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Abstract

We prove that every tournament 7' = (V, A) on n > 2k + 1 vertices can be made
k-arc-strong by reversing no more than k(k 4 1)/2 arcs. This is best possible as
the transitive tournament needs this many arcs to be reversed. We show that the
number of arcs we need to reverse in order to make a tournament k-arc-strong is
closely related to the number of arcs we need to reverse just to achieve in- and out-
degree at least k. We also consider, for general digraphs, the operation of deorienting
an arc which is not part of a 2-cycle. That is we replace an arc zy such that yz is not
an arc by the 2-cycle zyz. We prove that for every tournament T on at least 2k + 1
vertices, the number of arcs we need to reverse in order to obtain a k-arc-strong
tournament from T is equal to the number of arcs one needs to deorient in order to
obtain a k-arc-strong digraph from 7. Finally, we discuss the relations of our results
to related problems and conjectures.
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1 Introduction

The digraphs in this paper may have multiple arcs but no loops. In general
the notation follows [1].

We denote an arc from z to y by zy and also sometimes by x—y. We call
z the tail and y the head of the arc ry. We denote by N*(z) (N~ (z)) the
set of those vertices y (z) such that —y (z—z). For every pair U, W of not
necessarily disjoint subsets of V(D) we denote by #(U.W) the number of
arcs with tail in U and head in W (such arcs are called (U, W)-arcs). The
out-degree (in-degree) of a set X of vertices in D is the number d*(X) =
#(X.V - X) (d(X) = #(V — X, X)). If there are several digraphs in play
at the same time, we will use dj;(x) to denote the out-degree of the vertex z
in the subdigraph H. A digraph D = (V. A) is k-arc-strong if d*(X) > k
for every proper non empty subset X of V. The arc-strong connectivity,
A(D), of D is the maximum integer k for which D is k-arc-strong.

For a given digraph D we denote by UG(D) the undirected (multi)graph that
we obtain by suppressing the orientations of the arcs. An oriented graph is
a digraph with no parallel arcs and no 2-cycles. A tournament is an oriented

graph D for which UG(D) is a complete graph.

Clearly a digraph D = (V, A) can be made k-arc-strong by reversing some
arcs if and only if the edges of UG(D) can be oriented such that the resulting
digraph D’ is k-arc-strong. By Nash-Williams’ orientation theorem, such an
orientation of UG(D) exists if and only if UG(D) is 2k edge-connected (see
e.g. [1, Section 8.6]).

Denote by 6°(D) the minimum over all in- and out-degrees of vertices in
D. Let TZEQ(D) be the minimum number of arcs one needs to reverse in a
digraph D in order to obtain a digraph D’ with §°(D’) > k. Analogously define
rar =" (D) to be minimum number of arcs one needs to reverse in D in order
to obtain a k-arc-strong digraph. By the remark above, rZTc_Stmng(D) < oc if
and only if UG(D) is 2k-edge-connected. It is well known that, by reducing
the above reversal problem to a minimum cost submodular flow problem, one
can determine, in polynomial time, a minimum cardinality set of arcs in D
whose reversal gives a k-arc-strong digraph or detect that r{"“~*"*"( D) = oc.
We refer the reader to [1, Section 8.8.4] for a detailed account on how to do
this. For an arbitrary digraph D the size of rZTC_StTO"g(D) may depend on n,
the number of vertices of D. We prove in this paper that for tournaments

arc—strong

Ty, (T') is always bounded by a quadratic function of k. It follows from
our proofs that one can determine r{"*~*""*"(T) for an arbitrary tournament

T using standard minimum cost flows rather than submodular flows.

It is not difficult to find examples of tournaments T for which the number



of arcs we need to reverse in order to obtain a k-arc-strong tournament from
T is strictly larger than the number of new arcs we need to add to 7T in
order to obtain a k-arc-strong directed multigraph. Note that here we allow
the creation of parallel arcs. See Section 6 for such an example. Instead we
consider the operation of deorienting an arc. Let zy be an arc of a digraph
D which is not in a 2-cycle (that is D does not contain the arc yz). By
deorienting ry we mean the operation which replaces xy by the 2-cycle zyz
(or equivalently, adds the arc yz to D). Let DEOZEQ(D) denote the minimum
number of arcs we need to deorient in D in order to obtain a digraph D’
with 6°(D') > k. Clearly DEO{?(D) < oc if and only if each vertex of D
has degree at least k in UG(D) and DEOY (D) < r{*(D) for every oriented
graph. Analogously define DEO}“*""*"(D) to be the minimum number of
arcs one needs to deorient in D in order to obtain a k-arc-strong digraph. It
is easy to see that DEOL“™*""(D) < oc if and only if UG(D) is k-edge-
connected. Furthermore if D is an oriented graph (in particular if D is a
tournament) then we have DEOR ™" (D) < r{"*~*""*"9( D) since instead of
reversing an optimal set A’ of arcs we may deorient these arcs and obtain a
digraph with in- and out-degree at least k.

For arbitrary digraphs we don’t know how to determine DEO{ “*"*"9(D)
efficiently, but as we show in this paper, when T is a tournament, we can de-
termine DEO} """ (T) efficiently and furthermore we have ry ™ *""(T') =

DEOzrc—strong (T) )

2 Determining (D) efficiently

We start by observing that the problem of determining rzeg(D) and finding
an optimal reversing set can be solved using flows in networks for any given

digraph D.

Let D = (V, A) be an arbitrary digraph and let N = (V,A,l = 0,u = 1) be
the corresponding flow network in which every arc has capacity (i.e. upper
bound) one and lower bound zero. By a flow in N we mean simply a function
z : A= R such that 0 < z;; <1 for every arc 17 € A. We call z an integer flow
in N if z;; € {0,1} for every arc ij € A. Starting from any digraph D’ which
was obtained from D by reversing some arcs we can define an integer flow z
in N by taking z;; = 1 precisely if the arc ¢j was reversed when going from
D to D'. Tt is easy to see that we may also go the other way. Hence we may
study reversals of arcs in D through flows in N. Given an integer flow z in N
let D’ be obtained from D by reversing those arcs 7j that have z;; = 1. The
in-degree of a vertex 7 in D’ is given by dp(1) = dp (1) + Xijea Tij — X jica Tji-



Hence, in order for D’ to have §°(D’) > k we must have

ijEA jicA

where the last inequality ensures that df, (i) > k. The condition above is
equivalent to requiring that the flow z satisfies 0 < z;; <1 and

dh(i) —k > Y wij— Y i > k—dp(i). (2)

17€EA jieA

This is just a feasibility problem for flows and hence can be solved in polyno-
mial time using any algorithm for finding a maximum flow in a network (See
e.g. [1, Exercise 3.32]). By introducing the cost 1 on every arc and solving a
minimum cost flow problem. in polynomial time, we can determine TZEQ(D)
and find an optimal reversing set. or determine that TZEQ(D) = oc which cor-
responds to the case when there is no feasible flow in V.

Note that if D has 2-cycles then the optimal reversal may involve the creation
of parallel arcs. We can exclude the reversal of arcs in 2-cycles by letting
l;j = u;; = 0 for every arc which is part of a 2-cycle.

3 Reversals of arcs to achieve high in- and out-degree in tourna-
ments

In this section we consider rzeg(T) when T is a tournament and prove that
this number is always bounded by a (quadratic) function in k. Define the
deficiency DEFy(T) of a tournament T with respect to the degree requirement
k as follows:

DEF(T) = Yaev(rymaz{0.k — d*(2)} + pevrymaz{0.k — d~(2)}.
Thus 6°(T) > k if and only if DEF,(T) = 0.

Lemma 3.1 If T is a tournament, with |V(T)| > 2k + 1, then TZEQ(T) <
DEF(T).

Proof: We will show that if DEFy(T) > 0 and we cannot reverse one arc,
such that the deficiency drops by at least one, then we can reverse two arcs,
such that the deficiency drops by two after these two reversals. This will imply
the claim by induction on DEFy(T). So assume that DEF,(T) > 0 and we

cannot reverse any arc, such that the deficiency drops by at least one.



Without loss of generality let w € V(T') have dj(w) < k—1. Let X = N7 (w),
Y = Nf(w). Since df(w) < k — 1 we get that |X| = |[V(T)| - Y| -1 >
2k+1—(k—-1)—1=Fk+1.

For all € X we must have df(z) < k, since if there was some 2’ € X with
d(z") > k, then we could reverse z'w, obtaining a contradiction. Therefore
we have

X[k > > di(x) = [X|(1X] = 1)/2 + #(X,Y) + | X]. (3)

zeX

If some y € Y has dy(y) < k then there exists some vertex z € X, such that
y—z—w. Now reversing the arcs yz and zw, we note that the deficiency drops
by two. Therefore we may assume that d;(y) > k, for all y € Y, which implies
that

VIE <> dr(y) = VI(Y]=1)/2+ #(X.Y) + [V]. (4)

yey
Isolating #(X.Y) in (3) and (4) we obtain the following.

k| X

— X[ = (XX =1)/2 2 #(X.Y) 2 kY] = Y] = [Y[(]Y] - 1)/2
4

E|X| - kY| - |X|2;|Y|2 _ |X|;|Y| >0

(2k = DX = [Y]) = (1X[* = [Y]*) = 0

As |X| > k > |Y]| we may divide by |X| — |Y| in the last line, whereby we
obtain that 2k—1—(|X|+|Y]) > 0, which is a contradiction, as | X|+|Y|+1 =
V(T)| > 2k + 1. o

Lemma 3.2 For every tournament T on at least 2k + 1 vertices

max{ » max{0.k—d*(z)}, Y max{0.k—d (z)}} <k(k+1)/2.
2V (T) 2€V(T)

Proof: Let X = {z|d7(z) < k} and Y = {y|dF(y) < k}. Note that 3, x[k—
dr(z)] < E|X|—|X|(|X]|-1)/2 = |X|(2k +1—|X|)/2. It is easy to show that
the later is never larger than k(k + 1)/2 since |X| is an integer (differentiate



it, and note that the maximum is found in |X| =% or |X| =k + 1, when |X|
is an integer). Analogously we see that k(k +1)/2 — ¥ oy [k — df(y)] > 0. ©

It follows from Lemmas 3.1 and 3.2 that r{(T) < DEF,(T) < k(k + 1), but
we need to count more detailed in order to prove Corollary 3.4. In order to do
so, we consider a set of arcs, A’, in T', such that DEF,(T') = DEF(T)—2|A|.
where T' is the tournament obtained from T, by reversing all the arcs in A’'.
Let ddi(T) denote the maximum number of arcs possible in such a set of arcs
A'. Hence ddi(T) is the maximum size of a set of arcs such that reversing
these arcs in any order will decrease the deficiency by 2 per arc.

Lemma 3.3 If T is a tournament, with |V(T)| > 2k + 1, then DEF(T) —
ddi(T) < k(k+1)/2.

Proof: Let T be a tournament, with |V/(T')| > 2k+1 and let X = {z|d;(z) <
k} and let Y = {y|dF(y) < k}. We now build a flow network, N, with V/(N) =
XUY U{s,s,t'.t} and A(N) ={zylzr € X,y e Y.y € A(T)} U {sz.zt'|z €
X} U{s'y,ytly € Y} U {ss',s't',t't}. Let the capacities in N be defined as
follows.

(i) u(sz) =k — dy(z) for all z € X

(i7) u(zy) = 1 forall 2 € X, y € Y and 2y € A(T)
(i4) u(yt) = k — dE(y) for all y € Y

(iv) u(ss’) = ") — 57 [k — dp(w)]

(v) u(t't) = M 5 [k — df(y))

(vi) u(pq) = oc all other arcs in N.

Note that we do not include in N those arcs in T' that go from Y to X or
are inside X or Y, nor do we include any of the vertices of V — X — Y in
N. However, the arcs that we have deleted in this way still contribute to the
capacities in V.

It follows from Lemma 3.2 that all capacities are greater than or equal to
zero. We will now show that there exists a feasible (s,¢)-flow in N, of value
k(k+1)/2. Let u(U, W) denote the sum of the capacities of the arcs with tail
in U and head in W. By the max-flow-min-cut theorem (See e.g. [1, Theorem
3.5.3]), we just have to show that u(S,S) > k(k 4 1)/2 for every (s,t)-cut
(S,5) in N ( An (s,t)-cut in N is a partition of V(N) into two sets S, T
such that s € S and ¢t € T). Now let (5, 5) be chosen such that u(S$,S) is
minimum over all (s,t)-cuts. If s’ € S, then we may assume that ¥ C S and
t' € S, by (vi) above. As t € S, (i) and (v) imply that the capacity across
(S,9) is at least k(k + 1)/2. So we may assume that s’ € S. Analogously we



may assume that ¢ € §. Let X, = X NS, X; = XNS. Y,=YNS and
Y; = YN S and observe that u(Y;, t) < kY| — [Y;|(]Y;| = 1)/2 — #(Y;, X) and
u(s, Xs) < k| XS] — | X|(|Xs| —1)/2 — #(Y. X;)). Now we can estimate u(S, 5)

as follows:

u(S,8) = u(X,,Y;) +u(Ya, t) +u(t,t) +u(s, X;) + u(s,s)
= (X |[Ye| = #(Ye. X)) + u(V(N) = Vi, f) + u(s, V(N) — X)
= | XaIY| = #(Ye, Xo) + (BB — (Y, 1)) + (D (s, X))

2

> X, |[Y] — #(Y. X,) + B (k]| — Y|V - 1)/2 - #(Y. X))

2

R (BIX ]~ X)X - 1)/2 — #(Y, X))
> ML Lk 4+ 1) + (1X] + V)2 — (2K + 1)(IX,] + X))

As k(k41) 4+ (|Xs |+ [Y2])? = (2 + 1)(| X[ 4 [¥i]) > 0, unless & < | X, |+ V| <
kE+1, we see that u(S,S) > k(k+1)/2, as desired (as | X,|+|Y;| is an integer).
So there exists a feasible integer valued (s, t)-flow in N, of value k(k + 1)/2.
Note that such a flow is also a maximum (s,?)-flow in N since the (s, t)-cut

(s, V(N) — s) has capacity exactly k(k + 1)/2.

Let x be a feasible integer valued (s,t)-flow in N, of value k(k + 1)/2, and
let (U, W) denote the sum of the flow values on the arcs from U to W. Now
consider the (s, t)-cut, ({s.s’} U X, {#'.t} UY), and note that since there are
no arcs from {#'.t} UY to {s,s'} UX in N we have k(k +1)/2 = z({s,s'} U
XAt t}UY) = 2(X.Y) + 2(X.¢) + (s, Y) + z(s'.¢') . This implies the

following:

k(k+1) _ :E(X, Y) + (”C(X t’) + ;E(S/,t/)) + (;v(s’yY) + $(3”t’)) — :c(g”t/)
<z(X.Y)+ (M — Yeex(k —dp(z)))

2

+H(ME = T ey (k — d7(y))) — (s, )

2

D > 57 e x (b — dp () + Syer (b — dp(y)) — 2(X,Y)

Let H be the arcs from X to Y on which x takes the value one. Let T’ be
the tournament obtained from 7', by reversing the arcs in H and note that
DEF(T") = DEFy(T) — 2|H|. So by the definition of ddy, and the fact that
k(k+1)/2 > DEF,(T) — |H|, we are done. o

Corollary 3.4 If T is a tournament, with |V(T)| > 2k + 1, then ri9(T) <
E(k+1)/2.



Proof: It is not difficult to see that ri(T) < DEF(T) — ddi(T), as we
first choose a set A’ as described in the definition of ddi(T'), and then use
Lemma 3.1 to see that after reversing all arcs in A’ we need to reverse at most

DEF(T) — 2ddy(T) further arcs. Now the claim follows from Lemma 3.3. ¢

For general digraphs D there need not be any close relation between the num-
bers TZEQ(D) and rZTC_Stmng(D). For example, let D be the digraph obtained by
replacing each vertex of a directed path P, on ¢ vertices by a 3-cycle (That is
D = P,[Cs, ..., Cs]). Then ri(D) = 6 and it is easy to see that 57" (D)
is proportional to ¢ and hence can be made much larger than r;’EQ(D) by
increasing t.

4 Reversals of arcs to achieve high arc-strong connectivity in tour-
naments

: d —st
We now show that in the case of tournaments, the numbers r,"¢ and r; >

are closely related.

Theorem 4.1 For every tournament T with |V(T)| =n > 2k + 1 we have
S () — i (k — A(T), (T},
In particular, if ¥ (T) > k — MT) then r{™*""(T) = r{9(T).

Proof: Let ¢ = maz{k—\(T).r{¥(T)} and let T be a tournament obtained
from T by reversing at most ¢ arcs, such that the following holds:

(i). 6+(T").6~(T") > k.

(ii). X,evry(dt(z))? is minimum.

Note that there exists such a T, by the definition of ¢. If 7" is k-arc strong
then we are done, so assume that A(7") < k. Let S be chosen such that
#(S,V—85)=XT") in T’, and such that |S]| is minimum among all subsets
S with #(5",V —8") = MT"). As §7(T"),6~(T") > k and A\(T") < k, we note
that 2 < |S| < |[V(T")] — 2.

If there exists a vertex z € S, with #(S,2) < #(z.V—S5). then ' =S —zisa
contradiction against the choice of S. Therefore #(S,z) > #(z,V —.5), which
implies that df (z) < |S| — 2, for all x € S. The minimality of #(5,V — 9)
implies that #(S,y) < #(y,V — S) and hence we get df,(y) > |S], for all
yeV —=5.



If | S| < 2k, then

Yo dfi(z) = #(S. S)+#(S.V=5) < |S|(|S|=1)/2+k < k(|S|-1)+k = k[S],

z€S

which is a contradiction as §7(T”) > k. Therefore |S| > 2k + 1. Analogously
we can prove that |V — S| > 2k 4 1.

This implies that for all # € § we have d7,(z) > n—1—(|S|-2) > |[V-S|+1 >
2k +2 > k + 1 and for allyEV—Swvehaved+,(y)2 S| >2k+1>k+1

Note that reversing any arc yx which goes from V' — S5 to S in 7" will maintain
(i) and decrease (ii) as dF,(y) > dF,(z) + 2. Hence it follows from the fact that
|S]. |V =S| > 2k+1 (implying that 7" contains arcs from V' — S to S) that we
have reversed exactly ¢ arcs in order to obtain 7" and furthermore every arc
from V — S to S also goes from V' — S to S in T (otherwise we could improve
(ii) by not reversing such an arc originally). Let R denote the arcs in 7" which
have an opposite direction to what they did in T (i.e. R are the arcs that have
been reversed, and |R| = ¢). We will now show that all arcs in R go from S to
V — S in T". It follows from the remark above that there is no (V — S, §)-arc
in R.

If there exist an (S, S)-arc in R, then let vu be such an arc (i.e. uv € A(T)).
As |V =8| > 2k + 1 and #7/(S,V — S) < k (the number of arcs from S to
V — 8 in T'), there exists a vertex w in V — 5, with wv € A(T"). Now consider
the tournament T"”, obtained from 7" by reversing vu and wv. Note that 7"
also has ¢ arcs reversed compared to T' (uv is reversed back again). Compared
to T' we see that all degrees stay the same except that d*(w) decreases by
one and d~(u) decreases by one. Therefore we still have 6*(T"), 6~ (T") > k,
and we obtain a contradiction against (ii).

If there exists a (V — 5,V —S)-arc in R, we analogously obtain a contradiction.

Therefore all arcs in R are (S, V — §)-arcs.

Since we have reversed ¢ arcs, there are at least A(T') + ¢ > k arcs in T’ from
S to V — S contradicting the assumption that 7" has fewer than k& such arcs.
o

Note that the proof above can be turned into a polynomial algorithm for
finding a set of ¢ arcs whose reversal makes T' k-arc-strong using just flows
instead the more complicated of submodular flows (as we mentioned in the
introduction, one can determine ri “”*"*"(D) for an arbitrary digraph D
using minimum cost submodular flows). We leave the details to the interested

reader.

Combining Corollary 3.4 with Theorem 4.1 we obtain the following upper

arc—strong

bound on r}, (T'). Note that the transitive tournaments show that this



is best possible.

Corollary 4.2 For every tournament T with |V(T)| = n > 2k 4+ 1 we have
rpl TN (TY < k(K +1)/2.

5 Deorienting arcs of a tournament in order to achieve high in-and
out-degree or high arc-strong connectivity

Lemma 5.1 If T is a tournament, with |V(T)| > 2k + 1, then DEO{(T) >
DEFW(T) — ddy(T).

Proof: Let X = {z|d;(z) < k} and Y = {y|df(y) < k} and let B be a
set of DEOZEQ(T) arcs, such that the digraph T'U B has minimum out- and
in-degree at least k.

Let B’ C B be defined, such that |B’| is maximumand DEFy(T) = DEF,(TU
B') + 2|B’|. Thus B’ is a maximum cardinality subset among the arcs in B
such that adding these arcs to T' in any order will decrease the deficiency by
2 per arc.

Let T = TUB’, and let X' = {z|d}.(z) < k} and Y’ = {y|d}.(y) < k}. Note
that, by the maximality of | B’|, there is no arc in B — B’ which goes from Y to
X'. So there has to be at least 3, ¢y (rymax{0,k —d7.(z)} arcs in B — B’ going
into a vertex in X', and there has to be at least Y- ¢y () max{0,k — df.(y)}
arcs in B — B’ going out of a vertex in Y. As there was no (Y, X') — arcin

B — B', this implies that |B — B'| > DEF(T").

Now we see that |B| > DEF(T")+|B'| = DEF(T)—|B’| (by the definition of
B'). By the definition of ddi(T'), we get that DEO{(T) = |B| > DEF(T) —

Theorem 5.2 Let T be a tournament on at least 2k + 1 vertices. Then we
have DEOYY(T) = r{(T). In particular DEO{(T) < k(k +1)/2.

Proof: We saw in the proof of Corollary 3.4 that ri(T) < DEF,(T) —
ddi(T). Thus we have DEO{9(T) < ri(T) < DEF(T)—ddy(T). Lemma 5.1
now implies that equality must hold everywhere. Now it follows from Corollary

3.4 that DEOY(T) < k(k +1)/2. o

Since deorienting an arc xy in an oriented graph corresponds to adding the
opposite arc yx and keeping xy, one might expect that DEOZTC_Stmng(D) <
i7" (D) for most digraphs. The next result shows that for tournaments
the two numbers are equal and hence. with respect to increasing the arc-strong

connectivity, there is no gain from deorienting arcs rather than reversing arcs.

10



Theorem 5.3 For every tournament T on at least 2k + 1 wvertices we have

DEOzrc—strong (T) — rzrc—strong(T) )

Proof: We saw in Theorem 4.1 that r{™*""(T) = max{k — \(T), r{*(T)}.
If 77" (T) = p4°9(T') then we have by Theorem 5.2

DEOZTC_StTO"g (T) S rzrc—strong(T)
=i (T)
— DEO{(T)
S DEOZTC_SMO"Q(T),

implying that DEO{™™*""(T) = r"*""*"9(T). So we may assume that
rar e rond(Ty = k — MT). Now the claim follows from the easy fact that
DEO=*"°"(T) > k — MT). o

We argued in Section 4 that we can find, in polynomial time, a set of arcs
A" C A(T) of size r{"*""*"(T) in a tournament T such that reversing the
arcs of A’ results in a k-arc-strong tournament. Thus it follows from Theorem
5.3 that, in polynomial time. we can determine DEOZTC_WO"Q(T) and find a
set of DEO """ (T') arcs to deorient such that the resulting semicomplete
digraph is k-arc-strong (a digraph is semicomplete if it has no non adjacent
vertices). One optimal set of arcs to deorient is simply a set that would form

an optimal reversal.

6 Related problems and conjectures

A digraph D = (V, A) is k-strong if D — X is strong for every X C V with
|X| < k. Denote by r¢(D) the minimum number of arcs one needs to reverse
in D in order to obtain a digraph which is k-strong. Contrary to r{ = *""(D)
it is a very difficult problem to decide whether ri(D) < oc for a given digraph
D. This is equivalent to the problem of deciding whether a given undirected
graph has a k-strong orientation, a problem which is again a special case of
the problem of deciding whether a given digraph D has a k-strong orientation
(an orientation of a digraph D without parallel arcs is any digraph that can
be obtained from D by deleting one arc from each 2-cycle in D.)

Conjecture 6.1 [3] Every 2k-strong digraph contains a k-strong orientation.

It is not even known whether there is any function g = g(k) such that every
g(k)-strong digraph has a k-strong orientation. Even the case when k = 2

11



and the digraph is symmetric (that is an undirected graph with every edge
replaced by a 2-cycle) the problem is completely open.

Since there are k-strong tournaments on n vertices for every n > 2k + 1,
rk(T) < oc for every tournament T on at least 2k + 1 vertices. It is not hard
to prove that for tournaments r is in fact bounded by a function depending
on k only. The key observations needed to show that every tournament can
be made k-strong by reversing the orientation of at most M‘k—_zw arcs are
(see details in [1, page 379]):

(1) Every tournament on at least 4k — 1 vertices contains a vertex z with
min{d*(z),d"(z)} > k.

(2) If D is a k-strong digraph and D’ is obtained from D by adding a new
vertex z and new arcs from z to k distinct vertices uq,...,ux € V(D)

and from k distinct vertices vy..... vg to z, then D' is also k-strong.

As every k-strong digraph is k-arc-strong Corollary 4.2 provides some support
for the following Conjecture (again the transitive tournament shows that the
bound would be best possible):

Conjecture 6.2 (Bang-Jensen, 1994) If T is a tournament then rip(T) <
k(k+1)

St
Let ax(D) denote the minimum number of new arcs one must add to the
digraph D in order to obtain a k-strong digraph. Since adding parallel arcs
cannot increase the vertex-connectivity of a digraph it follows that an optimal
augmenting set consisting of ax(D) new arcs will not contain any arc zy for
which zy is already an arc of D. Hence in the case when D is a tournament
all new arcs must form 2-cycles with existing arcs and hence adding these arcs
corresponds to deorienting their opposites in D. If |V(D)| > k+ 1 then ax(D)
is finite and it was shown in [2] that every semicomplete digraph on at least
3k — 1 vertices satisfies ri(D) = ax(D).

Conjecture 6.3 [2] For every tournament on at least 2k +1 vertices ri,(T) =

Let af """ be the analogous augmentation number for arc-strong connec-
tivity. Here parallel arcs are allowed. It is not difficult to see that there exist
tournaments T with arbitrarily many vertices and ri"*™*"*"(T) > af “*"*"(T).
One such example is the tournament 7,, which is obtained from a transitive
tournament on the vertex set {1,2....,n} with arcs i—; whenever ¢ < j by

reversing the arcs 1—n and 2—n — 1. It is easy to check that a3 ~*""*"(T,) =
1< T'Q(Tn).

Let us finish with the following question for which we saw that the answer is
yes when D is a tournament.
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Problem 6.4 Isthere a polynomial algorithm which determines DEOZTC_Stan (D)
of a given digraph D?
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