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Maximally entangled mixed states of two qubits
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Department of Electrical Engineering, Katholieke Universiteit Leuven, Research Group SISTA, Kardinaal Mercierlaan 94,

B-3001 Leuven, Belgium
~Received 22 December 2000; published 15 June 2001!

We consider mixed states of two qubits and show under which global unitary operations their entanglement
is maximized. This leads to a class of states that is a generalization of the Bell states. Three measures of
entanglement are considered: entanglement of formation, negativity, and relative entropy of entanglement.
Surprisingly all states that maximize one measure also maximize the others. We give a complete characteriza-
tion of these generalized Bell states and prove that these states for fixed eigenvalues are all equivalent under
local unitary transformations. Furthermore we characterize all nearly entangled states closest to the maximally
mixed state and derive a lower bound on the volume of separable mixed states.
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In this paper we investigate how much entanglement i
mixed two-qubit system can be created by global unit
transformations. The class of states for which no more
tanglement can be created by global unitary operation
clearly a generalization of the class of Bell states to mix
states, and gives strict bounds on how the degree of mix
of a state limits its entanglement. This question is of cons
erable interest as entanglement is the magic ingredien
quantum information theory and experiments always d
with mixed states. Recently, Ishizaka and Hiroshima@1# in-
dependently considered the same question. They propos
class of states and conjectured that the entanglement of
mation@2# and the negativity@3# of these states could not b
increased by any global unitary operation. Here we rig
ously prove their conjecture and furthermore prove that
states they proposed are the only ones having the proper
maximal entanglement.

Closely related to the issue of generalized Bell state
the question of characterizing the set of separable den
matrices@5#, as the entangled states closest to the maxim
mixed state necessarily have to belong to the proposed c
of maximal entangled mixed states. We can thus give a c
plete characterization of all nearly entangled states lying
the boundary of the sphere of separable states surroun
the maximally mixed state. As a by-product this gives
alternative derivation of the well-known result of Zyc
kowski et al. @3# that all states for which the inequalit
Tr(r2)< 1

3 holds are separable.
The original motivation of this paper was the followin

question: given a single quantum-mechanical system con
ing of two spin-12 systems, i.e., two qubits, in a given sta
how can one maximize the entanglement of these qubits
ing only unitary operations? If not only unitary operatio
but also measurements were allowed, it is clear that a V
Neumann measurement in the Bell basis would immedia
yield a singlet. Here, however, we restrict ourselves to u
tary operations. Obviously, these unitary operations mus
global ones, that is, acting on the system as a whole, s
any reasonable measure of entanglement must be inva
under local unitary operations, acting only on single qub
As measures of entanglement, the entanglement of forma
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~EOF! @2#, the negativity@3#, and the relative entropy o
entanglement@4# were chosen.

The entanglement of formation of mixed states is defin
variationally as Ef(r)5min$ci%

SipiE(ci) where r

5S i pic ic i
† . For 232 systems the EOF is well characte

ized by introducing the concurrenceC @2#:

Ef~r!5 f „C~r!…5HS 11A12C2

2 D , ~1!

C~r!5max~0,s12s22s32s4!. ~2!

Here$s i% are the square roots of the eigenvalues of the m
trix A arranged in decreasing order,

A5rSr* S, ~3!

S5sy^ sy . ~4!

H(x) is Shannon’s entropy function andsy is the Pauli ma-
trix. It can be shown thatf (C) is convex and monotonically
increasing. Using some elementary linear algebra it is f
thermore easy to prove that the numbers$s i% are equal to the
singular values@8# of the matrixArTSAr. Here we use the
notationAr5FL1/2 givenFLF†, the eigenvalue decompo
sition of r.

The concept of negativity of a state is closely related
the well-known Peres condition for separability of a state@6#.
If a state is separable~disentangled!, then the partial trans-
pose of the state is again a valid state, i.e., it is positive.
232 systems, this condition is also sufficient@7#. It turns out
that the partial transpose of a nonseparable state has
negative eigenvalue. From this, a measure for entanglem
follows: thenegativityof a state@3# is equal to the trace norm
of its partial transpose. We will adopt the definition of neg
tivity as twice the absolute value of this negative eigenval

EN~r!52 max~0,2l4!, ~5!

wherel4 is the minimal eigenvalue ofrTA. In the case of
two qubits, this is equivalent to the trace norm of the par
transpose up to an affine mapping.
©2001 The American Physical Society16-1
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The relative entropy of entanglement was proposed
Vedral and Plenio@4# as a measure of entanglement mo
vated by the classical concept of Kullback-Leibler distan
between probability distributions. This measure has v
nice properties, such as being a good upper bound for
entanglement of distillation. It is variationally defined as

ER~r!5 min
sPD

Tr~r logr2r logs!, ~6!

whereD represents the convex set of all separable den
operators.

We now state our main result.
Theorem 1. Let the eigenvalue decomposition ofr be

r5FLF†,

where the eigenvalues$l i% are sorted in nonascending orde
The entanglement of formation is maximized if and only i
global unitary transformation of the form

U5~U1^ U2!S 0 0 0 1

1/& 0 1/& 0

1/& 0 21/& 0

0 1 0 0

D DfF†

is applied to the system, whereU1 andU2 are local unitary
operations andDf is a unitary diagonal matrix. This sam
global unitary transformation is the unique transformat
maximizing the negativity and the relative entropy of e
tanglement. The entanglement of formation and negativity
the new stater85UrU† are then given by

Ef~r8!5 f „max~0,l12l322Al2l4!…,

EN~r8!5max„0,A~l12l3!21~l22l4!22l22l4…,

respectively, while the expression for the relative entropy
entanglement is given by

ER~r8!5Tr~r logr!2l1 log@~12a!/2#

2l2 log$@a1b12~l22l4!#/4%

2l3 log@~12b!/2#2l4 log$@a1b

22~l22l4!#/4%,

a5@d2Ad224~12l1!~12l3!~l22l4!2#/@2~12l3!#,

b5@d2Ad224~12l1!~12l3!~l22l4!2#/@2~12l1!#,

d5l21l41~l22l4!2.

The class of generalized Bell states is defined as the statr8
thus obtained. These states are the maximally entan
mixed states~MEMS’s!.

We now present the complete proof of this theorem. T
cases of entanglement of formation, negativity, and rela
entropy of entanglement will be treated independently.
start with the entanglement of formation.
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As the functionf (x) is monotonically increasing, maxi
mizing the EOF is equivalent to maximizing the concu
rence. The problem is now reduced to finding

Cmax5 max
UPU~4!

~0,s12s22s32s4! ~7!

with $s i% the singular values of

Q5L1/2FTUTSUFL1/2. ~8!

Now, F, U, andSare unitary, and so is any product of them
It then follows that

Cmax< max
VPU~4!

~0,s12s22s32s4! ~9!

with $s i% the singular values ofL1/2VL1/2. The inequality
becomes an equality if there is a unitary matrixU such that
the optimalV can be written asFTUTSUF. A necessary
and sufficient condition for this is that the optimalV be
symmetric (V5VT): asS is symmetric and unitary, it can b
written as a productS1

TS1 , with S1 again unitary. This is
known as the Takagi factorization ofS @8#. This factorization
is not unique: left-multiplyingS1 by a complex orthogona
matrix O (OTO51) also yields a valid Takagi factor. An
explicit form of S1 is given by

S15
1

& S 0 1 1 0

21 0 0 1

0 2 i i 0

i 0 0 i

D . ~10!

If V is symmetric it can also be factorized like this:V
5V1

TV1 . It is now easy to see that anyU of the form

U5S1
†OV1F†, ~11!

with O real orthogonal, indeed yieldsV5V1
TV1 .

To proceed, we need two inequalities concerning singu
values of matrix products. Henceforth, singular values
well as eigenvalues will be sorted in nonascending ord
The following inequality for singular values is well know
@9#.

Lemma 1. Let APMn,r(C), BPMr ,m(C). Then,

(
i 51

k

s i~AB!>(
i 51

k

s i~A!s i~B!, ~12!

for k51,... , q5min$n,r,m%.
Less known is the following result by Wang and Xi@10#
Lemma 2. Let APMn(C), BPMn,m(C), and 1< i 1,¯

, i k<n. Then

(
t51

k

s i t
~AB!>(

t51

k

s i t
~A!sn2t11~B!. ~13!

Setn54 in both inequalities. Then putk51 in the first, and
k53, i 152, i 253, i 354 in the second. Subtracting the in
equalities then gives
6-2
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MAXIMALLY ENTANGLED MIXED STATES OF TWO QUBITS PHYSICAL REVIEW A 64 012316
s1~AB!2@s2~AB!1s3~AB!1s4~AB!#<s1~A!s1~B!

2s2~A!s4~B!2s3~A!s3~B!2s4~A!s2~B!.

Furthermore, letA5L1/2 andB5VL1/2, with L positive di-
agonal and with the diagonal elements sorted in nonasc
ing order. Thus,s i(A)5s i(B)5Al i . This gives

@s12~s21s31s4!#~L1/2VL1/2!<l12~2Al2l41l3!.

It is easy to see that this inequality becomes an equalit
and only if V is equal to the permutation matrix

S 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

D ~14!

multiplied by an arbitrary unitary diagonal matrixDf .
Therefore, we have proven

max
VPU~4!

@s12~s21s31s4!#~L1/2VL1/2!

5l12~2Al2l41l3!. ~15!

We can directly apply this to the problem at hand. The op
mal V is indeed symmetric, so that it can be decomposed
V5V1

TV1 . A possible Takagi factor is

V15S 1 0 0 0

0 1/& 0 1/&

0 0 1 0

0 i /& 0 2 i /&

D . ~16!

The optimal unitary operationsU are thus all of the form
U5S1

†OV1Df
1/2F† with O an arbitrary orthogonal matrix. I

has to be emphasized that the diagonal matrixDf will not
have any effect on the stater85UFLF†U†.

To proceed we exploit a well-known accident in L
group theory:

SU~2! ^ SU~2!>SO~4!. ~17!

It now happens that the unitary matrixS1 is exactly of the
form for makingS1(U1^ U2)S1

† real for arbitrary$U1 ,U2%
PSU~2!. It follows that S1(U1^ U2)S1

† is orthogonal and
thus is an element of SO~4!. Conversely, each elementQ
PSO~4! can be written asQ5S1(U1^ U2)S1

† . On the other
hand the orthogonal matrices with determinant equal to21
can all be written as orthogonal matrices with determinan
multiplied by a fixed matrix of determinant21. Some cal-
culations reveal that
01231
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S1
†S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D V1

5~sy^ sy!S1
†V1S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 1

D .

We conclude that for eachOPO(4) andDf unitary diago-
nal, there existU1 ,U2PSU~2! and Df8 unitary diagonal,
such thatU5S1

†OV1DfF†5(U1^ U2)S1
†V1Df8F

†.
It is now easy to check that a unitary transformation p

duces maximal entanglement of formation if and only if it
of the form

~U1^ U2!S 0 0 0 1

1/& 0 1/& 0

1/& 0 21/& 0

0 1 0 0

D DfF†. ~18!

This completes the proof of the first part of Theorem 1.
We now proceed to prove the second part of Theorem

concerning the negativity. This proof is based on t
Rayleigh-Ritz variational characterization of the minimal e
genvalue of a Hermitian matrix:

lmin~rTA!5 min
x:ixi51

Tr rTAux&^xu

5 min
x:ixi51

Tr r~ ux&^xu!TA. ~19!

The eigenvalue decomposition of (ux&^xu)TA can best be de-
duced from its singular-value decomposition. Letx̃ denote a
reshaping of the vectorx to a 232 matrix with x̃i j 5^ei

^ ej ux&. Introducing the permutation matrixP05S i j e
i j

^ eji , the partial transpose can be written as follows:

~ ux&^xu!TA5P0~ x̃^ x̃†!. ~20!

The proof of this statement is elementary. We denote
Schmidt decomposition of the vectorux& by

x̃5U1SU2
† , ~21!

where the diagonal elements ofS are given bys1 ,s2 . Since
x is normalized we can parameterize these as cos~a! and sin
~a! with 0<a<p/4 ~to maintain the ordering!. We get

~ ux&^xu!TA5P0~U1^ U2!~S ^ S!~U2^ U1!†. ~22!

This clearly is a singular-value decomposition. The expli
eigenvalue decomposition can now be calculated using
basic property ofP0 thatP0(A^ B)5(B^ A)P0 for arbitrary
A,B. It is then easy to check that the eigenvalue decomp
tion of (ux&^xu)TA is given by
6-3
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~ ux&^xu!TA5V~x!D@a~x!#V~x!† , ~23!

where D@a(x)# is the diagonal matrix with eigenvalue
(s1

2,s1s2 ,s2
2,2s1s2) and

V~x!5~U1~x! ^ U2~x!!S 1 0 0 0

0 1/& 0 1/&

0 1/& 0 21/&

0 0 1 0

D .

~24!

For the problem at hand, we have to minimize the minim
eigenvalue of (UrU†)TA over all possibleUPU(4). Thus,
we have to minimize

min
U,x

Tr UFLF†U†~x!D@a~x!#V~x!†

5min
a

min
W

Tr LW†D~a!W, ~25!

where we have absorbed the eigenvector matrixF of r, as
well as V(x)†, into U, yielding W. Now, the minimization
over W can be done by writing the trace in components

g~a!5Tr LW†D~a!W5(
i , j

dj~a!uWji u2l i5d~a!TJ~W!l,

~26!

whered(a) andl denote the vectors containing the diagon
elements ofD(a) and L, respectively. J(W) is a doubly
stochastic matrix formed fromW by taking the modulus
squared of every element. The minimum over allW is at-
tained whenJ(W) is a permutation matrix; this follows from
Birkhoff’s theorem @8#, which says that the set of doubl
stochastic matrices is the convex closure of the set of per
tation matrices, and also from the fact that our object fu
tion is linear. Since the components ofs andl are sorted in
descending order andl is positive, the permutation matri
yielding the minimum for anya is the matrix

J05S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D . ~27!

ThusW has to be chosen equal toJ0 multiplied by a diagonal
unitary matrixDf . Hence, the minimum overW is given by
S j 51

4 l jd4112 j (a). Minimizing overa gives, after a few ba-
sic calculations,

cos~2a!5
l22l4

A~l12l3!21~l22l4!2
,

g~a!5@l21l42A~l12l3!21~l22l4!2#/2.

This immediately yields the conjectured formula for the o
timal negativity.
01231
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We now have to find theU for which this optimum is
reached. AsV(x)†UF5W, it follows that the optimal uni-
tary transformationU is given byU5V(x)J0DfF†:

U5~U1^ U2!S 0 0 0 1

1/& 0 1/& 0

1/& 0 21/& 0

0 1 0 0

D DfF†. ~28!

This is exactly the sameU as in the case of entanglement
formation.

Next we move to the third part of Theorem 1 concerni
the relative entropy of entanglement. We first prove two le
mas.

Lemma 3. Consider the class of superoperators

T ~r!5(
i

aiUirUi
† ,

where allUi are unitary, and theai form a distribution. Then,
for any stater that is invariant underT, we have for the
relative entropy

S~ris!>S~riT †~s!!.

Proof. The proof of this lemma is heavily inspired b
Theorem 6 in@11#. From S(r)5S„T(r)…, we find

S~ris!5Tr r logr2Tr r logs

5Tr r logr2Tr T ~r!logs

5Tr r logr2(
i

ai Tr UirUi
† logs

5Tr r logr2(
i

ai Tr r log~Ui
†sUi !

>Tr r logr2Tr r logS (
i

aiUi
†sUi D

5S~riT †~s!!,

where at the> relation we have used the subadditivity of th
relative entropy with respect to its second argument.

Lemma 4. For r of the formr5ULU† with

U5S 0 0 0 1

1/& 0 1/& 0

1/& 0 21/& 0

0 1 0 0

D
andL containing the ordered eigenvalues ofr,

ER~r!5 min
sPDùMEMS

S~ris!,

where MEMS is the class of maximally entangled mix
states.

Proof. Define the superoperator
6-4
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T ~r!5V diag~V†rV!V†.

Here, diag(r) is the superoperator that sets all off-diagon
elements ofr equal to zero while keeping the diagonal on
intact. This superoperator can also be written as

diag~r!5(
i

PirPi /2
n,

wherePi runs through all possible diagonal matrices hav
only 11 or 21 on their diagonal@12#. It follows thatT is of
the form mentioned in Lemma 1 and, furthermore, that it i
self-dual superoperator, i.e.,T †5T.

It is obvious that all MEMS’s~with U15U251) are left
invariant by T. We will now show that any suchT maps
separable states to separable states. Consider the pure
uct states only; if the proposition is valid for pure produ
states, it will be valid for all separable states~by linearity!.
The most general pure product state has the state vectc
5(ac,ad,bc,bd), with a,b,c,d complex numbers. Then
since

V†c5„~ad1bc!/&,bd,~ad2bc!/&,ac…,

T ~cc†!5V diag~V†cc†V!V†5VLV†,

where the diagonal elements ofL are, in order,

„u~ad1bc!/&u2,ubdu2,u~ad2bc!/&u2,uacu2
….

As these values are not necessarily sorted,T(cc†) need not
be a MEMS. However, it is still possible to apply the fo
mula for the negativity of MEMS’s which says that

EN~r!5max„0,A~l12l3!21~l22l4!22l22l4….

As can be easily checked, the validity of this formula do
not rely on the ordering of thel i , as long as eachl i pertains
to the i th column ofV. In particular, using

l12l352 Re@ab~cd!* #,

l26l45ubdu26uacu2,

we get for the negativity ofT(cc†)

EN@T ~cc†!#5max~0,F !

with

F5A~l12l3!21~l22l4!22~l21l4!

5A4 Re@ab~cd!* #21ubdu41uacu422uabcdu2

2~ ubdu21uacu2!

5Aubdu41uacu412uabcdu224 Im@ab~cd!* #2

2~ ubdu21uacu2!

5A~ ubdu21uacu2!224 Im@ab~cd!* #22~ ubdu21uacu2!

<0.
01231
l

a

rod-
t

s

Hence,T(cc†) is separable, as we set out to prove, so thaT
maps separable states to separable states.

From the previous discussion it also follows that states
the formVLV† are separable if and only if the eigenvalu
satisfy

A~l12l3!21~l22l4!22l22l4<0. ~29!

Furthermore, statesVLV† are obviously invariant underT.
Hence, lettings traverse all separable states of this for
generates the same set of statesT~s! as lettings traverse all
separable states without restriction. Therefore,

ER~r!5min
lPD

S~ris!

> min
sPD

S„riT~s!…

5 min
s5VLV†PD

S~ris!.

Comparing the first and the third lines, we immediately s
that the inequality must be an equality.

Actually, an even stronger result holds, as we can res
ourselves in this minimization to statess5VLV†PD where
the diagonal elements appear in descending order (l1>l2
>l3>l4). In other words,s may be taken from the set o
separable MEMS’s. To see this, note that, asr and s are
both MEMS’s,

S~ris!5(
i

pi~ log pi2 logl i !,

where thepi are the sorted eigenvalues ofr, andl i are the
not necessarily sorted eigenvalues ofs. It is easy to see tha
one always gets a lower relative entropy by permuting thel i
into descending order@12#. This ends the proof of Lemma 4

It is now easy to prove the last part of Theorem 1: B
cause thes are restricted to separable MEMS’s, this mea
that, for any global unitaryU,UsU† is still separable.
Hence,

ER~r!5 min
sPDùMEMS

S~ris!

5 min
sPDùMEMS

S~UrU†iUsU†!

> min
UsU†PD

S~UrU†iUsU†!

5ER~UrU†!,

where the inequality arises because the minimization dom
has been enlarged.

The explicit calculation of the relative entropy of en
tanglement of the maximally entangled mixed states is no
tedious but straightforward exercise, whose result is quo
in the theorem. This completes the proof of Theorem 1.h

Let us now analyze more closely this class of generali
Bell states. We already know thatU is unique up to local
unitary transformations. It is easy to check that the orde
6-5
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VERSTRAETE, AUDENAERT, AND DE MOOR PHYSICAL REVIEW A64 012316
eigenvalues of the generalized Bell states for given entan
ment of formationf (C) are parametrized by two indepen
dent variablesa andb:

0<a<1,

b>A12a2/92A 8
9 a,

b<min„A~11C!/~12C!2a2/92A2
9 a,A32a22&a…,

l1512
12C

6
~31b2!,

l25
12C

6
~a1&b!2,

l35
12C

6
@32~&a1b!2#,

l45
12C

6
a2. ~30!

For a given EOF there is thus, up to local unitary transf
mations, a two-dimensional manifold of maximally e
tangled states. In the case of concurrenceC51 the upper and
the lower bounds onb become equal and the unique pu
Bell states arise. Another observation is the fact thatl4 of all
generalized Bell states is smaller then1

6. This implies that, if
the smallest eigenvalue of any two-qubit state exceeds1

6, the
state is separable.

A natural question is now how to characterize the e
tangled states closest to the maximally mixed state. A s
sible metric is given by the Frobenius normir21i2

5AS il i
221/4. This norm is dependent only on the eige

values ofr and it is thus sufficient to consider the gener
ized Bell states at the boundary of entangled states w
both the concurrence and the negativity become zero. T
can be solved using the method of Lagrange multipliers
straightforward calculation leads to a one-parameter fam
of solutions:

0<x< 1
6 ,

l15 1
3 1Ax~ 1

3 2x!, l25 1
3 2x,
A

01231
le-
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l35 1
3 2Ax~ 1

3 2x!, l45x. ~31!

The Frobenius normir21i2 for all these states on th
boundary of the sphere of separable states is given by

numberA 1
12 . This criterion is exactly equivalent to the wel

known criterion of Zyczkowskiet al. @3#: Trr25 1
3 . Here,

however, we have the additional benefit of knowing exac
all the entangled states on this boundary as these are
generalized Bell states with eigenvalues given by Eq.~31!.
Furthermore, Zyczkowskiet al. @3# proposed a lower bound
on the volume of separable states by considering the ba
states that remain separable under all global unitary trans
mations. Clearly, the criterionS il i

2< 1
3 can be strengthene

to l12l322Al2l4<0. Some tedious integration then lea
to a better lower bound for the volume of separable sta
relative to the volume of all states: 0.3270~as opposed to
0.3023 of@3#!.

Further interesting properties of the maximally entang
mixed states include the fact that the states with maxim
entropy for given entanglement all belong to this class. T
will be reported elsewhere.

In conclusion, we have generalized the concept of p
Bell states to mixed states of two qubits. We have prov
that the entanglement of formation, the negativity, and
relative entropy of entanglement of these generalized B
states cannot be increased by applying any global uni
transformation. Whether their entanglement of distillation
also maximal is an interesting open problem.
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