Spanning k-arc-strong Subdigraphs with few arcs
in k-arc-strong Tournaments

Jorgen Bang-Jensen * Jing Huang f Anders Yeo *
October 22, 2003

Abstract

Given a k-arc-strong tournament 7', we estimate the minimum number of
arcs possible in a k-arc-strong spanning subdigraph of . We give a construction
which shows that for each k¥ > 2 there are tournaments T on n vertices such that
every k-arc-strong spanning subdigraph of T’ contains at least nk—l—k(kz—_l)
fact, the tournaments in our construction have the property that every spanning
subdigraph with minimum in- and out-degree at least k& has nk + k(kQ—_l) arcs.
This is best possible since it can be shown that every k-arc-strong tournament
contains a spanning subdigraph with minimum in- and out-degree at least k and
no more than nk + k(k—Q_ll arcs. As our main result we prove that every k-arc-
strong tournament contains a spanning k-arc-strong subdigraph with no more
than nk + 136k? arcs. We conjecture that for every k-arc-strong tournament
T. the minimum number of arcs in a k-arc-strong spanning subdigraph of T is
equal to the minimum number of arcs in a spanning subdigraph of T with the
property that every vertex has in- and out-degree at least k. We also discuss the

implications of our results on related problems and conjectures.

arcs. In

Keywords: Tournament, connectivity, minimum strong spanning subdigraph,
certificates for connectivity, polynomial algorithm, MSSS problem, MEG prob-
lem.

1 Introduction

A tournament is an orientation of a complete graph. It is well-known and easy to
show that every strong tournament has a hamiltonian cycle. Furthermore, it is easy to
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find such a cycle in polynomial time. Hence for tournaments the problem of finding a
spanning strong subdigraph with the minimum number of arcs (the MSSS problem) is
polynomially solvable. For general digraphs this problem is very hard as it generalizes
the hamiltonian cycle problem. The MSSS problem forms the most important sub-
problem of the problem of finding the so-called minimum equivalent digraph of a given
digraph. That is, given a digraph D = (V. A) find a spanning subdigraph D’ = (V, A’)
such that for every choice of vertices x,y € V there is a directed path from z to y in
D if and only if D’ has such a path. The minimum equivalent digraph problem and
its generalizations to higher degrees of connectivity has practical applications and has
been studied extensively, see e.g. [1, 12, 15, 16, 19]. Furthermore, for a given class of
digraphs, which is closed under the operation of taking induced subdigraphs. one can
find the minimum equivalent digraph in polynomial time if and only if one can solve the
MSSS problem in polynomial time for that class. Hence it is of interest to find classes
of digraphs for which one can solve the MSSS problem in polynomial time. Recently
it was shown that the MSSS problem is solvable in polynomial time for several classes
which contain tournaments as a subclass [4, 6]. In the last section of this paper we also
discuss briefly some approximation algorithms for this problem for general digraphs.

Suppose now that we are given a digraph which is k-arc-strong and the goal is to
find a spanning subdigraph with the minimum number of arcs which is k-arc-strong.
Clearly, this problem contains the MSSS problem as a special case and hence is very
hard for general digraphs. For an arbitrary k-arc-strong digraph one can find a spanning
k-arc-strong subdigraph with at most twice the optimal number of arcs in polynomial
time (see Section 3). However, even for tournaments finding a polynomial algorithm
to determine a minimum k-arc-strong spanning subdigraph. seems to be very difficult.
One reason for this is that although tournaments have a lot of structure, much of this
is either lost, or at least difficult to establish as soon as we delete only a relatively small
number of arcs from the tournament in question (for example it is an open problem
whether there exists a polynomial algorithm for recognizing those tournaments that
have two arc-disjoint hamiltonian cycles). Hence applying an iterative approach which
builds up a minimum spanning k-arc-strong subdigraph from certain spanning strong
subdigraphs seems doomed to fail.

In this paper we show that every k-arc strong tournament 7' contains a spanning k-
arc-strong subdigraph with at most nk 4 136k* arcs. We show that this is best possible
in terms of the exponent on k£ and we also show that one can find such a subdigraph
in polynomial time. Since every k-arc-strong digraph has at least nk arcs this shows
that for k-arc-strong tournaments one can get within a function depending only on k
of the optimum. The method we use involves iteratively constructing large arc-disjoint
strong subdigraphs of T such that the subdigraph D’ induced by the union of the arc
sets of these subdigraphs contains a large set of vertices X (containing all vertices from
T except possibly a linear function of k vertices) and for any two vertices z,y € X, D’
contains k arc-disjoint (z,y)-paths.

Our proof uses several new results on digraphs in which the number of non-neighbours
of each vertex is bounded by some constant ¢ and digraphs in which some vertices may
have more than ¢ non-neighbours but the total number of such vertices is bounded by
some other constant.

Finally, we conjecture that for every k-arc-strong tournament 7', the minimum num-
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Figure 1: The structure of the tournaments in 7, ;. The tournament A is the transitive
tournament on k vertices, B and C are arbitrary k-arc-strong tournaments. The bold
arcs B—A, A—C indicate that all possible arcs are present in that direction. There
are exactly k arcs from C to B and all other arcs go from B to C.

ber of arcs in a k-arc-strong spanning subdigraph of 7' is equal to the minimum number
of arcs in a spanning subdigraph of T with the property that every vertex has in- and
out-degree at least k. If true, this would imply that there exists a polynomial algorithm
to determine the minimum number of arcs in a spanning k-arc-strong subdigraph of a

given k-arc-strong tournament.
Several results from this paper were used in [5].

2 Statement of the Main Result and Conjecture

Let n > 3 and & > 1 be two integers. We define f(n.k) to be the smallest integer
such that every k-arc-strong tournament on n vertices contains a k-arc-strong spanning
subdigraph with at most f(n.k) arcs. Since every strong tournament is hamiltonian
we have f(n,1) = n. Furthermore, since every vertex in a k-arc-strong digraph has
out-degree at least k, f(n, k) > nk.

For all £ > 1 and n > 5k + 2 we define 7, as the class of tournaments that
can be obtained from a transitive tournament A on k vertices and two k-arc-strong
tournaments B, C' as shown in Figure 1. It is not difficult to show that each tournament
in 7T, 1s k-arc-strong.

Let T' be any member of 7, . Observe that every k-arc-strong subdigraph D of T'
must contain at least k(k 4+ 1)/2 arcs from B to A and exactly k arcs from C to B
(there are no more). Hence we have [Y,cpdf(2)] — [Coepdp(z)] > k(k +1)/2 — k.
implying that 3, cgdf(x) > k * |B| + k(k — 1)/2. This implies that D has at least
nk + k(k —1)/2 arcs.

The tournaments in 7, show that f(n,k) > nk + ck* for some constant ¢ > 0.
As our main result we show that this is the right order of magnitude and in fact



f(n,k) < nk + 136k* holds.

Theorem 2.1 For any n > 3 and k > 1, every k-arc-strong tournament T on n
vertices contains a spanning k-arc-strong subdigraph D' with at most nk + 136k* arcs.

For any tournament 7' we denote by h(k,T) the minimum number of arcs in a
spanning subdigraph D of T in which has §(D) > k. If §(T) < k we let h(k,T) = oc.

Here §(D) denotes the minimum over all in- and out-degrees of vertices in D.

Proposition 2.2 Every tournament with §(T') > k satisfies h(k,T) < nk+k(k+1)/2.
Furthermore, if T is k-arc-strong h(k,T) < nk + k(k —1)/2.

Proof: Let T = (V, A) be a tournament on n vertices with §(7) > k. Form a
flow network N with vertex set U = V- UVt U {s,t}, where V- = {v™|v € V},
V*t ={vt|v € V}, and arc set {sv™|v € V} U {v wt|jvw € A} U {vTtjv € V}. Every
arc a has a capacity u(a) = 1 and for each arc a in the set {sv™|v € V} U {v*t|lv € V'}
there is a lower bound /(a) = k and all other arcs have lower bound /(a) = 0. Observe
that if = is a feasible integer valued (s,t)-flow in N of value M (the flow out of s)
then the spanning subdigraph D’ of T' that we obtain by taking those arcs vw € A for
which z(v~w?t) = 1 has precisely M arcs and §(D’) > k. The other direction holds
as well. Thus the minimum number of arcs in a spanning subdigraph D’ of T with
§(D') > k is equal to the minimum value of a feasible integer valued (s,t)-flow in V.
It is a standard result in flow theory (see e.g. [2, Theorem 3.9.1]) that this value is
equal to the maximum of I(S, S) — u(S,S) over all partitions of U into two sets S, S
where s € S and ¢ € S.

Let (S, 5) be an arbitrary partition as above and denote by X, Y, Z, W the following
sets:

X={veVp €Sandvt €S}, Y={vecV|p~ €S andvtc S},

Z={veVp €Sandvt €S}, W={veVp~ €S andovtc S}

Then U = XUYUZUW and it is easy to see that we have [(S, S) < k(n+|X|—|Z|)
and u(S,S) > |X|(|X| — 1)/2 (every arc in X contributes one to u(S,S)). Thus we

have B B
1(5.8) — u(5.5) < kn+ K|X| — B|Z| — |X|(1X] - 1)/2. 1)
This implies that 1(S,S) —u(S,S) < kn + k(k +1)/2 with equality only if | Z| = 0.
Furthermore, if T' is k-arc-strong then it is easy to see that either |Z| > 1 or there are at

least k arcs from Y to X UW in T. In both cases we conclude that 1(S, S) —u(S,S) <
kn + k(k —1)/2. Since (S, S) was chosen arbitrarily the result now follows. o

For any tournament T we denote by ¢(k,T') the minimum number of arcs in a
spanning k-arc-strong subdigraph D of T. If T' is not k-arc-strong then g(k,T) = oc.

Conjecture 2.3 For each k > 1 and for every k-arc-strong tournament T we have

g(k.T) = h(k,T).



If true, Conjecture 2.3 would imply that the correct value of f(n. k) is nk+k(k—1)/2.
Furthermore, since a minimum spanning subdigraph D with §(D) > k can be found
in polynomial time, the truth of the conjecture would imply that one can find g(k,T)
in polynomial time for every tournament 7. We conjecture that finding a minimum
k-arc-strong spanning subdigraph of T' can also be done in polynomial time.

3 Terminology and Preliminaries

For notation or terminology not discussed here we refer to [2]. We shall always use the
number n to denote the number of vertices in the digraph currently under consideration.
The digraphs in this paper are finite and have no loops but may have multiple arcs.
We use V(D) and A(D) to denote the vertex set and the arc set of a digraph D. The
underlying undirected graph of D, denoted UG(D) is the (multi)graph one obtains
by suppressing the orientations on each arc. The complement graph of an undirected
multigraph G = (V, E) is the undirected graph G whose vertex set is V and two vertices
z,y are joined by an edge in G precisely when zy ¢ E.

The arc from a vertex x to a vertex y will be denoted by zy. Two vertices x and y
are adjacent if there is at least one arc between them. For disjoint subsets H, K C V(D)
we use the notation H= K to denote that there are no arcs from K to H. If X C V(D)
then we denote by D(X) the subdigraph induced by X in D, that is D(X) has vertex
set X and contains precisely those arcs from A(D) which have both end vertices in X.

The degree d(v) of a vertex v is the number of arcs incident with D (i.e the degree
in UG(D)). If R C A(D) then we denote by dr(v) the degree of v in the undirected
subgraph of UG(D) induced by the edges of R. We also use the notation dg(z,U) to
denote the number of arcs from R which have one end vertex in U and the other equal
to x. A set of vertices S in D is independent if no arc of D has both end vertices in S.
We denote by a(D) the maximum size of an independent set in D.

By a cycle (path, respectively) we mean a directed (simple) cycle (path, respec-
tively). If W is a cycle or a path with two vertices u, v such that u can reach v on W,
then W{u, v] denotes the subpath of W from u to v. A cycle (path) of a digraph D
is hamiltonian if it contains all the vertices of D. A digraph is hamiltonian if it has a
hamiltonian cycle.

Let U, W be two subsets of V(D). A (U, W)-arc is an arc zy with € U and
y € W. A (U W)-path is a path xy2, ... 2 such that vy € U,z € W and 2, UUW
for1=2,3,....k —1. An (z,y)-path is a path from z to y.

A digraph D is strongly connected (or just strong) if there exists an (z,y)-path
and a (y,z)-path for every choice of distinct vertices z,y of D. A digraph D is k-
arc-strong for some k > 1 if D — A’ is strong for every subset A’ of A(D) such that
|A’| <k — 1. Whenever = and y are distinct vertices of D, we denote by Ap(z,y) the
maximum number of arc-disjoint (x,y)-paths. By Menger’s theorem Ap(z,y) > k for
all z,y € V(D) if and only if D is k-arc-strong.

An out-branching (in-branching) rooted at r in a digraph D is a tree F' in UG(D)
which (in D) is oriented in such a way that every vertex except r has precisely one arc
coming in to it (going out of it). The following classical result is due to Edmonds:



Theorem 3.1 [13] Let D be a directed graph and r a vertex of V(D) and let k be a
natural number. There exist k arc-disjoint out-branchings (in-branchings) all rooted at

r in D if and only if Ap(r,v) >k (Ap(v.r) > k) for every v € V(D) —r.

Recall that every k-arc-strong digraph on n vertices has at least nk arcs, since
every vertex has at least k arcs out of it. The following easy consequence of Edmonds
branching theorem (see Corollary 3.3 below) implies that one can always find a k-arc-
strong subdigraph with at most twice that number of arcs.

Corollary 3.2 Every k-arc-strong digraph contains a spanning k-arc-strong subdigraph
with at most 2k(n — 1) arcs.

Proof: Let D be k-arc-strong and fix a vertex r € V(D). Since D is k-arc strong
we have in particular that Ap(r,v) > k for every v € V(D) — r. Hence by Theorem
3.1, D has k arc-disjoint out-branchings FrfI,Fer ..... F,fk all of which have root r.

Similarly, D has k arc-disjoint in-branchings F, F,,_2 . . F ), all of which have root r.
Let D' be the spanning subdigraph of D induced by the arc set of these 2k branchings.
Then |A(D')| < 2k(n — 1) and for every v € V(D) — r we have Ap/(r,v) > k and

Ap/(v,r) > k. Now it is an easy exercise, using Menger’s theorem, to prove that D’ is
k-arc-strong. o

Lovasz [18] gave a constructive proof of Theorem 3.1, which can easily be turned
into a polynomial algorithm to find k arc-disjoint out-branchings with the same root
or detect that no such set of branchings exist in a given digraph D with a specified
vertex r. Hence we have the following corollary:

Corollary 3.3 There exist a polynomial algorithm to find, in a given k-arc-strong
digraph D, a spanning k-arc-strong subdigraph with at most 2k(n — 1) arcs. o

The following result due to Camion is well known and easy to prove (see the proof
of Lemma 4.1 below).

Theorem 3.4 [10] Every strongly connected semicomplete digraph contains a hamil-
tonian cycle. o

We assume throughout this paper that £ > 1 is an integer.

4 Small strong spanning subdigraphs in digraphs
with high minimum degree

A cycle C in a digraph D is non-extendable if D has no cycle C’ such that C —a is
a subpath of C’ for some arc a of C and |V(C’)| > |V(C)|. The next two results both

generalize Theorem 3.4:



Lemma 4.1 Let D be a strong digraph and let C be a non-extendable cycle in D. Then
no vertex of D — V(C) is adjacent to all vertices in C.

Proof: Denote C = cycy...crc; and let
S ={x € V(D) —-V(C)| = is adjacent to all vertices in C}.

Then for each vertex z € S either x=V(C) or V(C)==z as C is non-extendable.
Suppose that there exists a vertex = such that =V (C). Let ¢;uyvy... vz, t > 1, be
a shortest path from C to x. Then ¢;vivy...v;2Ccit1, ¢] is a cycle of length greater
than that of C. contradicting the assumption that C is non-extendable. So there is no
vertex z such that z=V(C). A similar argument shows that there is no vertex z such

that V(C)=z. Hence S = 0. o

The next theorem implies that for strong digraphs whose underlying graphs have
at most a fixed number ¢ of non-neighbours for every vertex, one can always find a
spanning strong subdigraph with at most the same constant ¢ arcs above the number
of arcs in a minimum spanning strong subdigraph (take ¢ = 0).

Theorem 4.2 Let D be a strong digraph, let R denote the complement graph of UG(D)
and let ¢ > 0 be an integer. Suppose we have

) [dr(u) — ] < q. (2)

{ueV(D):dg(u)>c}

Then there exists a strong spanning subdigraph H of D such that |A(H)| < n+c++/2q.

Proof: Let z; be arbitrary, let Dy = D and let C; be a non-extendable cycle
containing z; in Dy. If C; is a hamiltonian cycle. then this can play the role of H.
Otherwise contract Cy into one vertex zo and let Dy denote the resulting digraph (we
delete multiple arcs if some are created as well as the loop created at z3). Let C; be
a non-extendable cycle containing z9 in D,. If C5 is a hamiltonian cycle in D, then
stop. Otherwise contract C5 into one vertex z3 and let D3 denote the resulting digraph.
Continue this way until the current non-extendable cycle C; is a hamiltonian cycle in
D;.
Denote by H; the subdigraph of D induced by the arcs of Cy,Cs,....C;. It is easy
to see that H; has |V(H;)| + ¢ — 1 arcs and that |V(H;)| > ¢+ 1. Hence it suffices to
show that the process above can continue for at most ¢ + 1/2¢ contraction steps.

Suppose z 1s a vertex in D; which does not belong to H;. We claim that
dr(z,V(H;)) > i. The claim holds for ¢ = 1 by Lemma 4.1. Suppose the claim does
not hold for some step ¢ above and let this 7 be chosen as small as possible. Then we
have dp(x,V(H;_1)) = ¢ — 1 = dg(z,V(H;)). Since |V(H;_1)| > ¢ this implies that
z has an arc to or from some vertex of V(H,_;) in D and thus z is adjacent to z; in
D;. Furthermore, x must be adjacent to every y € V(H;) — V(H;_1) since we have
dp(z,V(H;_1)) = dr(z,V(H;)). However, this means that x is adjacent to every vertex
of C;, contradicting the fact that C; is a non-extendable cycle in the strong digraph
D;. This shows that dr(z, V(H;)) > i for every step ¢ above and the claim is proved.

7



Let 7 be chosen such that C; is a hamiltonian cycle in D;. By our remark above
H; is a spanning strong subdigraph of D with n + j — 1 arcs. Hence we may assume
that 7 > ¢. Let p > 0 be chosen such that j = ¢+ p+ 1. Foreachi=c+1,....,c+p

we choose a vertex x; € V(H;11) — V(H;). Using that dp(z;) > 1 — 1, since z; has at
least 7 — 1 non-neighbours in H;_;. and the definition of ¢ we get

c+p+1 P
o plp+1
02 lnle) == i =00
1=c+1 =0 2

Thus we have p(p + 1) < 2¢ which implies that p < /2¢ (with equality only if ¢ = 0).
This implies that H 4,41 1s a spanning strong subdigraph of D with at most n+c++/2¢
arcs. o

By subdividing an arc xy we mean replacing the arc zy by an (z, y)-path zviv, ... v,y
where r > 1 and each v; is a new vertex with in-degree and out-degree one. It is easy to
derive the following consequence from Theorem 4.2 (simply suppress the subdividing
vertices and consider D, see also Section 7):

Corollary 4.3 Suppose D = (V. A) satisfies the hypothesis of Theorem 4.2 and let D
be obtained from D by subdividing some arcs. Then D contains a strong subdigraph

I:I:(VA) such thatvgf/and |A|§|f/|+c—|—\/ﬁ. o

5 Reachability in digraphs with high minimum de-
gree

For a given digraph D and each u € V(D) let Zp(u) be the set of vertices in D which
can reach u by a directed path.

Lemma 5.1 Let D = (V, A) be a digraph, let R denote the complement graph of
UG(D) and let ¢ > 0 be an integer. Suppose we have

. ldr(u)—d<q (3)

{ueVidg(u)>c}

Let a > 1 be a fized integer and define Ip, = {w : |Ip(w)| < a}. Then |Ip.| <

a—l—c—l—\/Q_q.

Proof: Let uy,usy,...,u, be an ordering of V(D) such that |Zp(uy)| < |Zp(uq)| <
... < |Zp(uy)|. Observe that if there is an arc between u; and u; for some ¢, j such
that 1 < < j < n then Zp(u;) C Ip(u;). This is clear if u;—u;. On the other hand,
if uj—u;, then we have Zp(u;) C Zp(u;) implying that Zp(u;) = Zp(u;) because of the
way we ordered the vertices.

Choose r such that either |Zp(u,)| < @ and |Zp(u,41)| > a, or r = n holds. We may

assume that r exists since otherwise Zp , = (). Thus we have Zp , = {us, ua, ..., u,}.



If a + ¢ > r then we have |Zp,| = r < a + ¢ and we are done. So we may assume
that r > a + ¢. By the remark above, for every 7. 7 such that 1 < 5 < < n, either u;
and u; are non-adjacent, or u; € Zp(u;). Hence, for every i such that a <1 < r we
have

dR(u,)Z(z—l)—|ID(u,)| Zi—l—(a—l):i—a.
Using this we get

r r—a—c T—G—C)(T—G_C‘I‘:[)
dr(u;) —c] > =
i:ga;-c[R c ZZ 2

Combining this with the assumption that 3¢, cv.ap(u)>cp[dr(u) — ¢] < g it is easy to
see that r < a + ¢+ /2q and the proof is complete. o

Lemma 5.2 Let T be a tournament and R a subset of A(T). Suppose that

Y lde(w) - d <q 4

{ueV(T):dr(u)>c}
and that z is a vertex such that
df(u) < dk(z) +~ for allu € V(T). (5)

Let W be the set of vertices which are not reachable from z by a directed path in
D=T—-R. Then
W < 2¢ 4 2dr(2) + 2y — 1 + /2.

Proof: Let B = V(T') — W and observe that there is no arc from B to W in D.

Thus we have

zvzvd;(u) > W-y |B||W| — zv:vdR(U)
WJF BIW|—( Y dr(v)+ Y dr(v)).

{veW:dg(v)<c} {veW:dgr(v)>c}

Thus using that 3 (,cv(1)dn(v)>c[dr(v) — ¢] < g we conclude that there exists a
vertex u € W such that

wW|—-1 q
d(u Z| +|B|—¢c— —. (6
By the definition of B we have z € B and
di(2) < [Bl =1+ dg(2) < |B| =1+ dg(2). (7)
Combining (5), (6) and (7) we obtain
|W| -1 I + + _
5 +1Bl |W|<d()§dT(Z)+’V§|B| 1+ dp(z) + 7.



This implies that
W2+ |W| < 2e|W| + 2q + 2|W|dr(2) + 2v|W|

and solving for |W| we get |W| < 2¢ + 2dp(z) + 2y — 1 4+ 1/2¢. o

6 Proof of Theorem 2.1

Let T' = (V, A) be a k-arc-strong tournament on n vertices. If n < 64k then it follows
from Corollary 3.2 that 7' contains a spanning k-arc-strong subdigraph with at most
2k(n — 1) < 128k?* vertices and the theorem follows. Hence we may assume below that
n > 64k.

Let vy, v,...,v, be an ordering of the vertices of T such that d*(v;) < d*(vy) <
... < d*(v,). Note that since T is a tournament this ordering also satisfies d~(vy) >
d=(vg) > ... > d (vs). Let X = {vp_pt1.Vn-kt2,-.-,0n} and Y = {v1, 09, ..., v}

Since T is k-arc-strong, it follows from Menger’'s theorem that there are k& arc-

by T; = T{(V(T") U {zi. yi}). -
Let ¢; =~;=2k—2.1=1.2,....k. Observe that for every 1 = 1,2,...k and every
u € V(T;) we have

This follows from the way we ordered the vertices of T. Similarly, for every 1 =
1.2,....k and every u € V(T;) we have

dr,(u) < dg,(yi) + i (9)
Define ¢, g2, . . .. grs1 recursively as follows:
q =0
4G = G-1+202k—2+4/2¢i1), 1=2,3,....k+1. (10)

Note that we have ¢; < g2 < ... < gr41 and it is not difficult to show by induction
on ¢ that ¢; < 16k(: — 1). In particular, we have

Qryr < 16K2. (11)

This estimate is not sharp, but for convenience we shall use it below.
We first prove the existence of arc-disjoint strong subdigraphs Hy, Hy., ..., Hy of T

with the following two properties:

10



(A) |A(H)| < |V(H)|+8k, i=12.. .k
(B) |V — (V(H)NV(H,)N...n V(H))| < 64k.

This is the main step since, as we show at the end of the proof, given this it is
rather straightforward to verify the claim of the theorem.

Let Dy = (T* — (A(P,)) UA(Ps) U ... UA(P))) UV (P)UA(P). Above and also
several times below we abuse the standard notation slightly. By T* — (A(P,) U A(Ps) U
... UA(P)) we mean the digraph Z one obtains from T by deleting every arc from
T* which belongs to A(Py) U A(P3)U... UA(Pg). Thus Dy is the digraph one obtains
from Z by adding all vertices and arcs of P; which are not already in Z.

Let D} = Dy(V(Ty)). Then D/ is a spanning subdigraph of 7} and has n; =
n — 2k 4 2 vertices. Since every vertex of T is incident with at most two arcs from each
of the paths P,, Ps, ..., Py, every vertex in D} has at most 2k — 2 non-neighbours’.

Let Ry = A(Ty) — A(D)), that is, R; consists of those arcs from A(Py) U A(Ps) U
... UA(Py) that join two vertices in Ty. Applying (8) and Lemma 5.2 to Ty, Ry and x;
with the parameters ¢y, 71, g1, we see that in D] the set of vertices not reachable from
x1 has size at most 2¢; + 2dpg, (1) + 271 — 1. Analogously, we can prove that in D/ the
set of vertices which cannot reach y; has size at most 2¢; + 2dg, (y1) + 271 — 1. Now
using the fact that D] is a subdigraph of D; and that D; contains the (y;, zy)-path P,
we conclude that D; has a strong component ) of size at least

ny — (4er + 2(dp, (z1) + dr, (1)) + 471 —2) > n—2k+2—(3(8k —8) —2)
= n — 26k + 28.

Note that since we have assumed n > 64k we do in fact get a strong component
containing both z; and y; in Dy.

Now we apply Corollary 4.3 to @1 with ¢ = ¢; and ¢ = ¢; and conclude that ¢,
contains a spanning strong subdigraph H; with at most |V(Q)| + 2k — 2 arcs (recall
that P; may contain several vertices from X UY — {z1,y;} which is why we apply
Corollary 4.3 rather than Theorem 4.2 to Q).

Next we take Dy = (T — (A(H1)UA(Ps)UA(Py)U.. . UA(P))UV (P)UA(P) and
D), = Dy(V(T3)). Again D) is a spanning subdigraph of Ty and has ny = n — 2k + 2
vertices. Let Ry = A(T,) — A(D)). As we have removed only arcs from H; and
Ps. Py, ..., P; we see that if a vertex u of D) has dg,(u) > ¢o = 2k —2, then dg, (u) > 2.

Now using that

Y. (dm(v) = 2) = 2(|A(H)| - [V(H))]) < 2(2k = 2) = (¢ — @),

’UEV(Hl)

we get that
[y (1) — €3] < 202k — 2) = s, (12
{UEV(TQ):dRQ (u)>co}

LObserve that P; may contain several vertices from X UY — {z,y;} and each of these vertices
have up to n — 3 non-neighbours in D;. This is the reason why we consider D} and not D; below.
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Since x5 and y, each are incident with at most two arcs in H; (which happens
precisely if they are on Py), we have dp,(z2),dp,(y2) < 2(k — 1). Thus, as above we
can apply Lemma 5.2 to D) and z,,y; and (using that P, is a path in D;) conclude
that D, has a strong component (), of size at least

ny — (4ea 4 2dp, (22) + 2dR, (y2) + 4v2 — 2 4+ 24/2¢2) > n — 26k + 28 — 24/2qx41

> n— 26k + 28 — 2V 32k?
> n — 38k + 28.

Again it follows from our assumption on n and the fact that P, is a path in D; that
T3, ys do indeed belong to the same strong component of D,.

Applying Corollary 4.3 to Q2 with ¢ = ¢, ¢ = ¢2 and using (12), we conclude that
()2 contains a spanning strong subdigraph H, with at most |[V(Q2)| + 2k — 2 + /2¢2
arcs. Note that

> (dm(v) —2) = 2(|A(Hy)| — [V(H)|) < 2(2k — 2+ 1/202) = (g5 — 2)-
vEV (Ho)

Now the general pattern should be visible: Assume that we have found arc-disjoint
strong subdigraphs Hy, Hy. ..., H;_1 of Dy, D,..... D;_; respectively, such that for j =

1,2,....1—1, zj,y; € V(H;) and we have

|A(H;)| < |V(Hj)| + 2k =2+ \/2q; = |[V(H;)| + (g541 — 4;)/2, (13)
implying that
> (dmy(v) = 2) < (g1 — ) (14)
veV (Hj)

In the ith step we let
D= (T"— (A(H\)U ... UA(Hi1)UA(Piy1)U ... UA(P)) UV(P) U A(F).

Let D; = D;(V(T;)) and take R; = A(T;) — A(D;). As z;.y; are incident to at most

2

two arcs in each of Hy, Hy. ..., Hi_y we have dg,(z;).dr,(y;) <2k — 2.
In order to apply Lemma 5.2 to T}, R;, x; we need to estimate the sum

Z{uGV(Ti):dRi(u)>ci}[dRi(u)_ci]' Note that if a vertex u € V(T;) has dp,(u) > ¢; = 2k—2,

then u is incident with more than 2 arcs in at least one of Hy, Hy, ..., H;_;. Summing

up the possible contributions from degrees above 2 in Hy, H, ..., H;,_; and using (14)

we have:
> [dr;(u) — ci] < gi. (15)
{uGV(T,’):dRi(u)>ci}

Now we apply Lemma 5.2 to see that D; contains a strong component (); such that
z;,y; both belongs to Q; (again we use the assumption on n, the fact that ¢; < 16k?
and that D; contains the path P;).

12



Applying Corollary 4.3 to Q; with ¢ = ¢;. ¢ = ¢;, we conclude that @); contains a
spanning strong subdigraph H; with at most |V(Q:)| + (2k — 2) + 2¢: = [V(Q,)| +
(gi+1 — 4i)/2 arcs.

It follows by induction on ¢ that (A) holds (recall that ¢; < 16k(: — 1))

To prove that (B) holds, we need to estimate how many vertices of T belong to at

most k — 1 of the H;’s.
Let R* = A(P) UA(P)U...UA(P,)UA(H)UA(Hy)U...UA(Hy) and define
the digraph D* by

D*=T"-R"

Thus V(D*) = V(T™) and A(D*) consists of those arcs of T that are not in R*.
For each 1 = 1.2, ...,k we define the following digraphs:

w = TV U{y})
I, = TWV(T7) Uda})
D;, = (T; —R*)UV(H;)UA(H)
D;, = (T; — R")UV(H;)UA(H)

Tg

Observe that D* is a subdigraph of each of the digraphs D;, D} and D; for all
1=1,2,.... k.

If a vertex u € V(T') has dp«(u) > 4k, then u is incident to more than 2 arcs in at
least one of Hy, Hy, ..., Hy. Hence in the same way as we argued above one can prove

the following:

) [dpe(u) —4k] < D 2(|A(H;)| — [V(H;)|)
{ueV(T):dp*(u)>4k} i=1
k
< D (Gigr — (16)
=1
< Qr+1 < 16k

Below we always use the parameters ¢ = 4k, = 2k — 1 and ¢ = 16k2,
Let

R:, = A(T:) N (R" — A(H,)) and R, = A(T;) N (R* — A(H;))

Observe that
dR;_(ZL',') S 2]{ — 1 and dR;(y,) S 2]{ — 1 (17)

This follows from that fact that R} (R;.) contains no arcs from H; and for each
J # 1 an arc incident with z; (y;) belongs to A(H;) ounly if it also belongs to P; (z; (y;)
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can only belong to H; if it lies on P;). Thus for each A(P;) U A(H;). j # ¢ we have at
most two arcs incident with z; (y;) in R}, (R;.). Finally, we may have that the only
arc incident with z; (y;) on P; is also in R}, (R;.).

For each : = 1.2.....k. let X; be the set of those vertices which cannot be reached
from z; in D}, by a path that uses only arcs from V(T}.) and let Y; be the set of those
vertices which cannot reach y; in D} by a path that uses only arcs from V(7). That
is, in the paths above we are not allowed to use an arc from A(H;) unless it is also an
arc of V/(T},) respectively, V(T:). Applying Lemma 5.2 to T, R}, and z;, we see that

1X;| < 2C‘|‘2dR;i(l’i)‘|‘2’Y—1‘|‘\/£
< 8k+4k—-2+4k—2—1+4 6k
< 22k

Applying Lemma 5.1 to D* we see that

|Zpx 2ok+1] < 22k + 1 4 4k + V32k? < 32k. (18)
Now we can bound the number of vertices in X; U X, U...U Xj: Using that D* is

a subdigraph of D} and the fact that z; can reach all but at most 22k vertices in Dy,
we see that that every vertex which cannot be reached from z; in D} must belong to
Ip+ 22k+1- This holds for every 1 = 1.2, ..., k. Hence we conclude that

X, UX, U ... UX,| < 32k (19)

By an analogous argument (using R;. instead of R ) we see that

YiUY,U...UY,| < 32k (20)

Let X! (Y/) be the set of vertices that cannot be reached from z; (cannot reach y;)
in D} (D;.). Clearly X] C X; and Y] C Y}, so the bounds above also hold with X;
replaced by X! and Y; replaced by Y.

Now using that no vertex of H; belongs to X! UY we get that

This proves that (B) holds.
Let W = V(H) N V(Hy) N...N V(Hy) and A’ = AH,) UA(Hy) U ... UA(Hy).
Note that, since the digraphs H;’s are arc-disjoint, the digraph D’ = (V, A’) satisfies
Ap/(u,v) >k for all u,v € W. (21)

Now let @ be the directed multigraph on |V — W] + 1 vertices that one obtains
from T by contracting the set W to one vertex w (that is we delete any possible loop
at W, but keep multiple arcs between w and vertices from V — W). Since contraction
preserves arc-strong connectivity ) is k-arc-strong. Hence, by Corollary 3.2, () contains
a spanning k-arc-strong subdigraph ' with at most 2k|V — W] arcs.
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Let A” be the arc set which corresponds to A(Q’') back in T and define H by
H = (V.A"U A"). Using (21) it is easy to show that H is a spanning k-arc-strong
subdigraph of T'. It remains to bound the number of arcs in H. We saw that A” has
size at most 2k|V — W|. Now, combining (A) and (B) we get

[ACH)| = [A"U A" < A+ |47

VAN

(g |A(H;)|) + 2k|V — W|

AN

(zk: |ACH;)|) + 128K

IN

k
S UV(H:)| + 8k] + 128k°
=1

k
nk + > 8k + 128k
=1

< nk+ 136%2.

VAN

Thus H is the desired small k-arc-strong subdigraph of 7' and the proof is complete.

7 Algorithmic Aspects

Theorem 7.1 There exists a polynomial algorithm which given any k-arc-strong tour-
nament T on n vertices returns a spanning k-arc-strong subdigraph D' of T such that

|A(D")| < nk 4 136k?

Sketch of proof: Basically our proof above is constructive, but let us give a short
sketch of how to find the desired subdigraph in polynomial time. First observe that
given any digraph one can find a non-extendable cycle in polynomial time just by
applying an obvious greedy strategy: start from an arbitrary cycle C. If some vertex
of V. — C is adjacent to all vertices of C, then (following the proof of Lemma 4.1) it is
easy to find a cycle C’ extending C. Now continue from C’.

Now it is easy to see that the proof of Theorem 4.2 can be turned into a polynomial
algorithm for finding a spanning strong subdigraph with the desired number of arcs.
This again implies that Corollary 4.3 has an algorithmic version: First find a spanning
strong subdigraph H of D such that |A(H)| < n + ¢ + /2q. To obtain H from H
we simply replace each arc of H which corresponds to a subdivided arc in D by the
corresponding path in D.

Suppose T' is k-arc-strong and that X,Y are as defined in the proof of Theorem
2.1. We can find paths P, P, ..., P, such that each P; starts in Y and ends in X

and all end vertices of Py, P, ..., Py are disjoint as follows: add two new vertices s.t

to T along with the following arcs {sy : y € Y} U {2t : 2 € X}. Now we can find
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Py, P, .... P, by finding k-arc-disjoint (s,t)-paths in the resulting digraph. This can
be done in polynomial time using flows (see e.g. [2]).

For each 7 = 1.2.....k, we can find @; by finding the strong components of D,
and identifying the strong component which contains both of z;,y;. Then using the
algorithmic version of Corollary 4.3 we can find the subdigraphs Hy, H,, ..., Hy in
polynomial time. Let A’ = Uf_, A(H;) and W = N, V(Q;) and let Q be obtained
from T by contracting W into one vertex w. Using a polynomial algorithm of Corollary
3.3 we can find k-arc disjoint out-branchings and k-arc-disjoint in-branchings all rooted
at w in . Let A” be the union of the arc sets of these 2k branchings and take
H=(V,A"UA").

In the case when n < 64k, we simply apply the algorithm of Corollary 3.3 for finding
k-arc disjoint out-branchings and k-arc-disjoint in-branchings all rooted at some vertex

z in T and take their union. o

8 Further Consequences and Future Work

For a given digraph we denote by A(D) the maximum degree of a vertex in the com-
plement of UG(D). Clearly, A(D) > a(D) — 1.

A digraph D = (V. A) is semicomplete multipartite if V can be partitioned into
r > 2 disjoint sets V1, V5. ..., V, such that there are no arcs with both end vertices in
some V; and whenever z, y belong to different sets V;, V; there is an arc between z and
y. It is easy to see that A(D) = a(D) — 1 holds for every semicomplete multipartite
digraph.

The cyclomatic number of a directed graph D = (V, A) is the parameter |A|— |V |+
¢(D), where ¢(D) denotes the number of connected components of UG(D). A digraph
is cyclic if every vertex belongs to a cycle. The following conjecture is implicitly

formulated in [11]:

Conjecture 8.1 [11] Every strong digraph D contains a cyclic spanning subdigraph
with cyclomatic number at most a(D).

An example due to Favaron (see [8]) shows that it is not always true that a strong
digraph D contains a strong spanning subdigraph with cyclomatic number at most
a(D). However, applying Theorem 4.2 we see that the following holds:

Theorem 8.2 FEvery strong digraph D contains a strong spanning subdigraph with
cyclomatic number at most A + 1. o

This implies that Conjecture 8.1 is true (even in the stronger form, requirering a
strong subdigraph) for the class of semicomplete multipartite digraphs.

Theorem 8.3 [7] Every strong digraph D has a spanning strong subdigraph with at
most |V(D)| + 2a(D) — 2 arcs.
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As we mentioned in the introduction it is an NP-hard problem to find a spanning
strong subdigraph with the minimum possible number of arcs in a given digraph. Using
Theorem 4.2 and the fact that there is a polynomial algorithm to find the desired strong
subdigraph with few arcs. we see that the following holds:

Theorem 8.4 Every strong digraph D with A(D) < % contains a spanning strong
digraph with at most (1 + %)n arcs. Furthermore, such a subdigraph can be found in
polynomial time.

Khuller et at [16, 17] proved that for general digraphs, a variant of the algorithm
used in the proof of Theorem 4.2 (contracting cycles which are sufficiently long and
taking the arcs of the contracted cycles as a spanning subdigraph) results in a spanning
strong subdigraph with no more than 1.61 times the number of arcs in an optimal
spanning strong subdigraph. It is worth noting that whenever r > 1.64 the algorithm
of Theorem 8.4 above gives a better approximation guarantee and furthermore is simple
to implement.
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