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Abstract

Monetary policy is sometimes formulated in terms of a target level
of inflation, a fixed time horizon and a constant interest rate that
is anticipated to achieve the target at the specified horizon. These
requirements lead to constant interest rate (CIR) instrument rules.
Using the standard New Keynesian model, it is shown that some forms
of CIR policy lead to both indeterminacy of equilibria and instability
under adaptive learning. However, some other forms of CIR policy
perform better. We also examine the properties of the different policy
rules in the presence of inertial demand and price behaviour.
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1 Introduction

Inflation targeting has become a fairly common objective of monetary policy
in the past ten to fifteen years; see e.g. (Svensson 2003a). This general
objective can be implemented in a number of different ways. One possibility
is to formulate an explicit objective function, i.e. a “general targeting rule”
using the terminology suggested by Lars Svensson. A different approach has
been the use of a particular target level for the inflation rate. This target is
usually specified at some given horizon for the future and we may speak of
inflation forecast targeting in this case. Formally, the inflation target is set
for some fixed forecast horizon h and policy tries to achieve that target:

Etπt+h = π̄. (1)

Here Etπt+h is the forecast of the inflation for period t+h and in the analysis
it will be taken to be the rational expectations (RE) forecast. In other words,
the central bank acts as if private agents have RE, which are computed under
knowledge of the structural model of the economy.
It can be noted that if the horizon is long, there will typically be many

different paths for interest rates up to the target horizon that achieve the
specified inflation target. If this is the case, a fixed inflation target at the
specified horizon does not yield a unique value or time path for the interest
rate, which is the actual instrument of monetary policy. A further special-
ization for achieving the fixed target is to use inflation forecasts that are
derived as constant interest rate (CIR) projections, see e.g. the discussions
in (Leitemo 2003) and (Svensson 1999). CIR inflation targeting has been
advocated as an easily understandable and hence practical approach to con-
ducting monetary policy; for general discussions of its merits and problems
see (Goodhart 2000), (Kohn 2000), (Svensson 2003b) and (Woodford 2003),
pp. 620-623.
In practice there appear to be at least two different ways for computing

and employing the CIR projections in setting the value for the monetary
policy instrument. One approach, which is arguably close to the practice
in the UK, has been described by (Goodhart 2000), p.177: ”When I was a
member of the MPC I thought that I was trying, at each forecast round,
to set the level of interest rates so that, without the need for future rate
changes, prospective (forecast) inflation would on average equal the target
at the policy”.1 Given a model of the macroeconomy, setting the forecast of

1Charles Goodhart has commented to us as a qualification that this practice is not to
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inflation based on constant interest rates at a given target level of inflation
implies a rule for the interest rate.
A second approach to CIR policy-making is in general terms described

by the quote “... if the overall picture of inflation prospects (based on an
unchanged repo rate) indicates that in twelve to twenty-four months’ time
inflation will deviate from the target, then the repo rate should normally
be adjusted accordingly”; see (Riksbanken 1999). This way of conducting
monetary policy seems (at least implicitly) to be the practice in Sweden.2 In
this approach the CIR projection is computed at the interest rate prevailing
before any policy decision and the rate of interest is then adjusted depending
on the difference between the CIR projection and the inflation target.
We will refer to these two ways of conducting monetary policy in general

as CIR inflation targeting and corresponding interest rate rules as CIR rules.
In addition, we will refer to the two approaches as CIRUK and CIRS policies,
respectively.
CIR inflation targeting necessarily introduces a further element of forward-

looking behavior into the economy in addition to the forward-looking be-
havior of private agents that is assumed in many current models for mon-
etary policy. If the model has forward-looking elements, issues of deter-
minacy of rational expectations equilibria (REE) and their stability under
(adaptive) learning have been raised in the recent literature. (Bullard and
Mitra 2002) have derived constraints on the interest rate instrument (or Tay-
lor) rules that achieve stability and determinacy in a standard New Keynesian
model of monetary policy. (Evans and Honkapohja 2003a) and (Evans and
Honkapohja 2003b) have shown that some standard ways for implement-
ing optimal policy under discretion or commitment can lead to the diffi-
culties of indeterminacy and instability under learning. They also propose
expectations-based optimal rules to overcome these problems. (Evans and
Honkapohja 2004) survey this literature and provide further references.
Our principal goal in this paper is to analyze CIR policies from the point

of view of determinacy and stability under learning. We will study both
CIRUK and CIRS policies in these respects. We will argue that CIRUK
policies can very often lead to unpleasant outcomes, i.e. the resulting REE
can exhibit both indeterminacy and instability under learning. CIRS policies

be followed if it leads to drastic policy changes. Our second interpretation of CIR policy
has a more gradualist approach to changing interest rates.

2Anders Vredin pointed to us that in practice policy appears to respond to other aspects
of the economy besides CIR forecasts of inflation.
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policies perform better with regard to both determinacy and stability under
learning, but they are not always problem-free either. We also examine the
(more realistic) policy of flexible inflation targeting and the consequences of
inherent inertia in inflation and output for the indeterminacy and instability
results.

2 The Framework

2.1 The Basic Model

The model we employ is the standard New Keynesian model of monopolistic
competition and (Calvo 1983) price stickiness. This model has been employed
in numerous recent studies of monetary policy; see e.g. (Clarida, Gali, and
Gertler 1999) for a survey. The log-linearized model is described by two
equations

xt = −ϕ(it − E∗t πt+1) +E∗t xt+1 + gt, (2)

which is the “IS” curve derived from the Euler equation for consumer opti-
mization, and

πt = λxt + βE∗t πt+1 + ut, (3)

which is the price setting rule for the monopolistically competitive firms.3

We remark that in a later section we will add inertia terms to (2) and (3).
The inertia is usually justified by empirical relevance even though the micro
foundations of the model are then fairly weak.4

Here xt and πt denote the output gap and inflation for period t, respec-
tively. it is the nominal interest rate, expressed as the deviation from the
steady state real interest rate. The determination of it will be discussed be-
low. E∗t xt+1 and E

∗
t πt+1 denote the private sector expectations of the output

gap and inflation next period. Since our focus is on learning behavior, these
expectations need not be rational (Et without ∗ denotes RE). The parameters
ϕ and λ are positive and β is the discount factor so that 0 < β < 1.

3See e.g. (Woodford 1996) or (Woodford 2003) for further details of the linearization
and the original nonlinear model.

4See (Christiano, Eichenbaum, and Evans 2001) and (Gali and Gertler 1999) for pos-
sible justifications.

4



The shocks gt and ut are assumed to be observable and followµ
gt
ut

¶
= V

µ
gt−1
ut−1

¶
+

µ
g̃t
ũt

¶
, (4)

where

V =

µ
µ 0
0 ρ

¶
,

0 < |µ| < 1, 0 < |ρ| < 1 and g̃t ∼ iid(0,σ2g), ũt ∼ iid(0,σ2u) are independent
white noise. gt represents shocks to government purchases and or potential
output. ut represents any cost push shocks to marginal costs other than those
entering through xt. For simplicity, we assume throughout the paper that µ
and ρ are known (if not, they could be estimated).
For brevity, details of the derivation of equations (2) and (3) are not dis-

cussed. The derivation is based on individual Euler equations under (identi-
cal) subjective expectations, together with aggregation and definitions of the
variables. The Euler equations for the current period give the decisions as
functions of the expected state next period. Rules for forecasting the next
period’s values of the state variables are the other ingredient in the descrip-
tion of individual behavior. Given forecasts, agents are assumed to make
decisions according to the Euler equations.5

For further analysis we write the model in matrix-vector form

yt = AE∗t yt+1 +Bwt +Dit, (5)

wt = V wt−1 + vt,

where yt = (xt,πt)
0, wt = (gt, ut)0 and vt = (g̃t, ũt)0. E∗t yt+1 denotes private

expectations of yt+1. The coefficient matrices are

A =

µ
1 ϕ
λ β + λϕ

¶
, B =

µ
1 0
λ 1

¶
, D =

µ −ϕ
−λϕ

¶
. (6)

In the next two subsections we introduce the formalization of CIRUK and
CIRS policies. In this and the next section, we consider the case when the

5This kind of behavior is boundedly rational but in our view reasonable since agents
attempt to meet the margin of optimality between the current and the next period. Other
models of bounded rationality are possible. Recently, (Preston 2002) has proposed a
formulation in which long horizons matter in individual behavior. See also (Honkapohja,
Mitra, and Evans 2002) for further discussion.
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central bank tries to hit a certain inflation target at a specified horizon. Such
a policy is often termed one of strict inflation targeting, following (Svensson
1999) and (Svensson 2003a). Even though this policy is not entirely realistic
from a practical point of view since most central banks have output concerns
(either implicitly or explicitly), it does serve as a useful benchmark. The case
when the bank pursues a policy of flexible inflation targeting is considered in
Section 4.1.

2.2 CIRUK Policy

We first consider CIRUK formulation of CIR policy. This has been recently
formalized by (Leitemo 2003), which can be consulted for further details.
We introduce the (strict) inflation target as in (1), where for simplicity the
target π̄ is assumed to be zero without loss of generality (w.l.o.g.) and h is
the targeting horizon.6

In the derivation of CIR policies it is assumed that the central bank acts as
if expectations of private agents are rational and the forecasts are computed
under knowledge of the structural model of the economy. For later purposes
it will be useful to express this constraint as

0 = K(Etw
0
t+h, Ety

0
t+h)

0, K = (0, 0, 0, 1). (7)

To derive the interest rate rule, rewrite (5) asµ
wt+1
Etyt+1

¶
= Ω

µ
wt
yt

¶
+Ψit +

µ
vt+1
0

¶
, (8)

where

Ω =

µ
V 0

−A−1B A−1

¶
≡


µ 0 0 0
0 ρ 0 0
−1 ϕβ−1 1 + λϕβ−1 −ϕβ−1
0 −β−1 −λβ−1 β−1

 ,
Ψ =

µ
0

−A−1D
¶
≡ ( 0 0 ϕ 0 )0.

6This is without loss of generality as the precise values of model constants affect neither
determinacy nor stability under learning.
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Iterate (8) forward to getµ
Etwt+h
Etyt+h

¶
= Ωh

µ
wt
yt

¶
+

h−1X
j=0

ΩjΨEtit+h−1−j, (9)

Pre-multiplying (9) by K yields

Etπt+h = KΩh
µ
wt
yt

¶
+K

h−1X
j=0

ΩjΨEtit+h−1−j. (10)

CIRUK targeting policy central bank assumes that

Etit+j = it for 0 ≤ j ≤ h− 1, (11)

where in (11) it is assumed that expected future interest rates are equal to
the contemporaneous interest rate it for all horizons 0 ≤ j ≤ h− 1. In other
words, in the formulation of policy, the bank assumes a constant path of
interest rates at the current level. Using assumption (11) in (10) leads to

Etπt+h(it) = KΩh
µ
wt
yt

¶
+K

h−1X
j=0

ΩjΨit (12)

where Etπt+h(it) denotes the constant-interest-rate forecast of inflation con-
ditional on the forward-looking variables xt,πt and the contemporaneous
interest rate it. Finally, setting Etπt+h(it) in (12) equal to the (target) zero
yields the interest rate rule

it = G

µ
wt
yt

¶
, G = −

Ã
K

h−1X
j=0

ΩjΨ

!−1
KΩh. (13)

We will refer to (13) as the CIRUK rule I.
The CIRUK rule I, equation (13), has the general form

it = χggt + χuut + χxxt + χππt. (14)

(14) is thus an instrument rule like the classic rule studied by (Taylor 1993)
and it can be explicitly computed for different values of h. For h = 2 we get

χg = ϕ−1,χu = −
1 + βρ+ λϕ

βλϕ
,χx = −

1 + β + λϕ

βϕ
,χπ =

1 + λϕ

βλϕ
.
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It is seen that, for h = 2, the rule (13) surprisingly has χx < 0, i.e. the
interest rate should react negatively to the output gap. For higher values
of h the expressions χi, i = g, u, x,π become cumbersome, but numerical
computations indicate that the negative coefficient on the output gap is a
robust phenomenon of the CIRUK rule I.
This unexpected result can be given an economic interpretation in the

case h = 2. Shift the New Phillips curve (3) forward and take RE. Recalling
that the inflation target is assumed to be zero, we have

Etπt+1 = λEtxt+1 + ρut,

which pins down the expectations terms in (2) and yields the positive relation
between Etπt+1 and Etxt+1. By (3) we also have

Etπt+1 = β−1(πt − λxt − ut),
which indicates that bothEtπt+1 andEtxt+1 depend negatively on the current
output gap under this policy. Finally, rewriting the IS curve (2) as

ϕit = −xt + ϕEtπt+1 +Etxt+1 + gt

= −(1 + β−1 + β−1λϕ)xt + (β−1ϕ+ β−1λ−1)πt
+gt − (β−1ϕ+ λ−1(β−1 + ρ))ut.

it is seen that it and xt are negatively related, both directly as part of the IS
relationship and indirectly through the negative dependence of Etπt+1 and
Etxt+1 on the current xt.
(13) should be viewed as an instrument rule as it depends on current

endogenous variables7 and another rule depending only on predetermined
variables is often suggested instead. It can be derived as follows. Substituting
(13) into (8) we haveµ

wt+1
Etyt+1

¶
= (Ω+ΨG)

µ
wt
yt

¶
+

µ
vt+1
0

¶
,

for which it is possible to derive the MSV solution of the form

yt = Hwt (15)

7(13) can be viewed as a behavioral rule in the same sense as demand and supply
functions of private agents are behavioral rules, i.e. the central bank “goes to the market”
with that schedule and is able to adjust the interest rate within the period. Such rules are
sometimes said to be non-operational; see (McCallum 1999) for further discussion.
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using standard techniques (we omit the precise form of H). (The MSV
solutions are REE that are usually employed in the applied literature.) In-
troducing the partition G =

¡
Gw Gy

¢
, we can rewrite the interest rule

(13) as

it = (Gw +GyH)wt, (16)

which we will call the CIRUK rule II.

2.3 CIRS Policy

As mentioned in the Introduction, an alternative interest rule, which we call
a CIRS rule, is based on computing CIR forecasts of inflation at the interest
rate before any policy decision and then changing the interest rate if the CIR
forecast deviates from the target. Formally, the policy-maker first makes a
forecast of inflation, conditioned on a constant interest rate at the level of
it−1 from period t− 1. This forecast is compared with the target rate. If the
forecast is above the target, the interest rate is raised.
One simple rule that reflects this way of thinking is8

it − it−1 = ω(Etπt+h(it−1)− π̄), (17)

where Etπt+h(it−1) denotes the inflation forecast conditioned on the last pe-
riod interest rate, i.e., the bank assumes

Etit+j = it−1, for all 0 ≤ j ≤ h− 1
instead of (11). We again assume π̄ = 0, w.l.o.g. ω > 0 determines the
magnitude of the extent of increase in it when the inflation forecast is above
target. From (10) we now have

Etπt+h(it−1) = KΩh
µ
wt
yt

¶
+K

h−1X
j=0

ΩjΨit−1 (18)

Written explicitly, (18) takes the form

Etπt+h(it−1) = ψggt + ψuut + ψxxt + ψππt + ψiit−1 (19)

8This is a simplified version of a rule proposed by Anders Vredin in the discussion at
the conference.
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where the coefficients ψg,ψu,ψx,ψπ,ψi can be computed for different values
of h. For example, when h = 2, these take the values

ψg = λβ−1,ψu = −β−2(1 + βρ+ λϕ),ψx = −λβ−2(1 + β + λϕ),

ψπ = β−2(1 + λϕ),ψi = −λϕβ−1.
Using (19) in (17), we obtain CIRS rule I of the form

it = ω(ψggt + ψuut + ψxxt + ψππt) + (1 + ωψi)it−1 (20)

Note that the CIRS rule I, (20), captures a form of interest smoothing fre-
quently observed in the data.
As before, we can also define an interest rule which depends solely on

pre-determined variables using the MSV solution of the model when CIRS
rule I is employed. We now consider the formulation of the CIRS rule II
associated with (17). Since the CIRS rule I introduces the lagged interest
rate as a predetermined endogenous variable, the MSV solution of the model
(5) with CIRS rule I, (20), takes the form

xt = bxit−1 + bgxgt + b
u
xut, (21)

πt = bπit−1 + bgπgt + b
u
πut, (22)

it = biit−1 + b
g
i gt + b

u
i ut, (23)

where the coefficients bx, ... need to be determined. Furthermore, for a de-
terminate MSV solution, we have |bi| < 1, and using this solution in CIRS
rule I, (20), we may obtain uniquely CIRS rule II below

9

it = b
0
iit−1 + ψ̃ggt + ψ̃uut. (24)

Here b0i = ωψxbx+ωψπbπ+(1+ωψi) and ψ̃g, ψ̃u describe the dependence on
the shocks (their precise form is not needed in the computations).

2.4 Calibration Scenarios

In several places we will need to revert to numerical results in the study the
properties of CIR policies introduced above. For our numerical analysis, we
will frequently adopt three calibration scenarios proposed in the literature.10

9In cases when the model has indeterminacy and hence potentially multiple stationary
MSV solutions with CIRS rule I, there is no unique way to define CIRS rule II.
10Both the (Clarida, Gali, and Gertler 2000) and (Woodford 1999) calibrations are

for quarterly data. However, (Woodford 1999) uses quarterly interest rates and measures
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Calibration W: β = 0.99, ϕ = (0.157)−1, and λ = 0.024.

Calibration CGG: β = 0.99, ϕ = 4, and λ = 0.075.

Calibration MN: β = 0.99, ϕ = 0.164, and λ = 0.3.

These are taken, respectively, from (Woodford 1999), (Clarida, Gali, and
Gertler 2000), and (McCallum and Nelson 1999). We remark that these
calibrations are based on U.S. data and thus the numerical results are not
necessarily relevant for the British and Swedish cases. For an analysis of
E-stability, we sometimes need the values of ρ and µ and we set these at
ρ = 0.9 and µ = 0.35 in accordance with the literature.

3 Determinacy and Learning Stability

3.1 Results for CIRUK Policies, Types I and II

We consider whether CIRUK interest rate rules, either in the form (13) or
(16), yield determinacy and stability under learning of the MSV REE. We
will assess stability under learning using the concept of E-stability, which
is known to be the relevant condition for convergence of adaptive learning
formulated using least squares and closely related learning rules. Formal
analysis of determinacy is standard; see e.g. (Blanchard and Kahn 1980) or
Chapter 10 of (Evans and Honkapohja 2001). For an analysis of E-stability
in models like this, we refer the reader to (Bullard and Mitra 2002) for an
overview and to (Evans and Honkapohja 2001) for a detailed discussion. The
analysis is conducted using the forward-looking model (2) and (3), together
with either (13) or (16).
It should be emphasized that the analysis of determinacy and learning is

based on the assumption that the private sector expectations are based on
expectation functions with the actually implemented interest rate rule and
not on expectations used as part of the computation of the hypothetical CIR
policy. This highlights an aspect of the time-inconsistency of CIR policy:
computation of the policy presumes a constant interest rate through the

inflation as quarterly changes in the log price level, while (Clarida, Gali, and Gertler 2000)
use annualized rates for both variables. We adopt the Woodford measurement convention,
and therefore our CGG calibration divides by 4 the λ value and multiplies by 4 the ϕ value
reported by (Clarida, Gali, and Gertler 2000).
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horizon, whereas the actual interest rate is known to be adjusted in response
to variations in inflation and output gap as well as in the shocks.11

It is convenient to start with CIRUK rule II (16). Plugging this rule into
the model (5) leads to the reduced form

yt = AE
∗
t yt+1 + {B +D(Gw +GyH)}wt. (25)

In the basic model (16) has unpleasant properties on both counts:12

Proposition 1 CIRUK rule II, i.e. equation (16), leads to both indetermi-
nacy and instability under adaptive learning.

The indeterminacy result means that there other stationary REE to the
model under the CIRUK rule II besides the MSV solution used above. These
equilibria include various sunspot solutions and it is possible to examine
whether the non-MSV solutions are stable under learning. Using results of
(Honkapohja and Mitra 2004), it can be shown that the non-MSV REE are
also E-unstable. Thus there are no E-stable REE under CIRUK rule II.
The difficulties spelled out by Proposition 1 naturally raise the question

whether the instrument rule form of CIR monetary policy, i.e. CIRUK rule
I given by equation (13) has better determinacy or learnability properties.
Unfortunately, this is not the case:

Proposition 2 In model (2)-(3) CIRUK rule I leads to indeterminacy (when
h ≥ 2) and to E-instability (when h ≥ 3).

In Appendix A we prove the result for values h ≤ 4. For higher values
of h we have computed the relevant conditions numerically using the three
baseline calibrations. The results clearly indicate that the CIRUK rule I
delivers neither determinacy nor stability under learning.

3.2 Results for CIRS Policies, Types I and II

We now turn to an analysis of the performance of CIRS type policy. To
analyze determinacy, we plug the rule (20) into the basic model (5) and

11See (Leitemo 2003) for a further discussion of time-inconsistency issues in CIR policies.
12The result follows directly from Proposition 2 in (Evans and Honkapohja 2003a) stat-

ing that, in the New Keynesian model, any interest rate rule that depends only on the
exogenous shocks lead to both indeterminacy and instability under learning.
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obtain the following system after defining zt = (xt,πt, it−1)0

B1Etzt+1 = B2zt + shocks, (26)

where

B1 =

 1 ϕ 0
λ β + λϕ 0
0 0 1

 , B2 =
 1 + ϕωψx ϕωψπ ϕ(1 + ωψi)

λϕωψx 1 + λϕωψπ λϕ(1 + ωψi)
ωψx ωψπ 1 + ωψi



The matrix for computing determinacy is then given by B3 ≡ B−11 B2, which
explicitly is

B3 =

 1 + β−1λϕ+ ϕωψx β−1ϕ(βωψπ − 1) ϕ(1 + ωψi)
−β−1λ β−1 0
ωψx ωψπ 1 + ωψi


Since xt,πt are free while it−1 is pre-determined, REE is determinate if and
only if exactly one eigenvalue of B3 is inside the unit circle.
When h = 2, we can obtain a partial result on determinacy. The following

proposition is proved in Appendix B:

Proposition 3 Let h = 2. CIRS rule I yields determinacy of REE for all
sufficiently small ω > 0.

In general, determinacy depends on the structural parameters. It is easily
checked that in the case h = 2 determinacy obtains for all 0 < ω < 1
under the three baseline calibrations. For higher horizons we will examine
determinacy numerically below.
To analyze E-stability, we need to put the system in the following form

ς t = zÊtς t+1 + δςt−1 + κwt, (27)

z = %

 1 ϕ(1− ωβψπ) 0
λ β + λϕ+ βϕωψπ 0

ω(λψπ + ψx) ω{(β + λϕ)ψπ + ϕψx} 0

 ,
δ = %

 0 0 −ϕ(1 + ωψi)
0 0 −λϕ(1 + ωψi)
0 0 1 + ωψi

 , %−1 = 1 + ϕω(λψπ + ψx).
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where ς t = (xt,πt, it)
0 and ψx,ψπ,ψi are the coefficients in (19).

The MSV solution of the model (27) takes the form

ςt = ā+ b̄ςt−1 + c̄wt (28)

with ā = 0 and b̄ to be determined from b̄ = (I − zb̄)−1δ, provided the
relevant inverse exists. In the determinate case, there is only one solution of
b̄ with eigenvalues inside the unit circle; in the indeterminate case there may
exist more than one.
For the analysis of learning, agents have a PLM of the form

ς t = a+ bς t−1 + cwt,

from which one can compute expectations13 as Êtςt+1 = (I + b)a+ b
2ς t−1 +

(bc+ cV )wt and inserting Êtςt+1 into the model gives the ALM

ς t = (z+zb)a+ (zb2 + b)ς t−1 + (zbc+zcV + κ)wt

When the time t information set is (1, ς 0t−1, wt)
0, the E-stability conditions

for an MSV solution require us to have the eigenvalues of the matrices b̄0 ⊗
z+ I ⊗zb̄− I, V ⊗z+ I ⊗zb̄− I, z+zb̄− I, to have negative real parts;
see Chapter 10 of (Evans and Honkapohja 2001) for details. Otherwise, the
solution is not E-stable.
We now look numerically at E-stability of the determinate MSV solution

for different horizons h, ranging from 2 to 8. Table 1 below reports a pair of
critical values of ω, (ω̌, ω̂) such that for all 0 < ω ≤ ω̌, one has determinacy
with the determinate MSV solution being E-stable. For values of ω such
that ω̌ < ω ≤ ω̂, one has determinacy but the determinate MSV solution is
E-unstable. Values of ω > ω̂ lead to indeterminacy.14 For h = 2, we find
that ω̌ = ω̂ so that only one number is reported for the h = 2 column.

Table 1. Regions of Determinacy and E-stability for different
horizons

h 2 3 4 5 6 7 8
W 3.39 (.84, .84) (.3, .34) (.14, .17) (.07, .1) (.04, .06) (.03, .03)
CGG 1.87 (.44, .46) (.14, .18) (.06, .09) (.03, .04) (.01, .02) (.01, .01)
MN 10.39 (2.4, 2.4) (.94, .94) (.45, .47) (.25, .28) (.15, .18) (.10, .12)

13We assume that the time t information set does not include ςt.
14We have not conducted an analysis of E-stability in the indeterminate region. We did

a grid search of 0.01 for ω up to an upper bound for ω of 100.
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The determinate solution usually turns out to be E-stable (there are only
some exceptions). However, the range for which determinacy and E-stability
hold shrinks quite rapidly as the horizon increases. When h = 8, only very
small values of ω yield determinacy and E-stability.
Note that, in the interest rule (20), the responses to xt, πt, and it−1 are,

respectively, ωψx, ωψπ, and 1+ωψi and these resemble the form of a Taylor
type rule with interest rate smoothing. With this rule, the Taylor principle
(TP ) corresponds to the requirement

TP ≡ 1 + ωψi + ωψπ + λ−1(1− β)ωψx > 1; (29)

see Chapter 4 of (Woodford 2003) for a discussion of the Taylor principle. It
can be verified analytically that for all horizons h = 2, 3, .., 8, TP = 1 + ω
so that the rule does indeed satisfy the Taylor principle for all ω > 0. In
fact, Proposition 4.4, p. 255, of (Woodford 2003), shows that the necessary
and sufficient condition for determinacy, for a rule of the form (20), in the
model (5) is that the Taylor principle be satisfied, i.e. that TP > 1 provided
ψx > 0,ψπ > 0, and 1 + ωψi > 0. The latter means that the individual
responses to xt,πt, and it−1 are all positive (as is perhaps true in realistic
versions of the Taylor type rule). However, for the rule (20), ψx < 0 for all
calibrations and often 1+ωψi < 0, (even though ψπ > 0 for all calibrations).
We conjecture that the key to the failure of determinacy and E-stability

is the fact that the rule (20) fails to be super-inertial since 1+ωψi < 1.With
strict inflation targeting, it can be verified analytically that ψi < 0 for all
horizons h so that the rule can merely be inertial.15 An explanation for this
conjecture will be provided later.
For CIRS rule II we have both indeterminacy and E-instability (the proof

is in Appendix B):

Proposition 4 CIRS-rule II associated with (19), i.e. equation (24), leads
to both indeterminacy and instability under adaptive learning of the MSV
solution for all horizons h.

15In fact, as ω increases, the response 1 + ωψi becomes an increasingly large negative
number.
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4 Extensions

4.1 Flexible Inflation Targeting

4.1.1 CIRUK Rules

We examine some extensions to our basic model. The analysis of Section 2
has assumed that the central bank pursues a policy of strict inflation target-
ing, which serves as a useful benchmark. We now turn to the arguably more
realistic case where the bank also has concerns for output in its loss function.
With flexible inflation targeting and assuming that the target levels for

output gap and inflation are x̄ and π̄, the central bank’s optimality condition
(under discretion) can be shown to be αxt+λπt− (λπ̄+αx̄) = 0, see (Evans
and Honkapohja 2003a) for the details.16 Thus, the bank seeks to achieve

αλ−1Etxt+h +Etπt+h − (π̄ + αλ−1x̄) = 0. (30)

We again rewrite this constraint as

π̄ + αλ−1x̄ = K(Etwt+h, Etyt+h)0, K = (0, 0,αλ−1, 1). (31)

Except for the change in K, the rest of the analysis formally proceeds as
before. The form of CIRUK rule I continues to be given by (13) with K as
defined in (31). As before, we assume x̄ = π̄ = 0 (w.l.o.g.).
Obviously, some assumptions about α must be made. In the numerical

analysis we assumed that α ranges from 0.1 (low concern for output) to 0.9
(high concern for output) at intervals of 0.1. We continue to have:17

Result: Under CIRUK rule I the REE is indeterminate and the MSV solu-
tion is E-unstable.

This result was obtained for all the examined α and across all three calibra-
tions. As for CIRUK rule II, Proposition 1 continues to be applicable for
the case of flexible inflation targeting since the rule still depends only on the
exogenous shocks.

16(Evans and Honkapohja 2003a) consider optimal discretionary policy by minimizing a
quadratic objective function, α(xt − x̄)2 + (πt − π̄)2, subject to (3), which approach leads
to the discretionary optimality condition.
17We report the main numerical findings as “Results” and not as Propositions.
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4.1.2 CIRS Rules

Since the bank’s targeting rule is now given by (31), a rule analogous to (17)
in this case can be written as

it − it−1 = ω[αλ−1Etxt+h(it−1) +Etπt+h(it−1)− (π̄ + αλ−1x̄)] (32)

If the bank expects the expression within parentheses in (32) to be positive,
then interest rates should be raised to reduce inflationary pressures in the
economy. According to (32) the nominal interest rate is raised if the optimal
combination of forecasted output gap and inflation exceeds the corresponding
combination evaluated at the target values.18

For the formal analysis we remark that αλ−1Etxt+h(it−1) + Etπt+h(it−1)
will be of the same form as the right hand side of (18) except for the change
in K, namely K = (0, 0,αλ−1, 1). Again, we simplify by assuming x̄ = π̄ = 0
and continue to obtain from (32), an interest rule of the form (20) but with
different coefficients. For example, with h = 2, the coefficients are

ψx = λ−1β−2[α{β2 + (1 + 2β)λϕ+ λ2ϕ2}− λ2(1 + β + λϕ)],

ψπ = λ−1β−2[λ(1 + λϕ)− αϕ(1 + β + λϕ)],

ψi = ϕλ−1β−1[α(2β + λϕ)− λ2].

Note that for large enough α, ψi > 0 (and ψx > 0,ψπ < 0). One can verify
analytically for higher horizons that the same features are true and, conse-
quently, the interest rules are super-inertial for α large enough.
It can also be verified analytically that for all horizons h = 2, 3, .., 8 the

interest rule (20), continues to satisfy the Taylor principle since

TP = 1 + ω + λ−2αω(1− β) > 1

for all α, ω > 0.
Since only K changes, the rest of the formal analysis proceeds as in Sec-

tion 2.3. We examine determinacy and E-stability for CIRS rule I for values
of 0 < ω ≤ 15 and for values of α between 0.1 and 0.9, both at intervals of
0.1. Remarkably, numerical results suggest the following general conclusion:

18Responding to deviations from the optimality condition is similar in spirit to the
approximate targeting rule proposed by (McCallum and Nelson 2000). However, in the
McCallum-Nelson rule a deviation from optimality leads to an increase in the real interest
rate.
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Result: Most values of α lead to determinacy and E-stability of the deter-
minate solution for horizons h = 2, 3, .., 8.

The conclusion shows that if the bank has sufficient concerns for output in its
loss function and adopts a rule of the form (32), CIRS rule I policy performs
well in terms of determinacy and E-stability.
The detailed findings are as follows. For the W and CGG calibrations, we

find that for all h, all values of α,ω examined lead to determinate REE which
are also E-stable. The corresponding rule (20) has its coefficients satisfying
ψx > 0, ψπ < 0, and 1 + ωψi > 1. So even though the response to πt is of
the ”wrong” sign, the rule is nevertheless super-inertial.
For the MN calibration, the general theme is unchanged. We find that

values of α ≥ 0.3 lead to determinacy and E-stability for all h. In other
words, a sufficient concern for output eliminates problems of determinacy and
E-stability. In addition, the associated rules tend to be super-inertial since
1+ωψi > 1, i.e., ψi > 0 (they also satisfy ψx > 0 and ψπ < 0). Determinacy
sometimes fails for small values of α like α = .1, .2 when the horizon h is large
(say, h ≥ 4). These failures of determinacy typically coincide with interest
rules which satisfy 1+ωψi < 1 (along with ψx < 0, ψπ > 0), i.e. when policy
rules that are not super-inertial.
We note that the MSV solution has bx < 0, bπ < 0, and 0 < bi < 1

for all calibrations. These results together with those of the previous section
suggest that an important reason for determinacy and E-stability is the super-
inertial nature of the associated interest rule, which seems to be true even
when ψπ < 0, or ψx < 0.19 (Bullard and Mitra 2001) examined super-
inertial interest rules (with ψπ > 0, ψx > 0 and dependence on lagged data)
and found these to be conducive to E-stability of the MSV solution for the
basic model (5). They also found that superinertial rules that depend on
contemporaneous data on inflation and output and the lagged interest rate,
as in rule (20), were conducive to determinacy and E-stability.
Finally, we remark that Proposition 4 continues to be applicable for CIRS

rule II since it was applicable for any determinate MSV solution under all
parameter values.

19For some (intermediate) values of α, the individual responses in the interest rule to
output, inflation and lagged interest rates are all positive (as with the MN calibration)
and since the rule also always satisfies the Taylor principle, the determinacy result in
Proposition 4.4 of (Woodford 2003) is applicable.
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4.2 Inflation and Output Inertia

The model given by (2) and (3) is entirely forward-looking and as a result has
difficulty capturing the inertia in output and inflation evident in the data;
see (Fuhrer and Moore 1995b), (Fuhrer and Moore 1995a) and (Rudebusch
and Svensson 1999) for empirical results. We now look at an extension of
this model considered in (Clarida, Gali, and Gertler 1999), Section 6, with
important backward-looking elements. This model consists of the structural
equations

xt = −ϕ (it −E∗t πt+1) + θE∗t xt+1 + (1− θ)xt−1 + gt (33)

πt = λxt + βγE∗t πt+1 + (1− γ)πt−1 + ut (34)

The parameters θ and γ capture the inertia in output and inflation inherent
in the model and are assumed to be between 0 and 1. The shocks gt and ut
continue to follow the process (4).
We outline the formal analytical procedures in Appendix C.

4.2.1 CIRUK Rules

The CIRUK rule I, equation (42), under strict inflation targeting has the
general form

it = ϑggt + ϑuut + ϑxLxt−1 + ϑπLπt−1 + ϑxxt + ϑππt (35)

and it is possible to compute this rule explicitly for different values of h. For
instance, with h = 2, the rule is

ϑg = ϕ−1,ϑu = −θ + βγθµ+ λϕ

βγλϕ
,ϑxL =

1− θ

ϕ
,ϑπL = −(1− γ)(θ + λϕ)

βγλϕ
,

ϑx = −θ + βγ + λϕ

βγϕ
,ϑπ =

θ{1− βγ(1− γ)}+ λϕ

βγλϕ
. (36)

Note that the response of the interest rule to the contemporaneous output
gap is negative (as in the non-inertial model) and, in addition, the response
to lagged inflation is now negative. Similar qualitative responses follow for
other horizons.
We examine determinacy and E-stability in the model with inertia (33),

(34) for the CIRUK rule I (35) when the central bank pursues strict inflation
targeting. When h = 2, we are able to obtain analytical results and we
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analyze this case first.20 When h = 2, there is indeterminacy for all values of
output and inflation inertia. The MSV solution turns out to be unique but
it is not E-stable:

Proposition 5 CIRUK rule I leads to indeterminacy in the model (39) when
h = 2. There exists a unique MSV solution, which is E-unstable.

The result is proved in Appendix C. For h > 2, we need to resort to
numerical analysis and we let γ and θ take values from 0.1 to 0.9 at intervals
of 0.1. Table 2 below reports the results when h = 4 for the W calibration. In
this table, the third column shows determinacy (D) or indeterminacy (I). The
fourth column shows the number of stationary MSV solutions. Obviously, in
the determinate case, there is only one stationary solution whereas there may
be more than one in the indeterminate region. The final column examines
E-stability of the stationary MSV solutions whether in the determinate or
indeterminate region.

Table 2. CIRUK Rule I: E-stability of MSV solution when h=4

20For E-stability, we continue to assume that agents’s expectations are based on in-
formation of endogenous variables at time t − 1, which we believe is more realistic since
contemporaneous data on output and inflation are not usually available for making fore-
casts.
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γ θ Det/Indet # of stat solns E-stability
.1 {.1,..,.5} D 1 No
.1 {.6,..,.9} I 2 No in both cases
.2 .1 D 1 Yes
.2 {.2,..,.5} D 1 No
.2 {.6,..,.9} I 2 No in both cases
.3 .1 D 1 Yes
.3 .2,.3,.4 D 1 No
.3 {.5,..,.9} I 2 No in both cases
.4 .1 D 1 Yes
.4 .2,.3 D 1 No
.4 {.4,..,.9} I 2 No in both cases
.5 .1 D 1 Yes
.5 .2 D 1 No
.5 {.3,..,.9} I 2 No in both cases

{.6,.7} {.1,..,.9} I 2 No in both cases
.8 {.1,..,.6},.9 I 2 No in both cases
.8 .7,.8 I 3 No in all cases
.9 {.1,..,.5},.8 I 2 No in both cases
.9 .6,.7,.9 I 3 No in all cases

The table shows that most values of inflation and output inertia lead to
indeterminacy when h = 4. Even if determinacy obtains, the (locally) unique
solution is usually E-unstable. In the indeterminate region, all MSV solutions
always turn out to be E-unstable.
Similar results follow for higher horizons. These results indicate that

policy using CIRUK rule I continues to have undesirable properties in the
presence of inertia.
For brevity, we do not report the performance of CIRUK rule II here.

We have checked numerically that the qualitative features of this rule are
basically unchanged from those of CIRUK rule I. Most parameter values
continue to lead to indeterminacy and all MSV solutions are E-unstable.

4.2.2 CIRS Rules

We consider the performance of CIRS rule I in the presence of flexible in-
flation targeting. For simplicity, we assume µ = ρ = x̄ = π̄ = 0. In the
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presence of inflation inertia, the targeting rule (31) takes the form

0 = K(Ety1,t+h, Ety2,t+h)
0, K = (0, 0, 0, 0,α(1− βãπ)λ

−1, 1), (37)

compare (6.4) in (Clarida, Gali, and Gertler 1999). 0 ≤ ãπ < 1 is the
solution of the lagged inflation term in equation (6.5) of (Clarida, Gali, and
Gertler 1999). When γ = 1, ãπ = 0. We first summarize the general nature
of the results in this case.

Results: The CIRS rule I continues to perform well in the presence of low
levels of output and inflation inertia. The presence of high levels of inertia
hampers the performance of this rule.

Consider first determinacy under the rule. Table 3 depicts the region of
determinacy when h = 8 for the W and CGG calibrations. For each value
of γ in the first row, the table reports the critical value θ̄ such that one
has determinacy for all θ ≥ θ̄ for all values of α and ω examined.21 There
typically exists no stationary REE for values of θ < θ̄.

Table 3. Region of Determinacy when h = 8
γ .1 .2 .3 .4 .5 ≥ .6
W .6 .6 .5 .4 .3 .1
CGG .6 .5 .4 .3 .2 .1

It seems, therefore, that determinacy can fail in the presence of high
levels of inertia in the model. In addition, even when determinacy holds,
the (determinate) solution can fail to be E-stable.22 Thus, sufficient inertia
worsens significantly the performance of CIRS rule I.

5 Concluding Remarks

The results in this paper suggest that the conduct of inflation targeting by us-
ing CIR policy is subject to two fundamental difficulties. First, there may be
multiple stationary RE solutions under such a policy. Second, the suggested

21We examined determinacy for values of γ, θ,α between .1 and .9 and for values of ω
between .1 and 2, all at intervals of length .1.
22For simplicity, we considered E-stability in the presence of inflation inertia only, i.e.,

the case θ = 1.
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interest rates rules in this approach can lead to instability of equilibria under
learning. We remark that optimal inflation targeting policies, discussed e.g.
in (Svensson 2003a), are an alternative to CIR policies and there are ways
to implement them to achieve determinacy and learnability; see (Evans and
Honkapohja 2004).
We have examined two versions of CIR inflation targeting, which we called

CIRUK and CIRS. It was found that CIRUK policies are particularly vulner-
able to the twin problems of indeterminacy and E-instability in all versions
of the models examined. CIRS rule I, on the other hand, has more appeal-
ing features in terms of determinacy and E-stability in the forward-looking
model, especially when flexible inflation targeting is employed. However, its
performance can be problematic in the presence of high inflation or output
inertia. One reason for the poor performance may be the relative simplicity
of the rule itself. In inertial models one may have to look at other rules
to deliver a robust performance. We leave a detailed investigation of these
issues to the future.
It is perhaps remarkable that the performance of CIRS instrument rule

in terms of learnability and determinacy is superior to CIRUK policy, which
is an optimal policy under RE. The response coefficient ω makes CIRS more
flexible than CIRUK policy. In fact, CIRUK rule I is a special case of CIRS
rule I when ω = −ψ−1i , which is easily verified comparing equation (13) with
(17)-(19).
The basic analysis can be extended in various ways. First, we made the

strong assumption that the central bank knows the structural parameters
of the economy when it computes the CIR interest rate rule. If structural
parameters are not known, they can be estimated from data as in (Evans
and Honkapohja 2003a) and (Evans and Honkapohja 2004). A result of
(Evans and Honkapohja 2003a) shows that an interest rate rule that leads
to instability under learning when the policy-maker knows the structural
parameters does not fare better when structural parameters are estimated.
We conjecture that an analogous result will hold for CIR interest rate rules.
Second, we have limited attention to the computation of CIR policy sug-

gested by (Leitemo 2003). While Leitemo’s approach is very natural, the
appendix of (Svensson 1998), which is the unpublished version of (Svensson
1999), suggests a different formulation of what is meant by inflation targeting
with a fixed target at fixed horizon. Svensson’s approach is quite general as
he constructs consistent internal forecasts relative to any fixed interest rate
rule beyond a specified horizon. However, formulations of Svensson’s ap-

23



proach in the basic forward-looking model make the interest rate dependent
only on exogenous shocks, and a result analogous to Proposition 1 is then
applicable. Moreover, as pointed out by (Leitemo 2003), further consistency
restrictions naturally arise. For example, Leitemo’s rules of the form (13)
and (16) do not meet consistency beyond and within the targeting horizon.

Appendices

A Proof of Proposition 2

To prove Proposition 2 we first note that it is unnecessary to consider the
exogenous shocks for these results. They play no role in indeterminacy and
also, in this setting, E-instability also follows from considering the model
without the shocks. We first consider determinacy for 4 ≥ h ≥ 2 and E-
stability for 4 ≥ h > 2.
Substituting (14) into (5) and omitting the shocks, we have the system

Myt = NE∗t yt+1, where

M =

µ
1 + ϕχx ϕχπ

−λ 1

¶
, N =

µ
1 ϕ
0 β

¶
.

Since both variables are free, we need both eigenvalues of M−1N to be in-
side the unit circle for determinacy whereas for E-stability we need the real
parts of the eigenvalues of M−1N to be less than 1. Alternatively, condi-
tions for determinacy and E-stability may be given in terms of the trace and
determinant of M−1N as the system is two-dimensional.
The necessary and sufficient condition for determinacy turns out to be

0 > Abs[Det(M−1N)]− 1
0 > Abs[Tr(M−1N)]− 1−Det(M−1N),

where Abs refers to the absolute value of the bracketed expression. The
necessary and sufficient condition for E-stability turns out to be

Tr(M−1N − I) < 0,

Det(M−1N − I) > 0.
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We now examine determinacy and E-stability for various horizons h using
the above conditions. In the case h = 2 matrix M is singular, but we can
assess determinacy by computing

N−1M =

µ −β−1 (βλ)−1

−λβ−1 β−1

¶
.

Both eigenvalues of N−1M are zero, so that we have indeterminacy.23

In the case h = 3 we get

M−1N =

Ã
1+2β+λϕ

β
−1+(β−1)λϕ

βλ
λ(1+2β+λϕ)

β
(β−1)(1+β+λϕ)

β

!
.

It is easy to check that Det(M−1N)−1 = 2β+λϕ > 0, so that indeterminacy
prevails. In addition, Tr(M−1N − I) = β + λϕ > 0 implying E-instability.
In the case h = 4 we have

Det(M−1N)− 1 =
3β2 + 3βλϕ+ λϕ(1 + λϕ)

1 + 2β + λϕ
> 0,

T r(M−1N − I) =
2β2 + 3βλϕ+ λϕ(1 + λϕ)

1 + 2β + λϕ
> 0

so that both indeterminacy and E-instability prevail.

B Results for CIRS Rules

Proof of Proposition 3: When h = 2, the characteristic polynomial of the
determinacy matrix B3 is

p(τ) ≡ τ 3 + C2τ
2 + C1τ + C0,

C2 = −β−2(1 + 2β + λϕ)(β − λϕω),

C1 = β−2(2 + β + λϕ)(β − λϕω),

C0 = −β−2(β − λϕω).

Then computing p(1) = 1 + C2 + C1 + C0 and p(−1) = −1 + C2 − C1 + C0
one obtains

p(1) = β−1λϕω > 0,

p(−1) = −β−2[4β2 + β(4 + λϕ(2− 3ω))− 2λϕω(2 + λϕ)].

23We remark that the analysis of E-stability for h = 2 is not considered as the singularity
of M implies that the ALM is not unique.
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Woodford has given necessary and sufficient conditions for exactly one eigen-
value of B3 to be inside the unit circle (which is the condition for determi-
nacy) in terms of the characteristic polynomial, see Proposition C.2, p. 672
of (Woodford 2003). Since p(1) > 0, we are in Woodford’s Cases II or III.
When ω > 0 is sufficiently small we have p(−1) < 0, which leads to his Case
III. For ω > 0 is sufficiently small it is easily verified that |C2| > 3 and so we
get determinacy.

Proof of Proposition 4: Using (24) in the basic model (5), we obtain
the following system, where ς t = (xt,πt, it)

0,

ς t = ẑÊtςt+1 + δ̂ς t−1 + κ̂wt, (38)

ẑ =

 1 ϕ 0
λ β + λϕ 0
0 0 0

 , δ̂ =
 0 0 −ϕb0i
0 0 −λϕb0i
0 0 b0i

 .
We note that the form of the MSV solution with CIRS rule II takes the
same form as (21)-(23), except that bx, bπ, bi (and also other coefficients) take
different values. For future reference, we denote these values respectively by
b0x, b

0
π, b

0
i.

Defining zt = (xt,πt, it−1)0, for determinacy we need to look at the system

B1Etzt+1 = B̂2zt; B̂2 =

 1 0 ϕb0i
0 1 λϕb0i
0 0 b0i


and B1 defined in (26). REE is determinate iff the matrix

B−11 B̂2 =

 1 + λϕβ−1 −ϕβ−1 ϕb0i
−λβ−1 β−1 0
0 0 b0i


has exactly one eigenvalue inside the unit circle. It can be verified that one
eigenvalue equals b0i and the remaining two eigenvalues are given by those of
the characteristic polynomial

p(µ) ≡ µ2 − µ(1 + β−1 + λϕβ−1) + β−1.

It is easy to check that p(0) > 0 and p(1) < 0 so that one eigenvalue of p(µ)
is between 0 and 1 and the other one exceeds 1. Note that for a determinate
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MSV solution, we must have |b0i| < 1 so that exactly two eigenvalues of B−11 B̂2
are inside the unit circle. The arguments show that REE is indeterminate
with CIRS rule II for all horizons and structural parameters.
We now turn to an analysis of E-stability of the system (38), which is

formally the same as in the previous section. One of the necessary conditions
for E-stability is that the matrix ẑ+ ẑb̄, where

ẑ+ ẑb̄ =

 1 ϕ b0x + ϕb0π
λ β + λϕ λb0x + (β + λϕ)b0π
0 0 0

 ,
has eigenvalues with real parts less than one. It is easy to see that one
eigenvalue of ẑ+ ẑb̄ is zero and the remaining two are given by those of the
matrix A in (6). A has an eigenvalue more than 1 so that all MSV solutions
of the model (38) are necessarily E-unstable. This result is again independent
of the horizon used by the bank and structural parameters.

C Details for the Inertial Model

As in Section 2.2, we can write the model with inertia in matrix form as

yt = A1E
∗
t yt+1 + L1yt−1 +Bwt +Dit, (39)

wt = V wt−1 + vt,

where yt = (xt,πt)
0, wt = (gt, ut)0, vt = (g̃t, ũt)0 and the matrices are

A1 =

µ
θ ϕ
λθ βγ + λϕ

¶
, L1 =

µ
1− θ 0

λ(1− θ) 1− γ

¶
. (40)

with B and D as defined before in (6). Strict inflation targeting is defined
as before by equations (1) and (7) leading to a form corresponding to (8):µ

y1,t+1
Ety2,t+1

¶
= Ω1

µ
y1,t
y2,t

¶
+Ψ1it +

µ
vt+1
0

¶
, (41)
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where y2,t = (xt,πt)
0, y1,t = (gt, ut, xlt,πlt)0, vt = (g̃t, ũt)0, and xlt ≡ xt−1,πlt ≡

πt−1. Also

Ω1 =



µ 0 0 0 0 0
0 ρ 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1
θ

ϕ
θγβ

−1−θ
θ

ϕ(1−γ)
θγβ

1+ϕλγ−1β−1
θ

− ϕ
θγβ

0 − 1
γβ

0 − (1−γ)
γβ

− λ
γβ

1
γβ


,Ψ1 =


0
0
0
0
ϕ
θ

0

 .

It is possible to compute the interest rule based on constant interest rate
projections in the same way as before. The CIRUK rule I corresponding to
(13) is now

it = −
Ã
K

h−1X
j=0

Ωj1Ψ1

!−1
KΩh1

µ
y1,t
y2,t

¶
, (42)

with K = (0, 0, 0, 0, 0, 1).

Proof of Proposition 5: The matrix for checking determinacy, namely,
− 1

βγ
1+βγ(γ−1)

βγλ
0 γ−1

βγλ

− λ
βγ

1
βγ

0 γ−1
βγ

1 0 0 0
0 1 0 0


has all eigenvalues equal to zero. However, since there are two free and two
pre-determined variables, determinacy requires exactly two eigenvalues inside
the unit circle. We now show that even though indeterminacy prevails, there
exists a unique MSV solution when h = 2.
Plugging the interest rule, (35), with the coefficients (36), into the system

(39), we get the reduced form system

yt = AfE
∗
t yt+1 +Alyt−1 +Awwt, (43)

Af =

Ã
−(1− γ)−1 1−βγ(1−γ)

λ(1−γ)
−λ(1− γ)−1 (1− γ)−1

!
, Al =

µ
0 −λ−1(1− γ)
0 0

¶
Aw =

µ
0 [λ(γ − 1)]−1(1− γ + ρ)
0 −ρ(1− γ)−1

¶
.
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Note that the lagged output gap and the gt shock do not appear in the
reduced form system (43); the interest rule has offset both these terms. The
MSV solution of (43), consequently, takes the form

xt = ax + bxπt−1 + cxut, (44)

πt = aπ + bππt−1 + cπut. (45)

It is easy to verify that there exists a unique MSV solution of this form and
it involves ax = aπ = 0, and

bx = −λ−1(1− γ), bπ = 0. (46)

We now check E-stability of this unique MSV solution. Assuming agents
have a PLM of the form (44)-(45), they compute their forecasts E∗t xt+1 and
E∗t πt+1 and these forecasts used in (43) lead to an ALM of the same form.
If agents use t− 1 data to compute their forecasts, the E-stability conditions
for such a system are given by Proposition 10.1 in (Evans and Honkapohja
2001). For the constant term, the eigenvalues corresponding to the following
characteristic polynomial p(τ) need to have negative real parts for E-stability.

p(τ) = τ 2 + τ +
βγ

γ − 1
However, p(0) < 0, p(∞) > 0 which implies that there exists a positive
eigenvalue.
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