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                     In this paper we study the nature of predatory behavior in
                     an oligopolistic framework. We use the long-purse story
                     of financial vulnerability to demonstrate that  predatory
                     behavior is less likely to occur in an oligopoly than in a
                     monopoly. We show the nature of the free-rider problem,
                     and illustrate the range of multiple equilibria that may
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                     be less likely targets for predatory attacks than their
                     larger, more efficient rivals, examine the model with
                     uncertainty added, and discuss the model’s application
                     to antitrust.

                                               
1 Department of Economics, Royal Holloway College, University of London, Egham, Surrey
TW20 0EX, UK.  Email:  d.nolan@rhbnc.ac.uk.  I would like to thank Kevin Carey, Anthony
Heyes, Darwin Neher, David Pearce and Ben Polak for many helpful comments and
suggestions on this paper



2

                                       I.   INTRODUCTION

      This paper examines predatory pricing in an oligopoly. Predatory behavior has been

extensively studied in economics1, but always from the perspective of one firm attempting to

drive out another. Few industries are characterized by such structures, and this paper is the

first to study whether predatory behavior is more or less likely in an oligopolistic market.  We

find that in a differentiated products, price-setting model, the incentive to engage in predation

is less than in a monopoly. The more realistic set up of the model may help explain why

predation is so rarely proven to exist in actual markets, and we suggest that the US courts

sceptical attitude towards predation can be partly justified by a realization that most markets

are characterized by oligopolies where predation is unlikely.

      Ordover and Saloner (1989) divide theories of predatory behavior into three main areas,

and we have to chosen to concentrate on the “long purse” story2. This has a long informal

history in the literature, but we base our analysis upon Bolton and Scharfstein (1990) and

Fudenberg and Tirole (1989). In such models a “deep pocketed” firm may attempt to drive a

financially constrained competitor out of the market by engaging in a price war. The financial

constraint arises due to capital market imperfections, and, if the price war lowers the

constrained firm’s profits sufficiently in the first period, it will be forced to leave the industry.

      We extend this type of analysis to a location model with three firms distributed around a

circle. We show that there can be free riding in predation and that the incentives to prey may

be lower than conventionally supposed. We also show that the presence of debt may lead to

lower prices3. Thus, the model may help explain why apparently vulnerable firms are not

attacked more often. Consider, for example, the growth of the Fox network in US television

broadcasting. Despite the need for large, up-front investment, a new network - perceived to be

financially constrained - was not seriously “attacked” by any of the incumbent networks. Fox

has survived and has grown into an almost equal player in the industry. Alternately, existing
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firms may attempt to co-ordinate their efforts and prey on a financially vulnerable enterprise -

an alleged example of this being the case of the Channel Tunnel (Chunnel) between England

and France. Two major ferry companies began a price war when the Chunnel opened. The

price war continues today; in March 1996 the Chunnel announced losses for the year of nearly

£900 million, leaving their total debts at over £6 billion. This loss was blamed by the

management upon the “malicious” attitudes of the ferry and hovercraft companies, whose

“unrealistically” low prices were responsible for the financial distress of the Chunnel4.

     The model also applies to industries which have a number of well-established incumbents,

one of which, for whatever reason, has (or is perceived to have) “shallower pockets” than its

rivals. An example of this can be found in the newspaper industry in the UK, where the centre-

right daily The Times - which enjoys considerable cross-subsidization from the rest of Rupert

Murdoch’s News International Corporation - has lowered prices aggressively in an attempt to

drive out the centre-left Independent. The latter’s sales have dropped by over 15 % in the last

year leaving it close to bankruptcy. Part of the reason it still exists is the fact that the

Guardian, which occupies the product space to the Independent’s left, has refused to cut its

prices. There has been considerable attention focused on this case, and Parliament has debated

the issue formally, but no charges have been made against the Times. These three stories

illustrate two types of situation: the first is a case of the incumbents refusing to prey upon the

financially vulnerable entrant, and the second and third are cases where predation does take

place.  In this paper we obtain multiple equilibria, with and without predation, thus allowing

for both outcomes in a single model.

      Another alleged example of multi-firm predation, which has actually come before the US

courts, is the 1986 Matsushita v Zenith case, where a number of US companies accused a

small group of Japanese firms of collusive price-cutting in the television industry.  The US

firms alleged that the Japanese firms deep pockets came from collusive monopoly profits



4

garnered in their home markets rather than from the US firms financial weaknesses, but the

basic principle is similar. This could be considered a predatory equilibrium, but the US courts

found insufficient evidence to support the plaintiff’s claims.

      The literature on predation is closely related to the literature on entry-deterrence5. The

majority of such models assume quantity competition, where capacity accumulation has a

commitment value. This credible threat of high future production discourages entry. Again,

most of this literature assumes a single incumbent, with Gilbert and Vives (1986), Waldman

(1987), and Kovenock and Roy (1997) being notable exceptions. Gilbert and Vives find that

there might be too much entry deterrence from an industry perspective. If entry deterrence is

taking place, every firm wishes to be the primary focus of deterrence and to have as high an

output as possible, leading to industry output being higher than in the case of no entry-

deterrence taking place. Their results depend upon the assumptions of Cournot competition

and constant marginal costs. Kovenock and Roy show that when products are sufficiently

differentiated, equilibria exist where some underinvestment in entry prevention can occur, but

they did not find that an oligopoly would deter entry less than a monopoly.

     We use a price-setting, differentiated products model to examine similar issues. This seems

a natural setting within which to analyze the case of preying upon an already existing rival.

Prices are usually not considered as having any commitment value, but one typically considers

a predatory episode as being initiated by a price cut rather than an increase in quantity. This is

particularly apt in the case of an industry with differentiated products (eg. the British

newspaper industry). We obtain stronger free rider results than the entry deterrence literature,

as the circular city model, which, in common with most price setting games, has prices as

strategic complements, has the private benefit from forced exit decreasing in prices. A

decrease in a firm’s price will raise its quantity sold, but the reduction in the price per unit sold

will eventually be sufficient to lower its profits, leaving it with an incentive to make a smaller
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contribution to the lowering of prices necessary for successful predatory behavior. Under such

circumstances, an individual firm would prefer one of its rivals to shoulder the responsibility

for dropping its price in order to force the financially constrained firm out of the market. This

contrasts with the case of entry deterrence - usually marked by strategic substitutes - where

each firm wants to be the major force in a successful act of deterrence.

      Gilbert and Vives identified two types of “underinvestment” in entry deterrence, and we

consider their analogues in predation: (1) That either predation or no predation can be an

industry equilibrium, but incumbents profits are higher when entry is prevented:  (2) A

monopoly preys in more situations than an oligopoly. Neither type of underinvestment occurs

in Gilbert and Vives. In Kovenock and Roy, type (2) underinvestment does not take place, but

- provided products are sufficiently differentiated - incumbents profits can be higher in entry

prevention equilibria. We analyze both types of underinvestment in a predation framework,

and find the same result for type (1) holds in our model, but also show that - with sufficient

differentiation - type (2) also occurs; a monopoly will prey more than an oligopoly.

     Following Waldman (1987), we also extend the model by analysing the situation where the

“deep pocket” firms are uncertain about the exact financial target faced by the preyed-on firm.

Given the extra complexity of the framework, we cannot obtain exact results, but it seems

that outcomes where oligopolies prey less are possible, and, as was the case with certainty,

this free-rider result is more likely to hold when products are highly differentiated. We also

examine how adding to the number of firms affects the results, and also study how smaller,

“weaker” firms might actually be preyed on less than larger ones

     The layout of the paper is as follows: Section 2 outlines the financial contract framework,

and sets up the model. Section 3 characterizes the equilibrium, while Section 4 looks at the

public good problem. Section 5 discusses some comparative static issues and extends the
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model to the case of uncertainty, and Section 6 relates the results to public policy and

concludes.

                 II.   THE BASIS FOR PREDATION  AND THE MODEL SETUP

      We start this section by briefly sketching a modified version of the financial contracting

model specified by Fudenberg and Tirole. Those interested in a detailed presentation should

consult the original paper. Note that the Bolton and Scharfstein’s model could equally weel be

used to obtain the desired result. There are 3 firms in the industry, all competing in periods 1

and 2. At the end of the first period each firm must pay a fixed cost, K, to continue operations

in the second period. We assume that all but one of the firms can finance this entirely through

their own retained funds, but one firm, which we denote as firm N, must finance this cost

through its first period profits and whatever it can borrow from a bank.  Thus they must

borrow an amount which we call D = K - π1. In the second period we assume there is a

disturbance term affecting profits, which we label θ, where θ takes on a random value in the

interval [θL,θH] with the mean of θ = 1.  In a deterministic environment, the second period

would see the firm earning π2B - the Bertrand-Nash level of profit -, but in this stochastic

situation expected second period profits are now distributed randomly over some interval

[πL,πH].  The firm must reimburse the bank D(1+r), where r is the rate of interest, at the end of

the second period. If the realized level of profit π2  is greater than or equal to D(1+r), then the

firm retains the remaining profits.  If π2 is less than D(1+r), then the firm goes bankrupt and

earns nothing. We assume there are bankruptcy costs of a legal and administrative nature,

equal to B, so the bank retains π2 - B if bankruptcy occurs.  Fudenberg and Tirole assume a

competitive supply of banks, implying a zero-profit condition, and thus obtain an expression
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for the net benefit to the firm of paying the fixed cost and continuing operations in the second

period.

                 Net benefit =  [E(π2) - (1+r)K] - [BF((1+r)(K-π1))]                                 (1)

   where E (.) refers to the expectation operator, while F(.) is the cumulative distribution

function of θ. The first term shows the project’s net present value in a world without financial

imperfections, while the second term represents the cost of bankruptcy multiplied by the

probability that it occurs.

      It follows that d(benefit)/dπ1 > 0, ie, the higher first period profits are, the higher the net

benefit of the investment to the firm. High first period profits lower the probability of

bankruptcy, reducing bankruptcy costs which are passed on to the firm, making the project

look more attractive. Clearly the firm will only pay the cost, K, if the net expected benefit is

greater than zero.  This will only be the case if first period profits are above a certain level, and

we can immediately see that there must exist some target level of first period profits, which we

call πE, below which the firm will exit the industry.  This target provides an opportunity for the

firms competitors to prey.

      We model the market framework by considering a two-stage noncoperative game played

by three firms (firms i, j, and N). In stage 1, all firms set prices p1, and earn profits. Firms i and

j play again in the second period. However, as shown above, firm N must earn a minimum

level of profits, πE, to participate in the second period, otherwise it exits the industry. In the

second period,  whatever firms are left all play the Bertrand game again, this time with a

random element to demand, and earn their corresponding profit levels. Firms are assumed to

be risk neutral and to maximize the expected value of their profits over the two periods.

      The oligopolistic framework we use is the circular city model developed by Salop (1979).

The three firms are located at equidistant points around a circle of unit perimeter. Consumers
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are located around the circle with uniform density, buy one unit of the good, and face a unit

transportation cost t. The firms have identical cost functions with constant marginal costs,

C(q) = cq, for q ≥ 0. Each firm is in competition with both of its neighbours, and a consumer

located at any distance, x ∈ (0,1/3) from firm i, is indifferent between purchasing from firm i

and from another firm if:

                                              pi + tx  =  p + t(1/3 - x)                                                          (1)

Single period profits for firm i can thus be written as:

                     πi  =  (pi - c) [{pj + t/3 - pi}/2t) + ({pN + t/3 - pi}/2t)]                                     (2)

      Firm N must reach the target profit level, πE, in order to be refinanced, leaving the other

two firms to trade off the gain in second period profits resulting from forced exit, against the

cost of predation in the first period6. Prices are strategic complements in this game, implying

upward sloping reaction functions. The symmetry of the problem means that, in terms of the

prices necessary to force out firm N, only the aggregate of pi and pj matters. This allows us to

write πN(pN,pi,pj) as πN(pN,P), where P = pi + pj.   We summarize these results in lemma 1.

Lemma 1:  (a) a firm’s best response function can be written as:  pN = (pi + pj)/4 + c/2 + t/6

(b) The symmetric Nash equilibrium of the 3-firm game sees each firm earning profits of t/9.

The equilibrium of the 2-firm game sees profits equal to t/4. The equilibrium price in a

symmetric equilibrium, called pB, sees firms setting price equal to the sum of c and t/3.

(c) For any combination of prices, {pa,pb},  πN(pN,p1a + p2a) = πN(pN, p1b + p2b) if

p1a + p2a = p1b + p2b = P

Proof:  See appendix
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      Part (c) is useful, as it allows us to replace πE (the target profit level) with P. The “deep

pocket” firms must set prices such that their sum is less than or equal to P. The relationship

between πE and P is as follows:

Lemma 2:  For a given πE any level of the aggregate price, P, equal to or less than [4√πE√t +

2c - 2t/3] will drive firm N out of the market.

Proof:  See appendix.

      This implies that the higher the target profit level, πE, the higher the aggregate price

required may be. For instance, if the firm requires a profit level of 2 to be refinanced, this

implies that if c is equal to 5 and t is equal to 18, P must be less than or equal to 22.

III.   NASH  EQUILIBRIUM

       We now look for the subgame perfect Nash equilibria (SPNE) for the model. We denote

total expected profits over the two periods by Π.  We define ϕ(pN,pj) as the set of first-period

best responses for firm i given the other two firms prices:

               ϕ(pN,pj)  =  {pi > 0: Π(pi,pN,pj) ≥ Π(y,pN,pj)  for all y > 0}                                    (3)

Thus, (pi) is a SPNE if pi ∈ ϕ(P-i) for all i.  Given the levels of both pj and pN, firm i may

decided to engage in predatory behavior and induce exit by charging pi ≤ P - pj. Then it earns:

                                      ΠiP  =  πi1(pi,pN,pj)  +  E(πi2D)                                                          (4)

We call ΠiP the optimal level of profits over the two periods which can be earned through

predatory behavior. The second term, E(πi2D) refers to the expected value of the duopoly

profits earned in the second period after firm N has exited. Alternately, firm i may choose not

to prey and to set pi ≥ P - pj.  Then profits are equal to:
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                                     ΠiP  =  πi1(pi,pN,pj) + E(πi2T)                                                           (5)

      Here, ΠiP refers to total two-period profits earned when no predation takes place. The

term E(πi2T) refers to the expected value of the triopoly profits earned in the second period.

Looking at these two equations, we see firm i’s profits have a discontinuity at pi = P - pj.

      We let r(pN,pj) = argmax ΠiNP(pi,pN,pj); this is the best response of firm i to the other

prices if predation does not occur. This is just the Bertrand-Nash response of firm i, for if no

predation is to take place, the firm chooses its optimal response based on its rivals prices.

When pj + r(pN,pj) ≤ P, firm i preys by pricing according to its Bertrand best response

function; it does not deliberately lower prices and yet exercises a predatory function. From

lemma 1, we know that pj + r(pN,pj) is increasing in pj, so, assuming that firm N is playing a

best response to the aggregate of the other two prices, we can be sure there is a unique

solution to pj + r(pN,pj) = P.  We call this solution pj(P). Thus if pj ≤ pj(P), firm i sets price

equal to r(pN,pj) and predation and exit take place.  This is analogous to the case of entry

being blockaded in entry-deterrence models. A firm that finds itself sufficiently financially

constrained will thus be preyed upon, yet it would not be “predation” in any legal sense as the

other firms are not attempting to price below their usual level7.

      Now we analyze what happens when pj > pj(P). Here firm i can prey by setting pi = P - pj

and earn ΠiP, or it can accommodate firm N and set pi = r(pN,pj) and earn ΠiNP. We know that

at pj = pj(P), ΠiP > ΠiNP at pi = P - pj. We show in the appendix that ΠiNP is continuously rising

in pj, as one would expect in a game with strategic complements. Characterizing the path of

ΠiP is somewhat more difficult. Intuitively, the higher the price one’s rival charges, the lower

the price firm i has to charge, which should result in lower profits for firm i. However, it is

possible that a high value of firm j’s price could see firm i’s price being lowered sufficiently to

boost market share enough to raise profits. But we show in the appendix that even if profits
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rise temporarily, they will always fall eventually. The change in firm i’s profits can be

decomposed into (1) the markup multiplied by the change in quantity plus (2) the quantity

times the change in markup.  In the case of predation, when firm i is lowering the price on all

units, she is losing money on the quantity she is already selling even if she is selling more units.

This effect becomes more pronounced the larger firm j’s price is relative to firm i’s and thus

drags profits down.

Lemma 3:  ΠiP > ΠiNP at pj; ΠiNP rises continuously for all pj above pj, while ΠiP eventually

falls for higher values of pj. Thus there exists a value of pj such that ΠiP = ΠiNP and beyond

which ΠiP < ΠiNP.

Proof:  See appendix.

      We call p*j(P) the solution to ΠiP = ΠiNP (we assume the solution is positive; otherwise let

it be equal to zero). We show this in figure 1. Note that ΠB refers to firm i’s maximum level of

profits over the two periods when it plays a Bertrand-Nash response in both periods. We can

now write the best reply correspondence of firm i:

                                     r(pN,pj)        if  pj  ≤ pj(P)                       (natural predation)             (6)

                 ϕ(pj,pN)  =   P - pj           if  pj(P) < pj ≤ p*j(P)           (predation)

                                     r(pN,pj)      if  pj  ≥  p*j(P)                     (no predation)

      This best reply correspondence is displayed graphically in figure 2. Note that when firms i

and j have an aggregate price of P, firm N will always play the same best response regardless

of the relative values of pi and pj.  We show below that we will never see predatory equilibria

where pi + pj < P. At p*j(P) firm i is indifferent between preying upon the financially-

constrained rival and pricing normally. We now develop a property of p*j(P) in lemma 4:
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Lemma 4:  p*j(P) is increasing in P.

Proof:  See appendix.

      The type of equilibria that will emerge depends upon where the ϕ’s intersect in the various

regions.  We let pB be the equilibrium prices chosen when predation does not occur; the

aggregate of the firm i and j’s Bertrand set of prices is PB = 2pB = 2(c + t/3). If PB < P then

predation occurs naturally at the Bertrand equilibrium. When this condition does not occur, we

define PH as the largest P such that both ϕ’s intersect at pB. Thus PH solves p*j(P) = pB.  When

firm j is setting price at pB, firm i is indifferent between preying and tolerating firm N.  Now let

PL be the smallest P such that the ϕ’s intersect on pi + pj = P. In other words, PL is the smallest

P such that to prey is an equilibrium. PL solves p*j(P) = P/2; at the smallest P at which

predation can take place there should be equal prices chosen by each of firms i and j. Now, pB

must be greater than P/2, otherwise we would be in a case of natural predation.  As we know

that p*j(P) is increasing in P, we have established that PH > PL. Thus:

Proposition 1:  (i) If P ≥ PB, then each firm sets prices at the Bertrand level. Firm N earns

profits below πE and will not be refinanced for the second period.

(ii) If PB > P ≥ PL, then any pi such that r(pN,pi) ≥ pi, and pi + pj ≤ P is an equilibrium where

firm N is preyed upon and will not be refinanced for the second period.

(iii) If P ≤ PH, then each firm sets price at the Bertrand level and firm N is not preyed upon.

Firm N’s profits are greater than or equal to πE and it is refinanced for the second period.
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       We can summarize this by saying that if the aggregate of the Bertrand prices is sufficiently

low, predation occurs naturally and exit ensues. When P is less than the Bertrand price but

more than PH, we are in a situation where true predatory pricing does take place, as at least

one of the firms is reducing its price below what it would otherwise have been. There is a

continuum of such predatory equilibria, with the burden of lower prices being shifted around

among the incumbent firms. When P is less than PL we are in a situation where predation will

not occur, and where the firm will be refinanced and will become an established part of the

market. When P is greater than PH firm N is always forced out.  Most interestingly, when PL ≤

P ≤ PH we have both types of equilibria occurring; a similar outcome to Gilbert and Vives, and

Kovenock and Roy. Figure 3 illustrates the various regions and outcomes that can occur.

      We finish this section by ruling out the existence of predatory equilibria where the

aggregate of firm i and j’s prices is actually less than the value of P, a situation which we

would see a “wastefully” high amount of predation.  If predation does occur, then the sum of

prices will always exactly be equal to P.

Lemma 5:  No predatory equilibria exist where pi + pj < P.

Proof:  See appendix.

IV.   PREDATORY BEHAVIOR AS A PUBLIC GOOD

      We now come to the question posed in the introduction: will firms “underinvest” in

predatory behavior ? We show that they will for a large range of parameter values in the model

analyzed here. Following Gilbert and Vives, we associate “underinvestment” with either or

both of the two types mentioned in the introduction: (1) Both predatory and non-predatory

behavior are industry equilibria but profits are higher when predation takes place. (2) A

monopoly would prey more than an oligopoly.
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      There is a counterforce to the possibility of the second of these phenomena, in that a firm

will earn a lower level of profits in a triopoly than a duopoly. This means a cash-constrained

firm is less likely to be blockaded automatically in a situation with one, rather than two,

incumbents. But we show that provided the variable, t, is large enough, this effect is swamped

by the predatory advantages of a monopoly, and we show that type 1 underinvestment always

occurs.  We summarize this in proposition 2:

Proposition 2:  (i) When PL ≤ P ≤ PH, predation and non-predation are both equilibria, but the

profits of “deep-pocket” firms are higher under predation.

(ii) As long as √πE < (5√t)/16, then a monopolist will prey whenever a duopoly would, and

will prey in situations where a duopoly would not.

Proof:  See appendix.

      Note that actual prices are lower at the predatory equilibrium than they would be at the

non-predatory equilibrium, which accords with the basic definition of predation: firms lower

prices in order to hurt an opponent8. The fact that there is a continuum of predatory

equilibrium means the degree to which an individual firm lowers its price is indeterminate. One

could observe an outcome where both firms lower their prices by the same amount, or one

could have an equilibrium where one firm maintains a relatively high price and its rival suffers

a larger fall in profits. In either case the financially constrained rival is driven out of the

market. The condition in part (ii) can be interpreted as saying that for a fixed value of t, the

oligopoly will prey less than the monopoly as long as the target profit level is not too high. As

t rises, the predatory advantage enjoyed by the monopolist increases9.

      These results can be contrasted with those of Gilbert and Vives. In their model each firm

wanted to take on the burden of entry-prevention and to have as high an output as possible.
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Here, each firm wants the other to be the predator, as the private benefit from forced exit is

decreasing in the “deep-pockets” firm’s price. The results are closer to Kovenock and Roy’s

who predominantly studied a differentiated-product quantity-setting game, though they still

found that type (2) underinvestment did not occur. The key difference is that here firms

compete in strategic complements rather than strategic substitutes. Kovenock and Roy did find

that type (1) underinvestment would occur provided that firms were sufficiently differentiated.

We find that type (1) underinvestment always occurs, regardless of the degree of product

differentiation. We can also relate our results to the general analysis of Appelbaum and Weber

(1992), who suggest that public good underinvestment tends to occur when an increase in a

precommitment variable of firm i increases the profits of the other incumbents.  Although we

use a somewhat different framework to them - not having any precommitment variables - our

strategic complements set-up is clearly analogous to the issues they discuss.

                  V.   COMPARATIVE  STATICS  AND  UNCERTAINTY

      In this section, we look at some comparative static issues and add uncertainty to the

model. We first examine whether the set of outcomes where predation occurs is smaller or

larger when firm N has different parameters to the “deep pocket” firms. Here we refer to cost

efficiency or some notion of size, looking at whether “deep pocket” incumbents will take

advantage of a strong rival’s financial weakness to try push them out of the industry, or

whether they will be aggressive towards a weaker rival who will be more easily prevented

from obtaining the required profit level. There is anecdotal evidence to suggest that small,

seemingly inefficient firms are more likely to be allowed to remain unmolested within an

industry than potentially large rivals, who may be preyed upon when vulnerable rather than

being let become entrenched in the industry. Again, the Chunnel is an example of a potentially

destructive competitor to the ferry companies; this awareness enticed them into attacking it
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when it was at its most financially vulnerable. This also relates to Gellman and Salop’s (1983)

paper on “judo economics”, where an entrant deliberately limits its capacity in order to avoid a

destructive response from its competitor.

     We model size in terms of the cost function of the firm.  If the new firm is a large rival then

it has costs, cN < c. If it is small, then cN > c. If the Bertrand-Nash equilibrium is recalculated,

the prices become:

                                 pi,j  =  t/3 + 4c/5 + cN/5         pN  =  t/3 + 2c/5 + 3cN/5                         (7)

      If firm N is weak (strong) and cN is higher (lower) than c, profits will be higher (lower) for

the incumbents than they would have been with a symmetric firm. This leads to two effects:

(1) A high (low) cost firm will be easier (harder) to force out of the industry, as a higher

aggregate price level, P, will drive out a firm with the same target profit level as before. (2)

But the gains from driving out a high (low) cost firm will be smaller (larger) than if they had

been symmetric to the incumbents. These two effects work in opposite directions, with the

first implying a small firm is easier to prey upon, whereas the second implies the incentive to

do so is less. In terms of the model, ΠiP and ΠiNP have a smaller jump than before, and with

the functions converging at the same rate, p*j will occur at a lower value of pj than before.

Intuitively, the gains from preying have fallen due to the gains from ousting firm i not being as

large, but the increased intrinsic vulnerability of firm N will mean that the zone of “natural

predation” has increased. Here, P is larger than before, and p*j(P) is increasing in P, so we

know that PL will rise.  Similarly, pB will be higher in the non-predatory equilibrium, so PH will

rise also. The zone of accommodation has increased, as has the zone of “natural predation”.

But the relevant P is now larger and more likely to fall into the zones of predatory behavior.

We cannot be sure whether predation is more or less likely to occur, but it is possible that a

small firm might not be preyed upon as much as a rival of equal efficiency to the incumbent10.
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       We also look at what happens when the number of competing firms increases from 3 to 4.

Here four firms are located around the circle, with the extra firm, firm k, not directly in

competition with firm N. The Bertrand-Nash equilibrium is for each firm to set its price at p =

c + t/4, with profit levels equal to t/16.  The benefits of predation are less than in the case of 3

firms, with the gain from exit for the deep-pocket firms being only 7t/144 rather than 5t/36.

However, the cost of preying is less, as firm k - not in competition with firm N - will not lower

its price by as much as firms i and j. Thus firms i and j’s profits do not fall as much as they

would have with 3 firms, as their sales are not eaten into by firm k dropping its price as well.

Thus ΠiP falls more slowly and ΠiNP rises more slowly.  This is shown in figure 4, and

formalized in Lemma 6:

Lemma 6:  With four firms, ΠiP falls more slowly, and ΠiNP rises more slowly than with three

firms.

Proof:  See appendix

      The outcome is ambiguous with regard to whether predatory behavior is more or less

likely to occur.  The costs of predation are lower, but so is the benefit, and it is possible

that p*j(P) can be greater or less than was the case with three firms. This analysis is predicated

upon the assumption that all three “deep-pocket” firms costlessly relocate to optimal points on

the circle after firm N has exited.  In reality, if firm i and j surround firm N, it seems probable

that they will gain most from forcing it out, thereby leading to greater benefits for them and a

corresponding higher probability of predation. We cannot obtain exact results, but would

suggest that as more firms are added these two conflicting effects remain: (1) the free rider

problem worsens, as the burden of predation always falls on just the two firms surrounding the

vulnerable firm, and the gain from exit falls with an increase in the number of firms. (2) the
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actual mechanics of predation are easier, as the other firms do not fully engage in the

debilitating dropping of prices.

      So far the model has been one of certainty. There are a number of ways of introducing

uncertainty, but we think that having firms i and j uncertain about the target profit level, πE, of

firm N is the most plausible. We model this by letting πE be a draw from a random variable

with a cumulative distribution function, H(•). Firm i and j’s  beliefs about the target profit level

thus imply a distribution function H(πE)  which is defined on {πE
L,πE

H}.  Given the relationship

between πE and P, this allows us to define a distribution function F(P) on {PL,PH}. This is

assumed to satisfy the following restrictions:  F(PL) = 0,  F(PH) = 1,  F′(z) > 0, and F′′(z)

exists for all z ∈ (PL,PH).   Let F*(P) denote the realization of P such that firm N exactly earns

its target level of profit.  Thus predation is successful if and only if F < F*(P). We write E(P)

to denote the probability of predation given the sum of prices, P, and, for simplicity, assume

that E(P) > 0 for all cases we examine11.

      We want to see if the free-rider issue is more or less of a factor in this framework. We

omit the details here but anyone interested should contact the author for a note on the

derivation.  Following Waldman (1987) and his extension of the Gilbert and Vives framework,

we cannot prove the existence of  equilibrium, but concentrate on whether a monopolist would

prey more or less than an oligopoly in any equilibrium that does exist. We approach the

problem by assuming a monopolist preys less, which would imply that (pi + pj) - the sum of

prices in a duopoly - is less than (2pm + t/3), the price level at which a duopoly would prey

exactly as much as a monopoly. This gives us the result that a monopolist will prey more than

a duopoly if and only if the following condition holds:

        πi(pm+t/6,pm+t/6,pN) - πi(2pm+t/3-pj,pj,pN)  <  [E(pi+pj) - E(2pm+t/3)][17t/72]              (8)
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      Note that the RHS of this expression is always positive, and becomes greater as t rises.

Unfortunately, we cannot sign the LHS. If it is negative, then a monopolist always preys more

and the addition of uncertainty has strengthened the free-rider problem. However, we note

that the LHS is equal to zero when (pi + pj) is equal to (2pm + t/3), and thus it is possible that

the LHS will be greater than zero. Under these circumstances, we cannot be sure whether

predation is more likely in a monopoly or not.

      Kovenock and Roy criticize Waldman’s approach for only being able to deal with

symmetric equilibria, thus circumventing the issue of multiple equilibria and not allowing both

predatory and non-predatory equilibria to exist simultaneously. We note the same problem

here, and the lack of any formal proof that an equilibrium exists means that the results with

uncertainty should be approached with some caution.

                                             VI.    CONCLUSION

      This paper has analyzed predatory pricing in an oligopolistic framework, offering a break

with the previous tradition of discussing the phenomenon in the context of a monopolist

preying upon a new entrant. We motivated the idea by using the agency problems that can

arise in financial contracting to arrive at a situation where one firm is vulnerable to predation

by the others. This idea is particularly relevant when one considers the venture capital market,

but is applicable to any firm experiencing financial distress.  Within this framework there exist

considerable free rider problems, and we showed that predatory behavior is less likely to occur

than in a monopoly.

      The welfare consequences of predation are not clear, as consumers will benefit from lower

prices in the first period, but may face higher second period prices. However, the model of

predation analyzed here considers lowering prices to be the only form of predatory behavior.

In reality, as Ordover and Saloner (1989) point out, predation can include product



20

proliferation, advertising, and other forms of non-price behavior, and a more complete analysis

of the problem would take such concepts into account.  In particular, the free rider problem

might be accentuated if firms were allowed to relocate themselves in the product space to take

customers away from the firm preying upon the financially constrained firm. Introducing

switching costs would also be interesting, and could lead to a reversal of our conclusions, as

the desire to create a large first period market share would neatly dovetail with the incentive to

lower prices and force the newcomer out of the market.

      The legal consequences of multi-firm predation are also unclear, but the judgment in the

Matsushita case indicates the difficulty in identifying culpability if a combination of firms are

involved. The judges made clear that they would require explicit evidence of collusion

between firms in order to prove multi-firm predatory intent; in the absence of such evidence

predation would have to be proved for individual defendants12. And in our examples, few

individual firms would have enough market power to be considered able to prey on their own.

In addition, a firm might participate in a predatory attack, yet still be pricing above cost, thus

not satisfying any of the standard tests of predation. This might seem to indicate that multi-

firm predation is possible, in that it would be difficult for a court to identify that predatory

behavior actually occurred, but as Cabral and Riordan (1997) indicate, the American courts

have taken a sceptical attitude over the general issue of predation in recent years. We should

also point out that the predation will probably be even harder to sustain as a multi-firm

equilibrium in both the signaling and reputation versions of the phenomenon. For two firms to

convince a preyed-on firm that both incumbents costs were low would be difficult in the

signaling story, and persuading a newcomer that both incumbents were “tough” would also be

hard.

      A final factor arising is a possible re-evaluation of McGee’s (1980) famous claim that

predatory behavior was irrational, as the firm would always choose to merge with its opponent
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as a less costly method of obtaining monopoly power. When two or more firms are attempting

to remove a rival, the option of merging may not exist, as that would concentrate power in the

hands of the merging firm, unless we consider a highly unlikely “grand coalition” (which

would probably be prevented on antitrust grounds anyway). In this situation, agreeing to prey

rather than merge may be the only solution for a group of firms who wish to preserve their

market power, and thus predation again becomes an important issue13.

                                                 APPENDIX

Proof of lemma 1:  (a)    We need to show pi  =  (pj + pN)/4 + t/6 + c/2

Firm i maximizes profits, which are:   (pi - c) [(pj + 2t/3 + pN - 2pi)/2t]

dπi/dpi  =  [pj + 2t/3 + 2c + pN - 4pi]/2t  =  0.      This simplifies to:

pj + 2t/3 - 4pi + 2c + pN  =  0,  which gives us:     pi  =  (pj + pN)/4 + t/6 + c/2

(b) We calculate profits in the symmetric one-shot Bertrand equilibrium.  With three firms, we

know that:     pj = pN = pi  =  (pi + pi)/2 + t/6 + c/2.     We get: pi/2 = t/6 + c/2,   which means

that pi  =  c + t/3.  Thus,  πi  =  (c + t/3 - c) [(t/3 + t/3)/2t],   which simplifies to   πi  =  t/9.

Analogous reasoning in the two firm game produces:    πi  =  t/4.

(c) We need to show firm N’s profits depend only on the sum of its opponents prices. Thus,

πN  =  (pN - c) [(p1 + 2t/3 + p2 - 2pN)/2t], giving,  πN  =  (pN - c) [((p1 + p2)/2 + t/3 - pN)/t].

Thus πN is unaffected by the relative levels of p1 and p2.                                                 Q.E.D.

Proof of lemma 2:  We want to connect the target profit level, πE, with the target price level,

P.  From lemma 1, if we replace pN with (pi + pj)/4 + t/6 + c/2,  πN can be written as:

πN  =  (((pi + pj)/4 + t/6 + c/2) - c) (((pi + pj)/2 + t/3 - (pi + pj)/4 - t/6 - c/2))/t

Simplifying and taking square roots gives us:     √πN  =  ((pi + pj)/4 + t/6 - c/2)/√t

 Thus, √t√πN - t/6 + c/2  =  (pi + pj)/4. If pi + pj  =  P,  then P  =  4√πE√t - 2t/3 + 2c      Q.E.D.

Proof of lemma 3:  We characterize the change in overall profits as pj rises, but with second

period profits constant throughout, we can confine analysis to changes in first period profits.

We write:   dπi/dpj  =  [(pi - c)dqi/dpj  +  qi [dpi/dpj].
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For πiNP:   dqi/dpj = d(pj + t/3 - pi(pj))/2t + (pN(pj) + t/3 - pi(pj))/2t]/dpj which is equal to:

 1/2t - 1/8t + 1/8t - 1/8t  =  3/8t.    Note that dpi/dpj  =  ¼ (from lemma 1), giving us:

dπiNP/dpj  =  ((3/8t)(pi - c)  +  qi/4.     This must be positive for any pj, as if pi < c, negative

profits are being earned and firm N would exit for any πE.

For πiP/dpj: we let (P - pj) = pi;   dqi/dpj = d[(pj + t/3 - (P - pj))/2t + (pN + t/3 - (P - pj))/2t]/dpj

This gives:    d[(2pj + t/3 - P)/2t + (pN + pj + t/3 - P)/2t]dpj    Note pN is constant, thus:

dqi/dpj  =  1/t + 1/2t. Note dpi/dpj = -1.  Thus,  dπiP/dpj  =  (3/2t)(pi - c) - qi.  This expression

can be positive, but as pj rises, with pN constant, pi must fall and qi must rise.  This implies that

dπiP/dpj must eventually fall continuously.  So, given πiP eventually falls as pj rises, and πiNP

continually rises, we reach a point where πiP = πiNP  and beyond which πiP  <  πiNP.        Q.E.D.

Proof of lemma 4:  We know, from its definition, that p*j(P) solves (P - pj) - ΠiNP(pj). By the

implicit function theorem  d(p*j(P))/dP = -[(P - pj)∂qi/∂P + qi]/[- qi - ∂πiNP(pj)/∂pj].  The sign

depends on ∂ΠiNP(pj)/∂pj.  By lemma 3, this is > 0.  This gives d(p*j(P))/dP  >  0           Q.E.D.

Proof of lemma 5:  We start by assuming that predatory equilibria exist where pi + pj = Q < P.

Here we know that pi, the critical price which leaves firm N exactly earning πE, must be

greater than Q - pj. We know that firm N will just play a best reponse to the aggregate Q.

Thus for any pj < Q, our candidate equilibrium must be:    [Q - pj, pj, Q/4 + c/2 + t/6]

Looking at possible deviations from this equilibrium, they can be either:

(a) BRi(pj,Q/4 + c/2 + t/6) ≥  pi(pj,Q/4 + c/2 +t/6).        In this case, by the concavity of firm

i’s profit function we know that pi(pj, Q/4 + c/2 + t/6) yields higher profits than any lower

price.  But we know that pi is greater than Q - pj, implying that a profitable deviation exists

and we do not have an equilibrium.  The same will be true for any pi < Q.                  OR

(b) BRi(pj,Q/4 + c/2 + t/6)  <  pi(pj,Q/4 + c/2 + t/6).        Here firm i can force firm N to exit

by choosing the optimal one-shot price in period 1. But this implies:  BRi(pj,Q/4 + c/2 + t/6)

= Q - pj = pi.   We know from (a) that if BRj(pi,Q/4 + c/2 + t/6)  ≥  pj(pi,Q/4 + c/2 + t/6) we

do not have an equilibrium. And, if BRj(pi,Q/4 + c/2 +t/6)  <  pj(pi,Q/4 + c/2 + t/6) then  pj =

Q - pi.  So the only way for this to be an equilibrium is for each firm to be playing its static

optimum against the other’s price.  But this is just the case of  natural predation dealt with

already. Thus any “non-natural” predatory equilibria must have pi + pj = P.                   Q.E.D.
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Proof of proposition 2:   (a) We know that PH ≥ PL.  According to the definition of PL, profits

with and without predation are equal when P = PL if firm j prices at pB and pi = PL - pB.  Here

firm i is indifferent between, (i) earning t/9 in each period and, (ii) earning - t/36 in the first and

t/4 in the second. When P < PL, in a predatory equilibrium, firm i sets pi ≥ P - p*j(P).

But P - p*j(P) must be ≥ PL - p*j(P), as p*j(P) increases in P. But PL - p*j(PL) = PL - pB. Thus,

when P > PL, at a predatory equilibrium firm i sets a higher price and obtains higher profits

than at any non-predatory equilibrium; profits are only equal where P = PL.

(b)  We need to show that whenever a duopolist preys, a monopolist would to, and there are

situations where a monopolist preys and a duopolist does not.   At PL, the lowest value

duopoly predation can occur at, we know pi = P/2 for all i. Here each firm is indifferent

between preying and accommodating; as each gains (t/4 - t/9) from preying, they must be

prepared to give up (t/4 - t/9) = 5t/36. Thus profits are - t/36 in the first period. A monopolist

gains (t - t/4), thus will tolerate profits as low as - t/2 in the first period. From lemma 2, we

know that for any πE, the required P = 4√πE√t + 2c - 2t/3.  Thus pi must equal: 2√πE√t + c -

t/3.  We can show that, for a monopoly, the required cut-off level, which we call pM, is:

2√πE√t + c - t/3.    Thus, at the lowest predatory equilibrium: pi = pM + t/6 = pj. For the

duopoly, we know first period profits are:  (pi - c) [((pN + pi)/2 + t/3 - pi)/t] = - t/36. We

substitute for pN and obtain:  (pi - c) [(- pi/4 + c/4 + 5t/12)/t] = - t/36.  If our propostion is

true, then at πM, the monopolist’s profits must be strictly greater than - t/2; the monopolist is

prepared to prey more and earn lower first period profits to drive out firm N.  Thus:  (pi - t/6 -

c)[(- pi/2 + c/2 + 5t/6)/t]  >  - t/2. We note that (- pi/2 + c/2 + 5t/6)/t  =  2(- pi/4 + c/4 +

5t/12)/t.  We label (- pi/4 + c/4 + 5t/12)/t   as X; and note  (pi - c)X  =  - t/36.  This implies X

= - t/[36(18(pi - c).  Substituting back, we obtain:  (pi - t/6 - c){- t/[18(pi - c)] > - t/2.  After

manipulation and reversing the sign of the inequality, we have:    t2/6  <  - 8pit + 8tc, which

implies:  t2 < 48t(c - pi). From lemma 2, we have: pi = 2√πE√t + c - t/3, which means that   c -

pi  =  t/3 - √πE√t.  This gives:   t  <  48[t/3 - √πE√t]   implying   √πE√t  <  5t/16.  Thus, as long

as √πE√t  <  5t/16, a duopoly will prey less frequently than a monopoly.                        Q.E.D.

Proof of lemma 6:  We are attempting to find the same results as in lemma 3, but with an extra

firm, k, in the market. For πiNP, dqi/dpj is:  d[(pk(pj) + t/3 - pi(pj) + pN(pj) + t/3 - pi(pj))/2t]/dpj.

As dpk(pj)/dpj is equal to 1/4, dπiNP/dpj  =  0(pi - c) + qi/4.  This is smaller than the case of
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three firms.  For πiP, we have dqi/dpj  =  d[(pj + pk(pj) + pN(pj) + 2t/3 - 2P)/2t]dpj.  This leaves

us with dπiP/dpj  =  (9/8t)(pi - c) - qi. This is smaller than for three firms.                       Q.E.D.

                                                 ENDNOTES

1.  See Tirole (1988), Ch 9, or Ordover and Saloner (1990), for a summary of economic approaches to the
problem of predation.

2.  The two other main types are: (i) The reputation approach, where firms prey on new entrants in order to
gain a reputation for harshness. This is usually only sustainable either in an infinitely repeated context or
in a situation where entrants might believe an incumbent actually like to “fight”.  See Kreps and Wilson
(1982) and Milgrom and Roberts (1982b). (ii) The signalling approach, wher the incumbent preys in order
to attempt to convince the newcomer that it would be unprofitable to remain in the industry by influencing
its opponents beliefs about the predator’s costs or the nature of industry demand. See Scharfstein (1984)
for a basic analysis and Milgrom and Roberts (1982a) for a discussion of the related limit-pricing
phenomenon.

3.  This relates to the literature on whether financial obligations lead to higher or lower prices in the product
market.  See Brander and Lewis (1984) for a model where debt also leads to lower prices and higher
quantities.

4.  The Chunnel’s disastrous financial state has led to an ongoing debate about whether the British
government should underwrite all its losses in order to keep it in operation.

5.  For a comprehensive discussion of the nature of entry-deterrence, see Tirole (1988), Ch 8.
6.  We assume that the surviving firms are able to costlessly relocate to points on the circle which allow them

to earn the maximum second-period profit. In practice, this may be unlikely, but even if they remain in the
same positions they will still earn a fixed second period profit.  This is likely to be less than what they
would have earned had they re-located, and may result in the gains from predation, and the range of
parameters where it occurs, falling.

7.  The legal literature on predation is voluminous.  Note that this “natural predation” does not satisfy the test
of predatory behavior proposed by Ordover and Willig (1981), and would surely not be considered
predatory by the courts.

8.  For two of the most well-known attempts to measure and detect predatory pricing, see Areeda and Turner
(1975) and Ordover and Willig (1981).

9.  Kovenock and Roy have a similar condition on product differentiation in their model - firm must be
sufficiently differentiated for type 2 underinvestment to occur.

10.  The analogy to judo economics is not perfect, as the weak firm does not consciously attempt to weaken
itself or to restrict its output.

11.  Note that, as in Waldman, any interior equilibrium must be symmetric. If E(P) = 0, then there may exist
non-symmetric corner equilibria.

12.  For a discussion of this case and the legal attitudes toward multi-firm predation, see Elzinga (1994).
13.  Persson  (1998) studies a model which considers mergers and predation from a multi-firm perspective.
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              Figure 1: Firm i’s maximum level of profit from preying and from not preying
                             as a function of firm j’s prices.
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               Figure 3:    The set of predatory and non-predatory equilibria.  Note we have
                               both types coexisting  when PL ≤ P ≤ PH.
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        Figure 4:  Maximum profits (with and without predation) with three firms
                        and with four. Profits with three firms are represented by the
                        dashed line. In this example, note that p*j(P) is greater for four
                        than for three.


