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Maximally entangled mixed states of two qubits
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We consider mixed states of two qubits and show under which global unitary operations their entanglement
is maximized. This leads to a class of states that is a generalization of the Bell states. Three measures of
entanglement are considered: entanglement of formation, negativity, and relative entropy of entanglement.
Surprisingly all states that maximize one measure also maximize the others. We give a complete characteriza-
tion of these generalized Bell states and prove that these states for fixed eigenvalues are all equivalent under
local unitary transformations. Furthermore we characterize all nearly entangled states closest to the maximally
mixed state and derive a lower bound on the volume of separable mixed states.
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In this paper we investigate how much entanglement in dEOPF [2], the negativity[3], and the relative entropy of
mixed two-qubit system can be created by global unitaryentanglemenf4] were chosen.
transformations. The class of states for which no more en- The entanglement of formation of mixed states is defined
tanglement can be created by global unitary operations i¥ariationally —as E¢(p) =min,,%pE() where p
clearly a generalization of the class of Bell states to mixed=3,p, ;4 . For 2x2 systems the EOF is well character-
states, and gives strict bounds on how the degree of mixingzed by introducing the concurren[2]:
of a state limits its entanglement. This question is of consid-

erable interest as entanglement is the magic ingredient of 1+y1-C?

quantum information theory and experiments always deal Ei(p)=f(C(p)=H| ———/, (1)
with mixed states. Recently, Ishizaka and Hiroshirhin-

dependently considered the same question. They proposed a C(p)=max0,0,— o,— 03— 0y). 2

class of states and conjectured that the entanglement of for-

mation[2] and the negativity3] of these states could not be Here{o;} are the square roots of the eigenvalues of the ma-
increased by any global unitary operation. Here we rigordrix A arranged in decreasing order,

ously prove their conjecture and furthermore prove that the

— *
states they proposed are the only ones having the property of A=pSp™S, )
maximal entanglement. . 4
Closely related to the issue of generalized Bell states is =0y®0y. (4)

the question of characterizing the set of separable densitM(X) is Shannon's entropy function ang is the Pauli ma-
matriceq 5], as the entangled states closest to the maximall¥rix_ It can be shown that(C) is convex and monotonically

mixed state necessarily have to belong to the proposed claggyreasing. Using some elementary linear algebra it is fur-

of maximal entangled mixed states. We can thus give a comMyarmore easy to prove that the numbgrs are equal to the
plete characterization of all nearly entangled states lying O'gingular value$8] of the matrix\pTSyp. Here we use the
the boundary of the sphere of separable states surroundi%tation\fp:qml/z given®A®T, the eigenvalue decompo-
the maximally mixed state. As a by-product this gives angjion of p. ’
alternative derivation of the well-known result of Zycz-  The concept of negativity of a state is closely related to
kowski et al. [3] that all states for which the inequality the well-known Peres condition for separability of a sfaike
Tr(p?)=<3 holds are separable. If a state is separabl@isentangleyl then the partial trans-
The original motivation of this paper was the following pose of the state is again a valid state, i.e., it is positive. For
question: given a single quantum-mechanical system consisp-x 2 systems, this condition is also suffici¢. It turns out
ing of two spin3 systems, i.e., two qubits, in a given state, that the partial transpose of a nonseparable state has one
how can one maximize the entanglement of these qubits Usgregative eigenvalue. From this, a measure for entanglement
ing only unitary operations? If not only unitary operations fo|lows: thenegativityof a statg 3] is equal to the trace norm
but also measurements were allowed, it is clear that a Vogf its partial transpose. We will adopt the definition of nega-

Neumann measurement in the Bell basis would immediatelyjvity as twice the absolute value of this negative eigenvalue:
yield a singlet. Here, however, we restrict ourselves to uni-

tary operations. Obviously, these unitary operations must be En(p)=2max0,—\,), (5)
global ones, that is, acting on the system as a whole, since

any reasonable measure of entanglement must be invariawhere A, is the minimal eigenvalue g5'A. In the case of
under local unitary operations, acting only on single qubitsitwo qubits, this is equivalent to the trace norm of the partial
As measures of entanglement, the entanglement of formatioinanspose up to an affine mapping.
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The relative entropy of entanglement was proposed by As the functionf(x) is monotonically increasing, maxi-
Vedral and Plenid4] as a measure of entanglement moti- mizing the EOF is equivalent to maximizing the concur-
vated by the classical concept of Kullback-Leibler distancerence. The problem is now reduced to finding
between probability distributions. This measure has very
nice properties, such as being a good upper bound for the Crax= Max (0,01~ 02— 03— 0y) %
entanglement of distillation. It is variationally defined as UeU)

with {o;} the singular values of

Er(p)=minTr(plogp—plogo), (6)
oeD Q=A1/2<I>TUTSUCDA1’2. (8)
where D represents the convex set of all separable densityo, & U andSare unitary, and so is any product of them.
operators. _ It then follows that
We now state our main result.
Theorem 1Let the eigenvalue decomposition @hbe Crax=< Max (0,01~ 0y~ 03— 074) 9
VeU(4)
p=DADT,

with {0} the singular values oAY2/AY2 The inequality
where the eigenvalud3 ;} are sorted in nonascending order. becomes an equality if there is a unitary matdxsuch that
The entanglement of formation is maximized if and only if athe optimalV can be written asPTUTSU®. A necessary
global unitary transformation of the form and sufficient condition for this is that the optimél be

symmetric =VT): asSis symmetric and unitary, it can be

0 0 0 1 written as a producSISl, with S; again unitary. This is
V2 0 1V2 O known as the Takagi factorization 8f8]. This factorization
U=(U®Uy) Vi 0 —1h3 0 Dy’ is not unique: left-multiplyingS; by a complex orthogonal
matrix O (OTO=1) also yields a valid Takagi factor. An
6 1 0 O explicit form of S; is given by
is applied to the system, wheké;, andU, are local unitary 0 1 1 0
operations and , is a unitary diagonal matrix. This same 1/-1 0 o1
global unitary transformation is the unique transformation S =— (10)
maximizing the negativity and the relative entropy of en- v2| O =i i O
tanglement. The entanglement of formation and negativity of i 0 0 i

the new state’ =UpU" are then given by
If V is symmetric it can also be factorized like thisy

Ei(p")=f(maxOA1—N3—2VA2\4)), =V/V;. Itis now easy to see that ary of the form
En(p’)=max0/(A;—X3)%+(Ay—Ag)°—Na— Ny, u=siov,o, (11
respectively, while the expression for the relative entropy ofyith O real orthogonal, indeed yieldé= VIV;.
entanglement is given by To proceed, we need two inequalities concerning singular

values of matrix products. Henceforth, singular values as

Er(p’)=Tr(plogp) =\, logl (1-a)/2] well as eigenvalues will be sorted in nonascending order.

— Nz log{[a+b+2(N,—N,)]/4} The following inequality for singular values is well known
[9].
—N\zlog[(1—-b)/2]—N,4log{[a+b Lemma 1LetAe M, (C), Be M, ,(C). Then,
—2(No—N\y) /4, k k
, , 2, 0i(AB)= 2, ai(A)ai(B), (12
a=[d—d*=4(1-\)(1-N3) (A= Ag)?/[2(1-N3)], =1 =1

[z = — — — 7 _ for k=1,..., g=min{n,r,m}.
b=[d—Vd*=4(1-\)(1-Ag) 2= 2g) V21— M), Less known is the following result by Wang and [XiO]

Lemma 2 Let Ae M(C), Be M (C), and I<i;<---

d=No+ g+ (A= Ny)>2.
2+ At (ho— ko) <i,=<n. Then

The class of generalized Bell states is defined as the giates K K
thus obtained. These states are the maximally entangled
mixed state§MEMS’s). Z‘l Uit(AB)>;1 71, (A)Tn-+1(B). (13

We now present the complete proof of this theorem. The
cases of entanglement of formation, negativity, and relativesSetn=4 in both inequalities. Then plt=1 in the first, and
entropy of entanglement will be treated independently. We&k=3,i,=2,i,=3, i3=4 in the second. Subtracting the in-
start with the entanglement of formation. equalities then gives
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—05(A)04(B) ~ 05(A)75(B) ~ 54(A)0a(B). N Y
1 1
0 0 1
Furthermore, leA= A2 andB=VA2 with A positive di- 00 0 -1
agonal and with the diagonal elements sorted in nonascend-
ing order. Thusg(A)=o;(B)=\;. This gives 10 0 O
" 1 0 O
(01— (02+ 03+ o) AYAVAY) =N 1= (2R N+ ha). “(®@0)SVil g o —1 ol
0O 0 0 1

It is easy to see that this inequality becomes an equality if

and only ifV is equal to the permutation matrix We conclude that for eac® € O(4) andD, unitary diago-
nal, there exist,,U,eSU(2) and D, unitary diagonal,
such thaty =S]OV;D ;"= (U;®U,)S]V,D, ®".

1 0 0O
It is now easy to check that a unitary transformation pro-
0001 (14) duces maximal entanglement of formation if and only if it is
0 010 of the form
0 1 00O 0 o0 0 1
multiplied by an arbitrary unitary diagonal matri ( ) W2 0 12 0 ot (19
¢ U, ouU D . 1
Therefore, we have proven ¥lava 0 —awvz o)
0 1 0 0
max [o;—(o,+ o3+ 04 J(AYVAY?) , _
Veu(4) This completes the proof of the first part of Theorem 1.
We now proceed to prove the second part of Theorem 1
=A1=(2VAh 4t hg). (19  concerning the negativity. This proof is based on the

Rayleigh-Ritz variational characterization of the minimal ei-
We can directly apply this to the problem at hand. The opti-genvalue of a Hermitian matrix:
mal V is indeed symmetric, so that it can be decomposed as

TAV i T
V=V]V;. A possible Takagi factor is Nmin(p A)= min Tr pA/X)(x|

x:[|x||=1
1 0 0 0 = mlin Trp([x)(x|) . (19
X:x/|=1
0 1V 0 1M2
Vicly 0 1 o |- (180 The eigenvalue decomposition dk}(x|) ™ can best be de-
. . duced from its singular-value decomposition. kedlenote a
0 V2 0 —ilv2 reshaping of the vectox to a 2x2 matrix with %;;= (€'

®el|x). Introducing the permutation matri,="3;e"
The optimal unitary operationsl are thus all of the form ®&€', the partial transpose can be written as follows:
U=S]OV,D}%®" with O an arbitrary orthogonal matrix. It
has to be emphasized that the diagonal madrjxwill not
have any effect on the stapd =UDADTUT,
To proceed we exploit a well-known accident in Lie
group theory:

(IX)(x]) TA=Po(X®X"). (20

The proof of this statement is elementary. We denote the
Schmidt decomposition of the vectb) by

%=U,;3UJ, (21)
SU(2)®SU(2)=S04). (17)
where the diagonal elements Bfare given byo,,0,. Since
x is normalized we can parameterize these agapand sin

It now happens that the unitary matr$ is exactly of the (@) with 0< < /4 (to maintain the ordering We get

form for makingS;(U;®U,)S! real for arbitrary{U,,U,}
€SU2). It follows that S,(U;®U,)S! is orthogonal and (IXNX)TA=Po(U10U,) (3@3)(U,eUp T (22)

thus is an element of S@). Conversely, each eleme

e SO(4) can be written a@le(U1®U2)SI. On the other  This clearly is a singular-value decomposition. The explicit
hand the orthogonal matrices with determinant equatio  eigenvalue decomposition can now be calculated using the
can all be written as orthogonal matrices with determinant Jbasic property oP, thatPy(A®B) = (B® A) P, for arbitrary
multiplied by a fixed matrix of determinantl. Some cal- A,B. It is then easy to check that the eigenvalue decomposi-
culations reveal that tion of (|x)(x|)"A is given by
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(IX){x)Ta=V(x)D[ a(x)]V(x)T, (23 We now have to find théJ for which this optimum is
reached. AV(x)TU® =W, it follows that the optimal uni-
where D[ a(Xx)] is the diagonal matrix with eigenvalues tary transformatiorl is given byU:V(x)J0D¢<DT:

2
07,010,,05,—010,) and
(01,0102,0% 107) 0 0 0 1

o 0 0 W2 0 1N2 )
W2 0 142 U=(U;®U,) VI 0 —1M3 0O D¢,(I>. (28
V(X)=(U(x)®Uy(X)) Wi 0 13l 0 1 . 5
0 0 1 0

(24) This is exactly the sam¥ as in the case of entanglement of
formation.
For the problem at hand, we have to minimize the minimal Next we move to the third part of Theorem 1 concerning
eigenvalue of {pU N Ta over all possibleJ e U(4). Thus, the relative entropy of entanglement. We first prove two lem-
we have to minimize mas.
Lemma 3 Consider the class of superoperators

minTrU®ADTUT(X)D[a(x)]V(x)T

U T(p)=2 aUipU],
=minmin Tr AW'D ()W, (25) !

o W where allU; are unitary, and the; form a distribution. Then,
where we have absorbed the eigenvector mabrigf p, as ~ fOr any statep that is invariant undef/, we have for the
well asV(x)", into U, yielding W. Now, the minimization ~relative entropy
over W can be done by writing the trace in components

S(pllo)=S(p|T'(0)).

g(a)=TrAWD(a)W= "2, d:(a)|W;|2\;=d(a)TI(W)X, Proof. The proof of this lemma is heavily inspired by
0 . Theorem 6 iN11]. From S(p)=S(7(p)), we find
(26)

S(pllo)=Trplogp—Trplogo
whered(«) and\ denote the vectors containing the diagonal

elements ofD(«) and A, respectively. J(W) is a doubly =Trplogp—Tr7(p)logo

stochastic matrix formed fronW by taking the modulus

squared of every element. The minimum over \Alis at- =Trplogp— >, a; TrU;pU logo
i

tained whenJ(W) is a permutation matrix; this follows from
Birkhoff's theorem[8], which says that the set of doubly
stochastic matrices is the convex closure of the set of permu- =Trplogp— >, a Trplog(UfcU;)
tation matrices, and also from the fact that our object func- [

tion is linear. Since the components@fand\ are sorted in

descending order anl is positive, the permutation matrix =Trplogp—Trplog
yielding the minimum for anyr is the matrix

> aiuﬁoui)

0 0 0 1 :S(P”TT(O'))y

0 01 0 where at the= relation we have used the subadditivity of the
Jo=1g 1 o ol (27)  relative entropy with respect to its second argument.

Lo 0o Lemma 4 For p of the formp=UAUT with

0O O 0 1

ThusW has to be chosen equaldg multiplied by a diagonal W3 0 1M 0O

unitary matrixD ,. Hence, the minimum oved is given by U=
37 1N\jdss1-j(a). Minimizing overa gives, after a few ba- W2 0 -1V2 O
sic calculations, 0o 1 0 0
No—Ng and A containing the ordered eigenvaluesmf
coq2a)= > >+
O E(p)=  min  S(plo),

oce DNMEMS

gl@) =[Nt A= V(A 1= Ng)*+ (A=) *]2. _ _ _
where MEMS is the class of maximally entangled mixed
This immediately yields the conjectured formula for the op-states.
timal negativity. Proof. Define the superoperator
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T(p)=Vdiag V'pV)VT. HenceZ(y4") is separable, as we set out to prove, so that
maps separable states to separable states.
Here, diagg) is the superoperator that sets all off-diagonal From the previous discussion it also follows that states of
elements of equal to zero while keeping the diagonal onesthe formVA V' are separable if and only if the eigenvalues
intact. This superoperator can also be written as satisfy

diang)=2 PiPPi/Zn, \/()\l_)\3)2+()\2_)\4)2_)\2_}\4$0. (29

' Furthermore, state¥ AV' are obviously invariant undef.
whereP; runs through all possible diagonal matrices havingHence, lettingo traverse all separable states of this form
only +1 or —1 on their diagonal12]. It follows that7'is of ~ generates the same set of stefés) as lettingo traverse all
the form mentioned in Lemma 1 and, furthermore, that it is aSeparable states without restriction. Therefore,

self-dual superoperator, i.€Z,'=7.

It is obvious that all MEMS's(with U;=U,=1) are left ER(p):{mQ S(pllor)
invariant by 7. We will now show that any such maps °
separable states to separable states. Consider the pure prod- =min S(p||7( o))
uct states only; if the proposition is valid for pure product oeD

states, it will be valid for all separable stat@dsy linearity).
The most general pure product state has the state vector
=(ac,ad,bc,bd), with a,b,c,d complex numbers. Then,
since Comparing the first and the third lines, we immediately see
that the inequality must be an equality.
V'y=((ad+bc)/v2,bd,(ad—bc)/v2,a0), Actually,ln e\yen stronger resqult hglds, as we can restrict
ourselves in this minimization to states=VAV'e D where
the diagonal elements appear in descending ordeE{
=N\3=\,). In other words,oc may be taken from the set of
separable MEMS's. To see this, note that,pgaand o are

(|(ad+bc)/v2|?,|bd|?,|(ad—bc)/v2|?,|ac?). both MEMS's,

= min S(p|o).
o=VAVTeD

T(yy"=Vdiag VT yy'V)VI=VAVT,

where the diagonal elements afare, in order,

As these values are not necessarily sorg;/") need not
be a MEMS. However, it is still possible to apply the for-
mula for the negativity of MEMS’s which says that

S(pllo)=2i pi(logp;—log\;),

where thep; are the sorted eigenvalues gfand\; are the
En(p)=max(0,y/(A;—A3)%+ (Ao—Aa)?—Noa—\a). not necessarily sorted eigenvaluesooflt is easy to see that
. . . one always gets a lower relative entropy by permutinghthe
As can be easily checked, the validity of this formula doesiyig descending orddd.2]. This ends the proof of Lemma 4.

not rely on the ordering of the; , as long as eack; pertains It is now easy to prove the last part of Theorem 1: Be-
to theith column ofV. In particular, using cause ther are restricted to separable MEMS's, this means
that, for any global unitaryU,UcU" is still separable.
A1—hg=2 Reab(cd)*], hat, for-any g W.Ue P
N2 Ng=[bd]*+]ac|?, Er(p)= min  S(p|o)
.. oce DNMEMS
we get for the negativity of (")
= min SUpUtjucu™)
En[7 (44" ]=max0F) 7 <DNMEMS
with = min S(UpUT|ucU™)
UoUTeD
— 2 2
F=VA =29+ (N o=Na)=(NoH\y) —Ex(UpU"),
— * 12 4 4 _ 2
=4 Rdab(cd)* ]*+[bd|*+[ac|*~2]abed where the inequality arises because the minimization domain
—(|bd|?+ac|?) has been enlarged.
The explicit calculation of the relative entropy of en-
=/|bd|*+|ac|*+2]abcd?—4 Im[ab(cd)* ] tanglement of the maximally entangled mixed states is now a
bdl2 2 tedious but straightforward exercise, whose result is quoted
—(Ibd[*+lac|*) in the theorem. This completes the proof of Theorem [
= ([bd[?+[ac]®)2—4 Im[ab(cd)* 12— (|bd|2+ |ac|?) Let us now analyze more closely this class of generalized
Bell states. We already know théat is unique up to local
=<0. unitary transformations. It is easy to check that the ordered
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eigenvalues of the generalized Bell states for given entangle- Na=E—X(2=X), Ag=x (31)
ment of formationf(C) are parametrized by two indepen- 33 2 0h A

dent variablesy and g
The Frobenius normj|p—1||, for all these states on the

O=sa<l, boundary of the sphere of separable states is given by the
- number\/g. This criterion is exactly equivalent to the well-
B=1-a®19— \/;a, known criterion of Zyczkowsket al. [3]: Trp?=%. Here,

however, we have the additional benefit of knowing exactly
B=min(y(1+C)/(1-C)— a?/9— \/ga,,/g—aZ—‘/ja), all the entangled states on this boundary as these are the
generalized Bell states with eigenvalues given by B4).
—-C Furthermore, Zyczkowsket al. [3] proposed a lower bound
N=1- T(3+B2)’ on the volume of separable states by considering the ball of
states that remain separable under all global unitary transfor-
-c mations. Clearly, the criterioB;\?<% can be strengthened
6 (a+v2PB)?, to Ny—A3—2VA,A4=<0. Some tedious integration then leads
to a better lower bound for the volume of separable states
1-C relative to the volume of all states: 0.3278s opposed to
6 [3—(VZa+B)?], 0.3023 off3)).
Further interesting properties of the maximally entangled
mixed states include the fact that the states with maximal
Na= 2 (30) entropy for given entanglement all belong to this class. This
6 will be reported elsewhere.
. . . In conclusion, we have generalized the concept of pure
;(gtiﬁnggve: ItEvaoF dtirr]r?erﬁslif) ;gﬁ]s;nl;ai;glém;l lﬂgg%;@”ifﬁf Bell states to mixed states of two qubits. We.h.ave proved
' that the entanglement of formation, the negativity, and the
tangled states. In the case of concurre@eel the upper and relative entropy of entanglement of these generalized Bell
the lower bognds orB become eq_ual _and the unique pure states cannot be increased by applying any global unitary
Bell states arise. Anothe_r observation is Fhe. fac_t Hanf aII_ transformation. Whether their entanglement of distillation is
generalized B(_all states is smaller thénThls implies that, if also maximal is an interesting open problem.
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