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Abstract

A tournament is a digraph, where there is precisely one arc between every
pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a
cycle of length [, for all 3 <1 < |V(D)|. Let p(D) denote the number of pancyclic
arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs
belonging to the same Hamilton cycle of D. Note that p(D) > h(D). Moon
showed that A(T) > 3 for all strong non-trivial tournaments, 7', and Havet
showed that h(T) > 5 for all 2-strong tournaments T. We will show that if T
is a k-strong tournament, with & > 2, then p(T) > %nk and h(T) > k% This
solves a conjecture by Havet, stating that there exists a constant ag, such that
p(T) > agn, for all k-strong tournaments, 7', with & > 2. Furthermore the second
results gives support for the conjecture h(T) > 2k + 1, which was also stated by
Havet. The previously best known bounds when k > 2 were p(T') > 2k 4+ 3 and
h(T) > 5.

1 Introduction

A tournament is an orientation of the edges of a complete graph. An arc or vertex is
pancyclic in a digraph D, if it belongs to a cycle of length [, for all 3 <1 < |V(D)|. As
in the abstract let p(D) denote the number of pancyclic arcs in a digraph D and let
h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton
cycle of D. Note that p(D) > k(D).

Let D be a digraph with vertex-set V(D) and arc-set A(D). A directed path, P,
from z to y in D is denoted by (z,y)-path. The length of a path P is the number of
arcs it contains. A path of length [ is denoted by I-path. D is said to be strong if for
all z.y € V(D) there is a (z,y)-path and a (y,z)-path in D. D is said to be k-strong



if D — X is strong for every set of vertices X in D with |X| < k. We define px(n) and
hi(n) as follows:

pe(n) = min{p(T) : T is a non-trivial k-strong tournament of order n}

hr(n) = min{h(T) : T is a non-trivial k-strong tournament of order n}

The only known bounds on hg(n), prior to this paper, were the following two results
by Moon and Havet, respectively.

Theorem 1.1 [5] hy(n) = 3.

Theorem 1.2 [4] hy(n) > 5, for all k > 2.
In this paper we will prove that hg(n) > kzj, which gives support for the following
conjecture, which was stated in [4].

Conjecture 1.3 [4] hi(n) > 2k + 1, and for sufficiently large n, hy(n) = 3k.

As the following proposition was proved in [4], we can furthermore state that hg(n)
grows linearly with respect to k.

Proposition 1.4 [{] hi(n) < 3k.

In other words kzﬂ < hg(n) < 3k. In this paper we will also prove a bound
on pr(n), which proves a conjecture from [4]. In [7] Yao, Guo and Zhang prove the

following theorem.

Theorem 1.5 [7] Every strong tournament contains a verter x such that every arc
out of x 1s pancyclic.

This trivially implies that pi(n) > 2k + 2 (as seen in [4]). In [4] this bound is
improved to pg(n) > 2k + 3, when k > 2. In this paper we will prove that px(n) > %kn
which furthermore proves the following conjecture, stated in [4].

Conjecture 1.6 [4] (Now proved) For all k > 2, there exists a constant ay > 0, such
that pp(n) > agn.

As Havet has proved Proposition 1.7 below. we note that %kn < pr(n) < 2kn. It
would be an interesting problem to narrow this gap further.

Proposition 1.7 [{] pi(n) < 2kn — 2k* — k.

In the process of proving the bound hy(T') > k%S we will need Theorem 3.7 below,
which states that every 3-strong tournament has two distinct vertices z and y, such
that every arc out of x and every arc out of y are pancyclic. Note how this complements
Theorem 1.5 above. However this result cannot be extended much further, due to the

following result.



Theorem 1.8 Let k > 1, be arbitrary. There exists an infinite class of k-strong tour-
naments, such that each tournament contains at most 3 vertices, with the property that
all arcs out of them are pancyclic.

A proof of Theorem 1.8 will be given after the definitions and terminology. However

the following might hold.

Conjecture 1.9 If T is a 2-strong tournament, then it has three distinct vertices,
{z,y, 2z}, such that every arc out of x, y and z, is pancyclic.

2 Definitions and Terminology

Let D be a digraph and let = and y be distinct vertices of D. If zy € A(D), then we
say that x dominates y and that y is dominated by x. The set of all vertices which
z dominates will be denoted by Nj(z). Analogously the set of all vertices which
dominate = will be denoted by Np(z). We will omit the subscript if D is known
from the context. Furthermore d*(z) = [N*(z)| is called the the outdegree of x, and
d~(z) = |[N~(z)] is called the indegree of x. Analogously to an [-path, let an [-cycle
denote a cycle of length [ (i.e. a cycle with [ arcs). If X and Y are sets of vertices in D
such that there is no arc from a vertex in Y to a vertex in X, then we say that X=Y.
A set X is called a separating set if D — X is not strong. Furthermore X is called a
minimum separating set if it is a separating set of minimum size (i.e if D — X is not
strong and D is | X|-strong). A strong component of a digraph D is a maximal set of
vertices, which induce a strong component in D. If D is strong then V(D) is the only
strong component. If D is not strong, then we can partition the vertices in D into sets

X1, Xy, ... X,, such that X;=X; if and only if ¢ < j.

Let D be a digraph, let x and y be distinct vertices of D and let P be a (z,y)-
path in D. We say that D’ is obtained by contracting P into w, if the following holds.
V(D) = {w}UV(D)\V(P), where w is a new vertex, not contained in D. Furthermore
N (w) = Nj(y) N (V(D)\V(P)), Npi(w) = Np(z) N (V(D)\V(P)) and an arc with
both end-points in V(D)\V(P) belongs to D’ if and only if it belongs to D. Note that
if uwv is a path in D’ then uPv is a path in D. Analogously if there exists a [-cycle in
D', containing w then there exists an (I + |A(P)|)-cycle in D, containing P. We will
often use the contraction operation on paths of length 1 (or 2).

We conclude this section with a well-known theorem by Camion (a non-trivial

tournament is a tournament with at least 2 vertices).

Theorem 2.1 [3] A non-trivial tournament has a Hamilton cycle, if and only if it is
strong.

3 Proofs

We can now prove Theorem 1.8.
Proof of Theorem 1.8: Let Ty, T; and T3 be transitive tournaments of order at
least k. Let T be the tournament obtained by adding arcs between the T}’s, such that



T1=T,=T3=T,. Clearly T is k-strong. Note that the only vertex in T; (: = 1,2,3)
with the desired property, is the vertex with outdegree equal to zero in T}, as any arc
totally within 7; doesn’t lie on a 3-cycle. O

In the proofs of our main results., we will often use the following easy lemma.

Lemma 3.1 Let D be a k-strong digraph, with k > 1, and let S be a separating set
in D, such that T = D — S is a tournament. Let T\, T..... T, (r > 2) be the strong
components of T, such that Ty=T,= ...=T,. Now the following holds:

(1) At least k vertices in S dominate some vertices in Ty, and at least k vertices in
S are dominated by some vertices in T,.

(11) For every 1 <1 < |V(T)|, u € Ty and v € T,, there exists a (u,v)-path of length
LinT.

(111) If S = {x}, then = is pancyclic in D.

Proof: Part (i) is well-known, and easy to prove, using the fact that D is k-strong.
Part (ii) is also easy to prove using Theorem 2.1 on each component, T;. Part (iii)
follows immediately from parts (i) and (ii). 0

Lemma 3.2 Let D be a strong digraph, containing a vertexr x, such that D — x is a
tournament and d},(z) + dp(z) > |V(D)|. Then there is a l-cycle containing = in D,
for all2 <1 <|V(D)|.

Proof: Let T = D — z and let n = |V(D)|. Note that T is a tournament with
n — 1 vertices. It is not difficult to see that df(z) + dp(x) > |V(D)|, implies that z
lies on a 2-cycle, so assume that 3 <1 < n. We will show that there is a I-cycle in D,
containing z.

If T is not strong, then Lemma 3.1, part (iii), implies the desired result. So assume
that 7' is strong. By Theorem 2.1 let C = p1py...p,_1p1 be a Hamilton cycle in T.
We define x*(p;) and x~(p;) as follows.

1 ifp—a 1 ifz—p,
+(p) = i —(p.) = i
XF(pi) = { 0 : otherwise X7 (pi) = { 0 : otherwise

Note that Y77 (xF(pi) + X~ (picie2)) = dp(x) + df(z) > n (by definition, where
all indices are modulo n — 1). Since we only sum over n — 1 numbers, we must have
some 7, where (x*(pi) + X~ (pi—i42)) = 2. However p,xp;_142Pi—14+3 - - - pi—1pi is now the
desired [-cycle containing . O

Lemma 3.3 Let T be a 2-strong tournament, containing an arc ¢ = xy, such that
d*(y) > d*(z). Then € is pancyclic in T.

Proof: Let n = |V(T)| and let ¢ = zy be defined as in the lemma. Let D be
the digraph obtained from T by contracting e, into a vertex, w.. Note that dj,(w.) +
dp(we) = di(y) + d7(z) = dk(y) + (n — 1 — d¥(z)) > n — 1 = |V(D)|, by definition.

4



If {z,y} is a separating set in T', then we are done by Lemma 3.1, part (i) and (ii).
So assume that {z,y} is not a separating set in 7', which implies that D is strong. As
a r-cycle in D containing w, corresponds to a (r + 1)-cycle in T containing e, we are
done by Lemma 3.2. a

Lemma 3.3 implies a result by Alspach (see [1]), which states that every arc in a
regular tournament is pancyclic. This is the case as any regular tournament with at
least 5 vertices 1s 2-strong, and the only regular tournament with less than 5 vertices
is the 3-cycle.

Lemma 3.4 Let T be a 2-strong tournament, containing a 3-cycle xzyx. Then at least
2 of the 3 arcs in xzyx are pancyclic in T'.

Proof: If d*(z) = d*(y) = d*(z), then all three arcs are pancyclic, by Lemma 3.3,
so assume that this is not the case. Now there is either a unique maximum element
in (d*(z),d*(y),d"(z)) or a unique minimum element. Without loss of generality
assume that d*(y) is the unique maximum element, and note that this implies that
dHy) > dH (@) + 1,

Let n = |V(T)| and let D be the digraph obtained from T by contracting zzy. into
a vertex, w. As in Lemma 3.3 we get df(w) + dp(w) > (dF(y) — 1) + (dz(z) — 1) >
df(y) =14+ (n —1 —df(z) —1) > n —2 = |V(D)|. As in the proof of Lemma 3.2,
this implies that w belongs to a 2-cycle, which furthermore implies that both zz and
zy belongs to a 4-cycle. All the arcs zz, zy and yx belong to a 3-cycle (zzyx).

If D is strong, then we are done by Lemma 3.2, so assume that D is not strong.
This implies that T — {x,y,2} = D — w is not strong (as w belongs to a 2-cycle in
D), solet Ty, Ty,..., T, (r > 2) be the strong components of T' — {z.y, z}, such that
T1=T,=...=T,. As D is not strong either T1=y or =T, (or both).

Assume without loss of generality that Ty =y (the case =T, can be handled analo-
gously). As Ty=y, we note that {z, z} is a minimum separating set in 7', which implies
that both = and z dominate some vertices in T;. Now consider the following cases.

(A): 7, has an arc into z. Let D,,, be the digraph obtained from T' by contracting
zyz, into a vertex, w,y,. Clearly D,,, is strong, but D,,, — w,,, 1s not strong,
which by Lemma 3.1, part (iii), gives us /-cycles containing zy and yz, in T, for
all 5 <1 < n. As we had already found the desired 3- and 4-cycles, containing
zy, we note that zy is pancyclic.

: T, has an arc into y. Le «» be the digraph obtained from contractin

B): 7. h into y. Let D, be the digraph obtained f: T by contracting
yrz, into a vertex, wy,,. Analogously to (A) we get that xz is pancyclic (Dy,, is
strong, but Dy,, — Wy, is not strong).

Furthermore note that Lemma 3.1, part (iii), gives us /-cycles containing yz, in
T, for all 5 <1 < n, as well.

(C): T, has an arc into z. Let D,. be the digraph obtained from T by contracting
zz, into a vertex, w,,. Clearly D, is strong, but D,, — w,. is not strong (7} has
no in-neighbours), which by Lemma 3.1, part (iii), gives us l-cycles containing
xz,in T, for all 4 <1 <n.



As 2 is not a separating vertex in 7', either x or y has an arc into it from 7, which
by (B) and (C) implies that zz is pancyclic. Assume that z=T,, as otherwise we
are done by (A). This implies that T, has arcs into z and y. Note that by taking an
out-neighbour, vy, of  in T} and an in-neighbour, v,, of y in T,. we get the 4-cycle
yzv vy, containing yx. As yx also lies on a 3-cycle, the last part of (B) implies that
yx 1s pancyclic. O

Note that the following theorem proves that Conjecture 1.6 is true (with a; = k/2).
Theorem 3.5 py(n) > 1kn, for all k > 2.

Proof: Let T be a k-strong tournament, with n = |V(T')| and let z € V(T') be
arbitrary. We will show that there are at least k arc-disjoint 3-cycles containing =. As
T is k-strong d*(z),d (z) > k, and there exist k vertex-disjoint paths from N*(z) to
N~ (z). Assuming the paths are minimal, then they all have length 1. so they all give
arc-disjoint 3-cycles, by adding the vertex x in the appropriate manner.

Lemma 3.4 now implies that every vertex in 7' is incident with at least k pancyclic
arcs. This implies the Theorem (as any graph of order n, with degree at least k, has
at least Tkn edges). O

Before we give a bound on hi(n) we need the following powerful theorem by
Thomassen.

Theorem 3.6 [6] If T is a 4-strong tournament, and x and y are distinct vertices in
T, then there is a Hamilton path from x toy in T.

Theorem 3.7 If T is a 3-strong tournament, then there exists two distinct vertices x
and y, such that all arcs out of x and all arcs out of y are pancyclic.
Furthermore x and y can be chosen, such that x—y and d*(z) < d*(y).

Proof: Let M contain all vertices in T, which have minimum out-degree. Lemma
3.3 implies that all arcs out of a vertex in M are pancyclic. If |M| > 2 we are done, so
assume that |M| =1 and M = {z}. Let y € N*(z) have minimum possible d*(y) (of
all vertices in N*(z)), and let w € NT(y) be arbitrary. We will show that the arc yw
is pancyclic, which would prove the theorem.

If d*(w) > d*(y). then we are done by Lemma 3.3, so assume that d*(w) < d*(y).
By the definition of y we see that w dominates z, and by the definition of x we get
dt(z) < dt(w).

Let D be the digraph obtained from 7' by contracting ryw, into a vertex, q. As
in Lemma 3.3 we get df,(q) + dp(q) > (dF(w) — 1) + (d7(z) — 1) > df(w) — 1+ (n —
1 —di(z)—1)>n—2=|V(D)|. D is strong, as T is 3-strong. Lemma 3.2 therefore
implies that there exists [-cycles in D, containing ¢, for all 2 < 1 < |V(D)|. Therefore
there are [-cycles in T', containing yw, for all 4 <1 < |V(T')|. As zywz is a 3-cycle in
T'. this implies that yw is pancyclic. O

Note that the following theorem gives support for Conjecture 1.3.
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Theorem 3.8 hy(n) > k%S, for all k > 1.

Proof: Note that by Theorem 1.1 and Theorem 1.2, hg(n) > kzﬂ for all £ =
1,.2,3.4,5. We will now prove that hg(n) > k?ﬁ, by induction, so let & > 6 and assume
that the theorem is true for all values smaller than k. Let T be a k-strong tournament,
with n = |V(T)|, and let x and y be defined as in Theorem 3.7. Let 7" =T — {z, y},
and note that 7" is (k — 2)-strong. So by our induction hypothesis we will let H' be a
Hamilton cycle in 7", which contains at least (k—_gﬁ pancyclic arcs in T".

If the arc € = uwv is pancyclicin 7", then it is pancyclic in T', because of the following.
We will show that there is a cycle of length / in 7' containing e, for all 3 <[ < n. If
I < n —2, then such a cycle exists as € is pancyclic in 7", which is a subgraph of T'. If
[ = n, then such a cycle exists by Theorem 3.6 (there is a (v, u)-Hamilton-path in T').
If I = n — 1, then delete any vertex from 7', except u or v, and note that the result,
D', is 4-strong, so, as before, there is a Hamilton cycle in D’ containing e, which is the
desired cycle in T'.

So H' contains at least k?ﬁ arcs, which are pancyclicin T'. Note that d*(y)+d~(z) =
d*(y)+n—1—d*(z) > n—1. Analogously to the proof of Lemma 3.2, we can find
an arc, p1pz, on H', such that py—z and y—p, (as |V(H')| = n — 2). By deleting p;p»
and adding the path pyxyp,, we obtain a Hamilton cycle, H in T. There is at least
’“;—3 — 1 pancyclic arcs on H’, which still belong to H, as we have only deleted one arc
from H'. However we have added two pancyclic arcs, namely the arc out of y and zy.
Therefore H has at least kzﬁ — 142 pancyclic arcs in T, which completes the proof. O

Note that Theorem 3.8 and Proposition 1.4 imply the following.

Corollary 3.9 k;‘—S < hg(n) < 3k, for all k > 1. That is, hx(n) € O(k).
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