 (mod 8) and n is odd, then Q (a) / X ,n
except possibly for n = 1 or 3. For if n / 1 or 3 we can
choose as before r^O and k such that n = t + 2.3^.k where
2[k, 3^k, and t » 1 or 3. Repeated applications of (1.22) 
then give

Qĵ (&)s, Q^(a) (mod Q^(a) )

S -Q^(a) (mod Q (a) ) by (1.7)w k
Thus again, since (Q^(a), Q^(a)) « 1,

(Q_(a) / Q, (a)) « (-Qi (a) / Q (a) ) = -(-2 / a) from (1.16) n K t &
(1.28) and (1.29)

ss —1
since a = 1 or 3 (mod 8).

2(iv) If n a 1, Q (a) as a ss X if and only if a is a perfectn g
square. If n « 3, Q (a) = a(a + 3) where it is obvious that

2 “ 2 (a,a + 3) = 1 or 3. Thus, if Q^(a) = X , we require either

a = a® + 3 = X ®

which Is clearly only possible for a = 1, or
2 2 ... 3a = 3X’ , a + 3 = 3Xg
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whence
X„^ - 3X,^ » 1.

But now, hy ( 7 ), this equation has only the solutions
m 0 , i.1 , ±2 and so, since a is odd, a = 5 is the only

possibility.
This completes the proof of the theorem,

oTHEOREM 1.2. The equation Q (a) « 2X hasn
(a) three solutions % =  0, ±6 if a « 1 or 6;
(b) one solution n « 0 otherwise.

2
Proof. (1) If n Is odd, Q (a) / 2X . For, by (1.12), if 
Q^(a) Is even s\n, and If in addition n is odd we have n = ±_3 (mod 
12). Then by (1.7) and (1.15)

Q (a) = Q (a) = Q,(a) = 4 (mod 8)n  ±.d o
2whence Q^(a) / 2X .

2(li) If n » 0 (mod 4), then Q (a) « 2X only for n =  0.“ n
For Q^(a) « 2, whereas if n / 0 we may write n « 2. 3Ï* k for
some r > 0  and k where S|k, 3^k. Then by (1,22)

Qjj(a) = -Q^(a) = -2 (mod Q (a) )

and hence

(2Qĵ (a) / Q (a) ) = (-4 / Q^(a) ) « ~1 by (1.16)

Thus Q^(a) / 2X^.
(ill) If n « 6 (mod 8), then Q^(a) / 2X^ except possibly for
n « 6. For if n / 6 we may write n = 6 + 2.3^.k where now
4|k, 3^k. Then as before

Qn(a) s -Qg(a) (mod Q^(a) )
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Now by (1,18)

S\(a) E -^k-12^^^ - •••• ” ^ Q^(a) )

since 4(k, 3+k,

Q (a) « 3 (mod 8), Q (a) « 7 (mod 8) and &Q_(a) = 1 (mod 4) 2 - 4  o
Thus we have

(2Qĵ (a) / Q^(a)) * (-2Q^(a) / Q^(a)) = -(jQg(a) / Q^(a) )
by (1.16)

» -(Qĵ (a) / iQg(a)) = ••(±.Q̂ (a) / iQ̂ (a))
** ^ / Q^(a))
a -(Q^(a) / Q^(a)) « *(-Q ^(a) / Q^(a))

by (1.22)
» (Q (a) / Q^(a)) by (1.7) and (1.16)
* -(Q.(a) / Q.(a)) » -(*2 / Q (a)) by (1.10) 4 2 2
a —1 .

2
Thus again Q^(a) / 2X .
(iv) If n « 2 (mod 8), Q^(a) / 2X^ except possibly for n « -6.
For by (1.7) if n is even Q_̂ (̂a) = Q^(a) and if n * 2 (mod 8)
-n = 6 (mod 8) and the result follov/s from the previous one.
(v) If

2X^ , * Q ^ ( a ) a a 4* 6a + 9a + 2
a  ( a ^  +  2 ) ( a &  +  4 a ^  +  1 )  
as c(c^ — 3)

Where c « a^ + 2 « 3 (mod 8), then either

C  =  ;  c ®  - 3 «  2Xg®

which is impossible since o = 3 (mod 8),or
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2 ^ SC as 3X^ ; o - 3 * GXg

whence

2X-® * SX,4" - 1. 2 1
But now R.T.Bumby has shovn, in ( 1 ), that this equation

2has only the solutions « 1 or 3, i.e. Q^g(a) « 2X only for 
a e 1 or 5.
This completes the proof of the theorem.

2THEOREM 1.5. The equation P^(a) » Y has
(a) five solutions n = 0, ±, 1,2,12 if a « Ij
(h) four solutions n «  0, ,̂1,2 if a is a perfect square, a / 1;
(c) three solutions n = 0, ±1 otherwise.

2Proof, (i) If n is even and P (a) = Y we have, hy (1.8),n

in

Thus from (1.13) we must have either

; Q^Ja) = Y^®

and hy theorem 1.1 this is possible only for ^n = 1 and a a 
perfect square, or

3ln P̂ (̂a) . 2Ŷ ® , Q̂ (̂a) . 2y/

Row by theorem 1.2 the latter is possible for Jn 0,̂ .6. Of
these values, 0 always satisfies P. (a) = 2Y ^ and -6 never1
since I^^(a) is negative by (1.6). The remaining possibility, 
in = 6 requires

2^1® = Pg(a) - Pg(a) Qg(a) by (1.8)

Thus, by (1.13) we require either
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p,(a) = y,® J Q,(a) - 2y/3 3 0  4
which from theorem 1.2 is impossible, or

P,(a) - BY,® J Q (a) » Y ^
3 3 4

By theorem 1.1 the latter is possible only for a = 1 or 5.
P_(l) m 2, v/hich satisfies P (a) = 2Y^, whereas P (3) « 10,3 3 3 3
which does not.
(ii) If n is odd, I^(a) / except for n «  & 1. For 
P^^(a) « 1 whereas if n / ±1, we write n «  ±1 + 2,3^.k as before. 
Then repeated applications of (1.21) give

lL(a) « -P -(a) « -P (a) (mod Q (a)) by (1.6)
"  1  k

M  ••1

Ihus

(Pĵ (a) / Qĵ (a) ) - ( - ! /  Q^(a) ) - -1 by (1.16).
g

Hence I^(a) » Y only for n = +1.
This completes the proof of the theorem.
THEOREM 1.4. The equation I^(a) « 2Y^ has
(a) two solutions n « 0,6 if a « 1;
(b) three solutions n = 0, ±3 if a « iQ (2);2n + 1
(c) one solution n « 0 otherwise.

2Proof. We note first that, from (1.13), if P^(a) « 2Y then 3(n.
(i) If n is even, from (1*8) we have

P^(a) = Pj„(a) Q,^(a)

and so since 3|n from (1.13) we see that if I^(a) « 2Y^ we 
must have either
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and from theorem 1.1 since 3|n the latter equation is satisfied 
only hy ? n = 3, a = 1 or 3 where as before only a = 1 gives 
a solution of the first equation, or

P, (a) . Y ® I Q, (a) » 2Y ®1 ?n 2

By theorem 1.3 the first of these is satisfied only by ^n » 0
and, if a » 1, |-n * 12. By theorem 1.2 Jn = 0 satisfies the
second equation whereas in « 12 does not.
(ii) If n is odd from our first remark we may write n = 3m
where m is odd. Then from (1.8) and (1.9) we find

- M a )  ((a® + 4) P( a ) ^ .  s)m \ m
2 2aid clearly (P (a), (a + 4) P (a) - 3) » 1 or 3# But sincem m

m is odd from (1.11)

Q (a)^ — (a^ + 4) P (a)^ « *»4 
^ m

and so 3i? (a). Thus if P (a) « 2Y^ we must have either m 3m
P^(a) . 2Y^® ; (a® + 4) P (a)® - 3 « Y ®

® 2and by (1.11) this requires Q (a) + 1 » Y #ich is impossible, or
^ 2 ....—

P (a) - Y,® } (a® + 4) P (a) - 3 - 2Y ®m l  m 2
Since m is odd from theorem 1.3 the ônly possibilities are 
m m ĵ l, i.e. n » ^3. But from (1.11) we then require 
Q^^(a)® + 1 - 2Yg® or

^2Q^(a)^ ® - (2® + 4) Y ® = -4

i.e. 2a = Q (2). 
2n+l
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This concludes the proof of the theorem.
We are seeking solutions of the equations P (a) « RY^;

2 2 ^Q (a) w X , RX where R is a square-free integer and have now
n o 2 2 2
dealt with the cases P (a) = Y, 2Y ; Q (a) = X , 2X inn n
theorems 1.1 - 1.4. It turns out to be most profitable next
to drop the restriction that R must be square-free and consider
R « P (a), 2P (a),G (a) and 2Q (a). Before we can proceed m m m ^ o 2
to the solution of the equations P (a) « RY: ; Q (a) « RXn ^
for these vdues of R, however, we must establish for what
values of n P (a)|p (a) with corresponding results for the other ® n
functions. The results are contained in the following six 
lemmas.
LFMîiA. 1.1. P^(a)|p^^(a) for any integer r.
Proof. Prom (1.6) we need only consider r ̂  0. Hence we 
use proof by induction. The result is obviously true for 
r s* 0,1. Row from (1.1), (1.2) and (1.3)

Thus if we assume P (a)| P (a) for all t^r + 1, r 0, thenm tra
I^(a)| Hence the result by induction.
lEmiA 1.2. Q (a)\Q (a) for any odd integer r.m rm
Proof. Prom (1.7) again we need only consider r^O and so we 
use proof by induction. The result is obviously true for 
r « 1. Row from (1.1), (1.2) and (1.3)
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(r+2)ra (r+2)m (r+l)ra (r+l)m

' * P' " ^
m m  m rm rm

( < A + p ) - ( c ^ p ) ( < <  + p  )

m-1
- Qm(a) Q, , (a) + (-1) Q (a)(r+l)m rm

Thus If we assume the result true for all odd Integers t ̂  r,it
Is clearly true for r + 2. Hence the result hy induction*
LM.IA. 1.3, (q (a), Q (a)) | 2 for every even integer r* 

rm mProof. As in the proof of lemma 1.2
m-1

Q (a) w Q (a) Q (a) + (—1) Q (a)
(r+2)m m (r+l)m rm

for all Integers r. Thus If r is even repeated applications 
of the above result show that

Q (a) * ±. Q (a) (mod Q (a) ){?+2)m o ra
= j: 2 (mod Q (a) ) m

Hence the result.
LEMMA 1.4. (P (a), P (a) ) = P (a).

m n (m,n)
Proof. Let (m,n) « r. Then it is a well knownfact that there
exist Integers g andh such that gn + hra a r. Thus, from (1.8)
we find

«J*> * V  V * >  <•>
From lanma 1.1 P (a)!? (a) and P (a)|P (a). Thusn oU m am
(Pĵ (a), I^(a) )l2P^(a). Also, from lemma 1.1, P^(a)|p^(a) and
Pp(a)|P (a) and theiefore (P (a), P (a) ) = P^(a) of 2P (a),* m n ^ I*
Obviously if either P (a) of P (a) Is odd (P (a), P (a)) = P (a).m m ** *
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If they are both even from lemma 1*1 clearly P (a) andgn
P. (a) are both even* Then from (1.12) we see that Q (a) am gn
and G^(a) are both even* Thus from (*) we may obtain

P (a) « P (a) P (a) ( &Q (̂i) ]
^ g n \ ™ /  hm \ gn /

where jQî (̂a) and Jq (a) are integers. Then as above ™  gn
(I^(a), P^(a) ) - Pp(a)
This completes the proof.
LEMMA ^.5. Let (m,n) «= r and let n be odd. Then

r
(a) if m is odd (Q (a), Q (a)) « Q (a);

r m n r
(b) if m is even (0_(a), Q (a)) | 2.J» m n
Proof. Since (m,n) « r there exist g and h such that gn + Ima 
Then (19) gives

2Qj,(a) m (a® + (**)

(a). If m and are both odd, g and h will be of opposite
r r

parity. We may assume without loss of generality that h is 
odd. Then by lemma 1*2 Q (a)lQ (a). Since g is even, bym ' hm
lemma 1.1 Pg^(a)|p (a)) but from (1,8) Pg^(a) . P^(a)Q^(a)
and thus Q_(a)lP (a). Hence (Q (a), 0 (a))|2Q (a). Sincegn
m and n are both odd, from lemma 1*2 Q (a)|Q (a) and Q (a)|Q (a)P p r ' ra r ' n
and BO (Ojjj(a), Q^(a)) » Qp(a) or 2Q^(a). By a method similar 
to that used at the end of the proof of lemma 1.4 we may show 
that (Q̂ jj(sl), G (a)) w 2Q^(a) is impossible.
(b) If m is even, g must be odd.I»
(i) If & is even as above we can show that (Q^(a),Q^(a))l2Q^(a). 
Also, since n la odd leimna 1.2. But since | Is
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even, as In the proof of lemma 1*3, Q^(a) « ±2 (mod Q (a) ) and
thus (0^(a),Q (a))l4* But now ra is even and therefore, from m n 2
(1*10), G (a) m (a) 2 and hence Q (a) is either odd orm ?ra m
congruent to 2 (mod 8). Therefore (Q (a), Q (a) ) | 2.

m II
(ii) If h is odd as before we have

2P (a) « P (a) G (a) + P (a) Q (a) (»)r gn hm hm gn
where |Qĝ (si) from lanma 1*2. Thus
(Qjjj(a), Q (a))|2P (a)* Since ra is even, however, from (1*10)

R ^ g 2 2and (1*11) Q (a) * G (a) & 2 * (a + 4)P, (a) — 2* Rowra &m +■
rljm and thusj by lemma 1*1, P (a) \P (a). Hence (G (a),Q (a))|4

r ' &ra ra n
and as in (i) (Q (a), Q (a)) « 4 Is impossible*in h
This completes the proof*
LEMMA 1*6* Let (m,n) « r* Then
(a) if ra is odd (P (a), Q (a))|4jr ra R
(b) if ra is even (P (a), Q (a)) « Q (a).y r a n  %»
Proof* As before there exist g and h such that gn + hm » r 
and

%p(=) -

(a), (i)* If m is odd and gi.ls odd then from (**) 
r •(P (a), Q (a))|SQ„(a) since P (a) P (a) from lemma 1.1 and ra n r ra nm

Q (a)lQ (a)from lemma 1.2* But since m is odd, from lemma n' ' gn r
1*2 G (a)|G (a) and from (l.ll) it is easily seen that

r ra .
(P (a), Q (a))l2* Therefore (P (a), Q (a))|2 and (t (a),Q (a)) 4*ra' ' ira' I ra r r a n '
(ii) If m is odd and g is even from (*) (P^(a),G^(a))j2P^(a),
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for from lemma 1.1 and (1.8) P (a)l P. (a) and P^ (a)m hm^ * 2n' '
» Pĵ (a) Q^(a) \ Pg^(a). But also from lemma 1.1, P^(a) \ I^(a)
and from (1.11) (P^(a), i^(a))|2. Thus again (l^(a), Q^(a))| 4.
(b). If m is even then g must be odd. Prom (**) as in (a)(i) 

r(Pjĵ (a), Qĵ (a) ) \2Q^(a). Prom the definition of r, since m is
even, n is odd and so from lemma 1.2 Q (a)|Q (a). Also, 

r r a
since m is even from lemma 1.1 and (1.8), 

r
Pgy(a) = P (a) '3p(a)lPjjj(a) and so (I^(a), Q (a)) . Q^(a) or 2Q^(a).
An arguement similar to that at the end of the proof of lemma
1.4 shows that (P (a), Q (a)) « 2Q (a) is impossible.m II r
This completes the proof.
COROLLARY 1.1. (of lemmas 1.4 - 1.6).
(a) If P^(a)l? (a) > 1 bK«.r\
(b) If Q (a)lQ (a) and \q (a)\ > 2 then n is an odd integer;

m n III m
(c) If 0 (a) llL(a) and\Q (a) \ >  2 then n is an even integer;^ m m
(d) If aB&iP (a) \ > 2 then m = 2 if a > 2 and m = 4

if a = 1.
Proof. These results follow immediately from lemmas 1.4 - 1.6.

We are now in a position to solve the equations
P (a) - P„(a)Y®, 2P_(a)Y®, Q (a)Y® and 2Q (a)Y®j Q (a) =n m jjj m
G (a)X^, 2Q (a)X^, P (a)X^ and 2P (a)X^. The results arem m m m
contained in theorems 1.5 - 1.12.
THEOREM 1.5. For any given m such that j Q (a) \ > 2, Q (a) is— I m n
of the form Q (a) 7? only for n * m if m is odd and n = ±m if m is m
even.

2Proof. We note first that since G (a) = G (a)X only if - "  ... m
Q (a) \ Q (a), from corollary 1.1 we require n = mt where t is an 
odd integer.
(i) Suppose that t =. 1 (mod 4). If t = 1, Q%]̂ (a) ss S^(a)



39.

*s Q (a).l , whereas if t / 1, we may write n « ra + S.3^*k m
where 2\k, 3-j-k. Repeated applications of (1*22) then give

r
Q (a) ® (-1)^ Q (a) (mod Q (a) ) n m k

Now if 2° is the highest power of 8 which divides m,2^^lk.
Also 3tk. Hence from lemma 1*5 and (1*12) (Q (a),Q (a)) » 1m k
and GO

(Q„(a)Q_(a) / Q (a)) = (-Q (a)® / Q (a)) m -1 by (1.16).1“ " k m k
Hence Q (a) / Q (a)X^.n m
(ii) Suppose that t « 3 (mod 4) and m is even* Then by (1.7) 
Qĵ (a) *B G_a(a) viiere - n = mt* and t* « 1 (mod 4)* Thus from (i)
Q^(a) « Q^(a)X if and only if -n » m i.e. n = -m.
(iii) Suppose that t = 3 (mod 4), m is odd and 3+m. Then if

2t » 3, G (a) c Q (a)(Q (a) + 3) from (1.8) and (1.9) and^  m m 2 p
Q (a) * Q (a)X if and only if Q (a) + 3 « X which is impossible
^ m m p
since j Q^(a) I >  2. If t / 3 we may write n «  3m + 2.3 .mk
where 2|mk and 3>\-rak. Then as in (i) (Q^^(a),Q^^(a)) = 1 and

Q (a) = (-1)3 Q '(a) (mod Q (a))n ora km
whence

(Q^(a)Q^(a) / Q j a ) )  . (-Q^WQja) / Q j a ) )
” (-«m^a)® / (y[a)) by (1.30)
= L.1 by (1.16).

Hence Q^(a) 4 Q^(a)X®.
(It) Suppose finally that t = -1 (mod 4), m Is odd and 3|m.
Then m o ±,3 (mod 12) and n = mt o + 3 (mod 12). Now from 
(1 .1 5 ), looking at the first 24 values of Q^(a) we see that 
4|a (a), 8iQ (a) and 4|Q^(a), sW^(a) and also
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iQ (a) « - iQ (a) (mod 4)* ra Ii
2 2Thus if Q^(a) « Q^(a)X , X = -1 (mod 4) Which is impossible* 

This completes the proof.
T.HE0_Rl?.i_1.6. For ay given m such that \Q^(a)\>2, Q^(a) is 
never of the form 2Q^(a)X^.
Proof. V/e note first that from corollary 1.1 again we require 
n ss mt where t is an odd integer.
(i) Suppose that ra is even. Then if t = ,̂1, Q (a) * Q (a)
, , , 2 , n ±ja/ 2Q (a)X , whereas if t / +1, since ra is even we may write 

in r
n ss ^ m + 2.3 *k where 4|k, 3{k. Then by repeated applications 
of (1.22)

Q_(a) = (-1) (mod Q (a))n k
= -Q (a) by (1.7) since ra is even, 

ra

If 2^ is the highest power of 2 which divides m,2^^|k and so 
from lemma 1.5 and (1.12) (G^(^)y G (a)) *= 1. Hence

(2Q (a) Q (a) / Q (a)) ss (-2G (a)^ / Q (a) ) r a n  k m
ss -1 by (1.16) since 4|k.

T»U3 Q (a) / 2Q (a)X®. n ra
(ii) Suppose now that ra is odd. Then n is odd. Also, since
we require Q (a) to be even, 3|n, from (1.12). Then (1.15) n
together with the first 12 values of Q (a) shows thatn
Q^(a) e 4 (mod 8).
But also, since ra is odd, (1.15) and the first 12 vdues of
Q (a) show that Q (a) is either odd or congruent to 4 (mod 8). ra ra g
Hence it is impossible that Q^(a) » 2Q^(a)X .
This completes the proof.
THEOREM 1.7. For any given ra such that|p^(a)\ >  2,I^(a) is
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g
of the form P (a)Y only for n «  0, n ss m if m is even, m
n « & m if m is odd and (a « 5, m « ±.3, n = 6).
Proof. V/e note first that from corollary 1.1 if P (a) %=

2 uP (a)Y then n « mt for some integer t. m
(1) Suppose first that t Is even. Put t = 2t*. Then from 
(1.8)

and "by (1.13) (P (a), Q (a)) » 1 or 2. Also by lemma 1.1mt mt* g
P (a)|p (a) and thus if P (a) = P (a)Y we need eitherm mt* n m

where from theorem 1.1 the only possible solution is Q (3) « Y^,3 2
or

= sya)Y^^ ; «„,.(a) -

Prom theorem 1.2 the only possible solutions here are Q (a) « 2,

Q+gd) = 2^2^* Q+6(3) -
These possibilities lead only to the solutions n as 0 and

g
(a « 3, m =  & 5, n = 6) since the equations P^(a) « 2P^(a)Y^ 
have no solutions for a » 1 or 5.
(ii) Suppose now that t is odd but ra is even. Put ra a. 2m* 
and as before we have

where (Pĵ ,̂ (a), Q (a) » 1 or 2. Since t Is odd, by lemmas 
1.1 and 1.2 I^,(a) (a) and Q^,(a)|Q^(a). Also, from (1.8),
P^{a) - P^,(a) Q (a) and so. If P^(a) . I^(a)Y , either

P (a) « 2P (a)Y® } Q (a) - 2Q (a)Y
m*t ra* 1 ra’t ra* 2
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where, from theorem 1.6 the second equation has no solutions, or

where,from theorem 1.5, the second equation requires t « +!•
Since m is even P^^(a) « -P^(a) and so the only solution is 
t s 1#
(iii) Suppose finally that t and m are both odd. If t = ±1,
^(^) « P (&) = P (a).l^, v/hereas if t/j^L, we may write as m m
usual n = + 2.3^.k* Repeated applications of (1.21)
then give

= (-1)^ I^^(a) (mod

= -Pĵ (a) (mod Qĵ (a)) by (1.6)

Since ra is odd and 3^k, by lemma 1.6 and (1.12) (P^(a),Q^(a)) = 1. 
Thus

(P (a) P (a) / Q (a)) = (-P_(a)® / Q (a)) m n k k
= -1 by (1.16)

Thus P (a) / P (a)Y®. n m
This completes the proof.
THEOREM 1.8. For any given ra such that ) P (a)|> 2, P^(a) is

2of the form 2I^(a)Y only for n =  0, (a = 1 or 5, m = 6, n = 12)
and ( a ss 1 or 5, m ss -6, n = -12),
Proof. V/e note first from corollary 1.1 that if P_(a) = 2P (a)Y^," " n m
then n ss mt for some integer t.
(i) Suppose that t is even. Let t = 2t*. Then by (1.8) and 
(1.13) as before

^n(^) =
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where « 1 or S. Also I^(a) \ I^^,(a) by lemma
l.l* Hence, If I^(a) « 2Pĵ (a)Ŷ  vie require either

‘ : Snt‘<a) " Y, 2

where from theorem 1.1 the only possible solution is Q_(3) = Y3 2
or

Prom theorem 1.2 the only possible solutions here are Q (a) a 2#o
Q^gd) a SYĝ , %6(5) a 2Yg^
These possibilities lead only to the solutions n » 0, (a = 1 or 5#
m a 6, n * 12) and (a = 1 or 5, M m  -6, n « -12) since the 
equation Pg(3) * 2Pjjj(3)Ŷ  ̂has no solution.
(ii) Suppose that t is odd but m is even* Put m a 2m*.
Then as before we can easily show that we require either

Pm't(a) - Î Q^,^(a) - 2Q^,(a)Yg®

where from theorem 1.6 the second equation has no solution, or

V t ( ^ )  - = V ( ^ ) V

From theorem 1.5 the second equation requires t « ±.1, but I^,(a)
/ 2P^t(a)Y3^®.
(iii) Suppose that ra end t are both odd and 3f>m. From
(1.12), If P^(a) . 2P|jj(a)Y , 3|n. Thus 3|t. Put t - 3t*.
Then from (1.8) and (1.10)

+ 1)
. Pttja) ^ (a® + 4)P^,^(a) - 3j by (1.11)

since mt' is odd. Thus (Pt'm(*)' ®t'm^®) + 1) = 1 or 3.
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/But + 1 is not divisible by 3 and so
(Pjjim(®)» ^t*m(&)^ + 1) = !• By lemma 1,1 P (a)| P , (a)Q m t m
and 8 0 if Pĵ (a) » 2P^(a)x v/e need either

where the second equation is impossible, or

Prom the first equation bjr theorem 1,7 t* = 1 and from the
second by (1,31) since m is odd and 3-fm, m = ^̂ 1, But if
ra » +1, \ P (a) I 4 2,* m
Thus Pĵ (a) / 2P^(a)Y^ In this case.
(iv) Suppose finally that m and t are both odd and 3|m, 
Then 3\n also and from (1,14) and the first 12 values of 
P (a) v/e find that

2|P (a), 4{P (a) ; s|P (a), 4|p (a), m m ** **
Hence P^(a) / 2^(a)Y®.
This completes the proof,
THEOREM 1,9. Por any given m such that \ Q^(&) \> 2, I^(a) is
of the form Q^(a)Y^ only for (a > 2, m » 1, n « 2),
(a> 2, m = -1, n * -2), (a «  1, m * ^ 1 2 ,  n = 24), (a = 1, m = 3,

n a 12), (a «  1, ra e  -3, n a -12) and (a * a perfect square,
m = ± 2 ,  n a  4), 2
Proof. From corollary 1. 1  we first note that if P (a) * Q^(a)Y , 
then n = 2mt for some integer t. Then by (1.8) we have
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(l) ouppose first that t is odd. Then "by lemiTia 1.2
Q^(a) 1 Prom (1,13) Q ^(a)) « 1 or 2* and so
if P (a) « Q (a)Y we require either n m

P (a) « 2Y 2 ; Q (a) » 2Q (a)Y ^ mt J- mt TTi omt 1 mt m 2
where from theorem 1,6 the second equation has no solutions, or

From theorem 1,5 the only possibilities for the second equation 
are t = & 1, From theorem 1,3 and the first equation we 
then find that the only solutions are

Pg4 (l) . 12®.Q^12(1); P (a) . Q (a).l®, a>Sj
2P _(a) “ Q i(u)*l , a > 2; P (a) * Q ^(a)* a, a a perfect square,— —X ^

(ii) Suppose now that t is even* Then from lemma 1,1 and 
(1,8) we have

- V " )  I y

and so, by virtue of (1.13) and (**$) we require either

- V * ) ’'/ -• ■ V
where from theorem 1,1, since t is even the second equation 
has no solutions, or •. /

® * ^t(^) ** ^ 2

where from theorem 1,2 the only solutions of the second equation 
are mt « .̂6, a « 1 or 5, These possibilities yield only the
solutions I^g(l) *a Q^(l),6^ J ^^12^^^ *
This completes the proof,
THEOREM 1,10, For any given m such that|Q^(a) \ >  2,P^(a)
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is Of the form 2Qj^(a)Yoiay far (a . 1, m . ±6, n . 12),
(a « m = 3, n = 6) and (a = &Q (2), m =-3, 'n » -6).2n+l
Proof. Again v/e note that from corollary 1.1 if P (a) = 2Q^(&)Y®, 
then n = Bmt for some integer t. Prom (1.8) and (1.13) we
have

(***)
and (P (a), Q (a)) « 1 or 2, mt mt
(i) Suppose that t is odd. Then from lemma 1,2
and 8 0 , if P (a) w 2Q (a)Y^ we require either n m

P ^(a) = Y ® } Q (a) - 2Q (a)Y ® rat 1 mt m g
where, from theorem 1.6 the second equation has no solutions, or

2 .
Prom theorem 1.5 the only solutions of the second equation 
are t = ±1* From the first equation and theorem 1.4 we find 
that the only solutions are

* ®^-3(^®2n+l^®^)*'^ •

(il) Suppose now that t is even. Then from (1.8) and lemma 
1.1

y  I

and so from (***) we require either

Where from theorem 1.1 since t is even the second equation
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has no solutions, or

where from theorem 1.2 the only possible solutions for the 
second equation are mt = ±6, a » 1 or 5. However these 
values give no solutions for the first equation.
This completes the proof.
THEOREM 1.11. For any given m such that | P (a) \ >  2, Q (a)

2 r a nis of the form P (a)X only for (a > 2, m » 2, n » 1) andm
(a*# 1, m a 4, nss ±2)m

2Proof. Prom corollary 1.1 we see that if Q (a) » P (a)Xn m
then m « 2, a > 2 or m « 4, a » 1#

2Now P (a) a Q (a) and therefore from theorem 1.5 Q (a) = P (a)X 2 1 n 2
if and only if n * 1.
Similarly P (1) * Q -(1) and so by theorem 1.5 Q (1) = p (l)X^4, n 4
if and only if n « ±,2.
This completes the proof.
THEOREM 1.12. For any given m such that | P (a) \ >2, Q (a)2 m  n
is never of the form 2P (a)X .

ra 2
Proof. From corollary 1.1 we see that if Q (a) « 2P (a)Xn m
then m * 2, a > 2 or m « 4, a = 1.
But P (a) » Q.(a) and P (1) » Q (1) and the result follows 2 •I’ 4 i.2
from theorem 1.6.

The following results will be required later and are 
a direct consequence of theorems 1.1 - 1.12.
COROLLARY 1.2. (Of theorems 1.1 - 1.12).
(a) If \ 1 >  2, Pjjj(a) P^(a) is a square only
for m St n if n is even, m = ±n if n is odd and (a = 3, m »= 6,
n ss ;̂ 3). 2Pjjj(a) P^(a) is a square only for (a = 1, or 5,' m=12, n*6)
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(a = 1 or 5, m « -12, n « -6) and (a « &Ggn^i(2) = & perfect
square / 1, m « n « 2)
(b) If \ G (a)\ G (a) \ >  2, Q (a) Q (a) is a square only' m n m n
for m *8 n if n is odd and m =  +n if n is even. 2Qm(a) G^(a) 
is a square only for (a * 1, m = ±6, n « 3).
(c) If I P (a)\ >  2, \Q„(a)l > 2, P (a) Q (a) is a square• n 'Hi n m
only for (a >2, m = 1, n « 2), (a >2, m « -1, n = -1), ( a=* 1,
m as +,12, n as 24), (a * 1, m «s ±6$ n « 6), (a a* 1, m » 3, n « 12),
(a a* 1, ra « -3, n «= -12) and (a « a perfect square, m « ĵ 2, n « 4).

*2P (a) G (a) is a square only for (a = 1, m « 3, n = 6),^ ra
(a as 1, ra as ^6, n » 12), (a « * ra « 3, n a* 6), (a =
iGgj^l(2) m « -3, n » -6) and (a = ** a perfect square
j/ 1, ra = 1, n at jJ5).
Proof.(a) From lemma 1.4 (P^(a), P^(a)) & P^^ ^^(a) and, 
therefore, if I^(a) Pĵ (a) = Y , we must have I^(a) = ^(m,n)(^)^i^*

I % . n ) M  I > S from theorem 1.7 
we require m % (ra,n) « n if n is even, m = ĵ {ra,n), n » ±,(m,n)
if n is odd, or (a = 5, m « 6, (m,n) %= n = If
\P(jjj,n) (a)| * 1 or 2 from theorems 1.3 and 1.4 the only
possibility is m « n * 2.
Similarly 21^(a) I^(a) * Y^ implies that either

or

If \ P^^ oj(a)\ > 2 from theorems 1.7 and 1.8 this is possible
only for (a * 1 or 5, m « 12, n « 6) and { a = 1 or 5, m = -12^
n as -6). If Ip (a)l« 1 or 2 theorems 1.3 and 1.4 give

(ra,n)
only one more solution (a = ^G (2) = a perfect square / 1,

2n+l
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m » ^3, H «B 2).
The proofs of (b) and (c) follow similarly from theorems 1,1 - 
1,12, g

We have now solved the equations P^(a) « NY ,
Q (a) =B NX^ in the cases N = P (a), 2P (a), Q (a) and 2Q (a), n m m m  m
V/e wish to solve them for general square-free values of N but 
it is convenient to consider one more special case before 
proceeding to the solution in the general case. Here again 
we do not confine ourselves to square-free values.

It is obvious from (1,11) that since a is odd
2 2 (Q (a), a + 4) « 1 and that therefore if Q (a) = RX and

IR|a +4, then R « 1, The following two results, however, 
are not so trivial,
THEOREM 1,13, Let R be an integer greater than 1 such that

I 2 2R\a +4, Then the equation P (a) = RY has no solutionsn
other than n = 0 and (R = ĵ 5, n = ^5, a = 1),
Proof, Prom (1,26) and (1,27) we see that r |p (a) if and only 
if pin. If P. (a) « RY^, therefore, n = mR for some integer m. 
(!) Suppose first that m is even. Then from (1,8)

where RlimR and therefore r \p (a) from (1.26) and (1.27),&raR g
Thus by virtue of (1,13) if P (a) « RY we require eithern

P (a) «RE ̂  (a) « Y ^-̂mR 1 -g-mR 2
where, since R > 1 from theorem 1.1 the only possibility is 
imR » 3, or

" w ' " '  ■ = « w ' " '  - V

The latter equation from theorem 1.2 requires |mR « o,
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oClearly P (a) = R#0 but, since R > 1, all the other 
o I 2possibilities require R = ±2, ±3, +6 and since R ja + 4  where

a is odd these are all impossible#
I 2(ii) Suppose now that m is odd# Since Eja + 4, R = 1 (mod 4).

rIf R « 1 (mod 8) we write mR * +1 + 2#3 #k where 2|k, 3+k.
Then repeated applications of (1#21) give

,r
P (a) = (-1) P (a) (mod Q (a)) mR ±1 k

= -1 by (1#6)

From (1#24), since R is odd and s|k therefore

(RP^(a) / Q%(a)) « (-R / Q^(a)) « -(R / Q^(a)) by (1.16)
« -(Qĵ (a) / R) since R = 1 (mod 4)
« -(±2 / R) by (1.24) since 2|k 
« «#1 since H « 1 (mod 8)

Thus P (a) / RY^.™  TÇ R s S Cry^od S') a,r̂ d
^ ^ 3^%y write iriR « ±,5 + 2#3^#5^.k where 2|k, 3jk# 5+k. 
Thus if |mR I / 5 from (1.21) we obtain

= -P+g(a) (mod Q^(a))

But now since bjk from (1.20) and (1.7) we find that

o (a) e -Q (a) & .... = j;Q (a) or (a) (mod RP_(a))^ k-10 2 4 6
Also

(Qg(a) / RP^(a))(Q^(a) / RP^(a)) « (QgfaiO^fa) / R) X

(Qg(a)G4(a) / Pg(a))
" (-4 / R)((a^ + 2) 3(

( a ^  +  4 a ®  +  S ) / a ^  *  3 a ®  +  l )  

ty (1.84)



51.

SB (1 + (a^ + 3a^ + l)(a^ + 3) /
4 . 2a -f 3a +1)

Since R « 1 (mod 4)
= 1.

Thus (Q (a) / RP (a)) » (Q (a) / RP^(a))2 5 4 5
Hence we find that

(RP (a) / Q (a)) » (-RP (a) / Q (a)) mR k k
= -(Q (a) / EPg(a)) ty (1.16) and (1.6),

since RP (a) = 1 (mod 4).
5

a -(±,Qçj(a) / RP (a)) from the above 
9 ^a -(a + 2 / RPg(a)) since RP^(a) « l(mod 4)

« -(-2/ R) (a^ + 3a^ + 1 / a + 2)
2= (-1 / a + 2) since R « 5 (mod 8) 

o= -1 since a + 2 = 3  (mod 4)

Thus again P (a) / RY^•
mR

Therefore, if I^^(a) = RY^, iriR » ^5* But since R > 1 this 
implies that R = 5, m = ,̂1»
(ill) Let P^(a) m P =(a) = 5Y^. 5 ""O

+ 3a® + 1 = 5Y®.

Then

or

(2a® + 3)® - G . 20Y®.

Thus 5 I 2a® + 3 and

(2Y) - 5 A 2a®^+ 3 ^® . -1

But from (1.11) we see that this implies that
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f; 2n+l

for some a. I.e.

(2a) « 5P (1) - 6(2r+l)

We show that.this equation has only the solutions 2n+l = ĵ 3. 
If 2n+l » ^3^5Pg^^(l) - 6 * 10 - 6 « 4, whereas if 2n+l /

J»we may write 2n+l *» ±.3 + & 3 .k as before and from (1*21) we
obtain

5P (1) - 6 = ^5P (1) - 6 « -16 (mod Q (l))
2n+1 +3 k

From (1*16) therefore

(6P (1) - 6 / Q (1)) * -1
2n+l k

Hence the result. This then implies that the only solution of 

+ 3a® + 1 . BY®

is a « 1, Y a ±1»
This completes the proof*
THEOREM 1*14* Let R be an Integer greater than 1 such that
I 2 2Hja +4* Then the equation P (a) » 2RY has no solutions * n

other than n » 0*
Proof* From (1*26) and (1.27) we again see that Rlp^(a) if
and only if pjn. How 3^R since p|a^ + 4 and therefore, from
(1*12) we find that 2r 1p (a) if and only if 3Rln. Let n = SRm*n '
(1) Suppose first that m is even. Then from (1*8)

P (a) a P (a) Q (a)
3Rm 3Rm/g 3Rmyg
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and from (1.26) and (1.27) H|Pgj^^^(a). Hence if p3pju(a) 
a 2RY^, we require

From theorems 1.1 and 1.2 the only possibilities are 3Rm = 0,3 or 6#
, o 2Since R[ a +4, R>1, 3R(^m) « 3 or 6 is impossible and we have 

only the solution n « 0.
(il) Suppose now that m is odd. Then from (1.6) and (1.10)

swhere from (l.ll) (P (a), Q^(&) 1) = 1 or 3. Butjcuii Em
3-|-QTw(a)̂  + 1 and therefore (P^(a), Q (a)^ + 1) « 1. Also,Rm Rm
from (1.27) RlP^(a). Thus if * 2RY we require
either

Qj^(a)® + 1 .

which is impossible, or :

eKm(a)^ + 1 . 2Ï1® I

which implies odd. Hence from (1.12) 3{mR. Since
also 2^mR from (1.31) the only possibilities are Rm = ;̂ 1.
But R> 1 and so there are no solutions*
This completes the proof.

We have now proved all the preliminary results which
we need in order to solve the equations I^(a) » iTŶ  and Q^(a) « NX^
for general square-free values of H* We begin the final part
of this chapter by proving that in general these equations
have at most one solution. Since P (a^«+P(a) and Q _(a) »•n "* n
i.^(a) we consider only positive values of n. We prove
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THEOREM 1.15, The equations
1 . P (a) r

« NY^

2 . P (a) « 2RY '
8 2

Q. (a)
V

23. « HX^

4. Q (a) u » 2tâ ' 
2

2

V

J

where r,s,t and u are 
positive integers.

have each at most one solution for any given square-free ooicA 
integerN>l^xcept in the case a * 3, H « 5 when equation 2  
has solutions s = 3 and s » 6 .
If one of these four equations has a solution there are no
solutions of the other three except in the cases

2(i) a > 2 ,a = N K , H  square-free, when
Pg(a) HK

HK
(ii) a « 1 , when

Pg^(a) = S.161.12®
Qlg(a) * 2.161.1^

(iii) a »R^, a^+ 2 = H square-free, when
P fa) « K.(RK)^4
Qg(a) S

(Iv) 2n+l

= H.K'
2 . , r^2 ..3 «- .„,2(2), a + 1 « 2R , a + 3a » NK , H square-free.

when

IV)

= N K ^
P (a) = 2.N.(RK)

* ' '  iProof. If P (a) = has two solutions m and n, then

î̂ ĵ (a) Pjj(a) « ^  as T^, say, and from corollary 1 . 2
we must have a = 3, m * 6 , n * 3. But P_(3 ) « 10 and so 
Pg(3) / where N is odd and so the equation P^(a) » NY^ has 
at most one solution for any given odd square-free integer n.
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Similarly, if P (a) = %%as two solutions m and n, say,
'B

then P (a) P (a) is a square and from corollary 1.2 the only m n
solution i s a s s  3, m «  6 , n «  3, N *  5.
The other parts of the theorem follow in a similar way from 
corollary 1 .2 .

Thus, in general, the equations 1 - 4 of theorem 126 have 
at most one solution between them. We now proceed to the 
problem of determining this one solution if it exists. It 
is convenient to distinguish, as in theorem 1.15 between an 
odd and an even square-free integer. Thus, from now on, N 
will denote an odd square-free integer.

We need first to consider when a given N will divide
P^(a) or ^(a)

Let h be the least non-negative residue of P (a) modulo R r r
where B is any integer. Since there are only R residues

2modulo R there are only R possibilities for the pair of integers
(hp, h^^^). Hence there exist integers m and n such that
h « h , h = h , and m / n. But then, since P (a)m n' mfi n+i r'
satisfies a three-term recurrence relation

^ t  *

for all integers t. In particular

0  ss h  a: h  « ho m-m n-m

Thus any integer R will divide P^(a) for some non-zero 
value of r. It not necessarily true, however, that R 
divides Qp(a) for some r, e,g. it is easily seen that 5|q^(1 ) 
for tanÿ Integer r. Hence we make the following definitions.

The rank of apparition of the Integer R with
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respect to the sequence P (a) is the least positive value of rr
for which R|p^(a).
DEFDTITIOH. If the integer R divides Q^(a) for some value of
r, the rank of apparition of R with respect to the sequence
Q^(a) is the least positive value of r for which R/Q^(a)*
If R does not divide Q (a) for any value of r then the rankr
of apparition of R with respect to the sequence Q (a) is notr
defined.

The following two lemmas are a direct consequence of the 
definitions,
lEMMA 1.7. If yo is the rank of apparition of R with respect 
to the sequence P (a), then R[p_(a) if and only ify»|n.n
Proof. Prom lemma 1.1 clearly R\p (a) if p \ n,' ' n I '
Suppose now that R|l^(a). Then R(f*^(a), P (a)), i.e, from
lemma 1.4 R| P^^ ^j(a). Thus, from the definition of
But clearly (n, . Thus ( n , = y O  , i.e.|>l n.
Lemma 1.8. If R > 2 is an integer such that the rank of
apparition,^, of R with respect to the sequence Q (a) is defined, 

I r
then R| Q^(a) if and only if n « s^ where s is an odd integer. 
Proof. Prom lemma 1.2 clearly r |q (a) l f n «  sP where s isIX /
odd. Suppose now that r \q (a). Then Rj(Q (a), Q.(a)) «n n /
2 or Q, (a) from lemma 1.5.Since R > 2 we must have kn,y>)
(Q (a), Q (a)) = Q/„ \(a). Thus, from the definition ofn (*
p, (n,|>)>|^. But clearly (n,^ ) ̂  jO , i.e. (n,ya ) = ^  .
But then, from lemma 1.5, since (Q (a), Q^(a)) » Q, \(a), nn f 3
must he odd. i.e. n *= s|> where s Is odd. I !

We are now able to proceed to the main results which are 
contained in the final four theorems, theorems 1.16 - 1.19.
THEOREM 1.16. Let K be a positive odd square-free integer 
whose rank of apparition,p, with respect to the sequence Q (&\

I ’
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Is defined# 
Then
(a) If 5^^, Q^(a) * HX^ can occur only if n * ys •
(b) If slji, 3-j-jO, Q^(a) m NX^ can occur only if n « +^and H = 3

(mod 4)
S(c) If 2^p, 3\p, Q (a) « NX can occur only if n « p .

I I ^ 2 I(d) If 2\^, 3l|̂ , Q^(a) « HX has no solutions#
Proof. Prom lemma 1.8 we see first that if Q^(a) « HX^,
then n « rp fôr some odd integer r.

I 2(a) Suppose that 2 4^, Then if Q^(a) » NX , from
theorem 1.15 and (1.7) Q (a) / NX^ for any r / 1. If

o 2Q^(a) / HX , Q^(a) » H.R.x for some square-free integer
R,R>1. Since S+y», from (1*12) R and x are odd* Since 2+j»,
from (1.33) for all r

Q (a) 55 Q ^  (a)).
V \ ^ f

Thus if Qj.̂ (a) « ITX̂ , we require Q^^^(a)^ » ITX̂ .
(i) Suppose first that R = 1 or 3 (mod 8 ). Then, since
r ^ 1, r *5 3 or we may write r « t + 2.3^.k where 2 Ik, 3+k,
and t a 1 or 3. Since Q^(a) is odd, from (1.22) we now find

Q^(Q^(a)) = (-1)3 Q^(q (a)) (mod Q^(Q^(a)) )

where,from lemma 1.5, since g\k, 3|k, (Qĵ (q (a^), Q (q (a)) ) * 1. 
'■'•'hus, from (1,30) with n » 1,

(HQp (a) / ) - {-NQ (a) / Q^^(L(a)) )
) = (-N®.R.x® / Q 4 .(a)) )

- -(R / ) 'by (1.16)
= / R) ■by (1 .1 6 )

But now, hy (1,23) since S|k, ) S ^ (mod Q^(a)), Hence



58.

Q (q (a)) « 2 (mod R). Thus p
(NQ^ (a) / “ ~(~2 / R) = -1 since R = 1 or 5 (mod

^ 2Thus Q (a) / HX except possibly if r « 1 or 3.
T(ii) Suppose now that R » 5 or 7, (mod 8 ). Then, since 

sfrjo, from (1.7) we may suppose that r is positive and so we 
may write r » t + 2.3^.k where 2|k, 3-\-k, and t « -1 or -3.
Then as above, by repeated applications of (1.22) we have

Q (̂ ) S ““ ^  _(u) ̂  (mod Q )rp y

Thus again, from lemma 1.5 and (1.30)

(NQy (a) / Qjj(q (a)) ) = (NQ^(a) / Q ^ W a ) )  )
^ ' (H®,R.x® / Q (Q (a)) )

“ ) / R) by (1.16)
» (-2 / R) by (1.23)
» -1 since R = 5 or 7 (mod 8 ).

a 1 3&
(iii) Suppose finally that r « 3. Then from (1.23)
Thus again Q^^(a) / KX except possibly for r « 1 or 3.

= Qg Ja) m Qg\Q^(a)) » Q^(a)(Q^(a)® + 3)

where (Q^(a), Q^(a)^ + 3) « 1 or 3 and n\Q^(a). Thus we must 
have either

o 2Q^(a) + 3 =

which is impossible since 1 Q^(a)| >  1, or 

Q (a)® 4 3 » 3Y^® 

whence, since ç is odd, from (1 .1 0 )
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2Q (a) * 3Y - 1.
Ÿ

Kow 2.3 .k^ 2 v/here 4\k, 3fk, and from (1.22)

3Y^^ - 1 « -Q^g(a) (mod. Q^(a))

« -(a^ + 2 ) (mod Q (a))— k

Thus

-3Y^^ = + 1 (mod Q^(a))
2But now either 3|a « Q (a) or 3|a + 2 « Q (a) and since we

I ^ 2 grequire 3|Q _(a) where /o is odd, from lemma 1.5 clearly 3fa + 2.where yo
so  ̂ 31 a. From (1.23), therefore, Q (a) « 2 (mod 3). Also,

k 2since 4|k, Q (a) = 7 (mod 8 ) "by (1.16). How a + 1 « P (a) k g 3
and BO, from lemma 1.6, (Q (a), a + 1) * 1. Also

o ^i(a + 1) = 1 (mod 4). Thus

(-3Y ® / Q (a)) = (-3 / Q. (a)) » (S / 3) I k  ^
— 1

o» (i(a" 4 1 ) / Qj^(a))(2/Qĵ (a)) 
- ( y a )  / i(a® 4 1))

But since k « ^2 (mod 6 ), from (1.20)

\(a) 2  (mod. &(a 4 1))

2  ±.{a® 4 S) (mod &(&® 4 1))

Thus

- 1  = (±.(̂  ̂+ 2 ) / J-(a + 1 )) * 1 since i(eP + 1 ) « 1 (mod 4 )

Y/hich is clearly impossible.
Thus Qg (a) W NX®.
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This completes the proof* of (a).
o(h) Suppose that 2 Ip 3+p. Then if Q^(a) » NX hy theorem

1.15 and (1.2) Q (a) / IOC for any r / +1. If Q Ja) / KX®,
8 rp ~ r

Q^(a) « N.R.x for some square-free integer R,R > 1. Since
3-Vp from (1.12) R and x are odd.
(i) Suppose that 3^r. Then since r is odd and 5+^ , sljO,
from (1.16) Q (a) = Q (a) (mod 8 )r^ - f>
Thus,since N is odd,

Q (u) Q (a)
- - - (mod 8 )
N N

2and so, if Q (a) « IIX , R = 1 (mod 8 ).
r/» QNov/ since r / ĵ l, we may write r = +1 + 2.3 #k where 2|k, 3 fk.

Repeated applications of (1.22) now give 

« .........(a) 2  (-1 ) .Q (a) (mod (a))
“/’ Y

where, since 2 |kj?, 3tkj3, from lemma 1 . 6 (0^(a), (a)) » 1 #
Thus, hy virtue of (1.7) ^

(NQp (a) / (a)) = 4m^(a) / (a))
^ ^ » ^^.R.x^ / Q (a)) hy (1.16)k/®

m -(a (a) / R) since R = 1 (mod 8 )

But from (1.18)

“ "^(k-2)^^^)^ * ** 5 1.̂  Q^(a))

Thus

(NQ^^(a) / Q^a) ) = -(j;2 / R) « -1 since R = 1 (mod 8 ) 

Thus Qy^(a) / NX^ If 3^r, r /
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(il) Suppose now that r « 3r*. Then from (1,8), (1.9) 
and (1 .1 1 )

Q (a) = Q (a) (Q (a) - 3)r^ r y  r y
where "by lemma 1.8, n \q (a). Also (Q (a),Q (a)^-3) = 1 or 3,

2 r V  r Y
Thus if Q (a) = NX v/e require either ' ^

2
(a)^ - 3 =

which is imuossihle since)Q , (a)) >  2, or 

Q . (a) - 3 - 3Y
r’l» 1

v/hich is impossible modulo 9 .
Now since 2U, 3+^, from (1.15) and the first twelve values

2of Q (a), Q (a) = 3 (mod 4). Therefore Q (a) / NX unless n n ~ n
N = 3 (mod 4).
This completes the proof of ("b).
(c) Suppose that sy, 3\p Then if Qp(a) = NX^, from
theorem 1.15 and (1.7), Q^^(a) NX^ for any r / 1. If Q^(a)
/ NX , consider Q (a) for r ̂  1.r^
(1) Suppose first that 3|r. Let r = 3r*. Then from (1.8),
(lé9) and (lé1 1 ) we have

Q (a) » Q - (a) ^  (a) + ^rp r y  V r y  /
where (Q (a), Q . (a)^ + 3) = 1 or 3 and "by lemma(1.8)r»/o r y  2
NJQ , (a)é Thus, if Q (a) « NX we require either

r T
3 = Yjl®

which is impossi"ble since |Q^,(a)) > 1 , or

3 a 3Y. ̂
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But now, since r y  is odd, as in the proof of (a) it is easily 
shoY/n that this equation has no solutions.

g
Thus Q (a) / NX .3r*a
(ii) Suppose now that 3^r. Then since s ) f r o m  (1.8),
(1 .9 ) and (l.ll) again, we have

2Q (a) = Qi_ (a) (Q.„ (a) + 3)
g

where now n)q (a) = Q. (a)(Q, (a) + 3). Let N = N N where
I 2  r I I 1 2i Qj. Xa) + 5 and If ajH, let 3|Ng. From lemma

1 .2 , II. I Q. (a) and since 3+r, hy lemma 1.5 (Q (a), Q, (a))
 ̂Y  V 2 fs= Q. (a), giving H )Q (a) + 3. '

S '  zrj>
2Hence if Q^^(a) « NX we require

Q, (a) = H X ® or 3H X ®ir. 1 1  1 1

How since To is odd, from lemma 1.5, if sIQĵ  (a), 3|q (a) * a® + S<
I 3 P y »  • 2

Thus 5|a a Q (a), and so SjQi (a). Hence, if (a), then
f*3|Q^ (a). Therefore we require either

Y
Ql_ (a) = 3N X ®3 Y  1 1

where 3N \ Q (a), or 
1 >

QjL (a) = NX,3rj9 1

where N \Qĵ (a).
\ 1 ̂If Sjir̂ o , from (a) the first case is possible only for r » 1, 

and the second only for r « 1 or N = 1. But if N = 1, from 
theorem 1 . 1 since 3jr, again r » 1 .
If 3\trp , we proceed as above until all factors of 3 in ya are 
exhausted and eventually we see again from (a) and theorem 1 . 1  
that there are no solutions for r / 1 .
This completes the proof of (c).



63.

(d) If 6 ) j? , 6 \r , for ail integers r. Thus y  = 0 or 6 (mod 12
Then from (1.15) and the first twelve values of Q (a) we see that

2 ^Q (a) = 2 (mod 8 ). Hence Q (a) / iÈbC for any odd integer N# r P r p
This completes the proof of the theorem.
THEOREM 1.17. Let H be a positive odd square-free integer
whose ranîc of apparition, o , with respect to the sequence

' 2Q (a) is defined. Then Q (a) = 2HX can occur only if n n
n « ±. j9 f and 6 I
Proof. V/e see first from lemraa 1.8, that if Q^(a) = 2HX^
then n e: r/> for some odd integer r. Also, from (1.12), if
Q^(a) « 2HX then 3| n.
(i) Suppose first that 2y. Then 2|-r^, and from
(1.15) and the first twelve values of Q^(a) we see that
Q (a) = 4 (mod 8 ). Thus Q (a) / 2NX®. r ̂ ry
(ii) Suppose now that 2\y, and 3|r. Let r » 3r*. Then from
(1.8), (1.9) and (1.11) If Q^(a) = 2KX® we have

- 3)

where (Qpt^(a), (a)^ - 3) « 1 or 3 and from lemma 1.8
NlQp, (a). ^
Thus we require

2 2 Q (a) - 3 = Xr Y  1

which is impossible since ) Q (a)) > 2, or 

which is impossible modulo 9, or

Q . (a) - 5 - 3X.r’ p J-

Qj,i Ja)® - 3 - 2X ®
I

which is impossible modulo 8 , or
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y  ( ̂ ) - 3  = 6X^
Since 3|a = Q (a) or 3| a^+ 2 »  Qg(a) from lemma 3.5 we see that

^ 2 this last case can occur only if 3| a + 2  and 2lj>r̂ , 4|-^r%
If these conditions hold, from (1.10) we now have

^2ry ** ^
where 4|2r*^ , 8\2ry « Thus we may write 2ry = ĵ 4 + 2.3®.k 
where sjk, 3|k. Repeated applications of (1.22) now give 

6X3^̂  + 1 = (-1)5^ Q^^(a) (mod Q^(a))

at —(a. + 4a^ + 2 ) (mod Q (a))" k
i.e.

2 / 4 , 26Xĵ  .. —(a + 4a + 3) (mod Q^(a) )

6 'Now a^ + 4a^ + 3 | P^(a) and so, from lemma 1.6, since 8)k, 3fk
(a^ + 4a^ + 3, Q̂ (̂a)) = 1. Also,from (1.20),

Q^(&) -, ̂ k—12^^^ S. *••• 5. (mod a^ + 4a 4 3)
Since 8|k, from (1.16) Q (a) « 7 (mod 8) and from (1.18)

2 ^ I 2Q^(a) = 2 (mod a + 2) Since 3|a 4 2, therefore Q^(a) = 2 (mod 3)
Hence

(6X^2 / Qjj(a)) = -(Q%(a) / 3) = -(S / 3)
« 1
« (—(a^ 4 4a^ 4 3)/ Q^(a))

Let q!̂  4 4a^ 4 3 « where c is odd. Then

1 « -(2 ^ . 0  / Q (a)) « -(Q (a) / c)
4 2» —(—(a 4 4a 4 2) / c)

* -(1 / c) since c ( (a^ + 4a^ 4 3)
as —1

which is clearly impossible. Thus (a) / 2NX^.
(iii) Suppose finally that 2 , 3|r. Then since 3|y, sIjd.
From (1.8), (1*9) and (1*11) therefore.



65.

Q (a) SB Qĵ (a) (q . (a)^ - 3)
r n 3

3for ail integers r. In particular, Q (a) = Q (a) (Q. (a) - 3)
r oLet N « N-N where N \Qj_ (a) and N (a) - 3 and if 3)h , let

2 1 3 2 zy
3\Nçj* Then as in the proof of theorem 1.16(c) we can show that

2(a), N 1 (Q̂  (a) - 3), and that if 3|Q, (a), 3|q (a),<*• jr̂ o 6 ' \ry y jA
If z\̂ Vjy9 from (1.12) w© see that we require either ^

2Q, (a) « 3N X 
3 Y  1 1

where 3N_|:;, (a) , or
' Y

Q, (a) = H S ® jr|- 1 1
Y/here N \q, (a). Prom theorem 1.16 (*b) and theorem 1*1 again 1 3 y
there are no solutions other than r « ^1 .
If z\^vp 9 we proceed as above until all the factors of 3 iuy* 
are exhausted and again see that r ® i.1 gives the only solutions. 
This completes the proof of theorem 1.17.
THEOREM 1.18. Let be a positive odd square-free integer' '  ̂ A
such that the rank of apparition of with respect to
the sequence Q (a) is defined^ and let N be a positive odd n 2
square-free integer such that (N #Q (a)) « 1 for all integers n.

2 n
Let the rank of apparition of N with respect to the sequence2
P^(a) be y» Then is odd and;n
(a) P (a) = N  can occur only if (n = 0), (a = N.Y , n » 2) orn 1 - d
(a = Y ®, a® + 2 » ÎI Y„ , n a 4).1 1 a

2(b) P (a) « 2N.Y can occur only if (n = 0), (a « 1, K « 161,n i  1

= 6 , n . 24) or (a® + 1 . 2 Y^®, a® + 3a . % Y  ®, n = 6 ).

(c) Pĵ (a) * ITgŶ  can occur only if (n « 0 ) or (n « 3 +j0g).
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P(d) P (a) « 2N Y can occur only If (n « 0), (a « 3, N « 5, n 2

« 3, n = 6 ) or (n = j;, /^g*  ̂I ^
Proof. \7e show first that p is odd. For suppose by way of

I 2
contradiction that jD » 2 ^  . Then from (1.8)

p/jg(a) “ y(&) y(&) 
where (N^, (a)) « 1. Since iî̂  j y^(a), therefore N^|p^(a).
But ^ 2 » ^bich contradicts the definition of Thus ^
is odd.
(a) Suppose that I^(a) » N^Y^. Now (̂ ^̂ (a) and, therefore,

) where >  2. Thus from lemma 1.6 )(a)
and n is an even integer. But since _ is the rank of

apparition of N^, clearly (n,^):^yO^, i.e. (n, y^) =
Thus n as 2 v p ^ f for some integer r. From (1.8) therefore, 
if pja) = N^Y®,

Y/here from (1.13), = 1 or 2.
If r is odd, from lemma 1.2, aud so we require either

or
P^^l(a) . 2Yi®, Q (a) . % ®

From theorems 1.3 and 1.4 the only solutions are 
/̂̂ l ** ^* Yĵ  = 1 , Q|ĵ (u) as a ss
rp- * 2, a e a perfect square, Yn= a^, Q^(a) « a^ + 2 = N Y
IX J* 2 1 2
If r is even, from lemma 1.1 and (1.8), ^^(a) Qy^(a) « P ^  (a)
\ Pj»̂ (̂a) and so K^\Pj^(a). Thus we require either

■= Xg®
or

p (a) - %^Y®, Qp W  = 2 Yg®.
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Prom theorems 1*1 and 1.2 the only solution, since r is even,
2is rp. « 0 , « 0 , Q (a) = 2 « 2Y •/ -*■ 1 o 2

This completes the proof of (a).
2(h) Suppose P (a) as 2N-Y . As in (a) we can show that

^ . 2  n a 2iy)̂ * for some Integer r. Then from (1*8), if I^(a) » 2N^Y ,

SH,Y® = P (a) Q (a)
1 r/=l rpl

where, from (1.13), (Pry3j^(a),Qr„^(a)) = 1 or S.
If r is odd, from lemma 1 . 2 again IT I Q (a) and so we requirel' rPl
either

Ppm(a) = Y,®, Q (a) - ai Y ®
1 r|?i 1 2

or

V ' * '  ■

From theorems 1.3 and 1.4 the only solutions are
rp_ SB 12, a « 1, Y t= 12, N = 161, Y » Ij

i 2 ^ ? oP„(a) * a + 1 « 2Ŷ  , Q,(a) = a + 3a = N.Y ./ 1 3 1 3  X 2
If r is even, as in (a) P^^^(a) and so we require either

or

P^pi(a) - SIÎ y /  , Q (a) . Y^®

From theorems 1.1 and 1.2, since r is even, the only solution
is i*p xsO, Y «0, Q (a) sa 2 sa 2Y Il 1 o 2
This completes the proof of (b).
(c) Suppose that P ( a ) « N Y ^ *  Then from lemica 1*7 clearlyn 2
n * r 1^2 » for some integer r.
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(i) Suppose first that r = 2r*, 
(1.8)

Then if P (a) = K Y^, from n 2

Also, from (1.13), (P (a),r’|-’2where N IP (a) from lemma 1.7. g‘ r^2
Qr,pg(a) ) = 1 or 2 so we require

2 2 Qj,î 2 (a) » X or 2X •

From theorems 1.1 and 1.2, since N >  2, we see that the
only solution is r'jÔ  = Ô.
(ii) Suppose now that 2^r^g, Then if P^^(a) =
by theorem 1.15 and (1.6) P (a) / N Y^ for any r / ^1, since

^ oN is odd. If P_ (a) / N Y then Pp„(a) = N .RY for some 2 / 2 2 / 2 2 1
square-free integer R,R> 1. Since from (1.12) R is
odd. Eut since 2-frp , from (1.32)

N Y 2

fs

and thus, if P (a) = N Y , r^2 2

Fr' y=*2
where from (a) + 4» Since Qp^(a) is odd, from? 2 '
theorem 1.13 the only possibility is r = ĵ6 , R = ĵ 5, Q (a) « 1,

I I ^But then p « 1, a = 1 and N j P (1) = 1 which is impossible.I 2 o S i
a IT Y In this case r « + 1. 2

Then from (1.14)
Thus if Pp^(a)
(iii) Suppose finally that 2-l-r|>g, 3\r 
and the first twelve values of P^(a), P^^^(a) = 2 (mod 4).
Thus P̂ ĵ g(a) / NgY^, where Kg is odd. In particular
This completes the proof of (c)*
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2(d) Suppose that P (a) « SET Y . Then again it is clearn 2
that from lemma 1.7 n = r^^, for some integer r*
(i) Suppose first that r = 2r*. Then as in (c) we find we
require

,  ̂ 8 2  Qp.ogfa) “ X or 2X .

Prom theorems 1.1 and 1.2, since IT >2, vie see that the only 
solutions are:

2 2  r*p «0, P (a) » IT .0 , Q (a) * 2 «  2X f 
1 2 o 2 o'

r^p as 3 , a m 3, IT g = 6 , Q^(3) ** S .

(ii) Suppose now that 2|r, 3|r. Let r = 3t. Then from
(1,8), (1.9) and (1.11), if P (a) = 2R Y®, we haven 2

since 2+rp . Also, hy lemma 1.7 IT |p  ̂(a). From (1.11)
[ 2  2 2 * tf2 o

(P̂ jDg(a), Qt̂ ,g(a) + 1) = 1 or 3, hut since siQ^og(a) + 1* 
therefore (F+po(a), Q (a) + 1) = 1. Thus we require qitherwr «5 +.PQ

^t 2^^) + 3" =
which is impossible since 1 Q r (a)I > 0, or

‘ V 2  2 2 'Q + 1 » 2Y,

From (1.12) this case requires 3 ^ ^ .  Also 2-ttŷ . From
(1.31) therefore tp « ,̂1. But this requires N [ P (a) « 1,

/ 2 2 1
which is impossible.
Thus 3-|t .
(iii) Suppose finally that 2^r, 3jr. Then if P̂ ^̂ g(a) = 2KgY^, 
from (1.12) 3 I Jpg. From (1.8), (1.9) and (1.11) then we find
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2 2 2K Y = P_i (a) (Qj (a) + 1)S srp2

2
where (a), (a) + 1 ) » 1 .  Let

(a), (a)^ 4 1. $lnce sjr, from lemma 1.4

Thus we require either

° V i
or

If N « 1, from theorems 1.3 and 1.4 since S-fr, 3-J'r, r = +1.3
If N >1, from (c) the first possibility requires r = 1,

3
The second possibility, from (1.12) requires 3|sr|̂ g. We 
therefore repeat the above process until all the factors of 3 
in are exhausted when again we see that the only possibility 
is r * &1 .
This completes the proof of the theorem*
THEOREM 1.19. Let N be a positive odd square-free integer 
such that NjQ^(a) for any integer r, but (K,Q^(a))> 2 for at
least one integer s. Let the rank of apparition of N with
respect to the sequence P (a) be ^ . Then
(a) I^(a) m NY^ can occur only if (n » 0), (a « 5, K = 455, 
p » 6, n « 1 2 ) or (n « p  ).
(b) P (a) =2NY^ can occur only if (n = 0) or (n = p ).
proof. If P (a) « NY^ or 2ETŶ  where (N,Q (a)) >2, from

^ 2lemma 1.6 we see that n must be even. If n = 0, P (a) « N.O
2  t ®« 2N.0 . If n / 0, put n « 2 . 0  where c is odd, t 1. Then

from (1 .8 ) we find

P^(a) - P^(a) Q^(a) Qg^(a) V " ^ c  (a)
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where, from lemmas 1.3 and 1.6,

(P (a), Q„ 1 (a)) I 4, (Q i (a), QUj_(a))|2 where 1 / j.C c5 C 2 c c
Since n (p (a), let

K = N H K .... Ho 1 2 t— 1

where

K lP„(a), N (a): l^lS.t-1.o ' c 1 S c
2 2Nowwfiçcethat if P (a) « NY or SNY , then we requiren

P (a) « N Y or 2H y ®C 0 o o o
axL

Qglc(a) = N^Y^® or 2N^Y^®.

If N^ ^ SB 1, from theorems 1.1 and 1.2 we find that the only
2 2 solution of P (a) « NY i s P (5) » 455.396 , and that there

n 1 2 2
are no solutions of P (a) « 2NY .n
If N^ ,>1, from lemma 1.8 v/e see that the rank of apparition t-1
of N+ iwith respect to the sequence Q (a) is of the form
t-1 ^ t2 ~ where is odd. Thus, from lemma 1.6 yo = 2 .c*

where «=̂ 1 c*.
Prom lemma 1.7 now c* | c. Since we require Q (a) = N Y2 c  t-1 t—1
or 2N+ -lŶ  , » therefore, from theorems 1.16 and 1.17 we must t-1
have « c* « e.
This completes the proof of theorem 1.19 and concludes this 
chapter.
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CHAPTER 2.

In this chapter we suppose that the equation y? - dY^
SB - 4 has solutions, but only even ones*

As in chapter 1 we seek solutions of the equations 
- dY^ SB t 1, t 4 and - dY^ « i 1, - 4 among the solutions 

of X^ - dY^ » - 1, t. 4 hut the method gives only very limited 
results In this case*

V»'e begin by establishing some results concerning the 
solutions of the equations X^ - dY^ * t i, t 4 which .are very 
similar to those obtained in the first chapter*

Since all the solutions of X^ - dY^ » - 4 are being
supposed even, if X « A,Y »B is the fundamental solution
clearly A and B are both even* We put A « 2a, B « 2b* Then 
again, as in ( e )» the general solution of X^ - dY^ « - 4 
is given in terras of a and b by

X + Yd^ = 2 ^ 2a + gbd^ ^

» 2 (a + td^)
As before we write «<.. a + bd^, R m a - bd^ and have Immediately

4 Ji « 2a| — 1 (2.1)

Again we define for all integers n,

%  (2a) . ^  (oC^ _ p n ) (2.2)

On (2a) .oC“ + p “ (2,3)

and obtain exactly as before

+ 2 ( ® * )  ■ + i ( ® a )  + ( 2 . 4 )
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Qji ̂  g(2a) » 2aQ^ ̂  i(2a) + 0^(23) (2.5)

P_ J2a) . (- 1) B - 1 P j 2 a) (2.6)

Q_ J2a) - (- 1)® %^(2a) (2.7)

Also, pQ (2a) » OfP^ (2a) * 1, (2a) » 2 and (2a) » 2a.
Thus it is clear that P^ (2a) and (2a) are integers for all 
integers n, and moreover positive for positive n# The first 
few values are;

XI pj2a) @n(2a)
0 0 2 
1 1  2a
2 2a 4a® + 2
3 4a® + 1  8a® + 6a
4 8a® + 4a 16a'* + 16a® + 2
5 16a* + 12a® + 1 32a® + 40a® + 10a
6 32a® + 32a® + 6a 64a® + 96a* + 36a8 + 8
Again as In chapter 1 we obtain

®^m + n (®a) " iy,(2a)Q^(2a) + y 2 a ) i^ (2 a )  (2 .8 )

2 %  + n (2a) = (4a8+ 4) I^(2a)I^(2a) + Q^(2a)Qn(2a)(2.9)

Qjj(2a) ■ Q 2n (2a) + (- 1)^2 (2.10)

Q^(2a)® « (4a® + 4)Pj2a)® + (- 1)“.4 (2.11)

How frora(2.9) we find
®« m + (®*) - (**^ + 4)Pj2a)P2jj(2a) + Q^(2a)Qgjj(2a)

. (4a® + 4)%(2a)Pg2a)Qj2a) + Qm(2a)/Q%(2a)
(- l)^-^.2)

from (2.8) and (2.10)

2
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ç Q^(2a) (mod 2tî (2a))

for clearly, since Q (2a) = (a + bd^)^ + (a - bd^)^ where a andn
b are integers, Q^(2a) is even for all integers n. Thus

Qm+gH(2a) = (-l)^"^Qj2a) (mod Q^(2a)) (2.12)

and similarly

i^+gg(2a) £  (-if Q^(2a) (mod (4a^ + 4)P^(2a)) (2.13)

Now if a is odd, clearly Q (2a) = 2 (mod 4) ando ~
Q^(2a) = 2 (mod 4). Suppose that a is odd and Q^(2a) = 2
(mod 4) for all r < n. Then from (2.5)

Qn+i(Sa) - 2a Q^(2a) +

where 4| 2aQ (2a) and hence

Qĵ l̂(2a) = Q̂ _̂ (̂2a) = 2 (mod 4)

by the inductive hypothesis. Thus we have

if a is odd, then Q^(2a) = 2 (mod 4) (2.14)

Prom (2.8) P (2a) = P (2a) Q (2a) and therefore, from 2n n n
(2.14), ^g^(2a) is even. Clearly P^(2a) ^ 1 (mod 4). Suppose
that P (2a) = 1 (mod 4) for all 2rofl ̂  2n-l. Then from (2.4)2ra+l

P (2a) * 2a P (2a) + P„ ,(2a)2n+i 2n 2n-l'
and hence

^2n+i(^^) - ^2n_l(2a) = 1 (mod 4)

i.e.

®|P2n(®*): ^2n+l(®^) - ^ 4) (2.15)
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Prom (2.13) we find

Sn + 4 (2*) = (mod (4a2 + 4)Pg(2a) )

and if a la odd, 6̂  4a^ + 4  and 2|Pg(2a). Thus we have 

Qm + 4 (2») = Qm(2a) (mod 16)

i.e.
if a is odd, then ^ ^(Ba) « ^Q^(2a) (mod 8) (2*16)

It will he readily seen that the proofs of lemmas 1.1 -
1.6 do not depend in any essential way upon the fact that a is
odd, and the results carry over to (8a) and I^(8a). Y/e need 
only one of these results, which for the sake of completeness 
we prove here.

lÆmilA 8.1. Q̂ (2a)|Q̂ ĵ; (2a) for all odd integers t.
Proof. Prom (2.7) we see that we need only consider t ^  0*
Hence we use proof hy induction. The result is clearly true for
t SB 1. Assume it true for t as 8r-l. Then from (2.9)

2 Q ( g r  +  -  ( 4 a 2  +  4)P(2p_ ^ j ^ ( 2 a ) P g j j ( 2 a )  +  Q ( g r _ i ) n ( 2 a ) .

%2n(2a)

. (4aS + 4)P(gp_i)^(2a)Pa(2a)Qa(2a)

+ Q(2r-l)n(2*)Q2n(2&)

from(2.8). By the inductive hypothesis and (2.14) clearly 8Qĵ (2a)
divides the R.H.S. of the ahove ecpiation and hence the result hy
induction.

Finally we observe that if 2c<« 2a + 2hdi is the fundamental
2 osolution of the equation X - dY"̂  « -4», then the fundamental

solutions of the equations - dY^ « 4; X^ - dY^ « -1 and
X^ - dY^ *8 1 are respectively 2«»<p, •<, ando^. Hence
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the general solution of - dY^ « -4 is X *
Y « 2hPg^_,^(2a) (H.I)

the general solution of X^ - dY^ « 4 is X » Qg^(2a),
Y « 0bPgn (2a) (II.II)

the general solution of X^ - dY^ * -1 is X «
Y « tPĝ _i(2a) (II.III)

the general solution of X^ - dY^ « 1 is X « iQgj (̂2a),
Y « ■bPgn(2a) (XI.IV)

We are seeking solutions of X* dY^ * t 1, t 4 and
X^ - dY^ » I 1, t 4. Clearly the solutions of X^ - dY^ * -4
are given hy X *» Y^ «ShP^ ^^(2a) with similar results
for the other equations* We would therefore like to prove 
results which would enable us to say when I^(2a) « Y^, 2Y^ and 
Q^(2a) = X^,2X^. We note that from (2.14) clearly there are no 
solutions of Q^(2a) ** X^ if a is odd. It is not, however, 
possible to give results covering all the ahove equations even 
when we restrict a to being odd. The results which have been 
obtained are contained in the following two theorems.
THEOREM 2.1. The equation Qg^(2a) # 2X^ has only the solution
n » 0 if a is odd.
Proof, (i). If 2n * 2 (mod 4) then Q^ (2a) ^ 2X^. For, by 
repeated application of (2.16)

^ ^ 2 n ( 2 &Qg(2a) » &(4a ^ + 2) » 3(mod 4) 

and hence (2a) / X^.
(il) If 4| 2n then Qg^(2a) / 2X^. For suppose first that 3^2n.
Then 2n = 6m t 2 where m is an odd Integer. By (2.12)
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Q^^(2a) = - Q^g(Sa) (mod Q^JSa))
= 4a^ + 2 (mod "by (2.7)

By Imma 2.1 Qg(2a)]Q^^(2a) since m is odd.
Q (2a) * 2a (4a^ + 3) and so 3

(2Qgjj(Sa)/4a^ +3) - (2(4a + S) / 4a® + 3)
2SB (-2 / 4a + 3)

ss -1 since a is odd.
2

Thus 2Q (2a) / 4X .
If 3|2n, from (2.8) i- (2.11), putting 2n * 6m,

2Qg^(2a) = 2Qg^(2a) (Qg^(2a)® - 3)
2 2 where (q (2a), Q (2a) - 3) » 1 or 3. Thus if Q (2a) « 2X ,2m 2n

we require either

& (2a) - 3 = X ®2m 1
vfhich implies n « 0, or

(2a)® - 3 = 3X ®2m' ' 1

which is impossible modulo 9.
This completes the proof.
THEOREM 2.2. The equation P (2a) » has only the solution 
n = 0 if a is odd.
Proof. From (2.8) we find

(2a) » P (2a) Q (2a)2n n n
where clearly, from (2.11), (P (2a), Q (2a)) * 1 or 2. Thus ifn n
Pgn(2a) = Y we require either

Pjj(2a) = Y^® ; Q^(2a) =



78.

which from (2.14) is impossible, or

P^(Ba) . } Qn(2a) » SYg^,

Prom theorem 2*1 the second equation requires n odd or n «0* If 
n is odd, from (2.15) (2a) Is also odd and so I^(2a) ^ 2Y^.
Hence the only solution is n * 0.
This completes the proof.
These are the only results we have been able to obtain in this 
case.
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CHAPTER 5 ,

In this chapter we suppose that the equation dY^ «-4 
has no solutions hut tlmt the equation X^ - dY^ * 4 has odd 
solutions, I.e. solutions (X,Y) where X and Y are both odd.

The results at the beginning of this section, up to and 
including theorem 3.4 are due to J.H.E.Cohn and are taken from 
( 4 ).

We seek solutions of the equations - dY^ « 1,4; X^
• dY^ « 1,4; X^ - 68% Y* " 1,4 and - dY^ » 1,4 among the 
solutions of X^ ~ dY^ « 1,4.

We begin by establishing some results concerning the 
solutions of the equations X^ dY^ * 1,4 which are very similar 
to those set up at the beginning of chapter 1 for the equations 
y? - dY^ * tl, t 4 in the case where the equation X^ - dY^ » -4 
had odd solutions#

Since X^ -• dY^ # 4 has odd solutions clearly d « 5 (mod 8). 
I f X « a ,  Y w b l s  the fundamental solution It Is well-known that 
the general solution of X^ - dY^ * 4 Is given In terms of a and 
b by

See for example ( 6 )♦
Hence, since we are assuming that there Is a solution for 

which X and Y are both odd, a and b will be both odd# We write 
as before &(& + bd^), p « |(a - bd&) and have Immediately

a I 1 (3.1)

We now define, for all integers n,

?!»(«) - ^  » -p) (3.2)
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çn (a) (3.3)

Then

^n + 2(a)-

(«t'̂ + 1 - pa + 1)(»< + |Î + IJetp
td^ ' ' Sd

i.e.
%  + s(*) = ®Pn +l(a) - Pn(a) (3.4)

from (3.1) and (3.2). Similarly, from (3.1) - (3.3) we find

%  + s(a) * ®9n + 1 (a) " <®‘®)

P_n(a) « -î>n(a) (3.6)

Q_a(a) = (3.7)

Also Pg(a) m 0,Pi(a) ■ 1,ÇL(a) = 2 and Cj^a) = a and thus it is
clear that p (a) and q̂ (̂a) are integers for all integers n and
moreover positive for positive n. The first few values are;

n p (a) q (a)r\ n
0 0 2

1 1  a
2 a - S
3 — 1 a® — 3a
4 a® — Sa a^ — 4a^ + 2
5 a^ - 3a^ + 1  a^ - 5a® + 5a
6 a^ - 4a® + 3a a® - 6a^ + 9a^ *# 2

We also observe that since the equation - dY^ « -4 has
solutions for d m 5 and d » 13 in the case that we are considering 
d ^  21. Now S5 db^ + 4 and therefore

a;3i 5 (®*8)
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2 9  _ (a) = _2_& (=<* + * -/I*» *)
Now from (3,2)

m +  ' 'bT'

( 4* + p*)

a p (a) Q (a) + p (a) q (a) m n n m
from (3.2) and (3.5), i.e.

2p (a) B p (a) q (a) + p (a) q (a) (5.9)m + n m n n m
Similarly, from (3.1) - (3.3) we have

2
2q (a) « (a ~ 4) p (a) p (a) + q (a) q (a) (3.10)m + n m n n m
Cl (a)^ * q^(a) + 2 (3.11)2n
q^(a)^ a (a^ - 4) p^(a)^ + 4 (3.12)

Now from (3.12) obviously 2|q̂ (a)<è=->2|p (a). Also, from 
(3.1) and (3.2)

P, ( a ) - J L i  i<k^5n bd ^
3ni

n Ut a n. 2- ( A - p  ) {(ok + q “) - 1)

“ P (a) ( q (a)® - 1) n n
Thus, since 2\p (a)<^>2\q (a), slp (a). From (3.4)’ n ' n ' 3n

where a is odd and therefore p (a) and p„ (a) have the sameon—1 on—
parity. If they are both even p^(a) is even for all n which we 
are assuming not to be the case. Hence they are both odd.
This gives us

*1 P^(a)^ 2 jq^(a)<^ sjn (3.13)
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(3.12) and (3.13) now give
(Pn(a). %(&) ) . 1 If 3%n ; (Pn(a),<3n(a) ) - S If sjn (3.14)

From (3.9) we find

8Pn + e(®) - + 9n(a)Ps(a)
“ Pn(a)(qs(a)^ - 2) + qa(a)pg(a)qg(a) from (3.9)

and (3.11) 
i.e.

2Pn + 6(a) = Pn(a) ( (a^ - 4)pg(a)2 + s') + qjj(a)p3(a)qg(a) 
from (3.12)

s 2pĵ (a) (mod 2pg(a) ) 
since s|p2 (a) and 2[g2(a). But Pg (a) « a^ - 1 « 0 (mod 8) 
and therefore 2pĵ  ̂  @(a) « 2pjĵ (a) (mod 16). By similar means 
we may prove all the following;

Pn + e(a) 2 Pn(a) (mod 8) ; p* ^ ig(a) . Pĵ (a) (3.15)
(mod 16)

%  + 6(a) - Qn(a) (mod 8) } q^ + is(®) s qn(a) (3.16)
(mod 16)

As in chapter 1 again we use k to denote an integer, not
necessarily positive, which is even hut not divisible hy 3.
Prom(3.11) clearly

q^(a) 2  7 (mod 8) (3.17)

Now from (3.9) and (3.11) we have

2%n + gjj(a) “ Pm(a) 0-gjj(a) + %,(®)P^(=)
• Pm(a)(qa(e)2 - 2) + qg^(a)pg(a)qg(a)
2 f-2Pjg(a) (mod %(e) ) If sj-H 
L”2Ptn(a) (mod 2%(a) ) if 3|k from (3.13)
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Thus, In either case, from (3.13)

Pm + 2g(®) : -Pm(®) «̂ [(a) ) (3.18)

Similarly we find

<3m + BR(a) 5 -^.(a) (mo^ 9n(®) ) (3.19)

Pfti + £H(a) ■ %(a) (mod pjj(a) ) (3.20)

%i + 2%(a) B %(a) (mod (a^ - 4)p%(a) ) (3.21)

Prom(3.17) together with (3.18) - (3.19) we then have

Pm + 2%(a) 5 - Pm(a) (mod q]̂ (a) ) (3.2S)

%  + 2k(a) 5 - %(&) (“‘O'i 9jc(a) ) (3.23)

Taking N « 1 in (3.19) and (3.21) we have, hy induction,

92n(a) 5 (-1)*.8 (mod a) (3.24)

qg^(a) » 2 (mod a^ - 4) (3.25)

<12n + l(a) B a (mod a^ - 4) (3.26)

Also from(3.9)

8Pn + g(a) “ Pn(a) (a® - 8) + Qjj(a).a
s 8p^(a) + aqjj(a) (mod a^ - 4)

and using this equation, (3.25) and (3.26) a simple inductive 
arguement will show that

Pgn(®) 5 na (mod a^ - 4) (3.27)

P2n + l(a) s 8n + 1 (mod a^ - 4) (3.28)

Thus, hy (3,17) and (3.24), if 2|k, 3|k, we have
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(a / Qjj(a) ) . ( (-1)^^ + 1 . 2 /a) (3.29)

Now since 2(k, 3^, k s t 2 (mod 6) and so, from (3.19) 
and (3.7) we have

q^(a) 2 « .... s ±q^g(a) * -9g(a) (mod qg(a) )
i.e. q^(a) m t (a^ - 2) (mod i (a® - 3a) )

Suppose now that a « 3 (mod 8). Then J (a^ - 3a) « 1 (mod 4)
(2qg(a) / qjj.(a) ) . (Qk(^) / ) « (a^ - 2 / & (a® - 3a) ]

since ^(a® - 3a) « 1 (mod 4)
= (a^ - 2 /a ) (a2- 2 / J (a^ - 3) )
* (—2 / a) (1 / i(a^ - 3 ) )
« 1 since a g 3 (mod 8),

Thus
if a 2  S (mod 8) then (2qg(a) / q^(a) ) « 1 (3.30)

By similar means we can prove that

if sj-n then (Pan(a) / ) « (Pn(a) / 9^(a) ) (3.31)

Now let n he an integer such that sj-n, sj-n and suppose
that Qĵ (a)̂  - 1 « 2y^. Then from (3.11) we have

qgii(a) « 2y^ - 1.

Let n m Î1+ rk where r is odd and k « 2^, m:^2. Then k » 6t t 2  
v/here t is odd sincd ^c. Thus from (3.19) and (3.7)

Qjj.(a) 5 2  .... 2  (~l)*q+g(a) * ~qg(a) (mod q^(a) )

If n / +1, repeated applications of (3.23) together with (3.7) 
now give

2y® - 1 = q.2n(®) s (-l)^9+2(a) : -Sg(a) (mod qĵ (a) )
s -(a^ -2) (mod qĵ (a) )
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i.e.
2y^ « - (a^ - 3) (mod q^(a) )

Hence

(Sy8 / qjj(a) ) « ( - ! /  qjj.(a) ) (a® - 3 / qjj(a))

i.e.
1 » (9k(a) / & (a2 - 3) ) hy (3.17)
ss (—(a^ — 2) / ^(a^ — 3) )
Œ - 1 since i (a^ - 3) « -1 (mod 4)

This is clearly impossible and thus

if 2^, then g^(a)^ - 1 « 2y® implies that
n » i 1. (3.32)

Now a simple inductive arguement, using (3.10), will show

if sju, then ^̂ ^̂ (a) * 2 (mod 3) (3.33)

Suppose now that n is odd and q^(a)^ - 1 = Ry^, where 
R m 3 or 6. Then from (3.11), qg^(a) « Ry^ - 1. Since n 
is odd, we may write 2n » 12 + 2.5^. k where 4|k, 3^k. Thus 
if n / ±1, repeated applications of (3.23) give

Ry^ - 1 « -g^g(a) (mod q^(a) )

m -a^ + 2 (mod q^(a) )

Since 4|k, sj-k, from (3*19) and (3.13), (qjj.(a), qg(a) ) «% 1 and 
80

(Ry^ / qiç;(a) ) « (~(a2 - 3) / q^(a) )

i.e.
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(3 / q^(a) ) « - (i(a® - 3) / <ĵ (a) ) hy (3.1?)
2

Since i (a - 3) » - 1 (mod 4) ̂ therefore

(qjr(a) / 3) m -(q (a) / &(a® - 3) )
^ k

But J(a^ - 3)lq^(a)^ and, since 4|k, 3|k, we may write k « ^ 2 
+ 6t where t is odd. Thus from (3.19)

t
2, -I, ^(a) s. •••♦ S (-1) q „(a) (mod q (a) ) k—6 i,« o

and hence

(q (a) / 3) * -(-(a - 2) / i(a^ - 3) )
2B 1 since |-(a - 3) « -1 (mod 4)

Hence from (3.33) we see that

if 3|a, 2|n, R * 3 or 6 , then g^(a)^ - 1 « Ry^
implies n B 1. (3.34)

Prom (3.2) and (3,3)

“ i q^(a) + hd^ p (a)
n ’p, «= J q^(a) - hd^ p^(a)

whence

P_(a) n
i.e.

(3'35)

Similarly we find that
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q^(a) - ) (3.36)
iFinally we observe that if a + hd is the fundamental

solution of « dY^ = 4 and a and h are both odd, then is
2 2the fundamental solution of the equation X - dY « 1. Hence

2 2the general solution of X -dY » 4 is X « q^(a),Y « bp^(a) (111,1),
the general solution of X^-dY^ « 1 is X « Jq (a),Y « Jbp« (a)(IIlJI3n 4  CJUg

Now we are seeking solutions of the equations X - dY
2 4  2 4 2  2 2 4« 1,4; X - dY « 1,4} N X - dY » 1,4 and X - dN Y « 1,4,

Clearly the solutions of X - dY^ * 1 are given by X^ « iq (a),on
Y e ^bp (a), with corresponding results for the other equations,3n
V/e therefore wish to prove theorems which will enable us to say

2 2 2 2 when p^(a) * Y , NY and g^(a) « X , NX , where N is a square-
free integer. We are able to deal with the equations
p (a) = Y^, 2Y^ and q (a) « X^, 2X^ immediately. The results^ n
are contained in the following four theorems,

2THEOREM 3,1, The equation q^(a) « X has
a) two solutions n = & 1 if a is a perfect square;
b) no solutions otherwise.
Proof, (i) If n is even, by (3,11)

g^(a) = - 8 / X®.

(11) If n = 3 (mod 6), by (3.16)
3q^(a) « q^(a) » a - 3a « -2a ( mod 8)

and thus, since a is odd, (̂ (̂a) / X^,
(lli) If n B ± 1 (mod 6), by (3.16) and (3.7)

S « a (mod 8)

and so q^(a) / X^ except possibly If a = 1 (mod 8).
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g
(iv) If a « 1 (mod 8) and n is odd, then g^(a) / X except 
possibly for n = ±1. For if n / &1 we may write n = ±1 + 2.3^.k 
where S|k, 3fk, and then repeated applications of (3.23) give

a (a) = (-1)3^ q (a) (mod q (a))
 ̂ 1 k

2. -a (mod q^(a)) by (3.7)

Thus

) = (~& / = -(a /q^)(a)) by (3.17)
« -(2 / a) by (3.29) 
s -1 since a = 1 (mod 8). 

Thus g^(a) / X^ except possibly if n = ±1 and since g^(a) = a, 
this occurs if and only if a is a perfect square.
This completes the proof.
THEOREM 3.2. The equation q (a) « 2X^ hasn
a) one solution n » 0.
Proof.(i) By (3.13) if q^(a) » 2X^ then 3|n. Put n * 3m*
Then by (3.9) ^ (3.12) we have

2 X ®  -  qg^(a) = q ^ ( a ) ( g ^ ( a ) ^  -  3)

2where clearly (q^(a), g^(a) - 3) « 1 or 3. This implies that
q^(a)^ - 3 « 2X^^, 3X^^, X^^, or 6X^^, and it is easily seen 
that the first two possibilities are impossible modulo 8. Thus 
we require either

Where the first equation implies that m « 0, or 

- 3 . 6X^®, g^(a) =
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The first equation clearly implies that q^(a) is odd and so 
from the second equation q^(a) « 3 (mod 8.) But now from 
(3,16), if m is even,

%i(®) 5 Qg (a) or 9+ (a) (mod 8)
i.e.

q^(a) = 2 or 7 (mod 8)

Hence, if qg^(&) “ then m « 0 or m is odd*
But from (3.16) similarly, if m is odd

%(a) = Oh- (a) or 9 g(a) (mod S)«#1
i.e.

q^(a) B a or -2a (mod 8)*

Thus if q3jfj(a) * and m / 0, then a » 3 (mod 8) and m is odd,
(ii) Suppose now that m is odd and a =: 3 (mod 8). Then n is
odd and if n / l3 we may write n = +3 + 2.3^.k as usual. Then
"by repeated applications of (3.23) we find

whence, by virtue of (3.7)

(2qĵ (a) / q^(a) ) =>̂ (-2qg(a) / q^(a) ) » -(2qg(a) / q]̂ (a) )
by (3.17)

« -1 by (3.30)

since a a 3 (mod 8).
Thus g^(a) / 2X^ except possibly for n « + 3, a » 3 (mod 8).
(iii) Suppose now that 2X^ « a(a^ - 3) a  Then as in
(i) we have

a m SXi^, a® - 3 = 6Xg^
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or
2 4« 3X, - 1.

2 1
But from (1) again this equation has only the solutions X̂  ̂a 1 or 3 
giving a a 3 or 27. Since by (3.8) a ̂  5, a « 27 is the only 
possibility, but a = 27 gives d « 29 and the equation 
X^ - 29Y^ = -4 has solutions. Thus g^g(a) 2X^ in this case.
This completes the proof.

2
THEOREM 3.3. The equation p (a) « Y hasn
a) three solutions n «  0, 1,2 if a is a perfect square ;
b) two solutions n =  0,1 otherwise.

2Proof.(i) If n is odd, p^(a) / Y except for n =  1. For p^(à)
= 1 = 1^, p (a) s= - l/"Y^ since a >  5 by (3.8), and if n /  1
or 3 we may write n «  t + 2.3 .k where 2|k, 3j»k and t *= 1 or 3. 
Repeated applications of (3.22) now give

Pn(a) £ (~l)3*‘p^(a) = -P^(a) (mod q^(a) )
Thus by (3.31) with n » 1,

(p^(a) / q^(a)) « (-P^fa) / q^(a)) « -1 by (3.17)
Thus Pĵ (a) Y^ except for n = 1.
(ii) Suppose now that n is even and p (a) « Y^. Then from (3.9)

Y® = P„(a) » P,„(®) %n(®)I* gU 2"
and so, by virtue of (3.14) we have either 

or

® ^ 1  * ^n(^) * ^ 2  
From theorem 3.1 the first case is possible only for Jn « ^1, a
is a perfect square. Since p^3 (̂a) « -1 the only solution is
therefore n « 2, a is a perfect square.
The second case is possible only for n » 0, from theorem 3.2.
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This completes the proof of the theorem.

THEOREM 5.4. The equation p (a) « SY^ has --------------------- n ‘

a) two solutions n = 0, 3 If a = Jq (2)
b) one solution n = 0 otherwise.

Proof»(i) Prom part (i) of the proof of theorem 3.3 we see 
that if n is odd and n / 1 or 3 then there exists k such that 
2|k, 3|k and

(Pjj(a) / g^(a)) « -1,

But then, since q^(a) = 7 (mod 8) from (3.17)

(8p^(a) / <3̂ (a)) = -1
2Hence p^(a) / 2Y except possibly for n « 1 or 3. But p^(a)

= 1 / 2Y^ and so the only possibility is n = 3. But then
a® - 1 = SY®, I.e. a = iQ_(2).

(11) Suppose now that n Is even. Then If p (a) = 2% , from
(3.9)

n

2Ï® = P^n(a) q^„(a) 

and so by (3.14) we have either

Pin(®) - ^ 1  ;

or
P^n(®) = > %n(®) ” BYg®

The first case is impossible since the first equation requires 
3|^n from (3.14) and the second requires 3-|-n from theorem 3*1 
In the second case, from theorem 3.2, the second equation is



92.

satisfied only "by ^n » 0. Thus n » 0 is the only solution in 
this case.
This completes the proof.

2Now we are seeking solutions of the equations p (a) == Y ,
2 2 2 ^NY and q (a) « X , NX where N is a square-free integer, and

^  2 9 2 2have dealt with the cases p^(a) « Y , 2Y'̂  and q^(a) « X , 2X
in theorems 3.1 - 3.4. As in chapter 1 it turns out next to
be most profitable to drop the restriction that N be square- 
free and consider N = P^(a), 2p (a), q (a) and 2q (a). Again,m m m ™
we must first establish for what values of n p (a) I p (a) andm ’ n,
the corresponding results for the other functions. The results
are contained in the following six lemmas.
LEMMA 3.1. p (a)lp (a) for all integers r.---------- m I rm
Proof. From (3.20) vie have

Prm(®) =. P(r-snm(®) S •••• sfe (a) if r is even

Thus since Pg(a) = for all Integers r.

LET/ÎMA 3.2. I ̂ r̂m̂ ^̂  for any odd integer r.
Proof. From (3.19) if r is odd we have

W ® )  s -%(r-2)m(®) £••••=. t V ® )  V ® ^ ^

and thus, if r is odd, q (a)lq (a).m ' rm
Lmi<lA 3.3. (q (a), q (a)) * 1 or 2 for every integer r.' rm ^
Proof. If r is even from (3.19) we have

q„n(a) = ±9g(a) = ±2 (mod 9jn(a)).
Hence the result.
LE7\Pm 3.4. p (a) B (p (a), p (a)).

(m,n) m n
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Proof. Let (rn,n:) = r. Then it is well-known that there 
exist integers g and h such that gm + hn « r. Thus from (3.9) 
we find that

2pp(a) = Pgm(a)Qhn(a) + Phn(®)lgm(®) O

From lemma 3.1 Pjn(a)|pguj(a) and p^(a)|p^^(a). Thus 
(Pm(a)« Pn(a) )\2Pr(a).
But also from lemma 3.1 Py(a)Jp^(a) and Pj,(a)|p^(a). Hence 
(Pm(a)* Pn(a) ) = Pp(a) or 2p̂ ,(a). Obviously,If Pnj(a) or 
Pn(a) is odd, (Pm(̂ )»Pjj_(®) ) = Pr(a)$ If they are both even,
by lemma 3#1, Pg,̂ (a) and P^(si) are also both even. Then from
(3.13), Qgjn(a) and are both even. Thus from (•) we may
obtain

Pr(a) * Pgm(®) (̂ "ihn(®) ) + W ® )  )

where and q̂gĝ (a) are both integers. Then again, as
above, (Pm(a), p^(a) ) « Pj»(a).
This completes the proof.

LETuYLi 3.5. Let (m.n) = r and let n be odd. Then
r

a) if m is odd (%(a), Qî (a) ) » ^^(a)
r

b) if m is even (q^(a), q^(a) ) « 1 or 2.

Proof. Since (m,n) » r there exist integers g and h such that 
gra 4 hn « r. Then from (3.10) we find

% ( ® )  = - ^)Pgm(®)Pha(®) + W ® ) ‘ihn^®) ('')

(a) If m and n are both odd, g and h will be of opposite 
r r

patijy. We may suppose, without loss of generality that g is 
odd. Then from lemma 3.2 <3m(a)| qgni(a). Since h Is even, from
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lemma 3.1 and (3.9),
Pgnt®) “ Pn^®)hhn^®) and hence (g^(a), q, (a) ))2^^(a).
Since m and n are both odd, from lemma 3.2 also q (a)|q (a) and r r r ' m
<L(a)lq^(a). Thus (q (a), q^(a) ) « q (a) or Sq (a). By a r ' ua m h r r
method similar to that used at the end of the proof of lemma 3.4 
we may show that (q (a), q (a) ) /  2c (a).

^ XI X»
This completes the proof of (a).
(b) If m is even, then h must be odd.

r I(i) If g is even as above we may show that (q (a), q (a) ) 2q (a).IQ n r
Also, since n is odd, by lemma 3.2 q (a)lq (a). Thus (q (a),q (a)) I» r ’ n m n
divides (q^(a), 2q (a) ). But since m is even, from lemma ra r P
3.5, (q__(a), q (a) ) 2. Thus (q (a), 2q (a) )l4. But since m is “lu P I m r '
even, from (3.11), q (a) = q (a) - 2 and so q (a) is either oddm Jm m
or congruent to 2 modulo,.4. Thus g^(a) ) \ 2.
(ii) If g is odd from (3.9) we have

= Pgn,(®) + Phn^®) (®) (')

where from lemma 3.2 q̂ Ĉa) [q^^Ca) and q (a)|q (a). Thus
(q^(e), q^(a) )|2p^(a). Since m is even, however, from (3.11)
and (3.12) a (a) » 2 (mod p. (a) ). From lemma 3.1 p (a)lp, (a)m — Tg-m r ' ^m
and hence (q (a), q (a) )|4 but as above (q^(a), q (a) ) « 4 m n ' Tn n
is impossible.
This completes the proof.
LCT.IA 3.6. Let (m,n) « r. Then
(a) if m is odd, (p (a), q (a) ) | 4;P n
(b) if m is even, (p (a), Q (a) ) * q (a).P m n r
Proof. Again, since (m,n ) » r there exists integers g and h such
that gra + hn « r and from (3.9) and (3.10) we obtain as before

2p^(a) - Pg^(a) g^(a) + P^(a) q^(a) (')

2q (a) . (a^ - 4) p (a) p (a) + q (a) q (a) (*•)^ 6m hn gm hn
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(a)(1) If m is odd and h is odd, from lemmas 3.1 and 3.2, 
r

P (a)|p (a) and q (a)|q (a). Thus from (**) (p (a), a (a) )m gm a hn m ^
l2q (a). But since m isodd, q (a)|q (a) and so from (3.12)' “ r r ' m

it is easily seen that (p (a), q (a) ) = 1 or 2.m r
Thus (p (a), q (a) )l4 as reqiired. m n
(ii) If m is odd and h is even, from lemma 3.1 and (3.9) we 

r
see that P _ ( a )  p (a) a n d  p (a) = p ( a )  q (a)|p ( a ) .  Thus

^ m  2n n ^  ' hn
from (*), (p (a), q (a) )|2p (a). But from lemma 3.1 p (a) Ip (a) m n r r n
and thus, hy (3.12) (p (a), q (a) ) = 1 or 2. Thus againr n
(p (a), q (a) )14 as required, m n
This concludes the proof of (a).
(h) If m is even, then h must he odd. Then from (**) as in 

r
the proof of (a) (i) (p (a), q (a) )l2q (a). But now,from them n ' r
definition of r, since m is even, n is odd. Thus from lemma

r r
3.2 q (a)\q (a). Also, since m is even, from lemma 3.1 and I* n I»
(3.9) p (a) . P (a) 9 (a)\p (a). Hence (p (a), q (a) ) =Sr r r m m n
q^(a) or 2(î (a). But an arguement similar to that at the end
of the proof of lemma 3.4 shows that (p (a), q (a) ) = 2q (a)m n r
is impossible.
This completes the proof.
COROLLARY 3.1. (of lemmata 3.4 - 3.6)
(a) If p (a)lp (a) then mln.m » n '
(b) If q (a)lq (a) andl(i (a)l> 2, then n is an odd integer.m ’ n ' ^  m
(c) If q^(a)|p^(a) and|q^(a)l > 2, then n is an even-Integer,

(d) If p (a) \q (a) and\p (a)\ > 2, then m = 2.m ' n ’ m
Proof. These results follow immediately from lemmata 3.4 - 3.6* 

We are now in a position to solve the equations 
Pjj(a) = Pj^(a)Y®, 2p^(a)Y®, q^(a)Y^, 2g^(a)Y® and q (a) = q^(a)X®, 
2%(a)X^, p^(a)X^, 2p (a)X®. The results are contained In
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theorems 3.5 - 3.12.
THEOREM For any given m / 0,q^(a) is of the form qj^(a)X̂
only for ii «= + m.
Proof. We note first that from corollary 3.1 if q^(a) « q^(a)x8
then n « mt for sone odd integer t.
(i) If t B +1, then q^(a) = q^(a) « q^(a)l^, from (3.7), 
whereas if t / +1, ?/e may write n = +m + 2.3^.k where sjk, s|"k. 
Repeated applications of (3.23) now give

q^(a) = (~l)r g^(a) (mod r^(a) )

Now if 2® is the highest power of 2 which divides m,2^ ^|k
and 80, since 3^k, from lemma 3.5 and (3.13) (%(a), q^(a) ) = 1. 
Thus by virtue of (3.7)

(9jn(a) qg®) / %&(&) ) = (-q^Ca)® / 9]̂ (a) )
■ -1 hy (3.17)

Thus Qn(®) / %(a)X®.
This completes the proof.
THEOREM 3.6. For any given Wji 0,q^(a) is never of the form

Proof. Again, from corollary 3.1 we see that if q^(a) * 
2q^(a)X^, the:\ n » mt for some odd integer t. But then, as in 
the proof of theorem 3.5, if t / +1, this implies that there 
exists k such that s|k, 5^k and

(q^(a) Qn^a) / q^(a) ) « -1.

Since, from (3.17), ĝ (̂a) » 7 (mod 8), therefore 

(S(̂ |£,a) ^(a) / q^(a) ) » -1.
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and thus. If t / ̂ .1, q (a) 4 2q (a) X®. If t = +1, q_(a) =p n ra - “n
/ 2q^(a) X .

This completes the proof.
THEOREM 3.7. For any given m / 0,1 p (a) is of the form

2 ^ p (a)Y only for n = m and n « 0.m
Proof. We note first, that from corollary 3.1, if p (a) =

2 ^Pm(a)Y then n = mt for some integer t.
g

(i) If t is even p^(a) / p^(a)Y except for n =  0. For, let 
t = 2t* and then from (3.9)

where, from (3.14), (p (a), q (a)) = 1 or 2. But hy lemmamt g
3.1, p (a)|p .,(a) and therefore, if p (a) = p (a)Y we require m 1 21 m
e ither

which from theorem 3.1 is impossible since \ mt*| > 1, or

From theorem 3.2 this requires mt* « 0,amd hence if t is even, 
P (a) = p (a) Y^ if and only if n = 0.n m g
(ii) If t is odd and m is even, p (a) / p (a)Y except for

-2 mt e l .  For clearly p^(a) » p^(a).l whereas if t / 1, put 
m « 2m* and from (3.9) we have

where, by (3.14), (p (a), q (a)) = 1 or 2. Also, since^ t m ’t
t is odd, from lemmas 3.1 and 3.8 p ,(a) I p (a) and™ m*t
q^,(a) I q̂ , (a). From (3.9) p^(a) - p^,(a) g^,(a) and so, if
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2
p (a) = p (a)y we require either 
n m

which is impossible from theorem 3.6, or

" V ( ® ) ^
Prom theorem 3.5 the second equation implies t = ±1, but
p (a) = -p (a).-m m
Thus t « 1 is the only solution.
(iii) If 2jm, S-j-m and t is odd then p^(a) / except
for t = 1. For clearly p (a) *= p (a).l^ and p (a) «g ^ 3m
Pjjj(a) (q^(a) - 1) 4 P^(a)Y from (3.35) and if t / 1 or 3 we 
may write n =  gm + 2.3^*km where 2|km, S-j-km and s » 1 or 3. 
Repeated applications of (3.22) now give

Pn.(®) 5 -Pgm(a) (mod qj^(a)) 
uNow if 2 is the highest power of 2 which divides m,

u+^i2 Ik and so, by lemma 3.6 and (3.13) (p (a), q (a)) = 1.sm km
Thus

(P„(a) P^(a) / qj^(a)) = (-pja) p j a )  / q^(a))
= -(Pn,(®)^ / q^(a)) ty (3.17),(3.31) 
« —1

2Thus p (a) / p (a)y except for t « 1. n' ' m
(iv) If 24-m, 3lm and 24-t, 3|t, then p (a) / p (a)Y^.' n m
For, from (3.9)

%(®) “ * 1)J 3
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where, since 3|t by lemma 3.1 p (̂ )| Pj.jjĵ (a) and also, from 
(3.18), (p̂ jjĵ (a), q^^^(a) - l)* 1 or 5. Thus if p (a) = p (a)Y^
we require either

J jmt -n ■ m

which is impossible since mt is odd, or

P,_+(a) = 3p (a) y ® j q, (a)^ - 1 « 3Y ®^mt m i  j-mt 2
8But either 3|a ,a- p (a) orsja - l « p ( a )  and since we require

\ 3 g
^mt(^) where mt 'Is odd, therefore from lemma 3.1 3| a - 1 aid 

3-j-a. Hence, by (3.34) the second equation is impossible and so 
P_(a ) / p (a)Y^.

^ g(v) If 8fra, 3|m and sjt, 3-ft then p^(a) / p^(a)Y except for 
t = 1. For we put m » 3m* and from (3.9) and (3.11) we find

Pn(®) “ (9m,t(®)^ - R

Pm(®) " H

where (P^#^(a)* g^,^(&)^ - 1) » 1 or 3 and since 3|t
(P , (a), p (a) ) « p ,(a) by lemma 3.4. ^hus if p (a) »
TO, t o ni m* n

Pm(a)Y^ we reqiire either

p , (a) . 3p (a)y ® ; q (a) - 1 - 3(q (a) - 1)Y ®m*t m* 1 m*t m* 2

where as in the proof of (iv) we can show that this requires
3|m*t since 2-fm*t and then, from (3.13) the second equation is
impossible modulo 8, or

V  • - 1 = (9m,(*)^ - l)Yg®

From (iii) the first equation implies t « 1 unless 3 |m*. If 3|m*

we require Pm*l(a) = p^i(a)’5̂  ̂ where 2-|̂ *, 3^m* and 2|t, 3ft 
and so have the same situation as we started with* We may
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repeat the above arguement until all factors of 3 in m are 
exhausted. Finally v/e arrive at an equation

2

where Sfm and t Is odd. Prom (ill) this nov; Implies t = 1. 
This completes the proof of the theorem,
TIIFORRM 5,8, For any given m ̂  0,1 p^(a) is of the form
2p (a)y^ only for n = 0.
^ QProof, We note again that if p (a) = 2p (a)Y then n » mt^ m

for some integer t, from corollary 3.1,
2(i) If t is even, p^(a) « 2p^(a)Y only for n = 0. For, 

from (3,9) and (3,14),

^n(^) = 9&mt(*) "4mt(=)

where (p̂  (a), .(a)) = 1 or 2. Also, since t is even,
from lemma 3.1 p (a)|p (a). Thus if p (a) = 2p (a)Y we needm ^mt n m

I

From theorems 3,1 and 3,2, since m / 0,1 the only possibility 
Is q^(a) a 2 and this gives the stated result,
(11) If 2|t but 2|m then p^(a) / 2p^(a)Y^, For, from (3.9) 
and (3,14)

where (p, (a), g, (a)) « 1 or 2, Since t is odd, by lemmas^mt imt
3.1 and 3.S 9?°™ (3'9)
Pjj(a) * P̂ ĝ (a) g. (a) and so. If P^(a) * Sp^(a)Y we require

either
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which is impossible from theorem 3.6, or

However, from theorem 3.5 the first equation requires t = 1 and 

Thus Pĵ (a) / 2pjĵ (a)Ŷ  in this case.
(ill) If 2ĵ t, sjt and sj-m then p^Ja) / 2p^(a)Y^. For If we 
put t = 3t* from (3.9) and (3.11) we find that

Pjj(a) = - 1)

where, from (3.12) (p̂ ijjj(a), (a)® - 1) . 1 or 3. Since sjt, 
hy lanma 3.1 Pm(a) |Pt»m(®) so If p^(a) = 2Pj„(a)Y^ there are 
four possibilities:
(a) Gt*m(*)^^ « 1 w Yi^f which Is Impossible since mt Is odd#
(b) - 1 « 2Y^^, which, since m / l,2^mt, from (3.32)
Implies sjmt# But then from (3.13) this is Impossible modulo 8#
(c) - 1 * 3Y^^ ; which, since
sja * pg(a) or 3|a® - 1 s p%(a), from lemma 3.1 Implies s\ -* 1̂
sj-a. But then the first equation is impossible from (3*34).
W  ~ 1 « GY^S ; p^t^(a) » 3p^(a)Yg^, which Is
Impossible also by the same arguement as that used in (c).
Thus Pĵ (a) / 2p^(a)Y^ In this case.

(Iv) If 2^t, 3^t and 2jm then p^(a) Bp^(a)%". For, If
p%(a) » 2pjji(a)Ŷ  by (3.13) sjmt and since 3 ^  therefore sjm.
Let m a 3m*. Then from (3.9) and (3.11) we have

Pn(«) » (9m't(*)^ •

%(a) « Pm*(a) (qm'(=)^ “ 1)
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where (p , (a), g (a) - 1) a 1 or 3 and since 3ft, by lemmam t m*t
3.4 (p (a), p (a) ) « p (a). Thus if p (a) » 2p (a)Y^ m't r a m *  n ra
we have four possibilities:
(a) P (a) « p ,(a)Y,^ Î g„, (a)® - 1 - 2(q (a)^ - 1)Y ^m't m' 1 M't m’ 2
where, from theorem 3.7 the first equation requires t « 1
which is Impossible.for the second.
(t) P , (a) «. 3p (a)y^ ; q (a)^ - 1 - 6 (q (a)^ - l)ïm t m' 1 m't m«t 2
which, since 3\a = p (a) or 3)a 1 « p (a) and rat is odd 

• 2  3
implies 3|m*t from lemma 3.1. B\it then from (3.13) the second 
equation is impossible modulo 4.
(C) P^.^(a) - ^ “ 3(q^,(a)^ - 1)Y^^
Where, from (3*13) the first equation requires 3|ra*t and the 
second is impossible modulo 4.
(d) P , (a) - 2p (a)Y^ ; q (a)^ - 1 = (q (a)® - 1)Y ^m ’t m ’ 1 m ’t ra* 2
where, from (3.13) the first equation requires 3|m*. Thus we
have again the situation with which v/e started and may repeat
the above process until we arrive at fen equation ®
2pp,,y'̂ 5(a)Ŷ  ̂where 31 which is clearly Impossible from (3.13).
This completes the proof of the theorem.
THEOREM 3.9. For any given m / 0, p^(a) is of the form
g (a)Y^ only for (n = 2, m « &1), (a * a perfect square, m
n * 4, m = & 2) and n =  0#

2Proof. First we note that from corollary 3.1 if p (a) = g (a)Yn m
then n * 2mt for some integer t. Thus by (3.9) and (3.14)

Where (P^^(a), g^^(a) ) « 1 or 2.

(1) If t is odd, by lemim 3.2 g^(a) j g^^(a) and so if p^(a)
« %(a)Y^ we require either
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p (a) * $ q (a) « 2g (a) Y ^mt 1 mt m g
where from theorem 3.6 the second equation is impossible, or

where from theorem 3.3 since m / 0 and t is odd, the first 
equation requires mt « 1 or mt » 2, a « a perfect square.
These possibilities give the stated results.
(ii) If t is even, by lemma 3.1 and (3.9) p (a) «

I 2P (a) qm(Gi)|p (a) and so if p (a) « g (a)Y we require M ^ tm 2 n m
q^^(a) « Y^ or 2Y^ where mt is even. From theorems 3.1 and
3.2 this is only possible for t » 0.
This completes the proof.
THEOFFM 3.10. For any given m /  0, p (a) is of the form

2 ^2g^(a) Y only for n = 0 and (a « JQ (2), n « 6, m = & 3). m 2n
Proof. As in the proof of theorem 3.9 v/e require n = 2mt and

where (Pj„̂ (a), (a) ) » 1 or S.
(ii) If t is odd, from lemma 3.2 g (a)lg (a) and if p (a) =m ' mt ^
2q^(a)Y^ we require either

where from theorem 3.6 the second equation is impossible, or

where from theorem 3.4 since m / 0 and t is odd, the first 
equation requires mt = 3, a « (2), which gives the stated
result.

(li) If t Is even as In the proof of theorem 3.9 (n) g^g
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S pthat we require q (a) « Y or 2Y, v/here mt is even and frommt 1 1
theorems 3.1 and 3.2 again this is possible only for t = 0.
This completes the proof.
THEOREM 3.11. For any given m / 0, 1 q^(a) is of the form 
p^(a)X^ only for (n = ±1, m = 2).

2Proof. From corollary 3.1 we see that if q (a) *= p (a)Xn m '
then m a 2. But p (a) « q (a) and so the result follows from2 +.1
theorem 3.5.
This completes the proof.
THEOREM 3.12. For any given ra / 0, 1 g^(a) is never of the 
form 2p^(a)X •
Proof. From corollary 3.1 again we see that if g^(a) = 2p (a)X^
then m « 2. But p^(a) » q^^(a) and the result follows from
theorem 3.6.
This completes the proof.

The following results will be required later and are a 
direct consequence of theorems 3.1 - 3.12.
COHOLIARY 3.2. (of theorems 3.1 - 3.12)
(a) If m > n  ;g,2, p^(a) p^(a) is a square only for m = n.
2p (a) p (a) is never a square,m n
(b) If m^nj^l, g^(a) g^(a) is a square only for m = ^n.
2q^(a) q^(a) is never a square.
(c) If m'^l, n>v2, then p (a) q (a) is a square only forn m
(m = ĵ l, n = 2) and (a =a perfect square, ra = ^2, n = 4).
2p^(a) q^(a) is a square only for (a « ^ *= ±.3, n = 6).
Proof, (a) From lemma 3.4, (p (a), p (a)) = p, .(a)m 2 n \m,ny ^
and therefore, if p^(a) p^(a) « Y we must have p (a) = P(m,n)(^)^l 
p^(a) = ^j(a)Yg^, If (ra,n) ^  2 from theorem 3.7 therefore,
ra = (m,n).= n. If (m.n) = 1, since from theorem 3.3
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the only possibility is m = 3 and n =  3, but then (m,n) ^ 1,
2Similarly, 2p (a) p (a) » Y implies either m ^

P j a )  » Sp (a) ; p (a) = p (a)Y ®
(m,n) 1 ^ (m,n) 2

or

If (m,n) ^  2, from theorems 3.7 and 3.8 there are no solutions 
whereas if (m,n) « 1 from theorems 3.3 and 3.4 the only 
possibility is (a = t^, - 1 = 2z^, m » 3, n *= 2) but since
a 6 from theorem 2.1 no integer satisfies the conditions for a.
b) and c) follow in a similar way from theorems 3.1 - 3.12.

V/e have now solved the equations p (a) = NY^ and
2 ^ q (a) c NX in the cases where N = p (a), 2p (a), q (a) and n m m ni

2q^(a). V/e wish to solve them for general square-free values of 
N but it is convenient to consider one more special case before 
proceeding to the solution in the general case. Here again we 
do not confine ourselves to square-free values.

It is obvious that, from (3.12), since a is odd, (q^(a),a^- 4)
s ^* 1 and that therefore if q (a) » RX and r| a - 4, then R = 1.n

The following result however is not so trivial.
THEOREM 3.13. Let R be an integer greater than 1 such that

2 2 R a « 4. Then the equation p (a) » RY has only the solutionsn
n *= 0 and possibly n = R = 3.
Proof. From (3.27) and (3.28) we see first that R|p^(a) if 
and only if R|n. Let n » itiR.

2(1) Suppose that m is even. Then p (a) = RY only for n « 0.
2 ^For, from (3.9), if p^(a) « RY
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where from (3.14) (Pij^(a), q,^(a)) = 1 or 8. Also, tom 
(3.27) and (3.88) since m Is even, Kjp,jj^(a). Thus we must 
have either

where from theorem 3.1, since R ^1, the second equation has 
no solutions, 
or

Prom theorem 3.2 the second equation requires JmR « 0 which 
gives the stated result.
(ii) Suppose that ra is odd and E = 1 or 3 (mod 8). Then
P^(a) / RY^ except possibly for m = 1, R = 3. For if raR/ 3,
since R > 1, we may write iriR « t + 2.3®.k v/here 2|k, 3^k, and t 
c 1 or 3. Repeated applications of (3.22) now give

P^(a) £. -P^(a) (mod q^(a) )

From lemma 3.6 and (3.13), (p^(a), q^(a) » 1 and so

(RPj^(a) / q^(a)) « (-Rp^(a) / q^(a)) » (-R / q^(a)) by (3.31)
« ~(R / QL̂ (a)) ty (3.17)
» 4-g^(a) / R)by (3.17)

But 2lk and so by (3.25) q^(a) = 2 (mod R). Thus, since R = 1 
or 3 (mod 8)

(RPĵ (a) / q^(a)) « -(-2 / R) « -1*

and so p^(a) / RY^,
(iii) Suppose that m is odd and R = 6 or 7 (mod 8). Then
p„(a) / Rf. For we may write 2.3tk where 8\k, and
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t » —1 or —3#
Then from (3.23) again

Pjj_(a) « -P^(a) (mod q^(a) )

5. P_^(^) (mod q^(a) ) by (3.6)

As in (11) (p^(a), g^(a) ) = 1 and

(RPĵ (a) / Qĵ (a) ) « (Rp^^(a) / q^(a) ) » (R / g^(a) )
by (5.31)

where once again q^(a) » 2 (mod R). Thus since R * 5 or 7 
(mod 8),

(Rp^(a) / g^(a) ) = (-8 / R) . -1.
2

and so p^(a) / RY .
This completes the proof,
THEOREM 3.14. Let R be an integer greater than 1 such that

2 2 R|a - 4. Then the equation p (a) = 2RY has only the solutions
n e= 0 and possibly n « R « 3.
Proof. Prom (3.27) and (3.28) again it Is easily seen that 
Î |Pĵ (a) if and only if R[n. Let n = mR. 2
(i) Suppose that m is even. The p^(a) * 2RY only for n « 0.

2For from (3.9), if p (a) « 2RY we haven

where from (3.14) (P^mR(*)* ) *1- or2.Also, since m is
even, from (3.27) and (3. 28) |̂P|.jî (®)* Thus we must have 
either

PimR(a) - 2RY^^ : ^n»(a) ” 

where from theorem 3.1 since R > i  the second equation has no
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solution,
or

From theorem 3.2 the second equation requires *= 0 which gives 
the stated result.

2(ii) Suppose that m is odd. Then p (a) / 2RY exceptn
possibly for m «  1, R = 3. For, except in this case, from 
parts (ii) and (iii) of the proof of theorem 3.13 we see that 
for each n there exists k where 2|k, 3*j*k, such that

(RPĵ (a) / q^(a)) = -I*

From (3.17) therefore

(2Rp (a) / q (a)) = -1II k
2Thus p^(a) / 2RY .

This completes the proof.

We have nov/ proved all the preliminary results we require
2 2in order to solve the equations p^(a) s= NY , q^(a) = NX for

a general square-free value of N. We begin the final part of
this chapter by proving that in general these equations have at
most one solution. Since p (a) « -p (a) and q (a) = q^(a)-n n - n  u
me consider only positive values of n. We prove:
THEOREM 3.15. The equations

1.

2. Pg(a) = <̂
3. qt<a) = ( Where r,s,t, and u are positive

4. <3̂ {a) = 2IDĈ ^
integers, have at most one solution between them for any given odd
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square-free integer N ^3. If one of the four equations has 
a solution there are no solutions of the other three except in 
the cases:

2(1) a «= NK , N square-free, when

/ \ 2 pg(a) a HK
q^(a) = ITfĈ

o 2 2(il) a s= a - 2 K NH , N square-free, when

p (a) = Ii.(iai)®
2qg(a) = NIÎ

2 2 2 2(iii) a as (2), a - 1 = 2 K ,  a(a - 3) = KH , K square-
free, when

2Pg(a) = 2R.(KII)
CLg(a) = K.H®

S
Proof. If p (a) ss iTYn , has two solutions, r = n and r = m,

o 2 2
then Pjjj(a) p^(a) = NY’̂  s= K , say, which is impossible
from corollary 3.2.

The other parts of the proof follow in a similar manner 
from corollary 3.2.

Thus, in general, the equations 1 - 4 of theorem 3.15 
have at most one solution between them. Y/e now proceed to the 
problem of determining this solution if it exists. It is 
convenient to distinguish, as in theorem 3.15, between an odd 
square-free integer, and an even one. Thus, from now on, N 
will denote a positive odd square-free integer.
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We need first to consider when a given N will divide
r (a) or q (e).n

Let hp he the least non-negative residue of p^(a) 
modulo R, where R is any integer. Since there are only R

oresidues modulo !•:, there are only R possibilities for the pair 
of integers (h^,h^ ^ ^). Hence there exist integers m and n 
such th.: h_ « h , and h « h  and ra / n. But then,+ 1 n + 1
since p^(a) satisfies a three-term recurrence relation

^  + 1 = \  ^

for all integers t. In ticular

0 = ho = “ hra-n

I'C"

Thus any integer R will divide p^(a) for some r / 0.
It is not necessarily true, however that R divides q (a) for somer
r, e.g. it :I3 easily seen that 3|qp(5) for any integer r. Hence 
we make the following definitions.
DBF IN ITT ION. The ranlc of appariLion of an integer R with respect 
to the sequence p^(a) is the least positive velue of r for 
which Rjp^(a).
DEFINmON. If an integer R divides q^fa) for some value of 
r, then the rank of apparition of the integer R with respect to 
the sequence q (a) is the least positive value of r for which 
R^qp(a)i If R does not divide q^(a) for any value of r then 
the rank of apparition erf R with respect to the sequence q^fa) 
is not defined.

The following two lemmas are a direct consequence of the 
definitions.
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5.7» If j5 Is the rarlc of apparition of the Integer R
with respect to the sequence p (a) then Rjpp(a) if --d only if
f>\
Proof. Prom lemma 3.1, clearly, i f n  then Rjp^(a) Suppose 
now that R|p̂ _(a). Then (Pn(a), p. (a) ), i.e. R|P(n,/>)(®^ 
iDy lemma 5.4. Thus, from the definition of^ , .
But clearly (n, . Thus (n, j>) j> * i.e. ^ ̂ n.

LEMî'AA 5.8. if R > 2  is an integer such that the rank of 
apparition,^ , of R with respect to the sequence q^(a) is 
defined, then p|q^(a) if 1 only if n is an odd multiple of J). 
Proof. Prom lemma 3.2, clearly, if n is odd multiple of p 
then K|q^(a). Suppose now that Rjqĵ (a). Then R((q^(a), qp (a) ) 
where, from lemma 3.5, since R>2, therefore (QLĵ (a)» <lp (a) ) 
m j(a)* But then, as in leimna 3.7 we see that (n, p ) **p
i.e. y)|n. But from lemma 3.5, since (q^(a), q^(a) ) «
n __ » n must he odd, i.e. n is an odd multiple of p .

ft /
’ We can now proceed to the main results, which are contained 

in the final four theorems, theorems 3.16 - 3.19.
THECRBM 3.16. Now let H he a positive odd square-free integer 
whose rank of apparition,^ , with respect to the sequence q^(a) 
is defined. Then
(a) If , q^(a) « ÎDĈ  can occur only if n *=t̂ .
(h) If 3j^ , q^(a) « has no solutions.
Proof. We see first from lemma 3.8 that if q (a) « KX^ then 
n « rp, where r is an odd integer.

f , ,(a) (i) Suppose that Zip , Sir. Then from (3.9) and(S.lO) 
we see that
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where, fron lenina 3.8, since s|r, sjL (a). Also, clearly, 
( - 3 ) is 1 or 3 and so, if g^(a) = Kx" we
require either

2 2 
(&) - 3 =y%Tp 1

which is Impossible since r / 0, or

which is impossible modulo 9.
(ii) Suppose now that z\v. Then q^(a) ^ NX^ except 
possibly for r = hk 1. For, if qp{a) = NX^, for

F / ± 1* by theorem 3.15. If q^^a) / NX^ then qp{a)
= N.Rx^ for some square-free integer R. Since from
(3.13) Rx is odd.
Now since 2^r, f^r, r = j; 1 (mod 6) and so, from (3.16) and 
(3.7)

- y a) (mod 8).

Thus, since N is odd, if q_ft(a) = NX^I
5  Rx® (mod 8)

i.e. R a 1 (mod 8.). We therefore supiose that R « 1 (mod 8). 
Now from (3.36) q^^a) = q )> and since sjjR from (3.13)̂
q^(a) is odd. If r ^ 1, we may write n » ^ 1 + 2.3®.k where 
sjk, 3^k. Repeated applications of (3.23) now give

9r(q|»(a) ) 2 -<33j(<y*(a> ) ( moa )

5 -g^(a) (mod )

hcii.ce.
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(Nq (a) / qj^(q.(a)) ) » (-H.KRx® / q^(g^(a)) )
* -(R / ty (3.17)
* since R = 1 (modS)
as -( 2 / R) by (3.34) since Rj(^(a)
« -1 since R « 1 (mod 8)

Thus Q.p̂ (a) / NX^ except possibly for f « + 1.
This c fetes the proof of (a).
(b) Prom (3.16) and the first six vâues of g^(a), if sj r^#

) = 2 (mod 8). Thus if IT is odd, q^^(a) / NX^.
This completes the proof of the theorem.
THEOREM 5.17. Let N be a positive odd square-free integer 
whose rank apparition, p, with respect to the sequence q^(a) 
is defined. Then g^(a) « 2NX^ can ocdur only if n *±0,

2Proof. Prom lemma 3.8 we note first that if g^(a) « 2NX
then n « rp where r is an odd integer.

/ I(i) Suppose that 3|r. Then from (3.9) and (3.10) again

<3n(a) = qjf (a) (q (a)® - 3)
^  K f
I 2where Nig* (a) and (g% (a), o (a) - 3) = 1 or 3. Thus
* v p  V f  h f

if Qĵ (a) « 2HX we require either

V »  - 3 . or 3X^^

which as in the proof of theorem 3.16 is inpossible, or

V j p  ^
which is impossible modulo 8, or 

Ikrp (a)^ - 3 - 6X^2,

Since sja * p (a) or 3^a^ - 1 ■ Pg(a), from lemma 3.6 this last 
case holds only if 3|a and r û is odd. If these conditions
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hold, from (3.11) we have 

6X.^ + 1 * q (a)

where %  r ̂  ^ 2 + S.3^,k where 4^k, 3^c, Repeated applications
of (3.23) now give

6X 2 + 1 = - (a^ - S) (mod q (a) )

or

6X e -(a^ - 1) (mod q (a) )k
It is easily shown by induction that since 4|k q^(a) = 
(mod 3), and so, if - 1 = 2®*c where c is odd.

(G / g^(a) ) as (-2®.c / Q^(a) )

or

(3 / q^(a) ) w (-C / q^(a) ) by (3.17)

Thus, again by (3.17) we have

1 « ~(%(a) / 3) = -.(-q̂ (a) / c)

S sBut now a - 1 = 2 .c « Pg(a) and so from (3.21) since k » ±. 2 
(mod 6)

1  a s  * ( " ( & ^ ^  —  2 )  /  C )  a s  — ( j L  /  c )  * b  « 1

which is impossible. Thus q- (a) ^ + 1 and we cannot
\ Thave 3jr.

(ii) Suppose now that sj-r. Then clearly from (3.13), if q^(a) 
* 2NX^ sjp. Then, from (3.9) and (3.10) we have

q^(a) =
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for all integers r. In particular, since 5|p , (a)«
S \ 2(q.*«(s ) • 3)1. Let 2N s IT N where K \ q (a), N jq (a) - 33' / 1 2  II if 21

and if 3 jSN let 3|n .̂ Now from lemma 3.2 q^^^a) and since
3+r, hy lemma 3.5 (q.(a), q (a)) = q (a). Hence IT \q (a)Rs2 if‘ 21 ir/>and if q (a) = 2NX we require

Vf>

Nov/ if 3 |q (a) it is easily seen from (3.12) that sla = q (a).
i ̂7* 1Thus, from lemma 3.2 is odd and 3|q^(a). In either

case, therefore, we require

q (a) a îvîX̂ 2

where M|qip(a). If M « 1, form theorem 3.1,^ pr = +1, i.e. 
r e ^1. If M = 2, from theorem 3.2, there are no solutions 
since N > 1.

If M > 1 and M is odd, from theorem 3.16 again r = ^1,
whereas if M > 2  and M is even from the above either r = ±1 or
3|%^r, If z\if>r we tepeat the above process until all factors 
of 3 in p are exhausted v/hen again we see that r « ^1 is the 
only possibility.
This completes the proof.
THEOREM 3.18» Let be a positive odd square-free integer
such that the rank of apparition, of with respect to the
sequence q (a) is defined and let N be a positive odd square-

^ 2free Integer such that (N , q^(a) ) *= 1 for all integers n. Let2
the rank of apparition of with respect to the sequence Pj.(a) 
be /!> . Then a is odd and

f 2 f 2 2
(a) p^(a) « can occur only if (n » 0), (a « $ n xs 2),
(a . &Qga(2), sf - 3a = n - 6) or (a = , a - 2 -

ï'fs * n « 4)
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2(b) p^(a) = 2N^Y can occur only If n = 0.
2(c) P (a) = IT Y can occur only if (n = 0) or (n )•n 2 12
2(d) p (a) a 2N^Y can occur only if (n = 0) or (n =p , z\f> ).^  ^  I 2  I  2

Proof, V/e show first that ^ is odd. For if jO ̂  = 2pp then 
from (3.9)

Py*g(a) = p^(a) q (a)

where, since (Ng, q (a)) = 1, H^\p^(a). But ami this
contradicts the definition of P • $hus P is odd.

2(a) Suppose first that p (a) « N Y . Then since H Iqp(a),n 1 1 / 1
Rj^l(q^^(a), p^(a) ) where IT̂ >2. From lemma 3.6 therefore 
IT_ I q, v(a) and :n is even. But since P_ is the rank

apparition of K with respect to the sequence q (a), therefore 1 T?
(n,/̂ l) = 2 80 n = 2 r f o r  some integer r.
Then from (3.9)

If r is even, from lemma 3.1 and (3.9)
“ P|5i(a) g^(a). Also p (a) | P ^(a). 

we require ' '

Thus

which from theorems 3.1 and 3.2 implies n « 0 since r is even.
If r is odd, from lemma 3.2 ̂  Iq̂ .̂ (a) and so we requireII ac I ̂
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Prom theorems 3,3. and 3.4 v/e now see that p (a) « N onlyn 1
In the cases stated.

2(h) Suppose now that p^(a} = 2ST̂ Y . Then as above we find 
that n » 2r/o for some integer r. Thus from (3.9)

7i

where from (3.13), 5\rp^»
1

As in (a) again we find that if r is even and we
require '

qpChfa) = or

which is possible, since r is even, from theorem 5.1 and 3.2, 
only for n « 0.
If r is odd again; we find N Iq. (a) and v/e require

1 1 rr 1

Proi(a) » or

which is possible, since 3\r^^ from theorems 3.3 and 3.4 only 
for « 3, but this gives no result.
(c) Suppose now that p ( a) = N Y^. Then clearly, fromn 2
lemma, 3.7, n = for some integer r.
(i) Suppose that r is even. Let r = 2r*. Then from (3.9)

where lemma 3.7. From (3.14), (Pp,Og(a), Qlpy,g(&) )
# 1 or 2. Thus we require

qptyogCa) - or 2X^2
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Prom theorems 3.1 and 3.2 we now find that the only result is 
(n = 0).
(ii) Suppose now that r is odd. Then 3^r. For if r = 3r", 
from (3.9) and (3.10)

2where, from (3.12), - 1) = 1 or 3. Also,
hy lemma 3.7, k |p , (a). Thus if p (a) m II we require
either h 2

q (a) - I s s Y

which is impossible since \ q^g(a)\ >  1, or 
2

q^, (a) - 1 = 3Y^E Pp.^gfa) = 3Y^^.

Since 3\a « p (a) or sla^ - 1 » P (a) and r*/3 is odd, by lemma
2 I 2 123.1 from the second equation 3\a - 1, 3ja. But then the first

equation is impossible from (3.34). Thus 3-{r.
o(iii) Suppose now that 2^r, 3^r and 3^ P . Then p (a) = N Y

I 2 ^ ^can occur only if r « 1. For if p^p(a) » N Y , p n^(a) /
2 / 2 N^y for any r / 1 by theorem 3.15. If Pa (a) / N  Y then p. (a)g / S / 2

*= N .Ry for some square-free integer R where since 3^rp from ^ I 2
(3.13) R is odd. Then from (3.35),

where, since 3fo , (a) is odd by (3.13). Then, if2 / 2 / 2 g
p^(a) « N^Y , we require p^(q^^(a)) » RY^ where R|q^(a) - 4
from (3.12). From (3.13) qp̂ (si) is odd, and so from theorem 
3.13 v/e see that since we are considering the case 2^r, 3^#, there 
are no solutions of this equation. Thus the only possibility 
here is r » 1.
(iv) Suppose finally that 2^r, Z\v bpt 3|^. Here again we
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can have only r = 1. For, from (3.9) and (3.10) we have

for all Integers r. In particular, lyp^g(a) c p^^(a) %
- 1)' V g  Mjj - 1

and If 3pg let sjtlg. Then from lemma 3.1 clearly %|Pty>g(a)
and from lemma 3.4, since sjr, (po (a), P. A,(a) ) m pj. (a).

I 2 i v ^  gThus q)j^^(n) - 1, Hence, if p (a) = H Y vie require
either

V - ■ V i "  > «4/tr
or

1 « sMgYgS

since from (3.12) (p^^f,(a), Çjy^r’̂ )^ - 1) « 1 or 3. But again,
either 3|a « p (a) or 31 - 1 = ;> (a) and so from lemma 3*7 * 8 * 3
either sjî r̂ ĉ  or But since sjr, sj-r therefore clearly,
3|Pygr(a) implies 3|pyg(a).
Thus in either case we require,

. MgY/

where M.j i)^^(a). If = 1, from theorem 3.1Izy^ # 1 v/hence 
r * 1. If M^l, from the above, if 3-j^r, r = 1. If 
we have the same situation as that we started with and may 
repeat the above process until all the factors of 3 iny^g are 
exhausted. Thus eventually we see that the only possibility 
is r » 1.
This completes the proof of (c).
(d) Suppose now that p^(a) « 2NgY^. Then again from lemma 
3.7 we see that n » Tp2 * '̂ ov some integer r.
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(i) Suppose that r is even. Put r = Sr*. Then from (3.9) 

where by lemma 3.7 Ng\p^, (a) and from (3.14) (p , (a),

= 1 or 2"
Thus v/e require

qj.yg(a) »

Prom theorems 3.1 and 3.2 the only result is r = 0.
Thus if r is even, r « 0,
(ii) Suppose now that 2^r. We show bhat 5-fr. For if 3)r, 
from (3.9) and (3.10) we have

2
where from (3.12) (pip (a), p(a) - 1) = 1 or 3. Also, ̂ / 2 3j2 2
since 3Jr, from lemma 3.7 Ng|p^^ (a). Thus if p (a) = 2N^Y
we require

9jr^g(=)^ - 1 = 

which is impossible since ^q^ (a)^>l, or

where clearly 5^3 r ^  from (3.13) and so since 2̂ 3r|3gfrora (3.32) 
l.e.y^3 rp •= 1, I.e. /3 = 1 which is Impossible since N >1, or

or
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In either of these cases as shov/n in the proof of (c) the
, 2 ,second equation requires 3|a - 1, 3-[-a. But then, in each

case, from (3.34) the first equation is impossible. Thus 3fr.
Q(iii) Suppose that Then, if p^(a) s 2NgY , from

(3.13), From (3.9) and (3.10) again we find

for all integers r. In particular, again v/e let 2N = M M
2 ^ 1 2  where %|Pj|>g(s)f M^|q^^^(a) - 1 and if 3|n^ let 3|M^. Then

as in the proof of (c) we can show that M (a), M |qi . (a)^ -1j rl'o 2 'ynj 2
and that again we need a solution of an equation of the form 

where pp_ (a). If M « 1 or 2 from theorems 3.3. and 3.4,
1 Y s  ,since is odd the only possibilities aresrj>^ » 1 or 3.

Since 3-j-r therefore, r =  1. If M > 2  is odd from (c) again3
r s= 1 is the only possibility. If Mg>2 is even we have the 
situation with which v/e started and may repeat the above process 
until all factors of 3 in are exhausted. We must finally 
arrive at one of the other cases whence again r =  1.
This completes the proof of theorem 3.18.
THEOREM 3.19. Let N be a positive odd square-free integer
such that N4g (a) for any integer r, but (lT,q (a)) > 2 for at r 8
least one Integer s. Let the rank of apparition of N with
respect to the sequence p (a) be P . Then

2 ^(a) p^(a) « NY can occur only if (n = 0), or (n = yo ).
(b) p (a) Œ 2NY^ can occur only if (n « o) or (n « p  ).n /
% P b f # If Pjĵ (a) = NY^ or 2NY^ where (N,qQ(a))>2, from lemma
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23.6 we see that n must he even. If n = 0, p (a) = N,0 .
t oIf a / 0, put n « 2 .c where c is odd, t > 1. Then from 

(3.9) we find

p (a) = p (a) g (a) g (a) q * , (a)n c c 2c 2^ ■‘•c
where, from lemmas 3.3 and 3.6,

1 S^Jcta)) 1 2 where i / j

Since N|p^(a), let

N « N N N .... N0 1 8  t-1
where

1 - i -6 t-1.

Now v/e see that If p (a) = NY or 2NY^, then we require

p (a) = N Y ® or 2N Y ^ C O o o o
and

qgl^(a) = N^Y^S or 2N^Y^^

If » 1, from theorems 3.1 and 3.2 we find that there are
no solutions of p^(a) «= NY or 2NY^.
If N yi, from lemma 3.8 we see that the rank of apparition t —1
of N with respect to the sequence g^(a) is of the form ^

, where is odd. Thus, from lemma 3.6, as 2*.c*,
where <^\ c\
Prom lemma 1.7, now c* | c. Since we require qgt-l^C^)
a Î t-1 or ^t-1^* therefore, from theorems 3.16 and
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3,17 we mast have cr- » c* « c.
This completes the proof of theorem 3.19 and concludes this 
chapter.
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CHAPTER 4.

2 oIn this chapter we suppose that the equation X - dl^ » -4
2 2has no solutions and that the equation X - dY^ « 4 has only

solutions (X,Y) for which X and Y are both even.
As in the previous chapter, Y/e seek solutions of the

equation - dY = 1,4 and - dY^ = 1,4 among the solutions
2 2of the equations X - dY « 1,4 hut as in chapter 2 the method

gives only very limiteu results.
We begin once again oy establishing some results

2 2concerning the solutions cd the equations X - dY = 1,4 
which are very similar to those obtained at the beginning of 
chapter 3.

Clearly, since we are supposing that all solutions of 
2 2X - dY ' « 4 are even, the fundamental solution (A,B) Is even,
i.e. A and B are both even. We put A = 2a and B « 8b* The

2 ogeneral solution of X — dY^ « 4 is now given in terms of a 
and b by

X + Yd^ = 2 h a  + Sbd'-' = 2(a + bdFy""

i iAs before we writer* » a + bd and p« a - bd^ and have

p<. + p » 8a; o < w  1 (4.1)

As in chapter 3, we define, for all integers n,

Pĵ (2a) « 1 1 ^  - P ) (4.2)2bd^
n n q^(Sa) m ^  + p

and obtain, exactly as before.

(4.3)
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Pji + g(2a) =  ̂ ^(Sa) - p^(3a)

Si + “ 2aq^ ^(2a) - g^(2a)

i>_̂ (Sa) = -p (Sa) 

g_n(2a) = q (2a)

(4.4)

(4.5)

(4.6)

(4.7)

Also, Pg(2a) = 0, p^(2a) = 1, q^(Sa) = 2 and q (2a) = 2a.
Thus it is clear that p (Sa) and q (Sa) are Integers for alln "
integers n and moreover positive for positive n. The first 
few values are:

n
0
1
2

3
4
5
6

P (2a) n
0
1
2a

4a^ - 1
3

8 a - 4a
4 o16a - 12a^ + 1

52a^ - 32a® + 6a

Again as in chapter 3 we obtain

q^(8a)

2a 
4a® - 2
8a*̂  — 6a 

ISa^ — 16a + 2
32a® - 40a® + 10a

64a - 96a‘̂ + 36a^ - 24

2Pin + n(2a) = P^2a) ĝ (̂2a) + g^(2a) p^(2a) (4.8)

4)p^(@a)p^(2a) + g^(2a)g^(2a) (4.9)

“ %2n(2a) + 2 (4.10)

Oĵ (2a)® . (4a® - 4)Pj^(2a)® + 4 (4.11)

and from (4#8) - (4*11)

3m + 2N(2 a) = -q^(2e) (mod g (Ea)) (4.12)
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h hNov/ if 2a sa 2 a* where a* is odd then clearly 2 Is
the liigliest power of 2 which divides qn(2a) » 2a* But f om
(4.5)

4- l(^^/ “ 2aQ.gp̂ (2a) -

end, by virtue of (4.7), a simj)le inductive arguement shows 
that

h hif 2a « 2 .a* v. re a* is odd, then ^^Sa) « 2 #K
for some odd integer K (4.13)

Prom (4.10)

g^(Sa) = q^(2a)" - 2

and since 2|q^(2a) therefore

Qĝ (̂2a) = 2 (mod 4) (4.14)

Prom (4.8), * p^(2a)q^(2a) and therefore, from
the above, Is even. Clearly p^(2a) » 1 is odd.
Also from (4.4)

Pgn + l(®a) “ 2ap2^(2a) - Pg^_^(2a)

and 80, by Induction, with (4.6), we have

' ®2n + i(®&) (4.15)

Now from (4.9) we find

2 %  + B(8a) = (4a® - 4)Pj^(8a)pg(Sa) + <3jj,(Sa)qg(2a)
- (4a^ - 4) (pn(2a)p^(Sa)Q^(2a) + P^(Sa)^gg^(2a) ^ 
+ 2 g^(2a) ty (4.8), (4.10) and (4.11)
» 8^(2a) (mod 2(4a® - 4)p^(2a) ) 
since P^(2a) and q^(2a) arc even.
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2 h.Now p (2a) = 2a(4a - 2) and so if 2a » 2 where a* ia odd,4
2^+ ^jpysa).
Thus clearly

 ̂g(2a) = q (2a) (mod 8,2^)

Thus from (4,13) and (4.14) we Iiave

I.if m is odd ci.i 2 jsa then l^q^ ̂  ^(2a)
5 Ih^m (%&) ("̂ od 8) (4.16)2

if m is even and then Jq (2a)^ + 8
5 &%(2a) (mod 2 "") (4.17)

It will he rei lly seen that the proofs of lemmas 3.1 -
3.6 do not depend in any essential way upon the fact that a is 
odd. Hence the results carry over to the present case. We 
need only one of these results which for the sake of completeness 
we prove here.
LBMdA 4.1. p (2a)| p^^(2a) for all integers t.
Proof. Prom (4,3) vie see that we need only consider t^O and
hence we use proof by induction. The result is clearly true 
for t « 1. Assume it true for t>^ r -> 1. Then from (4.8)

= P(r_i)n(®2)s%(®a) + <3(j,_i)j^(Sa)pg2a)

where from (4.13) and (4.14) cl^^rly 2p^(2a) divides the right
hand side of the equation. Thus p (2a)Ip (fa) and the resulth ' nr
is true by induction.

Finally we observe that if 2®< » 2a + 2bd^ is the fundamental 
solution of - dY^ » 4 then the fundamental solution of 
xB - ayB * 1 is<K . Hence
the general solution of X^ - dY^ * 4 is X * q^(2 ). Y * 2bpjĵ (2a)

Cp.I)
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the general solution of x'̂  - dY^ « 1 is X * Jc^(2a), Y « bp^(2a)
(IV. II.)

4 pWe are seeking solutions of the equations X - dY * 1,4
and X^ - dY « 1,4. Clearly the solutions of - dY^ « 4

2are giver: by X*" = q^(2a), Y = 2bp (2a) with similar results 
for the other equations. We v/ould therefore like to prove
results which would enable us to say when p (2a) = Y*̂ , 2Y^ and

2 2 ^ q^(2a) = X  , 2X^. II. ever, even in the limited case when we
restrict a to being even it is not possible to give results
covering all these cases. The results which Jiave been obtained
are contained in the following three theorems.

2TIITORJ’F 4.1, . a) The equation q (2a) « X has no solutions, 
tb) If 2a = 2 ,a* where a’ is odd and t ^ 3 is odd, then the

2equation (2a) = X has no solutions.2n + i'
"tc) If 2a a 2 .a* where t ^ 2 is even and a* = -1 (mod 4)

oor a* = 5 (mod 8) then the equation ^ ^(2a) » X has no
solutions.
Proof. a) From (4,14) (%a), ^jq^nfCa) and hence <Ig^(8a)^X^.
b) From (4.13) ^ ^(2a) « 2^.K here E is an odd integer
and 80 if t is odd ^ ^(2a) / X^.
c) From (4.13) ^ ^(2a) « 2*.K where K is odd and so if

 ̂->(2a) « X^ “tSan 1^^^^ ** ^1^ where X^ is odd. From 
(4.16) therefore we require either

2
2n + 1 « i 1 (mod 6), X^ « a* (mod 8)

which is impossible if a* = -1 (mod 4) or a* » 5 (mod 8)# or

2 22n + 1 = i 3 (mod 8), = a* (4a - 3) = 5a* (mod 8)

which is impossible if a* = -1 (mod 4).
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Suppose therefore that 2n + 1 » i. 3 (mod 8) and a* == 5 (mod 8). 
Then from (4,12), putting 2n + 1 = 4m 1 where m is odd,

_(2a) = -g (8a) (mol )PB. A
since m Is odd from lemna 4.1 q^(Sa) jq,^(Za) and so, bj, virtue
of (4.7),

p
4̂3n 4' i(Sa) = -2a (mod 4 ‘a" - 2)

Thus

+ i(2a) / 2a“ - 1) . (-2a / 2a® - 1)
»! (-a* / 2a^ - 1)
s= -(a* / 2a - 1) since a is even
» -(2a^~ 1 / a*) since a’ « 5 (mod 8)
S5 -1 since a* « 5 (mod 8)

Thus q (2a) /2n + i'
This completes the pix>of.
THEO PPM 4.2. a) If 4.| 2a then the equation q^^( 2a) = 2X^ has )
only the solution n = 0.
*b) If 2a S3 2^.a* where a* is odd and t> 2 is even, then the

pequation q. _(2a) » 2)C has no solutions.CjTI + i
tc) If 2a =5 2 .a* where t^3 1 odd and a* « -1 (mod 4)

2or a* e 5 (mod 3) then the equation q ^   ̂ ^(2a) = 2X"' has no 
solutions.

2Proof. a) (1) If 2n » 2 (mod 4) then q (2a) / 2X . For,<2n
from (4.16)

&9g^(2a) = &(4a® - 2) (mod 8)
» -1 (mod 8) 

since 2Ja. Thus qg^(2a) / 2X^.
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(il) If 4<|n then q̂ ^̂ (2a) / 3X except for n « 0. For suppose
fi: 5̂"n. Thon 2n = 6m ̂  2 where m i s  odd# From
(4.12) now we find

q (2a) = ~g,L^(2a) (nod q (2a) )2n ^  3m
where from lem-ia 'l.l, since m is odd, e,X2a)( q,̂ (̂2a) Thus, 
by vir ' of (4.7)

5 -(4a'̂  - 2) (mod 4a^ - 3)

and so

(2q^^(2a) / 4a — o) » (—2(4a — 2) / 4a — 3)
g

= (-*2 / 4a — 3)
os= -I since a is even and so 4a - 3

2. 5 (mod 8)
Thus goyj(2a) / 2X^*
If sjn from (4.9), (4.8) and (4.10) we find that

q^^(2a) = q.,̂ (2a) ~ 3)
Eÿ* “3“

where clearly (q^(2a), q̂ (̂2a)"' - 3) = 1 or 3. If q^(2a) » 2X^, 
therefore^- v/e require

- ® ="T
which implies n =  0, or

2 2 qr>^(2a) — 3 SE 3Xn

which is impossible modulo 9.
This completes the proof of a).
b) From (4.13) ^ ^(Sa) » 2^.K where K Is odd, and so if
t is even, ^ ^(2a) / 2X^.
c) From (4.13) qgg-^^2a) = 2^.K where K is odd and so if
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p  ̂ 2
Qgn + i(2&) = 2X , ^ jCSa) * where X^ is odd but as
in the proof of theorem 4.1 part c) this is impossible if a*
^ -1 (mod 4) or a* = 5 (mod 8).
This completes the proof.
THRO Mai 4.3. a) The equation pg^ +l(^&) “ has no solutions.
b) If /|9a the equation P̂ ĵ (2a) = 2Y^ has only the solution
n B 0.
c) If 2a = gf.a* where a* ±3 odd and t^2 is even, then the 
equation ^ g(2a) « 2Y^ has no solutions.
d) If 2a « 2^.a( where t%3 is odd and a* « -1 (mod 4) or 
a* « 5 (mod 8)then the equation ^ g(8a) * 2Y^ has no
solutions.
Proof, a) Prom (4.15) p^^ ̂  ^(2a) is odd and therefore
P2n + l(2a) / 2Y®.
b) From (4.8) and (4.11) clearly

P4n(^^) “ QgnfBa)

where (p^^(2a), Qgĵ CSa) ) « 1 or 2. Thus if ** we
require q^(2a) » X^^ or 2X^^ and from theorems 4.1 and 4.2 
the only possibility is n « 0.
c) From (4+8) and (4.11) and (4.15)

+ 2(®a) - Pen +

where (pg^ ̂  i(2a), ^ ^(2a) ) = X and so If p ^  + gfCa) - 2X®,
2since p ^  .(2a) is odd we require qp_ ^ i(2a) « 2X», • Since 2n + 1  Oil + X X

t is even, however, from theorem 4.2 this is impossible.
d) Aa in c) above we require again q^^ ̂  ^(2a) « 2X^^, but 
under the given conditions, from theorem 4.2 this is again 
Impossible.
These are the only results we have been able to obtain In this case.
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CHAPTER 5

At the ‘beginning of this final chapter we prove various 
results concerning the solutions, in integers X and Y, of the 
equations X^ - dY^ = ^1, ^4; X^ - dY^ = +4; X^ - dN̂ Ŷ B̂ +1, +4
and N^X^ - dY^ » ĵ l, +4 v/here d and N are given square-free 
integers. These theorems are deduced from those proved in 
chapters 1 - 4 .
Finally we compare our results with those obtained by Cohn, 
Ljunggren and Mordell in (8 - and (7 - 13).

We continue to deal with the equations in the four 
groups of chapters 1 - 4 .  Throughout, we give only non-negative 
solutions.

Theorems 5.1, 5.8, 5.9 and 5.10 are due to J.H.E.Cohn 
and are taken from (8) and (4).
THEOREM 5.1. Let d be a square-free integer such that the 

2 2equation X - dY = -4 has solutions (X,Y) for which X and Y
are both odd. Let (a,b) be the fundamental solution of
X^ - dY^ = -4. Then
(a) The equation X^ - dY^ = -4 has
(!) two solutions, (1,1) and (8,2), if d = 5;
(11) one solution (6,10), if d = 13;

i(ill) one solution, (a ,b) if a is a perfect square;
(Iv) no solutions otherwise.

4 2In particular, the equation 4X - dY « -1 has
(v) one solution, (1,1),if d « 5;
(vi) one solution, (3,5), if d = 13;
(vll) no solutions otherwise.
(b) The equation X^ - dY » 4 has no solutions.
(c) The equation = -1 has no solutions.
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(d) The equation - dY^ = 1 has
(i) tv/o solutions, (1,0) and (3,4), if d « 6;
(11) two solutions, (1,0) and (99,1820), if d = 29;
(ill) one solution, (1,0) otherwise.
Proof, (a) Prom (I.I) the solutions of 7^ - dY^ ® -4 are given 

2■by X « Qg (a), X m "bPgn.iCa), and from (I.Ill) those of 
4X^ - dY® = -1 are given by 2X = io (a), Y = &hp ^(a).
The results now follow from theorem 1.1.
(h) From (I.II) the solutions of - dY^ « 4 are given by
X^ » Q (a), Y B bP_ (a) and the result follows from theorem 2n 'Gii
1.1.

4 9(c) From (I,III) the solutions of X - dY*̂  = -1 are given
2.by X a Y » ^bPg^^^(a) and the result follows from

theorem 1.2.
4 2(d) From (I.IV) the solutions of X - dY « 1 are given by 

X = iQen(a), Y « ibPg^(a). The results now follow from 
theorem 1.2.
This completes the proof.
THEOREM 5.2. Let d be a square-free integer such that the

P oequation X - dY"̂  « -4 has solutions (X,Y) for which X and Y 
are both odd. Let (a,b) be the fundamental solution of 
X® - dY - -4. Then
(a) The equation X^ - dY^ » -4 has

±(I) one solution, (a,br), if b is a perfect square;
(II) no solutions otherwise.

O 4In particular, the equation X - 4dY « -1 has no solutions.
(b) The equation X^ - dY^ « 4 has
(I) three solutions, (2,0), (3,1) and (322,12), if d » 5;
(II) two solutions, (2,0) and (a^ + 2, a^b^) if a and b are b6th 

perfect squares;
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(ill) one solution, (2,0) otherwise.
P 4?In particular, the equation X - 4dY = 1 has

(iv) tv/o solutions, (1,0) and (161,6), if d = 5;
(v) one solution, (1,0), otherwise.
/ \ p 4(c) The equation X - dY = -1 has
(i) one solution, (&(a^ + 3a), (&b(a^ + 1))^), if i(a^ + 1)

and b are both perfect squares;
(ii) no solutions otherwise.

^ 4(d) The equation X - dY = 1  has
(i) two solutions, (l,0) and (9,2), if d = 5;
(ii) one solution, (1,0), otherwise.
Proof, (a) Prom (I.I) the solutions of X^ - dY^ = -4 are

2 pgiven by X = ^pn-l^^^^ ^ ^^a). Let b = b^t , where
b* = 1  if b is a perfect square and b* is a square-free integer

2greater than 1 otherwise. We nov/ require P (a) = b*Y , for2n—1 2
some integer y^. If a = 1, d = 5 and b = 1 and therefore, 
from theorem 1.13, if b* >  1, there are no solutions.
If b* = 1, from theorem 1.3 there is just one solution,
P^(a) = 1.
This proves (a)(i) and (a)(ii).
Since, as in chapter 1, b is clearly odd, that the equation 
2 4X - 4dY = -1 has no solutions follows from the above.

However, the result may also be deduced by a simple congruence
arguement.

2 4(b) From (I.II) the solutions of X - dY = 4  are given by
p 2X = ^ = ^^2n^^^* bet b = b*t as in (a). Then we

require ^g^( a) = b*Y^^ for some integer Y^.
Prom theorem 1.13, if b*>l, there is only one solution,

oP^(a) = b’.O . If b* = 1, from theorem 1.3 there are just the
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2solutions P (a) = 0  , P (a) = a, if a is a perfect square,
2

12'-' ' '
This proves (h)(i) - (h)(iii).

2 4The solutions of X - 4dY = 1 are given hy X = -Jx, Y = -̂ y,
2 4where % - cly = 4 .  Since, as in chapter 1, a and h are

both odd, (b)(iv) and (b)(v) now follow from (b)(i) - (b)(iii).
(c) Prom (I.Ill) the solutions of X^ - dY^ = -1 are given by

2 2 X = &Q (a), Y = |-bP (a). Let b = b*t as in (a), on-o 6n-3 g
Then we require P (a) = 2b*Y for some integer Y-.

6n-3 1 1
Prom theorem 1.14, if b* > 1, there are no solutions.
If b* = 1, from theorem 1.4 there is just the solution

2 2 P^(a) = a + 1, if ^(a + 1 )  is a perfect square.
This completes the proof of (c).

2 4(d) Prom (I.IV) the solutions of X - dY = 1  are given by
X = ^c.„(a), Y^ = &bP (a). Let b = b't^ as in (a). Then we
require P0 ĵ (a) = 2b*Y^ for some integer Y^.
If b* > 1 ,  from theorem 1.14 the only solution is P (a) = 2blOo
If b* = 1 , from theorem 1.4 there are just the solutions 
P^(a) = 8.0® and P (l) = 8.2®.
This completes the proof of the theorem.
THEOREM 5.5. Let d be a square-free integer such that the

2 2equation X - dY = -4 has solutions (X,Y) for which X and Y
are both odd. Let (a,b) be the fundamental solution of 
2 2X - dY = -4. Let N be an odd square-free integer, N>1, 
such that there exists a solution (X,Y) of the equation
2 oX - dY^ = -4 for which N jX. Let (x,y) be the least positive 

2 2solution of X - dY = -4 with this property. Then
(a) The equation N^X^ - dY = -4 has

P(i) one solution (X-,,y) if x = NX-, for some integer X ;
(ii) no solutions otherwise.
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(Td) The equation - dY^ « 4 has no solutions.
(c) The equation N^X^ - dY^ » -1 has no solutions.
(d) The equation - dY^ « 1 has no solutions.
Proof. (a) From (I.I) the solutions of N^X^ - dY^ » -4
are given hy ^ ” ^^2n 1 ^̂ ^ the result
follows from theorem 1.16.
(h) Prom (I.II) the solutions of N^X^ - dY*̂  « 4 are given "by
NX̂ as QgnCa) % « *bp2^(a). From (I.I), clearly, N|Q^(a) for some
odd integer r, and so the result follows from lemma 1 ,8 .

,  2 4 2(c) From (I.Ill) the solutions of N X - dY » -1 are given
g

"by î̂ X « (a), Y » fhP (a) and the result follows from6n-3 6n-3
theorem 1.17 since k | Q (a) for some odd integer r.

^ P 4(d) From (I.IV) the solutions of H X - dY « 1 are given hy
NX^ * &Q (a), Y = ^hP (a). Since nIq (a) for some odd Integer 

6n 6 n r
r, the result follows from lemma 1 .8 .
This completes the proof of the theorem.
TI-rEORFM 5.4. Let d he a square-free integer such that the
equation X^ - dY^ *» -4 has solutions (X,Y) for which X and Y
are both odd. Let (a,b) be the fundamental solution of
X^ - dY^ « -4. Let N be an odd square-free integer, N XI*
such that there exists a solution (X,Y) of the equation - dY^ * 4
for which n |x . Let (x,y) be the least positive solution of
2 2X - dY = 4  with this property. Then
(a) The equation N̂ x"̂  - dY^ » -4 has no solutions.
(b) The equation N^X^ - dY^ « 4 has

g
(i) one solution (X ,y) if x « NX for some Integer X f

X  A  X
(1 1 ) no solutions otherwise.

2 4 2(c) The equation N X  - dY » -1 has no solutions.
(d) The equation N^X^ - dY^« 1 has
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2(i) one solution (X ,y) if x = SHX for some integer X ;1 ̂  1 1
(ii) no solutions otherwise.
Proof. (a) From (I.I) the solutions of N^X^ - dY^ & -4
are given hy NX^ « Q (a), Y = hP (a). From (I.II)Sn-l 2n-l
we see that some integer r and so the result
follows from lemma 1.8.

2 4 2(h) From (I.II) the solutions of K X - dY « 4 are given
2hy NX « Qon(^)> Y « hP (a) and the result follows from theorem2n

1.16.
(c) Prom (I.Ill) the solutions of N̂ x"̂  - dY^ « -1 are given
hy NX^ « ^6n-3^^^’ ^ (̂ ) the result
follows from lemma 1.8.

2 4(d) From (I.IV) the solutions of N X - dY « 1 are given
Zhy NX B 2Q/:̂ (a)f Y = ihP (a) and the result follows from on 6n

theorem 1.17.
This completes the proof of the theorem.
TrlFORMI 6.5. Let d he a square-free integer such that the
equation X^ - dY^ » -4 has solutions (X,Y) for which X and Y
are both odd. Let (a,b) be the fundamental solution of
X^ - dY^ as -4. Let N be an odd square-free integer, N > 1,

2 8such that there exists a solution (X,Y) of X - dY « -4 for
which n |y . Let bN ts îvîR̂ where M » 1 or M is a square-free
Integer, M > 1. Then there exists a solution (X,Y) of the 

2 2equation X - dY » -4 for which hM(Y, and
(a) The equation X - dN%*^ » -4 has
(i) one solution (x,y) if (x,Ny ) is the. least positive

solution of X^ - dY^ » -4 for which iM|y ;
2(ii) one solution (a,t) if b » b*t , N = b';

(iii) no solutions otherwise.
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® 2 4(b) The equation X - dll Y = 4  has
2 i 2(1 ) tv/o solutions, (2 ,0 ) and (a + 2 , a^t) If b = b*t ,

N SB b* and a is a perfect square;
(ii) one solution (2 ,0 ) otherwise.
(c) The equation X - = -1 has

2(1 ) one solution (x,y) if (2±, 2Ny ) is the least positive
2 2solution of X - dY = -4 for which bM|Y;

(ii) one solution, (J(a^ + 3a), (J(a^ + l))^t), if b = b't^,
2

N = b* and ^(a + 1 ) is a perfect square;
(ill) no solutions otherwise.

2 2 a(d) The equation X - dN Y*̂  * 1 has
(i) two solutions, (1,0) and (649,6), if d = 13, N = 5;
(ii) one solution, (1 ,0 ), otherwise.
Proof. We show first that there exists a solution, (X,Y),
of the equation X^ « dY^ = -4 for vhich bM|Y. For, from (I.I)

2 pthe solutions of X - dY « -4 are given by X « Qga.pCa)#
Y * T^Ppn-l^^) " Thus there exists an odd integer r such that
N |p^(a). From lemma 1.1, therefore N |P̂  (a) for all integers s. 
Now b\a^ + 4 and so from (1.27) and lemma 1.1 b|pg.̂ (a) for all 
integers s. In particular, therefore, n |p .(a), b)p̂ -ĵ (a).
Thus M|pp^(a). But since r and b are both odd, Qp*b(a)̂ -“ d(bP^^(a)]P, 
« -4 which gives the result.
V/e also note that, since Mjp^^(a) where rb is odd, from lemma
1.6 (M,Q^(a)) « 1 for all integers n.
(a) From (I*I) the solutions of X^ - » -4 are given

2 2 2 
by X = Q2n-l(*)' ^  “ ^^2n-l(^)' Thus v/e require MR Y
» b^^Pgn-iCa) or ?2n-l^^^ *= :̂ or some integer Y^.
Since (M,Q^(a)) « 1 for all integers n, if M>1, from theorem
1.18(c) we have just the results given in (a)(i).
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2If M « 1, from theorem 1.3 we have just the solution P^(a) = 1 , 
This gives the result stated in (a)(ii)*
This completes the proof of (a).
(h) From (I.II) the solutions of 7? - « 4 are given
by X « Q (a), NY^ = "bPg (̂a). Thus we require » b^Pg^(a)
or P (a) =mY ^ for some integer Y^.

2n 1 J"
Since (M,Q^(a)) « 1 for all integers n, if M > 1, from theorem

p1.18(c) there is just the solution P^(a) « M.O •
If M SI 1, since IT / 1, b / 1, and so from theorem 1.3 we have

2
just the solutions I^(a) « 0 , and P^(a) « a if a is a perfect 
square.
This completes the proof of (b).
(c) From (I.Ill) the solutions of 7? - dN^^ = -1 are given
by X = Thus we require 2î,IR̂ Ŷ  =
2 2 b 6̂ n-3 ^̂  ̂“ for some integer Y^ '.

Since (M,Q^(a)) » 1 for all integers n, the results follow from
theorem 1.18(d) and theorem 1.4.
(d) From (I.IV) the solutions of X^ - dlT̂ Ŷ  » 1 are given
by X « jQg^(a), NY^ = JbPg^(a) and so we require P^^(a) « SMY^^ 
for some integer Y^. The results now follow from theorem 
1.18(d) and theorem 1.4.
This completes the proof of the theorem.
THEOREM 5.6. Let d be a square-free Integer such that the 
equation X^ - dY^ = -4 has solutions (X,Y) for which X and Y 
are both odd. Let (a,b) be the fundamental solution of the 
equation X^ - dY^ « -4. Let N be an odd square-free integer,
N >  1 , such that there exists no solution (X,Y) of X^ - dY^ « -.4
for which Njy. Let bN » MR , where M » 1 or M is a square—free 
integer, M >  1. Then there exists solution (X,Y) of
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- dY^ m 4 for which bM]Y, and
(a) The equation X^ - dlT̂ Ŷ  * -4 has no solutions.

2 2 4(h) The equation X - dN Y = 4 has
(1) two solutions, (2,0) and (x,y) if (x,Ny^) is the least

2 2positive solution of X - dY « 4 for which hM^Y:
(ii) two solutions, (2,0) and (384 238 404,396) if d = 29,

N « 455;
(ill) one solution, (2,0), otherwise.
, X 2 2 4(c) The equation X - dN Y « -1 has no solutions.

2 2 4(d) The equation X - dîT Y = 1 has
(I) two solutions, (1,0) and (x,y) if (2x,2Ny^) is the least

2 2positive solution of X - dY * 4 for which hM)Y;
(II) two solutions, (1,0) and (25921,12) if d =  6, N = 161;
(iii) one solution, (1,0) otherwise*
Proof. We show first that there exists a solution (X,Y) of 

2 2the equation X - dY * 4 for which hM|Y. For, from (I.II),
the solutions of X^ - dY^ » 4 are given hy X =
Y m Now in chapter 1 we showed that every integer
divides P^(a) for some r and so N\pg(a) for some s. From
(I.I) we see that if s is odd, this contradicts the definition 
of N. Thus s is even. From lemma 1.1, now k ]p ^(a) for 
every Integer r. Also, as in the proof of theorem 5.5, 
h\p^^(a) for all integers r. Thus, in particular, KjP^^(a), 
h jp^^(a) and so M Pg%(a). Since s is even,
Qg-^(a)^- dh^Pg^(a)^ = 4 which gives the result.
(a) It is easily seen, from the definition of K, that the 
equation X^ - dN^Y^ « -4 has no solutions.
(h) From (I.II) the solutions of X^ - dN^Y^ « 4 are given hy 
X B Qgn̂ si), NY^ = Thus we require Pg^(a) « MY^^ for
some integer Y .̂ Now since a2 ̂  dh^ = .4 , M 4 1. Similarly 
M|Pp(a) for any odd integer r.
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The result now follows from theorems 1.18(a) and 1.19(a).
(c) As in (a) it is easily seen that the equation 

- dlT̂ ŷ  B -1 has no solutions.
(d) Prom (I.IV) the solutions of X^ - » 1 are given

2
by X « &§&%(&)* NY » ibP (a). Thus again we recuire 

2 6n
Pg^(a) = 2T.1Yj , for some integer Y^. As in (b), M / 1, and 
MfPy(a) for any odd integer r and the results follow from 
theorems 1.18(b) and 1.19(b).
This completes the proof of the theorem.
THEOREM 5.7. Let d be an even square-free integer such that 
the equation X^ - dY^ = -4 has solutions. Let (2a,2b) be the 
fundamental solution of X^ - dY^ » -4# Then
(a) The equation X^ - dY^ « -4 has no solutions.

4 2(b) The equation X - dY « 4 has no solutions.
(c) The equation X^ 9 <3Ŷ  ® 1 has
(i) one solution (1,0). |I 4 2Proof. Since d is even, the equations X - dY = ĵ 4 are
both impossible modulo 8. This proves (a) and (b).
(c) Since d is even, a is odd. Prom (II.IV) the solutions
of X^ - dY^ = 1 are given by X^ = (2a), Y « bP(2a) where

2 n  2n
a is odd.
The result now follows from theorem 2.1.
This completes the proof.
THEOREM 5.8. Let d be an even square-free integer such that 

P 2equation X - dY>. « -4 has solutions. Let (2a,2b) be the
2 2fundamental solution of X - dY « -4. Let N be an odd

square-free integer, N > 1, such that there exists a solution,
2 2(X,Y), of the equation X - dY « -4 for which n |Y. Then

2 4(a) The equation X - dY » -4 has no solutions.
(b) The equation Xp _ . _ 4  has no solutions.
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2 4(c) The equation X - dY = 1  has
(i) one solution, (1,0).
(d) The equation X^ - dN^Y^ = 1 has
(i) one solution, (1,0).

P  4Proof. Since d is even and N is odd the equations X - dY = -4
and X^ - dN̂ Ŷ  ̂= -4 are both impossible modulo 16. This
proves (a) and (b).
(c) Since d is even, a and b are odd. Prom (II.IV) the
solutions of X^ - dY^ « 1 are given by X = Jq (2a) Y^= bP (2a).2n 2n
Prom (2.8), therefore,we require

•bPjj(2a) Q^(2a) =

How since Q (a)® - db®? (2a) « 4, (b,Q (2a)) = 1. Thus, if
we write b « b’t where b* = 1 or b* is a square-free integer 
b* > 1, by virtue of (2.11) we require either

Pjj(2a) = b’Y^^, Qj2a) =

which is impossible from (2.14), or

P (2a) . 2b*Y ®, Q (2a) = 2Y ® n J* n
where, from the first equation and (2.15) v/e require n even.
But then the second equation has only the solution n «= 0 from
theorem 2.1.
This completes the proof of (c).
(d) From (II.IV) the solutions of y? - dN^"^ = 1 are given
by X * iQ2j^(2a), NY^ « bPgj^(2a). From (2.8) therefore we require

bP (2a) Q (2a) = HY®. n Ii
If (N,Q%(2a)) « 1, as in (c) we require either
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Q (Sa) = y ® n 1
which le impossible from (2.14), or

2
Qĵ (2a) B 2Y^

where n is even, which from theorem 2.1 implies n = 0.
If (N,Q^(2a)) >  1, from (II.I) by virtue of the definition
of K we see that there exists an odd integer r such that
(Q (2a), P (2a)) has an odd factor greater than 1. However, n r
as was observed in chapter 2, the proof of lemma 1.6 did not
depend upon the fact that a was odd. Therefore the result
carries over to this case and, since r is odd, (Q (2a), P (2a)) I 4.n I*
Thus (Qĵ (2a), N) 1, and the result is proved.
This completes the proof of the theorem.
THEOREM 5.9. Let d be a square-free integer such that the 

2 2equation X - dY = -4 has no solutions but the equation
o 2X - dY « 4 has solutions (X,Y) for which X and Y are both

odd. Let (a,b) be the fundamental solution of X^ - dY^ = 4. Then
Æ 2(a) The equation X - dY « 4 has

(I) one solution, (a^,b) If a is a perfect square;
(II) no solutions otherwise.
(b) The equation x"̂  - dY^ s= 1 has
(1) one solution (1,0).
Proof, (a) From (III.I) the solutions of X^ - dY^ = 4 are given 

oby X * g^(a), Y « bp^(a) and the result follows from theorem
2a.
(b) From (III.II) the solutions of X^ - dY^ « 1 are given by
X *= * Y » &bpga(a) and the result follows from theorem
3.2.
This completes the proof.
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TrEORPM 6.10. Let d be a square-free integer such that the 
2 2equation X - dY = -4 has no solutions but the equation 

2 2X - dY B 4 has solutions (X,Y) for which X and Y are both odd.
2 8Let (a,b) be the fundamental solution of X - dY » 4. Then

(a) The equation X^ - dY^ » 4 has
(i) two solutions, (2,0) and (a,b^), if b is a perfect

square and a is not a perfect square;
(ii) three solutions, (2,0), (a,b^) and (a^ - 2, a^b^) if 

and b are both perfect squares;
(Iii) two solutions, (2,0) and (a^ - 3a, ( b(a^ - 1))^) if

2 ' a - 1 and b are both three times perfect squares;
(iv) one solution, (2,0), otherwise.
(b) The equation X^ - dY^ = 1 has
(i) two solutions, (1,0) and (?(a^ - 3a), ^^b(a^ - 1)^^) if

i(a^ - 1) and b are both perfect squares;
: -(ii) one solution, (1,0), otherwise.
Proof, (a) From (III.I) the solutions of X - dY « 4 are

a

' '■ ■■ 2 2 given by X « q (a), Y ® bp (a). Let b = b*t as in theorem
r ; ^ „
5.2. vVe now require p (a) » b*Y for some integer Y •
If b* B 1, from theorem 3.3 there are just the solutions 
p (a) = 0 , p (a) B 1 and p (a) » a if a is a perfect square.
If b* >1, from theorem 3.13 there are just the solutions

2 2 o Qp (a) « b’.O and p (a) * a - 1 if b* = 3 and a - 1 » 3Y o . 3 2
for some integer Y «
' > ■■ ^  ̂ . ■ • . 2 ■ A(b) From (III.II) the solutions of X - dY « 1 are given by 
X « iq3 ĵ (a), Y^ « &bpg^(a). Put b « b*t^ as before. Then
we "require p^^(e) = 2b*Yj^ for some integer Y .
If b* B 1, from theorem 3.4 there are just the solutions
p~(a) =‘8.0^ and p„(a) * a® - 1 if &(a® - 1) is a perfect square.
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If b* >  1, from theorem 3.13 there are just the solutions
o 2 ^ o

p (a) B b ’.O and p (a) = a - 1 if b* = 3 and a - 1 = 6Y
^ ^ 2 2 ^  for some integer Yg. Eut since a - 4 « db , this last

possibility requires

6Y ^ - 3 = 9dt 
2

which is impossible modulo 9.
This completes the proof of the theorem.
THEOREM 5.11. Let d be a square-free integer such that the
equation - dY^ = -4 has no solutions, but the equation X^-dY^ = 4
has solutions (X,Y) for which X and Y are both odd. Let (a,b)

2 2be the fundamental solution of X - dY =4. Let N be an odd
square-free integer such that there exists a solution (X,Y) of 

2 2the equation X - dY * 4 for which N|x. Let (x,y) be the
2 8least positive solution of X - dY = 4  with this property. Then

2 4 2(a) The equation N X  - dY = 4  has
o(I) one solution (X^,y) if x « NX^ for some integer X^;

(II) no solutions otherwise.
(b) The equation N^X^ - dY^ » 1 has
(I) one solution if % = 2NX^^ for some integer X^;
(II) no solutions otherwise.
Proof, (a) From (III.I) the solutions of N̂ x"̂  - dY = 4

gare given by NX « q^(a), Y *= bp^(a) and the results follow from 
theorem 3.16.
(b) From (III.II) the solutions of N̂ x"̂  - dY « 1 are given by 
2

NX = Y B ibp^^(a) and the results follow from theorem
3.17.
This completes the proof.
THEOREM 5.12. Let d be a square-free integer such that the 
equation X^ - dY^ = -4 has no solutions, but the equation
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- dY^ = 4 has solutions (X,Y) for which X and Y are "both
2 2odd.' Let (a,h) be the fundamental solution of X - dY * 4.

2Let N be an odd square-free integer, N > 1. Let bN = ÎÆR
where M = 1 or M is a square-free integer, M>1. Then there

2 2exists a solution of X - dY^ = 4 for which bM \ Y and
(a) The equation X^ - dN^Y^ == 4 has
(i) two solutions (2,0) and (a,t), if b = b*f, N = b * and a

is not a perfect square;
2 ±(ii) three solutions, (2,0), (a,t) and (a - 2, ta^) if

2
b = b*t , N = b* and a is a perfect square;

2(iii) two solutions, (2,0) and (x,y) if (x,ITy ) is the least
2 2positive solution of X - dY « 4 for which bM|Y;

(iv) one solution, (2,0), otherwise.
(b) The equation X^ - dN^Y^ « 1 has
(1) two solutions, (1,0) and (^(a^ - 3a),^t(J(a^ - 1)^ ^) 

if b » b’t N * b* and J(a - 1) is a perfect square;
(ii) two solutions, (1,0) and (x,y) if (2x, 2Ny^) is the least

2 2positive solution of X - dY « 4 for which bM|Y;
(iii) one solution, (1,0), otherwise.

2 2Proof. From (III,I) the solutions of X - dY « 4 are given by
X e Q (a), Y « bp (a) and from chapter 3 we see that Mip (a)" n ' 8
for some integer s. Thus bM|Y for some solution (X,Y) of
2 2X - dY B 4.
(a) From (III.I) the solutions of X^ - dN^Y^ * 4 are given by

2 2 X = g^(a), NY « bp^(a). Thus we require p^(a) = MY^ for some
integer Y^. If M « 1, from theorem 3.3 there are just the

2 2solutions P^(a) = 0 , p^(a) = 1 and pg(a) « a if a is a perfect 
square.
If M>1, from theorem 3.18(a) and (c) and theorem 3.19 (a)
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2 2there are just the solutions p (a) = M.O and p^ (a) = ,o /
where^is the rank of apparition of M with respect to the sequence
Pj,(a).
This concludes the proof of (a).

2 2 X(h) Prom (III.II) the solutions of X - dN Y « 1 are given
by X * gq* (a), ITŶ  = &bp (a). Thus we require p (a) « 2IvlY  ̂on 3n 3n 1
for some integer Y^ and the results follow from theorem 3.4, 
theorem 3.18(b) and (d) and theorem 3.19 (b).
This completes the proof of the theorem.
THEOREM 5.13. Let d be a square-free integer such that the 
equation - dY^ « -4 has no solutions and the eouation 
X - dY * 4 has only solutions (X,Y) for which X and Y are
both even. Let (2a, 2b) be the fundamental solution of
2 8 nX - dY B 4. Suppose that Ab ̂  3 or 63 (mod 64). Then the

4 2equation X - dY = 4 has no solutions.
4 2Proof. From (IV.I) the solutions of X - .dY = 4 are given by

X^ as q^(2a)j Y * 2bp^&a). Since all solutions of X^ - dY^ = 4
are even we require X to be even, i.e. 4|q(^a). Prom (4.14),n g
therefore, n is odd. Thus from theorem 4.1 q(4a) / X except

2s npossibly if 2a B 2 a* v/here s >  1 and a* = 1 (mod 8).
2 2 4s—2 2 2But 4a - 4 « 4db , i.e. 2 a* - 1 « db . Therefore,

If 8 = 1, at® = 3 (mod 64).
if s>l, db = -1 (mod 64).
But this Implies oik = 3 or 63 (mod 64), contrary to our supposition.
This completes the proof of the theorem.

Now it should be observed that 6ohn, in (^), proved the
results stated in theorems 5.1 and 5.2 for any non-square

2 2integer D with the property that the equation X - BY = -4 
has solutions (X,Y) for which X and Y are both odd, whereas 
theorems 5.1 and 5.2 are stated only for square-free values of D.
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Clearly this difference is irrelevant in the case of theorem
5.1 but not in the case of theorem 5.2. For example (2) covers 
the values D = 846 and 125 which theorem 5.2 does not.

However, If we are seeking solutions (X^Y) of the 
equations

X® - b/  = i.1, 1,4

2There D « dN and d is square-free, this is equivalent to 
seeking solutions of

X — dN Y *s ^1, +4.
2 2Also, if the equation X - DY b -4 has solutions (X,Y) for

which X and Y are both odd then clearly the equation 
2 2 2X - dN Y B -4 has solutions with the same property. This 

in turn implies that the equation
2 2 X - dY B -4

has solutions (X,Y) for which X and Y are both odd.
2 2The solutions of X - DY « -4 are to be found among

those of y? - dY^ = -4 and the least positive solution (X,Y)
of X^ - dY^ B -4 for which N|Y is clearly the fundamental 

2 2solution of X - DY b -4* Thus the results for D corresponding
to those stated in theorem 5.2 (a) for d are in fact equivalent
to those stated in theorem 5.5 (a) for d and N.

There is obviously a similar connection between the
results of theorem 5.2(b) stated for general non-square D
and theorem 5.5 (b). In fact, here our result is a slight
improvement on that of Cohn in (2). For Cohn showed that, with

2 4the one exception D = 5, the equation X - DY « 4 has only 
the trivial solution (2,0) and one other if the fundamental
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2 2 2 2 & solution of X - DY « -4 is of the form A + B D . Theorems
5.2 (b) and 5.5 (b) show that the fundamental solution cannot

2be of this form unless D = dN where d is square-free and
2 8 ̂  2 2 A 4* NB d is the fundamental solution of X - dY = -4. Thus,

for example, we have shovm immediately that the equation
X^ - 125Y^ m 4 has only the trivial solution, since if d = 5,

2 2 1 the fundamental solution of X - dY = -4 is 1 +  l.d^.
2 4In the case of the equation X - DY = -1 it would 

appear at first that we had lost something in presenting the 
results in this form. For, although, when we consider D with 
non-trivial square factors, theorem 5.5 (c) (ii) again provides 
a sharpening of the result in (2) we have the added possibility 
stated in theorem 5.5 (c) (i).

However, this says that the equation
2 4 X - BY B -1

2
has a solution if (2x,2Ny ) is the least positive solution of
X^ - dY^ = -4 for which N|Y. This implies that (2x,2y^) is

2 2the fundaiæntal solution of X - DY » -4. Thus from (6) 
clearly all the solutions (X,Y) of X^ - DY^ = -4 are such that 
X and Y are both even and these values of D are not considered 
In (2).

2 2Thus in the case where the equation X - DY » -4 has
odd solutions we have again proved Cohn*8 results. We have
also solved the equation X^ - DY^ « -1 in some cases not
covered by (2), for example D » 1445.

Finally, comparing the results of theorem 5.2 (d)
stated for general non-square values of D with those of
theorem 5.5 (d), we see again that we have proved the results

2 4Of (2) and also solved the equation X - DY = 1 for some
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values of D not considered in (2)* For example we have shown
that the equation - 325Y‘̂ = 1 has only the solutions (1,0)

2 4and (629,6) and that the equation X - 4901Y » 1 has only the 
solution (1,0).

Turning now to theorem 5.6 we see that here we are concerned
2with non-square D of the form D = dN where the equation 

X^ - dY^ ts -4 has solutions, hut the equation X^ - BY^ » -4 
does not. Thus these results are to he compared with those 
of Cohn in (4), where he proved the results stated in theorem 
5.10 for general non-square D with the property that the equation
2 pX - DY = 4  has solutions (X,Y) for which X and Y are hoth 

odd.
Comparing these results we see that theorem 5.6 (h)(i)

is equivalent to theorem 5.10 (a)(1) and that if the equation 
2 2X - dY ts -4 has solutions, the possibilities stated in

theorem 5.10 (a)(ii) and (iii) are excluded.
A similar comparison may he made between (4) and theorems

5.6 (d), 5.10 and 5.12. This shows that we have dealt with
all the values of D considered in (4) and some other values
not considered there, for example D « and D = 40$.

Any even values of D which are dealt with by theorems
5.2, 5.5, 6.6, 5.10 and 5.12 will clearly he of the form
D *s 2^^* where D* is odd. Thus theorem 8 deals with yet
more values of D, for example D = 2,26 and 50, hut of course

2 4solves only the equations X - BY « 1, -4.
Theorems 5.1 and 5.9 give exactly Cohn’s results on the 

equations X^ - DY^ = ±1# ±4 from (2) and (4). Theorems 5.7 
and 5.13 deal with some of these equations for values of D 
not considered in (2) and (4), (for example v/e prove that the 
equation x"̂  - 2Y^ = 1 has only the solution (1,0)), hut these 
results do not cover many interesting-cases.

All the equations considered above have been considered
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by L^junggren in (7 - 11), and he has given upper bounds for
the number of solutions and methods of obtaining solutions
where they exist in each case. He has also dealt with many
of the equations for values of D not considered above, showing

4 2in (9), for example, that the equation X - 143Y » 1 has only
the trivial solution (1,0).

For those values of D which v/e have considered, however,
we have in some cases provided more exact information about

4 2the solutions of the equations X - DY = ±1, ±4 and 
2 4X - DY » +1, ±4 or given easier methods of determining
solutions where they exist.

For example, in (9) Ljunggren has shom that the equation 
4 2 ”X - DY = 1 has, for any non-square value of D, at most
two solutions other than the trivial one, (1,0), and given a
fairly complicated method for finding solutions. From theorems
5.1, 5.7 and 5.9 we see that in the cases which we have
considered we have shown that the equation can have only the
trivial equation unless D = 5 or D m  29.

Similarly, in (7), Ljunggren shows that for any non-square 
2 4D the equation X - DY = 1 has at most two non-trivial solutions. 

In the cases we have considered we have brought the bound on 
the possible number of solutions down from two to one.

2 ALjunggren has also solved the equation X - DY s= -1 
for more values of D than are covered by our results, proving, 
for example, that the equation X^ - 2Y^ « -1 has only the solutions
(1,1) and (239,13). However his method for finding solutions 
in a given case is very complicated and ours, as is seen from 
theorems 5.2, 5.5, and 5.6, is comparatively simple - although 
again it must be stressed that the initial task of finding the 
fundamental solution.~ in any given case may be very tedious.
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2 4 2When we come to consider the equations N X  - DY = ±.1, ±.4
again we find that our results are covered to some extent by
the work of Ljunggren in (8) and (11). Ljunggren has solved
the equations AX"̂  - BY^ = -1, -4 for all A and B showing, in
(8), that these equations can have at most two solutions in
integers positive X and Y. He has also shown, in (11), that

2 2if the equation AX - BY » 4 has solutions (X,Y) for which
4 2X and Y are both odd, then the equations AX - BY = 1, 4 have

at most tv;o solutions in positive integers. In each case he
gives a method for finding solutions where they exist.
It will be readily seen that our equations are special cases

4 2of the equations AX - BY = +1» +4 but again from theorems
5.3, 5.4 and 5.11 we see that in this special case we have 
shoY/n that there is at most one solution in positive integers.

One aspect of the problem not dealt with in Ljunggren’s 
work is that of the simultaneous solution of the equations

2 9 4X - dN^Y = ±4>

= J.1, +4.

Our results however give the following two theorems.
THEOREM 6.14. Let d be a square-free integer such that the 

2 Pequation X - dY = ~4 has solutions (X,Y) for which X and Y 
are both odd. Let IT be an odd square-free integer, IT > 1.
Then if one of the equations

2 4 2 IT X - dY » +4
» ±1, ±4

has solutions, there are no solutions of the other seven
equations, except in the cases V\/̂  V\Q,vo.
^ cV X V'G \rvN<iVV»ocX ^ o r  Ok cV v<w ex.\\ V| SoNvv^c^ V*V\^ ec^'^OcV i o n s  i n  a.

v<. t t .
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2 2 4 ^(I) 18 - 13.5 .1 = -1 1
P 2 4  \ d =  13, N = 5.649 - 13.5 .6 « 1. J

(II) - d = -4 1  2 .
( n V  + 2f -  <3ItV = 4. J ^ = N K + 4

(iii) 161.^1^ - 5.144^ = 1
P 2 4  \ d =  5, N = 161.51841^ - 5.161 .12 « 1. '

4 2(iv) - d.'1^ = 4
(R® + 4R^ + 2)^-dH^(RK)^ . 4. ^ ° ^ + 4, KK = d - 2.

(v) - d.(2R)® . -4 1 2 2 a
(-JkV  . i)".aN^(RKj" . 1. ] ^  ^  f =

Proof* Prom (I.I) - (I#.TV), it is easily seen that if more than 
one of the equations

- (0^ = ±1, ±4
P  2 4- dlT Y = ±1, +4

has solutions, then one of the following six equations must 
have a solution.

2 2 Qĵ (a) Q^(a) *= Y or 2Y m ̂  n;
Pjj(a) P^(a) = or 2Y^ m X n
■bPja) Qjj(a) = Y^ or 2Y®

y
From corollary 1.2 the first four are all impossible except that 

K&s WWe iô)u.1-i6v>; nr 3̂  & - 3 vjW\Q.V> 0̂\\/<.S C.y\cA

has the solution m «1%, n » k j U X S  ^ V > i c U ' ( v i > .
If b » 1, from corollary 1.2 again the last two equations give
(11) - (v) only.
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If b > 1, from (1.11) clearly (b,Q^(a)) = 1 ard so, by 
virtue of lemma 1.6 we require either

P (a) =x tY ® or ETbY. m i l
which from theorems 1.13 and 1.14 is impossible, or

Cl (a) = 2Q (a) Y ^
(m,n) 2

which from theorem 1.6 is impossible, or

Q (a) « Q (a) y ^
3̂ (m,n) 2

which from theorem 1.5 implies that (m,n) = n, i.e. n|m.
From lemma 1.6 we see now that we require

P (a) = tÇL(a)y,^ or 2bQ (a) Y, m « 1 n 1
where m = 2tn for some integer t. Thus, from (1.8)

P^^(a) Q^^(a) = tQ^(a) Y^® or 2tQ (a) Y^S 

If t is odd, from lemma 1.2 Q%(a)|Q^^(a) and we require

which is again impossible from theorems 1.13 and 1.14.
If t is even we see, from (1.8) and lemma 1.1, that
Q (a)lp (a) and so since (b,Q (a)) = 1, we require n \ tn "

but none of the possibilities given by theorems 1.1 and 1.2 
yields a result.
THFORFM 5,15. Let d be a square-free integer such that the 
equation - dY^ * -4 has no solutions, but the equation
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2 2X - dY s= 4 has solutions (X,Y) for which X and Y are both odd.
Let N be an odd square-free integer, N > 1. Then if one of the 
equations

- dY® = 1,4
p o 4 X - dN Y = 1,4

has solutions, there are no solutions of the other three 
equations except in the cases

(I) - d =  4 1 2 4
(nV  - 2)® - dN®K^ = 4 J  =

(II) - dR^ = 4 1 4 2
8 4 .2 S, .4 > d = R - 4, KK = d ♦ 2.(R - 4R + 2) - d.N (RK) = 4 J

(III) - d (2R)B = 4 1  g 2 3
( & A ^  . D ®  _ dIT"(RK)^ . 1 J ^ ^  1 %  V

(Iv) - d. (9R)B = 1  ^  2 3
2 4  k2 2, 4 V 9dc 12R —p3, a — 3a^(SH r  - l)'̂  - d.R (3RK) = 1 J m 2KK, - 1 = 12R^

V .A .V t ^ rv  V\ocX P o f  OkcVvjbO^Wvj W h t  ftvv..,<kV'tOrt

Proof. From (III.I) and (III.II) it is easily seen that if
more than one of the equations |

Ĥ X"̂  - dY^ = 1, 4 
X^ - dH®Y^ = 1, 4

has solutions, then one of the following six equations must have 
a solution;

%(&) Q^(a) a Y^ or 2Y^ m / n; 
Pn(a) Pjî a) = Y® or 2Y® m ̂  n; 
■bPjn(a) Qn(a) = Y® or 2Y^.
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From corollary 3.2 the first four are all impossible. If b = 1,
corollary 3.1 shows that there are only the solutions (i) - (iii).
If b >  1, from (3.12) clearly (b,q^(a)) « 1 and from theorems
3.13, 3.14, 3.1 and 3.2 it is easy to deduce that the only other
solution is that stated in (iv).
This completes the proof of the theorem.

How in (13) Mordell gave seme explicit formulae for D
2 4for which the equation X - DY » 1 has only the trivial solution,

(1,0). This work covers values of D not covered by our results,
for example 37,101 and 197, although we have dealt with many
cases not considered by MOrdell. Apart from appealing at one
point to Ljunggren’s result from (1^) concerning the solutions of 

2 4the equation X - 2Y = -1, the methods used are elementary
and self-contained.

In (5) Cohn, using methods very similar to those of (2),
gives other formulae for D for which neither of the equations
X^ - DY^ as 1 and X^ - 4DY^ « 1 have non-trivial solutions. This
work covers values of D not dealt with in (13), for example,
D = 185, 170 and 365.

As a special case of his results in (13) Mordell proved 
p 4that the equation X - DY = 1 can have only the trivial solution 

if D is a prime, D = 5,9 or 13 (mod 16), D / 5. He stated 
at the end of the paper that he had been informed by Professor 
Ljunggren that Ljunggren had already proved this result although 
he had not published it.

In (12) Ljunggren published the result for the case D « 1 
(mod 16) not covered by Mordell*s work. In this paper he also 
proved that the equation x4 - DY^ = 1 where D is a prime can 
have only the trivial solution, except in the cases D = 6 and 
D a 29 when there are just the solutions (3,4) and (99,1820)
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respectively.
We conclude this thesis by giving another condition under 

4 2which the equation X - DY * 1 can have only the trivial 
solution and proving a similar result for the equation 

-lY® = 4.
THKORFM 5.16. Let d be a square free integer such that the 

2 2equation X - dY « -1 has solutions in integers X and Y. Then
4 2(a) The equation X - dY « 4 has no solutions.

4 2(b) If d is even the equation X - dY = 1 has only the solution 
(1,0).

2 8Proof .(a) Since the equation X - dY = -1 has solutions, d = 1,2 or
5 (mod 8).
If d = 2 (mod 8) from theorem 5.7 the equation X^ - dY^ = 4 
has no solutions.

2 pIf d =  5 (mod 8) and the equation X - dY = -4 has odd solutions,
” 4 2from theorem 5.1 the equation X - dY « 4 has no solutions.

P 2If d e 1 or 5 (mod 8) and the equation X - dY = -4 has only 
■even solutions, then we see that if - dy^ = 4, x and y are
both even, and 4(^x) - d(^y) = 1 which is impossible since
d = 1 or 5 (mod 8).
(b) The proof of (b) follows from theorem 5.7.

It will be readily seen that theorem 5.16 (b) covers such 
values as d « 2,82 and 170 not covered by (12).
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