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ABSTRACT

This thesis constitutes a contribution to applied stability 

theory. We consider the classification problem of the stable simple 

locally finite groups.

First the classification of the finite simple groups is used to 

reduce the problem to an identification problem for the simple 

locally finite groups of Lie type and an interpretation problem in 

model theoretic algebra.

In chapter three, the identification problem is solved. It is 

shown that the union of a chain of groups of the same Lie type over 

finite fields is a group of Lie type over a locally finite field. 

This result, together with the classification of the finite simple 

groups, implies that an infinite simple periodic linear group is a 

group of Lie type over a locally finite field.

The next two chapters solve the interpretation problem, and 

complete the proof that a stable simple locally finite group is a 

Chevalley group over an algebraically closed field. We also show 

that the class of Chevalley groups of a fixed Lie type is finitely 

axiomatisable.

Chapter six contains a partial classification of the nonsoluble 

locally finite groups of finite Morley rank.

In the final chapter, we show that a simple constructible group 

over an algebraically closed field is a Chevalley group. The proof 

is model theoretic, and makes no use of algebraic geometry or Lie 

algebras. This result can be regarded as a nonstandard corollary of 

the classification of the finite simple groups.
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1.

Chapter One: Introduction

This thesis will present some results on the borders of stability 

theory and algebra. The stability theory necessary for an understanding 

of this work will be surveyed in section 1.2. This should make the 

thesis comparatively easy reading for any algebraist who is familiar 

with the theory of the simple groups of Lie type. Unfortunately a 

logician who wishes to understand the proofs will have to do some 

preparatory work. To make this thesis self-contained, it would be 

necessary to summarise the first thirteen chapters of Carter's "Simple 

groups of Lie type". As a compromise, section 1.4 provides a guided 

tour of the familiar group PSL(3,K). In this concrete setting, we 

shall explain the meaning of such important concepts as root subgroup, 

Weyl subgroup, etc. This section is included for two reasons.

i) It should make [6] and [7] more accessible to the reader.

ii) If he keeps this concrete example in mind, the reader will find the 

algebraic proofs fairly transparent.

We begin with a non-technical account of the classification 

programme. It is hoped that after reading this, the algebraist will 

be keen to learn the logical methods that occasionally allow this 

ambitious programme to be carried through.

1.1 The classification programme

Some of the most satisfying theorems in classical algebra describe 

all structures which possess certain properties. In the language of 

model theory, the algebraist begins with a fixed theory T and then 

describes all the models of T in terms of invariants.

Examples

1) T = algebraically closed fields 

Structure theory

An algebraically closed field of fixed characteristic is determined
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up to isomorphism by the cardinality of its transcendence basis over 

the prime subfield.

2) T = divisible abelian groups 

Structure theory

A divisible abelian group has the form

[ ©  $ ] © . . .  © [ © Z 2 ( p  ) ] © . . .
ieln i^IP

and is determined up to isomorphism by the cardinalities of its index 

sets.

In the last 10 years, some logicians have been interested in this 

type of phenomenon. However, as usual, they have attacked the problem 

backwards. The classification programme is concerned with the question:

IF A THEORY T HAS A STRUCTURE THEORY, WHAT IS T?

In other words, have the algebraists already found all those theories 

which possess a structure theory? Perhaps surprisingly, it is sometimes 

possible to answer this question. But first it must be posed in a less 

vague form.

What is a theory?

Throughout this thesis, we will work with complete first order 

theories. (A theory T is complete if for every sentence ^ in the 

language, either <f> € T or ~i<f) £ T. ) A typical example is the theory of 

algebraically closed fields in some fixed characteristic.

What is a structure theory?

Here things are not so clear. However, it seems difficult to 

imagine a satisfactory structure theory existing for a theory T which has 

2*̂  nonisomorphic models in every uncountable cardinality k . We shall 

take the existence of too many models as an indication that T does not 

possess a structure theory.

Thus one form of our original question is: if a complete first

order theory T has less than 2^ nonisomorphic models in some uncountable
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cardinality k , what is T?

Less ambitiously, we could try to classify those theories which • 

have very few models.

Definition 1

Let K be an infinite cardinal. A complete first-order theory T is 

K-categorical if it has a unique model (up to.isomorphism) of cardinality

K .
The following theorem says that there are essentially two kinds of 

categoricity.

Theorem 2 (Morley [24])

Let T be a complete first-order theory in a countable language.

If T is categorical in some uncountable cardinality, then T is categorical 

in every uncountable cardinality.

The first results in the classification programme were published by 

MacIntyre in 1971. (If M is a structure, ThM is the set of all sentences, 

in the appropriate first order language, which are satisfied in M.

Clearly ThM is a complete theory.)

Theorem 3 (MacIntyre [20])

If G is an abelian group, then ThG is -categorical iff G is of 

one of the following forms:

i) K©H, where H is finite and K is a direct sum of copies of a fixed

finite cyclic group of prime-power order;

ii) D © H, where H is finite and D is a divisible group with the property 

that for each prime p there are only finitely many elements of D of 

order p.

Theorem 4 (MacIntyre [21])

If F is a field, then ThF is 0)̂ -̂categorical iff F is algebraically

closed.

The latter result was improved in [11].



Theorem 5 (Cherlin, Shelah)

If F is an infinite field, then ThF has less than 2 nonisomorphic 

models in some uncountable cardinality k iff F is algebraically closed.

Complete classification of the -categorical theories have also 

been obtained for:

i) Noetherian commutative rings (Cherlin, Reineke [lo], Zilber [37])

ii) semisimple rings (Feigner [14])

iii) skew fields (Shelah [26], Zilber [37], Cherlin [8]).

The study of the w^-categorical theories of nonabelian groups was 

initiated by Zilber [37]. He showed that if G is a simple algebraic 

matrix group over an algebraically closed field, then ThG is

10]̂-categorical. He and Cherlin [9] also realised that, conversely, if 

ThG is -categorical then G seems to resemble an algebraic matrix group 

over an algebraically closed field. (More details will be given in a 

later section.) This led them to make the following conjecture. 

Conjecture 6

Let G be a simple group. Then ThG is w^-categorical iff G is an 

algebraic matrix group over an algebraically closed field.

Unfortunately this appears to be very difficult to prove with the 

techniques currently available. In this thesis, following a suggestion 

of Cherlin, we shall restrict our attention to simple locally finite 

groups.

Definition 7

A group G is locally finite if for each finite subset X £ G, the 

subgroup generated by X is finite.

In the next four chapters, we shall prove:

Theorem 8

Let G be an infinite simple locally finite group. Then the 

following are equivalent:

i) ThG has less than 2*̂  nonisomorphic models in some uncountable
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cardinality k.
ii) ThG has a unique model in every uncountable cardinality <.

iii) G is a Chevalley group over for some prime p > O.

CFp denotes the algebraic closure of the field with p elements.)

1.2 A survey of stability theory

In this section, we shall discuss the model-theoretic techniques 

which are used in the classification programme. The reader is assumed 

to be familiar with the notions of a first order language L, a model 

for L, and first order satisfaction. A very clear account of these 

topics can be found in Barwise [3].

Notation and conventions

We use ct, 3, J, X, H for ordinals; Ic, &, m, n for natural numbers; 

K, X for cardinals. 6 is reserved for limit ordinals. An ordinal is 

the set of preceding ordinals, i.e.

a = (3 I 3<a} = {3 | 3ea}.

tu denotes the ath infinite cardinal. tu is the cardinality of the a
natural numbers.

L always denotes a first order language with equality. Variables 

are denoted by x, y, z; finite sequences of variables by x, y, z. We 

use (j>(x ... ,x^) to denote a formula (}> whose free variables form a

subset of {x]y...,x^}. The language of groups is {x,l} and the language 

of fields is {x,+,l,o}.

If M is a structure, we write Im | for its cardinality. a, b, c, g, 

h will denote elements of M; a, b, c, g, h finite sequences of elements. 

We often write a e M.

If #(x) is a formula and â e M, we write M {= <|)(a) to mean that 

4*(a) is true in M. ThM is the set of all sentences true in M. If 

(|)(x,y) is a formula and a € M,

(J) (M,a) = {b € M |m  1= (f> (b, a)}.



We quite happily confuse formulas (j>(x,a) with the subsets which they
I

define (j)(M,a).

When we say "it is easily shown that...", we mean that the result 

follows from simple applications of the following basic theorems.

The compactness theorem

A set of sentences E in a first order language L has a model iff 

every finite subset of Z has a model.

The Iiowenheim-Skolem-Tarski theorem

Let M be a model of cardinality k and let 1 l | ^ X .< k. Given any 

set X Ç M of cardinality ^ X, M has an elementary submodel of cardinality 

X which contains X.

Definition

Let M Ç N be two structures for the language L. M is an elementary 

submodel of N, written M < N, if for all formulas (x j/- . ./X^) and all 

elements a^,...,a^ e M,

M 1= (f) (a ̂ ,.. . ,a^) iff N j= <j)(â ,--,a^).

Having established our notation, we can get down to business.

Types and stability

Suppose that M < N and b e N. The type of b over M is a complete

description of the relation of b to M. Formally,

tp(b,M) = {(}>(x,a) |n  (= (f)(b,a)}

where a e M and ^ is a formula in the language L. Define

FM = {(J)(x,a) |<J) e L, a e m }.

Then, more generally, any maximal consistent subset of FM is called a 

type over M. It is easily shown that 

Theorem 1

Let p be a type over M. There exists an elementary extension 

N > M such that:

i) Im I = |n |



ii) There is an element b e N which realises p, i.e. for all 

(p(x,a) £ p, N 1= (f) (b,a) .

Thus a type is a description of a way of adjoining an element in

some elementary extension of M. Define

SM = {p I p is a type over m }.

Example

Let K be an algebraically closed field. Then any formula (J)(x,k) 

is equivalent to a boolean combination of polynomials in k. Thus a type 

p is determined by the subsets

X = {g(x,k) = O I g(x,k) £ kCx ]} O  p

Y = {g(x,k) / O I g(x,k) e K[x]}'fS p.

Suppose that X ^ 0. Choose "g(x,k) = O" e p of minimal degree. Since 

K is algebraically closed, deg g = 1 and "x-k = O" £ p for some k £ K.

Thus p is realised in K. On the other hand, if X = 0 then p describes

an element which is transcendental over K.

We are interested in theories T with less than the maximum number

of models. It seems reasonable to expect that if there are many distinct

ways of adjoining elements to models of T, then T has many nonisomorphic 

models. (Of course, life is not quite this simple. Consider countable 

dense linear orders.') This provides motivation for 

Definition 2

Let X be an infinite cardinal. The theory T is X-stable if for 

all models M ^ T,

|m| = X implies |sm[ = X.

The following theorem is due to Shelah [27].

The stability spectrum theorem

Let T be a complete countable first order theory. Then one of the 

following clauses holds:



i) T is X-stable for ail X ) w.

ii) T is X-stable for ail X  ̂2^.

iii) T is X-stable for ail X of the form X = X.

iv) T is not X-stable for any cardinal X.

Definition 3

a) If (i) holds, T is w-stable.

b) If (ii) holds, T is superstable.

c) If (iii) holds, T is stable.

d) If (iv) holds, T is unstable.

Notice that w-stable => superstable => stable. In general, these are 

strict implications. The classification programme is based on the 

following very difficult theorem of Shelah [27].

Theorem 4

Let T be a complete countable first order theory. If T is non

superstable, then T has 2^ nonisomorphic models in every uncountable 

cardinality k.

For example, to prove theorem 5 of the previous section, Cherlin 

and Shelah classified the superstable theories of infinite fields.

There is a very simply stated criterion for unstability.

Theorem 5 (Shelah [27])

A complete theory T is unstable iff there is a formula <J>(x,y), 

a model M [= T, and an infinite subset X = {a^|n e w} such that

M \= iff n < m.

Unfortunately it is not always an easy task to determine whether a 

theory is unstable. It is not known if the theory of the free group on 

two generators is stable. Rather than use theorem 5 directly, we shall 

use the following consequence.

Theorem 6 (Baldwin, Saxl [2])

Let G be a group. If ThG is stable, then G satisfies the minimal 

condition on centralisers.
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Definition 7

G is an M^-group if it satisfies the minimal condition on central

isers, i.e. there is no infinite descending chain

C(Xq) $ C(Xj) 3 ... 2 C(X^) ^ ...
of centralisers, where each X £ G.n

Following the usual convention, we shall say that a structure M

is X-stable if its first order theory ThM is X-stable. Similarly, we

shall speak of w^-categorical structures.

The method of interpretations

After we have proved that a stable simple locally finite group is

a group of Lie type, we shall show that the underlying field is

algebraically closed. We do this via the method of interpretations. 

Definition 8

Let M and N be structures and a a mapping from a subset of M onto

N (for some natural number k). We say that a is an interpretation of

N in M if :

i) The domain D^ of a is a subset of M definable with parameters, i.e.

there exists a e M and (f)(x,y) e L such that

b e D^ iff M j= (f)(b,a)

ii) The preimages of the equality relation and all predicates, functions 

and constants in the language of N are definable in M with parameters. 

Two examples

1) Let G be a group with centre Z (G). Let O: G ^ G/Z(G) be the 

canonical homomorphism. Then a is an interpretation of G/Z (G) in G.

i) D^ is defined by the formula "x = x".

ii) For g,h e G, a(g) = o(h) iff

G 1= (3x) (hx = 1 A (Vy) (xgy = yxg) ) .

iii) For a,g,h e G, a(a) = a(g).a(h) iff
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G 1= (3x) (ax = 1 A (Vy) (xghy = yxgh)

iv) For g e G, o{g) = 1 iff

G j= (Vx) (xg = gx) .

2) The two structures may have different languages. We can interpret 

the group <K,+,0> in the field <K,x,+,l,0>.

Less trivial examples will be given in later chapters. The 

following theorem is due to Zilber [37].

Theorem 9

Let M be a X-stable structure. If the structure N is interpretable

in M, then N is X-stable.

The Morley rank of a definable subset

Vaught has shown that if M is w^-categorical and <f>(x,a) is a 

definable subset of M, then either cf>(M,a) is finite or | (f) (M, a)| = [m ].

So the cardinality of a definable subset of an w^-categorical structure 

is an extremely crude measure of its size. A more useful measure is 

provided by the Morley rank. First we must introduce the notion of 

X-saturation.

Definition 10

Let A £ M be any subset. p is a type over A in M if :

i) p is a set of formulas of the form ^(x,a) where a £ A.

ii) p is consistent with M, i.e. for every finite q- £ p,

M t= (3x) A (f) (x,a) .
(f> (x,K) £q

iii) For all formulas <f>(x,a) where a £ A, either (})(x,a) £ p or 

~i^(x,a) £ p.

Thus a type over A in M is a maximal consistent set of formulas 

with parameters in A.

Definition 11

A model M is X-saturated if every type in M over some A ç M,

|a| < X, is realised in M.
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The Morley rank of a definable subset is a measure of how finely 

we may partition it using other definable subsets. It is convenient 

to work with w^-saturated models.

Definition 12

Let M be an w^-saturated model and (|)(x,a) e FM. We define the 

Morley rank R((f)(x,a)) by defining inductively when R(cj)(x,â)) ^ a, a an

ordinal.

1) R(<J)(x,a)) ^ O if 4"(M,a) 0. (If (f)(M,a) .= 0 we stipulate that

R ( (J)(x,a) ) = -1. )

2) R(4)(x,a)) 3 6 for 6 a limit ordinal if R((|)(x,a))  ̂ a for all a < 6.

3) R(#(x,a)) ^ a+1 if for every n e w  there exist (f>̂ (x,â ) e FM,

1 $ i 3 n, such that;

a) R(#^(x,a^)) 3 a for 1 3 i 3 n.

b) (f)(M,a) = I I 4\(M,a.), where ̂— I denotes the disjoint union.
I$i3n ^ ^

4) If R( (J)(x,a) ) ^ a but not R(<j)(x,a))  ̂oh-1, we say that R(cj)(x,a)) = a.

If R(<j)(x,a)) $ a for all a, we define R(#(x,a)) =

Definition 13

If R(#(x,a)) = a 7̂ “, we define the Morley degree deg (c|)(x,a) ) to 

be the greatest natural number n such that there exist formulas 

(f)̂ (x,â ) e FM, 1 $ i 3 n, with:

a) R(#^(x,a^)) = a for 1 ^ i n.

b) ^(M,a) = I— I (}).(M,a.).
l^i^n ^ "■

Finally suppose that <{)(x,a) € FM, where M is not Wj^-saturated. Then 

we can find an Wj-saturated N > M, and calculate R(#(x,a)), deg(#(x,a)) 

inside N. It is easily proved that the rank and degree are independent 

of the choice of N. The following properties are almost immediate 

consequences of the definition.

Proposition 14

Let (|)(x,i), ^^x,b) e FM

i) R((f)(x,a) vif»(x,b)) = max{R(#(x,a)),R(^i(x,b))}
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ii) If R(#(x,a)) = R(^(x,b)) and 4>(M,a) n Tp(M,b) = 0, then

deg (<j)(x,a) V Ti)(x,b) ) = deg ( (j)(x,a) ) + deg (i|j(x,b) ).

iii) Every formula of rank a is equivalent in M to a finite disjunction 

of formulas of rank ot and degree 1.

iv) If there is a formula of rank a, a an ordinal, then there are 

formulas of every rank 3 < a.

It follows that the valid formula "x = x" has the largest rank.

If M is a model, we call R(x = x) the rank of the model M . If T is 

a complete countable theory, then any two saturated models of T 

have the same rank. We call this the rank of T . T is called totally 

transcendental iff its rank is an ordinal, rather than “. In [24], 

Morley proved:

Theorem 15

Let T be a complete countable theory.

i) T is w-stable iff T is totally transcendental.

ii) If T is totally transcendental, then its rank is a countable 

ordinal.

iii) If T is w^-categorical, then T is w-stable.

Later Baldwin [l] and Zilber [36] proved:

Theorem 16

Let T be a complete countable theory. If T is w^-categorical, then 

the rank of T is finite.

The converse is not true. As our first application of rank and 

degree, we shall prove:

Theorem 17 (MacIntyre [20])

If G is an w-stable group, then G satisfies the minimal condition 

on definable subgroups.

Let (f)(x,a), i|/(x,b) e FG. A bijection tt: (J)(G,a) i|̂ (G,b) is said

to be definable if there exists a formula a(x,y,c), c e G, such that 

for all g e <J>(G,a) and h e )|»(G,b),
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Tr(g) = h iff G |= o(g,h,c).

In this situation, any partition of 4)(G,a) by definable subsets is 

mapped onto a corresponding partition of i|̂ (G,b). An easy induction 

gives R(^(x,a))  ̂R(i|;(x,b)). But Tr“  ̂ is also a definable bijection, 

and hence R(4>(x,a)) = R(\jj(x,b)). Similarly deg(^(x,a)) = deg (\̂ (x,b) ) .

In particular, let H be a definable subgroup of G. Then for all 

g e G, the right translation map H ^ Hg is a definable bijection.

Thus

R(Hg) = R(H) 

deg (Hg) = deg(H).

Lemma 18

Let H q' ̂  H^ be definable subgroups of the w-stable group G. Then 

either (i) or (ii) holds.

i) R(Hq) < R(H^).

ii) R(Hq) = RfH}) and deg(Hg) < deg(H^).

Further, R(Hq) = R(Hi) iff [HizHq] is finite.

Proof

Let Hj = L J  Hgg be a coset decomposition. Then for all a < 3, 
a<3

R(Hgg^) = R(Hq). Hence if 3 is infinite, RfH^) > R(Hq).

Suppose that 3 is finite, say 3 = n. Then H^ = H^g^ I_J .. . U  

By proposition 14 (i) , (ii) , R(H^) = R(Hq) and deg (Hi) = n deg(HQ).

□

Proof of theorem 17

This is an immediate consequence of theorem 15, lemma 18 and the 

well-ordering of the ordinal numbers.

□

If G has finite Morley rank, then many important subgroups, such 

as the commutator subgroup [G,g ], are definable. This will be proved 

in the next section, where we discuss some of the similarities between
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groups of finite Morley rank and algebraic matrix groups over 

algebraically closed fields.

1.3 Algebraic matrix group and groups of finite Morley rank

In this section, we will discuss some of Zilber's results on groups 

of finite Morley rank. First we remind the reader of some basic 

properties of affine groups. Throughout K will be an algebraically 

closed field.

Definition 1

A subset S of is closed if it is the set of common zeros of

some polynomials in K[x^,_,x^^.

Definition 2

An affine group over K is a closed set S with a group law on it in 

which mult: SxS S and inv: S S are polynomial maps.

For example, may be regarded as an affine group with the

noncommutative group law

<x,y,z><x',y',z'> = <x+x',y+y',z+z’+xy'>.

Suppose that the affine group S is defined by the polynomials 

{ Let I be the radical of the ideal generated by The

K-algebra of polynomial functions

K[S] = K[xi,...,x^]/I

is an essential tool in the analysis of S. For instance, by considering 

a certain natural action of S on K[S], it can be shown that S is 

isomorphic to an algebraic matrix group over K.

Definition 3

An algebraic matrix group over K is a subgroup of SL(n,K) whose 

matrix entries are the set of common zeros of some polynomials } in 

K [x ̂, ... ,x^2]"

The set of matrices of the form
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1 X z
0 1 y x,y,z c K
0 0 1

is an algebraic matrix group. Note that

Ï X z 1 x' z' 1 x+x ' z+z'+xy
0 1 y 0 1 y ' = 0 1 z+z '
0 0 1 0 0 1 j 0 0 1

This is precisely the group law which we defined using polynomials in 

the previous example.

It is not immediately clear that various important subgroups of 

the affine group G, such as the commutator subgroup Cg ,g ], are closed. 

The proof requires the following notion.

Definition 4

Let G be an affine group over K. The closed subset X ç G is 

irreducible if :

i) X ^ 0

ii) whenever X is expressed in the form X = U F^ where F^fFg are

closed subsets of G, then either X = F^ or X = F^.

If H is a closed subgroup of G, then H is irreducible iff H is

connected.

Definition 5 (Nonstandard)

The affine group H is connected if it has no proper closed subgroup 

of finite index.

Theorem 6 (The irreducibility theorem)

Let G be an affine group over K. Let i e I, be a family of

irreducible subsets of G, such that 1 e for all i e I. Then:

a) The subgroup <S^ | i e I> is closed and connected.
I  ̂1 ^nb) For some finite sequence i^,--- i^ € I, <S. | i e I>=s. ... S.

1 n
where e {l,-l) for 1 3 j 3 n.

Many of the basic results in the theory of affine groups can be
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proved using only the irreducibility theorem and the minimal condition 

on closed subgroups. Zilber managed to extend these results to the 

more general setting of groups of finite Morley rank. The following 

table is the key to this subject.

affine groups groups of finite Morley rank

closed subset definable subset

connected subgroup A subgroup H c G is connected 
if it has no proper definable 
subgroup of finite index.

irreducible subset indecomposable subset

This correspondence is not completely faithful. While groups of 

finite Morley rank satisfy the minimal condition on definable subgroups, 

they do not satisfy the minimal condition on definable subsets.

However, it is very suggestive, and has guided most of the research in 

this area. Zilber [37 ] solved the problem of finding the correct 

analogue of an irreducible subset. 

pefintion 7

Let H be a definable subgroup of G. The definable subset (f> (G) 

is H-decomposable if there exists g^,...,g^ e G, n > 1, such that

(j) (G) Ç g^H U  ... U  g^H

and n is the least such integer for which such a decomposition exists.

<p (G) is indeccmpo sabl e if <j) (G) is not H-decompo sable for any 

definable subgroup H.

Thus a definable subgroup is indecomposable iff it is connected. 

Theorem 8 (Zilber [37 ])

Let G be a group of finite Morley rank. Let S^, i e I, be a 

family of indecomposable definable subsets of G, such that 1 e for

all i e I. Then:

a) The subgroup <S^ | i e I> is definable and connected.
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b) For some finite sequence i ,...,i e I,1 n
e E

<S I i £ I> = S 1 ... S
n

where £ {1,-1} for 1 $ j $ n.

An English translation of Zilber's proof may be found in [32].

We shall use theorem 8 and the minimal condition on definable subgroups 

to prove those theorems which are needed in later chapters.

Theorem 9 (Baur/Cherlin/MacIntyre [4])

Let G be an w-stable group. There exists a smallest definable 

subgroup G® < G of finite index. G® is called the connected component 

of G.

Proof

Let (h ^ I i £ l} be the set of definable subgroups of finite index.

For each g £ G and i £ I, H? is a definable subgroup. Thus G® = O H .
i€ I

is a normal subgroup. Since G satisfies the minimal condition on
n

definable subgroups, there exist e I such that G^ = H h , .
^ k=l

Hence Ĝ  ̂ is definable and [G:G®] is finite.

Lemma 10 (Zilber [38])

Let <j)(G) be a definable subset of the w-stable group G. Suppose 

that H Ç N ((f) (G) ). If (f) (G) is P-indecomposable for all definable 

subgroups P such that H c N (P), then (f) (G) is indecomposable.

Proof

Suppose that (f) (G) is Q-decomposable for some definable subgroup Q.

Let

KG) c g^Q U: ... U g^Q 

where n > 1 is minimal. For any h £ H,

(f)(G) c g^Q^ U ... U g^Ç^.

Let p = n Then H 5 N (P) . There exist hj,...,h £ H such that
hGH “
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m hj_
P = ^ Q • Thus P is definable, and there are k cosets of P which

i=l
partition (f) (G) where n ^ k ^ n™. ^

□

Theorem 11 (Zilber [38])

Let G be an infinite nonabelian group of finite Morley rank. If 

G has no proper normal definable subgroup, then G is simple.

Proof

Let g 7̂ 1 be any element. We shall show that W = g*̂  u{l} u (g ^)^ 

is indecomposable. By lemma 10, it is enough to consider normal 

definable subgroups . Clearly is infinite and so W is not

1-decomposable. It is clear that W is not G-decomposable! Thus 

<g^> = <W> is a definable normal subgroup of G . Hence <g^> = G and G 

is simple.
□

Theorem 12 (Zilber [38])

Let G be a group of finite Morley rank and A be a definable 

connected subgroup. If B is any subgroup, then [B,A] is definable and 

connected.

Proof

Let b e B. We shall show that b[b,A] = b^ is indecomposable. By
Alemma 10, it suffices to show that b is Q-indecomposable for all 

definable subgroups Q such that A ç N(Q). Suppose that

b^ c hj^Q U ... U h^Q

where m is minimal. For a e A,

(hjQ)^ = hjQ = h^Q

for some i ^ m. This defines an action of A on {h Q,...,h Q}. Sincei m
is minimal, the action is transitive. The stabiliser of h^Q under 

this action is the definable subgroup (h^Q) . Hence [ A:N^ (ĥ Q̂) ] = m 

and so m = 1. Since b[b,A] is indecomposable, the same is true of
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[b,A]. Thus [b ,A] = <Cb,A] |b e B> is definable and connected.

□

Finally we mention a remarkable result of Zilber. A proof is 

given in C32].

Theorem 13 (Zilber [38])

Let G be a connected soluble nonnilpotent group of finite Morley 

rank. Then an algebraically closed field can be interpreted in G.

If it could be shown that a simple -categorical group has a 

connected soluble nonnilpotent subgroup, then conjecture 6 of section 

1.1 would seem to be almost certainly true. Unfortunately the existence 

of such a subgroup is still undecided. In [32], the author used the 

characterisation [19] of PSL(2,F), F a locally finite field of odd 

characteristic, to prove:

Theorem 14

Let G be a connected nonsoluble locally finite group of finite 

Morley rank. Then G has a connected soluble nonnilpotent subgroup.

However, the role of the algebraically closed field remained 

elusive. In particular, it was not even possible to show that a simple 

-categorical locally finite group is linear. So this approach was 

abandoned. The method then adopted makes essential use of the classi

fication of the finite simple groups, and forms the subject of this 

thesis.

In this section, we have described how affine groups have guided 

research on groups of finite Morley rank. In the final chapter, we 

shall attempt to repay a little of this debt. There is a natural 

generalisation of the notion of an affine group.

Definition 15

The group G is constructible over the field K if:

i) There exists a formula (|)(x,k), k € K, such that G = {g j K [= <|)(g,k)}.

ii) The group operation is given by a definable function ^(x,y,z,k), i.e.
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K (= (Vx y) C4)(y,k) a 4>(x,k) h- O! z) ip (x, y, z, k) a 4>CZ,k'> J

A constructible group is not necessarily isomorphic to an affine 

group. However, we shall prove:

Theorem 16

Let K be an algebraically closed field and G be an infinite simple 

constructible group over K. Then G is isomorphic to a Chevalley group 

over an algebraically closed field F.

Unfortunately the proof is too crude to enable us to identify the 

underlying field F. Recently van den Dries has discovered an algebraic 

proof of this theorem. His proof, which makes use of a number of deep 

results in algebraic geometry, shows that F - K.

1.4 A guided tour of PSL(3,K)

In this section, we shall describe the important structural 

features of the typical Chevalley group PSL(3,K).

Notation

Throughout this thesis, we will use the notation of Carter [?]. 

For example, if X £ G, then

C(X) is the centraliser of X,

N(X) is the normaliser of X,

X^ = {g“  ̂X g 1 X e x }.

We shall write (G), (G) for the ith member of the lower, upper

central series of G respectively.

Definition 1

a) SL(3,K) is the group of 3 ̂  3 matrices with determinant 1 over the 

field K.

b) PSL(3,K) = S L (3,K)/Centre.

Our first intention is to explain the following insight of 

Chevalley:
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PSL(3,K) consists of three copies of SL(2,K), together with a 

finite symmetry group which permutes these copies.

Throughout, K will be a locally finite field of characteristic 

p > O.

1. Sylow p-subgroups and Borel subgroups

Let P < PSL(3/K) denote the subgroup of strictly upper triangular 

matrices. Then P is a Sylow p-subgroup. Let

N(P) =
a a b
0 3 c 
O O Y

a,b,c e K, a, 6, Y e K*

Then B = N(P) . B is called a Borel subgroup of PSL(3,K) . It is easily 

checked that B = P x H, where

a 0 0 '
H = Q 0 e 0

1 lO 0 Y.
a,B,Y G K*

The Borel subgroup B is, in many senses, the most important subgroup of 

PSL(3,K).

2. Transvections and root subgroups

P is generated by the following three subgroups of transvections:

X = a

a+b

ri
o

0

1 
o

0

1 
o 

o

0
1
0

k
1 
o

0
1 
o

k £ K

k £ K

k e K 3
We shall write
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x^(k) =
l o o  
0 1 k  
0 0 1

and use a similar notation for x^^k) and x^^^(k). It is immediate that 

for all kf&c K,

X (k)x (&) = X (k+&) . a a a

Thus - <K, + ,0>, the additive group of the field K. It is suggestive

to imagine these three subgroups lying in the following configuration:
b a+b

-a

- (a+b) -b

Fig.l

We associate groups of transvections with the points -a,-b,-(a+b) 

as follows:

X-a

X-b

k e K

k e K

r 1 0 0
V — ̂- (a+b) 0 1 0

.k 0 1 .
k e K

(The reader will soon see why this assignment, rather than the more 

obvious one, is correct.) The subgroups X^, r e {±a,±b,±(a+b)} are 

known as the root subgroups of PSL(3,K). 0 = {±a,±b,± (a+b) } is the set

of roots. PSL(3,K) is generated by the root subgroups X^, r e 0.

3. The Weyl subgroup

It is a remarkable fact that the entire structure of PSL(3,K) is
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coded within fig.l. Consider the two reflections w^ and w^^ as shown

a+bbelow. a+b

-a

- (a+b) -b

w (a) -a

a -a

- (a+b) -b

w, (b) = -b b

The Weyl subgroup of PSL(3,K) is defined to be W = ^

a finite synmetry group which acts transitively on $. It is the 

symmetry group which was mentioned at the beginning of this section. 

At this point, the reader may be worried that W is not actually a 

subgroup of PSL(3,K). This will soon be clarified!

4. The subgroup <X^,X >

H = a

a' -a

1 0 0
0 a 0
0 0 a'-1

a e k*

We write
1 0 0

h (a) = 0 a 0a
0 0 a -  1

A glance at the matrices concerned will convince the reader that 

there is an iscmorphism tt: SL(2,K) <X^,X_^> such that

1 k 
O IJ

1 O 
k 1 -a (k)
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h^(a)

Similar remarks hold for the subgroups <X^,X , > and <X , ,X , Sob -b a+b - (a+b)
we may regard PSL(3,K) as consisting of three copies of SL(2,K) lying 

in the configuration shown in Fig.l.

Let W E  W. Since W is generated by reflections, if w (a) = r then 

w(-a) = -r. Hence the action of w on fig.l induces a permutation of 

the three copies of SL(2,K), given by

^*r'*-r^  ̂^*w(r)'*-w(r)^

for r E $ = {a,b,a+b}.

5. (B,N)-pairs

Finally we show "where" W lies inside PSL(3,K). Define N = N (H) 

It turns out that N/g = w. For example, consider

1 0 0

0 0 1
0 - 1 0

E N.

Then n X n  ̂ = X , n X ,  n ^ = X  S o n  acts on the roots subgroupsa a a -a a b a  a+b a
in the same way that w acts on the roots. Similarly,

"b

a

0 1 0

-1 0 0

o 0 1

£ N

corresponds to the reflection w^.

The subgroups B = N(P) and N = N(H) are called a (B,N)-pair for 

PSL(3,K). They completely determine its structure.

The other groups of Lie type have a similar structure. For a full 

account, the reader is referred to [6] or [?].
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Chapter Two; The Reduction Lemma

In this chapter, we reduce the classification of the stable simple

locally finite groups to two concrete problems, one in algebra and one

in model theory. By theorem 1.2.6, if G is stable then G e M . Ourc
immediate target is the following result.

Theoran 1

An infinite simple locally finite -group G is a countable linear 

group.

(A linear group is a group of invertible matrices over a field.)

We require two results from algebra. The first is an immediate 

consequence of 4.8 of [19] and the classification of the finite simple 

groups.

Fact A

If for the fixed prime p, every p-subgroup of the countable simple 

locally finite group G is soluble, then G is linear.

Fact B [5]

A locally nilpotent -group is soluble.

We remind the reader that a group is locally nilpotent if every 

finitely generated subgroup is nilpotent. We can now easily obtain: 

Lemma 2

A countable simple locally finite M^-group G is a linear group.

Proof

Fix any prime p. Let P be a p-subgroup of G. Then any finitely 

generated subgroup of P is a finite p-group, and hence nilpotent. By 

Fact B, P is soluble. By Fact A, G is linear.

□

To remove the hypothesis of countability, we make use of the model 

theoretic transfer method.
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Proof of theorem 1

Let H <  G be a countable elementary submodel. Then H is a locally 

finite M^-group. We claim that H is also simple. Remember that H is 

simple iff for every nonidentity element h e H, the conjugacy class 

h generates H. Let a e H be any element. Since G is simple, there

exist g^,...,g^ € G such that

G 1= a = ...

where e {1,-1} for 1 $ i ^ n. Thus

G 1= (3Xj . . .x^) (a = (h 1) 1 ... (h *) ^) .

As H -< G, there must also exist h,,...,h e H such that1 n

h |= a = (h'l)^l ... (h'")^n.

Thus h^ generates H, and H is simple. By lemma 2, H is linear of degree n, 

say. In [23], Mez showed that the class of linear groups of degree n is 

first order axiomatizable. So G is also linear. Finally, Winter [35] 

has proved that a simple locally finite linear group is countable-

□

This enables us to use:

Theorem (Kegel [18])

Let G be a simple locally finite linear group. Then G = U G^, where
ieoj

each G^ is a finite simple group.

(Recently, Hick in [16] has shown that the hypothesis of linearity 

cannot be omitted frcan this theorem.) Since the finite simple groups are 

known, it seems natural to try to identify G by an examination of the 

approximating chain {g ^Ii c w}. We require another application of the 

classification to see which groups may appear in (G^j i e m} . Every 

finite simple group lies in one of the following families,

a) The sporadic groups

There are only 26 of these, and so we may safely forget about them.
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b) The cyclic groups of prime order

If p q are distinct primes, then 2Z (p) does not embed into ZS (q) .

We may also forget about these groups.

c) The alternating groups

It is quite easy to show that an infinite chain of alternating groups 

cannot yield a linear group. A proof will be given after we have dealt 

with the remaining families.

d) The Chevalley groups

These occur as a finite set of families:

A^ (n ) 1) ; A^(k) = PSL(n+l,k).

B (n ) 2)n
(n $ 2)

D (n $ 4) n
(6 ^ n ^ 8)

Of course, the underlying field k must be finite.

e) The twisted Chevalley groups

Once again, these occur as a finite set of families.

Classes (d) and (e) are known collectively as the groups of Lie

type. We say that A^(k) is a group of Lie type A^, etc. By a slightly

educated pigeon-hole principle, we can deduce:

Theorem 3 (Kegel)

If G is a simple locally finite linear group, then G = U G.,
ieo) ^

where each G^ is isomorphic to a group of the same Lie type L over a 

finite field.

Sketch proof

For a rigorous proof, see [19] pages 120-123. Suppose, for example, 

that each G^ is isomorphic to a group of Lie type A^ = PSL(n+l,_) over 

a finite field. We must show that groups of Lie type A^ cannot occur
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for arbitrarily large values of n.

Let p > O be the characteristic of the underlying field. Then we 

may assume that the underlying field of each G. has characteristic p.

Since G is linear, its Sylow p-subgroups are nilpotent. The Sylow 

p-subgroups of PSL(n+l, 2F are conjugates of the subgroup of strictly

upper triangular matrices. Hence as n increases, the nilpotency class 

of its Sylow p-subgroups increases. Thus there is a bound on the values

of n for which groups of Lie type occur in {G^|i e o)}.

We can now explain why G cannot be a limit of alternating groups.

Every finite simple group embeds in some alternating group. In particular,

for each n e  m, A^ (]F̂ ) embeds in an alternating group. So a limit of

alternating groups will not have nilpotent Sylow p-subgroups.

Theorem 3 suggests that we consider:

The identification problem

If G = U G., where each G. is isomorphic to a group of Lie type L 
ieo)

over a finite field, is G iscxnorphic to a group of Lie type L over a 

locally finite field?

(A locally finite field is a subfield of 3F^, the algebraic closure 

of the field with p elements.) In chapter three, we shall show that this 

is indeed the case.' Notice that we will then have proved:

Theorem 4

An infinite simple locally finite -group is a group of Lie type 

over a locally finite field.

Coroll ary 5

An infinite simple periodic linear group is a group of Lie type 

over a locally finite field.

Proof

It is well known that a periodic linear group is locally finite and

M .c n
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Corollary 5 was proved independently by Shute [28]. Thus a stable 

simple locally finite group G is a group of Lie type. To complete the 

proof of Cherlin's conjecture, we must show that:

a) the underlying field K is algebraically closed;

b) G is a Chevalley group (i.e. it cannot be a twisted Chevalley group) .

It is enough to prove (a). For then k = 3F for some prime 

p > O, and there are no twisted Chevalley groups with underlying field 

3Fp* We shall prove (a) in chapters four and five by showing that if G 

is a locally finite group of Lie type, then the underlying field K may 

be interpreted in G . Hence by theorem 1.2.9, if G is stable then K is 

a stable locally finite field. We can then apply:

Theorem 6 (Duret [12])

A stable infinite locally finite field is algebraically closed.

This will give us:

Theorem 7

An infinite stable simple locally finite group is a Chevalley group 

over an algebraically closed field.

An aside: m-categorical simple groups

The reader may be wondering why we are only interested in 

K-categorical simple groups for uncountable k . In [15], Feigner used 

the classification of the finite simple groups to prove that there are 

no w-categorical simple groups. (By definition an o)-categorical theory 

has a model of cardinality w.) We shall deduce this result from theorem

4.

The study of m-categorical theories is based upon the following 

result.

Theorem (Engeler [13], Ryll-Nardzewski [25], Svenonius [31]).

Let T be a complete countable theory. Then the following are 

equivalent:

a) T is w-categorical.
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b) For each n e w ,  there are only finitely many (parameter-free) 

formulas (x^, .. . ,x^) up to logical equivalence with respect to T.

To illustrate the use of the above theorem, we shall show that an 

a>-categorical group G has bounded exponent. Consider the set of 

formulas

=  V j  , n e w .

Since G is w-categorical, for some distinct n,k, we have

ThG I -  (Vq = V^) ^  (Vq = Vj) .

Thus Th G 1- , and G has bounded exponent. Similarly, it can be 

shown that an w-categorical group G is locally finite.

The following result is an immediate consequence of 4.8 of [19] 

and the classification of the finite simple groups.

Fact C

If for the fixed prime p, every p-subgroup of the countable simple 

locally finite group G is of bounded exponent, then G is linear.

Theorem 8 (Feigner)

There are no w-categorical simple groups.

Proof

Suppose that G is a countable w-categorical group. Then G is 

locally finite of bounded exponent. By fact C, G is linear and so 

G e M^. By theorem 4, G is a group of Lie type over an infinite locally 

finite field. But then the subgroup of diagonal matrices does not have 

bounded exponent.

□
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Chapter Three: The Identification Theorem

In this chapter, we shall prove:

Theorem

Let G — U G , where each G is isomorphic to a group of Lie type 
iew ^

L over a finite field. Then G is isomorphic to a group of Lie type L

over a locally finite field.

In 1967, Kegel [18] dealt with the cases of PSL(n,-) , the Suzuki

groups Sz(_), and the projective unitary groups PSU(3,_). In Thomas

[33], using a different approach, the theorem was proved for the

nontwisted Chevalley groups. More recently [34], we have discovered

a much simpler proof, which also works for the twisted groups. Before

becoming involved in the details, we shall outline the main ideas of

the proof.
n.For simplicity, assume that G^ - PSL(3,p -̂) , the 3-dimensional

n.
projective linear group over the Galois field GF (p ). It is enough to 

show that there is a commuting system of maps:

l U
3 (f)

C3
n.

 2-----  ̂ PSL(3,p 2)
3

Gg ---- ^ ^  PSL(3,p*2)

l U
n.G.  -T  ̂ PSL(3,p 3)

where c\ is the canonical embedding, i.e. it sends each matrix in
n . ^i+1PSL(3,p to the corresponding matrix in PSL(3,p ). For then,

G - lim PSL(3,p ) = PSL(3,K) 
n£0)

n.
where K = U  GF (p ) . 

iew
This will be done in two stages. First we shall show that
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isomorphisms and embeddings can be chosen so that each of the 

following diagrams commutes:

^i+1
^i+1 PSL(3,p •")

i+1

-» PSL(3,p

and such that the embedding tt. is "almost canonical".

Definition

For each i e w and r e  0,

n.
± \  ^ 'f\(t)|t e GF(p )}.

Definition
^i ^i+1TT̂ : PSL(3,p ) PSL(3,p ) is almost canonical if for each r e

^ i ^ i V  5 i+1
For example, for each t e GF(p ),

1 0 0 ' 1 0 0

TT . 0 1 t _ 0 1 s1

0 0 1 0 0 1

^i+1for seme s e GF (p ) . At this stage, there is no reason to suppose 

that t = s. Finally, we shall "unwrap" the almost canonical embeddings 

{%^|i € 0)} to obtain canonical embeddings c^; i.e. we shall find 

isomorphisms ip̂  such that

Gi+l ’'i+1
i+1PSL(3,p ^ ■")

'''i+1
"i

T .r
-5" PSL(3,p )

^i+1 PSL(3,p ^ ■")

+ PSL(3,p

ccmmutes. Putting the theorem follows,
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3.1 Chevalley groups

Throughout this section, let G = U c where each G is isomorphic
ieo) ^ ^

to a (nontwisted) Chevalley group of type L over a finite field of 

characteristic p > O. Let $ be the associated root system and II be the 

set of fundamental roots. We suppose that G^ - L(q^), the Chevalley 

group of Lie type L over the Galois field GF(q^) . Let  ̂0} be

the set of root subgroups of L(q,).

Definition 1

TT : L(q^) L(qj) is a natural embedding if for each r e  0,

S jX^. If i = j, we shall say that ir is a natural automorphism.

(The term "almost canonical embedding" is too awkward for repeated

use.) We begin the construction of the isomorphisms {t^|1 e w}. In

view of the importance of (B,N) pairs, it is natural to attempt to

select B.,N. $ G . such that B. ^ B, and N. ^ N, . . First we show1 1 1  1 1+1 1 1+1
that this is possible.

By l.L.6. of [19], G is linear. Hence every Sylow p-subgroup of 

G is nilpotent of class c, say. By l.D.3. of [19], we may choose a 

Sylow p-subgroup P such that P^ = P n G^ is a Sylow p-subgroup of G^. 

Since G is linear, it satisfies the minimal condition on centralisera, 

and we may make use of the results of Bryant [5] . By the proof of lemma

2.1 of [5], there exists a finite subgroup X $ P such that

C(y ^(X)) = C(y^(P)) for i = 1,2,...,c. By lemma 3.2 of [5], for any 

p-subgroup H 2 X we have H 3 P. Without loss of generality, we may 

assume that X = P^.

Lemma 2

N(P) = U  N  (P. ) . 
i£lO °i ^

Proof

Clearly N(P) n G. 5 N (P.) and so N(P) ç U N  (P.). Conversely,
i£W "•

suppose that g £ N (p.). Then P S P and by the above remark P® f P .Gi 1 1
Thus g £ N (P) .

□
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From now on, we write B = N (P.) . We have shown that1 i
B = N(P) = U  B ^ . From the structure theory of the finite Chevalley 

iew
groups.

B. = P. X H. I l l

where is an abelian p'-group,

Ç
H. ^ H,9i+l‘i+1

for sane g.,_ e B. , and 1 + 1 1+1

= ?i+i ' i i -

So we m a y  assume, that the H, have been chosen so that H. < H. , for all1 1 1+1

i e w. Define H = U  H. . Then B = P x H and H is a Sylow p ’-subgroup
ieo) ^

of B . Since H is abelian, there is a finite subgroup Y ^ H such that

CB(Yi(Y)) = C^ (y ^ (H) ) for i e w. Again by lemma 2.1 of [5], if L o y

is any p ' -subgroup of B, then L ^ H. We may assume that Y = H^.

Define N = N(H) and N. = N n G.. It is immediate that N. c M  (H.).
1 1 1 “  G . 11

Lemma 3

N(H) = U N  (H. ) .G . 11£0) 1
Proof

Suppose that g £ (H_). Then ^ B^ n B^. We define

for i 3 i inductively.

a) Hj =

b) Suppose that H! has been defined so that ^ n B^ and

3 for all i ^ k $ j . There exists a maximal torus of

G . , such that _ & B.,_ n B?,_. H! is included in some maximal3+1 3+1 3+1 3+1 3
p'-subgroup K ^ n B^^^. Since By^^ n B^^^ is soluble, K and

^3+1are conjugate. Put = K = By^^ .

Define H* = U  H'.. H' is a Sylow p ' -subgroup of B containing .
j£W

Thus H = H' ^ B n B*̂ . Since H is the unique Sylow p '-subgroup of B 

which contains Hj , it must also be the unique Sylow p'-subgroup of B^
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containing . Hence = H and g e N(H)

□

Define the following subgroups of L(q^) by:

P, = < X Ir e 0^>1 1 r '

if = N(P^)

= <h^(t)|r £ 0, t e GF (q̂ ) >

N. = N(H. ) .1 1

Let W be the Weyl subgroup associated with each Chevalley group of type

L. Then N^/H^ - W. Suppose that n^ £ r £ H, is mapped to w^ under

the natural homomorphism and n^ £ is mapped to W q, where W q is the 

element of W of maximum length. Then for each r £ II,

i \  = " "r "O "o' •

For each i £ w, let x^: G^ ^  L(q^) be an isomorphism such that

P, - 5 i

H. — 5" H.1 1

Let {nQ,...,n^} Ç be a complete set of coset representatives for

N^/Hj . Then {np,...,n } is also a complete set of coset representatives

for N^/H^. induces a homomorphism — >■ W. There are only finitely

many bijections {ng,...,n^} W, so we may assume that for each

n G {n„,...,n }, a. (n) = a . (n) for all i,j £ w.u m 1 J

Let (n^) = w^, r e  II

= ” o-

Define = P n P̂  ̂ n~', r e II. By proposition 2.1.8 of Carter

[7], every root in 0 is the image of some root in H under some element

in W. Let s £ 0 and w(r) = s, r £ II, w £ W. We define

î 's = "i \

where (n) = w. Then for each i £ w, r £ 0, we have
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"̂ 1

i^r  ̂ i*r'

So if 7T̂  completes the following diagram

"i

Gi --------------  ̂ L(q.)

then for each r e 0,

^ i+l\-

The following lenma sums up our work so far. Intuitively, it says that 

eventually the "bad" embeddings die out.

Lemma 4

Without loss of generality, we may assume that there exist 

isomorphisms T^: L(q^) and natural embeddings it̂ : L(q^) L(q^^^)

such that each of the following diagrams commute:

— v T ~

Gi -------    ̂ L(q.)

□

We shall use automorphisms to "unwrap" the embeddings |i e w} 

First we remind the reader of the classification of the autcmorphisms 

of PSL(3,K) , for a finite field K. There are four basic types of 

au tom or phi sm.

a) Inner automorphisms

For each g e PSL(3,K), the map

X — » g " l x g  , X e PSL(3,K)

is an automorphism.
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b) Diagonal automorphisms

For each k^,k^ e K*, there is an automorphism d such that

Xa(c) — >-x^(ck^)

Xj^(c) —  Xj^(ckp

for all c £ K. The automorphism d can be induced by conjugating by a 

diagonal matrix h e PSL(3,ic) for some extension K o K. We shall give 

an example to clarify this last sentence.

Consider the diagonal automorphism d of PSL(3,7) such that

X (1) -V x^(2)

x^(l) x^(3) .

We shall show that d is not an inner automorphism. A typical element

of H is h = h (a)h (3) where a,3 e GF(7)*. Note that

hx^(l)h"l = x^(a^3~^)

hx^(l)h  ̂ =x^(3^a~M.

Suppose that 2 = and 3 = 3^a“  ̂. Then 5 = a^. But 1,6 are the

only cubes in GF(7)*. Thus d fails to be inner because 5 has no 

cubic root in GF(7). (If K is algebraically closed, then all diagonal 

automorphisms are inner.)

Since d[x^] = for all r e 0, diagonal automorphisms are useful 

whenever we need to "normalise" x^(l) and x ^ (1).

c) Field automorphisms

Let ^ be an autcmorphism of the field K. Then the map

x^(t) — > x^(^(t)) r € 0, t e K

can be extended to an automorphism of PSL(3,K).

d) Graph automorphigms

These correspond to symmetries of the root system. For example, 

there is a graph automorphism 6 induced by the map a — > h and b — a. 

Under this autcmorphism, 8[X^] = X^ and 6[X^] = X^. The twisted
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Chevalley group ^AgCK) is defined in terms of 6. (See Carter 111, 

Chapter 13.)

The following result is due to Steinberg [29].

Theorem

Let G be a finite Chevalley group and 0 e AutG. Then there exist 

inner, diagonal, graph and field automorphisms i,d,g, ^ such that 

0 = idg ̂ .

Actually we shall not use the full theorem, but rather one of 

Steinberg's lemmas.

Lemma 5 (Steinberg)

Let G be a finite Chevalley group. Suppose that the natural 

automorphism a satisfies

a(x^(l)) = x^ (1)

for each r e II. Then a is a field automorphism.

Proof

This is merely a restatement of 5.7 of [29].

□

We are now ready to prove the key result of this section.

Lemma 6 (The unwrapping lemma)

Suppose that:

i) TT : L(qĵ ) L(q£) is a natural embedding;

ii) (j): L(q^) +■ L(q^) is a natural autcmorphism.

Then the following diagram can be completed:

 1 '

where ^ is a natural automorphism and c is the canonical embedding, 

Proof

For clarity, we shall write
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l^r " (%r(t)|t e GF(q^) }

2^r " e GFfqg)}

for each r g $. Note that  ̂ is a natural embedding. Suppose that for

each r e H/

7T(f)  ̂(x^ (1) ) = x^ (ĉ ) .

Then there exists a homomorphism h of the additive group generated by 

the roots into GF (q^) * such that h(r) = c“  ̂ for each r g II. Application 

of the corresponding diagonal automorphism d now yields

dm^"l(x^(l)) = x^(l)

for each r e II. It is easily seen (e.g. 5.2 [29]) that for each r £ H, 

we also have

diT(j)“ M x _ ^ ( l )  ) = X_^(1)

and

d-rrd)  ̂(n ) = n T r r

where n = x (l)x (-l)x (1). r r -r r
Claim

dïï(j)~̂ [L(q̂ ) ] is the canonical subgroup of L(q^) 

Proof of claim

For each t £ GF(q^)* and r £ H,

h^(t) 1 = h^(t).

Let dn^"l(h^(t)) = h^(s). Then

h^ (s) 1 = h^ (s)

and

t

so s £ GF(q^)*. Now let r £ II and t £ GF(q^). There exists

^ftg £ GF(q^)* such that t = t% + t|. Thus

2
x^(t) = II h^ (t^)x^ (l)h^ (t̂ ) 1.

i=l

Hence dw#"l(x (t) ) is in the canonical subgroup. Since L(q^) is
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generated by {x^(t),n^|r e ÏÏ, t e GF(q^)}, the claim is proved.

Thus d7T(J)“  ̂ induces a natural automorphism a of L(q^) such that 

a (x^ (1) ) = x^(l) for each r £ n. By lenma 5, a is a field automorphism. 

Suppose that a is induced by the field map F: GF(q^) ^ GF(q^). This 

extends to a field map F : GF (q2) GF (qg) • Let ^  be the corresponding 

field autcmorphism of L (q2) . Then ip = ̂  ^d is the required natural 

autcmorphism.

□

Theorem 7

Let G = U G., where G, is isomorphic to a Chevalley group of Lie 
i£w ̂  ^

type L over a finite field. Then G is isomorphic to a Chevalley group 

of Lie type L over a locally finite field.

Proof

By lemmas 4 and 6, we may ccmplete the following diagram, where

c^: L(q^) L(q^^^) is the canonical embedding. This implies that

G - L(K), where K = U GF (q. ) .
i£w ^

l U

2

-*■ IXqg)

l u 1

— t :

3.2 Natural embeddings

L(q^)
^^=identity

^ L(q^)

□

In the next five sections, we shall consider the twisted Chevalley

groups. Throughout these sections, let G = U G., where each G. is
i£w ^ ^

isomorphic to a twisted Chevalley group of type T over a suitable

finite field of characteristic p > O. We shall suppose that:
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G. = T(q2) T = 2a , 2d  ̂ 2e• ^ 1  n n 6

G^ = T(q|) T = 3d^ .
2rn^+lG. = T(2 ^ ) T = 2p .1 4

In order to limit the length of this chapter, we have not included the

proofs for the groups of type 2A^, 2g^ or ^G^. These cases have already

been dealt with in [19] and [30]. The reader should have no diffulty

in providing proofs for these cases using the methods of this chapter.

First we shall give a brief account of the (B,N)-pair structure of

T(p ). We follow the notation of chapters 13 and 14 of [?]. Suppose

that T(p^) is the twisted form of the Chevalley group L(p^), defined

in terms of the graph symmetry p of the Dynkin diagram of L and the

nontrivial field automorphism 5" • Let cr = g , where g is the graph

automorphism of L(p^) induced by p. Let U = <X^|r e 0^> and

H = {h^(t)|r e 0, t e GF(p"^*}.

i) Let be the subgroup of U ç L(p^) fixed under a. Then is a

Sylow p-subgroup of T(p^).

ii) Let = H n T (p̂ ) .

iii) Then B^ = N (Û  ) = x H^.

iv) Let = N(H^).

(B^,n M  form a (B,N)-pair for T(p^) and, as with the Chevalley 

groups, the Weyl subgroup W is given by

= n V h  ̂ = Nl/gl n N^.

The analogue of the root subgroups for the twisted group T(p^) is 

the collection of subgroups of the form xl, where S = w(0^) for some 

w e W^ and sane p-orbit J of II. The Weyl subgroup allows us to 

"extract" the subgroup from U^, as follows:

i) Let S = 0j, where J is a p-orbit of II, and let Wg e be the 

element defined by proposition 13.1.2 of [7]. Then there exists

Ug e such that n^ is mapped to Wg under the natural hanomorphism

W^.
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ii) Let Wg e be the unique element of maximal length, and suppose 

that Ug e is mapped to Wg under the natural homomorphism.

iii) Then n n^ ng n^^ n^l.

iv) Finally let S' = w(0j) for some w £ and some p-orbit J of II. 

Suppose that n £ is mapped to w under the natural homomorphism.

Then X^, = n X ^ n ” .̂

An examination of the proof of lemma 4 shows that we only use the 

(B,N)-pair structure and the associated Bruhat decomposition of the 

Chevalley groups. (The Bruhat decomposition is used to prove that the 

intersection of two Borel subgroups always contains a maximal torus. 

Exactly the same proof works in the twisted case.) So we are now able 

to define the notion of a natural embedding for the twisted groups, and 

state the analogue of lenma 4.

Definition 8
n . iT-i -)-TT: T(p +) T(p ) is a natural embedding if for each S = w (0̂ ) ,

Lemma 9

Without loss of generality, we may assume that there exist
^i ^i+1isomorphisms GL ^ T(p ) and natural embeddings T(p ) ->- T(p )

such that each of the following diagrams commute:

^i+1G.  ̂ T(p ^ ■")
'i+1

□

"iG.  J—  T(p )

3.3 The case of T = ^A t r or Ê.zn-1 n '

Once again, we shall construct natural automorphisms so that the 

following diagram commutes:
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T(q^)

i+1
+ T(qZ+i)

T(qp

where is the canonical embedding. Our first requirement is that 

T(q^_^^) should contain a canonical copy of T(q^) .

Lemma 10

Suppose that T = or . Then for all sufficiently/n—1 n b
large q, T(q^) does not embed naturally into T(q^^).

Proof

Select fundamental roots r^ (1 $ i ^ 3) as follows:

2n-l
O- -0--- --0— ---o—

“n-1 an “n+1
II II II

^2 ^3

a2n-l

n-2

r2

a = r. n 1

“n-.l = ^3

^2 ^3
II II II
«2 “ 3 «4
-G------0— — o-

Let h = h (X)h (X̂ ) e T(q2), where X is a generator of GF(q^)*

Fix a nonidentity x (s) € T(q ). Then
^2

h~^x (s)h = X (sX^^^).
^2 ^2

Since X^^^ € GF(q), we obtain
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^2 ^2
Suppose there is a natural embedding tt: T(q^) T(q^™), and that

7r(h) = h and tt(x (s)) = x (u) e T(q^^). Then since 
^2 ^2

= 1

we must have h = h (t)h (t) for some generator t of GF(q^)*. Thus

h“ ^x (u)h = X (ut^)
^2 ^2

and so t  ̂ = 1. But this means that q^-1 divides 2 (q-1) , which is

false for q $ 2.

□

So we may assume that for each i c w, [gf (q^^^) : GF(q?)] is odd. 

Let  ̂Aut GF(q2) be defined by A — >■ X Then for each i £ O),

^  PGF(q^) - ^  This has two important consequences.

A) T(q2^^) contains a canonical copy of T(q?).

B) Let K = U GF (q^) and Kq = U GF(q^) . Then K has an automorphism ^

O'
l£W l£0)

of order 2 such that ^  ["GF(q^) = ^  ̂  with fixed subfield Kj

Thus if we take the direct limit of the system 
c, c.

T(q2) -i T ( q p  - ^ . . . ^ T ( q ? )  T (q?_̂ )̂ — ^ . . .

where c^ is the canonical embedding, we obtain the twisted Chevalley 

group T(K).

The following lemma is implicit in [29]. The proof is virtually 

the same as 5.7 of [29].

Lemma 11

Let G be a finite twisted Chevalley group of type ^A„ , ,2n—i n
or Suppose that the natural automorphism o satisfies

a(Xg(1)) = Xg(l)

for each S = where J is a p-orbit of II. Then a is a field 

automorphism.

Finally we state the unwrapping lemma for this case. The proof
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is almost identical to that of lemma 5. The identification theorem for

T = ^^2n-l' ^^n follows easily.
Lemma 12

Let T = or Suppose that:

i) [GF(q^): GF(q^)] is odd.

ii) tt: T(q2) T(q2) is a natural embedding.

iii) (j) : T(q2) -> T(q^) is a natural automorphism.

Then the following diagram can be completed:

T(q2)

T(q2) T(qZ)

where ip Is a natural automorphism and c is the canonical embedding,

3.4 The case of T =

It is enough to show that T c o n t a i n s  a canonical copy of 

T(q|). The unwrapping lemma and the identification theorem then follow 

from lemma 11.

Lemma 13

Suppose that T = Then for all sufficiently large q, T(q^)
andoes not embed naturally into T(q ).

Proof

We argue as in lenma 10 using

h = h (X)h (X"̂ )h )
^3 ^4

where X is a generator of GF (q )

□
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So we may assume that for each i € w, [GFfq^^^): GF(q^)] = 1,2 

(mod 3). Since 2.2 = 1 (mod 3), we may further assume that 

[GF(q^^^) : GF(q^)] = 1 (mod 3). If we define 5"  ̂Aut GF(q^) by

 ̂  ̂ then ^   ̂GF(q^) = J".* As a consequence:i
A) T(q3^^) contains a canonical copy of T(q^).

B) Let K = U GF(q?) and K q = U GF(q.).
iem ^ iew ^ .

Then K has an automorphism ^  of order 3 such that ^  I GF(q^) = ^  with

fixed subfield Kq .

3.5 The case of T = ^A_ , where n % 2.____________________2n_______________

We have to do a little more work in this section. The difficulty 

arises from the existence of a two parameter root subgroup.

Lemma 14

Suppose that T = ^A^^. Then for all sufficiently large q, T(q^)
4mdoes not embed into T(q ).

Pr oof
Ar^ue OcS i'TK \ewv<vxa, VO > a. ĉ icWiovT.

□

As in section 3, this ensures that T(qf ) contains a canonical

copy of T(qf) , and that K = U GF(q?) has the necessary automorphism 
^ ieo) ^

of order 2.

A^^ has Dynkin diagram:

Q  . . •  -Q---------- Q-----------0 ---------- O-------- - » . ---------- O
r r r r r r1 n-1 n n+i n+2 2n

Thus each p-orbit of II.has type A^ X A^ or A^. Let T = {r^_^,r^^2}

and S = {r ,r ,,r +r We shall writen n+1 n n+1

Xrp(t) = X (t)x (t)
n-1 n+2

X (t,u) = X (t)x (t)x (u)
^ n ^n+1 n n+1
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vhere u+u = -N t t. (We follow the convention of [ "7 ] and write
^ n ' V l

t for the image of t under the field automorphism.) Note that 

Z(Xg) = {Xg(0,u)|u+u = O} and x^ (t,u^ “^x^(t^u^) e Z(X^). Hence if 

a is a natural automorphism of T(q^), the map a defined by

a(Xg(t,u)) = Xg(t^fu')

is single-valued.

The following lemma is implicit in section 7 of [29].

Lemma 15

Let G be a finite twisted Chevalley group of type Suppose

that a is a natural automorphism such that:

i) CT(x^(l)) = x^ (1) for each R = 0^ where J is a p-orbit of II of type

A] * &!'
ii) a(x (l,u)) = X (l,v) for some u satisfying u+u = -N

^ ^ ^n'^n+1
Then a is a field automorphism.

We shall now prove the unwrapping lemma. A difficulty arises when,

after normalisation by a diagonal automorphism, we want to show that

T(q^) is mapped onto the canonical subgroup of T(q|) . The trick which

we use is borrowed from section 7 of [29].

Lemma 16

Let T = where n ^ 2. Suppose that:

i) [GF(q^): GF(q^)] is odd.

ii) ir: T(q^) T(q|) is a natural embedding.

iii) (f) : T(q^) ■> T(q^) is a natural automorphism.

Then the following diagram can be completed;

T(qZ) — --   T(q2)
JL ^ ^

IT

T(q2)---------  ̂T(q2)
*

where ip is a natural automorphism and c is the canonical embedding,
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Proof

As in the proof of lemma 6, we shall write x^(t), x^(t) for the

elements of T(qj), T(q|) respectively. Fix an element u such that

u+u = -N . Suppose that
^n'^n+1

m^"l(Xg(l,u)) = Xg(Cg,v)

7T<P” ^(Xj^(l)) = X^ (Ĉ )

for each R = where J is a p—orbit of II of type A^ x A^. Then there 

is a diagonal automorphism d of T(q|) such that

dTT(})"̂ (Xg (l,u) ) = Xg(l,&)

dn^"l(x^(l)) = x^(l).

For each R, the argument of lemma 6 shows that dircp” 

is contained in the canonical subgroup of Tfq^).

Claim

dTT(})~^[<^X^,^X^g>] is contained in the canonical subgroup of T(q^). 

Proof of claim

We assume that structure constants have been chosen so that

N = 1 .  Thus
^n'^n+1

Xg (t^,u j)Xs(t2/U2) = Xg (t^+t^/U^+u^-tjt^)-

Choose k e GF (q^)-GF (q and put j = k-k. Let m = ukk. Then an easy 

calculation shows that

[Xg(l,u), h^(k)"lxg(l,u)h^(k) : = Xg(0,j). C * )

Applying dircf)“ ,̂ we obtain

dn*-l(Xg(0,i)) = [Xg(l,£),h^(A)-l Xg(i,&)h^(X)]

for some X e GF (q^)-GF(q ̂) . Thus

diT(J)"̂ (Xg(0, j) ) = Xg(0,jj)

where j ̂ = X-X.
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Let Hg = {hg(t) 11 e GF(q^)}, and be the element defined in 

section 2. Then Xg (O, j ) x_g (0,-j"^) Xg (O, j) c ngHg. Applying dircp"̂ , we 

obtain

Xg(O,j^)x_g(t,v)Xg(O,jj) € ngHg.

Using the unitary identification, it follows that 

x_g (t,v) = x_g (0,-j^l).

Define ng(j) = Xg(O,j)x_g (O,-j“^)Xg(0, j ) and

= Xg(O,j x_g( O , - j ^ Xg(O,jj). Choose any element of the form 

Xg(l,v). Using the unitary identification again, we obtain

Kg(l,v)ng(j)Xg(k,m) 6

iff k = jv~^ and m = jjv~^. Suppose that these conditions are met, and 

that

dn^-l(Xg(l,v)) = Xg(l,v^) 

diT(p“M x g  (k,m) ) =Xg(kj,m^).

Then k^ = So to show that Xg (l,v) is mapped into the canonical

subgroup of Tfq^), it is enough to show that k^ e GF(q^). But 

Xg(k,m) = h^ (k)“^Xg(l,mk“^k“^)h^(k) and so

Xg(ki,mi) = h^ (k̂ ) "^Xg (l,m^k“ ^k~^)h^ (k̂ ) . Thus k^ e GFCq^).

We have shown:

i) every element of the form Xg(l,v) is mapped into the canonical 

subgroup;

ii) rig(j) and Xg(0,j) are mapped into the canonical subgroup.

We can now easily prove the claim. Suppose that k ^ O. Then

Xg(k,m) =h^(k) ^Xg(l,mk ^k“^)h^(k)

is mapped into the canonical subgroup. On the other hand there are 

precisely q^-1 elements of the form Xg(0,m) , where m ^ O. The possible 

values of m are {vj|v € GF(q^)*} and each such v = kk for some



50,

k e GF(q^)*. Hence

Xg(0,vj) = h^(k)“ ^Xg(0,j)h^(k)

is mapped into the canonical subgroup. Since = n (j) n1 ^ S S 1 5  S
the claim is proved.

By proposition 13.6.5 of [7], dn^"l maps T(q^) into the canonical 

subgroup of T(q2). By lemma 15, dircj)  ̂^TCq^) is a field automorphi 

Extend this to a field automorphism ^  of T(q|) . Then ip = 5" is 

the required natural autcmorphism.

□

sm.

3.6 The case of T = ^F4

Again the existence of a two parameter root subgroup forces us to
2m J +1do a little work. The twisted Chevalley group T (2 ) is defined in

terms of a field autcmorphism

2m .+1 2m .+10 . : GF (2 ^ ) -> GF (2 ^ )

A ^ X
2m..,+1 2m.+1

Note that Cg f (2 ): GF(2 )]is odd. Thus for every
2m. +1 

A e GF (2 ^ ) ,

“ i+1 “i
A = A

It follows that:
2mi^_i+l 2m. +1

A) T (2 ) contains a canonical copy of T (2 ^ ) .

2ra.+lB) Let K = U GF(2 ) . Then K has an autcmorphiam 6 such that
2m.+1

20^ = 1 and 0 |"g f {2 ^ ) = 0^.

Fĵ  has Dynkin diagram:

O------0 ~ ~D------0
r a b r

Let S = {r,r} be of type A^ xA^, where r is a short root and r is a 
long root. Let T = {a,b,a+b,2a+b} be of type B^, where a is a short
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root and b is a long root. We shall write t instead of 6 (t). Define 
2m .+1

= GF(2 ) . We shall prove the unwrapping lemma for T = via

a series of claims.

Lemma 17

Let T = Suppose that:

i) ïï: T(Kj) TfKg) is a natural embedding.

ii) (P : T(K^) ->■ T(K^) is a natural automorphism.

Then the following diagram can be completed:

T(K ) -----------T(K.) ̂ Ip 2

T(Kj) ---------- T(K^)

where ip is a natural automorphism and c is the canonical embedding. 

Proof

From the above remarks, we may write 0 for 0^ and 62- For each 

u,t e define

Xg (t) = x^ (t^)x-(t)

hg (t) = h^ (t®)h-(t)

a (t) = %a/t^)x^(t)x^^^(t^^^)

20
6(u) = Xa+b(u)x2a+b(" > 

x^(t,u) = a (t) 3 (u)

h^(t) = h^(t^)h^(t).

We shall write x^(t) etc. for the corresponding elements of T(K,). 

Suppose that

TT(p“l (Xg (1) ) = Xg (c)

L-1iT<t>  ̂(x^ (1,0)) = x^(£,m)

There exists a diagonal automorphism d of T(K^) such that
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d7T(p 1 (x (1) ) = x_(l)

d7T(p“ l (x^(l,0) ) = X^(l,u)

for some u c Kg.

Claim 1

dTT(j) l[T(K^)]is the canonical subgroup of T (K^) .

Proof of claim 1

Once again, it is clear that is mapped to the canonical

subgroup of T(Kg). The difficulty is to show that this is also true

Choose an element k e such that k^ k. For any £,m € K^, 

Cx^(l,£), x^(k,m)] = x^(0,k-k®).

Thus

[x^(l,0), hg(k ^)x^ (l,0)hg(k) ] = x^(0,k-k ).

Hence diT(j)“  ̂(x^(0,k-k^) = x^(0, X-X^) for some X e K^. Put j = k-k^ 

and = X-X^. We have shown that d7rc()~̂  (3 ( j) ) = 3 (j ̂ ) . Let j Z ^ O 

be any element of K*. Then

3(j£) = h^(£) 3(i)b^(&)

Thus each element of the form 3(u), u e K^, is mapped into the canonical 

subgroup. For later use, define the function n by the equation

dTT(j)~^ ( 3 (u) ) =  3(u^) .

We shall now make use of the matrix realisation of given

on page 245 of [7]. Let n^ be the element of the Weyl subgroup such 

that

0 0 1 0  
0 0 0 1 
1 0  0 0 
0 1 0  0

n_

The following equation holds in
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Under dn#"l, we have

3(1) — > 3^(j) for some j £

n^h,p(t) for some t e Kg.

Thus we obtain

x^(l,u)n^h^(t)3(i)h^(t)-ln^ = n ^ h ^ ( t ) ( l , u ) .

Using the matrix realisation, a calculation shows that u = O and 

t = j = 1. So under dïïcj)  ̂, we have

a (1) 0(1)

3(1) 3(1)

^T ^T *

Let t e K* be any nonzero element. Then

a(t) = hg(t"l)a(l)hg(t"l)"l.

Thus every element of the form a (t) , t £ , is mapped into the canonical

.subgroup. For later use, define the function y by the equation

diTcp l(a(t)) = a (t̂ ) .

We have shown that ^ a n d  _X^_ = n„ X^n are mapped into theI T  1 - T  T I T T
canonical subgroup, and so claim 1 is proved.

Define the function C by the equation

dnÿ'l (Xg (u) ) = Xg(u^).

Then dn^"l induces a natural autcmorphism a of T (Kĵ ) such that:

i) cr (Xg (u) ) = Xg(u^), with 1^ = 1.

ii) a (a (t)) = a (t^), with 1^ = 1.

iii) a(3(u)) = 3 (u^) , with 1^ = 1.
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iv) o(ng) = rig and o(n^) = n^.

Claim 2

a is a field automorphism of T(K^).

Proof of claim 2

Using the isomorphism SL(2,K, ) ^ < X^,.X and lemma 5, it follows1 1 S 1 -S
that Ç: Kj Kj is an automorphism. We also have that 

cj(hg(t)) = hg(t^). Let t e K* be any nonzero element. Then

a(a(t)) = hg(t^)"la(l)hg(t^) = a(t^)

Thus y = The equation

Xg (t) = h^(t)“lxg(l)h^(t)

implies that a(h^(t)) = h^(t^). Hence

a(B(t)) = h^ (t^) 3 (1) h^ (t̂ )

and so n = From (i) , (ii), (iii) and (iv), o agrees with the field

autcmorphism induced by C on .x]-, _xi,, n„ and n . Since these elementsI S I T S  T
generate T(K^), a is a field automorphism and claim 2 is proved.

It is now easy to complete the proof of lemma 17.

□
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Chapter Four; Elementary Properties of Chevalley Groups

To complete the proof of Cherlin's conjecture, we must show that 

if G = L (K) is the group of Lie type L over the locally finite field K, 

then K may be interpreted in G. In this chapter, we will deal with 

the (nontwisted) Chevalley groups. As well as describing the inter

pretations, we shall show that certain classes of groups are finitely 

axicmatizable. These results, which will be useful in the final 

chapter, continue the work begun by Malcev in [22].

Definition 1

Let M, N be structures for the languages L^, Lg respectively. M is 

syntactically equivalent to N iff there exist two effective algorithms 

r 2 : L^ Lg and Fg : Lg L^ such that:

a) for each sentence cp e L^, M |= (j) iff N |= (cp) .

b) for each sentence ip e Lg, N f= ip iff M |= (ip) .

In [22], Malcev proved 

Theorem 2

For n > 2, SL(n,K), PSL(n,K) and K are syntactically equivalent for 

any field K of characteristic 0.

Malcev was unable to prove this result for n = 2. We shall first 

show that the theorem is true for n = 2. Then we shall prove the 

corresponding result for the other Chevalley groups. (The required 

interpretations and finite axicmatizations will form the major part of 

the proof.) Throughout, K is a field of arbitrary characteristic.

The following lemmas are almost trivial.

Lemma 3 (Malcev)

There is an algorithm such that for each group sentence ^ ,

SL(2,K) \= (p iff K 1= F^ ((p) .

□
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Lemma 4 (Malcev)

There is an algorithm T2 such that for each group sentence <

PSL(2,K) h (p iff SL(2,K) t=

□

The problem is to find an algorithm fg which completes the 

following diagram.

SL(2,K) P5L(2,K)

Lemma 5

Let |k I > 3. Then K is interpretable in PSL(2,K) .

Proof

Remember that PSL(2,K) has the following root system, 
-r r

Aj o --------------- 1--------------- G

We shall make use of the parameters

a = x^(l)

b = h^(A), where A/ ^ 1

c = n , r

It is easily checked that

C (a) = {x^(k)|k e k )

C (b) = {h^ (k)|k e K*}.

Step One

We can interpret <K, +, */ 1/ 0> in PSL(2,K), where t*u = t^u, 

Proof of step one

We define the interpretation as follows:

i) The underlying set is C(a).
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ii) Field addition is given by the group operation on C (a) .

iii) a represents 1 e K and the identity element 1 e PSL(2,K) represents 

O e K.

iv) Finally we require a formula ^(x,y,z,a,b,c) such that for each 

x^(t), x^(u), g e P5L(2,K)

g = x^(t^u) iff

PSL(2,K) 1= (j) (x^ (t) ,x^ (u) ,g,a,b,c) .

So suppose that x^(t), x^(u) e C(a) are nonidentity elements. An easy 

calculation shows that x_^(-t ^) is the unique element g € c C(a)c  ̂

such that

x^ (t) g x^(t) e C (b)c.

Thus h^(t) = x^(t)gx^(t)c"l and x^ (t^u) = h^ (t)x^ (u)h^ (t) are 

uniformly definable from x^(t), x^(u). If x^(t) or x^(u) is the 

identity element, we put x^(t) ®  x^(u) = 1. Thus such a ^(x,y,z,a,b,c)

exists.

It is immediate that

<C (a) , ©, a, 1> = <K, +, *, 1, O > .

Step Two

<K, +, X, 1, 0> is interpretable in <K, +, *, 1, 0>.

Proof of step two 

Case 1 char K ̂  2 

X = tu iff
(3y)[x+x = y A y = t*u + u - (t-l)*u]

Case 2 char K = 2

X = tu iff X * 1 = t* (u * 1) .

□

Unfortunately we are not allowed to use parameters in r^fO)•

However, a simple trick allows us to eliminate them.



58

Theorem 6

Suppose that Ik ] > 5. There is an algorithm F  ̂ such that for each 

field sentence <f>,

k \= (P iff PSL(2,K) f= .

Proof

Rather than writing explicitly, we shall show that such an

algorithm exists. Let a,b,c be the parameters used in the previous 

lemma. This lemma provides an algorithm for constructing a formula 

^(x,y,z) such that

K (= (p iff PSL(2,K) h ip(a,b,c).

Fg(^) will be a formula of the form

(3xyz)[P (x,y,z) a 4'(x,y,z)].

First we state some of the first order properties of <a,b,c>.

i) b^ ^ 1

ii) (Vx e C (a) ) (3 ly e c C (a) c“  ̂) (xyx e C (b) c) .

iii) The interpretation <C (a), © , ®, a, 1> is a field.

iv) We can use the interpretation of K on C (a) to assign field elements

to elements ofcC(a)c  ̂ in a definable manner. Suppose that

x^(t) € C(a), i.e. x^(t) represents t e K. Then x_^(-t) = c x^ (t) c  ̂

Let

hg(t) = ng(t)c ^

for t e K* and s c {r,-r). Then we can use the field interpetation to 

say that the following identities hold:

Xg(tj)Xg(t2) = Xg(ti+t2)

ng (t)Xg (u)ng (t)“  ̂ = Xg (-t“^u) , t ^ O
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hs'tiihgltz) = hgttit,), tjt^ 5̂ O

for s e {r,-r}. (These formulas are rather complicated. As an example, 

we will explain how to say

n _^(t)x _^(u)n_^(t) = x_^(-t“^u)

with a first order formula. For each x,y e c C(a)c~^ with x ^ 1, there 

is a unique z e C(a) such that z 0 c~^ x c  = a. I f g  = z 0 z 0 c ~ ^ y c ,  

then xzxyxzx = (cgc"^)” .̂)

v) Every element of PSL(2,K) is the product of at most four elements 

from C(a) and c C(a)c” .̂

Let P(x,y,z) state the first order properties (i) to (v). Put

T 2((f)) = (3xyz) [P (x,y, z) a ^(x,y,z)].

It only remains to show that if PSL(2,K) \= rg(^), then K |= . So

suppose that a, 3,Y e PSL(2,K) and PSL(2,K) [= P(a,3/Y) a ^(a,3»Y)- Define

By (iii),

X = C(a), x_^ = YC(a)Y~^.

<X , G>, ®, a, 1> = <F, +, X, 1, o>

for some field F . Clearly F f= (f>. We shall show that F - K. For t e F, 

define

x^ (t) = 7r“  ̂(t) 

x_^-t) = Y x^(t)Y~^*

Then the relations in (iv) hold for Xg(t), s e {r,-r}. By (v) and 

Carter [7] page 198,

PSL(2,K) = <X^,X_^> - PSL(2,F).

Since |k [ > 5, K = F.

□

If Ik J ^ 5, it is trivially true that PSL(2,K) and K are
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syntactically equivalent. So the theorem for n = 2 is proved.

Definition 7

Let C be a class of groups. C is finitely axiomatizable iff there 

is a sentence <f> in the language of groups such that for any group G,

G [= (j) iff G e C.

Corollary 8

The class {p SL(2,K)|k  is a field} is finitely axiomatizable.

Proof

There is a sentence such that

G 1= iff G = PSL(2,2) or PSL(2,3).

Let (p be the sentence

ip V [(3xyz)P(x,y,z) a (Vx^d)(3y)([x,y]^l)] 

where P(x,y,z) is the formula used in the proof of theorem 6.

□

Now we consider the Chevalley groups of Lie type L A^. We 

shall make use of the following theorem of Steinberg.

Theorem (Carter [7] page 190)

Let L be a simple Lie algebra with L A^ and let K be a field.

For each root r of L and each element t of K introduce a symbol 

x^ (t) . Let G be the abstract group generated by the elements x^ (t) 

subject to the relations

(a) = x^Ct^+t^)

(b) [ig(u),ï^(t)3 = ^

(c) h^(t^)h^(t2) = ^^(t^bg), tjt^ O where h^(t) = n^(t)n^(-l) and 

n^(t) = x^(t)x ^ (-t” )̂ x^ (t) . Let Z be the centre of G. Then G/Z is 

isomorphic to the Chevalley group G = L(K).

As in the proof of theorem 6, we shall show that for each Lie type 

L, there is a sentence which describes the generators and relations
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of L(K) . For to be independent of K, it is important that a bounded 

number of parameters are needed. When L = explicit calculations

show that <a,b,c> suffice for any field. The following lemma allows us 

to avoid tedious calculations in the remaining cases.

Lemma 9

There is a constant e w such that for any linear group G of 

degree n and any subset A Ç g , there is a subset Ag E A of cardinality 

$ with C(Aq ) = C(A).

Proof

Suppose not. Then for any m e m ,  there exists a linear group G of 

degree n and a subset A Ç G such that if A^ Ç & and C(A^) = C (A) , then 

I Ag I > m. For such a group, choose a set B E A of minimal cardinality 

such that C (B) = C (A) . Then if B = {b.|l $ i $ N}, N > m, we have

C({b^|i ^ j})p C({b^|i ^ j+1})

for all 1 $ i ^ N-1.

Extend the language of groups by adding new constants {c |m e m},m
and consider the theory T consisting of the following sentences:

C({c^|i 2 j}):^ C({c^|i ^ j+1}), j e m 

0

where $ is the set of sentences which axiomatizes the class of linear 

groups of degree n. By compactness, there exists a model G of T. But 

this means that G is a linear group which fails to satisfy the minimal 

condition on centralisers.

□

Fix a Lie type L. First we show that for any field K, the root 

subgroups of L(K) are definable. We remind the reader that we are 

following the notation of Carter [7].

Lemma 10

If char K > 3, then is definable for each root r e  $.
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Proof

Let H *= <h^(t) |r e t e K>. Since L(K) satisfies the minimal

condition on centralisers, H = C (H) is definable. If 0 has two distinct 

root lengths, select a,b e n which lie in one of the following 

configurations :

2 1 3  1
t;" O   O  ■
b a b a

Otherwise, select a,b e H such that:

1 1
o -------------------o
b a

In each case, <X^,X_^> - SL(2,K) and

h (t)x (l)h(t)"l = X (t"l). b a b a

Thus X^ = {hx^(l)h“^|h e H} is definable. If r is a short root, there 

exists g e L(K) such that X^ = X^. If all the roots have the same 

length, the proof is finished. If not, it is enough to show that X^ is 

definable for some long root r.

2 1
Case 1 o  O

' b a

The integral combinations of a,b which are in $ form a root system 

of type Thus Chevalley's commutator formula gives

[*a+b(^)'*a(t)] " *2a+b("^lla,a+bt)

where C = N , . The a-chain of roots through a+b is11a,a+b a,a+b

-a+(a+b), a+b, a+(a+b).

Hence e {±2}, and

*a("t ^lla,a+b’  ̂ " *2a+b*'^’‘



63.

Thus the long root subgroup

*2a+b ^

is definable.

Ç2£S-i n  ■ n
b a

The integral combinations of a,b which are in $ form a root system 

of type G^. By examining the (a+b)-chain through 2a+b, we see that 

Cfia+b 2a+b  ̂ Chevalley's commutator formula gives

^*2a+b(^)'*a+b("t ^iia+b,2a+b^ ̂  " ^ 3 a + 2 b *

Since a+b is a short root, the long root subgroup

*3a+2b " ^^*2a+b/^)'*]|*  ̂*a+b^

is definable.
□

If K is quadratically closed, then the above proof can be simplified. 

In this case, for each r 6 0,

= {h x^(l)h~Mh e h ).

Note that this also works for char K = 2,3. The application in the 

final chapter only requires our result for Chevalley groups over 

quadratically closed fields. However, for the sake of completeness, 

we will prove the strongest possible result. This forces us to do some 

work when K is a field of characteristic 2 or 3 which is not quadratically

closed. The technique which we use is borrowed from Bryant [5].

Definition 11

Let P be a subgroup of G. Define subgroups C^ (P) , n  ̂O, as follows.

i) cj)(P) = 1.

ii) For n > 1, let C^ (P) be the set of all elements x of G which normalise

Cj? (P)  ___,C^ ^(P) and satisfy [x,y] e ^ (P) for all y e P.
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It is easy to prove, by induction on n, that (P) a subgroup

of G and that P normalises c" (P) . Also, C^(P) n P = Z (P) , the nth-G G n
centre of P. We now generalise this notion by considering C^(X) for 

arbitrary subsets X c G.

Lemma 12

For all n e Ü), C^(X) = (<X>) .

Proof

When n = O, the result holds trivially. Suppose that for each

i 3 n, we have C^fX) = C^(<X>). It is enough to show that

[x,X] Ç C^(X) iff [x,<X>] Ç C^(X). Suppose that [x,X] c (X) . Let

g,h e X. Then [x,gh] = [x,h][x,g]^ and [x,h],[x,g] e C^(X) = C^(<X>).

Since <X> normalises C^(<X>), [x,g]^ e C^(<X>). HenceG G
[x,gh] £ (X) , and by induction we obtain [x,<X>] ç (X) . The othervj G
direction is trivial.

Lemm a 13

□

.nLet G = L (K) , where char K = p > O. For all n £ to, (U) g N(U).

Proof

For n = O, the result is trivial. Suppose that the result holds

for n 2 O. If X £ C^^^(U), then [x,U] c C^(U) c N(U). Thus for eachG G —
U £ U, U* £ N(U). But u is the set of p-elements of N(U). Hence 

u* £ U and X £ N(U).

□

Lemma 14

Let char K = p > O. Then X^ is definable for each r £ 0.

Proof

Let G = L(K) and suppose that U is nilpotent of class n. For each

i ^ n, there is a finite subset T_ g Yj^(U) such that C(y^(U)) = C(T\) .

There is a finite subset X̂ ' ç U such that T̂ ' ç Y^(Y^)/ where = <X >  .

Let X = U X. and Y = <X> . Then for each i, we have 
l^i^n ^
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C(Y^(U)) $ C( y ^(Y)) ^ C(T^) = C(Y^(U)).

Thus C(Y^(U)) = C( y ^(Y)) . By lemma 2.5 of Bryant [5], C^(U) = C^(Y) .

By lemma 12, (U) = (X). Hence (U) is definable. (Also note that

regardless of the field, we can choose the set of parameters X so that

n
|x | £ I I N  

i=l

where N is the constant given by lemma 9.) We have

(U) n U = Z^^U) = U and (U) ç N (U) . Since U has bounded exponent 

and is the set of p-elements of N(U), it follows that U is definable. 

Let r e  II. Then

X = n n U n“  ̂n~^ n U r r 0 O r

is definable. The result now follows easily.
□

The argument in the next lemma is the same for all fields K such 

that |k | > 3.

Lemma 15

Let [k | > 3. Then K may be interpreted in L(K).

Proof

Let a,b e II be the roots defined in lemma 10. Then X ,X_,X , area b —b
definable. Since every element of SL(2,K) is the product of at most

four transvections, <X ,X > is definable. Let A e K with A^ ^ 1.D “Id
Then

is definable. For each t e K*,

We interpret K inside L (K) as follows:

i) The underlying set is X^.

ii) Addition 0  in X^ is the group operation.

iii) Suppose that g^ = x^(t^) e X^ (i = 1,2) are nonidentity elements.
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There exist unique h. = h, (t"^) e such that g, = h,x (l)hjl. Wei D l  b i i a i
define ĝ  ̂ 0 g^ = hgh} x^(l)hj^h“ .̂ If either g^ = 1 or g^ = if we 

define g ̂ @ 9 2  ~ f - Clearly 0 is defined by a first order formula.

It is immediate that

<X^, ffi, 0, x^(l), 1> = <k, +, X, 1, 0>.
□

Lemma 16

The class {L(K)[char K > 3} is finitely axiomatizable.

Proof

We shall use the interpretation of K on to assign field elements

to X^, r e  <î>, in a definable manner. First suppose that r is a short

root. Then there exist fundamental roots r,,...,r e II such thati m

w —  w (a) = r.
^m

Let ^I (r,r' € 0) be the constants defined in 6.4.2 of [7]. Thus

n , = ±1. Then r ,r '

X (nt) = n ... n X (t)n  ̂ ... n  ̂r r r, a r^ rm 1 1 m

where

‘ \'Vi ■■■
50 = a

51 =''r.‘Si-i>-

Thus if X e X , we can discover which field element is associated with 

it, as follows. There is a unique h C  such that

X = n ... n h X (l)h“^n~^ ... n  ̂ .
^m ^

If h = h^(t"^), then x = x^(nt).

Next we use the interpretation of K on X^ to assign field elements

to X in a definable manner. For each x e X^, there exists a unique
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y  ̂ such that xyxn“  ̂ e Thus x = x^(t) iff there exists y e X

such that h = xyxn^^ e and h“lx^(l)h = x^(t) .

Finally we can again use the action of the Weyl subgroup to assign 

field elements to the other long root subgroups.

Now note that every element g e L(K) has ain expression in the form

g =

for some u^,u^ e U, h e H and w e W. Since H = II H , this is a first
ren ^

order property which says that {X^|r £ generates L(K).

We collect together some of the first order properties of L(K).

i) The definable subgroups r £ 0, generate L (K) .

ii) Z (LW1= 1.

iii) <X^, 0, 0, x^(l), 1> is a field of characteristic greater than 3.

iv) Steinberg's relations (a), (b), (c) are satisfied, where "x^(t)"

is defined by means of one of the above assignments. (Once again, we

give an example. Suppose that L = . The associated root system is:

b a+b

-a

— (a+b) -b
Putting n̂  = n^ and , we have

n2Xa(t)n-l = (t)

= Xa+b'-=t)'

This final equation has a first order expression as: for each x e X

and y £ X^, there exist unique hj,h2 c such that

X = h} x^(l)h“^
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y = n2 h2 (I)h2^n2^

and we have

-ln-1[x,y] = n^ (hjh^x^ (l)h2 hj "^n“ l)

Notice that our treatment of the groups L(K) in lemmas 10, 15 and 

16 was uniform and used a bounded number of parameters. Thus they all 

satisfy the first order sentence i|)̂ which says: "There exist

parameters such that (i) to (iv) hold."

Conversely, suppose that G ^ Then arguing as in the proof of

theorem 6, we can use Steinberg's theorem to deduce that G = L(K), for 

some field K of characteristic greater than 3.
□

Lemma 17

The class {l (K) |char K = 2,3} is finitely axiomatizable.

Proof

As above, there is a sentence such that GF |= iff G = L(K) 

for some field K of characteristic 2 or 3 with [k| > 3 .  There is 

also a sentence (j)̂ such that G j= (f>2 iff G = L(2) or L(3).
□

Summing up, we have proved 

Theorem 18

For each nontwisted Lie type L, the class {l (K)| K is a field} is 

finitely axiomatizable.
□

Arguing as in the proof of theorem 6, we obtain 

Theorem 19

For each field K and nontwisted Lie type L, L(K) and K are 

syntactically equivalent.
□

We also see that if L(K) = L(F), then K E F .  This provides 

another proof of a theorem of Zilber.
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Theorem 20 (Zilber)

Let G = L(K), the Chevalley group of Lie type L over the 

algebraically closed field K. Then ThG is w^-categorical.

□
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Chapter Five: The Classification of the Stable

Simple Locally Finite Groups

In chapters 2 and 3, we proved that if G is a stable simple locally 

finite group then G - L(K), the group of Lie type L over some locally 

finite field K. In chapter 4, we showed that if G is a Chevalley group, 

then K = for some prime p > O. It only remains to show that G 

cannot be a twisted Chevalley group. The twisted Chevalley group L (K) 

is defined in terms of a nontrivial autcmorphism §• : K ^ K. Let Kq be 

the fixed subfield of K under F : In some cases, it is easier to

interpret K q in L(K). This is sufficient, since we then have 

]F̂  = K q ^ K Ç ]F^ for some prime p > O. ^

Lemma 1

Let G = L(K) be a twisted Chevalley group over a locally finite 

field K. Let S = where J is a p-orbit of II. Then x]; is definable. 

Proof

The proofs in lemmas 13 and 14 of chapter 4 go through without 

change.
□

From now on, let G be a fixed stable simple locally finite group.

Lemma 2

G is not of type (i $ 3), (& % 4), , ^F^ or

Proof

Suppose that the lemma is false. We select p-orbits J of II as 

follows.

i  i  3

' ' " • • % • « • • •  •• - — Q _

II II

^2
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«1 «2 2-2
a2-1

o-
a.
II ■
r .

-o
a.

O -o
CL,.

0-
a .

<L
a.

D-
a .

-0
a,

In each of the above cases, let J = {rj,r2)

3 a

in this final case, let J = {a^,ag,a^}. Let S = 0^. By lemma 1, 

and X_g are definable. Since <Xg,X^> - SL(2,K) , <Xg,X^g> is definable. 

Thus we can interpret PSL(2,K) in G, and so by lanma 4.5 we can 

interpret K in G. By theorems 1.2.9 and 2.6, K = ]F^ for some prime

p > O.
□
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Lemma 3

G is not of type

Proof

Suppose that G = ^^2 * Again we shall show that K may be

interpreted in (K). B^ has Dynkin diagram:

1 2
CLZ Z~~0

and = Xg, where S = {a,b,a+b,2a+b}. We remind the reader that 
2 (K) is defined in terms of an automorphism 0 : K ^ K such that 

26^ = 1. If we write

B(u) =

then a typical element of has the form

Xg(t,u) = a(t)3(u) (u,t € K)

and

Z (Û ) = {3 (u) |u e k} .

We note that for u^,U2 e K,

(û ) 3 (û ) =3 (û +û ) .

The subgroup of diagonal matrices is

= {h^(t )hj^(t)|t e K*}

If we write h(t) = h^(t )h^(t), then we have 

h(t)3(u)h(t)"l = 3 (ut).

We can thus interpret K inside ^B2 (K), as follows,

i) The underlying set is Z(U^).
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ii) The field addition © corresponds to the group operation in Z(U^).

iii) Suppose that 3(ti),3(t2) e Z (Û ) are nonidentity elements. Then 

there exist g ^ e  N(U^) = U ^  k such that

g.3(l)g-^ = 3(t^) (i = 1,2).

(Clearly g^ = uh(t^) for some u e U^.) We define

3(t^)®3(tj) = g^g j3 (1) g~^g“^. if 3(t^) = 1 or 3(1^) = 1, then we define 

3(t^)®3(t2) = 1.

It is immediate that

<Z(uM, ©, 0, 3(1), 1> = <K, +, o>. ^

□

Lemma 4

G is not of type

Proof

Suppose that G = ^A2 (K) . The group ^Ag (K) is defined in terms of 

an automorphism ^ : K K of order 2. We shall write ^ (t) = t, and 

let Kg be the subfield fixed by ^ . We shall show that Kg may be 

interpreted in ^A2 (K) .

A 2 has Dynkin diagram:

O
a

and U ̂ = Xg, where S = {a,b,a+b}. A typical element of U ̂ has the form

where u+u = -N^ ^ t t. It is easily checked that

Z(U^) = {x^^^(u) |u+u = O).

FJx seme element x^^^(ug) e Z(U^). If x^^^ (u) e Z(U^), there exists 

t e Kg such that u = u ̂ t. (Note that u = -u and Ug = -ug. Thus
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u U q  ̂ = u Uq^ .) We now describe how to interpret Kg in (K).

i) The underlying set is Z(U^).

ii) The field addition © corresponds to the group operation on Z(U^).

iii) Suppose that g^ = ^a+b^^i^  ̂ Z(U^) are nonidentity elements for

i = 1/2. There exist t. e K^ such that s. = u„t.. Hence there exist1 u 1 0 1
hj € N(ul) = ul X Hi (1 2 j C 4) such that

(A typical set of examples is h (z.)h (z.) for z. e K. such thata j b 3 ] u
zf+zl = tj and z^+z^ = t^.) We define

gj®32 = . : Vj='a+b<“ 0 > ^ ; \ ^

where I = {1,2} x {3,4}. If = 1 or g^ = 1, we define g^Gg^ = 1.

It is easily checked that the map <Z(U^), ®, 0, x^^^tu^), 1>

<K q, +, X, 1, o>

*a+b("ot) t

is an isomorphism.

□

Lemma 5

G is not of type ^G^.

Proof

Suppose that G = ^G2 (K) . We remind the reader that ^G^ (K) is 

defined in terms of an automorphism 0 : K -> K such that 39^ = 1. G^ has 

Dynkin diagram:

and = Xg, where S = {a,b,a+b,2a+b,3a+b,3a+2b}. Define
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a(t) = Xa(tG)Xb(t)Xa+b(t^^^)x2a+b(t^^^^'

g(u) = %a+b

T(v) = %2a+b<v^)x3a+2b(v)-

Then a typical element of has the form a(t)3(u)y(v) for t,u,v e K. 

An easy computation shows that

Z (U M  = { Y (v ) IV e k }

and

Y(v ^)Y(v 2) = Y(Vi+V2)'

A typical element of has the form

h (u) = h^(u^)h^(u), u e K*

and

h(u)Y(v)h(u)  ̂ = Y(uv).

We shall now explain how to interpret K inside (K).

i) The underlying set is Z(uM.

ii) The field addition © corresponds to the group operation in Z(U^).

iii) Let 9j/92 ^ Z(U^) be nonidentity elements. There exist

hj/h^ e N(U^) = x such that g^ = h^Y(l)h7^ (i = 1,2). We define 

“ h^hgYflih^^h^^' If 9i = 1 or g^ = 1, we define gj®g2 ~ 1- 

Once again, it is immediate that

< Z ( y l ) ,  ©, 0 , Y ( l ) ,  1> -  <K, +,  X, 1 , o>

□

We have now eliminated all of the twisted Chevalley groups, and 

the proof of Cherlin's conjecture is complete.
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Chapter Six: Nonsoluble Locally Finite Groups

of Finite Morley Rank

In [32], it was shown that an algebraically closed field F can 

always be interpreted in a connected nonsoluble locally finite group 

G of finite Morley rank. However, the proof was indirect and gave no 

indication of the role of F inside G . In this chapter, we clear up 

the mystery by proving:

Theorem 1

Let G be a connected nonsoluble locally finite group of finite 

Morley rank. Then there exists a definable soluble normal subgroup N 

such that

G/n  - ® ... ©

where each is a Chevalley group over an algebraically closed field 

(possibly of different characteristics).

This result confirms the feeling that groups of finite Morley 

rank resemble algebraic matrix groups over algebraically closed fields. 

It is perhaps worth noting that PSL(2, @ PSL(7, r^) has finite

Morley rank. So we are now dealing with a strictly larger class of 

groups.

We shall prove theorem 1 by imitating the development of the theory 

of semisimple algebraic matrix groups. At various points, it is 

necessary to change the arguments as we do not have as much information 

available. For example, in the proof of the corresponding result for 

algebraic matrix groups, use is made of:

Fact 2 (Humphreys [17] page 166)

Let G be semisimple.

(a) AutG = (InnG)D, where D consists of those automorphisms which leave 

stable a given maximal torus T and a Borel subgroup B containing it.
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(b) Inn G has finite index in AutG.

In this result, AutG refers to the group consisting of all 

algebraic group automorphisms of G, not to its full automorphism group 

as an abstract group. This result is not available when we try to prove 

theorem 1. However, we already know that the simple locally finite 

groups of finite Morley rank are Chevalley groups over algebraically 

closed fields. Full use will be made of this information. (Once 

again, the logician travels in a different direction from the 

algebraist.)

Definition 3

An w-stable group is semisimple if it has no nontrivial connected 

normal soluble subgroup.

As usual, we understand "connected" to mean "definable and 

connected."

Lenma 4

Let G be a group of finite Morley rank. Then G has a maximum 

connected normal soluble subgroup S(G).

Proof

Let A,B be any two connected normal soluble subgroups. By theorem 

1.3.6, AB is a connected normal soluble subgroup. If A ^ B and B ^ A, 

then the Morley rank R(AB) > max{R(A),R(B) }. Since the rank cannot 

increase forever, there is actually a largest such subgroup S(G).

□

Note that S (G) is a characteristic subgroup of G. (Let 

S(G) = (f)(G,a) and ir e AutG. Then S(G)^ = (p (G,a^) is also a maximum 

connected normal soluble subgroup, and hence S(G)^ = 8(G).) We call 

S(G) the radical of G . Suppose that S(G) = 1, i.e. G is semisimple.

Any connected normal subgroup of G is also semisimple; its radical 

is a characteristic subgroup, and hence is normal in G.
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Lemma 5

Let G be a connected semisimple group of finite Morley rank.

i) G has a finite centre.

ii) If H = G/Z(G), then H is a connected centreless semisimple group

of finite Morley rank.

Proof

(i) By definition of semisimplicity.

(ii) We shall show that H is centreless. The other statements are 

obvious. Since H is semisimple, Z(H) is finite. Let Z(H) = P/Z (G). 

Then P is a finite normal subgroup of G . Hence [G : C(P)] is finite,

and so G = C (P). Hence P c Z(G) and Z(H) = 1 .
□

So we have shown:

Lemma 6

Let G be a connected nonsoluble group of finite Morley rank. Then 

there exists a definable normal soluble subgroup N such that G/N is a 

connected centreless semisimple group of finite Morley rank.
□

It is at this point that we need to add the hypothesis that G is 

locally finite. The following proposition will complete the proof of 

theorem 1.

Proposition 4

Let G be a connected centreless locally finite semisimple group 

of finite Morley rank. Then

G = S. @ ... @ S 1 n

where each S^ is a Chevalley group over an algebraically closed field 

(possibly of different characteristics).

Proof (cf. [17] pages 167-168)

We proceed by induction on R(G) , the Morley rank of G. The 

inductive hypothesis is:
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Let G be a connected centreless locally finite seinisimple group of 

rank r, and let {g ^|i e l) be the minimal connected nontrivial normal 

subgroups of G . Then:

a) I is finite, say I = {l,...,n), and G = G ̂ ® ... G^.

b) For each i £ I, G^ is simple.

So suppose that the result holds for all r < R(G). First note that

we may assume that R(G^) < R(G) for all i £ I. Otherwise, G has no

proper connected normal subgroups. But since G is connected and 

centreless, any definable normal subgroup must be infinite. Thus G has 

no definable proper normal subgroups, and so by theorem 1.3.11 G is 

simple.

Claim 1

If i / j £ I, [Gu,Gj] = 1.

Proof of claim 1

By 1.3.12, [G^yGj] is a connected normal subgroup contained in 

both G^ and G ̂ . By minimality, [G^,G.] = 1.
□

Let I q = {i^,...,i } Ç i be any finite subset. Then G. ...G. is
1 n

a connected normal subgroup of G, and hence is semisimple.

Z(G. ...G, ) is a characteristic subgroup of G. ...G. , and hence is 
^n ^n

normal in G . Since G is connected centreless and Z (G. . ..G, ) is a
^n

finite normal subgroup, we must have Z (G..... G. ) = 1 .
^1 ^n

Suppose that i / I q. Then by claim 1, [G. ...G, ,G.] = 1. Thus
1 n

G. nG. ...G. = 1 .  These remarks have two important consequences,
n

Claim 2

For any finite I = {i,...,i } ç I, G . ...G. = G. (u 1 n
□

Claim 3

I is finite, say I = {l,...,n}.

Proof of claim 3

By claim 2, and the finiteness of R(G) .
□

.®G. .
n
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Claim 4

For each i e I, is simple.

Proof of claim 4

By the prece ding discussion, G. is a connected centreless semi- 

simple group of finite Morley rank. Since R(G^) < R(G),

^i ~ ®**‘® where each (1 j ^ m) is a simple group. Further,

{Hj|l $ j $ m} is the set of minimal G^-connected normal subgroups of 

G^. Note that every automorphism tt £ Aut G^ permutes the H^ . To see

this, note that = (p (G^,g) is a minimal connected normal subgroup,

and hence so is = <j)(G^,g^). Hence for some k < m.

The action of G on G^ by inner automorphisms thus induces a

homomorphism ip: G -> S^, the symmetric group on m elements. Since 

Eg : kerip] is finite and kerip is definable, G = kerip. Hence each

H . <J G and m = 1.
□

Claim 5

G — G ®...®G .1 n
Proof of claim 5

Suppose otherwise. Put H = G^ ©...© G^. Then Cg  : H] is infinite.

The action of G on H by inner automorphisms induces a homomorphism

rp: G AutH, with ker\p = C^(H) . Let K = (kenp) ̂ , the connected 

component.

Suppose that K / 1. Let Kg Ç K < G be a minimal connected normal 

subgroup of G. Then Kg = G^ for some i 3 n. Hence

[G\yG^] = [Kg,Gj, ] Ç [Kg,H] = 1.

But this means that G^ is abelian. ^

Thus K = 1. So kerip is a finite normal subgroup, and hence is 

trivial. So ^ is an embedding. The argument used in the proof of 

claim 4 can now be repeated to show that ip is actually an embedding
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G +  Aut G , © ... © Aut G .1 n

Clearly i|̂ [h ] = Inn G  ̂ ffi ., . © Inn G^, and so we have an embedding

(|) : G/H Aut G T /inn G , © ... © Aut G /Inn G .1  ̂ n n

We now consider A^ = Aut G ^ . Since G^ is a Chevalley group over an 

algebraically closed field, the structure of A. is well known.

(e.g. see Steinberg [29].) A normal sequence for A^ is

Inn G . < B. o A.I l l

where B^ is the group generated by inner and field automorphisms.

Further, we have :

a) A^/B^ is a finite group;

b) B./Inn G. - Aut (IF ) , where IFp is the underlying field of G . .1 1 Pf î i 1

Thus Aut G^/lnn G  ̂ © ... © Aut G^/lnn G^ has a torsion-free subgroup 

of finite index. By the second isomorphism theorem, ^^G/H] has a 

torsion-free subgroup of finite index, contradicting the fact that G 

is locally finite. Hence G = H.
□

We have now shown that G satisfies the inductive hypothesis, and 

the proposition is proved.
□
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Chapter Seven: Simple Constructible Groups

Over Algebraically Closed Fields

In this final chapter, we shall prove:

Theorem 1

Let K be an algebraically closed field, and G be an infinite 

simple constructible group over K. Then G is isomorphic to a 

Chevalley group over an algebraically closed field F .

First we show that the theorem is true for ]F , p > O.P
Lemma 2

Suppose that the group G is constructible over Then G is

locally finite.

Proof

Let the notation be as in definition 1.3.15. Suppose that 

a,b,c e G and [= ^^a,b,c,k). Let F^,F2 be the finite fields 

generated by the co-ordinates of {a,b,k},.{a,b,c,k} respectively. 

Suppose that Fj ^ F2. Since F 2 is a Galois extension of Fj, there 

exists a e Aut F 2 with a [F^ = id and a(c) / c. Extend a to an 

automorphism tt of F ^ . Then

F ^  1= (a,b,7T (c) ,ic) . ^

Hence if Cj,...,c^ e G and d e gp^c^, —  ,c^^, then all the co-ordinates 

of d lie in the finite field generated by the co-ordinates of 

{cJ,...,c^,k}. Hence G is locally finite.
□

We intend to use the following transfer principle.

Theorem (Robinson)

Let ^ be a first order statement in the language of fields. Then 

the following are equivalent:

i) <P is true in all algebraically closed fields of characteristic O.



83.

ii) for every n, there is an algebraically closed field of characteristic

p > n in which (p is true.

First we introduce some notation. For any formulas <P (x,w) and 

ip (x,y,z,w) , let ^(w) be the obvious formula in the language of fields 

such that:

for any field K and k e K,

K 1= G^ ^ (k) iff #(x,kj, ^(x,y,z,k)

defines a constructible group over K.

We shall also use G^ ^ (k) to denote the defined group. Then if P 

is any first order property of groups, there is a sentence in the 

language of fields which says "G^ ^(k) has the property P." We shall

use this expression as an abbreviation for the corresponding sentence.

For example, by 4.8 and 4.18, for each non twisted Lie type L there 

is a sentence in the language of fields which says "G^ ^(k) - L(F) for 

some field F. " Let Ch denote the set of nontwisted Lie types. By 

lemma 2, the following statement is true in for each prime p > O:

(Vw)["G (w) is infinite and simple"
< P f W

V  ["G, , (w) - L(F) for some field F"]]
L£Ch

Unfortunately this is clearly not a first order statement. We 

shall mention the main difficulties.

a) How can we say "simple"?

In general, simplicity is not a first order concept. An easy 

compactness argument shows that A^, the group of finite even permutations 

on nw, has an elementary extension which is not simple.

b) Can we make the infinite disjunction " V " into a finite disjunction?
LeCh

c) How do we say "infinite"?

To solve problem (a), we shall use:
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Theorem (Zilber [38])

Let G be an infinite simple group of finite Morley rank. Then all 

models of ThG are simple.

Proof

This is an immediate consequence of theorem 1.3.11.
Q

For each n e oj, let cong(n) be the statement:

(Vx/1) (Vy) (3Xj— x^^[y = (x~^) ^...(x~^) ^] .

If G satisfies cong(n), then every nontrivial conjugacy class generates 

G, and so G is simple. However, the infinite simple group does not 

satisfy cong (n) for any n e u).

Lemma 3

Let G be an infinite simple group which is constructible over an 

algebraically closed field. Then G f= cong (n) for some n e w.

Proof

It is well-known (e.g. Zilber [37]) that such a group has finite 

Morley rank. Suppose that G }=“icong(n) for all n e m. Let T be the 

theory

Th(G,g)g^G

+1^1 +1 -1 (3x . ..X )[c = (d“ ) . .. (d“ ) ]1 n
c\ ^ 4-

for each n e w ,  where c and d are new constants. Then T is consistent 

and hence has a model G* > G. But clearly G* is not simple.

□

Thus in each case that we consider, we shall be able to say "simple* 

Next we deal with problem (c).

Lemma 4

Let (p (x,w) be a formula in the language of fields. There exists 

a formula inf(w) such that:
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for any algebraically closed field K and k e K, K [= inf (k) iff 

{m c k |k  1= (f) (m,k) } is infinite.

Proof

We shall use the fact that ACF, the theory of algebraically closed 

fields, admits elimination of quantifiers. Following the usual 

convention, we shall identify formulas and the subsets which they 

define. Let K be any algebraically closed field and k e K. Then 

cj)(x;k) is infinite iff one of the projections

P.(x.;k) = (3X-...X. X ...X )cf)(x;k)1 1  J- 1— 1 1+1 n

is infinite. By the elimination of quantifiers in ACF,

P\(x_;w) =V[Ap(x^;w) = oAAq(x^;w) / O]

where each p,q is a polyncmial. (We have suppressed a number of 

indices, but it should be obvious what is going on.) Suppose that 

P^(x^;k) is infinite. Then one of the above disjuncts must be infinite, 

say

[Ap(x^;ic) = O A  Aq(x^;k) / O].

Note that [Ap(x^;k) = O] is a closed subset of affine 1-space. The 

only closed subsets are the finite subsets and the whole space. Hence

CAp(x^;k) = O] = Cx^ = x^].

Also [Aq(x^;k) / O] is an open subset of affine 1-space. The only 

open subsets are the empty set and the cofinite sets. Hence

CAq(x^;k) = O] / Cx^ / x^D.

Thus inf(w) can be chosen to say:- for some i $ n and some disjunct of

[Ap(x^;w) = O] +-)- [x^ = x^]
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and

[Aq(x^;w) / O] [x^ / x^].

□

Finally we deal with problem (b).

Lemma 5

For each formula c|) (x,w) and n e oj, there exists a finite subset 

^ 5 Ch such that for every prime p > 0,

h C^w)[["G^ ^ (w) satisfies cong (n) " a inf (w) ]

\/ -
-y V  ["G. (w) - L(F) for some field F"]]

LEL.
(p,n

Proof

Suppose that

^p "̂(|) ip satisfies cong (n) " A inf (k) .

Since G, , (k) £ F™, where x = <x,,...,x >, it follows that the Morley (p, ip p i m
rank R(G^ ^(k)) $ m. By lenma 2 and the classification of the stable 

simple locally finite groups, G (k) is a Chevalley group. Let(p fip
G(f) ~ b(F). Then the Morley rank R(L(F)) $ m. Let . TT = {r^,...,r

be a set of fundamental roots for L. Then for each i % &, is

definable and hence R(H) 3 £. Thus Z ^ R(H) ^ R(L(F)) ^ m.

□

Proof of theorem 1

To make matters as awkward as possible, we shall assume that 

char K = O. (The reader will have no difficulty providing a proof 

for char K = p > O.) Let G be defined by (j) (x;k) and ^(x,y,z;k) . By

lemma 3, there exists n e w  such that G f= cong (n) . Hence

K 1= "G, , (k) satisfies cong (n) " A inf (k).

Let $((f),n) be the sentence given by lemma 5. By Robinson's transfer
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principle, K [= $(#,n). Hence G is a Chevalley group. Since we can 

interpret the underlying field in G, it must be w-stable and hence 

algebraically closed.

□
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