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ABSTRACT

This work originated from studies of the damage 
caused to DNA by radiation, damage which has been 
considered as one of the causes of induced cancer.
It was suggested, mainly by Ladik and co-workers, 
that in order to understand the nature of this 
damage, it was first necessary to have a picture 
of the electronic structure of DNA, one of the 
problems being the degree of localization of the 
electrons on chains. Several attempts were made by 
this group to calculate the electronic structure, 
by considering^ more and more complicated periodic 
chains approximating more and more the true struct­
ure of DNA, These calculation are critically re­
viewed in the present Dissertation, The early work 
had been carried out on the simple Iluckel model; 
later the Pariser-Parr-Pople approach was employed, 
yieding considerably different results. The inade­
quacies of the one-dimensional model and of other 
approximations are pointed out.
These calculations yielded an energy gap of over 
3 eV, rather higher than experimental value. They 
gave fairly narrow bands, indicating that electrons 
cannot be de-localized over the whole chain.
One result was that the bands were narrower in in­
finite chains made up of pairs of bases than in cha­
ins of the same nucleotide. Clearly this must be due 
to a smaller overlap of similar atomic orbitals 
because of the interposal of a different structure, 
and this explaination is checked in the present 
Dissertation by an qxact calculation of the energy 
bands of chains of square potential wells.
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CHAPTER 1 

Introduction

It is commonly accepted that DNA was discovered by 
F.H.C. Crick and J.D. Watson in 1953^• Strictly speak­
ing what tbey discovered was not DNA itself but the 
three dimensional molecular arrangement of this 
macromolecule, which is now known as DNA, a short 
form for deoxyribonucleicacid•
The substance itself which later on was called DNA

2was first discovered by Friederik Mis cher when he 
isolated the pus cell obtained from discarded sur­
gical bandages in 1869. He called the substance he 
discovered, which contained an unusual phosphorus 
compound, "nuclein” . Later on it became known as 
n u d e  o protein.
In 1 8 7 0 , he began his investigation on salmon 
spermatozoa, which when isolated contained an acid­
ic compound, now recognized as nucleicacid.
Various cells and tissues were then examined and 
were found to contain nucleic acid,
Kossel in 1884 pioneered the work to find out the 
detailed chemistry of nucleic acid and the proteins 
associated with them*in the cell nucleus.
In 1 8 8 9 , Richard Altman gave Mischer's "nuclein" a 
proper name "nucleic acid".



James,Watson and Francis Crick became intores feed in 
work on DNA and eventually in 1953 suggested a ste­
reometric model aided by the X-ray photographs of 
Maurice Wilkins, who had been working for some time 
to find the structure of DNA •
In the next decade researchers focussed their inter­
est on trying to find out more about DNA; its proper­
ties, confirmation of Watson-Crick stereometric mo­
del, the relationship between DNA and genetic mate­
rial, in other words "wha^ is the role of DNA in our 
life?". In recent years attention has been focussed on 
the damage caused to DNA by radiation, and thus an 
attempt has been made to find a direct relation be­
tween DNA and induced cancer, and even natural cancer , 
Some work has also been done on the effect on DN-A- of 
drugs, again aiming to find a more effective way of 
curing cancer, some even hoping that they can event­
ually discover the cause of cancer.
Accepting the concept that DNA is a carrier of gen­
etic information, it has to serve two main functions.
1, Duplication or replication, that is being able to 

make an exact copy of itself,
2, Transcription, that is being able to pass on the 

information coded within it to the messenger RNA 
(mRNA) .

The messenger RNA may in its turn translate the inform 
atiovi in the four letter language of the DNA into tlio



Invent V 1 (-y 1: t e t ' 1 a n gu a go ■ o f oho- amino ' act ds and proteins. 
This concept was developed by Watson and Crick and 
called "The Central Dogma". This dogma stated that 
the information should always be carried from either
D N A  > DNA, or DNA R N A  Protein , and cannot
be reversed, llow-ever, its general validity has re­
cently been questioned as the result of the discove­
ry of the RNA-dependant DNA polymerase in certain 
RNA viruses^ in 1970, which directly opposed this 
dogma and which brought about an important break 
through in cancer research, since the RNA viruses 
were oncogenic, that is capable of bringing about 
malignant change.
However, Crick defended his dogma by modifying it 
as shown below.

DNA — — R N A _________^ProteinI t
1 I

The solid arroî s indicate general transfers^ 
and the dotted arrows refer to special cases, 
which may occur.

The study of the ole ctroni c configuration of giant 
biomolecules was iiiitiatod by Szent-“Gyorgy as early



as 1 9ù 1 ., Goa i sou/ ' d - . ] 93 V t;ugge;itôa .'tiiai; ti'ioro was'

some evidence that some organic substances with 
benzene configuration could induce cancer. Thus 
Szent-Gyorgy, Linus Pauling, Coulson, etc. introduc­
ed Quantum Theory into Biochemistry,
Before DNA was discovered scientists focussed their
attention on finding the electronic configuration 
of proteins. However, the- discovery of the DNA struc­
ture attracted many scientists to find the electronic 
structure of DNA, Many scientists, since have done a 
great deal of calculation on energy levels of purine 
bases, pyramidine bases and their individual compo­
nents. A great deal of this work has been done by
Albert and Bernard Pullman, who were credited as the
pioneers in finding a quantum mechanical interpreta­
tion of chemical carcinogenesis and of anti tumor 
cictivity in cancer and leukaemia.
The possible correlation between some carcinogenic 
agents and the electronic structure of DNA was first 
suggested by Hoffmann and Ladik^ . Their hypothesis 
was based on the results of their theoretical cal­
culations on energy bands of DNA. However, as DNA is 
a complicated macromolecule, all theoretical calcu­
lation have to make very drastic assumptions. One of 
them which is vital in order to pei'form a calculation, 
is that it :1s a periodic structure, while in reality 
the DNA moJeci.'le is almost certain not periodic.



Wi til out assuming that :i t is a. periodic structure^ no 
calculation can be made based on the available Solid 
State Theory,
The two methods normally used in Organic Chemistry 
when dealing with 77-electrons are either the Valence 
Bond Method or the Molecular Orbital Method.
The Valence Bond method, abbreviated VB, considers 
each electron to be bound to a certain nucleus, and 
the atoms are bound by covalent bonding. However, for 
a biomolecular structure, ^this method is inadequate, 
due partly to the complications in the mathematical 
treatment. For example treatment of the naphtalene 
problem involves finding the solution of a determi­
nant of Older 42^, and the order of determinant in­
volved increases rapidly with the increase in mole­
cular dimension. It is also inadequate, because in a 
biomolecular structure there exist other types of 
bonding besides covalent bonding, for example ionic 
bonding. Benzene, which is the simplest form of the 
heterocyclic-hydrocarbon family, has itself 170 ionic 
structures ! So it seems that the VB method is not so 
efficient when dealing with biomolecular structures. 
The Molecular Orbital Method, abbreviated MO, which 
starts from several different approaches, for example 
the Semiempirical Linear Combination of Atomic Orbi­
tal (LCAO-method), the Self Consistent Field-Molecu­
lar appoach (SCF-MO), and so on, assume s that only the



nuclei and the inner electron shell are bound, toget­
her, and that the valence electrons move in polycen­
tric orbits, which extend though the whole molecule. 
The object of the MO-method for Tf -electrons is to de­
duce the form of the orbital for each TT-electron, and
to calculate each energy. Therefore the order of the 
determinant to be solved in a resonating system is 
equal to either the number of TT-electrons in the sys­
tem or the number of atoms carrying the tt -electrons 
(for atoms with "lone pair electrons"). Thus the or­
der of the determinant is small, Naphtalene has a 
determinant of order k-2 in the VB method, while in 
the MO method it has a determinant of order 10. This
low order of the determinant makes it possible to use
the same approximation for a series of widely differ­
ent compounds. Another advantage of this method is 
that the elements of the determinant itself expressed 
in terms of molecular orbitals of each one of the tt- 
ele ctrons,
The aim of this dissertation is to present a histori­
cal survey of the work that has been done by differ­
ent methods in attempting to find the electronic 
structure of DNA and whereever possible to compare 
theoretical results with the available experimental 
data.
In the final chapter a very simple one dimensional 
model is treated exactly. The lAiilosophy behind this



pli y 8 i c a 11 y no t v e r y m e an i n g f u 1 o al on 1 a t :i o n w a s t. o 
ascei’tain whether, by a. suitable choice of the para­
meters of this model, it was possible to reproduce 
some of the theoretical results obtained by calcula­
tions based on more plausible physical assumptions, 
but involving drastic computational approximations* 
In particular, it was shown that the fact that the 
bands in a heteronucleotide structure are narrower 
than in homonucleotide structures is due simply to 
the smaller overlap of the wavefunctions caused by 
the interpolation of different molecules*



0

Re Terencesï

1. The Double Helix, James D , Watson (Penguin Book)

2. The Discovery of DNA, Alfred E, Mirsky (Scientific 
American, June 19^3),

3. The Biochemistry of the Nucleic Acid, J.M, Davidson 
(7th ed. Chapman & Hall)

4. Baltimore, D . , Nature, 226 * 1209 (1970)
Tern in, H,M<, and Mizutani, S., Nature 226, 121 1 (1970).

5. Crick, F.H.R., Nature, 227, 561 (l970)

6e Advances in Cancer Research, I, 1-56, (New York, 
Academic Press, 1953)

7. Advances in Chemical Physics, Vol. VII, Ch.2,
Hoffmann, T.A. and Ladik, J,

8, Horizon in Biochemistry, I9 6 I, A. Pullman & B .
Pullman.



11

CHAPTER 2

2.1 General Structure and Properties of DNA

As described by Watson and Crick in 1953^, a DNA 
molecule is a double-stranded belix. Each backbone 
strand contains sugar, bases and phosphate. The two 
strands are linked to each other through the bases by 
two or three hydrogen bonds. However, the complete 
structure of the molecule is very complicated as can be 
seen in figure 1. For the sake of simplicity, it is 
assumed that the DNA molecule has only four different 
bases, which can be divided into two groups, one con­
sisting of Adenine and Guanine called Purine bases, and 
the other consisting of Cytocine and Thymine, called 
Pyramidine bases, both aromatic. Adenine pairs with 
Thymine and Guanine with Cytosine. The pair Adenine- 
Thymine is normally abbreviated AT and the pair Guanine* 
Cytosine abbreviated GC. The fact that a purine base 
on one strand is always paired with a pyramidine base 
on the other, allows the helix to have a constant > 
diameter. The chemical structure of this molecule is 
represented in figure 2, while figure 3 shows the 
pairing of the bases by two or three hydrogen bonds, 
linking the two strands together. In order to be able 
to form a picture clearly when discussing the possi­
bility of a periodic model of the DNA molecule, a
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ribbon model is represented in figure 4, Here it is 
clearly seen that the DNA molecule looks like a sort 
of spiralled ladder, with both sides of the ladder 
winding around an imaginary vertical axis. The back 
bone are then the sides of the ladder, which are 
phosphate and sugar, while the steps represent orga­
nic bases interconnected by hydrogen bonds. These 
bases are arranged up and down the ladder and cons­
titute a sort of four letter code, as represented in 
figure 3« This letter code is understood to spell out 
long words in a very large vocabulary, and carries 
information used in a biological reaction. The se­
quence of bases on a single chain does not appear to 
be restricted in any way, but it determined the se­
quence of bases in the other chain. So far, nobody 
has been able to read out this coded information. It 
is also believed that the genetic code in the DNA mo­
lecule is established by the particular sequence of 
the bases. There are three conformations of DNA, the 
A form, the B form and the C form. All of them are 
right handed double helices and cannot be separated 
without unwinding, but they have slight differences 
in their back bones and bases.
The A form has a rather tilted base, not horizontal 
as in the B form. It also has a slight difference in 
the structure of the back bone compared with the B 
form. The pitch of the helix and the number of bases
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phosphate units ta)

deoxyribose units (b)

purine bases Cc) 
(A and G)

pyrimi dine bases (d) 
(T and C)

FIGURE 1

DNA molecule, as suggested by James D. Watson and 
F,H.C, Crick in 1953, Each strand consists of phosphate 
units (a) and deoxyribose units (b) in alternating 
sequence. The two strands are crosstied by bases, 
purine (c) and pyrimidine (d).
Adenine always paired with Thymine and Cytosine always ■ 
paired with Guanine.

II1 1



ADENINE

CJ
H

GUANINE I

H

THYMINE

I t'kH.

CYTOSINE H

(augar)
|- , . DEOXYRIBOSE

?  "  ' - ■«. * > V  .V- v ^ '

FIGURE 2

OH

H V ., . j /O H
C CI I 
OH H

H— O P O—̂ H

0
1

PHOSPHATE H

Chemical structure of each component of DEA macro'-molecule, 
The shadowed area vill be used in figure 3 to indicate how 
these components build up the DNA molecule.
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1 5

FIGURE 3

A = Adenine 
B »  Guanine

T «  Thymine 
C *  Cytocine

This picture shows how the components of the DBA molecule are assembled 
together. It constructs a ladder, whose sides consist of attenuating 
units of deoxyribose and phosphate, while its steps are formed by bases, 
paired in a certain way, that is A with T, which are held together by 
two hydrogen bonds (indicated by two lines across the ladder sides), 
and G with C which are held together by three gydrogen bonds (the three 
lines connecting G and C in the picture) •
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%

phosphate units

deoxyribose units

hydrogen bond

purine bases 

pyrimidine bases

these two ribbons, which contain phosphate units 
and deoxyribose units, construct what is called 
the back bone (sides of the ladder).
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per turn in the- A form is somewhat different from 
that of the B form. Similarly there are differences 
in the C form compared to the B form, but here it can 
be added that the weak H-bond is strengthened and the 
base stacking is reduced, because it usually occurs 
in concentrated salt solution. However,” the form of 
interest in this report is the B form, because in j 
this form the bases are arranged horizontally. In 
fact this form is very much like that suggested by 
Watson and Crick in 1953 (figure 1).
Table 1 summarizes the data on the three different - 
forms.

Table 1 .

Form Pitch Residues 
per turn

Inclination 
of base pair 
from horizon­
tal position

(Na salt, 75^ 
relative humi­
dity)

28A 11 20

B
(Na salt, 92^ 
relative humi­
dity)

34a 10

(Li salt, 66^ 
relative humi­
dity)

31A 9.3
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The two strands make a complete revolution- every 3^A. 
It is accepted that there are 10 nucleotides, that is 
the monomer unit consisting of phosphate sugar and . 
base, in each complete turn, so that in the B form of 
the DNA molecule each nucleotide takes up 3.4A of the 
strand. That is the distance between the planes of 
■^o superimposed bases belonging to the same chain is 
3*4A. The adjacent bases are turned by 3^° relative 
to each other in a plane perpendicular to the axis. 
The distance of a phosphorous atom from the fibre 
axis is 10A, and the distance between the adjacent 
phosphorous atom is 7«1A, The attachment of phosphate 
group and pentose sugars is not syjbimetrical, so that 
the sequence of attachment will appear different if 
read in one direction along the chain to the way itb 
will appear if read in the other direction, as illus­
trate in figure 5 below. It is said that the two j.. 
strands have opposite polarity.

>»• yj
A

FIGURE 5

Shows the opposite polarity of 
the two strands caused by the 
different attachment of the phos­
phate groups and deoxyribose units 
in each chain (strand).



There are many exceptional forms of DNA, for example 
Tg, and some other viruses, but these are not of
interest in this report.

2.2 Some considerations on the structure and proper­
ties of DNA in view of energy band calculations.

The first vital assumption that has to be made 
is that the DNA molecule can be treated as a periodic 
structure, while in reality it is most probable that 
the DNA molecule is,not periodic. Refering to figure 
6 below, if for the moment it is assumed that the - 
bases are all equal, that is either all A*s of T*s or 
G*s or C's and that there is no hydrogen bonding that 
interconnects the two sides of thfe ladder, and that

à I

FIGURE 6

Schematic ladder model of DNA 
molecules.

A = Adenine 
G = Guanine

T = Thymine 

C = Cytosine
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the strands (sides of the ladder) are not polarized, 
than it can be said that the molecule is a doubly 
periodic structure that goes on until the height of 
the total molecule is reached. This model can be treat­
ed as a one dimensional periodic structure, with a 
short period, say, , that is the height of each 
step of the ladder, and a long period, say, , that 
is the height of one turn of the strands. Unfortunate­
ly this simple structure does not exist, but never­
theless the idea can be applied to a model which is . 
nearer to the real DNA molecule, as long as the ass­
umption that it is periodic can be justified.
In figure 7» the ribbon model is once more represent­
ed, the two arrows along the strands indicating the 
direction of its polarity. The diameter of the helix

^0-34nm

4mm

FIGURE 7

Ribbon model of DNA molecule.

2mm
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is 20A, which means that its radius is 10A. The long 
period as mentioned previously, is 34A.
Watson and Crick assumed that the angle between the 
adjacent bases in the same chain is 36°. This means 
that there are 10 bases in one long period, the dist­
ance between adjacent bases being 3«^A. This is what 
was previously called the short period •
In the following in particular, the B form of DNA is 
taken for further consideration. As previously dis­
cussed , this form is the most stable form of the DNA 
molecule, but the great advantage for calculation, 
is the fact that the bases are perpendicular to the 
imaginary axis of the double helix. The number of 
bases in DNA molecule is of the order of 10 .
It is also vital to understand the role of chemical 
bonding and types of bond orbitals.
If i|» is a normalized atomic orbital of an atom a,
which overlaps with ^ , a normalised atomic orbital
of atom b, and r , is the internuclear distance bet-a b .
ween atoms a and b, then the physical concept that 
the formation of a chemical bond is due to the over­
lapping of the the two atomic orbitals can be written 
mathematically as:

^ab(^ab) ” (overlap integral)

where S , is a function of r , .ab ab
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Wlien r , =-0: then S , = 1 , the normalisation condition, ab ab
When r _ = , then S , = 0, which is the orthogonallityab ' ab
condition. When S , is not equal to zero it is a mea-ab
sure of the non-orthogonality of atomic orbitals. It
is found that the overlap integral decreases rapidly
as r , increases. That is why in the calculations that ab
will be examined, all overlap integrals are assumed 
to vanish, exept those between nearest neighbouring 
atoms.
There are two types of bond orbital which arise from 
two different type of overlap, one is the so called

(sigma) bonding and the other is called « (pi ) bond­
ing. The a bonding is formed when the overlap is axial 
or frontal. Experimental data show that some proper­
ties of chemical bonds, for example bond length, bond 
energy, chemical reactivity,etc. are the same in dif­
ferent compounds, and hence the electrons forming a 
bond should be localized between the atoms they unite, 
forming a localized bond. These electron clouds give 
an idea of approximate size of the molecule. However, 
they do not give a significant contribution to the 
electronic character of the remaining bonds of the 
molecule. This type of bonding has no nodal plane.
The « bonding is formed when two p-orbitals overlap 
laterally. In order to satisfy the principle of max­
imum overlap, the electron clouds of the tt atomic or­
bitals must be parallel. However, it is possible to



23

calculate a bent bond if two adjacent orbitals are
2oriented so that their axis form an angle Q . The 

electron cloud of a tt orbital is not localized between 
the two nuclei forming the boding, but rather below and 
above the internuclear axis in such a way that it is 
necessary to consider both parts of the clouds as in­
separable and constituting a single bonding orbital.
The TT bonding has a nodal plane that passes through 
the nuclei^ This is a weak bonding and can easily be 
broken and disappear in an additional reaction. The 
electrons which form the a orbital are called a-elect- 
rons, while those which form the n orbital are called 
n-ele ctrons•

CJ- orbitals TT -orbi tal

In conjugated and aromatic molecules, both types of 
bonding exist. The a-electrons localized between the 
atomic nuclei constitute the molecular skeleton. They 
determine the geometric properties, such as bond length, 
bond energy, etc., but they contribute almost nothing
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to the molecular chemical behaviour, while the TT-elect­
rons are responsible for chemical reactivity, carcino­
genic activity, ultra violet absorption, etc.
However, the TT-electrons in these compounds can no T 
longer be said to be "localized", but they are "delo— 
calized TT-electrons". The prototype of aromatic com­
pounds is benzene C^H^. According to the MO method, 
the MO wave function vp- can be written as a linear

4
combination of the atomic orbitals (LCAO) where i 
and j are integers. Thus for benzene the MO orbital 
is

* ‘=2*̂ 2 +   +

where the c are constants which are determined in r
such a way as to make the energy function stationary; 
r is an integer.
It is clear from the above equation that each of the 
6 (six) TT-electrons has to occupy one MO orbital 
which extends over all the carbon atoms, and is hence 
completely delocalized, that is the TT-electrons are 
present all over the ring extending to all six carbon 
atoms, as sketched in figure 9*
The six hydrogen atoms are situated in such a way 
that the valence angle is 120^ (figure 9a) and they 
are all in the same plane namely that of the carbon 
atoms. This implies that the carbon atoms are hybridiz
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Ca) -̂'Bond network in Benzene, The picture on the right shows the TT-hybrids.

H

(6) (c)

FIGURE 9

orbital model for benzene. The fundamental framework of the molecule is 
provided by o~honds shown in part a. At each carbon is located an unhybridized 
Pg orbital which can overlap with Pz orbitals on both neighboring carbons 
as shown in part b. The result is the double doughnut-shaped molecular orbital 
shown in part c. This is actually only one of the new molecular orbitals that 
forms.

/ 2 \ed in the trigonal state (sp ) see figure 9h, The un­
hybridized p atomic orbitals (there are six of them) 
must overlap as much as possible in order that the bond 
may be as strong as possible. This can o n l y ‘be achiev­
ed if the molecular skeleton is planar and the unhyb­
ridized p atomic orbitals are perpendicular to it, and 
also if the bond length between the carbon atoms is 
between that of double bond and single bond.
In figure 9c the complete configuration of benzene is
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shown. The tt -electrons move freely in the two doughnut 
shapes above and below the nodal plane.
Generally speaking a delocalized TT-electron system is 
present in a molecule when the internuclear distances 
are between the values of that of a single bond, C — C, 
which is 1.5^A, and that of a double bond C=C, which 
is 1.33A. The delocalized energy (resonance energy), 
can be defined as the difference between the energy 
of localized electrons and the total energy of TT-ele ct­
rons , or it is the energy difference between the cal-» 
culated energy and the actual internal energy, as MO 
energies lead directly to obtaining the resonance 
energy.
The component of interest in the DNA bases are A, T,
G, and C and they are aromatic as has been discussed 
previously. Hence the delocalized n-electron system is 
present. Therefore in the planning of energy band cal­
culations three main points have to be borne in mind, 
they are :
- interaction between n-electron orbitals of single 

bases, for example that of A and T or G and C,
- interaction between TT-electron orbitals of the 

adjacent superimposed bases belonging to the same 

chain,
- interaction between superimposed base pairs.
This geometrical consideration of the molecule in 
general will be of importance when proceeding with the
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energy band calculations for DNA.
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CHAPTER 3

General Survey of Methods employed in DNA 
energy band calculations

The method which has mostly been used and 
that will be mainly discussed is the Molecular’ 
Orbital Method. The general geometry of the 
molecule and its constituents, the type of 
bonding and the type of electrons involved in 
the structure, have been discussed previously. 
Consider, first of all homonuclear molecules, 
that is those which have carbon (C) atoms only. 
In the MO method the molecular orbitals ; can
be written as linear combination of atomic 
orbitals 0'̂  where k = 1,2,....«,n, namely the 
number of C atoms in aromatic or conjugated 
system.
Hence :

= !  % jk  &   ( 1 )k=l

where c .. is the coefficient of the atomic Jk
orbitals ^  ' in the molecular orbital ijj •K J
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This is wliat is called Linear Combination of 
Atomic Orbital - Molecular Obital Method or 
abreviated LCAO-MO.
It is generally assumed that the best set of
coefficients c is that which minimizes the Jk
total energy. This leads to the so called 
secular determinant, equivalent to a secular/ 
equation for the energy. In such a complicated 
problem, the equation is based on a number of
approximations.

The better the approximation method used, the 
better the results should be.
In MO theory, the O -electrons and the 7f-electrons
are considered to be independent from each other.
This is justified because of two reasons. One
is that the electrostatic interaction between o’-
and T-electrons has been proved, by several

1 2  3workers, to be negligible ' ' , the other is that
the exchange between O - and TT -orbitals is also 
negligible, except for electron spin, resonance,
Refore proceeding to discuss some particular^ 
methods associated with the MO theory, some 
fundamental mathematical formulae will be outlined.



MO theory depends on the overlapping of the 
atomic orbitals in order that" the Id.near 
combination of atomic orbitals can be formed, 
Therefore first of all the overlap integral 
has to be considered,.
The overlap integral is :

«ks 0^0^ do............  (2)

where k and s. are different atoms.
Se CO nd ly , t h e e ri s r gy open a t c i', L 'i e Ham i 11 o iii an 
H is:

where
T (i ) is the Kinetic Energy operator for electron i
U (i) is the potential energy operator for core ̂ ^

electron i in the field of the core, U includes, 
all electrons other than ^-electrons.

1-  ̂ -—  is the electrostatic repulsion between
ij "ij

TT - e l e c t r o n s .



c
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It has to be borne in mind that the inner core 
electrons are lumped with the-nuclei, simply 
reducing the nuclear charge,
H describes the motion of the electrons for a 
fixed position of the nuclei. It depends on 
the position of the nuclei, and not on their 
momentum.
Thirdly, the Coulomb integral. For the time 
being it is assumed that the molecule contains 
only ca.rbon atoms, therefore the so called 
Coulomb integral in MO theory, given a symbol a , 
represents the energy of the 2p electron of the 
Carbon atom which forms the T bonding. It thus 
includes also the kinetic energy besides the 
Coulomb energy. This energy is the energy^ of the 
TT -electron in the presence of the other nuclei 
and it is a measure of the electronegativity of 
that atom. It should be borne in mind that the
value of CL is altered by the presence of any
atom other than Carbon, The Coulomb Integral,a , 
depends on ; ' .. '
- The nuclear charge
- The type of orbital
It is usually written as; a = f 0 0 dx ..,,(5)j r I 'r — TT  ̂r i
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Its numerical value is negative and it 
represents the energy required to remove an 
electron from the ir -orbital to infinity.
Fourthly, the so called Resonance Integral* 
given the symbol 3 and usually written as ;

3ks = d x   ........   (6)

Physically this represents the energy of 
interaction of two atomic orbitals and 0 •
Its numerical value is negative and depends on 
the interatomic distance of atoms k and s.

1• The simplest and most daring approximation
method in MO theory is the so called Hückel
Approximation method, which was developed by 

ZiHückel in 1931. This approximation is 
normally abbreviated HMO (Hückel Approx­
imation Method).
In his approximation the following assumptions 
are made ;
a. The relationship of the Hamiltonian H

to the complete Hamiltonian of the molecule 
is not specified, the electron repulsion 
term is neglected.
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b. The secular equation is simplified by making 
the following approximations:
- The overlap integrals S, are taken toks

vanish, A normalized atomic orbital can
always be taken, that means S, , =1.’ jck

- The Coulomb Integral ^ is assumed to ber
the same for each carbon atom, this means
setting all diagonal elements correspond-
in'g to the Hamiltonian H equal to a— TT
constant, say, ot
The Resonance Integral B . is assrr.icl i'COks
be constant between two adjacent atoms 
and is equal to Zero, if the atoms are 
not directly bonded (not adjacent). This 
means that the matrix elements between 
the directly bonded atoms (adjacent atoms) 
are constant, say, equal to 3 and the rest 
are Zero (neglected).

The neglect of the interelectronic repulsion 
among ^-electrons has the result that the HMO 
method fails to explain spectra and it gives 
ionisation potentials not in agreement with 
experimental results*
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To assume that S, = 0 is rather difficult toks
accept, because tlie calculated overlap between 
two TT -orbitals for carbon at the distance of 
adjacent atoms in an aromatic hydrocarbon is
0.25^
However, when the results of the Hückel 
Approximation are compared with those of modern 
Seniiempiri cal Methods,; they agree fairly well.
The Molecular Orbitals extend over several 
Identical nuclei, therefore it seems justified 
to assume that the Coulomb Integral ot is the 
same for all nuclei*.
The assumption that the Resonance Integral 3 
can be taken to be constant when atom k and 
atom s are directly bonded, and otherwise equal 
to zero, is also justified because 3 depends 
mainly on the internuclear distance k-s.
The simplest example for the application of the 
Hückel Approximation in a single molecule is 
BenzeJie .
Benzene has a plane ring, therefore the electronic 
wave function must be either symmetric ( O -electrons) 
or antisymmetric (w-electrons) under reflection 
in the plane* The tt molecular orbitals arc built
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out of p atomic orbitals a^, The correct I,CAO
I S

I j
If the function is to be single valued g6ik_^ 
where k = 0 , ^

The corresponding energies go in this order.
One finds that there is one electron per atom 
in the tt orbitals,, six in all* They fill the 
lowest: states k = 0 , ± ^ (two electrons with
opposite spins in each state).
Since the six atoms: ane treated exactly in the 
same way, there is no need of introducing single 
and double bonds.
The. energy values are eigenvalues of a matrix 
involving the already mentioned a and 3 
integrals. The 3 integrals are considered only 
for the nearest neighbours.
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The secular equation for benzene is

a - F 3 0 0 0 3

3 a -E 3 0 0 0

0 3. a -E 3 0 0

0 0 3 a “E 3 0

0 0 0 3 a~E 3

3 0 0 0 3 01-E

For more complicated molecules there are 
several values of the a and g integrals.
Other examples will be given when considering in 
detail the DNA calculations. When, instead of a 
single molecule, a periodic chain is considered, 
the conceptual modifications to the Hückel 
method are quite small." Consider a chain with 
N3primitive cells and n atoms in each primitive 
cell. Then the combination of atomic orbitals, 
assumed, as an example, to be 2p orbitals is

(£i + ja)
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where
a is the primitive translation vector 
j denotes the different primitive cells 0  ̂j ̂  Kl-1 

denotes the different atoms in one primitive 
cell

1 < 1 < n

r is measured from the atom j = 0 1 = 1
Tlhe coefficients c w i l l  have to be determined

j=0 j=1 j=2

1=1

r any point

By applying the Born-von Karman periodicity 
condition one finds in the usual way that
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».n ■

One then uses the above wavefunction ^ to 
calculate the expectation value of the energy of 
a de—localized electron moving in the periodic 
potential of the one-dimensional crystal

H =

and one minimises it by imposing the conditions 
3H—  = 0 for all coefficients.

Ik

The actual potential does not come explicitly in 
the calculation, but only through the parameter 3 
of the Hueke1 simplified method.
The minimum condition provides a systeim ocf 
algebraic homogeneous equations for the unknown 

For non-zero solution the determinant of 
the coefficients of the equations must vanish, 
With the abréviations

Y .. = a .  + g (r) e l k *  + B ( 1 > 11 1 11 11

Y . . = B . .+ B(f) « i k a  + g (l ) e - i k aIJ IJ IJ IJ

(r) stands for right and (l) stands for left
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ato
atom i atom i

atom .i

The determinant is

-• .......

^21 ^22“^  ....... Y 2n

• ». ... •     .......••

\i1 ^ n2  ^ nn ^

=  0

There are few other methods developed from the 
simple Hückel method, for example :

2. Mumiken-lfheland method* The difference 
between this method and the simple Hückel 
method lies in the overlap integral S.. 
Instead of taking it to be equal to zero, 
Mulliken and Wheland took it to be equal to
0.25 for nearest neighbours.
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3# Gocepert-Mayer and Sklar in 1938^, showed 
that by including the repulsion terra in 
the Hamiltonian,, this approximation can: 
be made more reliable,
Hbwever this method is considered as too 
theoretical and also by introducing the 
electrons repulsion term, one is faced 
with the electron repulsion integrals,, 
which involve a very laborious calculation»

There are many more methods based o m  MO theory,,
which have been developed, one of the most
important being the Self-Consistent Field
Molecular Orbital Method,, abbreviated (SCF-MO),
This method was first suggested by Routhaan's.
This method is sometimes also called SCF-LCAO-MO
method, because it uses LCAO-MO ̂ s as its basdJs.
However, most biological molecules are hetero-
nuclear molecules* This means that there is at
least one or more heteroatoms in the Tr -system
in addition to carbon ones* In the DNA molecule
these are usually Nitrogen^N) or Oxygen(o) atoms.
Hie MO method which includes heteionuclei was

7first introduced by Pauling and Wheland and 
therefore the method is known as Pauling-¥heland 
method.
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1. Pauling-Wheland method. One feature of this 
method is that the Coulomb integral a and
and the Resonance Integral for the
heteroatom X and the Carbon atom C are both 
expressed in terms of the Resonance integral 
for Carbon-Carbon atoms. The values of the 
Coulomb Integral and the Resonance
Integral 3 of benzene are usually taken 
as standard values..
An auxiliary inductive pararaetteir,, q % is used 
to take into account the inductive effect of 
heteroatom X' on neighbouring Carbon atom C^, 
where i indicates the position of the Carbon 
atom with respect to the heteroatom X.
Therefore the new parameters c&n be written
in the form:

^ X  “ “ c  ̂X ^CC
 ̂CX ” P CX  ̂CC •

A variety of methods is available for 
estimating the parameter ô ^ and p
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8 92* Pariser and Parr method '
This is a semiempirical model and it is 
based on the method of antisymmetrized 
products of molecular orbitals in the LCAO 
approximation,; including configuration inter­
action, but it incorporates empirical elements. 
The Hamiltonian is written as

"’ij

as has been discussed previously.
The wave functions is a linear combination 
of anti-symmetric products

= ---
1

Æ T
(î^2 ........................

“)

where
A is an index which indicates the particular 
configuration, i.e. the way the electrons 
are assigned to particular molecular orbitals
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the Xp are the atomic orbitals centred around 
the various nuclei.
and, for instance (^^3 is the one-electron
function for electron 3 in orbital with spin 
function 3 (spin down)
The expectation value of the energy

EA = iZf* dT^ dTg dT^

for the wave function can be expressed as

the sum being over the occupied molecular 
orbitals where the core energy for molecular: 
orbital is

where is either d ) or (0^ B )

The Coulomb integral between M.O. i and j is

2
-"ij = 0̂(1).; 0j(2) 0̂ (1) 0j(2) dv̂ dVg
The exchange integral between i and j

2
0*(1) 0,(2) --- 0,(l)0i(2) dv^dv^J 12 ' ^
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The EL.'. appearing in the formula for the energy1J
are equal to K. . if 0, and 0. have the same spin,^ J ^ J
but K Î . = 0 if 0. and 0. have different spins.4- J ^ J
In general a single 0 will not be a goodA
approximation to the wave function 0^ of a certain 
state because that state is a "mixture" of several 
configurations, for example„ there may be a finite 
probability of the appearance of excited states. 
Then one writes

and one carries out a "configuration interaction" 
calculation almost universally by the variational 
method.
X.

mn 0 0 dv^m ^ n

and

Hmn [0* 0 dv J ̂ m f̂ n

then the energy levels are given by the roots of 
the secular equation
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Hii - ES,, H,g _ ES,2

®21 - BSg, ®22 - ESgg

The integrals can be expressed through
generalisation of the core energy integrals, 
Coulomb and exchange integrals. The Exchange 
integrals are denoted by

(pq/rs.) = 0p(l)0^(2) ~ ~  0 ^(2) dv, dVg_

We must then have semiempirical methods of 
evaluating all these integrals, and also some- 
criterion for deciding the extent of configuration 
interaction that has to be included.
With configuration interaction there is a core 
integral in each matrix element

0*(1) [(T+U)(1)] 0j(l)dv,
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or in terms of the atomic orbitals

I. . = Z I C. G. h'P q ip jq pq

„core
®pq

In any case we need the LCAO coefficients C^^ 
and the atomic orbitals matrix elements pq
The rather drastic assumption made here is that 
the C^p are arbitrary, that is they may be chosen 
in the most convenient way, subject only to the 
ortho-normalisation condition. The excuse for 
this is that large deviations from the correct: 
(self-consistent) values may be compensated by 
adding more and more configurations»
No doubt, theoretical chemists know how to put a 
lot of common sense in their arbitrary choice.
The diagonal elements of are the a integrals
(improperly also called Coulomb Integral) of the 
simple method. The non-diagonal elements are the 
3 integrals (resonance integral) assumed to be 

the same between a given pair of atoms,, no matter 
what molecule the atoms are in. They are treated 
as basic empirical quantities.
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-A-S f*or. 01 — integrals, the Hamiltonian operator in 
them is

(Tr-HHF)(i ), = t O I  + üp(i) Cl) •« I t/ ( i )

where the atoms q are charged and atoms r are 
uncharged so that a * denotes a neutral atom.

\ ( 1 )  - n*(r,) = - j ^*C2.)-J'^qqC2)

Introducing the ionisation potential
H(l ) + U (l)| X  (l) = ¥ X ( l )  we then can writ L P J P P P ^ e

“ P = C = V - ^p + (qiPP)] - ^ (ripp)

where (qipp) -  - 1 ) X*(l)Xp(l)dv

This is called Coulomb penetration integral
between X and the neutral atom q.P"
This formula is used by Ladik for his matrix F
though he gives different names to various integrals.
Finally there are the integrals J. . and K. written1 j ^ J
together as (pq/rs), Coulomb repulsion integrals. 
These are complicated and it is suggested to 
simplify them by taking

 ̂ cT C . =P ip JP 3.J
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So that atomic orbitals replace molecular orbitals, 
in the integrands.
Then (pq/rs) = linear combination of integrals 
over atomic orbitals of the form (pp,qq). Tables? 
of these integrals are in existence.
Thus the Pariser.-Parr method makes use of the 
following quantities;
1 • Atomic ionisation potential
2, "Band Resonnance"' Integrals
3* Coulomb repulsion integrals (j>p/qq)
4, Coulomb penetration integrals (qipp)
All or some of them may be regarded as empirically 
adjustable parameters. Indeed this is the essence 
of the method, that quantities generally regarded' 
as purely theoretical may be considered as semi- 
empiricai, that is may be adjusted until agreement 
with selected experimental data is reached.
In applying this approximation it appears that 
some but not very much configuration interaction 
should be included^ It was found that the 
resonance integrals obtained theoretically were in 
a good agreement with those obtained experimentally, 
With small adjustment it was found that the 
resonance integral can be carried over from 
molecule to molecule. The theory can be applied to 
molecules containing tripple bonds. Adaption to



50

a -bonds is feasible. Rationalisations of the 
electronic repulsion integral and penetration 
integral curves are possible in terms of varying 
effective charges but this is not recommended,.

3, Pari sear-Farr and Pople approximation (PPP- 
approximation),
This was first introduced by Ladik^^, It is 
the semiempirical method,, initially devised 
for molecules with de-localized ir -electrons, 
which includes, in a simplified way. 
Configuration Interaction (Cl),
It should be mentioned that in a recent survey

11by R,D* Christoffersen this method is not
even mentioned,, since programmable extensions 
of it are now available making its original 
form obsolete,. It is thus very passible that 
despite the added complications, the method is 
still too simple to deal with such a 
complicated structure as DNA.
In a crystal like that of DNA the interaction 
between molecules in different cells is 
probably small, thus it is legitimate to 
consider only a small number of selected 
configurations.
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We remember that the Hückel approximation for a 
one dimensional crystal consisted in writing, for 
an orbital p ( 2p 3s 4d )

* P  = Cp.jl * P  [ &  - (Zi + ja)]

where ^ p [£ - (î^ + ja)] is the p atomic 
orhital of the 1^^ atom in the elementary cells:
The coefficients c satisfy the Blo.ch conditions

 ̂.^(k) =

and they are the eigenvectors of the matrix 
eigenvalue problem

( ^ )°k,l = =l(k) °k,l

where 1 denotes the various bands 
the elements of the matrix y are •

Y, = e, + e(rr) ^ika ^ g(left) ^-xka 
Is Is Is J-S

(r - - ja) | H | ja) >

where j is j+1 in (right)
j-1 in (left)
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With the PPP method the matrix ( Y ) is 
replaced by a much more complicated matrix (f ) 
whose elements, first for the case of a single 
molecule, are

\ i  " + jLl(Pss-=s) ^Is

The F may be considered as replacing the a ’s of 
the Hückel method, while the ' 3 *'s are replaced by

*'sl = ^ is

where
= ionization energy of atom 1 

E e l e c t r o n  affinity of atom 1 , i.e. ionization 
energy of the negative ion.

n
F , = 2 |c " charge density"11 p=l ' pi'

c _ is the coefficient of the atomic orbital p in pi
the molecular orbital 1

n
P , = 2 ^ . c*. c = "bond order"si p=1 pi ps
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= effective nuclear charge of atom s
= energy integral as before 
r

= Coulomb integral as before

01(1) 01(1 1 0g(2)dv̂ dv,

The charge densities and bond orders contain the 
coefficient to be determined. Thus initial values 
of the c ’s must be guessed, or worked out by moans 
of a simpler calculation (e.g. Hückel).
The eigenvectors of the matrix (f ) should be the 
same, if they are not the calculation must be 
repeated with different initial values until self- 
consistency is achieved.
The 3 —integrals are taken as adjustable para­
meters (generally taken different from zero only 
between nearest neighbours). .
The Y —integrals are approximated in a more or 
less plausible way.
If, instead of a single molecule, a one
dimensional chain is considered, the elements of
the matrix (f ) must be generalized in the same
way as, in the simple method, the elements 3
were generalized to the elements y involving 
6 (right) g (left).
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Here tlie p*s the 3 *s and. the y  ̂s must he 
generalized.. The initial values for the )
and p Cleft) again be found by a Hückel
calculation.
In a self-consistent procedure one should 
calculate the charge density for each k-state and 
add them up, an impossible procedure. Nothing is 
said about this; one assumes that the charge 
densities in the p^s states are kept constant for 
all states of a band.
So far only self-consistency for one configuration 
has been taken into account. Next some Cl must be
included by adding to further sums over different

-
atomic orbitals, generally corresponding to
excited states.. Spin should also be considered by
introducing wave functions which have the
appropriate symmetry for singlet, t r i p l e t ,
states. It was assumed that only interactions with
singlet excited configurations were important.
There is. in principle no difficulty in setting up
the inter-configurational matrix elements, but the
determinant of the secular equation becomes very
large. It is suggested than an averaging procedure

12like that of Belezney and Biczo may simplify 
matters and still provide, enough accuracy.
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Chapter 4

4,1 Survey of Calculations carried out by Ladik 
and others,

Ladik's idea is that one can start by 
calculating the electronic structure of an infinité 
chain consisting of only one kind of base. This is 
then followed by treatment of a model of an 
infinite double helix consisting a pair of bases, 
i.e. only A —T, or G— C. The idea is to follow this 
with calculations on more complicated periodic 
structures. He states "it seems probable that with 
the aid of the results obtained for different 
complicated periodic model sequences it will be 
possible to get a rather good approximation of the 
electronic structure of a real,; non periodic DNA 
molecule."
The first step is to work out the electronic 
structure of single bases. The method used 
initially was the simple Hückel Method.
Diagram 1 represents the different steps for the 
approximation of the electronic structure of DNA. 
Each line in the figure indicates schematically a 

single base in side view.
The dotted line indicates the smallest period­

ically repeated unit.
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(a) single base
(b) base pairs
(c) two superimposed bases
(d) two superimposed base pairs
(e) infinite chain of the same nucleotide
(f) infinite chain of the same base pairs
(g) infinite chain of periodically repeated two 

different bases,
e.g.. ATATATAT..-.......

(h) infinite chain of three different bases 
periodically repeated»

(i) infinite chain of periodically repeated four 
different bases.

(j) infinite chain of periodically repeated two 
different base pairs.

(k) infinite chain of periodically repeated three 
different base pairs, 
e.g.
A G T A G  T A  G T A G T ........
T C A T C A  T  G A T C A ........

(1) infinite chain of periodically repeated four 
different base pairs.

Energy levels of one base :
As explained before, the energy values are the
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eigen values of a matrix involving the overlap 
integrals Ot and the resonance integrals 3 ,
where the latter are considered for nearest 
neighbours only,.
The values for a-and 3-integrals were taken from 
previous calculations on aromatic molecules. For 
instance, for Adenine

(10)NH

C
( l ) N

H
(2)

N
(3)

C
(4)

,CH
(8)

N(9)

H

Molecular structure of molecule.

The numbers between brackets indicate 
the position of atoms in the molecules.
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Atom 1 a = 0.58 3 _
2 = 0.l4
3 = 0.58
4 = 0.07
5 = 0.07
6 = o,.oo
7 = 0.38
8 = 0,l4
9 = 0,58
10 =  0,90

Otis expressed in unit q̂ q » which as has been 
discussed before is Carbon atoms resonance 
integral. •
For atom number 6, Otis taken conventionally to be 
equal to zero.

6 (1,2) is 1.00
(2.3) 1.00
(3.4) 1.00
(4.5) 1.00
(5 .6 ) 1 . 0 0

(4.9) 1.10
(5,7) 1.00
(7,8) 1.00
(8.9) 1.10
(6,10) 1.00
(1.6) 1.00
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3 (4,5) is taken to be equal to 1.00
conventionally.
The secular equation is then

f).58-E) 1 0 0 0 1 0 0 0 0

1 (o .14-e ) 1 0 Q 0 0 0 0 0

0 1 (o .58-e) 1 0 0 0 0 0 0

0 0 1 (0.97-e) 1 0 0 0 1.1 0

0 0 0 1 (o.07-e) 1 1 0  0 0

1 O 0 0 1 (-e) 0 0 0 1

0 0 0 0 3 0 (o .58-e) 1 0 0

0 0 0 0 0 0 1 (0.14-E) 1 .1 0

0 0 0 1.1 0 0 0 1,1(0.58-E)0

0 0 0 0 0 1 0 0 0 (0.9-e)

This produces eigenvalues (energy levels)
E = 2.77 

2.13 
1.75 
1.15 
1.03 
0.53

= 0
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E = —0.79 
-1

-1.39
- 2.02

All to be multiplied.by 3 which is a negative 
quantity. The absolute value of 3 is just over 
3.3eV.
The first 6 levels are bonding and are filled, the 
last four levels are antibonding and empty.
The first excitation energy is thus O.53 + 0.79 =
1.32.
From the eigenvectors, one can calculate, using a 
standard way, the charge densities, oscillator 
strength, etc.
The excitation energy is in fair agreement with 
experiments; however the oscillator strength for 
this transition is calculated as 0.73 instead of 
the experimentally determined O.3O.
It seems to be a characteristic of this type of 
calculations that, while the energies may not be 
too bad, the wave functions are a poor approxi­
mation, Configuration interaction (Cl) must be 

taken into account.
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Energy levels of two adjacent bases;
The next step is the determination of energy levels 
and charge densities for a base pairs. For example 
Thymine-Adenine.

Molecular diagram for base pairs 
Thymine - Adenine,

Here we have 20 atoms instead of 10, thus a larger 
secular equation. The additional problem is how to 
deal with the hydrogen bonds joining the two bases, 
that is whetner to consider the hydrogen atoms as 
separate centres or to represent the hydrogen bond 
by a 3 —integral. Both approaches were used in
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separate calculations, which is extended also to 
"anomalous" bases with a configuration slightly 
different from the standard one.
(a) With separate centres, the a -integrals for 

the two atoms X, Y, adjacent to H were 
replaced by a - 0.2 and a ^ + 0.2 while
^ jj was taken as -0.60 3 and  ̂ *
ot jjY — 0.04 3

(b) Without considering the Hydrogens as separate 
centres, the ot were replaced as in (a) and

 ̂ was taken as 0.2.
All these values are only supported by more or 
less plausible arguments and may in fact be 
considered as largely arbitrary.
It is claimed that the energy levels are not very 
sensitive to the choice of this parameters.

The following table gives the energy levels for 
Adenine—Thymine calculated in the different ways. 
All are expressed in unit ^
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Without considering 
separate H-centres

With separate 
H-centres

E = Î.53 
3.11 
2.77 
2.16 
1.80 
1.75 
1.74

1.15 
1.09 
0.90 
0.53 
0.45

- 0.80 

-0.95 
-1.04

-1.39 
—  1 . 60  

- 2^01
- 2.22
- 2.28

E = 3.55 
3.12 
2.78 
2.20 
1 .80 
1 .77 
1.76 
1 .29 
1.15 
r;.o6

0.62. 
0.52 

-0.49 
-0.72 
- 0.98 
-1 .09 
-1 .22 
-1...4.1
— 1 .63 
-2.03 
-2.0.22 
-2.34
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With the first set, the levels can be seen to 
correspond to those of the two separate bases, 
e.g. the third and fourth levels correspond to the 
first and second levels of isolated Adenine. When 
the H are taken into account, there are in all 22 
levels and an unambiguous correspondence is not 
always possible.
The first 12 levais are full. The activation
energy is 1.25 3^^ with the first set values and
1 .01 3 with the second set..CC
However the transition is between a level of one 
base to a level of other base, probably very un­
likely.. The activation energies within a single 
basis are about the same as in the previous 
calculation.

Energy levels of two superimposed bases:
The other configuration of two bases to be 
considered is when they are superimposed,, with 
their planes parallel. Because of the Helix nature 
of DNA, it is assumed that they are rotated by 36  ̂

one with respect to the other.
Here the g -integrals between an atom i on one ring 
and an atom j on the other ring are not known. A 
very rough approximation was then adopted by
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assuming that the g—integral vary with inter— 
unclear distance R in the same way as the overlap 
integrals S* Both for O’—type and tt —type inter­
action.

 ̂ ij (III ) ^ s. . (R,)

® ij ^^2)

Then, knowing the value of 3 to be used in the 
Hückel approximation for a distance ,; it was 
possible to find the value for any distance R^ by 
calculating the overlap integral S_^ as a function 
of R..
Because of the rotation of the bases about the long 
axis the 2p, this is just an example,, orbitals on 
the two rings will not have the same axis. If 9 
is the angle between the axis and the line 
connecting the two atoms, one will have

S. . = cos^G if; . dV - sin^Oxj J hi  ̂a J
sin 9 cos 9

*̂0 is the p-orbital directed along the axis, n is 
p-orbital directed perpendicularly to the axis.
The last integral vanishes because of orthogonality 
Similar consideration hold when the two atoms are 
not Carbons.
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About 1600 overlap integrals had to be calculated 
for the various combination of the four bases, in 
their standard and anomalous forms,.
Having thus estimated the j3—integrals between 
atoms in different rings, the setting up of the 
secular determinant is a straightforward. The
0—integrals between atoms in different rings turn 

out to be about 1/l 0 the /3-integrals between the 
same atoms on the same ring.
Rather surprisingly, the energy levels with the 
two bases superposed turn out to be not very 
different from those with the two bases adjacent. 
This is due to the fact that the energy levels are 
in any case not very different from those of 
isolated bases. However, the suspicion still 
remains that these results may be an artefact of 
the method and of the approximations employed.
The first excitation energy is found generally to be 
lower, with the bases superposed, than in the 
isolated molecules*
The oscillator strengths can be calculated and, 
though for the various reasons stated, one would 
not place great reliance on the calculation, the 
interesting result is obtained that these strengths 
are generally lower than in the isolated bases.
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This is in agreement with the experimental fact 
that the absorbtion coefficient of DNA is only 
about 60^ of the coefficient calculated by super­
posing the spectra of the single nucleotides..

Band structure of an infinite chain of a single 
nucleotide ;

.. The number of bases in one chain of DNA is about 
10 ,̂; thus it is legitimate to consider the chain as 
infinite.» It is not completely certain whether 
there is some periodically repeated unit ; there 
probably is, though long and with a complicated 
structure. This unit is considered as the primi­
tive cell of a one-dimensional crystal. As a first 
step it was assumed that it consisted of a single 
molecule of one of the four bases.- Although the 
chain is called one-dimensional„ each cell has a 
number of atoms in a plane perpendicular to the 
axis. As in the case of two superimposed bases, 
the helix nature of the chains was taken into 
account* The calculation was performed again with 
the simple LCAO-MO methods in the simplest Hückel 
model.
The determinant is, as has been discussed in 
chapter 3,
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^11"^ ^^12 ................  '^In

^21 '̂ 22”^ .........  '̂ 2n

^nl ^n2    rnn-E

=  0

It is of the same type as for an isolated bases, 
except that the elements are now functions of
k, and thus the energy levels are given as 
functions of k and form energy bands in the usual 
way, one band for each row of the determinant, that, 
is one band for each atom in the primitive cell, 
for instance 10 for poly-adenine.
In order to carry out the calculation in the 
simplest way, a drastic approximation was 
introduced here; the same a and )3 parameters were 
used as for single bases. In order to calculate 
the ^(left) was again assumed

that these energy integrals vary with distance 
between the two atoms in the same way as the 
corresponding overlap integrals* and the values of^ 
the overlap integrals calculated for two superposed 
bases were used.
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The "valence" and "conduction" bands are highest 
filled band and the lowest empty band, deriving 
from the highest filled level and the lowest 
empty level of the isolated basis. In the case of 
Adenine these were at 0,53 and at —0.79 in units of 

which is a negative quantity.
Still for Adenine, it was found that the highest 
filled level at E = 0.53 spreads into a valence 
band extending from E = 0.58 for k=—^  to 
Ê  = 0,48 for k = 0, while the lowest empty level 
at E‘ = -0.79 spreads into a conduction band 
extending from E = -0.75 for k = —~  to E = -0*82: 
for k = 0,
Ihcidently, it appears somewhat strange that two 
consecutive bands should have energy maxima and 
minima at the same point.
For other bands it was found that the edge is not 
necessarily at k = 0 or at k = —^ , but may be at 
an intermediate value*
The energy gap is thus indirect "and of magnitude 
0.48 +; 0.75 = 1 .23, a little less than the first, 
excitation energy of the isolated basis; this Is 
to be expected in view of the broadening of the 
levels.
Similar results were obtained for the other 
poly-bases.
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Again one wonders how much these results are due 
to the type of approximation used.. As for the 
width of the bands, this must be, within these 
approximations, of the same order as the # 
integrals between different bases. It was found 
when dealing with two superposed bases that these 
integrals could be estimated as about 0,1. Bands 
of this width could then have been anticipated, 
and the more quantitative results yielded by the 
calculation are open to much doubt*
The same considerations may explain the fact that 
the width of the higher bands is not larger than 
that of the lower ones, as is the general casa with 
ordinary metals and semiconductors* Here all widths 
are about the same as the P integrals, and there are 
so many bands of comparable width because there are 
so many atoms per primitive cell. This was as fair 
as the calculations had progressed up to 196.4* 
However the results for superposed bases, and the 
broadening calculated for poly-structures allowed 
some conjectures on the band structure of the real.' 
DNA, for instance in the model below, (only two base 
pairs X.

A GE A G:
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or more complicated periodic models,.
For the above model one would use the results
obtained for the pairs A    T and G  C and the
result: that the average band width is about 0.1 p . 
One could then determine which level of the pairs 
broaden into bands, which overlap and form a 
wider band. These results were re—obtained later, 
in the next paper to be reviewed. It is not 
necessary to stress the highly speculative 
nature of the results obtained. In particular, 
from our present knowledge, it seems that there are 
no periodic sequences of the basis in DNA.
For what it is worth, the model indicates that DNA 
is an insulator with an energy gap of 2.7 eV to 
3*5 eV, The lower value is obtained by considering 
separate H centres at the hydrogen bond joining the 
two bases of each pair, the higher value is obtained 
by not including the H-atoms as separate centres. 
Experimental results by Eley and Spivey (1962) on 
the variation on conductivity with temperature 
had indicated an activation energy of 2,4 eV.
These are the results reported in the review 
article by Hoffman and Ladik (1963).
Another calculation in the Hiickel approximation was 
published by Ladik and Bizco in 1964.
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They consider infinite chains of different 
periodic models.
The models considered were;

poly(A-T); poly(G-C); poly or poly [^1^5

[ t - I ]  ; [ c l 3
The extension of the theory required to pass from 
a single system of two adjacent bases A-T to an 
infinite chain poly (A-T) is the same as explained 
in extending the theory from that of a single 
basis to that of an infinite chain of a single 
basis.
Thus the secular equation for poly (A-T) is 
obtained from that for a single (A-T) by 
replacing the a - and g- parameters by k- 
dependent combinations such as

r. . = 9.. + g(right) ika  ̂ p(left)^-ika
I J  I J  I J  ^  I J

It remains a 20 x 20 secular equations, but with 
complex elements.
Without considering the H-atoms of the hydrogen 

bonds as separate centres, the results for poly
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A —T are, for the first two empty and the first two 
full bands ;
E (poly A-T) E(single A-T)
0.49 at k = 0 to 0.58 at k = -^ 0.53
0.4l at k = 0 to 0.49 at k = —  0.459-
-0.84 at k * 0 to -0.77 at k = tt -0.80
-0.94 at k = -|-to 0.93 at k = 0 -0.94

For poly G-C, similar results were obtained.

In the other four cases the complex matrices are of 
order 40 but all the principles and approximations 
on which the calculation is based remain the same.
In the case of homo-chains the band extrema were
always at k = 0 or k = ; in the more
complicated structures the extrema were generally 
found at intermediate values of k, probably due to 
some interaction between bands. In these 
calculations all bands are”of the same symmetry” 
and no crossing of bands is possible.
Table 1 gives the limits of highest filled and 
lowest empty band, their widths and the width of 
the forbidden gap for various periodic models of 
DNA. The values of k at which the extrema occur 
are also indicated.



76

KNEEGY-BAND CALCULATIONS FOR DNA MODELS 
Table 1. The limits of the highest filled and lowest 
unfilled energy bands, their widths and the forbidden 
bandwidths (in p units ), of different periodic models 
of DNA.

poly T

poly C

poly A

poly G

poly (A-T)

poly (g - c )

poly

poly

poly

poly

poly

poly

poly

poly

poly

poly

T
CK
c
G
T
A
G
A

( k ) E(k) k k  . AE AE_
 ̂ m a x  ̂  ̂ m i h m a x m i n G

0 .4 6 4 0 . 5 4 7 0 TT 0 .0 8 3 1 . 4 7 8
—1 . 0 3 6 - 1 .0 14 0 TT 0 . 0 2 2

0 ,5 3 7 0 .6 3 1 0 TT 0 . 0 9 4 1 .361
-0 .8 6 .7 - 0 .8 2 4 0 TT 0.,043

0 .4 8 0 0 . 5 7 6 0 TT 0 . 0 9 6 1 . 2 2 9
- 0 . 8 2 3 - 0 . 7 4 9 0 TT 0 . 0 7 4

0 . 3 3 6 0 . 4 3 3 0 TT 0 . 0 9 7 1 . 394 ;
- 1 . 1 2 2 - 1 . 0 5 8 0 TT 0 .0 6 4

0 . 411 0 .4 8 8 0 TT 0 . 0 7 7 1 .1 7 7
- 0 .841 - 0 . 7 6 6 0 TT 0 . 0 7 5

0 . 3 1 0 0 . 3 8 5 ,0 0 . 80TT 0 . 0 7 5 1 .221
- 0 . 8 5 4 —0 .8 1 1 0 TT 0 . 0 4 3

0 .4 8 6 0 . 5 0 3 0 TT 0 . 0 1 7 1 . 3 3 0
- 0 .8 4 6 - 0 .8 4 4 0 0 .0 0 2

0 . 5 1 4 0 . 5 2 2 0 TT 0 1 . 3 0 0
- 0 . 7 8 6 - 0 .7 8 6 0 TT 0

0 . 3 8 6 0 . 3 8 7 0 TT 0.001 1 .2 2 9
- 0 .8 4 3 - 0 .8 4 3 0 TT 0

0 .4 8 4 0 . 4 9 3 0 TT 0 . 0 0 9 1 . 2 7 0
- 0 .7 8 6 - 0 .7 8 6 0 TT 0

0 . 3 7 2 0 .3 8 5 0 TT 0 . 0 1 3 1 . 1 5 5
—0 . 7 8 6 - 0 . 7 8 3 0 0 . 0 0 3

0 . 3 7 4 0 . 3 8 0 0 TT 0 . 0 0 6 1 . 0 9 8
- 1 .0 24 - 1 .0 2 4 0 TT 0

0 .3 4 6 0 .3 5 1 0 O.7OTT 0 . 0 0 5 1 . 0 3 7
- O . 8 I 5 - 0 . 6 9 1 0 . 87*11 0 . 20TT 0 .1 2 4

0 . 3 4 2 0 . 3 5 6 0 TT 0 .0 1 4 1.041
- 0 . 8 6 0 - 0 . 6 9 9 0 . 437T 0 . 26tt 0 .1 6 1

0 .4 1 4 0 . 4 5 4 0 . 13 0 . 57% 0 .0 4 0 1 .1 2 2
- O . 8 0 5 -O .7 O 8 0 . 0 9  TT 0 . 78TF 0 . 0 9 7

0 . 3 3 2 0 .3 5 1 0.15TT 0 . 34% 0 . 0 1 9 1 . 0 8 0
- 0 .8 0 4 - 0 .7 4 8 0 . 8 8  TT 0 . 75% 0 . 0 5 6
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The forbidden gap is not very different in various 
models. Some of the lower values are due to the 
fact that some bands are "combinations” arising 
from a combination of levels belonging to different 
bases•
The lowest value of is I.O37P which is about 
3«45eV. Experimental value for DNA from d.c. 
conductivity measurements are lower, it is about 
2«4eV. However the simple Hiickel approximation 
employed in the calculation does not take into 
account the existence of different multiplets; the 
calculated bands are "singlet” bands. It may be 
that the experimental value refers to a transition 
between, for example, a singlet and a triplet band, 
although these transitions are forbidden in first 
approximation.c Clearly more accurate calculations 
will have to take into account the possibility of 
different configurations (Configuration Interaction) 
and this has been attempted by Ladik and co-workers 
in their 1968-1971 papers. Before examining these, 
another attempt carried out in the simple Hiickel 
approximation will be examined.
Note that so far not much has been said about the 
fundamental problem of whether the interaction 
between base pairs in different planes is strong 
enough so that the n electrons may be considered as



78

delocalized over the whole chain. Often one 
assumes that the different planes are held 
together by van der Waals forces and then there 
would not be much overlap between the n-wave 
functions in different planes. Still the 
calculated width of the bands is not negligible, 
and this indicates that there must be some overlap. 
The last calculation with the simple Hiickel method 
was carried out by Belezney and Biczo (1964),
The last step in Ladik*s programme was to work out 
the energy levels of a periodic chain of A-T and 
G-C base pairs. This was carried out by Belezney 
and Biczo by means of an ad hoc method of averaging.

Bn l

Bn -1  , n

Bk , k + l

Bk -1  , k

B23
B 12

Bn l

n

^n-1

*Sc+l

^ - 1
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Let be the matrix corresponding to the secular 
determinant for the subunit.

a (k) 11 - E

a(k)nl

> , 'S '

4 5 ' - E
4:^

4 : )

4 : >

where the â  ̂̂ represent the usual Hu eke 1 parameters 
a and P . Then only the interaction between 
nearest neighbour subunits is taken into account 
using matrices which contain the p-integrals
between atoms belonging to neighbouring subunits.

Bk , k+1

^(k,k+1) 
11

(k , k + 1 )\In

(k,k+l)
.̂ n1

(k,k+1)
nn /

Then the complete Secular Equation for the whole 
chain is;
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«12 0. . . 0 0 . . ,..... 0 ®1N:
«21 A_ 0 0 . . •• • • - • 0 02 23
0 ®32 A3...

•#
e

0
•

0 . . .
#
•

#

0#
#
#

0 0 0 C l «k-1,k
•
»0

#

0

•
•
#0

0 0 0 «k.k-1 ®k,k+l 0 0
0 0 0

•
0

•

«k+1,k ^+1
#

0 0

0 0 0 •
0 $0

♦
0 ®N-1 « 1

«N1 0 0 0 0 0 ®N,N-1

=  0

where

The number r of different subunits depends on the 
macromolecule; in the present model r = 4 (A-T, 
T-A, G-C, C-G) . Let p^ be the probability of 
appearance of subunit r, then one can define an 
average ;

and similarly if is the probability that units
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i,j are nearest neighbours one can define an 
average

« = i?d %ij «(ij)
=  1

B(ij) is the same as B . .
1  J

Then each matrix (A^) = (Â) + ( a
where a ̂  is a deviation from the average, which is 
assumed to be a lot smaller than (a ). However when 
the determinant is developed it is clear that linear 
terms in the deviations will cancel out, thus,, 
neglecting second order terms, we can replace the 
true secular equation by

Â B 0   0 B"̂

B"*" Â B   0 O

0 0 0  B'*'! B

B 0 0   B"*" A

= 0

So the model macromolecule has been replaced by an 
average homo-macromolecule, with all the subunits 
equal. The problem is then the same as that of 
poly-adenine, etc. previously treated by Ladik, 
except that now the periodic subunit is a very
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nebulous average of the true subunits. The 
average depends on the choice of the probability p, 
q* Initially, presumably all p were taken as 
(four:subunits; G-C, C-G, A-T, T-A) and all q were 
taken as l/6.
The error due to averaging may be reduced by a 
suitable choice of the set of basis functions used 
to calculate the matrices A^. But in general one 
"average level" will correspond to two true levels. 
The results obtained for poly were

Ladik results

First empty band

First filled band 0.346
0.350

Energy Gap 1.18 1.055

They are compared with those of Ladik which are 
called "exact" by Belezney and Biczo while they are 
only a rough approximation..
It is worth mentioning that one method shows a wide 
valence band and a narrow conduction band, the other 
method yields the opposite results. The fact that 
the positions of the bands and the energy gap are 
similar with the two methods seems to be just a
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consequence of the position of levels in the 
isolated bases (different ones), a result much too 
simplicistic.
Calculations were repeated with different values of 
the probabilities p and q, corresponding to 
different (A-T)/(G-G) ratios found in different 
types of natural DNA. The results again do not mean 
much and could have been anticipated by looking at 
the genesis of levels.
The first application of the PPP (Pariser-Parr- 
Pbple) approach to DNA-like structures was made by 
Ladik et. al. in I968. They recalculated the band 
structure of the five polyhomonucleotides previously 
worked out by the simple Hiickel method. The 
ionisation potentials and electron affinity values 
were taken from tables. For the Y-integrals a 
simplified expression was used while for the f 
integrals the same values were taken as in the 
previous calculations.-
The results were rather shattering; the bands 
obtained in the present approximation are vastly 
different from those obtained:, in the Hiickel 
approximation.
A comparison of results is made in the next section.
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4.2 Comparison of results.

The tables below show the results of the two 
methods which have been discussed previously, namely 
the simple Hückel methods and the Pariser-Parr- 
Pople method.

Table 1
Results obtained using the Hueke1 Approximation for 
Adenine

Level of isolated corresponding band
molecule in eV in eV

Full
Bands

Empty
Bands

-9.22 -8.63 to -9.87
-7.09 -6.04 to -7.54
-5.83 -5.68 to -6.01
-3.83 -3.81 to -3.89
-3.43 -3.33 to -3.42
—1.76 —1.60 to —1.92

2.65 2.74 to 2*49
3.33 3.41 to 3.28
4.63 4.68 to 4.55
6.73 6 ..74 to 6.69
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Hence the energy gap according to this method is 
Eç, = 4.4l eV for the isolated molecule. Similar 
results were obtained for the other bases.

Table 2
Results obtained using the PPP approximation

Level of isolated 
molecules in eV.

Full
Bands -16.73 

-15.58 
-13.48 

-12.33 
- 10.68 
- 9.85

Corresponding band 
in eV

-16.36 to -16,66 
-15.18 to -15.64 
-12.82 to -13.44 
—11.84 to — 12.08 
—10.60 to —10.60
- 9.18 to - 9.49

Empty
Bands

—  1 .86  

— 1.31 
+ 0.02 

2.01

1.41 to - 1.51 
0.67 to - 0.75
0.34 to 0.33 
2.54 to 2.48

We may note that the difference in energy between the 
HUckel and PPP molecular levels is (7.93 +, 0.48) eV 
for the six filled bands and (4.60 + 0.08) eV for the 
four empty bands.
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Clearly one of the methods is inadequate for dealing 
with the excited states. Within the occupied, or 
unoccupied levels, the results of the two methods 
are consistent, though there must have been a 
difference in fixing the zero of energy, 
corresponding to the different' results for the filled 
and empty levels. The energy gap which was 4 .0 9  eV 
with the Hiickel method, has become 7.67 eV with the 
so called self-consistent procedure. The relation 
between this gap between the bands and the true 
energy gap is discussed below following such a large 
energy gap seems unrealistic for this type of 
structure, Tn the first paper the authors only 
point out in a foot note that the forbidden band 
widths obtained by the PPP method have nothing to do 
with the first singlet excitation energies of these 
system. It is then rather puzzling that they still 
carried out the calculation.
The width of the bands is generally smaller with the 
new method.

In the second paper, in conjunction with Avery and 
Packer of Imperial College, Ladik and Biczo worked 
out poly (A-T) and poly (G-C).
The method and the approximations were the same as 
for the single-base chains, but, as with the
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simpler method, the computational problem was more 
serious. The P -integrals between atoms in the two 
different bases were given the same values as in the 
calculation with the Hückel method. Five iterations 
were necessary to produce self-consistency to within 
10 ^ in the charge densities and bond orders.
The following tables, constructed as the table on 
the previous page, gives results for poly (A-T), in 
eV, for the two highest empty bands and the two 
lowest empty bands.

Table 3
Results obtained using the Hückel approximation for 
poly (A-T).

Level of isolated Corresponding band
molecule in eV in eV

-1 .76 — 1.93 to —1.63
1.50 .63 to -1.37
2.66 2.56 to 2^80
3.13 3.10 3.13
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Table 4
Results obtained using the PPP approximation for 
poly (A-T).

Level of isolated Corresponding band
molecule in eV • in eV

- 1 0 . 8 6  - 1 0 . 6 9  to - 1 0 . 5 0

- 9.71 - 9.62 to - 9.32*
-  2 . 8 3  - 2.84 to - 2.77
- 1.74 - 1.57 to - 1.47

*The E-k relation (one-dimensional) was calculated 
in full for this band.

A similar wide disagreement occurs for poly (G-C). 
The same things as in the case of single-base chains 
happen here, in particular the width of the 
forbidden gap is very large, i.e. 6.5 eV.
The relation of this value to the true energy gap is 
discussed more fully than in the previous paper. It
is pointed out that for an isolated molecule the 
singlet excitation energy between levels i and j is 
given by

1 A = (j - q  — Jij +
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where
j and ^ are the energies of molecular orbital j 

and i respectively,
is the Coulomb Integral between Molecular 

Orbitals i, j.
j is the Exchange Integrals between Molecular 

Orbitals i, j.
However, it may be shown that for an N-polymer the 
integrals J and K approach Zero as N goes to 
infinity if the electrons are delocalized. This is 
described exactly by Bloch-type wavefunctions. Thus 
there cannot be complete delocalisation, otherwise 
the energy gaps are all wrong.
The authors think that the difference between the 
true E^ and the calculated separation of the bands 
may be due to a correlation between the motion of 
the electron and that of the hole which it leaves in 
the valence band* There would be the formation of an 
exciton. The authors say that they have started 
calculations of this effect,, but they do not seem 
to have been published.
The next paper ( 1970). continues applying the method 
to more complicated structures, that is 
poly (A-T; G-C) ; poly (A-T; C-G) ; poly (A-T;T-A) and 
poly (G-C;C-G). The maximum and minimum energies of 
30 bands are given.
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For poly results in eV for the "valence" and
"conduction" bands, are compared with those 
obtained by the simple method.

Hiickel Method PPP Method

Highest 
filled band

Lowest 
empty band

Ladik Belezney-Bi czo
-1.17 -1.47
-1.15 -1.22

2.36
2.71

2.71
2.74

= 3 . 5 1 Eg = 3.93

-8.76
-8.73

—2.660
-2.657

Eg = 6.07

The same trends are observable as for the less 
complicated structures* The only new feature is 
that bands now come out to be very narrow. Even the 
width of the bands of are much smaller than
those of the bands of (A-T) only. This therefore 
placed the hypothesis of non-localization of the 
electrons in a serious doubt.
In these more complicated structures electrons seem 
to stick to their original molecule, though, again,; 
this may well be an artefact of the method of 
calculation. The conduction mechanism would be by 
hopping. Here, again the calculated "energy gap" is
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not related in a simple way to the experimental 
singlet excitation energy.
All the results obtained up to 1970 are discussed in 
Eadik's review papeir in the International Journal of 
Quantum Chemistry (l97l).
Here, he makes the point that the small width of the 
bands of the more complicated structures can be 
understood from the alteration of the sub-units 
which prevents strong interactions between similar 
levels..
It is worth noting that for these narrow bands, a 
calculation of the conductivity on deformation 
potential theory leads to results very far from the 
experimental ones*
It is mentioned that water impurities have a small
effect on the band structure* On the other hand 

2 +Mg ions produce drastic changes.
Ladik's final conclusion is that;
It seems probable that in DNA the electrons are 
strongly de-localised only in such segments of the 
macromolecule in which either the same bases are 
repeated or there are change impurities.. In other 
parts of the molecule the electrons should be 
described by the hopping models.
This conclusion puts in question the validity of the 
periodic models used in the calculations.
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There have been attempts at calculating the charge 
carrier mobilities in the periodic structure 
considered, based on the calculated band structure, 
even though the mechanism of conduction in DNA does 
not seem to have been ascertained.
The first attempt (1965) by Ladik et. al. is much 
too simplified. The conductivity obtained is much 
too high to be realistic. It is of the order of 
10^ to 10^ Ü  cm
The later effort by Suhai (l972) is more serious,
applying the variational methods of transport theory
for scattering by longitudinal lattice vibrations.
This gave conductivities in the range of 30 to 

"  1 “  1100 0 cm for band widths of range from 0.1 to
0.3 eV and 4 to 20 for band widths 0.02 to 0,1 eV. 
The mean free path was large enough to justify the 
hypothesis of delocalized electrons, particularly 
for the larger bandwidths..
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Chapter 5

5*1 Purpose of the Simple Model

From Ladik*s work, one conclusion can be 
drawn and that is that a heteronucleotide model has 
narrower bands than a homonucleotide.
However, a very simple and exact method can be 
employed to arrive to that conclusion as will be 
described in this chapter..
Consider an infinite chain of square potential wells 
with period A. The depth of the well is -V.

Q-

The solution of the Schrodinger Wave equation in the 
well is

= A  sin Y X + B cos Y x (1)

= A Y  cos Y ^ - B Y sin Y x (2)

where A, B are parameters to be determined
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Y ̂  = 2 2 2 _ ( e +v )

where m is mass of the electron 
is Planck Constant 

E is energy of the state considered 
V is the depth of the wells
Eliminating A and B to express ^(a) in terms of

f (0) .

I l4(a)\ ^  cos Y a sin Y a \  f  (o)
d  ̂  (a) I t - Y sin Y a cos y b. j I 6t^ (p)

\, / \ *= /
The matrix producing \p and ^  at one end of the well
from their values at the other end may be called a
transfer matrix. Similar formulae hold in a potential 
hill, V=0, except that Y may be imaginary if E is 
negative.- Xn this case cosYa, is replaced by 
cos|y[<5 and sin Y & is replaced by i sinh | Y 
If in a period A of the chain one has a number of 
different potential wells, the values of i|i and 
^  at one end of the period may be obtained from their 
values at the other end by application of a matrix 
b. . which is the product of all the transfer matrices 
of the various segments. But by the Bloch condition, 
one has also
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4 (A) ikA 4(0)
<^4 (a )

= e

dx

so that
l|< (A)

d  t (A)
dx

^11 ^ 1 2

b b
21 22

ikA i|) (O)
d^(0)
dx

'j' (0) 
4(0)dx

It should be noted that the matrix b^^ is unitary. 
The determinantal equation is then

21

ikA
12

«22 - ®
ika = 0

^ 2 1 k A _  ( «21 =

or, because,., b^. is unitary, g^^kA _  ̂ b̂  ̂ + b^^)e^^+1= 0

2
-  1

=  i (  «11+ «22^ i  « 1 1 *  4 2 )  ]  ^

= cos kA + i sin kA 

Therefore cos kA = y (^  11^ ̂  22 ̂
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If cos kA is plotted against E(energy) one gets a 
group of the type illustrated in the figure below, 
in which the allowed energy bands are the ranges of
E in which | cos

+ 1

Assuming that a well with a certain potential V 
represents a base, either A, T, G or C.
For a homonucleotide chain, the model has the form

c T ^

V

For a heteronucleide chain* the model is
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Q- ^

0 r - - - It

. . . . . . . . J L

. . . 11

¥hen values for A, and are chosen

A computer programme was written to do the 
calculation and the results are plotted on the 
following figures.
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5*2 Analogy with Ladik’s results

1. A homonucleotide model with potential V=-1 
27»2eV and where a=3.6 Bohr radii. The programme 
produces results as shown in diagram 1. The table

below lists the band edges and band widths obtained 
from the diagram.

Table 1

Band 1 (A1) E=-0.8054 to E=-0.8095 AE=-0.004l
Band 2 (A2) E=-0.313 to E=-0.269 AE= 0.044
Band 3 (A3) E= O.I33 to E= 0.4l0 AE= 0.277
Band 4 (a 4) E= 0.453 to E= 0.995 AE= 0.542

2. Another homonucleotide model with potential 
V=-0.75 and a=3«6 Bohr R. The results are shown in 
diagram 2, and the table below lists the band edges 
and band widths.

Table 2

Band 1 (B1 ) e =-0.5783 to E=-0.5707 Ae= 0.0076
Band 2 (B2) E=-0.162 to E=-0.080 AE= 0.082
Band 3 (B3) E= 0.178 to E= 0.485 ae= 0.307
Band 4 (B4): E= 0.555 to E not included in the graph
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3. A homonucleotide model with potential V=-0.50 
and a=3#6 Bohr Radii,

Table 3

Band 1 (Cl} E=-0,3600 to E=-0.3420 AE= 0.0180
Band 2 (C2:) E=-0.0450 to E= 0.0890 AE= 0.1340
Band 3 (C3) E= 0.2250 to E= O.585O AE= O.36OO
Band 4 (c4) E= O.665O to not in the graph.

4, A heteronucleotide which is a combination of 
models 1 and 2 in the following fashion.

-1 .0

3.6
Bohr Radii

The results are shown in diagram 4 and the table 
overleaf lists the band edges and the band widths.
The bands are also correlated to those (A1 A2*_*_* B1*_*__*) 
of the previous tables.
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Band 1 (A1 ) E=-0.8084 to E=-0.8084 AE= 0.0001
Band 2 (B1 ) E=-0.5358 to E=-0.5345 A e= 0.0013
Band 3 (A2) E=-0.2939 to E=-0.2909 AE= 0.0030
Band 4 (A3)(B2) E= 0.1313 to E= 0.1425 AE= 0.0112
Band 5 (B2)(A3) E= 0.156 to E= 0.245 A e = 0.089
Band 6 (B3) E= 0.260 to E= 0.449 A e = 0.189
Band 7 E= 0.505 to E= 0.750 AE= 0.245
Band 8 E= 0.785 to E not on ,graph

Hybridized

5*» A heteronucleotide model which is a combination 
of models 1 and 3 in the following manner.

.......

1
-aS

-1

3.6
Bohr Radii
The results are shown in diagram 5 and the table 
below lists the band edges and the band widths.

Table 5

Band 1 (A1)
Band 2 ( Cl ) 
Band 3 (A2) 
Band 4 ( 02 )

E=-0.8073 to E=-0.8073 AE^O.0001
E=-0.3511 to E=-0.34gi AE=0.0020
E=-0.2929 to E=-0.2876 AE=0.0053
E=-0.0038 to E=0.01797 AE=0.0142
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5-3 Conclusion

It can be clearly seen from the results that 
the bands are narrowed in the case of heteronucleotides. 
The results are tabulated in tables 6 and 7*

Table 6
Homonucleotide Heteronucleotide

V=-1
a=3*6 Bohr Radii

V=-0.75
a=3»6 Bohr Radii

V.=-1 and -0.75 
a=3.6 Bohr Radii

(a i ) A e =o .o o 4 i

(A2) AE=0.044 
(A3) AE=O o277

(B1) AE=0.0076 
(B2) AE=0.082 
(B3). AE=0.307

(AI) AE 0.0001 
(B1) AE=0.0013 
(A2) AE=0.0030 
(A3) AE=0.0112 
(B2) AE=0.089 
(B3) AE=0.189

Table 7
Homonucleotide Heteronucleotida

V=-1
a=3*6 Bohr Radii

Y=-0.50
a=3.6^ Bohr Radii

V=-1 and V=-0.50 
a=3«6 Bohr Radii

(a i ) AE=0.004l 
(A2) A e =o .o 44

( Cl ) AE=0.01 80 
(C2) AE=0.0660

(ai ) AE^O.0001 
(C2) AE=0.002 
(A2) AE=0.0053 
(C2) AE=0.0142
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Table 8 gives the band edges for the various bands, 
and also the energy levels of the corresponding 
isolated wells.

Table 8

Energy of Edges in Edges in
"atomic" Edges in Hetero­ Hetero­

Band level Homostrueture structure 4 structure' 5

From To From To From To
AI -0 . 8 0 7 6 -O.8O95 -0.8054 —0 . 8084 -0 .8 0 8 4: -O.8O73 -O.8O73
A2 -0 .2 9 2 1 -0.313 -0.269 -0.29.4 -0.291 -0.293 -0 . 2 8 8

A3 +0 .3 8 1  
(resonance) 0.133 0 . 4 1 0 0.156 0.245

B 1 -0 . 5 7 4 6 -0.5783 -0.5707 -0.536 -0.534
B2 -0.1312 -0.162 -0 , 0 8 0 0.131 0.143
B3 +0 .3 8 1  

(resonance ) 0.17.8 0 . 4 8 5 0.260 0.449

01 -0.3490 -0.3600 -0.3420 -0.351 -0.349
02 -0 . 0 1 8 8 -0 . 0 4 0 . 0 8 9 -0.03 0.00

In model 4 the correlation of the 4th and ^th. bands with 
A3 and B2 is not straightforward. These two bands are 
hybridized. The same phenomenon was observed by Ladik 
in a number of his models.
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Appendix 1

It has been claimed that there is a certain region, 
called the K region, in a condensed polycyclic 
molecule which, because of the-high concentration 
of TT-electrons, is able to possess carcinogenic 
properties. There are various arguments concerning 
the origin of these properties, but all accept that 
they lie in the n-electron distribution. However, 
they differ in the particular combination of derived 
quantities such as bond order, net charge, free 
valence, energy of excitation,; resonance energy etc.. 
They all depend on which method one takes to 
calculate the above quantities, namely the valence 
band method or the molecular orbital method.
The K region is an 'energy rich' region. Its very 
shape makes it exceedingly accessible to any 
approaching radical. It is less easily screened 
than most of the rest of the molecule. It might be 
called an 'exposed bond.'

1,2 Benzanthracene

K - region
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e.g,
\ K  - region

Phenanthra cene

r‘ - V.

K - region

3,4 Benzphenanthrene

The K  region possesses unusual electrical properties. 
The high bond order marks it out at once as likely to 
be significant. The relative case with which charge 
can be moved to this region gives an explanation of 
the power of methyl substitution to enhance a 
carcinogenicity which is sometimes latent..
The carcinogenic properties are suggested to be 
correlated with:

a.o Bond order
b. Charge density and distribution
c. Free valence
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These quantities,, a combination of which is called 
the * electrical index'- are all calculated using 
either the V.B. approximation or the M.O. 
approximation.
It has been suggested that there is a threshold 
value in the K region. When the electrical index of 
the K region exceeds this threshold value then the 
substance is carcinogenic,
a. Bond order

Table 1
Mole cule Bond Order

M • 0. V . B .

1 , 2  Benzanthracene 1,783 1.440

Pyrene 1 .777

3,4 Benzphenanthrene 1.762 1.442
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Molecule Bond Order
M.O. V.B.

Chrysene 1*754 1.434

Naphthacene 1 .741 1 .452

TEriphenylene 1,690 1 .446

Considering the results of the calculation done one 
would be compelled to think that 1*2-Benzanthracene 
is very carcinogenic. In fact it is 3,4-

Benzphenanthrene that is very strongly carcinogenic* 
The only way in which we could suppose that bond 
order was significant would be to assume that the 
K. region has a high bond order, but certain other 
conditions have also to be fulfilled,..
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b . This has been proved to be hardly significant 
because the tt—electrons distribute themselves 
equally over aromatic framework in both theories
(V .B . and M.O.)

c. Take the result of the calculation on 
benzanthracine, using V.B. method.

Bond Orders

0.110

Free Valences

Immediately one can conclude that there is nothing 
special about the free valence in this region. A 
further objection arises from the fact that aza 
replacement to convert benzathracene into 
benzacridine, causes the sum of the free valences
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to increase. However this replacement is known to 
reduce carcinogenic power.
The idea of total charge in the K region was 
suggested and calculated by Mme.. Pullman.. The 
total charge in the K region is

2Pi2+ + Fg +Q2+ Pi + Pg

where p^ ̂  is the mobile bond order of the K region 
F.J and F^ are free valences at the two atoms

and q^ are the contributions of course structure
to the atoms
p^ and p^ are the mobile order of the two bonds
which connect this bond with the rest of the molecule,
see diagram.
Pullman found that the threshold value is 1.291» above 
which carcinogeneity is almost certain to occur. The 
total charge at the K region, according to Pullman's 
theory is tabulated in table 2.
The mechanism of cancer-induction, according to Ladik, 
would be the unwinding of the helices of DNA caused by 
the repulsion of electric charges at the two ends.
This polarisation of the helix would occur in an 
electric field because the mobile electrons in the 
conduction band and holes in the valence band would 
become separated. The hypothesis is put forward that



115

there is charge transfer from the K-regions of 
carcinogenic compounds to.the DNA helix.
Of course several other factors should be taken into 
consideration. The above hypothesis was the initial 
cause for deciding to work out the electronic 
structure of DNA.

Coulson^ suggested that radiation-induced cancer
occurs when the energy of the radiation is higher
than the so called "threshold energy". He suggested
that this threshold energy is 3.4eV.

2Hoffmann and Ladik showed that the DNA molecule in
its ground state is an insulator with an energy gap
of 3»5eV. Energy from radiation can promote an
electron from the valence band to the conduction
band, thus causing the macromolecule to become a
conductor•

3 hMason * suggested that the mobility of this elec­
tron has some connection with the occurence of 
cancer. However, the mechanism of this connection 
is not known for certain. It could be that there is 
a strong local electric field inside the cell, for 
example from the presence of dipolar molecules, 
from local differences in the ion concentration,etc. 
The field has to be strong along the axis to prevent 
quick recombination of the exciton.
In normal circumstances as DNA is an insulator, this
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static electric field causes a deformation of the 
charge cloud of the individual nucleotide bases. 
However, when DNA becomes conducting, then this field, 
when it is in the direction of the axis of the 
macromolecule, will produce a migration of the TT- 
electrons, thus a statistical probability exists for 
a net electric charge to appear on the ends of an 
excited or ionised DNA molecule, the molecule is 
polarised. It is understood that both parts of the 
molecule are polarised, because the delocalized TT— 
electrons system belong to the double helices.
It has been suggested that polarisation of the mo­
lecule can cause replication of the double helix.
If the molecule becomes polarized there are charges 
of the same magnitude and identical signs at the ends 
of the chains. The potential energy of the repulsion 
due to these charges might induce the duplication 
mechanism. Thus, under the influence of radiation or 
carcinogenic agents the DNA molecule might duplicate 
at a time which is not determined by the coorperation 
of the whole organism. In this way, one may assume 
that in the cells of some tissue a great number of 
new DNA molecules can appear in an instant which can 
lead to mitosis of these cells. However, these mitosis 
is not determined by the growth regulation of the 
orgaisra and is therefore undesired. It is then 
possible that this might induce a series of such
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irreversible biochemical reactions in the tissue in 
question, which converts these cells from normal 
into tumor cells.
Burch suggested that the radiation induced cancer 
happened only when the radiation cause two specific 
chromosome breaks.
Butler^ explained the mechanism of this break. 
However, the probability that the radiation will 
hit those special chromosomes at special place is 
very small indeed.
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Tbtal Charge/or density at K region in Pullman's Theory

Car cino geni c
Compounds Total Activitv

Charge
Skin

Sub­
cutaneous
Tissue

Naphtha cene 1 .258 0 -
Anthracene 1.259 0 0
Triphenylene 1 .260 0 -

-Benzacridine 1.260 0 -
1,2-Benzacridine 1 .270 0
Chrysene 1 .272 + +
5-Methyl-3,4-benzacridine 1.273 0 -
Naphthalene 1.274 0 -
1,2-Benzanthracene 1 .283 + +
5 f8-Dimethyl-3 » 4-benzacridine 1 .284 + 0
5 » 7-Dimethyl-3 ,,4-benzacridine 1.285 0 -
5 » 9-Dimethyl-3,4-benzacridine 1.286 0 +
Phenanthrene 1.291 0 -
8-Methyl-1 ,,2-benzanthracene 1.292 + 0
5-Methylacridine 1 .293 +++ -
3,4-Benzphenanthrene 1.293 + 0
7-Methyl-1,2-benzanthracene 1 .294 + +
6-Methyl-1,2—benzanthracene 1.294 + -
9-Methyl-1,2-benzanthracene 1 .296 ++ +++
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Compounds Total
Charge

Car cinogeni c 
Activity

Skin
Sub—
cutaiieous
Tissue

5-Methyl-1,2-benzanthracene 1 .296 ++ ++
3“Methyl-1,2-benzanthracene 1 .298 + ++
4-Methyl-1,2-benzanthracene 1 .298 + ++
5,7,9“Trimethyl-3,4-benzacridine 1 .298 +++ 0
5,9-Dimethyl-1,2-benzacridine 1.302 +++ +++
5,8-Diraethyl-1,2-benzacridine 1.304 ++++ +++
5,7-Dimethy1-1,2-benzacridine 1 .304 ++++ +++
1 0-Methyl-1,2-benzanthracene 1 .306 +++ ++++
5,6-Dimethyl-1,2-benzanthracene 1.307 +++ -
5, 9-Dime thyl-1 ,;2-benzanthra cene 1 .309 - ++.++
8-Methyl-3,4-benzphenanthrene 1.309 + 0
6-Methyl-3,4-benzphenanthrene 1.310 + +:
4,9-Dimethyl-1,2-benzanthracene 1.311 - +++
1-Methyl-3,4-benzphenanthrene 1.312 ++ 0
2-Me thyl-3,4-benzphenanthrene 1 .312 +++ +
5,7,9-Trimethyl-1,2-benzacridine 1.312 ++ + + +
7-Methyl-3,4-benzphenanthrene 1.313 + 0
5,1 0-Dimethyl-1,2-benzanthracene 1.317 - ++++
9,1 0-Dimethyl-1,2-benzanthracene 1.319 ++++ +++
4,1 0-Dimethyl-1,2-benzanthracene 1.321 - ++
6,9,1 0-Trimethyl-1,2-benzanthracene 1.330 ++++ ++
5,9,1O-Trimethyl-1,2-benzanthracene 1.332 ++++ +++
5,6,9,10,Tetramethyl-1,2-benzanthracene 1.343 +++ +
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APPENDIX 2

Computer Programm for Chapter 5

PROGRAM BAND (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=
o u t p u t )
COMPLEX ElGEN, WAVE 
COMPLEX AYE 
DIMENSION V(20),D(20)
DIMENSION C0SKA(400),EN(400)
DIMENSION TR(2,2)
AYE=(0.0,1.0) 
r e a d (5,i o o ) N 

C READ NUMBER OF SECTIONS NECESSARY TO MAKE UP
C THE POTENTIAL OVER ONE PERIOD. THIS IS THEN
C REPEATED INDEFINETELY

100 f o r m a t (i i o )
WRITE(6,101) N

101 F0RMAT(1H1,50X,*NUMBER o f  s e c t i o n s  i n  o n e  

PERIOD OF POTENTIAL*,I 10)
+0 )

DIST=0 
DO 1 J=1 ,N
r e a d (5,102) d (j ),v (j )

102 F0RMAT(2F10.2)
C THE LENGTH OF EACH SECTION AND THE CONSTANT

C POTENTIAL THERE.
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d i s t =d i s t +d (j)
1 ¥RITE(6,103) d (j ),v (j )
103 FORMAT(2ox,FI 0.2,*AT POTENTIAL*,FI 0.2)

READ(5,104) El,E2,M
C THE STARTING AND FINISHING ENERGY OF THE SCAN
C AND THE NUMBER OF POINTS AT WHICH TO CALCULATE

104 F0RMAT(2F10.2,I10)
.WRITE(6,105) E1,E2,M

105 FORMAT(* STARTING*,E20.3,*FINISHING*,E20.3,
+ *N0, OF POINTS*,110)

d d d =d i s t /n
DO 40 K=1,200
e n (k )=o ’

40 c o s k a (k )=o
DO 2 K=1,M
E=E1+FL0AT(K-1)*(E2-E1)/(M-1)
CALL UNIT(TR)

C THAT SETS THE INITIAL TRANSFER MATRIX TO UNITY
DO 3 J=1,N

3 CALL TRANS(d (j ),E-V(j),TR).
C EACH CALL MULTIPLIES THE MATRIX BY THE
C TRANSFER MATRIX FOR ONE SECTION

w a v e = c l o g (e i g e n (t r ))*(0.0,-1.o )/d i s t  
COSKA(k ) = 0.5* (TR(1,1)+TR(2,2))

20 WRITE(6,108) E jWAVE,COSKA(k )
1 08 FORMAT(lOX,*ENERGY*,E20.8,*WAVENUMBER*2E20.8,

+ *HALFSUM*,E20.8)
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e n (k )=e
2 CONTINUE

CALL GRAF1T(COSKA,EN,200,200,0,1)
STOP
END

SUBROUTINE UNIT(a )
DIMENSION A(2,2)
DO 1 1=1,2
DO 1 J=1,2
A(I,j)=0
IF(I.EQ.J) A(I,J)=1.0

1 CONTINUE
RETURN 
END

SUBROUTINE FILL(D ,S ,T R )
C PUTS TRANSFER MATRIX IN TR FOR SECTION OF
C LENGTH D , S=E-V PRESENTLY RESTRICTED TO S
C POSITIVE.

DIMENSION TR(2,2)
IF(S) 1,2,3

3 CONTINUE 
GAMMA=SQRT(2.0* S )

- TR(1,1)=c o s (g a m m a *d )
TR(2,2)=TR(1, 1 )
TEMP=SIN(GAMMA*D)
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T R (1,2)=TEMP/GAMMA 
T R (2,1 )=-TEMP* GAMMA 
RETURN 

2 CALL UNIT(TR)
TR(1,2)=D 
RETURN 

1 GAMMA=SQRT(-2.0*S)
e =e x p (g a m m a *d )
TR(1,1)=(E+1,0/E)*0.5 
TR(2,2)=TR(1,1)
e s =(e - i ,o /e )*o .5 
t r (i ,2)=e s / g a m m a

TR(2,1 )=ES*GAMMA
RETURN
END

SUBROUTINE MULT(A,B)
C MULTIPLIES MATRIX A BY B LEAVING FINAL ANSWER
C IN A DIMENSION A (2,2), B(2,2), C(2,2)

DO 1 1=1,2
DO 1 J=1,2
C(I,J)=0 
DO 1 K=1,2

1 C(l,J)=C(I,j )+a (i ,k )*b (k ,J)
WRITE(6,100) ((a (L,LL),LL=1,2),(b (L,LL),LL=1,2),

+( c (L,LL),LL=1,2),L=1,2)
100 F0RMAT( /,2(3(10X,2E15.7)/))
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DO 2 1=1 ,2
DO 2 J=1 ,2

2 A(I,J)=C(I,j)
RETURN
END

SUBROUTINE TRANS(D ,S ,A )
C MULTIPLIES TRANSFER MATRIX A BY MATRIX FOR
C NEXT SECTION

DIMENSION TR(2,2), A(2,2)
CALL FILL(D,S,TR)
CALL MULT(A,TR)
RETURN
END

COMPLEX FUNCTION EIGEN (TR)
DIMENSION TR(2,2)
COMPLEX ROOT

C THIS FINDS THE EIGENVALUE OF A REAL 2NX 2
C MATRIX

EIGEN=R00T(1.0,-TR(1,1)-TR(2,2),TR(1,1)*TR(2,2) 
+-TR(2,1 )*TR(1,2))
IF(EIGEN.EQ.(O.0,0.0)) EIGEN=(1.OE-200,1.OE-200) 
RETURN 

• END

COMPLEX FUNCTION R00T(A,B,C)
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c FINDS THE ROOTS OF A REAL QUADRATIC PHASE
C CONVENTION IS IF REAL ROOTS CHOOSE THE LARGER
C IF IMAGINARY THE ONE WITH POSITIVE IMAGINARY
C PART

REAL A,B,C,DISC 
DISC=B*B-4.0*A*C 
IF (DISC.LT.O) GO TO 1 
ROOT=CMPLX((-B+SQRT(DISC))/2.0/A,0,0)
RETURN

1 ROOT=CMPLX(-B,SQRT(-DISC))/2.O/A 
RETURN 
END

I H . r k u . L ,  I 
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