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Abstract

We explore the effect of higher order operators in the non-relativistic formulation of
QCD (NRQCD). We calculated masses in the bb̄-spectrum using quenched gauge con-
figurations at β = 6.0 and two different NRQCD actions which have been corrected to
order mv4 and mv6. The two-point functions are calculated in a gauge invariant fashion.
We find the general structure of the spectrum to be the same in the two cases. Using
the 1P̄ − 13S1 splitting we determine the inverse lattice spacings to be 2.44(4) GeV and
2.44(5) GeV for the mv4 and mv6 actions, respectively. We do observe shifts in the spin
splittings. The hyperfine splitting is reduced by approximately 4 MeV, while the fine
splitting is down by up to 10 MeV, albeit with large statistical errors.

1 Introduction

Heavy quark systems have long been studied and much experimental data has been accumu-
lated which will eventually lead to tight constraints on the parameters of the Standard Model.
To this end it is important to have accurate non-perturbative predictions from QCD which
can be compared with experiment. One such method is Lattice QCD and it is necessary to
understand how heavy quark systems can be treated in this framework.

A nonrelativistic approximation to QCD, NRQCD, was proposed [1] to go beyond the
static approximation in lattice calculations. NRQCD has been remarkably successful in re-
producing the spectrum of heavy quark systems [2, 3, 4, 5] owing to the fact that the quarks
within such hadrons move with velocities v such that v2 ≪ c2. Furthermore, NRQCD has the
virtue of retaining, at least approximatively, the quark dynamics and can be considered an
effective theory. Computationally, such an approach is much faster to solve than the inversion
problem in fully relativistic QCD. A systematic improvement program has been developed to
match lattice NRQCD to continuum QCD [6, 7]. As an effective field theory the predictive
power of NRQCD relies on the control of higher dimensional operators.

In this paper we calculate the bb̄ spectrum comparing two different NRQCD-actions with
accuracies O(mv4) and O(mv6). In section 2 we give the details of our evolution equation
and the gauge invariant operators used. In section 3 we state the results and convert them
into dimensionful units. In the concluding section we compare our results with other work in
this area and experimental data.
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2 NRQCD and Operators

In NRQCD the inversion problem of the fermion matrix is an initial value problem. We use
the evolution equation along the Euclidean time-direction defined by:

G(x, t + 1; y) =

(

1 −
aH0

2n

)n

U †
t (x)

(

1 −
aH0

2n

)n

(1 − aδH) G(x, t; y) , t ≥ ty + 1 ,

G(x, ty + 1; y) =

(

1 −
aH0

2n

)n

U †
t (x)

(

1 −
aH0

2n

)n

S(x;y) . (1)

where
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∆2

2mb
,

δH = −c0
∆4

8m3
b

− c1
1

2mb
σ · gB + c2

i

8m2
b

(∆ · gE − gE · ∆) − c3
1

8m2
b

σ · (∆̃ × gE − gE × ∆̃)

−c4
1

8m3
b

{∆2, σ · gB} − c5
1

64m3
b

{∆2, σ · (∆ × gE − gE × ∆)} − c6
i

8m3
b

σ · gE × gE

−c7
a∆4

16nm2
b

+ c8
a2∆(4)

24mb
. (2)

Here S(x,y) is the source at the first timeslice (t = ty). We have S(x,y) = δ(3)(x,y) for
a single quark source at the origin, y, but we also propagate extended objects with the
same evolution equation. The operator H0 is the leading kinetic term and δH contains the
relativistic corrections and spin corrections. The last two terms in δH are present to correct
for lattice spacing errors in temporal and spatial derivatives. For the derivatives we give the
following definitions which are consistent with those of [5, 6]:

a∆iG(x, y) = Ui(x)G(x + ı̂, y) − U−i(x)G(x − ı̂, y) =
1

2

(

ea∂i − e−a∂i

)

G(x, y) ,

∆̃i = ∆i −
a2

6
∆+

i ∆±
i ∆−

i = ∂i + O(a4) ,

a2∆2G(x, y) =

(

3
∑

i=1

Ui(x)G(x + ı̂, y) + U−i(x)G(x − ı̂, y)

)

− 6 G(x, y) ,

∆4G(x, y) = ∆2(∆2G(x, y)) ,

a2∆(4)G(x, y) =





±3
∑

i=±1

Ui(x)Ui(x + ı̂)G(x + 2̂ı, y) − 4Ui(x)G(x + ı̂, y) +
c

2
G(x, y)



 ,

c = (4 +
2

u2
0

) . (3)

For our calculation with accuracy O(mv4) we set c4, c5 and c6 to zero and replace ∆̃ by ∆.
In this case we calculate the fields E and B from the clover field Fµν in the standard fashion
[6]. To determine the spin splittings with accuracy O(mv6) we retain the above coefficients
and the improved operator ∆̃. Correspondingly, we replace standard discretized gauge field
term Fµν by

F̃µν =
5

3
Fµν −

1

6

(

Uµ(x)Fµν(x + µ)U †
µ(x) + U−µ(x)Fµν(x − µ)U †

−µ(x) − (µ ↔ ν)
)

, (4)
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when this accuracy is needed for E and B in Equation 2.
All the gauge links are tadpole improved with u0 = 〈0|13TrUµν |0〉

1/4 as suggested in [8]. It
has been demonstrated that tadpole improvement is crucial to reproduce the spin splittings
accurately, which are otherwise underestimated. We assume that radiative corrections are
sufficiently accounted for by tadpole improvement and we therefore set all the renormalisation
coefficients, ci, to 1.

To extract masses we calculate two-point functions of operators with the appropriate
quantum numbers. In a non-relativistic setting gauge-invariant meson operators can be con-
structed from the two-spinors χ†(x) and Ψ(y) (which represent the antiquark field and quark
field) and a Wilson line, W (x, y). Such operators have the following behaviour under rotation,
parity and charge conjugation

χ†(x)W (x, y)Ψ(y)
R
−→ χ†(Rx)WR(Rx,Ry)Ψ(Ry) ,

χ†(x)W (x, y)Ψ(y)
P

−→ −χ†(xp)W
P(xp, yp)Ψ(yp) ,

χ†(x)W (x, y)Ψ(y)
C

−→ −ΨT (x)W C(x, y)χ∗(y) . (5)

The construction of spatially extended operators on the lattice has been reported elsewhere
[9]. Here we adopt the following notation:

Ln
i (x) ≡ Ui(x)Ui(x + i) . . . Ui(x + (n − 1)i) = Ln†

−i(x + in) ,

∆n
i Ψ(x) ≡ Ln

i (x)Ψ(x + ni) − Ln
−i(x)Ψ(x − ni) . (6)

With the generalised link variables of equation 6 and the transformation properties of equation
5 we can construct operators with definite JPC , where J labels the irreducible representations
of the octahedral group (J = A1, A2, T1, T2, E).

In order to increase the overlap between the meson and the ground states we create on
the lattice we use extended versions of the derivative as defined in equation 6. The operators
we used are listed in Table 1. The meson correlator is written as a Monte Carlo average over
all configurations

Cnm(x, y) = 〈tr
[

G†(x, y)Gnm(x, y)
]

〉 , (7)

where tr denotes contraction over all internal degrees of freedom and Gnm is the smeared
propagator defined by

Gnm(x, y) ≡
∑

z1,z2

On(x, z1)G(z1, z2)O
m†(z2, y) . (8)

Here (n,m) stands for the radii at (sink, source) and On is an operator as defined in Table 1
but with extended symmetric derivative ∆n. For the smeared propagator we solve equation
1 with S(x,y) = Om†(x,y) and multiply with On at the sink. We fix the origin at some
(arbitrary) lattice point, y, and sum over all spatial x so as to project out the zero momentum
mode. In addition we sum over all polarisations to increase the statistics.

3 Simulation and Results

We use quenched gauge field configurations at β = 6.0 on a 163×48 lattice generated with the
standard Wilson action at the EPCC in Edinburgh. The propagators were calculated at the
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HPCF in Cambridge and at the Hitachi Europe Ltd. High Performance Computing Center in
Maidenhead. As the operators chosen are gauge invariant, gauge fixing is not necessary. We
used the extended operators defined in section 2 with radii 1,2 and 3 in both the source and
sink thus giving rise to a 3 × 3 matrix of correlators for each set of quantum numbers. The
calculation were done with a bare quark mass of amb = 1.71 which is the same as that used
in [5]. We used n = 2 as the stability parameter in Equation 1. The tadpole improvement
coefficient appropriate to β = 6.0 is u0 = 0.878 as in [5]. We calculated quark propagators for
both actions from 8 points (i, j, k) where i, j, k is 0 or 7 on the first timeslice for each of the 499
configurations. It has been noted previously [5] that such an arrangement gives independent
and uncorrelated measurements due to the small size of the bb̄-system on our lattice. Thus
we have a total of 35928 correlators for each meson we considered (1S0,

3S1,
1P1,

3P0,1,2). We
also average over all polarisations and all spin components.

We fit the correlators to the multi-exponential form

Cnm
α (t) =

nfit
∑

i=1

anm
αi e−Mα

i
t . (9)

Here α denotes a meson state with certain quantum numbers, (n,m) the different radii at the
(sink, source) and t the Euclidean time. We chose nfit to be 1,2 or 3 and restrict ourselves
to some conveniently chosen subsets of all the data, e.g. a window [tmin, tmax]. The basic
method for obtaining the parameters anm

αi and Mα
i (which we generically refer to as {bl})

is a correlated fit using the whole covariance matrix. The statistical nature of the data
causes fluctuations from the central values of the parameters, which are determined from a
minimal χ2(b) fit. We estimate the covariance matrix for the parameters from the inverse of
(∂2χ2)/(∂bk∂bl). The goodness of the fit is quantified by the Q-value, defined in [11]. We
require an acceptable fit to have Q > 0.1 and that the results remain consistent as we alter
our fitting prescription slightly (e.g. varying tmin or the number of eigenvalues retained when
inverting the covariance matrix of the data). To illustrate the method we display a fitted
mass plotted against tmin in Figure 1. Our dimensionless results for the non-relativistic rest
energies are shown in Table 2.

Fitting excitation energies relative to the ground state makes it difficult to extract the
splitting and the associated error of the P-state. We rewrite Equation 9 as

Cnm
α (t) =

nfit
∑

i=1

anm
αi e−(M1

1
+δMα

i
)t , (10)

where we can now fit the amplitudes anm
αi , the ground state mass M1

1 and the splittings, δMα
i ,

with respect to M1
1 . Our results are tabulated in Table 3.

From the 1P̄ − 13S1 splitting we estimate the lattice spacing at β = 6.0 to be a−1
P̄−S

=

2.44(4) GeV for the improved action and a−1
P̄−S

= 2.44(5) GeV for the unimproved action.
The kinetic masses were determined using 80 configurations for both actions. We show an
example of the dispersion relation in Figure 2 and the results are shown in Table 4.
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4 Conclusions

Despite the success of NRQCD, a source of concern has been the effect of higher dimensional
operators in LNRQCD. To test this issue, we calculated the Υ spectrum in a gauge invariant
fashion to accuracy O(mv4). We then retained the spin corrections in Equation 1 up to
O(mv6) and compared the results with each other. We also checked higher order contributions
to the derivative in the term proportional to c3 and found their effect negligible. Our main
results are summarised in Figures 3 and 4. In Table 3 we compare the results for the two
different evolution equations with each other and convert the dimensionless numbers into
physical units. We set the scale using the 1P̄ − 13S1 splitting and find a−1

P̄−S
= 2.44(4) GeV

and 2.44(5) GeV, respectively. Our results for a lower order evolution equation match those
from an earlier calculation [5, 13, 14] where the configurations were fixed in the Coulomb
gauge.

These comparisons demonstrate the consistency of NRQCD. The gross structure of the
Υ-spectrum calculated is unchanged when we added the spin correction terms. For example,
the ratio RSP = (23S1 − 13S1)/(1P̄ − 13S1) = 1.3(1) agrees for both actions and with the
experimental value, 1.28, within statistical errors.

The bare mass parameter, amb, was chosen to be 1.71 to match a choice in [5]. With our
lattice spacing this corresponds to mb = 4.17(7) GeV and gives a kinetic mass of 9.4(3) GeV
(for the mv6 action) and 9.7(3) GeV (for the mv4 action) which should be compared to the
experimental value of 9.46 GeV. The differences in the kinetic mass due to the extra terms
is of the order of 1-2 standard deviations. We note also that the χ2/dof resulting from the
kinetic mass fits for the mv6 action is much smaller than that for the mv4 action.

However, differences can be seen for the spin splittings. The introduction of the extra
terms reduces the hyperfine splitting, 3S1−

1S0, by approximately 4 MeV. This size of a shift
is what one would expect from power counting arguments.

We also observe a reduction in the fine structure. For example, by adding the spin
corrections the 3P2 −

3P1 splitting is reduced from 19(3) MeV to 11(3) MeV, compared with
the experimental value of 21 GeV. Such a behaviour has also been reported for the spectrum
calculations of charmonium on much coarser lattices [12]. Here we find a similar tendency
and further analysis will be needed to decide whether this feature persists in unquenched
calculations. We note that the ratio Rfs = (13P2 − 13P1)/(1

3P1 − 13P0) = 0.56(19) from our
improved calculation is in better agreement with the experimental value (0.66). For the less
accurate action we find 1.11(26) for this ratio.

There will be additional uncertainties due to radiative corrections to the coefficients ci

in LNRQCD. Discretisation errors in the gluonic action will also effect our results and of
course there will be corrections due to the introduction of sea quarks. Future studies into the
accuracy of NRQCD will have to address these systematic errors.
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Meson L → Oh S → Oh (L ⊗ S) Operator
1S−+ 0 → A1 0 → A1 A−+

1 c + ∆2

3S−− 0 → A1 1 → T1 T−−
1 (c + ∆2)σi

1P+− 1 → T1 0 → A1 T+−
1 ∆i

3P++ 1 → T1 1 → T1 A++
1 σi · ∆i

T++
1 ǫijkσj∆k

T++
2 σk∆j + σj∆k

E++ σj∆j − σk∆k

Table 1: transformation behaviour of bb̄-states in their non-relativistic notation

State aMmv6 aMmv4 aMmv4 − aMmv6

11S0 0.4391(3) 0.4416(3) 0.00265(5)
21S0 0.688(23) 0.679(22) –

13S1 0.4497(4) 0.4539(3) 0.00439(6)
23S1 0.687(23) 0.681(20) –

1S 0.4470(3) 0.4508(3) 0.00396(9)
2S 0.69(3) 0.68(2) –
1P1 0.632(7) 0.635(7) 0.0033(1)
3P0 0.619(7) 0.621(7) 0.0021(2)
3P1 0.628(7) 0.627(8) 0.0029(1)
3PT2 0.635(5) 0.642(6) 0.0053(1)
3PE2 0.632(7) 0.642(6) 0.0055(1)

P̄ 0.630(3) 0.634(4) 0.0042(1)

Table 2: Here we compare the absolute masses from different evolution equations and calculate
their difference from a ratio fit with bootstrap errors.
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Splitting O(mv6) × a−1 [GeV] O(mv4) × a−1 [GeV] Exp. value
[2.44(4)] [2.44(5)]

P̄ − 13S1 0.180(3) 0.4398 0.180(4) 0.4398 0.4398 GeV

13S1 − 11S0 0.01073(5) 0.0262(6) 0.01227(11) 0.0300(7) –
23S1 − 13S1 0.24(2) 0.59(5) 0.23(2) 0.56(5) 0.5629 GeV
11P1 − 13S1 0.180(6) 0.440(18) 0.181(7) 0.442(20) –
13P2 − 13P0 0.011(2) 0.027(5) 0.0143(34) 0.035(8) 0.0534 GeV
13P2 − 13P1 0.0045(14) 0.011(3) 0.0078(11) 0.019(3) 0.0213 GeV
13P1 − 13P0 0.008(1) 0.019(2) 0.0070(13) 0.017(3) 0.0321 GeV

13P2 − P̄ 0.00272(55) 0.0066(14) 0.0045(5) 0.011(1) 0.0131 GeV
P̄ − 13P1 0.0016(8) 0.004(2) 0.0036(6) 0.0088(15) 0.0082 GeV
P̄ − 13P0 0.0078(11) 0.019(3) 0.0120(17) 0.029(4) 0.0403 GeV

Mkin 3.84(8) 9.38(25) 3.97(8) 9.70(29) 9.4604 GeV

RSP 1.33(11) 1.28(11) 1.2802

Rfs 0.56(19) 1.11(26) 0.6636

Table 3: Summary of splittings. We show our results for both accuracies and convert them
into physical units. The lattice spacing is determined from the 1P̄ − 13S splitting in both
cases. RSP = (23S1 − 13S1)/(1P̄ − 13S1), Rfs = (3P2 −

3P1)/(
3P1 −

3P0).

State aEmv6 aEmv4 aEmv4 − aEmv6

11S0(p = (1, 0, 0)) 0.458(1) 0.462(1) 0.00236(7)
11S0(p = (1, 1, 0)) 0.478(2) 0.481(2) 0.00212(8)
11S0(p = (1, 1, 1)) 0.496(4) 0.499(3) 0.00191(10)
11S0(p = (2, 0, 0)) 0.522(4) 0.524(5) 0.0018(3)

aMkin 3.77(7) 3.93(7)

13S1(p = (1, 0, 0)) 0.469(1) 0.474(2) 0.00427(5)
13S1(p = (1, 1, 0)) 0.489(2) 0.493(2) 0.00416(6)
13S1(p = (1, 1, 1)) 0.508(2) 0.511(3) 0.00406(7)
13S1(p = (2, 0, 0)) 0.531(5) 0.535(5) 0.00417(8)

aMkin 3.84(8) 3.97(8)

Table 4: The dispersion relation for 1S0 and 3S1. The momentum is given in lattice units of
p = 2π

L (i, j, k) where L = 16. The last column is the difference for both evolution equations
as obtained from a ratio fit.
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Figure 1: Two examples of correlated fits for the 1S0-state, calculated with the improved
action. The different symbols denote different choices for nfit and the tmin dependence
is shown. This is to demonstrate the consistency of our fit results as we change the fit
prescription. We chose tmax = 48 for all fits.
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Figure 2: Dispersion relation for 3S1 and two different accuracies. The non-relativistic energy
in lattice units is plotted vs. (2π

16 )2|n|2 where n = (1, 0, 0),n = (1, 1, 0),n = (1, 1, 1). From
this we determine its kinetic mass to be 9.7(3) GeV (O(mv4)) and 9.4(3) GeV (O(mv6)) for
amb = 1.71. 10



−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Upsilon Spectrum from NRQCD

(m
as

s 
−

 3
S

1)
 in

 G
eV

1S0 3S1 1P1 P  3P0 3P1 3P2

Figure 3: Upsilon spectrum. We compare our results for two actions with different accura-
cies. Crosses are the results from an action which is accurate to O(mv4). Circles denote an
improved calculation where spin-corrections, c4, c5 and c6, have been taken into account up to
order O(mv6). Bursts denote the experimental value where available. The splittings, relative
to the 3S1, are shown. The scale has been calculated from the 1P̄ − 13S1 splitting.

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(m
as

s 
−

 P
_c

m
) 

in
 G

eV

Fine Structure from NRQCDFine Structure from NRQCD

1P1 3P0 3P1 3P2

Figure 4: Upsilon fine structure. The splittings, relative to the P̄ , are shown. Experimental
values are shown as dashed lines. Crosses denote accuracy up to O(mv4), circles up to O(mv6).
The scale has been calculated from the 1P̄ − 3S1 splitting.

11


