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A I B ^ T R A C T
T

A selection of free-standing fine-wire grids with different wire 

spacings have been wound for use as spectroscopic components at 

millimetre and submillimctre wavelengths. The performance of tlic grids 

has been investigated extensively and found to be in good overall 

agreement, both qualitatively and quantitatively, with calculations 

made using a least-squares method developed by Beunen. I','here 

discrepancies occur they are attributed to the effect of uneven 

spacing of tlie wires.

A microcomputing system based on tlie 280 8-bit microprocessor has 

been built to provide data acquisition and Fourier transformation for 

a Fourier spectrometer.

Measurements have been made of the far infrared optical constants 

of KCÎ and KBr crystals by dispersive Fourier transform spectroscopy 

at temperatures in the range 7-300K using instruments equipped 

with both mylar and wire grid beam dividers. The results have been 

used'* to calculate the dielectric functions and the anharmonic self 

energy functions of the q ~ 0 transverse optic modes in these 

crystals. The frequencies of the transversive optic (TO) and 

longitudinal optic (LO) modes determined from the dielectric functions 

are in good agreement with the accepted values, and in the case of 

KBr, the frequency-dependence of the anharmonic self-energy functions 

determined at room temperature is in good agreement with calculations 

made by Bruce.
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CHAPTER 1

INTRODUCTION

The technique of Fourier transform spectroscopy was initiated by 

Nicholson [1880] when he first invented his interferometer. Since then 

the technique has been developed by many physicists, who have used it 

in many different applications.

With the advent of tlie computer age Fourier transform 

spectroscopy (FTS) using the Nicholson type interferometer has become 

an extremely popular tool and has been used to ' measure the power 

spectra of numerous solids, liquids and gases.

One particular disadvantage of conventional power FTS is that it 

does not produce phase information. Hence, the phase spectrum has to 

be obtained by a Kramers-Kronig (KK) analysis of the power spectrum. 

However, the method is inadequate for studies where accurate phase 

values are required over a wide spectral range.

In recent years a new technique known as dispersive Fourier 

transform spectroscopy (DFTS) has been developed. The main 

difference in DFTS is that the specimen is placed in the optical path 

in one arm of the interferometer, and this gives the complex 

reflectivity or transmittivity, i.e. both amplitude and phase spectra. 

The optical constants can then be determined directly without using 

a KK analysis.

An outline discussion of the general theory of FTS is presented 

in Chapter 2, but detailed descriptions can readily be found in 

various books [eg. Bell 1972, Chamberlain 1979]. The technique of DFTS 

is described in Chapter 3, where the term complex insertion loss is



discussed. The techniques described are mainly those applicable to 

solid state measurements, and the relationships between the complex 

insertion loss and the optical constants for three types of

configuration are also derived.

In most interferometers, a dielectric beam divider is normally 

used, but this has the limitation of poor performance in the low

frequency spectral region. However, the introduction of polarising 

interferometry [Martin and Puplett 1970] has improved the performance 

of instruments in this region. The use of free-standing wire grids as 

beam dividers has removed the main draw-back of dielectric beam

dividers, i.e. the interference fringes caused by the two interfaces.

If a polarising modulation system is also used, then the Bessel 

function envelope of the phase modulation system is removed. Thus,

this optimises the performance of the interferometer to the point

where it is limited by the source and the detector.

As this involves the application of wire grids in the far 

infrared, it is important to understand the behaviour of these 

components. The performance of these grids has therefore been studied, 

and a general description of a theory based on the least-squares 

method is presented in Chapter 4. The least-squares method was first 

proposed by Davies [1973], and further developed by Beunen [1976] for 

application to wire grids. In order to verify the results of the

theoretical calculations, a set of wire grids were wound from 10 pm

and 5 ;um diameter tungsten wires with wire spacings of 30-65 îm, and 

25, 50 and 100 ;am, respectively.

In the case of 10 7am wire grids, measurements have been made on a 

set of grids with spacings in the range 30-65 ;im by using an HCN laser 

( ̂  =29.7 cm * ). Calculations of the transmission coefficients were



a Iso produced for comparison with the special case of normal
T

incidence, with the electric vector, jl, parallel to the v/ire 

direction, ^ (i.e. EI!S) The next step in the investigation was to

make a comparison of calculated and measured power transmission 

coefficients and phase spectra for the grids wound from 10 pm diameter 

tungsten wire with spacings in the range 35-55 pjm for the special 

cases of normal incidence with EljS and

By improving the winding technique, wire grids of 5 pm diameter 

tungsten wire have been made, A selection of these grids with spacings 

of 25, 50, and 100 ;.im have been measured by using DFTS for comparison

with calculated transmission coefficients and phase spectra for the 

special case of normal incidence with EllS and E i.S. The experimental 

and theoretical results were in good overall agreement both 

qualitatively and quantitatively, and are presented in Chapter 7.

The technique of DFTS has been used by a number of workers [Bell 

1965, Chamberlain et al 1965, etc] to make measurements on solids, 

liquids and gases at ambient temperature. The technique has furtlier 

bee'h developed to extend the measurements below room temperature. 

Instruments have been built by Parker et al [1978], who have performed 

DFTS studies down to 80K using a single pass instrument, However, for 

the reflection instrument [Parker et al 1978b], measurements down to 

7K have been made successfully. The description of those two 

instruments and the general problems affecting the performance of 

these instruments are discussed in Chapter 5,

One important associated component which has to be used with all 

types of Fourier transform spectrometer is an electronic computer. The 

computer is needed for the numerical Fourier transformation and other 

associated data analysis.' In the last few years, the introduction of



microprocessors has been revolutionary in the electronic world.
i

Because of their compactness in size and programmability, they have 

been used in many applications where computing power is beneficial. A 

microcomputing system based on an 8-bit microprocessor has been built 

and used with a Fourier spectrometer. The system has been used to look 

after all the data acquisition and perform the Fourier transformation 

plus other data analysis. The system has provided a reasonable 

computing facility, and is described in Chapter 6.

The main application of the interferometers mentioned above is 

for measurements of the optical constants of solids, ■In principle, 

DFTS is the simplest way of determining optical constants in tlic far 

infrared. With the transmission instrument specimens can be measured 

with operating temperatures down to 80k, but witli the reflection 

instrument measurements were extended to 7K. V/ith a combination of 

transmission and reflection techniques, measurements over the spectral 

range 20-350 cm ̂ have tlius been made with good accuracy over a wide 

range of operating temperatures. Measurements of the optical constants 

of" KCl and KBr crystals have been made, and the corresponding 

dielectric functions for each crystal are presented in Chapter 7.

The results for KBr obtained above were used for the 

determination of the frequency dependence of the real and imaginary 

parts of the anharmonic self-energy of the tranverse optic mode in the 

temperature range 300 - 100k. The room temperature measurements of the 

damping function are sliown to be in good agreement with calculations 

by Bruce [1973].
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FOURTER TRANSFORM SPECTROSCOPY

2.1 INTRODUCTION

In most infrared measurements a black-body source of broad-band 

thermal radiation is employed. The power per unit frequency interval 

from such a source is inherently small and so an interferometer which 

makes optimum use of tlie energy available becomes more favourable tlian 

a grating spectrometer. In the interferometer the radiation is not 

divided up into quasi-monochromatic components by a grating or prism 

before or after traversal of a specimen, but instead the 

interferometer acts in such a way as to encode the spectrum as a 

function of the optical path difference between the interfering beams. 

An interferogram is recorded in the form of detected signal as a 

function of optical path difference in the interferometer. The 

spectrum is then recovered from the interference function by the 

process of Fourier transformation, hence the name Fourier transform 

spectrometry. The derivation of the basic equation of the relationship 

between the spectrum and the interferogram is described in this 

chapter. The terms resolution, apodization, aliasing, Fellgett and 

Jacquinot advantage are also defined and discussed. In the last 

section of this chapter the technique of polarising interferometry is 

also discussed.

11



2.2 THF. BASIC INTEGRAL FOR FOURIER TRANSFORM SPECTROSCOPY

The physical operation of the interferometer can be understood 

easily if we consider a beam of monochromatic radiation (frequency 2/ 

or wavelength'X) incident upon the interferometer (see fig.2.1), For 

simplicity we can regard this beam as divided into two equal partial 

beams which are recombined after a phase delay. If the phase delay in 

the interferometer is zero, the partial beams recombine constructively 

and the detector measures the resulting intensity. If the phase 

difference is changed by tc radians (optical path difference ^  /2) 

the returning partial beams will recombine destructively, and the 

detector will measure no signal. In fact, as optical path difference 

varies the detector will measure a cosinusoidally varying intensity. 

Different monochromatic components will give rise to cosinusoidal 

intensity variations at the detector which are in step at zero path 

difference but are out of step as optical patli difference changes. The 

complicated interferogram pattern built up from a band spectrum, of 

radiation is uniquely related to the spectral distribution of energy 

by a Fourier transformation.

Consider a partial beam (e.g. in one arm of a Michelson 

interferometer) which travels a distance which exceeds that travelled 

by the beam in the other arm by an amount Sx, wliich we call the 

optical path difference. By assuming the interferometer to be 

symmetrical and evacuated, then, because of the path difference 6x, 

the two beams arrive at the detector with a phase difference 2 "ni/Sx 

for any component and show interference which is governed by

this delay. The electric field from the two arms can be expressed as

12



E, (x) = l f(î ) exp (2 i 71 x) dV
OO

and Ê  (x) = T f(.t') exp [2 (x+ Sx)] d>/ (2.1)
J-oO

where x is tlie parameter defining position in the interferometer arms.

The principle of linear superposition can be applied to define 

the resultant field of the recombined waves in terms of the amplitude 

f(^") [Bell 1972].

The power at the detector is

I (x) d J/ = P(>') + E(^) cos (2 T: V Sx) dy (2.2)

for each spectral component of power E(^) d̂ * in the interval V  to

y+dy, and we also assume that the contribution from each arm is the 

same. i.e. E(V)dV

When tlie source is strictly monochromatic and of a wave-numbcr 22 

, then the amplitude from each arm is A* , so that

I(x) = A^ [ 1 + COS( 2 Sx)]

= 2 Ap cos^ ( 7i ;/$x)
-I

is the interference function. It has the familiar form of cosine 

fringes, which extend to infinite values of Sx without change in 

magnitude. If however, the source is of finite but small spectral 

width the fringes are still basically cosinusiodal and of period 

The interference between components from either arm of the 

interferometer is now constructive at Sx=0, but becomes increasingly 

destructive as Sx increases. This has the effect of modulating the 

fringes whose magnitude falls to zero at about^{=

If the source has a broad bandwidth, such as is the case for most 

spectroscopic measurements, all components are in phase at x=0, but

13



the detected intensity fluctuates rapidly to zero as Sx is increased. 

The detected power is given by adding all the components represented 

individually by equation (2.2)
OO

I (x) = I P(y) d>̂  + \ P(î ) cos ( 2tt>'Sx) dV (2.4)
-OO -a?

WhenSx=0, we have

1(0) = 2 P(J/) dî  (2.5)

so that equation (2.4) liecomes

r  ^I(x) = -1 1(0) + P M  cos( 2 - n i ^ S x ' i dV (2.6)
J-O.

for the interference function of tlie interferometer. If we write 

F(x)=I(x)-l/2 1(0), then

rF(x) = I P(y) cos( 2 7T x) dî  (2.7)
Ü o

where F(x) is the recorded function of the interferogram. This shows 

that the interferogram is related to the spectrum by a cosine Fourier 

integral. This relation may, by the use of the Fourier inversion 

theorem, be written as

P(-2) = ^F(x) cos( 2 "7: y x) dx (2.8)

which shows how the power spectrum may be calculated by the operation 

of Fourier transformation on the recorded interferogram F(x).

14



2.3 RESOLUTION

Consider a purely monochromatic source which has a power 

distribution

I’M  = (2.9)

where P. is the power of the line, and o(^-i&) is the Dirac delta 

function. From equ(2.7) it follows that the interferogram produced by 

this line is

I (x) = cos (2 7i j/ x) di/ = P cos (2-rr ̂ x) (2.10)

Due to the mechanical limitations of the Michelson 

interferometer, it is obviously impossible to record the interferogram 

to infinite path difference, and in practice we are restricted to a 

maximum displacement, D, of the moving mirror. Normally, double sided 

interferograms are recorded and hence we truncate the Fourier integral 

within the limits t  L where L= D/2. Then the recorded spectrum will be

P(y) = I Pj, cos (2 7T x) COS (2 7T V  x) dx

P. L
sin[2 7T ( î  + ẑ )L] sin[2 7T ( )L]
  + — --------------

2 7T ( ;/ + ;^)L 2 zr( )L

(2 . 11)

The first term in the expression is very small when compared with the 

second. Thus P(y) can be expressed as

sin[2 7k (// - 2̂ ) L]
P(;/) - PoL----------------  ,

2 7t(2/-i4)L (2.12)

= Pp L sine [2vr(i2-j^)L]

15



This is a sine function which has its first zero when

2 7t -i/)L = i 7t or V  = 2/ + (2.13)

Notice that the major feature of the recovered spectrum is a peak with

width = l/L.

This value may be taken as a measure of the resolution of the 

interferometer. However, there does not seem to be a precise

definition of the resolution of a Michelson interferometer, although 

the resolution is inversely proportional to the maximum path

difference.

One possible definition of resolution of the interferometer is 

obtained by the term "half-width", which is defined as the width of a 

line at half of its peak value. From equation ( 2.12) the intensity

drops to half of its peak value at 2 (22- 2̂  )L = 0.607 tl .Hence the

full half width is % 1.2l7t , so we obtain the resolution

I '21 (2.14)

Another possible definition is the Rayleigh criterion [Bell 1972]

which defines the resolution in terms of the separation of two lines

of equal intensity. If we consider that eacli of the recovered lines is 

described by a sine function, then we can say that

(2.15)

As the first and second definitions differ by only 20%, we shall use 

the simpler expression as a definition of the resolution achieved in 

an unapodized interferogram.

16



2.4 APODIZATION

The basic Fourier transform integrals have infinite limits for 

the optical path difference but the experimental limits are finite, 

and this truncation produces false sidelobes on the transformed 

spectra. The false sidelobes look like part of the spectrum, so 

modification must be made to the computation to either remove them or 

reduce their magnitude. The correction procedure for modifying the 

basic Fourier transform integral is called "apodization". To achieve 

this, the interferogram is usually multiplied by a function called the 

apodizing function.

To begin the discussion of apodization, first consider a 

monochromatic source. The interferogram produced by it is shown by 

equation (2.10), and the transformed spectrum obtained by taking a 

finite lengtli of this is given by equation (2.12) i.e.

P(^) = 2 Pg L sine Z where Z = 2 rr ( V - î ) L (2.16)

Fig 2.2 shows a plot of the spectrum of a monochromatic source 

modified by a finite maximum path L, i.e. sine Z. The sine Z function 

is an approximation of tlie monochromatic line. The sidelobes drop 

about 22% below zero and that is rather large. One can tolerate the 

central peak of finite width as an approximation to an infinitely 

narrow band-width, but the sidelobes would appear as false sources of 

energy at nearby wavelengths.

If an apodizing function f(x) is introduced into the calculation 

of the Fourier integral to give the computed apodized spectrum, then

P(y) = ^ f  (x) I(x) cos (2 7C x) dx (2.17)

17



is a closer approximation to the true spectrum than the unapodized 

one, i.e.

P(y) = ll(x) cos (2 ai x) dx (2.18)

Suppose one tries a triangular function for which f(x)= 1- 1x1/L, then 

we have

= P.fo
,L

P(>3 = Ml (l-|x|/L) COS(27ri7x) cos (2 7T 7/ x) dx

PgC (1- |x| /L) cos (2 7T ( V- 2̂ ) x) dx
J-L

= sinc^(Z/2) where Z= 2 7̂  ( >’- ĵ ) I-

as one can see from fig. 2.2, tlie sidelobes for eouation (2.19) are 

reduced. The peaks of the sidelobes are reduced by a factor of about 

four. The width is increased somewhat, but not seriously. So one can 

modify the interferogram of a monochromatic source by multiplying it 

with the apodizing function (l-lxj/L), knowing that we will obtain a 

spectrum which is a more acceptable approximation to the perfect 

monochromatic source. I have been considering triangular apodization. 

However, trapezoidal, Gaussian, cosine etc., functions are also used 

for apodization [Bell 1972].

18



2.5 Tlin JACQUINOT AND FELLGETT ADVANTAGES

The Jacquinot advantage [Girard S Jacquinot 1967] is that an 

interferometer, being an instrument possessing circular symmetry, has 

an angular admission advantage over a conventional spectrometer which 

employs slits and consequently has no such symmetry. When prism, 

grating and interference spectrometers are compared at equal resolving 

power, the radiant throughput of the interference spectrometer is much 

higher than tliat of the grating spectrometer.

The Fellgett advantage [Fellgett 1958] arises as a direct 

consequence of the fact that in an interferometer the whole of the 

spectral band is observed for the whole of the duration of the 

experiment, whereas in a grating spectrometer the spectral elements 

are observed sequentially for short periods which sum to give the 

total time of the experiment.

Suppose one is interested in measuring a broad spectrum between 

wave numbers 2̂  and ^  with a resolution . The number of spectral 

elements M in the broad band is

M = (2.20)

If a grating spectrometer is being used, each small band of width 

can be observed for a time T/M, where T is the total time required 

for a scan from X  to The integrated signal received in a

small band is proportional to T/M. If the noise is random and

independent of the signal level the noise should be proportional to 

( T / M ) . Thus, for a grating instrument, the signal to noise ratio 

would be

(S/N) CX (T/M)^ (2.21)

19



The interferometer detects in the broad band - /2 all small 

bands of width ^-^all the time, so the integrated signal in a small 

element S x  is proportional to T. The noise is proportional to T M  

Thus, for an interferometer, the signal to noise ratio would be

(S/N)^ (X. T ^  (2.22)

With the same proportionality constant for both cases, the ratio 

of (S/N)^ for the interferometer to (S/N)^ for the grating instrument 

is

X.(S/N)i/(S/N%M= M (2.23)

where M is the number of spectral elements of width ^Xin the broad 

band X  - 2/̂  . Therefore, an interferometer is capable of recording a 

spectrum at a higher signal to noise ratio than a grating spectrometer 

in a given time interval, or alternatively it can record the spectrum 

at the same signal to noise ratio in a shorter time.

2.6 ALIASING

In most measurements in interferometric spectroscopy, the method

for carrying out the numerical Fourier transformation of the

interferograms is by sampling the interferogram at equal intervals of

path difference. The' reason for this practice is that the

20



interferogram is not a simple analytic function and the Fourier 

transformation has to be carried out in a finite time using an 

electronic computer. The computing program uses the Cooley-Tukey 

algorithm [Cooley et al 1965] which requires sampling points at 

regular intervals. For this reason the integration of the function is 

replaced by a summation. The concept of an infinite one-dimensional 

array of delta functions is extremely useful for the representation of 

the sampling function. The symbol "Shah" is used for the sampling 

function and is given by [Chamberlain 1979]

OO

LU(x) = ^  i(x-m) (2.24)
-CO

or, more generally

OO

LU (x/b) = b ^^x-mb) (2.25)
-  to

and multiplication of a function F(x) by LU (x) effectively samples it 

at'equal intervals, i.e.

OO

F(x) UJ (x) = ^  F(m) (2.26)
rv \n  -  OO

The Fourier transform of the sampling function is especially 

interesting and important as the shah symbol is its own Fourier 

transform. Let

= i,
F(^) = \ lU(x) exp(-2 i V x) dx

(2.27)
CO — CO

^  W(x-m) exp(-2 7T i ĵ x) dx
■>-0<3

21



By employing the definition of the Dirac delta function, one will have
OO

F(y) = ^  exp(-2 7T iî  m) (2.28)
tV\s. -OO

Using Euler's formula

CO
^  exp(-2iiry m) = ^  cos(2-Mym) - i ^  sin(27T>'m) (2,29)
IWs-CO ^

The second term in the right hand side of the equation will be zero, 

then

Oe> OO

^   exp(-2i?jy m) =_____ ^ _c o s(2tt>' m) (2.30)
»Vls -< <70

For the cosine function, as is varied one would be summing over 

so many terms (infinite number) that when is not equal to an 

integer the cosine terms would essentially be adding with random phase 

and amplitude. As 2/ is varied, every time this value equals an 

integer, the sum over m would have an infinite, positive value. So 

thi'S is just another shah function in terms of the Dirac delta 

function, then
ca

^  IlJj(x)^ = <$( î -m) = LiJ(v) (2.31)
yv \- -  iO

f(y) =

While for UJ (x/b)
OO

f(y) = ̂ __LiJ(x/b) exp(-2 7T i V x) dx

= ^  b S(x-mb) exp (-2 7T i x )  dx
iM = -43 «

= y  b exp(-2 75 i J-"mb) (2.32)

22



From equations (2.31) and (2.32) it follows that the Fourier pairs for 

the shah function will be [see fig. 2.3]

ÜLl(x) ^ -----  L_U(y)
(2,33)

UJ(x/b) 7 ^  bLU(bi^)

The convolution of a function F(x) with the sampling comb gives a 

function
OO o°

F(x) * lU( x) = ̂  F(x) * <S(x-ra) = ̂  F(x-m) (2.34)

which, is just the original function repeated at equal intervals to 

infinity in both positive and negative directions.

If we have an interferogram F(x) with tlie sampling function 

L-i_J (x/ 5x ) then the Fourier transform of this will be

‘‘1f(x) LU(x/ix) exp(~2 7T iy x) dx

= ^x UJ (ax 12) * F(x)

^  «7 (2.35)
= ^  ^( j2- m/^y) * F (i2) = ^  F(J2-m^v')

w\= -OO " w\»-4a

where = 1/^x.

Thus if we compute the inverse Fourier transform of the sampled 

interferogram, we obtain the complete spectrum every time ̂  equals

m >̂2 for all integers m, i.e., we have a duplicate spectrum starting

at m ̂ r2 ,

23



Due to this phenomenon the positions of the repeated spectra 

depend on the magnitude of ^x. The repeated spectra will be well 

separated from the first order spectrum if S x  is  very small, i.e. ’Sv» 

is very large. However, if ^ x is large then becomes small, and

overlapping between the real spectrum and the repeated spectra will 

occur. An example of the problem of the aliasing effect is shown in 

fig. 2.4.

In order to separate the spectra, S has to be large enough so 

tliat the negative imaged spectrum does not overlap the maximum 

frequency of the real spectrum. Then we obtain the condition as 
-̂22 ^  2

or (2.36)

^  X < l/2î w(

where ^o u x is the maximum frequency of the measured spectrum and ^  x 

is the step length. Thus, for a given step interval there is an upper 

band frequency limit if one wishes to avoid the problem of 

overlapping or aliasing*

2.7 POLARISING INTFRFFROHETRY

In conventional interferometers dielectric thin film beam 

dividers are used. These are usually made of Mylar (Polyethylene 

terephthalate) and are stretched taut on a metal frame which locates 

precisely in the interferometer. Since the beam divider has parallel 

sides, the phenomenon of multiple internal reflection occurs. The 

destructive and constructive interference from these two surfaces
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introduces a response envelope for the interferometer [Bell 1972]. 

Thus the thickness of the beam divider must be chosen to optimise the 

throughput energy in the spectral region of interest. By the use of 

thicker and thicker mylar the low frequency performance of the 

instrument may be improved, but the bandwidth of the first order 

interference fringe progressively narrows. Consequently, such 

dielectric beam dividers are far from ideal for long wavelength 

measurements below about 15 cm"~' .

To improve the performance of the interferometer in the long

wavelength region polarised interferometric spectrometry was developed 

[Martin S Puplett 1970]. Instead of using a dielectric beam divider, a 

free-standing fine-wire grid is used as the beam divider, and this

gives a large improvement in the long wavelength response of the 

interferometer. A schematic diagram of a Martin and Puplett instrument 

is shown in fig. 2.5.

To enable one to understand the principle of operation of such an 

interferometer, take a monochromatic source, with the E-vector of the 

poTarisers PI and P2 normal to the paper as shown in fig. 2.5, witli 

unit vectors P. The electric field passing through the polariser PI is

E(t) = a cos(2 n vet) P (2.37]

where a is the amplitude, and is the frequency.

The beam divider (BD) is orientated to give a projected angle of

45° to the vertical with respect to radiation incident from the

polariser PI. Hence, the radiation wliich passes along the arm A of the 

interferometer is produced by reflection from the beam divider, and

E*Xt) = ^  cos(2*^ct + ) t (2.38)vZ
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where t is a unit vector paralled to the wires of the grid. The value 

■ fi comes from the fact that the unit vector t is at 45** with respect to 

the unit vector P. However, the radiation which passes along the arm B 

of the interferometer is that transmitted by the beam divider:

JRjj(t) = cos(2-nyct + n (2.39)

where n is a unit vector normal to the wires of the grid, i.e.

perpendicular to the unit vector t. The roof top mirrors at the ends

of both arms act as rotators for the electric vector of the incident 

radiation. That is, the electric vector of the radiation reflected
Ofrom such a mirror will be rotated through 90 with respect to the 

incoming radiation. Therefore, the radiation reflected from arm A of 

the interferometer will be fully transmitted through the beam divider, 

and the radiation from arm B will be completely reflected from the 

beam divider. Thus both beams of the radiation will combine in the 

region X in the diagram, i.e. before reaching the polariser P2. Thus 

the: electric field at X is

JE(t) = ~cos(2mr/ct + ̂ a) t + ^  cos (2?̂ ;/ ct +S&) n ■ (2.40)

However, the unit vectors t and n are perpendicular to each other.

Therefore, the two partial beams do not yet interfere, so the 

polariser P2 is needed to produce interference. The polarising vector 

of the polariser P2 is given by

P = t ^  % (2.41)

Thus the electric field leaving the polariser P2 is

|E^|=£, P. = [cos(2 7î/̂ ct +5*) + cos(2-«>'ct +̂ a.)]
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= a cos(27ti/ct + D) cos (2.42)

where â. and are the phase shifts for radiation travelling along 

arms A and B respectively. D is the mean of and ^kand ^  is the 

difference between the delays of the two arms, i.e.

s,= 2*;/x

where x is the path difference. Thus the emergent intensity is

lp= <1EJ>= cos ~  (1 + cos A) . (2.43)

As one can see, the intensity depends on the path difference

between the two arms, i.e. an intcrferogram of a monochromatic line

will have a modulation of 1/2 of the input intensity on a background 

level of a^/4. One interesting phenomenon pointed out by Martin and

Puplett [1970] is that if one turns tlie polariser P2 through 90̂  ,

where tlie polarising vector changes to

P’ = - r  t  -  r n  ( 2 . 4 4 )^  /z
the electric field after the polariser will be

I Eel = ^  . P.* = [cOS(27ryct+^A)-COS(2"n.yct+^6)]

= -a sin(2 7rvct + D) sin (2.45)

Thus the emergent intensity is

Ip' = <IE^I> = sin (1 - cosA) (2.46)

So by switching the polarisation of the beam back and forth through 

90**, i.e. modulating the polarisation of the radiation, the output will

oscillate about a true zero level, that is, it will have no constant
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off-set. Thus

Ip - Ip/ = I cos zh (2.47)

This forms the basis of the technique of polarisation modulation which 

will be discussed later.

28



\'

5 —> Source
BecLTn D i v i d e r  

—^ D e i e c i o r  

M l —̂  Fixed Mirror  

M 2 . - ^ M o v i n j  Mirror

M2

<r
BD

I

7777777777T77 Ml

2.1 A schematic diagram of a Michelson interferometer.
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rig. 2.2 An illustration of the result of triangular apoclization.
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I’if. 2.3 Tlie Sliah function (a) and its Fourier transform (b).

(a) The negative spectrum (dashed line) overlaps the 
positive spectra (solid line).

(b) The resultant spectrum is the sum of all spectral components.

Fig. 2.4 An illustration of the aliasing effect.
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CHAPTER 3

DISPERSIVE FOURIER TRANSFORM SPECTROCOPY

3.1 INTRODUCTION

With conventional Fourier transform spectroscopy, the specimen 

under investigation is put in the entrance or in the exit port of the 

interferometer. This technique will produce no phase information in 

the resulting spectrum of the sample [i.e. only intensity or power 

versus frequency ], The phase spectrum must be obtained from the power 

spectrum by using the Kramers-Kronig analysis, but this method of 

getting the phase spectrum is approximate due to the incompleteness of 

the experiment data.

To overcome this problem, dispersive Fourier transform 

spectroscopy (DFTS) has been developed to produce simultaneous 

amplitude and phase spectra of the sample on a single scan. The main 

difference between this and the conventional technique is that one 

beam of the interferometer is modified by eitlier inserting tlie sample 

into the optical path, or by replacing a reference mirror with the 

sample. Hence, the dispersion in the refractive index of the sample 

will cause the interferogram to become asymmetric and sliifted in 

optical path difference. It follows from this that both tlie amplitude 

and phase spectra of the sample may be recovered from the recorded 

interferograms, and this will be shown later.

The object of the DFTS measurement is to extract the optical 

constants of a sample from its measured complex transmission or 

reflection spectrum. Due to the range of samples available, there are.
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essentially three basic dispersive techniques that have been used. 

These techniques are shown schematically in fig. 3.1 .

The configuration (a) is the simplest arrangement of the three, 

where the sample is just inserted into the optical path in the fixed 

arm of the interferometer. In this configuration the radiation passes 

through the sample twice, hence the name double-pass transmission 

measurement. If the sample is highly absorbing, then the single-pass 

configuration is better suited for the measurement. In this 

configuration the interferometer is arranged so that the radiation is 

offset by a certain amount from the axis, and the beam will only pass 

through the sample once [see (b)]. The advantage of this configuration 

is that the insertion loss measured is the square root of that 

measured in the double-pass configuration. So tliis gives us a factor 

of-/T advantage. The third configuration is for opaque samples, and it 

is essentially that the fixed mirror is replaced by the sample.

3.2< THE GENERAL THEORY OF DFTS

The term complex insertion loss was introduced by Chamberlain 

(1972) and is expressed as follows:

L(J/) = L(v) exp[i ̂  (i;)] (3.1)

where L(ix') is the complex insertion loss of the specimen, and 

this represents the complex factor by which the amplitude of a wave is 

modified when a specimen replaces vacuum or the reference mirror. The 

relationship between L(>') and the optical constants of the sample is
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different for different types of optical configuration. These 

relationships will be derived later in this chapter for the three 

optical configurations shown in fig. 3.1.

In order to understand the principles of DFTS [Birch and Parker 

1979], let us consider a Michelson interferometer with a specimen of 

complex insertion loss in one arm (fig. 3.2), say arm A, and a

moving mirror in the other arm. To simplify the calculations, we will 

only take the electric field component of the electromagnetic wave, 

and this propagating electric field is expressed as a Fourier integral

as

*£ = lE, (̂ 0 exp [27riv(z-ct) ] dv (3.2)

where "Q is the Fourier integral of the electric vector Ê (î ). If we 

consider the radiation beams propagated into each arm of the 

interferometer , and assume the system is symmetrical, then the output 

from thé moving mirror arm (e.g. arm B) will be

^b" |Eo(y) exp[2niy(z+x-ct)] dy (3.3)

where x/2 is the displacement of the moving mirror from the position 

of zero optical path difference. The factor of two arises because 

radiation travels through this displacement twice. Hence the output 

beam from the fixed arm is

E (V) exp [2-wi>'( (z-ct) ] dv (3.4)

This expression will only be right if the system is symmetrical, so 

when the specimen is inserted into the optical path, the expression
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will become

L (V) expi[2ny(z-ct) + ̂ C^)] dv (3.5)

From the principle of linear superposition, the resultant electric 

field at the detector will be the sum of these two outputs, i.e.

= 1 F,(v) I exp [2 n i (z+x-ct)+1, (v) exp i [27ri*'(z-ct) + M
J -  to

= 1 g(^,x) exp [2 71 i (z-ct) ] di/ (3.6)
l o .

where

g(y,x) = Ê  (ĵ) [L(>’)expi^(-^)+exp 2nivx] (3.7)

and x=2d.

The intensity of a wave is defined as

I = (3.8)

where * is the complex conjugate. Therefore the resultant beam 

intensity is

f“  * r ”° * ztg(^\x) f(v,x) d = e" (V) n_V) [l+t.M] dv (3.9)

.60
*

+ 2 IE (z/) E (̂*) cos [/('Ẑ) -2n/x ] ̂ *>
'“CO

Notice that the first term on the right of the equation is constant, 

and independent of x, but the second term is dependent upon x and is
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called the interference function. Then the interferogram which we are 

recording has the intensity function
r

I,(x) = 2 E, E^(V) L(y) cos (^(^) - 27rx//) d^  (3.10)

and this function can be expressed as the sum of even and odd parts

r
2 E (v) E^(v) L(a )̂ cos^(i^) cos (2 Tr/zx) div

(3.11)

+ ^ 2  E^(v) E^(v) L(x^) s i n ç ^ ( y )  sin(2•n>'x) ci//'

If we take ^^y) = 2 E;(f) E,(y) LCkO (3.12)

then equation (3.11) becomes

Ic(x) = j0(v) COS C 0 S [ 2 - n j / x ) d
.eo

Ĵ |0(î ) sin/(i^) sin(27T>'x) d

(3.13)

No\ÿ if we are taking the Fourier transform of this function by using 

sine and cosine transforms, then we liavc

p(v) = \I^(x) cos 2-nx^x dx = yO(;̂ ) cos ^(>^

• oO
(//) = ^I^(x) sin 27TJ/X dx = p M  sin ̂ (v)

From Fourier analysis the complex Fourier transform of the function 

I(x) is given as

FT [l(x)j = p(y) + iq(v)

(3.15)
^  (V) exp i ̂  (2/)
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so this has a modulus of

(̂ ) + (3.16)

and the phase is given as

^  = arc tan ( q(^0/p(^) ) (3.17)

From equation (3.12) we have the complex insertion loss related to the 

complex Fourier transform of the interferogram;

Î (x) exp 2ni^x dx = 2 F.̂ (j-») L(ĵ ) exp i /  (3.18)

Now if the specimen is removed from the interferometer, the output 

beams from the two arms will be expressed by equations 3.3 and 3.4. 

Then the intensity is recorded as

Iq (x) = Ĵ (>’)cos -2 TT̂ x) d (3.19)

Thbs is normally called the background interferogram, which is very 

similar to Eq. 3.10, but with

yo(î ) = 2 EJ^) E / ^ )  (3.20)

Then the Fourier transform of this interferogram is

I Ip(x) exp 2nivx dx = 2 Ê (;/) E^(v) (3.21)

From equations 3,18 and 3.21, the insertion loss L(-̂') can be

obtained as the ratio of the two complex Fourier transforms
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L(-t') = llj(x) exp 2^iyx dx / (x) exp I n i u ' x  dx
-C oo - C O

(3.22)

FT / FT [l,(x)]

Thus, we can calculate the complex insertion loss of the specimen 

from the recording of the specimen and background interferograms. It 

will be shown in the next section that the complex optical constants 

of the specimen can be determined by using the relationships between 

the insertion loss and the optical constants for each particular 

configuration.

3.3 COMPLEX REFRACTIVE INDEX

Maxwell’s equations for an electromagnetic field in a dielectric 

medium can be written as follows:

V  . D =

V . B = 0
~ (3.23)

V /N M = j + D

V A E - -B

where E is the electric field, li is the magnetic field, ^ is the

electric displacement, !B is the magnetic induction, |0 is the charge

density of the medium, and j is the current density. From Ohm’s law

the current density can be expressed as
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j = CTE (3.24)

where O' is the electrical conductivity of the medium.

For an isotropic medium, and JE are parallel. Thus

D = £E  (3.25)

where £. is the permittivity of the medium. Similarly, for the

magnetic properties of the medium, H can be expressed as

yA H = B (3.26)

where j à . is the permeability of the medium. Furthermore, if the medium 

is homogeneously electrically neutral, there will be no net charge,

i.e. yO =0. Tlien Maxwell's equations will become

' D = £ V  . E = 0 (3.27)

V * Ij = 0 (3.28)

V'" H = CTE + £E (3.29)

V a E = - y&H (3.30)

By taking the curl of equation 3.30 and using equation 3.29 we

can obtain the differential wave equation for the electric field in

this type of medium. This equation is given as

7. ., .V E = yuE E +A<rE^ (3.31)
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where E is the time derivative of F, and a similar expression holds 

for the magnetic field vector, but we shall consider the electric 

field only. We assume that the material is non-magnetic so that the 

magnetic field has no interaction with it.

Let us take the plane wave solution of equation 3.31 in the form

of

E = F, exp i(k.r - wt) (3.32)

where k̂ is the propagation wave vector, and w is the angular 

frequency.

If we take a simple example of a wave travelling in the positive 

X direction, the electric field vector will become

E = Ep exp i[kx-wt] (3.33)

and substituting into the wave equation 3.31 , wo have

aE _  , àE ^ ,3E
^  7 F  (3.34)

so that

T. 1 i c r
K = w ̂ ^( C + --- ) (3.35)CO

If we compare this equation with the situation for non-conducting 

media (i.e. (O' = 0), where it has the form

= w ^ C  (3.36)
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where C  in this case is real, then the dielectric constant can be 

expressed as a complex number, i.e.

2 = + i ~  (3.37)
lO

lienee k= = — 77- (3,38)
uJ

V

where V is the phase velocity of the wave front in the medium, i.e. 

the speed of light in the medium.

The general definition of the refractive index is the ratio of 

the speed of light in free space to the speed when travelling through 

a medium, thus, the refractive index is

 ̂ c  c KN(w) = --  = — - K =

2.
N(w) = [ -Z—  ( (3.39)

= n+ ik (3.40)

where n and k are the real and imaginary parts of the refractive 

index, respectively. If we introduce the symbols E, , and yX, to 

represent the relative permeability and relative permittivity of the 

medium, respectively, then the equation will become

i e r  K
N(w) = n+ ik = 4 +  ] (3.41)to to

Since we have assumed that the medium is non-magnetic, that is to say 

= 1, then the refractive index is
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ier %.N(W) = ( £ , + _ )  (3.42)
to £»

and the complex refractive index can also be written as

t  = (N)’’ (3.43)

where L  is the complex dielectric function of the medium, and is 

expressed as follows:

/ //where £. and £ are the real and imaginary parts of the dielectric 

constant, respectively.

Another useful parameter is the absorption coefficient of the 

medium. If we subsitute equation (3.39) and equation (3.40) into the 

equation for the plane wave, then we have
'■5

E = E^exp (- —  k.r) exp iw[ ~  k.r -wt ] (3.45)

A
where k is a unit vector in the direction of propagation.

This expression represents a plane wave with a velocity c/n which 

has an amplitude damped exponentially by the term

UlJ  ^
exp (— 2" k.r) (3.46)

*
The intensity I is proportional to the product of E and E . Thus

%I oc E . E
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and Ig= Eg

1 = I* exp - K(k.r) (3.47)

which is usually called Lambert’s Law. Since

X  " " exp(- ~  k.r) (3.48)

2. kfcJ
then OL = — 2 " " 4«yk (3.49)

is called the power absorption coefficient per unit length of the 

medium.

A summary of the relationships between the complex refractive index 

and the complex dielectric constant is given below :

a ' = 2. 
n - k

1/
£ = 2nk

n^ = # (&T ]

k*" = (zT + ( t f  ]

and (3.50)

OC = 4 rr J /  k
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3.4 FRESNEL’S EQUATIONS

Fresnel’s equations [ Born and Wolf 1970 ] express the

relationships between the amplitude attenuation and phase shift of an 

electromagnetic wave passing through an interface between two 

different media and the optical constants of the two media. In general 

the equations assume that the complex optical constants for the two 

media are n, and n̂ . , respectively,

rĵ = (n̂  cos - n^cos ̂ J/(n, cos <9. + n^cos )

r,, = (n, cos n^cos ̂ ,)/ (n, cos ̂  + n^cos ^  )

tjL = 2 n,cos ($*, / (njcos + n^cos ^  ) (3.51)
/> - A  g' , . A A. At,j = 2  n, cos 6», / (n, cos 6»̂ + n^cos

Notice that the equations given above are complex, and r is the

amplitude reflection coefficient and t is the amplitude transmission 

coefficient of the incident wave. Each reflection and transmission has 

been separated into two components where -i- represents perpendicular to
^  Aand II represents parallel to the plane of incidence, where O, and

are the complex angles of incidence for media 1 and 2 respectively. In

most of our experiments the incident beam is arranged to be normal to 

the plane of the interface of the media, so that and ^  equal zero. 

Tlius we have

/Vr, = r., =X - ‘II - ("■ - "x W(n, + )
(3.52)
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The subscript order indicates that incidence is from medium 1 into 

medium 2. Thus if we reverse the beam, i.e. the ray travels from 

medium 2 to medium 1, then we have

A  A  A  /V. A  A- n, )/(n, + n^ ) = -r,̂

(3.53)
A  _ A  , A. A  A.til = 2 n^/ (n, + n^ ) = ^  t,̂

For transmission measurements, the samples are usually made as 

lamellar crystals, and this introduces the phenomenon of multiple

reflections from the two interface planes. In order to obtain tlie 

relationship between and the optical constants of the specimen,

one has to understand this problem of multiple reflections.

Now, suppose that a plane parallel specimen of refractive index n^ 

is placed in a medium of refractive index n,. In our measurements the 

medium is vacuum, i.e. U|= 1. If a ray of light is incident onto this 

specimen, it will suffer multiple internal reflections at the two 

interfaces, as shown in fig. 3.3.

The total transmission of the ray is given by the infinite sums 

of all these partial waves. Therefore the complex amplitude
A

transmission coefficient T is given by

¥
T = t,̂ a2.t'i,+ t̂ a2.r,,f̂ ,4. t,^a^r^t^,+........ (3.54)

Aand R is

A A A  AR — r,̂ + t|j_ârĵj t̂ |+ t,^a^r^^. . . .  (3.55)
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where a^is the complex attenuation of the specimen, and is given by

a^ = exp(- x)exp(i2^nyx) (3.56)

witli oC = 4iTDk as the power absorption coefficient, and x is the 

distance travelled. The expressions for T and R can be simplified as 

shown by Bell [1972]

T = a^(l-rv^)/(l-Ê.,' )

R = )/(!-

(3.57)

3.5 RELATIONSHIPS BETWEEN OPTICAL CONSTANTS AND INSERTION LOSS EOR DFTS

(a) Reflection measurements

If the specimen under observation has a very large absorption 

coefficient in the measured spectral range, a transmission experiment 

is impossible, so one has to use a reflection measurement. In this

type of measurement a tliick specimen is chosen, with the front surface

polished optically flat,

A background interferogram, I^(x) is first recorded with the

reference mirror, tlien this mirror is removed and replaced with the

specimen in the same plane as the reference mirror.

Let us take the amplitude reflectivity of the mirror as

r^(y) = exp i n  ■ (3.58)
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Since the specimen is of a strongly absorbing material, only the first 

term of the reflection is considered, Tlius the reflectivity for the 

specimen is given as

f = r(v)exp i (3.59)

The phase delay of the specimen is in the range of Tt ^  ̂ (^) 2 A .

The grand maxima of the two interferograms (x) and (x) are 

recorded at nearly the same position of the moving mirror. Therefore, 

both interferograms can be recorded from the same starting point. This 

point will be used as the reference point for the phase spectrum and 

so no further information is then required. Thus the insertion loss is 

given by :

L(i/) = r(î ) exp i [ j 4 M “ '̂ 3 (3.60)

and from equation 3.52 , the complex refractive index can be

calculated from the inversion of the Fresnel equation. This equation 

is given below:

n(^) = [ 1 - r(x) ]/[ 1 + f(>') ] (3.61)

b) Measurement of a_ thick transparent specimen using single pass 

arrangement

The calculation of the insertion loss for this configuration will 

be simplified by recording the interferogram I (x) with wings of equal
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optical path length x, symmetric about the position of zero optical 

path difference (see fig. 3.4). The value of x is normally chosen to 

be sufficiently large to resolve all features in the specimen 

spectrum.

In the standard procedure, the sampling point nearest to the zero 

crossing at the centre of the interferogram is used to balance and 

apodize the interferogram. In dispersive measurements, this point is 

also used as the reference point for calculating the phase spectrum of 

the specimen. The specimen is now inserted into the fixed arm of the 

interferometer and let us assume that the specimen has a mean 

refractive index of n (assuming that the dispersion in n is small). If 

the specimen is thick enough, the signatures associated with the 

higher order transmitted waves will be well separated on the 

recording. Thus, the first main signature will be displaced by 

(n-l)d, from the centre point of the back-ground interferogram. The 

higher order ones will be at (3n-l)d, (5n-l)d, etc, where dis the

thickness of the sample.

In practice, the optical constants can be determined from the 

first order interferogram. The experimental procedure for this is to 

record the sample interferogram by shifting the starting point of the 

recording by an amount 2B, and scanning the interferogram over an 

optical path difference of 2x. Tlie value for the shift of starting 

point is chosen by this equation:

2B Z: (n-l)d

The reason for this is to allow the zero crossing point for the 

specimen interferogram to nearly coincide with the background zero 

crossing point, and the same levelling and apodization are used as for 

the background interferogram.
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Due to the thickness of the sample, only the first order 

transmitted partial wave will be recorded and the relevant complex 

transmission coefficient of the specimen will be only the first term 

of the equation (3.54).

t(î ) = t(y) exp[ i^(>^)]
(3.62)

 ̂^ - exp [ 2 i7rj/'n(-«̂) d]
[/ + n cv;]

The insertion loss can be determined from the complex ratio

L(v) = L(/) expi^M = FT[I^(x)]/ FT[I„(x)] (3.63)

of the complex transforms of the interferograms. Notice that this is 

not the true complex insertion loss because of the shift in the 

starting points. So the complex insertion loss will include the term 

4-rtyB in the phase spectrum, i.e.

-A /
L(^Q = L(^) exp( ij{(^) + 4*^8) (3.64)

so that we have the insertion loss in terms of the experimentally 

determined quantities. Thus the optical constants can be calculated by 

using the relationship between complex transmission and insertion 

loss. Thus

L(î ) = T(>̂ ) exp (-i2 7t>̂ d)

(3.65)

-  ------- "T exp(i n(v) - 1 ]d)
\ j - t - A (V)]

The factor (n(v)-l)d follows from the fact that the optical path
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length is increased by replacing the vacuum with the specimen in the 

interferometer.

If k(>^)« n(v), which is normally the case if one can perform the 

experiment, then the equation can be simplified as

n(y) = 1 + + 2m tc]

J   r \ 1
° i-wJ

(3.66)

SO that n(î ) and k M  can be calculated in separated equations. Notice 

that the term + 2m 7t is introduced to ensure continuity in the true 

value of the phase difference because the computed value is plotted in 

the range of frx*

c) Single-pass measurement on â thin absorbing specimen

If the specimen is of an absorbing nature, the measurement will 

be done by using the reflection type of arrangement. However, if it is 

possible for a transmission measurement to be performed on a carefully 

thinned specimen, then the single-pass transmission measurement is 

better than an amplitude reflection measurement because the phase 

change of the reflection will be close to tt , the value

for the reference mirror. In case of the single-pass measurement, the 

phase change

2 7ry[ n M  - 1 ] d (3.67)

is normally much larger and more easily measured. Since the specimen
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is very thin, the signatures associated with all the partial waves 

described by equation 3.54 will overlap on the interferogram. Thus, 

the full geometric series will apply. From equations 3.57 and 3.52, 

the complex insertion loss will be expressed as

4n(î ) exp 2 7T i (n(ĵ )-1) d
L(v) =  ----- ^        (3.68)

(l-fn(>')) l-[(l-n(^))/(l+n(^))] exp

where n( X ) is the complex refractive index, and this complex 

insertion loss can be related to T(>') by equations 3.63 and 3.64, 

Since the measurements are done close to the reststrahlcn band, where 

the dispersion in the refractive index is large, there are many 

branches in the phase spectrum, and this makes it difficult to trace 

the phase to zero frequency. Hence, some other information like an 

amplitude reflection measurement is needed to ensure the phase 

continuity at low frequencies.

Since the equation for L(y ) cannot be solved analytically for 

the complex refractive index, it must be solved numerically at each 

frequency using a method such as a complex secant method, an iterative 

procedure described by Conte and de Boor [1972], This method needs an 

initial estimate of n at some point on the spectrum, and starting 

values for n at the first spectral point above and below the 

reststrahlen band can be obtained from equation 3.68, or from 

supplementary amplitude reflection measurements. Tlie final values for 

n at these points are used as the starting values at the adjacent 

spectral points, and the process continues until n(j/ ) and k(>^) have 

been determined within the experimental uncertainty throughout the 

spectrum.
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CHAPTER 4 

LEAST-SQUARES METHOD

The least-squares method was first proposed by Davies [1973]. 

Tlie idea behind this is that the electromagnetic field expansions 

are broken up into many regions around the radiation scatterer (in 

this case the wire grid ). The advantage of this procedure is that 

many sets of functions which satisfy Maxwell's equations are known 

and some properties may only be desirable in one region and not in the 

next. Thus each region can be described independently and the problem 

is therefore reduced to that of satisfying the boundary conditions 

over the interfaces of the regions.

If we take the. region u, the electric and magnetic fields can be 

expanded in series of the form:

. r  = ^  c:

(4.1)

where each pair of vector fields f ,g must satisfy Maxwell's equations 

over the entire u region. In practice, the expansions are finite and 

will not satisfy the continuity conditions on the interface between 

the neighbouring regions exactly. Thus there will be some mismatch in 

the electric and magnetic fields across the interface. So some method 

has to be used to choose the coefficient c for each region to reduce 

this mismatch to zero within some approximation.

The method used by Davies is to take the expression for the 

average mismatch over the boundaries, and defined as

Z -  (c \ l L  -  zlütl - u L  r  ) WCc) ds (4.2)
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where Ŝ A. is the intersection of the boundaries of regions u and v, 

and the subscript "tan” indicates the component parallel to the 

interface. U'(r) is the weighting function which allows different 

boundaries to be weighted differently. Normally the value is equal to 

unity. The value Z is the positive impedance which gives the relative 

magnitude of the magnetic contribution to this mismatch. Because the 

field expansions in each region are solutions of Maxwell’s equations, 

the normal component of the electric and magnetic fields will satisfy 

the boundary conditions if the tangential components are matched 

[Jones 1964]. Unfortunately, the method gives only an approximate 

matching of tangential components, and it seems that the normal 

component may not satisfy the boundary conditions to the same degree 

of approximation. Therefore, a mismatch for the normal component is 

added. The definition for such a mismatch is given below:

h  f CR'Sl - Z -yill f) lV{r) ds (4.3)

where £**and E^are the relative electric permittivities of the medium 

in tlie regions u and v , respectively. Similarlyand are the 

relative magnetic permeabilities. The subscript J- indicates the 

component normal to the interface.

In order to understand the problem of wire gratings, we take a 

wire grid which is assumed to be made of material of linear 

homogeneous permeability p  equal to the free space value of . The 

electric permittivity £ is equal to N%, where N is the refractive 

index of the material and £„ is the permittivity of free space. All 

the wires in the wire grid have a radius of a , and spacing of d, and 

we assume that they have an infinite length (see fig. 4.1).
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Let a monochromatic plane wave of angular frequency w be incident 

onto this plane wire grating of infinite extent. Assume the wave- 

vector k for this wave has the form (ky,k^,0). So now the problem 

becomes a two dimensional scattering problem, and can be expressed by 

two separate scalar expressions of electric field R and magnetic field 

H parallel to the axis of the invariance. This is only true if they 

are not coupled by the boundary conditions, as is true in this case.

Take the case of ’’E-polarisation” , i.e. R parallel to the axis 

of the wires, then we can write the electric field as:

E = R z (4.4)

where z is tlie unit vector along the z-axis and the scalar H is the 

value which satisfies the two-dimensional Helmholtz equation. By 

taking the Maxwell curl equation ( equ 3.30) and assuming the wave 

has a harmonic time variation of exp(iwt), then we have

ari
T T  '

= V A E z (4.5)1
AH = z A V E

Similarly for the case of ”H-polarisation” we can write the

magnetic field as

H = H z (4.6)

Again if we take the Maxwell curl, we then have

^ at  ̂ ^ ^ II
i EkJE = V a H z  (4.7)

i£ioE - ^/'V^
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Since the grating is of a periodic structure, we can therefore

divide it into unit cells which extend over all values of y, and from

-d/2 to d/2 in the x-direction. So the expansions for this region do

not depend on the z-axis, and are periodic in the x-direction, i.e.

E(x+d,y) = exp(-ik*d) E(x,y)

(4.8)

H(x-s-d,y) = exp(-ik^d) H(x,y)

The unit cell is further divided into four regions by the circular

boundary of the wire and the lines y=±. Y (see fig.4,2).

Before we can express the electric and magnetic fields in these

four regions, we first have a close look at the solutions of the

Helmholtz equation in the two coordinate systems:

(a) in Cartesian coordinates (x,y,z) the Helmholtz equation is

^  ^  \ c f  = 0  , (4.9)

then the general solution is in the form of

Y  = exp(iiĉ x) exp(ii^y) expi( )̂  z (4.10)

(b) in cylindrical coordinates the Helmholtz equation is in the form

then the general solution is 

/  = [ Ĵ ŷ (Vk-f r)+Ÿ̂ (i/k-'6' r)]expf(irz) expi(im^) (4.12)
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where are Bessel functions of order m of the first and second

kind respectively.

For the case of H-polarisation, and for y>Y, i.e. the field 

after the wave has passed through the wire grid, from equ(4.7) we 

have

a
X = a/

(4.13)

and H is the solution of the Helmholtz equation [equ(4.10)], and is in 

the form of

ZgH = ^  l^exp(-ig^x -i/Ĉ lyl ) (4.14)
X=-L

ztXwhere

Xx= k - «2
Mo

2.= l-r)

From equ(4.13) we have the electric field expansions as

^  [ bgexp(-ie%x -iX^[y| )

E.̂  = 2_  " exp(-i ^  X -iX^\yl )

(4.15)

-u

Z. %  L
where k = k* + k.

Similarly

E y = exp(-i X -iX^lyl ) (4.16)
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Assuming that the incident wave originated at y=- Aa , then the field 

in the region of y <-Y will be expressed as

u
= exp(-k*x -ikyy) + ^  a^ exp(-i x -i)̂ (y| ) (4.17)

and using the same procedure as before we will obtain the electric 

field in x and y components as

ky X j
—  exp(-ik^<-iky y) + — exp(-i cĉ x̂ -ixjyl )

(4.18)
kv ,  .........Ey = exp(-ikxX-iky y) + exp(-i x -î l̂yl )

where the extra term exp( -ikĵ x -ik^y) represents the incident wave, 

with wave vector of (kx,ky,0).

In the region of lyl4.Y, the fields are expanded in the solution 

of the Helmholtz equation appropriate to the geometry of the cylinder, 

i.e. in terms of the cylindrical coordinate system. From the solution 

of'i this Helmholtz equation [equ(4.12)], the electric and magnetic 

fields inside the boundary of the wire can be written as:

Z,H = A^J^(Nkr) exp(im /  ) (4.19)
= - H

and where

1 ^ H

w C r  ^  (4.20)
H ^

= /  — r—  Jŷ (Nkr) exp(im^)
N'kr

and

1 3 HE V =---- - ----
^ wEr Gr (4.21)
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M
^ -T%T J^(Nkr) expCim/)

-M

where J,̂  is the Bessel function of order m of the first kind, and as 

usual the prime on indicates the derivative of that function. 

Notice that tlie function in equ (4,12) does not enter the

expression, because of being singular at the centre of the wire, but 

it will be included in the field expression for outside the wire.

By using a process similar to that used above, we can obtain the 

electric and magnetic fields outside the cylinder as

Z,H = [EWwv(kr) +C*%A(kr)] exp(im^) (4.22)

and
M

Er = / ■}:f[B.A(kr) + C*Y*(kr)] exp(imp)
^  ' (4.23)

. - I  /
E^ = ^  “7^ [B^̂ J^(kr) + C^Y^(kr)] exp(im/)

The expressions given above will allow the boundary conditions at 

the surface of the cylinder to be satisfied exactly. Thus, for the 

continuity of the tangential components, we have

= Z y " ’ " "  (4.25)

and

(4.26)

From equ(4.19) and equ(4.22), we obtain

A„J„(N'ka) = B^J„(ka) * C„Y„(ka) (4.27)
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and from equ(4.21) and equ(4.24), we have

A^J^(Nka) = B^JJ(ka) + C^Y; (ka) (4.28)

By using the IVronskian relation for the Bessel function [Abramowitz 

1965] the coefficients and can be expressed in terms of , 

i.e.

^  [Ĵ v̂ CNka) Y J^(ka) -  Jj^^CNka) Y_(ka)]
(4.29)

^  [ijJ'CNka) J^(ka) - J..,(Nka) Ĵ (̂ka)) A.,

If we consider that the wires are made of perfectly conducting 

material, then the electric field inside the wire will become zero, so 

at the boundary conditions of

oKnîôe
E ̂  = 0  at r = a (4.30)

then the equ(4,24) becomes zero at r=a, and so we have

B«^:(ka) + C„YJi(ka) = 0 , (4.31)
'••I

so

C ^ = ---- ^ (4.32)
J*(ka)

YA(ka)
Thus, for a perfect conductor the expressions for the coefficients arc 

very much simpler.

For the case of "E-polarisation" the electric field is expanded 

in series identical to those of Z^H, and so similarly we will have the 

expressions

[ J^(Nka) Ŷ (̂ka) - N J.;(Nka) YJka)] A^

(4.33)
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c„. = [ N U(Nka) J„(ka) - J^(Nka) YĴ (ka)]

for the coefficients.

For perfectly conducting wire, the electric field again is enual 

to zero at r=a. Thus the expression similar to Ẑ,!! will become zero 

at r=a, tlien we have

Brt\ ’J>v\(ka) + Yŷ (ka) = 0

(4.34)
d>vt(ka)

=  -   -

Vk\'

From the above expressions, there is only one unknown in the 

region near the wire, i.e. (or in the case of perfectly

conducting wire) . Due to the periodicity of tlie grating, tlie near 

field expressions can be simply extended beyond the unit cell in a 

continous condition, i.e.

H (d/2,y) = exp(-ikxd) H (-d/2,y)

(4.35)
£ (d/2,y) = exp(-ik*d) E (-d/2,y)

Now the electric and magnetic fields in all the regions 

have been expressed in series. Thus, we only have to match the 

boundary conditions as follows

1) to match the nearfield and plane wave expressions on y=Y in the

unit cell.

2) to match the near field and plane wave expressions on y=-Y,

3) to match the near field at the neighbouring unit cell along

x=d/2.
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The full mismatch expression becomes

r , I I I Plant |2\ (|E - E I + Z |h - H I) W(x,y) dx
J f Y

y y '-Y
( I f'" - ( h  z \ i r ^  .  WCx.-Y) dx (4.36)

- 4 , - y

rY
I , ^ea.\r n-exv

+ I (|E (d/2) - exp(-ik d) E (d/2)j
-Y

+  z'
Keay »4Cftr .2-

H (d/2)- exp(-ik d) H (d/2)\ ) V/(d/2,y) dy

The impedance Z will be set to Ẑ , the impedance for free space, and 

the weighting function is set to unity for all integrals.

In general the integrals above are evaluated numerically 

[Eeunen 1976 ]. Then the coefficients â  ̂, b^ , and can be

obtained from the solutions of these integrals. Tlius, the power 

reflection and transmission coefficients can be calculated by using 

the formulae

V- ,x Xx.

(4.37)

T = Î tl

where R and T are the reflection and transmission coefficients, 

respectively.
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rig. 4-./ Schematic diagram of a wire grid with infinite length,

y= +Y

- Y

Fig. 4.2 A diagram showing a section normal to the wire grid.
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CHAPTER 5 

THE INTERFEROMETERS

5.1 THE BASIC DESIGN OF THE INTERFEROMETERS

The design of the transmission and reflection instruments is 

based upon the modular unit developed by the National Physical 

Laboratory and produced by Grubb Parsons  ̂Co. Ltd. [ Chantry 1971], 

and both instruments are of the Michelson type of interferometer. A 

large number of additional compatible units which are not commercially 

available have been designed and made here at Westfield to enable the 

use of the interferometer to be extended to more specialised work.

The configuration of the transmission instrument is illustrated 

in fig.5.1 [Parker et al 1978]. The heart of the instrument is the 

central cube, which is a commercial unit, witli the beam divider held 

vertically along its diagonal. The four vertical side faces of the 

cube are used to bolt on extension arms. These arms are used to house 

the radiation source, the fixed mirror, moving mirror, sample holder, 

lens, and detector etc.

A commercial quartz encapsulated mercury lamp is used as the 

radiation source, which emits a broad band of submillimetre wave 

radiation by thermal emission. The lamp is placed in a water cooled 

housing because of its high working temperature. This lamp is also 

enclosed in a copper cylinder, with a hole of diameter 8mm centred on 

the optical axis of the instrument to limit the aperture,

A collimator (B) is employed to direct the radiation emitted from 

the lamp to be incident upon the beam divider in the centre cube. The 

purpose of the beam divider is to direct two partial beams into the
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two mirror arms by transmission and reflection. The special 

arrangement of these two mirror arms ensures that the return beams are 

off axis by employing two sets of roof-top mirrors instead of 

conventional plane mirrors. This novel design is to enable the 

radiation beam to pass through the sample once only, and also, by 

changing a few components, it enables the instrument to be used as a 

polarising interferometer, as described later in this chapter.

The movable roof-top mirror in one arm is mounted on the non

rotating spindle of a precision made micrometer which has a maximum 

travel of 25 mm and is driven by an electrically powered stepping 

motor. The control electronics of this motor allows the mirror to move 

in either direction in step lengths of 2.5, 5, 7,5, and lOjom. From

Chapter 2 it follows that tliese step lengths give corresponding 

aliasing frequencies of 1000, 500, 333, and 250 cm ' respectively. The

roof-top mirror in the fixed arm is clamped, but a facility is 

provided for aligning it by a system of three aligning screws, and an 

adjusting screw is also provided to rotate the mirror about the 

optical axis. In addition to these, a facility is provided in the 

movable mirror arm to slide the mirror up and down perpendicular to 

the optical axis.

Following reflection by these two mirrors, the beams are incident 

back onto the beam divider with an off set of 25.4 mm. The radiation 

beam from the fixed arm passes through the sample if the sample is 

inserted into the optical path. The sample holder is mounted under a 

liquid nitrogen cooled cylinder. After transmission and reflection by 

the beam divider the two beams recombine and interfere according to 

the difference in the optical paths in the two mirror arms, and the 

dispersion of the sample, Tlie recombined beam then passes through an
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optical focusing system which consists of either a lens or condensing 

mirrors. This enables the radiation beam to be focused onto the window 

of a Golay detector or a liquid helium cooled bolometer.

The design of the reflection instrument [Parker et al 1978b] is 

similar to that of the transmission instrument,but with a liquid 

helium cooled cryostat in the fixed arm to bring the specimen to the 

operating temperature of about 7k. The configuration of the 

interferometer is illustrated in fig 5.2. A large part of the 

instrument , such as the lamp housing, collimator, central cube etc, 

is the same as the components used in the transmission instrument 

described earlier.

The radiation from the lamp, S passes through the collimator, C, 

and then through a 1mm thick black polythylene filter, B. The purpose 

of the filter is to reduce the amount of unwanted radiation reaching 

the cryostat, thus increasing the holding time of the cryostat. The 

reflected beam from the mylar beam divider is propagated througli a 

1.5mm thick white polythylene window, Wl, acting as a vacuum window, 

and to a mirror. Ml, inclined at 45® to tlie beam from which it is 

reflected vertically upwards onto the specimen, mounted under the base 

of the cryostat. Tlie mirror Ml is made by aluminising the front 

surface of the mylar beam divider of a second central cube unit. The 

beam initially transmitted by the beam divider passes through a 

compensating window, W2 ,identical to Wl, onto a mirror, M2, acting as 

the vibrating mirror for the phase modulation system. The beam is then 

diverted through 90® onto the moving mirror, M, from which it is 

reflected back to the beam divider. The partial beams from the two 

arms are then recombined at the beam divider and focused by a 

polyethylene lens doublet', L, onto a Golay detector, D. The window Wl
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is used to separate the low and high vacuum systems. The cube unit on

one side of the window, Wl, together with the cryostat, can be
—  6

evacuated to a pressure of 10 torr to permit the specimen to be 

cooled to liquid helium temperature. However, the remainder of the 

instrument on the other side of the window need only be evacuated to a
-Zpressure of 10 torr to eliminate atmospheric absorption.

The design of the liquid helium cryostat is illustrated in fig 

5.3. The thermally insulating nylon bolts, N, are used to fix the base 

plates, B1 and B2, of the liquid nitrogen and liquid helium cans, 

respectively, in position. The base plates are held rigidly in 

position in a metal reference plate, R, and the specimen, X, is 

mounted close to, and in good thermal contact with the liquid helium 

can base, B2* Flexible stainless steel bellows, B, are welded into the 

filler tubes of the liquid nitrogen and liquid helium cans to 

accommodate the thermal contraction. As the specimen cools down, its 

front reflecting surface moves vertically as the nylon bolt contracts, 

but the motion is mainly in the vertical direction, hence, the

misalignment is very small. The specimen then remains fixed in

position as long as there is liquid in the two cans. The continuous 

expansion in the length of the liquid helium and liquid nitrogen cans 

which occurs as the liquids boil off is accommodated by the bellows, 

and does not affect the position of the specimen.

The sample mount is bolted to the base plate, B2, of the liquid 

helium can as a complete unit. The unit is designed with a rotating 

screen operated by two electrically powered solenoids [Parker and 

Lowndes 1979]. The surface of the specimen crystal is aluminised in

the pattern shown in fig. 5.4, and aligned with the screen, which has

a similar cut-out pattern. The purpose of the screen is to expose
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eitlier the unmetallised crystal surface or the aluminised part of the 

surface to the incident radiation, and it is programmed to be operated 

in eitlier

1) Conventional mode; the complete interfcrograms arc recorded first 

from the aluminised surface and then from tlie exposed crystal 

surface in separate scans of the moving mirror.

2) Switching mode; two interfcrograms are alternately samjiled at eacli 

step on a single scan of the moving mirror.

The operation in the switching mode is to reduce the error of x 

between the location of the position of zero path difference of the 

reference and the crystal surfaces, i.e. a reduction of tlie phase 

error in the results.

5.2 PERFORMANCE OF THE INTERFEROMETERS

There arc a number of factors which will affect the performance 

of the interferometers described above.

1) Detectors

The standard detector used for these two interferometers is a 

Golay cell. The advantages of such detectors are their convenient 

size, ease of operation, and room temperature operation. The 

performance of this type of detector is perfectly adequate for most TR 

applications. By choosing the window materials wisely one can study 

different regions of the IR spectrum with adenuate signal to noise
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ratio. Two most commonly used in IR work are diamond and quartz window 

Golay cells. The diamond Golay can respond up to and beyond the 

frequency of 10,000 cm , and the cheaper quartz Golay has a high 

frequency cut-off at about 250 cm

Due to the form of the black-body radiation curve, the radiation 

emitted below about 30 cm ̂ is extremely weak. At this point the Golay 

cell may not be good enough in some applications. To overcome this 

problem one usually uses a liquid helium cooled detector. The 

performance of the detector is described in terms of Noise Equivalent 

Power (NEP). The NEP for a typical liquid helium cooled detector is of 

the order of 1000 times better than that of a Golay in similar 

experimental conditions.

The helium cooled detector used with the above instruments is an 

antimony (Sb) doped germanium (Ge) thermal bolometer manufactured by 

QMC Industrial Research Limited. This detector has a working range of 

2-250 cm ' if a sapphire window is fitted, and is only used for the 

low frequency range where the performance of a Golay is inadequate, 

because of the big disadvantage of the need for cryogenic facilities.

2) Modulation Systems

Another source of noise in the interferometer is lamp 

fluctuations. To reduce this the radiation is modulated before 

reaching the detector, and the recording electronics only measures the 

signal which lies within a small bandwidth around the modulating 

frequency. This effect will be described in detail later.

The need of such modulation systems is due to the large amount of 

far IR radiation emitted by the warm walls of the interferometer and
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other materials in the field of view of the detector. Due to the large 

acceptance angle of the Golay detector ( 60°), the modulation must be 

made far back along the optical system in order to reduce the 

influence of the extraneous sources.

The most simple type of modulation method is amplitude modulation 

(AM). In the Grubb Parsons system this is done by installing a 

cylindrical chopper around the lamp. However, this type of modulation 

system produces a large DC background load at the detector. The drift 

and noise of the DC level of the interferogram is often

disadvantageous when accurate results are required. Another 

disadvantage of this AM system is that 50% of the lamp energy, or 

more, is lost. The main advantage is that it is frequency independent, 

and does not impose any response envelope on the throughput of the 

instrument as does the phase modulation system described next.

The next form of modulation system is that of phase modulation. 

In this system , the path difference is modulated by a small periodic 

displacement of one of the interferometer mirrors. To enable one to 

understand the operation of such system , let us take the modulation 

function as

F(ft) = A sin (27cft) (5.1)

where A is the amplitude of vibration of the mirror. Tlie time-

dependent signal from the detector is a modified form of equation 2.7.

S(x,t) 2: P(v) cos[ 2irz/(x + A sin (2 Tr ft) ) ] (5,2)

The time dependent parts in this function are very complicated and the 

coefficients of their Fourier components are Bessel functions. But the 

pass band of the electronics may be arranged so as to include only the
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first order, so that the resulting interferogram has the form

I(x) - P(v) J. (2rr>̂ A) sin(2rrj/x) d (5.3)

Thus the throughput spectrum of the interferometer lias a Bessel 

function envelope imposed on it. The function J, (2-nyA) has its zeros

at ^  =0 and at a frequency given by 2^yA=3.84 , From this envelope,

one can see that the main disadvantage of PM is the fall-off on the 

low frequency side of the throughput spectrum.

Tlie modulation reaches 100% in the region of the maximum of the 

Bessel function, which is a large improvement over the AM system of 

about 50%, The large DC level of the AM system is no longer modulated 

in the PM mode, hence the drift problems arc eliminated and the noise 

due to the lamp source fluctuation is also reduced. Tlie Bessel 

function maximises and minimises at frequencies dependent on the

amplitude of the vibrating mirror. Therefore, one can adjust the

amplitude of this vibration by altering the power output of the

oscillator unit to maximize the response in a specific spectral 

region. So in effect this acts like a non-absorbing filter for the 

throughput spectrum.

The third modulating system is polarisation modulation for the

polarising interferometer. During the measurement, the transmission 

instrument described earlier has been modified by replacing the mylar 

beam divider with a free standing wire grid, and a polariser and an 

analyser have also been placed in the inlet and outlet ports of the

interferometer. So the arrangement of this instrument becomes the

Martin Puplett type [Martin Ç Puplett 1970], If instead of having a 

fixed polarizer, we mounted the polarizer on a rotating cylinder (fig. 

5.5), then, when the radiation passes through this rotating polarizer.
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its electric vector will be rotated with the polarizer. The output of

the modulation system is very similar to that of AM, with symmetrical

interferograms, but with the large DC level removed. So this system 

has the advantage of PM, but without the Bessel function envelope, 

i.e. the throughput of this system has a nearly flat response up to

the cut off frequency of the polarizer where its polarising effect is

lost. The only disadvantage is that it can only work in a polarising 

interferometer, so it is only used in the low frequency region.

3) Beam Dividers

The conventional beam dividers are made of mylar and are 

stretched on a metal frame, which is placed in the central cube of the 

interferometer. Since this thin mylar film is paralled sided, and the 

phenomenon of multiple internal reflection occurs, we have to include 

all these beams produced by the internal reflection in the analysis. 

By taking the refractive index of mylar to be 1.85, and assuming it to 

be :a non-absorbing material, Bell[ 1972 ] has shown that for a beam of 

unpolarised radiation incident upon a mylar thin film, the primary 

transmitted beam is about 83% of the incident flux, the secondary 

transmitted beam is only 0.7%, and so is negligible. But the primary 

reflected beam is 8.9%, and 7.4% for the secondary reflection, and 

the third order reflection is only 0.07%. From these data, one can see 

that only the two primary beams and the secondary reflecting beam are 

significant.

Notice that the magnitudes of the two reflected partial beams are 

nearly equal, therefore interference exists between them, and this 

occurs upon each reflection by the beam divider. The phase shifts for
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the internal and external reflection by the beam divider are zero and

respectively. If we take D as the thickness of the mylar film and

n as the refractive index,then from Bell [1972] the interference 

conditions for these two reflected components are Riven by

m X. = 2 d ( n^- 1/2 (5.4)

When m=l, 2, 3 .... the interference is destructive, but for m=l/2, 

3/2, 5/2 .... tlie interference is constructive. The first minimum is

at ^  =1/a- = 0, which is very obvious because then one beam has a 

phase of A respect to the other. next minima are when m=l, 2 etc. 

Thus the efficiency of the beam divider depends upon the interference 

between the two reflected beams. A set of first order interference 

fringes for the beam divider, with different thicknesses of mylar film 

is shown in fig. 5.6. So, wlien measurements are made by using an

interferometer with a mylar beam divider, the thickness D must be

chosen so as to optimise the throughput energy in the spectral region 

under observation. But no matter what thickness of beam divider is 

used, the efficiency in the spectral region near zero frequency is 

always low. Thus, although by using a thicker beam divider the low 

frequency region may be improved, the bandwidth of the first order 

interference fringe is narrowed, so such dividers are far from ideal 

for measurements below 20 cm .̂

To overcome the problem of the poor low frequency response of the 

dielectric beam divider, the beam divider can be replaced with a free 

standing wire grid, with the interferometer working in the polarising 

mode.
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4) The Recording Electronics

The recording electronics used for both instruments was basically 

the same. The modulated radiation falls upon the detector and the 

signal passes on to be rectified by a phase sensitive detector (PSD).

A PSD is a system which produces a DC output signal in response to an

AC input signal whose frequency is equal to that of a reference 

signal. The DC output given by a PSD is proportional to the amplitude 

of the input signal and the cosine of its phase angle relative to that 

of the reference signal.

A PSD acts essentially as a multiplier giving an output signal 

which is proportional to the product of the input signal and the 

reference signal. Consider a sinusoidal signal, ê  = E^sin(w^t+ ̂  ) 

multiplied by a square wave reference signal; the square wave is 

assumed to be symmetrical about zero, and to have unit amplitude and 

unit mark-space ratio.

The Fourier series for a unit amplitude square wave is

= *^ ( sin Wyt + sin 3w^t + sin 5w^t + ..... ) (5.5)

and the product of the reference signal and the input signal is

=-^E_j[ sin(wat+/) sin w^t + sin(w^t +̂ ) sin w^t + . . .)

= Eg [ cos((Wj-w^ )t+^) -cos((Wg+w^)t+y^) (5.7)

+ ^^cos((Ws- Wr)t+^) -^cos((w^+w^)t+^) + . . .]

Examination of the above equation shows that the product gives rise to

d.c. terms for signal frequencies of w ; 3w ;5 w etc.
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When w_5 = the d.c. term is ̂  E^cosy^

When w^= 3vi^ the d.c. term is — E^-lcos^ etc.

In a PSD the multiplication process is followed by low pass 

filtering which can be performed by a simple RC filter which will 

attenuate all a.c, components of the product. The frequency cut-off of 

such a system is thus set at 1/T where T= RC, the time constant of the 

filter.

The noise rejection properties in a phase sensitive detection 

system arise in large part from the extremely narrow bandwidth which 

is so readily obtained by selection of filter time constant, A PSD 

acts somewhat like a rectifier that is tuned to the reference 

frequency, but its noise rejection properties are far superior to 

those of a conventional filter combination. Noise passed by a 

conventional filter circuit gives rise to a d.c. component in the 

normal rectification process, but in a PSD unwanted signals, like 

random noise, produce fluctuations about the d.c, level produced by 

the wanted signal at the reference frequency. It would be quite 

impractical to obtain the narrow bandwidth of a PSD system with a 

conventional filter circuit.

Since the output signal from the PSD is in analogue form, a data 

acquisition system must be used to record the sampled data points so 

that the data processing can be performed by a digital computer. The 

recording electronics used in the past few years is a very primitive 

system. The output medium which is used in the system is a paper tape, 

and the block diagram of the system is shown in fig. 5.7. The output

of the PSD is connected to a paper chart recorder and a digital

voltmeter. The purpose of the chart recorder is to monitor the signal 

of the interferogram during the operation, and the DVM is used to
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convert the analogue signal from the PSD into digital form. 

Thereafter, this digital data is punched onto the paper tape by the 

tape punch. All these operations are controlled by the sampling pulse 

generator, which produces triggering pulses in the following order:

1) the moving mirror is stepped,

2) after a short time delay, the signal from the PSD is latched 

into the DVM,

3) once the DVM has converted the analogue signal into digital form

the data is then punched onto the paper tape, and after another

short time delay the whole procedure is repeated until the end of 

the scan.

The above system did give an adequate facility for recording

data over the past few years because there were no online computing

facilities in the laboratory, and the data punched on the paper tape 

had to be submitted to the University Computing Centre. However, with 

the increasing use of microprocessors in electronic equipment, it is 

now;feasible to use one of these micros to handle the data acquisition 

and data processing for the Fourier spectrometers, and such a system 

has been built by the author and used with Fourier spectrometers at 

Westfield College. This system is described in the next chapter.
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CIIAPTHR 6

A MICROCOMPUTING SYSTEM FOR THE FOURIER SPECTROMETERS

6.1 INTRODUCTION

In the few short years that microprocessors have been available, 

they have revolutionized the design of electronic equipment. Using 

these compact, versatile circuits one can design computing power into 

a system wherever one needs it. A microprocessor is a complete central 

processor unit (CPU) on a single chip of silicon whose dimensions are 

measured in mere fractions of a centimetre. With one of these chips, 

plus a few other support chips of similar size, one can build a micro

computer system offering performance equivalent to some early 

computers that occupied almost an entire room, and some newer chips 

contain enough support circuitry, memory, and peripheral circuits to 

form a complete micro-computer without the addition of other chips.

Since the introduction of microprocessors their prices have 

tumbled to the point where unit costs of some popular types are now 

under £ 10. The truly revolutionary aspect of microprocessors is their 

versatility, which stems from their programmability. The functions of 

microprocessors can be clianged by modifying the "software" of the same 

basic system. No longer do different circuits need different basic 

"hardware". So a microprocessor system used for data acquisition may 

be used for data processing without major hardware changes.

A micro-computing system for use with Fourier spectrometers for 

data acquisition and on line data processing has been built at 

Westfield college. The system is based on the Zilog Z80 eight bit 

microprocessor, and constructed on the IEEE SlOO standard bus system
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for micro-computers. The reason for choosing the Z80 and tlie SlOO bus 

system is the large amount of software available for the CP/M [stands 

for control program for microprocessor) disc operation system which is 

the basic operation system used with this micro-computing system. 

Details of CP/M DOS will be described in this chapter.

6.2 M  INTRODUCTION TO MICROPROCESSORS

Microprocessors are a remarkably versatile new tool. They can 

lower the cost and increase the flexibility of electronic equipment. 

Together with memory and peripheral circuitry, microprocessor chips 

form complete microcomputers. In complexity, these micros fall 

somewhere between conventional minicomputers and small, hand-held 

calculators. They are as compact and inexpensive as calculators, but, 

like minicomputers, can be programed for a wide range of tasks and

work with such peripheral computer devices as printers and magnetic

memories.

To-day many types of microprocessor have been produced with 

different technology, eg. PMOS (p-channel metal-oxide semiconductor), 

NMOS (n-channel MOS), CMOS (complementary -MGS) etc. Regardless of the 

technology used, microprocessor systems are organized in basically the 

same way as conventional computer systems. Tlie major blocks are a

central processing unit (CPU), memory, and input/output (I/O)

facilities. Within the memory there are "instructions", which are 

coded pieces of information that direct the activities of the CPU. The 

memory also holds coded data that are processed by the CPU. Typically, 

two kinds of memory are used for programs and data storage. The first
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type is a ROM (read-only memory). In this type of memory the 

information can be read, but that information cannot be altered during 

operation or when the system is switched off. In most microcomputer 

systems an EPROM (erasible programmable ROM) is used, because the user 

can then re-program the information stored. An ultra-violet light 

source is usually used to erase the information stored in the EPROM, 

This type of memory is mostly used for basic machine operation systems 

or cold start loaders for some operation systems such as CP/M disc 

operation systems. The next type of memory is a RAM (random-access 

memory), which allows information to be written and modified as well 

as read during the operation of the program, but the contents are lost 

if the machine is turned off.

In operation, the CPU reads each instruction from memory and uses 

it to initiate various processing actions, but the CPU needs to 

communicate to the outside world, and usually this is done by using 

the I/O ports. However, some processors are designed without I/O 

ports, and instead use some memory locations to act as I/O ports, a 

go6d example being the Motorola M6800 processor.

In general, the operation of a CPU is very much like the system's 

supervisor. It fetches instructions from memory, decodes their binary 

contents, and executes them. During the execution of instructions the 

microprocessor references memory and I/O ports as necessary. It also 

recognizes and responds to various externally controlled signals such 

as reset, interrupts, etc.

Inside a typical microprocessor are incorporated various 

functional units to supervise and manage the operation of the system. 

A microprocessor CPU usually has control circuitry, an arithmetic 

logic unit (ALU), and a number of registers that provide temporary



storage of information. A block diagram of a simple microprocessor is 

shown in fig. 6.1 to illustrate the principle. A microprocessor 

usually has three types of bus lines for the flow of information, and 

these are address bus, data bus and control bus. The address bus is 

usually output from the CPU to the memory devices to access the memory 

locations, and the data bus is for exchanging information between the 

CPU and the memory or I/O ports. Tlie control bus is used to define the 

operation of the CPU, eg. to differ between a read or write operation, 

etc.

The most useful register inside a CPU is the "accumulator". It 

can serve both as the source and as the destination register for 

operations involving some other registers, the ALU, or memory. 

Additional registers have dedicated uses, a good example of which is 

the program counter which keeps track of program instructions by 

maintaining the address of the next instruction which is stored in the 

memory. Each time the microprocessor fetches an instruction it 

increments the program counter so that it always "points" to the 

following instruction. The fetched instruction (in the form of 

operation code) goes to another dedicated register, the instruction 

register, and is then decoded by internal logic.

The microprocessor executes each instruction in sequence. It 

proceeds from numerically lower memory addresses that give the 

instruction to be executed early, to higher addresses that give later 

instructions. However, this sequential order can be broken by a "JUMP" 

instruction, which directs the microprocessor to a different part of 

the program.

Another useful instruction is the "CALL" instruction that gives 

rise to the execution of a subroutine. The subroutine usually consists
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of a series of instructions that are to be executed repeatedly during
f

the course of a main program. Before handling a subroutine the 

microprocessor has to store the returning address of tlie main program 

when the execution of the subroutine is completed. This information is

usually stored in an area known as a "stack". The stack is used to

save vital information, and in this case the information is the return 

address for the program counter, but the stack can also be used for

storing contents of other registers. Tne return address which is

stored will be used to resume the operation of the main program once 

the subroutine has been executed.

There may also be many more registers within the CPU for 

different types of microprocessor chips, but those described above are 

the most important and common registers one could Iiave in a 

microprocessor. In the next section an outline description of the 

internal structure of the Z80 CPU is given.

6.3- Z80 CENTRAL PROCESSING UNIT

The purpose of this section is to discuss the structure of the 

Z80 microprocessor in as far as it affects the programmer, and to 

introduce some examples of the instruction codes in machine level 

code.

The microprocessor chip consists of a 40 pin large scale 

integrated circuit, with 8 data pins, 16 address pins and other pins 

for power and control purposes. Up to 64 kilobytes (one byte equals 8 

bits) of memory may be directly addressed by the CPU. The stack 

pointer allows any portion of RAM to be used as an external stack, so
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that subroutine nesting is only limited by the size of the memory. The

stack can be used to store the contents of the program counter, flags,

accumulator and all the other general purpose registers.

The arithmetic logic unit (ALU) performs addition, subtraction, 

logical functions of ANDing, ORing and exclusive ORing, and shifting 

operations between two 8 bit operands. In addition, binary-code 

decimal (BCD) operations may be performed.

There are fourteen general-purpose 8 bit registers within the Z80 

CPU, which are designated as A, B, C, D, E, II and L and A', B’, C ',

D', E', II'and L'. Only one set of the seven registers and the

corresponding flag register F or F' can be accessed at any given time. 

Thus, a special Z80 instruction is provided to select A and F or A* 

and F', and another instruction is provided to select R, C, D, E, II, L 

or B', C ,  D', E', II', L'. A block diagram of the register set is shown 

in fig, 6.4.

In general the accumulator (A register) is the main register for 

performing arithmetic and logical operations. The other six registers 

cart' be grouped to form three register pairs for sixteen bit 

operations, eg. BC, DE and IIL. These register pairs can be used as 

memory pointers, and to perform sixteen bit precision arithmetic etc. 

The sixteen bit precision arithmetic involves adding, subtracting, 

incrementing, or decrementing a sixteen bit value.

The special-purpose registers are the I (interrupt vector 

register), R (memory refresh register), IX, lY (index registers). The 

application of these registers will not be discussed here, because 

they are used in rather special circumstances by the programmer, so 

for those who want to know more about these registers, the Z80 

programming manual is a good reference to read [Z80 Assembly Language
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Programming Manual].

The Z80 has a wide range of instructions, ranging from a simple 

instruction to add two registers to a block search instruction. 

Because of the wide range of functions that Z80 instructions perform, 

instructions range in length from one byte to four bytes. In addition 

to this, instructions also differ in how external memory is addressed. 

In general there are ten addressing modes for the Z80 CPU, and they 

are listed below:

1) Implied addressing

In this addressing mode, the operation code of the instruction

fixes the source and destination of tlie instruction.

eg, LD E,A ; load register E with the value in register

A , this op-code is 5F hex.

2) Immediate addressing

In this addressing mode, the second or third byte of the 

instruction itself is the operand.

eg. LD A, 0211 ; load register A with the value 2 hex.

where the first byte is the op-code

and the second byte is the value 2

hex, i.e. 3E 02 in hex.

3) Extended immediate addressing

In this addressing mode, the second and third bytes are the 

operand giving a sixteen bit value.

eg. LD IIL, 800011 ; means load register pair ML with the

value 8000 hex, where the first byte

is the op-code, and the second and

third bytes contain the value 8000

hex. eg. 21 00 80 in hex, code.
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4) Resister addressing
!

This addressing mode is similar to the implied addressing mode, 

except that the instruction would contain a field which specifies 

which register is to be utilized in performing the instruction, 

eg. RL A ; means rotate register A (or other

registers) to tlie left, 

i.e. CB 17 in hex. code.

5) extended addressing

In this addressing mode the instruction holds the address of the 

data in the instruction format, i.e. the second and third byte of 

the instruction code.

eg. LD A, (lOOOH) ; means load the content store

in the memory location 1000 hex. 

i.e. 3A 00 10 in hex code.

6) register indirect addressing

In this addressing mode one of the register-pairs is used as a 

pointer for the memory location.

eg. LD A, (HL) ; means load the content store in

the memory location indicated by the 

register pair HL. 

i.e. 7E in hex code.

7) Relative addressing

In this addressing mode the sequence of the instruction can jump to 

a location relative to the present address.

eg. JR 16H ; means jump to location 16 hex

forward.

i.e. 18 16 in hex, code.
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8) Index addressing

In this addressing mode one of the index registers is used as a 

pointer.

eg. LD (IY+6), 88II ; means that the value of 88 hex

will be stored in the location 

indicated by the register lY plus 6 

position.

i.e. FD 77 06 in liex. code.

9) Bit addressing

In this addressing mode the instruction specifies any one bit of

the 8-bits in an operand for either testing, setting, or resetting

etc.

eg. SET 1, B ; means set bit 1 of register B

i.e. CB C8 in hex. code,

10) Page zero addressing

This addressing mode is used only by one instruction, the RST P.

In effect, this instruction is to cause a branch to one of the 

eight page zero locations after pushing the content of PC into 

the stack.

One nice feature of the Z80 CPU is that it is software compatible

with the early type 8080A CPU, an eight bit processor produced by

Intel Inc. As there is lots of software written for this processor,

tlie advantage of Z80 is that it can execute at a clock speed of 4MIIz

instead of 2MIIz, Thus a speed advantage of two is achieved. The

execution speed can also increase if the special Z80 instruction code 

is used. This means that the Z80 can execute 80S0A software at twice 

the speed of 8080A.
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6.4 OPERATING SYSTEM

Another reason for choosing the Z80 CPU is tliat one of the most 

popular disc operating systems (DOS) for the microprocessor CP/M is 

written in 8080 code. CP/M is a single-user, single-task disc 

operating system. Essentially, it provides a user interface to a 

diskette file system, and simple input output routines. CP/M itself 

consists of four sections plus user's programs, and a block memory map 

of the system is shown in fig. 6.5. The I/O and diskette control 

handlers are called the basic input output system (BIOS), and are 

different for different hardware configurations, but the main body of 

the CP/M does not care about the configuration of th.e system hardware 

as long as the subroutines in BIOS pass the right parameters. Thus 

this enables software produced on one machine to be used on other 

machines if they have the CP/M system.

The file manager is included in the basic disc operating system 

(BDOS). This section of the system has facilities to open a file, 

close a file, plus other routines.

Upon switch on, the bootstrap loader (stored in an EPROM) loads 

the CP/M core into RAM where it remains while the computer is switched 

on. The console command processor (CCP) will wait for commands to be 

typed in from the console (usually a VDU) and then executes. Tlie CCP 

offers five basic commands; they are given as follows:

1) DIR lists the names of files on the named disk.

2) ERA --- erases a named file or files.

3) REN --- re-names a file.

4) SAVE —  copies N 256-byte blocks of memory from location 100 hex

onto disc and calls the file name.
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5) TYPE —  prints out a named file onto the screen.

CP/M thinks that any other command you type in except the above 

five is the name of a file which it will try to load and execute. 

Within the system software package there are a few more programs wiiich 

one could use. These programs are listed below:

STAT -- reports the free space on disc, or if a name of file is

given, it will report the size of that file.

PIP -- (peripheral interchange program) enables one to transfer

files from one place to another. One could use it to copy 

files from one disc to another, etc.

MOVCPM -- re-adjust CP/M for your memory size.

SYSGEN -- creates CP/M system on a new disc; usually CP/M is stored on

the two outer tracks of the disc.

ASM -- an 8080 type assembler.

LOAD -- creates an executable disc file from the hex file produced

by the ASM assembler.

DDT --  a machine-code debugger.

ED --  the system text editor used to create a source program for

high level language etc.

Due to the complexity of the Fourier transform and associate

programs, it is very time consuming to write them in machine code.

Therefore, a high level programming language is used. This is one of

the big advantages of using CP/M operating systems because there are a 

large number of high level programming languages available such as

BASIC, FORTRAN, ALGOL and PASCAL, etc. In this development work PASCAL 

is used. Thus all the data processing programs, i.e. fast Fourier 

transform routines, etc, have been written in this programming
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language, but the data acquisition program was written in machine 

code, so as to maximize the use of the RAM space so that as many as 24 

thousand sampling points can be recorded for special applications.

6.5 INTERFACING THE MICROPROCESSOR SYSTEM WITH A FOURIER SPECTROMETER

In order to interface a microcomputer to the outside world, it is 

necessary to input sensory data into its memory or register. Since 

most sensory data encountered in our environment are analogue in 

nature, they must be converted to digital values before the 

microprocessor can understand them. This conversion process is 

accomplished by an analogue to digital (A/D) converter as an interface 

between the microcomputer and the analogue signal. In this case the 

analogue signal is the output signal from the PSD.

In general, there are three basic types of A/D converters : ramp, 

successive approximation, and tracking. First in the order mentioned 

is the ramp converter which uses a count up method of conversion and 

is best suited for very slowly changing data. The major drawbacks to 

this type of converter are its extremely slow speed of 2 clock pulses 

per conversion, and that data can only be taken out at the end of the 

conversion cycle. The second type of converter is the successive 

approximation A/D converter. This type is the most expensive as it 

requires additional data holding circuits, but then it is the fastest 

type of converter which requires only one clock pulse for eacli bit of 

resolution. The major disadvantage associated with this type of 

converter other than its high cost is its method of sampling the input
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signal and then making a quick approximation of what it might be,

since the input signal is only sampled every N clock pulses. The 

output from this type of converter can only be read at the end of the 

conversion cycle. The third type is the tracking A/D converter. This 

unit is a compromise between the first two types of converter.

Essentially this type locks on to the input analogue signal and as 

long as the slew rate of the loop does not exceed the digital output, 

it will equal exactly the analogue input within the resolution limit 

of the converter. If the slew rate is exceeded, the output immediately 

becomes erratic and you need an adjustment,

A block diagram of the microprocessor system built for the data 

acquisition and on line data processing is shown in fig. 6.6.

Basically it consists of a Z80 CPU, running at 4MIIz clock speed. It

has a full 64K bytes of RAM, plus an EPROM cold bootstrap loader, two 

floppy disc drives for magnetic storage, and a VDU for the command 

console. The printer and graphic plotter are used for outputting the 

spectrum and numerical data, etc. The vital part of the system is the 

interface link between the spectrometer and the microprocessor.

In the design of the A/D interface, a 12 bit converter made by 

Hybrid System Corporation with model number ADC 581 is used. It uses 

the successive approximation method with a convention time of 17 us 

for full 12 bit conversion and it has 5 input voltage ranges. In order 

to maximize signal resolution using the A/D converter, the analogue 

input has been scaled as close to the maximum input signal range as 

possible. In this case we have selected the O-IOV range, as this is

the output voltage range from the PSD.

The circuit diagram of this interface is shov/n in fig. 6.7, Since

the A/D converter is only 12 bits wide, we used one input port for the

97



lower 8 bits and another port for the top 4 bits. Hence, there are 4 

unused bits in the second port. Therefore, we connected the status 

line signal onto one of these lines. Thus, this will simplify the 

hardware design and enable the interface board to use only two I/O

ports, and we have assigned them as 80 and 81 hex. addresses.

The interface board consists of address and control decoding from 

the CPU, and also data lines for transferring data to the CPU. The 

board uses two I/O port addresses at 80 and 81 hex. The address 

decoding is done by ICI, and IC2 (see fig. 6.7), Because the Z80 can 

address up to 256 I/O ports, i.e. 8 addressing bits, IC2 is used to 

decode the top 4 address bits. Tlius if and only if the top 4 address 

bits equal 8 hex., the output from IC 2 will be low. This then 

switches on the enable line of IC 1, which is a 4 to 16 line decoder 

chip. This is used to decode tlie lower 4 address bits, so gives 16 

independent I/O ports on the board, but only two are used in the 

present design. Since the CPU uses the same address lines for memory 

and I/O ports, some signal is used to differentiate between memory and 

I/O' instructions. This is done by decoding the SlOO bus signal "SIMP". 

This signal is used to inform devices that it is a reading from an

input port cycle, i.e. the addressing lines contain the address of the 

input port to be read by the CPU. As the enable gate of the decoder 

chip (IC 1) is an active low signal (enable when voltage level is 

zero), an inverter gate is necessary to invert the active high (enable 

when voltage level is +5V) SIMP signal.

When the ADC 581 receives a triggering signal, the status line 

(pin 20) remains low until the conversion is done. This status line is 

then used to clock a D type flip-flop (74LS74 IC 3), and the latched

signal from IC 3 is fed to the second input port. This is used to
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inform the CPU that the data is ready from the ADC chip. In order to 

avoid the CPU reading the same data again, the flip-flop is reset when 

the data is read, i.e. the enable 1 signal is used to reset the flip- 

flop IC 3. The power on reset signal is also gated to reset the flip- 

flop so that when the power is switched on the interface is always in 

the reset status. Thus the reading of false data is avoided.

IC 6 and 7 are 8 bit tri-state buffers, which are controlled by 

the two enable lines 1 and 2. These buffers will only turn on when 

the CPU wants data from these decoded input ports.

The program for reading the data from the ADC board is executed 

by the "polled method", i.e. the status of the ADC chip is observed 

and tested in a loop before the data is read. This method is most time 

consuming but offers very simple hardware design, as one can see from 

the circuit diagram. The procedure for inputting data from the ADC 

board is shown in the block diagram fig. 6.8, and the subroutine for 

reading the data into RAM is also listed in Z80 Assembler symbols in 

fig. 6.9 as an example.

All the sampling data are stored in Ri\M first, then once the scan 

is finished all the data is transferred onto disc file under CP/M 

format. We have stored the data in a format that is compatible with 

the integer type of file of the Pascal compiler, thus the Fourier 

transforming program which is compiled by the compiler can read the 

data without any problems. Tlie Fourier transform programs provide 

apodization, ratioing, and plotting functions etc. With all these 

facilities this on-line data processing system provides a very useful 

tool for analysing the raw data from the Fourier spectrometers.
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the microprocessor memory and tlie I/O devices.
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101



h-
cû

CÛ
<
CA

3 _1CÜ oc<r
<V—

t-%
< o
o v_/

X—

-'T"

Q oi u a

\
LU K

H
co
Io

CO

UJor
AA<

=3C-C_)
OCOM

UjO
<l)
3

to
o
tû

t/1 u VI

102



Accumulator
A

FLAGS •

F
5 C

D E

H L
____________

A c c u m u l a t o r F L A G S

aV F'
^ / ^ /
B C

_ /
D E

i /
U L

INDEX REGISTER I X

INDEX REGISTER l Y

STACK P O I N T E R SP
PROGRAM COUNTER PC

! NTERRUPT 
VECTOR

T

M E M O R Y  
R E F R E S H  
• R
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Z80 Assembler ZASM VI,2 Subroutine for read data

1 ; Subroutine for read data
2
3

; from the ADC board.

4 RAM: EOU 2 00 OH RAM address
5 PORTA : EOU 80H Port A address
6 PORTB: EQU 81H Port B address
7g NPOINT: EOU 200 Set for 200 points

9 OR G lOOOH
10
11 1000 2A0020 READ: LD 11L,(RAM) load IIL with storge
12 storge address
13 1003 06C8 LD B,NPOINT load B with number of
14 points to be read
IS 1005 DB81 LOOP: IN A,(PORTB) input the second port
16 into reg. A
17 1007 E610 AND lOII Check ADC ready line (bit 4
18 is used) this bit is high 

when ready.
19 1009 28FA JR Z.LOOP If not ready then loop.
20 until ready.
21 lOOB E60F AND OFH Remove top 4 bits because
22 they are not data.
23 lOOD 77 LD (I1L),A Save this data into RAM.
24 lOOE 23 INC IIL Increment the RAM pointer.
25 lOOF DB80 IN A,(PORTA) Now read tlie other 8 bits.
26 1011 77 LD (HL),A Save into RAM.
27 1012 23 INC IIL Increment the RAM pointer
28 for next loop.
29 1013 lOFO DJNZ LOOP Decrement reg. B and if it
3P is not equal to zero then 

jump to loop.
31 1015 C9 RET If reg. R equals zero then
32 return to main program.
33 END

Fig.6.9 A sample program for input data from tlie ADC board.
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CHAPTER 7

EXPERIMENTAL MEASUREMENTS

7.1 PRODUCTION OF FREE-STANDING TUNGSTEN WIRE GRIDS

All the tungsten wire grids were made at the National Physical 

Labaratary using a modified coil winder. A set of grids with 

different wire spacings have been wound from 10 j.im diameter wire using 

a technique described by Costley et al [1977], but with 5̂ im diameter 

wire modifications had to be made to the winding apparatus because the 

wire is much finer and breaks easily.

The main alterations in the winder are as follows:

1) The tension of the wire has been reduced from 22g to 3g by 

adjusting the slipping clutch of the coil winder.

2) The wire has been made to by-pass all the pulleys in the

constant head tension device made for 10 jam wire, and only

passes around the pulley on tlie tension arm. However, this 

appears to have no deleterious effects on the wire spacing. 

This procedure is necessary to prevent breakage.

3) The lead screw driving the wire grid has been changed to a

finer one with 40 turns/in which gives a smaller wire spacing,

4) The wire grid former on which the grid frames are mounted

during winding has been redesigned. The new former is smaller 

than that for 10 jum grids to reduce the waste of wire when 

winding small 5 jum grids, and this also gives a better

continuous tension for the wires during winding. To help with

this tension problem, the two sides of the former are made

from glass rods, so tliat the wire only passes over the smooth 

surface of the glass rod.
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5) The winding speed has been reduced from 4 rpm to 2 rpm to

reduce the tension of the wire.

With the above modifications, the winder is able to produce 5 jam 

wire grids with apertures of up to 60mm diameter for use as beam

dividers in interferometers. Such beam dividers have been made with

12.Sjjm wire spacing for use in the transmission instrument, and the

results will be described in this chapter.

7.2 TRANSMISSION COEFFICIENT OF 1£ urn WIRE CRIPS '

1) Measurements made by Laser

The first set of experiments to measure the power transmission of 

the thin wire grids was made with an HCN laser. This laser produced 

radiation at a frequency V  =29.7 cm ' ( ^=337 jpm) . The ouput radiation 

from the laser was incident at 45 on a mylar beam divider (See fig. 

7.1), The transmitted beam from the beam divider was polarised by 

passing it through a commercial substrate-mounted polariser, P, and 

thereafter incident normally on the free-standing wire grid, and the 

transmitted radiation from the wire grid was then focussed onto Colay 

detector No.l by the polythene lens. The beam initially reflected by 

the beam divider was focussed onto another Colay, G2, by the polythene 

lens, L2, The mounting for the wire grid specimen was designed to 

rotate to obtain the minimum transmission output, and the unit could 

be removed from the radiation beam.

The signals from G1 and G2 Golays were ratioed electronically by
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an electronic ratiometer amplifier. Hence the error due to tlie power 

level drift o:̂  the laser beam was reduced. The power transmission of 

the sample grid for E llS was measured by rotating the grid until

minimum transmission was achieved, and then the grid was removed from

the beam to read the output of the laser beam. The ratio of the 

minimum transmission output against the incident power signal would 

give the power transmission coefficient, T„ , of the sample grid for 

Elis. This procedure was repeated for wire grids with spacings in tlie 

range 30«65um. Tlie results are compared with the theoretical

predictions based on the method described in Chapter 4 in fig 7.2, and

it can be seen that there is excellent agreement between experiment 

and theory.

2) Measurements by Fourier Transform Spectrometry

The power and phase transmission spectra (T, ^ ) of a selection 

of ‘grids were measured at normal incidence in the frequency range 20- 

450 cm * by a combination of conventional Fourier transform 

spectrometry and dispersive Fourier transform spectrometry. All 

transmission measurements were made by using the single pass 

instrument described in Chapter 5. The sample grids used in the laser 

measurement were remounted on a smaller aperture frame which could be 

slid in and out of the radiation beam in the interferometer. 

Measurements were made for botli orientations of tlie wire grid, i.e. 

electric vector, E, parallel to the wires, E 5, and perpendicular to 

the wires of the grid, E-LS.

Due to the low efficiency at low frequencies of interferometers
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using mylar beam dividers, for measurements at frequencies below 125
 # Ï

cm the interferometer was converted to the polarising mode. The 

conversion was done by placing free-standing wire grids between the 

collimator and the beam divider, and between the beam divider and the 

polyethylene lens doublet, both grids with their wires vertically 

oriented. These wire grids acted as the polariser and analyser for the 

interferometer. The most important component is the beam divider, and 

this was replaced by another wire grid but with the wires oriented at 

45° to the electric vector of the incident radiation. All the wires 

were wound from 10 jam diameter tungsten wires with 25/,im wire spacing. 

For the measurements at higher frequencies the beam divider was 

replaced by 6.25um thick mylar, and commercial substrate mounted 

polarisers efficient throughout the measured range wore used to 

replace the wire grid polarisers. This enabled the instrument to be 

used up to a frequency of about 400cm.'

The sample grids were mounted onto a copper ring with an aperture 

of 1,5cm and the wires were fixed with "Durofix" adhesive onto this 

ring. Wire grids with spacings d=55, 45, and 35 pim were measured, and 

the results are plotted in figs 7,3, 7.4, and 7.5 respectively. The

resolution of the measured spectra was 4 cm'̂  , but only sufficient 

points have been plotted to illustrate clearly the structure present 

in the spectra. On each figure the calculated power transmission 

coefficient, T(W) and phase coefficient, ^ ()/) are also plotted for 

comparison.

There appears to be a reasonable agreement between experiment and 

theory for all three grids except in the region near the diffraction 

peaks at d/?v =1, i.e. in the region B on the graphs. Only in the case 

of the grid with d=55 jum (fig 7.5) were measurements made near the
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region where d/%., =2 , but it is clear that the predicted structure was 

not present. For the other two grids, this region near d/Ts. =2 was 

outside the measured frequency range, so no comparison was possible.

For the case of E_ll S, one can see tlie predicted higli transmission 

near d/%,-1. The discrepancies between experiment and theory in this 

region seem to get more serious as the spacing of the grid decreases. 

The reason for such discrepancies is believed to be due to the 

irregularities in the wire spacing.In order to investigate this 

possibility, the spacing of the wire grids was measured by using a 

microscope. The measurements of the individual spacings over about 150 

periods for these three grids were recorded, and the mean spacing, d, 

the standard deviation, ,and the ratio of Cf'/  à were calculated for 

each grid by using the well known formulae given below

cr" — z-( d - d )

n - 1

Z  d

where n is the number of data points. The results of all the grids are

shown in Table 6.1.

If one observes the value of it can be seen that in each case

it is a significant fraction of d. The value of the ratio,

increases as d decreases. This correlates very well with the 

observation in figs 7.3 - 7.5 that the discrepancies between

experiment and theory increase as d decreases, so it is probable that 

these discrepencies are indeed due to the irregularities in the grid 

spacings.
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7.3 MEASUREMENTS ON 5 pm WIRE GRIDS

By improving the winding technique used for the production of 10 

jjim wire grids, 5 jam diameter tungsten has also been used to produce 

free-standing wire grids. Three sets of wire grids have been made for 

measurements of amplitude and phase transmission coefficient. They had 

wire spacings of d=100, 50, and 25 jjm. The measurements for these

grids were made by using the same single pass instrument described 

earlier, but with a few components changed. The beam divider used was 

made from 6.25 pm mylar, and commercial substrate mounted polarisers 

were used to select the desired component of polarisation for the 

measurement of complex amplitude transmission coefficient. The results 

are shown in figs 7.6 to 7,8, When one looks at the results of the 

theoretical work, one can see that for a perfect grid at normal

incidence the transmission amplitudes are close to unity for both

polarisations near the frequencies where d/%. =1, or 2, where X =  1/y

is the wavelength, and d is the wire spacing.

The theoretical calculations of the amplitude and phase 

transmission coefficients of the grids were carried out assuming 

regular spacing of the wires. Although the theory takes account of 

absorption in the wires, it has been found that the effect of their 

finite conductivity is negligible at the frequencies of interest. The 

calculations have been carried out for the two simplest configurations 

of plane polarised radiation with the electric vector parallel and 

perpendicular to the grid wires. The results are plotted in each case 

with the measured results in the same graph for easy of comparison.
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7.4 MEASUREMENTS ON CRYSTALLINE SOLIDS

The main application of dispersive Fourier transform spectrometry 

described in this thesis is to determine the optical and dielectric 

functions of solids in the far infrared region. In general, the 

optical constants and dielectric functions can be calculated from the 

complex insertion loss L(v) by using the well known Fresnel relations. 

The determination of the complex insertion loss for the two 

interferometers has been described in Chapter 3.

The specimens measured by the transmission and reflection 

instruments were alkali halide crystals. These crystals have the face- 

centred cubic diatomic ionic crystal structure, and disperson due to 

lattice vibrations occurs in tlie measuring range of these instruments. 
The analysis of lattice vibrations in such crystals has been described 

in the harmonic approximation by a number of authors [Dorn and Huang 

1966, Donovan and Angress 1971].

In this chapter an outline of the dispersion relations is given, 

and' the results of the measurements on KCl and KBr crystals using the 

two instruments are also presented.

a) Infrared dispersion by cubic diatomic cryatals

In this section, an outline of the dispersion of the dielectric 

function due to lattice vibrations is given. Tlie crystal structure 

described is face-centred cubic which is the structure of some alkali 

halide crystals. If the crystal structure has n atoms per unit cell.
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the frequency j/ (in cm ' ) has 5n branches. Three of these branches are 

called acoustic modes which have the property of ^-(q)->0 as q R: 0. In 

fact, the atoms in tlie unit cell move in the same direction with the

same amplitude, which at long wavelengths is analogous to the

propagation of an elastic wave. The remaining 3n-3 branches are called 

optic modes, which have non-zero values of y  (q) as q%0. In cubic 

diatomic crystals, there are two atoms per unit cell, hence, there are 

six branches, three accoustic and three optic modes.

The vibrations of a diatomic lattice are produced by the movement 

of the two different types of atoms in the crystal. Any resultant 

electric moment will interact with the electric field of an incident 

electromagnetic wave. The long wavelength acoustic vibrations are 

identified as elastic waves, and therefore can be described by

macroscopic equations. However, the theory of optical vibrations

(q %0) was developed by Huang [1951]. In his treatment, he used two 

expressions to relate the macroscopic electric field E, and relative 

displacement of the two atoms in the unit cell, i.e.

W = b, W + b^E

' (7.2)

P = b^W + bjE

W is the reduced vector, and expressed as

W = U / F  (7.3)

where U_ is the displacement of the positive ion relative to the 

negative ion, and M is the reduced mass of the positive and negative 

ions.

A solution can be obtained by taking W, E, P_ to be varying
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periodically with time in the form exp(-ij/t). By eliminating the 

function W from the equation of motion above, we have

P = ). E (7.43

where the polarization ^ is related to the electric field E with the 

expression

P = X  E (7.5)

where "X. is the electric susceptibility, and the dielectric constant 

is related to X  as

£= 1 + 47tX  (7.6)

Thus, from equations (4) and (5) the value of becomes

X  = b_̂ -     (7.7)

Hence, the dielectric function is obtained as

^3L<£= 1 + 47fb, -   (7.8)

By substituting tlie time variation functions of W, H, P and JE, into 

Maxwell's equations, this gives the condition that

£(v) (q.E) = 0 (7.9)

which leads to two alternative possible solutions.
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1) Longitudinal waves

I£ W, P, ^ and are ail parallel the resulting vibration is a 

longitudinal wave. Since £.(>')=0, this gives

0 = 1 + 47Tb.- — -------  (7.10)
b, -4

thus

1 47»
-b ' T T T T T ^

where xL is independent of q.

2) Transverse wave

If W, P and ^  are parallel, but perpendicular to q, the resulting 

vibration is a transverse wave, i.e.

£(o)- z
'■(q/>/ ) = £C«) +  z----1-- (7.12)

3 ^ 0 - 3 ^

where E (co) = 1 + 4 zr

£(o) = 1 + 4 7T bj
4 71 b^

b, = -

where is the natural frequency of this transverse mode. Hence, for a 

given value of q, equation (12) has two solutions, and there are two 

alternative orientations of q with respect to E which still maintain 

their mutual orthogonality. Thus , there are four independent
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transverse vibrational modes.

However, the dispersion relation can be generally expressed ai

( £(o)-
£(î ) = E M  + — — T—   (7.13)

j/ .

Hence, by using this dispersion relation, v;c may calculate the 

corresponding reflection spectra from the Fresnel relations.

As the frequency increases, the refractive index M increases 

steadily, but as the frequency reaches the dispersion frequency  ̂

£(y) becomes infinite, hence N becomes infinite, and tlie resulting 

reflectivity becomes unity; i.e. the crystal ■ becomes a perfect 

reflector. Vvhcn tlie frequency passes tliis point £(j/) is negative until 

it becomes zero again when the frequency is equal to >1. , the

longitudinal optic mode (LO) frequency. The value of £ (Ĵ) is negative 

between the frccpiencics y, and , thus the refractive index N is 

imaginary and gives a band of perfect reflection. This band is known 

as the reststrahlen band.

When at frequency » the function &(^) is equal to zero, i.e.

( &(o). Z0*));4^
0 = L M  + — --- — -------- (7.14)

from this we can obtain the well known relationship between J^and

(7.16)

the Lyddane-Sachs-Teller (LST) relation.

Experimental results for a real diatomic cubic crystal show that 

the reflection in the reststrahlen band does not agree quantitatively
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with the simple crystal model described above.: A closer approximation

to the dispersion relation is obtained by including a damping term in 

the equation of motion, i.e.

W = b, W - + b^E (7.16)

This gives the dielectric function as

;/\£(o)- g(«»))
= £ M  + — t  ---------   (7.17)

y  - y  - 2 (T y

Born and Huang (1954) took y as frequency independent, but for 

most alkali halides if varies considerably in the LO frequency region 

and the expression must be modified to account for the discrepancy.

The above discussions of lattice vibrations have so far been 

restricted to the harmonic approximation. This model fails to account 

for detailed structure in the measured spectra because it neglects 

the details of the interactions between the normal modes which 

accompany the decay of the transverse optic phonon. Studies of the 

effect of anharmonicity on various physical properties of crystals 

have been carried out by many authors [Cowley 1963, Wallis et al 1966, 

etc]. Let us consider an expression for the potential energy V which 

is expanded in a power series in terms of the displacements, i.e.

V = + §,u + ^̂ u" + + S u^ + . . . . (7.18)

If the u^ and all higher order terms in the expansion are neglected, 

we have the "harmonic approximation", which has been discussed 

earlier. However, if we include the higher order terms in the power 

series, i.e. û  , u"̂ etc, this will lead to an anharmonic description
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of the crystal.

A detailed discussion of tlie theory of the dielectric response of 

an anharmonic crystal has been given by Cowley [1963]. Therefore, only 

the results are quoted here. Ilis expression for the complex frequency 

dependent susceptibility X  , which he derived by using diagrammatic

perturbation theory for crystals with cubic symmetry is written as

1 2 y  Coj) NL^oj)X  (i') = _  --------—  -----       (7.18)
Nvh y ( o j ) - P  + 2V(oj) [/.(oj.V) - ifCoj.V)]

where y (gj) is the harmonic frequency of the TO phonon at wave vector

q Z. 0, (oj) is the leading term in the expansion of the crystal

dipole moment operator in a power series of the normal mode

coordinates, Nv is the crystal volume, and ^  (oj, y  ) and P  (oj,y)

are the real and imaginary parts of the irreducible self-energy of the

transverse optic plionon.

The real part, A  (oj,y ) of the self-energy can be written as the

sum of two parts, i.e.

‘ ACoj.V) = A  + A ( o j , V )  (7.20)

where ^ i s  a frequency independent contribution which arises from the 

thermal expansion of the crystal, and A^(oj, y  ) is frequency 

dependent, and arises purely from the anharmonic interactions.

Since the complex refractive index can be expressed as

n ()/)'■= £(î } = £(«) + X  (V) (7.21)

then for zero frequency, £ (o) is defined as

£(o) = £(«) + X(o) (7.22)
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And from equation 7.19, this will become

1 2j/(oj) M*(oj)
+--  — -------  :----—  (7.23)

Nvh y  (oj) + [ AT- Z^(oj,0)]

Thus from above the expression it will give the expression for (oj)

as

By substituting into equation 7,21, we wi11 have

(£(o)- 6(w)) y  (oj)
£(^) = £(«) + -T------— --   —  —  (7.25)

y (oj) - y  + 2V(oj) [ ̂ (ojy) +2T(oj,y)]

for the dielectric response.

From equations A^(oj, y  ) and P (oj, y  ), it follows that the 

real and imaginary parts of the anharmonic self-energy of tlic 

transverse optic mode can be written as

^ ( o j X )  = J;['^Coj)[(£(o) - EM);; M  - i] + -zf(oj).

r (oj.v) = - txoj) [ £ (o) - £ M l Y ' W  (7.26)

where

-j'm  = [ i M  - £(«)]/ {[ fV) -£(■»)]''4- 

f V )  = - £ M  / {[£'(-44)- £C«)F+£>)']

where S ( ^ )  and Z i ^ )  are the measured real and imaginary parts of

the dielectric function derived from the refractive index

measurements. Thus the full frequency dependence of and

can be calculated from the measured complex delectric response for
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comparison with theoretical calculations, 

b) Experimental results

Alkali halides are a good subject for spectroscopic studies in

the far infrared because of their distinctive reststrahlen region. All

the measurements made using the two interferometers described in 

Chapter 5 were on KCl and KBr crystals, which have their reststrahlen 

bands comfortably within the working range of the instruments.

In the region of the reststrahlen band, the crystal is nearly 

opaque, hence the reflection instrument is used. However, when the 

sample becomes more transparent away from the reststrahlen band, its 

phase reflection coefficient, is very close to tliat of the

reference mirror ( Tf radians) and cannot be satisfactorily determined. 

Hence, a simultaneous measurement made by the transmission instrument 

has been used to give a better result, due to tlie phase transmission 

coefficient ̂ fv/being very much larger tlian ( n  ).

For the reflection measurement, crystals having tlie dimensions of 

50 mm diameter and 6 mm in thickness were used. One' surface was 

optically polished to a flatness of about i G.lpm, and partially 

aluminised in a pattern described in Chapter 5, By using the switching 

mode of the instrument, systematic phase errors resulting from the 

drift of the reference mirror were avoided.

For the transmission measurements, a KCl crystal 25mm in diameter 

was used, and thinned to 254i 2jnm, but the thickness of the KBr

crystal was only IlOf 2j.im, Therefore, the insertion loss produced by

these specimens will be in the category of thin specimens, and the 

details of the procedure for determining the amplitude and phase
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transmission coefficients, and the subsequent calculation of the

optical constants and dielectric functions have been given in

Chapter 3.

The complex refractive indices of KCl and KBr, measured using the 

reflection and transmission instruments are sliovm in fig. 7.9 to 7.10 

for temperatures in the range 7 k  to 300 k. The corresponding

dielectric functions are illustrated in fig 7,11 to 7.12. Tlie

frequencies of tlie transverse optic (TO) and longitudinal optic (LO) 

modes determined from the plots of dielectric response arc also 

indicated in the figures, and these frequencies are in excellent 

agreement with values determined by Lowndes [1970] and Lowndes and 

Martin [1969].

The self-energy functions,A(oj, V  ) and V (oj, y  ) have been

calculated from the above dielectric function data, using equation 

7.26. The values of 2:̂ , , EU») have been taken from Lowndes ct al

[1969 S 1976]. In the figure showing the experimental results of 

for KBr at room temperature, the solid line is a calculation which 

includes the sum of the lowest order cubic and quartic terms [Bruce 

1973].
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Fig. 7.2 The results from the laser experiment.
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TABLE 1

55

N o n in a l spacing  (ym) 

45 35

X 55 .9 4 7 .5 3 6 .0

0 8.9 9 .7 1 0 .1

a /x .16 .20 .28
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CHAPTER 8

COMCMJDINC REMARKS

Dispersive Fourier transform spectrometry provides a simple 

direct method for the determination of the optical constants of 

materials in the far infrared region. This technique has formed the 

basis of the measurements presented in this thesis.

The performance of free-standing wire grids wound from 10 and 5 

^m diameter tungsten wire has been investigated experimentally and 

compared with calculations based on the "least-squares" method 

developed by Beunen [1976],

In the case of 10 urn diameter wire grids the calculations are
— Icompared with measurements made at Tv = 337 urn (V=29,7 cm ) using 

an IICN laser, and with broad l.innd measurements made by dispersive 

Fourier transform spectrometry. At frequencies above 100 cm  ̂, 

reasonable agreement is only obtained between experiment and theory 

away from the first diffraction peak (d/7v=l), altliough tliis 

peak is reproduced quite well with each grid for Fp ll S. The 

quantitative differences between measurement and theory are believed 

to be due to the effect of irregularities in the wire spacings. Thus, 

a number of wire grid spacings for each grid were measured, and 

the irregularities in the grid spacing found to correlate quite well 

with the observed discrepancies. The second diffraction peak in the 

d/7^ =2 region was only measured for the grid witli a spacing of 55 j . m ,  

because the peak frequencies for the other two grids were outside the 

measuring range of the interferometer. However, the predicted peak did 

not show up in the measurement, and this is also believed to be due to
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the irregularities in the wire spacings. At frequencies below 100 cm' 

excellent agreement is obtained between theory and measurements. This 

is not surprising because small irregularities in the wire spacing are 

not expected to have a significant effect on the measured spectra

when A »  d,

In the case of 5 urn wire grids similar results were obtained, and 

tiie second diffraction peak appeared nicely for the grid witli 100 urn 

spacing. Again the discrepancies are believed to be due to the effect 

of irregularities in the wire spacings.

Free-standing grids wound from 5 jam diameter tungsten wire witli 

12.5 pim spacing have been used as beam dividers in a Fourier

spectrometer. It has been shown [Ado et al 1979, Mok et al 1979] that
-  jthe spectrometer can be operated at frequencies up to 700 cn. It 

kias also been shown that tlie performance of instruments in the low 

frequency region can be improved by polarising interfcromctry, using a

free standing wire grid as tdne beam divider. If a liquid helium cooled

detector is also used, the instruments can then be operated down to a
-Ifrequency of about 3 cm . Due to lack of time the above improvements 

have not been fully exploited in the work described in this thesis.

By interfacing a microcomputing system witli a Fourier 

spectrometer, the’ data acquisition system has been improved and on

line data analysis facilities have been provided. Tire micro is a slow 

and small device when compared with a large main frame computer. 

However, this microcomputer system can store up to 24 tliousand 

sam])ling points before transfer onto a floppy disc, and it can perform 

Fourier transformation for 4 thousand points in about 4 minutes. This 

is not fast but proved to be adequate for most applications. V.’ith the 

introduction of newer micro chips, the performance of such a system
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will greatly improve in the near future.

Tlie optical constants of KCl and KBr crystals have been measured 

by reflection and transmission dispersive Kouricr transform 

spectroscopy and presented in the temperature range 7-300K. However, 

at present t’nc transmission instrument only permits measurements to be 

made at temperatures between 77 and 300K. The results have been used 

to calculate the dielectric functions for each crystal, and the 

frequencies of tlie transverse optic (TO) and longitudinal optic (LO) 

modes obtained are in good agreement with the values determined else 

where [Lowndes 107Ü, Lowndes ct al 1969]. Tlie self-energy functions 

for KBr have also been determined and at room temperature | (oj, 2/ ) 

is in good agreement with calculations by Bruce [1973].
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